WO2017097033A1 - 波束处理方法、初始波束发现方法及基站和终端 - Google Patents

波束处理方法、初始波束发现方法及基站和终端 Download PDF

Info

Publication number
WO2017097033A1
WO2017097033A1 PCT/CN2016/102172 CN2016102172W WO2017097033A1 WO 2017097033 A1 WO2017097033 A1 WO 2017097033A1 CN 2016102172 W CN2016102172 W CN 2016102172W WO 2017097033 A1 WO2017097033 A1 WO 2017097033A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
cell
terminal
signal
different
Prior art date
Application number
PCT/CN2016/102172
Other languages
English (en)
French (fr)
Inventor
陈林
张芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2018529264A priority Critical patent/JP6579562B2/ja
Priority to EP16872227.0A priority patent/EP3389319B1/en
Publication of WO2017097033A1 publication Critical patent/WO2017097033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a fifth generation mobile communication technology (5G), and more particularly to a beam processing method, an initial beam discovery method, and a base station and a terminal.
  • 5G fifth generation mobile communication technology
  • the throughput of 10 to 100 times per user increases, the number of connected devices increases by 10 to 100 times, and that of low-power devices is 10 times.
  • the battery life is extended and the end-to-end 5x delay is reduced.
  • Two of the most notable features are throughput and peak rate growth of 1-2 orders of magnitude and several times the end-to-end delay.
  • some new wireless technology solutions must be proposed in 5G.
  • the use of large bandwidth (such as 500M-1GHz) in the millimeter wave band is the main solution to solve the future data service throughput index growth; and the end-to-end delay is mainly reduced by shortening the sub-frame structure and reducing the hybrid automatic repeat request (HARQ, Hybrid Automatic Repeat Request) Delayed solution to solve.
  • HARQ Hybrid Automatic Repeat Request
  • reference signals, synchronization signals, and control channels need to be redesigned based on Beam ID (Beam Identifier) to meet the 5G design goals.
  • the present invention provides a beam processing method, an initial beam discovery method, and a base station and a terminal, which can propose a related solution according to a high frequency subframe structure, so that the terminal can distinguish the beam.
  • the present invention provides a beam processing method, including: a base station processing different beams of different transceiver chains to obtain a beam cell identification ID;
  • the synchronization signal and the reference signal are generated by using the beam cell ID, and the synchronization signals or reference signals of different beams are staggered in position on the time-frequency resource to generate a high frequency subframe.
  • the processing the different beams of different transceiver chains to obtain the beam cell ID includes:
  • the physical cell ID and the beam ID are used as parameters of the function, and are mapped to the beam cell ID by a function.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the generating the synchronization signal and the reference signal by using the beam cell ID includes:
  • each group includes a preset number of beam cell ID physical group numbers
  • the primary synchronization signal sequence is generated according to the following formula:
  • the Zadoff-Chu root sequence index u can be given by the following table:
  • the secondary synchronization signal sequence is generated according to the following formula:
  • the secondary synchronization signal sequence is represented by d(0), ..., d(61), and the manner in which the secondary synchronization signal generates sequences on subframe 0 and subframe 5 is different;
  • m 0 and m 1 are obtained by the beam cell ID physical group number:
  • the reference signal sequence is generated according to the following formula:
  • n s is the slot number in a radio frame, and l is a symbol in the slot;
  • the pseudo-random sequence generator is initialized by c init as shown in the following equation:
  • the high frequency subframe includes: a reference signal and a synchronization signal region, a control signal region, a data transmission region, and a control signal feedback region.
  • the high frequency subframe includes an uplink high frequency subframe and/or a downlink high frequency subframe;
  • the uplink reference signal and the synchronization signal region include an uplink secondary synchronization signal SRS and a preamble Preambl
  • the uplink control signal region includes an uplink control channel
  • the uplink data transmission region includes an uplink data channel.
  • the uplink control signal feedback area includes a guard interval GP and a downlink control channel;
  • the downlink reference signal and the synchronization signal region include a reference signal RS, a primary synchronization signal PSS, and a secondary synchronization signal SSS, where the downlink control signal region includes a downlink control channel and a DM-RS, and the downlink data
  • the transmission area includes a downlink data channel
  • the downlink control signal feedback area includes a GP and an uplink control channel.
  • the invention also provides an initial beam discovery method, which comprises: the terminal respectively measuring the synchronization signal and the reference signal of different beams;
  • One of the beams that can be identified by the terminal is selected for initial residence.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal.
  • the measuring the synchronization signal and the reference signal of different beams includes:
  • the invention further provides a base station, comprising: a beam processing module, a generating module, wherein
  • a beam processing module configured to process different beams of different transceiver chains to obtain a beam cell ID
  • a generating module configured to generate a synchronization signal and a reference signal by using a beam cell ID, and the synchronization signals or reference signals of different beams are staggered in position on the time-frequency resource.
  • the beam processing module is specifically configured to: uniformly number different beams of the different transceiver chains, obtain a new beam cell ID by adding a physical cell ID and a beam ID; or, set a physical cell ID,
  • the beam ID is used as a function parameter and is mapped to the beam cell ID by a function.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the generating module is specifically configured to: divide the beam cell ID into a plurality of beam cell ID physical groups, each group includes a preset number of beam cell ID physical group numbers; generate a master by using a beam ID in the divided physical group Synchronizing the signal sequence, and performing primary synchronization signal sequence mapping; generating a secondary synchronization signal sequence by the beam cell ID physical group number, and performing secondary synchronization signal sequence mapping; generating a reference signal sequence by using the beam cell ID, and on different ports Resource mapping is performed to generate high frequency subframes.
  • the high frequency subframe includes: a reference signal and a synchronization signal region, a control signal region, a data transmission region, and a control signal feedback region.
  • the invention further provides a terminal, comprising: a measurement module, a processing module; wherein
  • a measuring module for measuring synchronization signals and reference signals of different beams
  • a processing module configured to compare the measurement result with a corresponding preset threshold, and if all the threshold requirements are met, the physical cell ID and the beam ID are considered to be recognized by the terminal; and one of the beams that can be identified by the terminal is selected. Initially resident.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the measurement module is specifically configured to: measure an SNR of the primary synchronization signal, an SNR of the secondary synchronization signal, and RSRP and Es/Iot of the reference signal.
  • the technical solution of the present application includes: processing, on the base station side, different beams of different transceiver chains to obtain a beam cell ID; generating a synchronization signal and a reference signal by using a beam cell ID, and synchronizing signals of different beams or
  • the reference signal is staggered on the time-frequency resource. Since the reference signals and synchronization signals of different beams are staggered in the time-frequency domain resources, the mutual interference between the beam scanning and the multi-beam simultaneous transmission is avoided.
  • the terminal measures the synchronization signal and the reference signal of different beams respectively, and compares with corresponding preset thresholds. If all the threshold requirements are met, the physical cell ID and the beam ID are considered to be recognized by the terminal. .
  • the terminal can simultaneously identify different beams of different transceiver chains, and different beams can transmit different data streams, that is, the conditions required for multi-user multiple input multiple output UE pairing are reduced.
  • FIG. 1 is a schematic diagram of a hybrid beamforming architecture in the related art
  • FIG. 2(a) is a schematic diagram showing the structure of a high frequency uplink subframe structure in an embodiment of the present invention
  • 2(b) is a schematic diagram showing the structure of a high frequency downlink subframe structure according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a beam processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a time-frequency resource location of a beam-based synchronization signal according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a time-frequency resource location of a beam-based reference signal according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of initial cell discovery PSS detection of a single antenna port according to a first embodiment of the present invention
  • FIG. 7 is a schematic flowchart of initial cell discovery SSS detection of a single antenna port according to the first embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of initial cell discovery RSRP detection of a single antenna port according to the first embodiment of the present invention
  • FIG. 9 is a schematic flowchart of initial cell discovery PSS detection of a multi-antenna port according to a second embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of initial cell discovery SSS detection of a multi-antenna port according to a second embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of an initial cell discovery RSRP detection of a multi-antenna port according to a second embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal of the present invention.
  • FIG. 1 is a schematic diagram of a hybrid beamforming architecture in the related art.
  • an N ⁇ M hybrid beamforming architecture is shown in FIG. 1 , wherein there are N transceiver chains, and each transceiver chain is connected to M antennas.
  • Abeam Analog Beam forming
  • DBF Digital Beam Forming
  • a digital-to-analog converter (DAC) operates on N transceiver chains, and a Power Amplifier (PA) is a power amplifier for each antenna.
  • DAC digital-to-analog converter
  • PA Power Amplifier
  • Antennas 0 (AT 0), AT 1, ..., AT (M-1) represent different antennas of a transceiver chain, respectively.
  • a transceiver chain is configured as one port, or two transceiver chains are configured as one port, depending on the implementation.
  • the embodiment of the present invention provides a high-frequency subframe structure in a high-frequency frame structure framework agreed upon by the base station side and the terminal side, and the entire subframe is divided into independent regions, including: a reference signal, a synchronization signal region, and a control signal. Area, data transfer area, and control signal feedback area.
  • 2(a) is a schematic diagram showing the structure of a high-frequency uplink subframe structure according to an embodiment of the present invention. As shown in FIG.
  • an uplink reference signal and a synchronization signal region include an uplink secondary synchronization signal (SRS) and a preamble ( Preamble), the uplink control signal area includes an uplink control channel, The row data transmission area includes an uplink data channel, and the uplink control signal feedback area includes a guard interval (GP, Guard Period) and a downlink control channel.
  • 2(b) is a schematic diagram showing the structure of a high frequency downlink subframe structure according to an embodiment of the present invention. As shown in FIG.
  • the downlink reference signal and the synchronization signal region include a reference signal, a primary synchronization signal, and a secondary synchronization signal ( RS, PSS, and SSS),
  • the downlink control signal region includes a downlink control channel and a DM-RS
  • the downlink data transmission region includes a downlink data channel
  • the downlink control signal feedback region includes a GP and an uplink control channel
  • the uplink control channel mainly transmits ACK/NACK feedback. information.
  • the function of the RS is equivalent to the function of Common Reference Signal (CRS) and Channel State Information Measurement Pilot (CSI-RS) in LTE.
  • CRS Common Reference Signal
  • CSI-RS Channel State Information Measurement Pilot
  • FIG. 3 is a flowchart of a beam processing method according to an embodiment of the present invention. As shown in FIG. 3, on the base station side, the method includes:
  • Step 300 Process different beams of different transceiver chains to obtain a beam cell ID.
  • the step may include: uniformly numbering different beams of different transceiver chains, and adding a physical cell ID (Cell ID) and a beam ID (Beam ID) to obtain a new beam cell.
  • Cell ID physical cell ID
  • Beam ID beam ID
  • the physical cell ID and the beam ID are used as parameters of the function, and are mapped to the beam cell by a linear function.
  • beam cell IDs each group containing a preset number, such as 0 to 2 beam cell ID physical group numbers, that is, among them, Indicates the beam cell ID physical group number. Indicates the beam ID in the physical group.
  • Step 301 Generate a synchronization signal and a reference signal by using a beam cell ID, and the synchronization signals or reference signals of different beams are staggered on the time-frequency resource to generate a high frequency subframe.
  • the high frequency subframe is generated according to the high frequency subframe structure shown in FIG. 2(a) or FIG. 2(b).
  • the reference signals and the synchronization signals of different beams are mutually staggered in the time-frequency domain resources, interference problems between the beam scanning and the multi-beam simultaneous transmission are avoided.
  • the base station side When transmitting broadcast information, the base station side needs to carry the number of beams in different directions that each port can transmit, in addition to the number of ports.
  • the reference signal and the synchronization signal in the embodiment of the present invention are based on the physical small in the cell.
  • the area ID and the beam ID are set such that when there is partial overlap between adjacent beams, the effect of reducing interference between adjacent beams is achieved; in the multi-user multi-stream mode of operation, the base station side is differently transmitted and received. Different beams can simultaneously transmit different data streams, thereby reducing the conditions required for MU-MIMO terminal side pairing; and for different ports of multiple antennas, the synchronization signal and reference signal mapping time and frequency domain resources are staggered from each other, reducing the difference Interference between port reference signals.
  • a radio frame includes 10 radio subframes. As shown in FIG. 4, each radio subframe is 100 to 250 us. Each radio subframe includes 2 slots, each slot including 30 Orthogonal Frequency Division Multiplex (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplex
  • PSS, SSS, and Physical Broadcast Channel (PBCH) are carried on six resource blocks (RBs) in the center of the band.
  • RBs resource blocks
  • the PSS sequence generation process is as follows:
  • the beams transmitted by multiple antennas are uniformly numbered (or generated by function mapping) to obtain the Beam ID of the unified number of the beams; for the case of multiple ports, the beams transmitted by different transmitting chains can be uniformly numbered, and the specific implementation can use one.
  • the physical cell ID is added to the beam ID to obtain a new beam cell ID, or the physical cell ID and the beam ID are used as parameters, and the function is mapped to the beam cell ID by function.
  • the It is divided into a plurality of physical groups such as 168 (0 to 167) beam cell IDs, and each group includes a preset number, such as a beam ID in 0 to 2 physical groups, that is, among them, Indicates the beam cell ID physical group number. Indicates the beam ID in the physical group.
  • the primary synchronization signal sequence d(n) can be generated by the frequency domain Zadoff-Chu sequence shown in equation (1):
  • the Zadoff-Chu root index u can be given by the table (1).
  • the secondary synchronization signal sequence is represented by d(0),...,d(61), and the secondary synchronization signal generates a sequence in subframe 0 and subframe 5, and the specific formula is as follows:
  • FIG. 5 is a schematic diagram of a time-frequency resource location of a beam-based reference signal according to an embodiment of the present invention.
  • a synchronization signal is transmitted in the middle of a first time slot of a subframe, and a reference is transmitted on both sides. signal.
  • the time-frequency resource mapping of the reference signal is described by taking four ports and four beams per port as an example.
  • RS1 0 , RS2 0 , RS3 0 , RS4 0 correspond to the reference signals of the four beams of beam 1, beam 2, beam 3 and beam 4; for the four beams of port 1, RS1 1 , RS2 1 , RS3 1 , RS4 1 corresponds to four beam reference signals of beam 1, beam 2, beam 3 and beam 4; for 4 beams of port 2, RS1 2 , RS2 2 , RS3 2 , RS4 2 correspond to beam 1 and beam 2, the beam reference signal four beams 3 and 4 of the beam; port 3 of the four beams, RS1 3, RS2 3, RS3 3, RS3 4 corresponding to the beam 1, beam 2, beam 3 and the beam 4 four reference beams signal.
  • Reference signal sequence As shown in formula (4):
  • n s is the slot number in a radio frame
  • l is the symbol in the slot.
  • the pseudo-random sequence generator is initialized by c init as shown in equation (5):
  • the method includes:
  • Step 302 The terminal respectively measures the synchronization signal and the reference signal of different beams, and compares with the corresponding preset thresholds. If all the threshold requirements are met, the physical cell ID and the beam ID are considered to be recognized by the terminal. And selecting one of the beams that can be identified by the terminal for initial camping.
  • the terminal when performing initial beam discovery, the terminal needs to search all the beams, only when the synchronization signal of a certain beam (including the primary synchronization signal and the secondary synchronization signal) and the signal quality of the beam, such as the reference signal received power (RSRP, Reference).
  • the beam can be recognized by the terminal.
  • the terminal can select one of the identifiable beams with the best signal quality as the initial camping beam of the UE.
  • the terminal can simultaneously identify different beams of different transceiver chains, and different beams can transmit different data streams. That is, the beam processing method provided by the present invention reduces multi-user multiple input multiple output (MU- MIMO, Multi-User, Multi-Input Multi-Output) The conditions required for UE pairing.
  • MU- MIMO multi-user multiple input multiple output
  • Multi-User Multi-User
  • Multi-Input Multi-Output Multi-Input Multi-Output
  • the transceiver chain is composed of an antenna AT 0, an antenna AT 1 , ..., an antenna AT (M-1), and each transceiver chain can have multiple
  • the angle of the beam may be a narrow beam of about 10 degrees or a wide beam of 30 to 50 degrees.
  • the initial discovery of a beam needs to be completed in the following three steps: PSS signal detection, SSS signal detection, and RSRP signal detection. Only when the measurement results of the three detection processes meet the preset threshold requirements can the beam be judged to be Terminal identification.
  • the thresholds of the pre-set beams PSS and SSS are respectively PSS thresholds.
  • THRD_PSS default value is 0dB,
  • THRD_SSS default value is 0dB.
  • FIG. 6 is a schematic flowchart of initial cell discovery PSS detection of a single antenna port according to the first embodiment of the present invention, as shown in FIG. 6, including:
  • Step 600 The terminal initializes the beam number K to be 0.
  • Step 601 Determine whether the beam number K is greater than the maximum value Kmax of the beam. If it is greater, proceed to step 607. If not, proceed to step 602.
  • the maximum value Kmax of the beam can be obtained from the broadcast information.
  • Step 602 The terminal sequentially detects the signals of the beams until the signal of the transmitting beam K is found.
  • Step 603 The terminal performs a Signal-to-Noise Ratio (SNR) detection on the PSS of the transmit beam K.
  • SNR Signal-to-Noise Ratio
  • Step 604 It is determined whether the detected SNR of the PSS is greater than a preset PSS threshold THRD_PSS. If it is greater, the process proceeds to step 605. If not, the process proceeds to step 606.
  • Step 605 Record the SNR of the PSS in a beam ID set that meets the threshold requirement, and parse the beam in the physical cell group from the PSS.
  • the specific method is to resolve the cell ID in the physical group from the PSS in the LTE.
  • Step 606 The beam number K is incremented, for example, by adding 1, and then returning to step 601.
  • the cycle of the beams may be performed sequentially or out of order.
  • Step 607 The beam PSS detection process ends, and the Beam ID set that meets the threshold requirement is counted.
  • FIG. 7 is a schematic flowchart of initial cell discovery SSS detection of a single antenna port according to the first embodiment of the present invention, as shown in FIG. 7, including:
  • Step 700 Renumber the beams in the beam set satisfying the PSS threshold THRD_PSS by the integer L, and set the initial value of L to 0.
  • Step 701 Determine whether the circulating beam number L is greater than a maximum value Lmax of the beam in the beam set satisfying the PSS threshold THRD_PSS. If it is greater, the process ends; if not, the process proceeds to step 702.
  • Lmax is the number of beams that satisfy the threshold THRD_PSS.
  • Step 702 The terminal adjusts to a mode of receiving the cyclic transmit beam L, that is, adjusting to a state of receiving the SSS signal of the transmit beam L.
  • the specific implementations are well known to those skilled in the art, and are not intended to limit the scope of the present invention, and are not described herein again.
  • Step 703 The terminal performs SNR detection on the SSS of the cyclic transmission beam L.
  • Step 704 Determine whether the detected SNR of the SSS is greater than a preset SSS threshold THRD_SSS. If it is greater, proceed to step 705. If not, proceed to step 706.
  • Step 705 Record the SNR of the SSS in the beam ID set that meets the threshold requirement, and parse the physical cell group in the physical cell group from the SSS. Specific implementations are well known to those skilled in the art and are not intended to limit the scope of the present invention, and are not described herein again; combined with the PSS detection process shown in FIG. Generating beam cell
  • Step 706 The cyclic beam number L is incremented, for example, by adding 1, and then returning to step 701.
  • the cycle of the beams may be performed sequentially or out of order.
  • FIG. 8 is a schematic flowchart of the initial cell discovery RSRP detection of a single antenna port according to the first embodiment of the present invention, as shown in FIG.
  • Step 800 The beam that meets the threshold requirement for both the PSS detection and the SSS detection is renumbered by the loop number M.
  • Step 801 The terminal initializes the beam cycle number M initial value 0.
  • Step 802 Determine whether the beam cycle number M is greater than Mmax. If it is greater than, the process ends. If not, the process proceeds to step 803.
  • Mmax is the number of beams that meet the threshold requirements of PSS detection and SSS detection at the same time.
  • Step 803 The terminal adjusts to the state of receiving the transmit beam M, that is, adjusts to receive the transmit beam M.
  • the signal of the beam M serves as a received signal
  • the signals of other beams serve as noise.
  • Step 804 The terminal measures the received power/noise and interference received power spectral density (Es/Iot) of the RSRP and the resource unit of the transmit beam M.
  • the threshold of the RSRP may be set to -127 dBm
  • the threshold of the Es/Iot may be Set to -6dB.
  • the specific implementation of this step may be implemented by using the measurement of the RSRP and the Es/Iot in the LTE. The specific implementation is not limited to the scope of protection of the present invention, and details are not described herein again.
  • Step 805 If the measured value of the RSRP and the measured value of the Es/Iot are both greater than the respective preset thresholds, then the process proceeds to step 806. If not, the process proceeds to step 807.
  • Step 806 Record a set of beam IDs in the physical group that both RSRP and Es/Iot meet the preset threshold requirements. At this time, all the beams in the beam ID set in the physical group are the beam cell IDs that the terminal can recognize.
  • Step 807 The beam cycle number M is incremented, for example, by one.
  • the cycle of the beams may be performed sequentially or out of order.
  • one port corresponds to one transceiver.
  • the chain as shown in Figure 1, has N ports.
  • the initial discovery of a beam needs to be completed in three steps: PSS signal detection, SSS signal detection, and RSRP signal detection. Only when the measurement results of the three detection processes meet the preset threshold requirements can the beam be identified by the terminal.
  • the thresholds of the pre-set beams PSS and SSS are the PSS threshold THRD_PSS and the SSS threshold THRD_SSS, respectively.
  • FIG. 9 is a schematic flowchart of initial cell discovery PSS detection of a multi-antenna port according to a second embodiment of the present invention. As shown in FIG. 9, the method includes:
  • Step 900 The terminal initializes the port number A and sets it to 0.
  • Step 901 Determine whether the port number A is greater than or equal to the port maximum value Amax. If it is greater than or equal to, the process proceeds to step 910. If not, the process proceeds to step 902.
  • the broadcast information of the base station side carries the maximum number of beams under each port.
  • the maximum value of the port Amax the terminal can be obtained in advance in the broadcast information.
  • Step 902 The terminal initializes the beam number K to be 0.
  • Step 903 Determine whether the beam number K is greater than the beam number maximum value Kmax. If it is greater, proceed to step 904. If not, proceed to step 905.
  • the maximum value Kmax of the beam can be obtained from the broadcast information.
  • Step 904 The port number A is incremented, for example, by adding 1, and then returns to step 901. It should be noted that the port loops may or may not be performed in order.
  • Step 905 The terminal adjusts to receive the transmit beam K, that is, the signal of the transmit beam K is used as the receive signal, and the signals of other beams are used as the noise.
  • Step 906 The terminal performs SNR detection on the PSS of the transmit beam K.
  • Step 907 It is determined whether the detected SNR detection value of the PSS is greater than the PSS threshold THRD_PSS. If it is greater, the process proceeds to step 908. If not, the process proceeds to step 909.
  • Step 908 Record the SNR of the PSS in a beam ID set that meets the threshold requirement, and parse the beam in the physical cell group therefrom.
  • Step 909 The beam number K is incremented, for example, by adding 1, and then returns to step 903.
  • the loop of the beam may be performed sequentially or non-sequentially.
  • Step 910 The beam PSS detection ends, and the beam ID set that meets the threshold requirement is counted.
  • FIG. 10 is a schematic flowchart of initial cell discovery SSS detection of a multi-antenna port according to a second embodiment of the present invention. As shown in FIG. 10, the method includes:
  • Step 1000 Renumber the beams in the beam set satisfying the PSS threshold THRD_PSS with the integer beam number L.
  • Step 1001 The terminal initializes the port number A and sets it to 0.
  • Step 1002 Determine whether the port number A is greater than or equal to the maximum number Amax of the port. If it is greater than or equal to, the process proceeds to step 1011. If not, the process proceeds to step 1003.
  • Step 1003 The terminal initialization beam number L is 0.
  • Step 1004 Determine whether the beam number L is greater than a maximum value L'max of the beam in the beam set satisfying the PSS threshold THRD_PSS. If it is greater, the process proceeds to step 1005. If not, the process proceeds to step 1006.
  • L'max is the number of beams that satisfy the THRD_PSS threshold under a certain port.
  • Step 1005 The port number A is incremented, for example, by adding 1, and then returning to step 1002. It should be noted that the port loops may or may not be performed in order.
  • Step 1006 The terminal adjusts to receive the transmit beam L, that is, the signal of the transmit beam L is used as the receive signal, and the signals of other beams are used as noise.
  • Step 1007 The terminal performs SNR detection of the SSS on the transmit beam L.
  • Step 1008 Determine whether the SNR of the detected SSS is greater than the SSS threshold THRD_SSS. If it is greater, proceed to step 1009. If not, proceed to step 1010.
  • Step 1009 Record the SNR of the SSS in a beam ID set that meets the threshold requirement, and parse the beam cell ID physical group number in the physical cell group therefrom. Combined with the PSS detection process shown in Figure 9 Generating beam cell
  • Step 1010 The beam number is incremented, for example, by adding 1, and then returning to step 1004. It should be noted that the beam cycle may or may not be performed in order.
  • Step 1011 The beam SSS detection ends, and the beam ID (BEAM ID) set that satisfies the SSS threshold requirement is counted.
  • FIG. 11 is a schematic flowchart of an initial cell discovery RSRP detection of a multi-antenna port according to a second embodiment of the present invention, as shown in FIG.
  • Step 1100 The beam that meets the threshold requirement for both the PSS detection and the SSS detection is renumbered by the cyclic beam number M.
  • Step 1101 The terminal initializes the port number A to be 0.
  • Step 1102 Determine whether the port number A is greater than or equal to the port maximum value Amax. If it is greater than or equal to, the process ends; if not, the process proceeds to step 1103.
  • Step 1103 The initial value of the terminal initialization cyclic beam number M is 0.
  • Step 1104 If the cyclic beam number M is greater than the maximum value M'max of the beam in the beam set satisfying both the SSS threshold THRD_SSS and the PSS threshold THRD_PSS, proceed to step 1105, and if not, proceed to step 1106.
  • M'max is the number of beams required to satisfy the threshold requirements of PSS detection and SSS detection under a certain port.
  • Step 1105 The port number is incremented, for example, by adding 1, and then returning to step 1102. It should be noted that the port loops may or may not be performed in order.
  • Step 1106 The terminal adjusts to receive the transmit beam M, that is, the signal of the strong transmit beam M as the received signal, and the signals of other beams serve as the noise.
  • Step 1107 The terminal performs RSRP and Es/Iot measurement on the transmit beam M.
  • Step 1108 After the terminal measurement ends, it is determined that the measured value of the RSRP and the measured value of the Es/Iot are both greater than the respective preset thresholds, that is, THRD_RSRP and THRD_Es. If both are greater than, the process proceeds to step 1109. If not, the process proceeds to step 1110.
  • Step 1109 Record a set of beam IDs that both RSRP and Es/Iot meet the preset threshold requirements. At this time, all the beams in the beam ID set are the beam cell IDs that the terminal can recognize.
  • Step 1110 The beam cycle number M is incremented, for example, by one. It should be noted that the beam cycle may or may not be performed in order.
  • FIG. 12 is a schematic structural diagram of a base station according to the present invention. As shown in FIG. 12, the method further includes: a beam processing module, and a generating module, where
  • a beam processing module configured to process different beams of different transceiver chains to obtain a beam cell ID
  • a generating module configured to generate a synchronization signal and a reference signal by using a beam cell ID, and the synchronization signals or reference signals of different beams are staggered in position on the time-frequency resource.
  • the beam processing module is specifically configured to: uniformly number different beams of different transceiver chains, obtain a new beam cell ID by adding the physical cell ID and the beam ID; or pass the physical cell ID and the beam ID as a function parameter. The function is mapped to the beam cell ID.
  • the generating module is specifically configured to: divide the beam cell ID into a plurality of beam cell ID physical groups, and each group includes a preset number of beam cell ID physical group numbers; Generating a primary synchronization signal sequence, and performing primary synchronization signal sequence mapping, by beam cell ID physical group number Generating a secondary synchronization signal sequence and performing a secondary synchronization signal sequence mapping, Generating a reference signal sequence and performing resource mapping on different ports to generate a high frequency subframe;
  • the high frequency sub-frame includes: a reference signal and a synchronization signal area, a control signal area, a data transmission area, and a control Signal feedback area.
  • the beam processing module and the generation module can be implemented by hardware, software, or a combination of both.
  • the beam processing module and the generation module can be implemented by a digital signal processing device or a wireless signal processing chip in the base station in conjunction with a specific algorithm stored in the memory.
  • FIG. 13 is a schematic structural diagram of a terminal of the present invention, as shown in FIG. 13, including at least: a measurement module, a processing module;
  • a measuring module for measuring synchronization signals and reference signals of different beams
  • a processing module configured to compare the measurement result with a corresponding preset threshold, and if all the threshold requirements are met, the physical cell ID and the beam ID are considered to be recognized by the terminal; and one of the beams that can be identified by the terminal is selected. Initially resident.
  • the measurement module is specifically configured to: search all the beams, and measure the SNR of the primary synchronization signal, the SNR of the secondary synchronization signal, and the RSRP and Es/Iot of the reference signal for each beam.
  • the measurement module and the processing module can be implemented by hardware, software, or a combination of both.
  • the measurement module and the processing module can be implemented by a digital signal processing device or a wireless signal processing chip in the terminal in conjunction with a specific algorithm stored in the memory.
  • the beam processing method, the initial beam discovery method, the base station and the terminal provided by the present application can be applied to the field of communications, and in particular, can be applied to signal transmission between a base station and a terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种波束处理方法、初始波束发现方法及基站和终端,在基站侧,对不同收发链的不同波束进行处理以获得波束小区ID;利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开。由于不同波束的参考信号、同步信号在时频域资源上相互错开,避免了波束扫描、多波束同时发射时相互之间的干扰。在终端侧,终端分别通过对不同波束的同步信号和参考信号进行测量,并与对应的预先设置的阈值进行比较,如果都满足所有阈值要求,则认为该物理小区ID和波束ID可以被终端识别。本发明实施例中,终端可以同时识别不同收发链的不同波束,而不同的波束可以传输不同的数据流,即降低了多用户多输入多输出UE配对所需满足的条件。

Description

波束处理方法、初始波束发现方法及基站和终端
本申请基于申请号为201510897285.8、申请日为2015年12月8日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及第五代移动通信技术(5G),尤指一种波束处理方法、初始波束发现方法及基站和终端。
背景技术
为了实现第五代移动通信技术(5G)目标,即每区域1000倍的移动数据流量增长,每用户10到100倍的吞吐量增长,连接设备数10到100倍的增长,低功率设备10倍的电池寿命延长和端到端5倍延迟的下降。其中两个最显著的特征是:吞吐量、峰值速率呈现1~2个数量级的增长,和端到端延迟数倍的下降。为了达到5G目标,5G中必须提出一些新的无线技术解决方案。其中,在毫米波频段使用大带宽(如500M-1GHz)是解决未来数据业务吞吐量指数增长的主要解决方案;而端到端延迟的下降主要通过缩短子帧结构、降低混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)延迟的方案来解决。对于考虑高频子帧结构和多天线传输,参考信号、同步信号和控制信道等需要基于波束标识(Beam ID,Beam Identifier)进行重新设计,以满足5G的设计目标。
目前,基于高频子帧结构下,还没有提出相关解决技术方案,终端也就不能区分波束。
发明内容
为了解决上述技术问题,本发明提供一种波束处理方法、初始波束发现方法及基站和终端,能够基于高频子帧结构提出相关解决技术方案,使得终端能够区分波束。
为了达到本发明目的,本发明提供了一种波束处理方法,包括:基站对不同收发链的不同波束进行处理以获得波束小区标识ID;
利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开,以生成高频子帧。
可选地,所述对不同收发链的不同波束进行处理以获得波束小区ID包括:
对所述不同收发链的不同波束进行统一编号,通过将物理小区ID和波束ID相加获得所述波束小区ID;
或者,将物理小区ID、波束ID作为函数的参数,通过函数映射为波束小区ID。
可选地,所述同步信号包括主同步信号和辅同步信号;
所述利用波束小区ID生成同步信号和参考信号包括:
将所述波束小区ID分成若干个波束小区ID物理组,每个组中包含预设数目个波束小区ID物理组编号;
通过分成的物理组中的波束ID生成主同步信号序列,并进行主同步信号序列映射;通过波束小区ID物理组编号生成辅同步信号序列,并进行辅同步信号序列映射;通过所述波束小区ID生成参考信号序列,并在不同的端口上进行资源映射。
可选地,按照下式生成所述主同步信号序列:
Figure PCTCN2016102172-appb-000001
其中,
Zadoff-Chu根序列索引u可由下表给出:
Figure PCTCN2016102172-appb-000002
其中,
Figure PCTCN2016102172-appb-000003
表示所述物理组中的波束ID。
可选地,按照下式生成所述辅同步信号序列:
Figure PCTCN2016102172-appb-000004
其中,
辅同步信号序列由d(0),...,d(61)表示,辅同步信号在子帧0和子帧5上产生序列的方式不同;
Figure PCTCN2016102172-appb-000005
m0和m1由波束小区ID物理组编号获得:
Figure PCTCN2016102172-appb-000006
其中,
Figure PCTCN2016102172-appb-000007
表示波束小区ID物理组编号。
可选地,按照下式生成所述参考信号序列:
Figure PCTCN2016102172-appb-000008
其中,
ns是一个无线帧中的时隙号,l是时隙中的符号;
伪随机序列产生器由下式所示的cinit初始化:
Figure PCTCN2016102172-appb-000009
其中,
Figure PCTCN2016102172-appb-000010
表示波束小区ID,
Figure PCTCN2016102172-appb-000011
可选地,所述高频子帧包括:参考信号和同步信号区域、控制信号区域、数据传输区域,以及控制信号反馈区域。
可选地,所述高频子帧包括上行高频子帧和/或下行高频子帧;其中,
上行高频子帧中:所述上行参考信号和同步信号区域包括上行辅同步信号SRS和前导码Preambl,所述上行控制信号区域包括上行控制信道,所述上行数据传输区域包括上行数据信道,所述上行控制信号反馈区域包括保护间隔GP和下行控制信道;
下行高频子帧中:所述下行参考信号和同步信号区域包括参考信号RS、主同步信号PSS和辅同步信号SSS,所述下行控制信号区域包括下行控制信道和DM-RS,所述下行数据传输区域包括下行数据信道,所述下行控制信号反馈区域包括GP和上行控制信道。
本发明还提供了一种初始波束发现方法,包括:终端分别通过对不同波束的同步信号和参考信号进行测量;
分别将测量结果与对应的预先设置的阈值进行比较,如果所有都满足各自对应的阈值要求,则认为该物理小区ID和波束ID可以被终端识别;
选择可以被终端识别的波束中的一个进行初始驻留。
可选地,所述同步信号包括主同步信号和辅同步信号。
可选地,所述对不同波束的同步信号和参考信号进行测量包括:
测量所述主同步信号的信干比SNR;测量所述辅同步信号的SNR;测量所述参考信号的参考信号接收功率RSRP和Es/Iot。
本发明又提供了一种基站,包括:波束处理模块,生成模块,其中,
波束处理模块,用于对不同收发链的不同波束进行处理以获得波束小区ID;
生成模块,用于利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开。
可选地,所述波束处理模块具体用于:对所述不同收发链的不同波束进行统一编号,通过将物理小区ID和波束ID相加获得新的波束小区ID;或者,将物理小区ID、波束ID作为函数的参数,通过函数映射为波束小区ID。
可选地,所述同步信号包括主同步信号和辅同步信号;
所述生成模块具体用于:将所述波束小区ID分成若干个波束小区ID物理组,每个组中包含预设数目个波束小区ID物理组编号;通过分成的物理组中的波束ID生成主同步信号序列,并进行主同步信号序列映射;通过波束小区ID物理组编号生成辅同步信号序列,并进行辅同步信号序列映射;通过所述波束小区ID生成参考信号序列,并在不同的端口上进行资源映射,以生成高频子帧。
可选地,所述高频子帧包括:参考信号和同步信号区域、控制信号区域、数据传输区域,以及控制信号反馈区域。
本发明再提供了一种终端,包括:测量模块,处理模块;其中,
测量模块,用于对不同波束的同步信号和参考信号进行测量;
处理模块,用于将测量结果与对应的预先设置的阈值进行比较,如果都满足所有阈值要求,则认为该物理小区ID和波束ID可以被终端识别;选择可以被终端识别的波束中的一个进行初始驻留。
可选地,所述同步信号包括主同步信号和辅同步信号;
所述测量模块具体用于:测量所述主同步信号的SNR、所述辅同步信号的SNR,以及所述参考信号的RSRP和Es/Iot。
与现有技术相比,本申请技术方案包括:在基站侧,对不同收发链的不同波束进行处理以获得波束小区ID;利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开。由于不同波束的参考信号、同步信号在时频域资源上相互错开,避免了波束扫描、多波束同时发射时相互之间的干扰。在终端侧,终端分别通过对不同波束的同步信号和参考信号进行测量,并与对应的预先设置的阈值进行比较,如果都满足所有阈值要求,则认为该物理小区ID和波束ID可以被终端识别。本发明实施例中,终端可以同时识别不同收发链的不同波束,而不同的波束可以传输不同的数据流,即降低了多用户多输入多输出UE配对所需满足的条件。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为相关技术中混合波束赋形架构的示意图;
图2(a)为本发明实施例中的高频上行子帧结构的组成示意图;
图2(b)为本发明实施例中的高频下行子帧结构的组成示意图;
图3为本发明实施例中波束处理方法的流程图;
图4为本发明实施例中基于波束的同步信号时频资源位置的示意图;
图5为本发明实施例中基于波束的参考信号时频资源位置的示意图;
图6为本发明第一实施例中单天线端口初始小区发现PSS检测的流程示意图;
图7为本发明第一实施例中单天线端口初始小区发现SSS检测的流程示意图;
图8为本发明第一实施例中单天线端口初始小区发现RSRP检测的流程示意图;
图9为本发明第二实施例中多天线端口初始小区发现PSS检测的流程示意图;
图10为本发明第二实施例中多天线端口初始小区发现SSS检测的流程示意图;
图11为本发明第二实施例中多天线端口初始小区发现RSRP检测的流程示意图;
图12为本发明基站的组成结构示意图;
图13为本发明终端的组成结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为相关技术中混合波束赋形架构的示意图,如图1所示,一种N×M的混合波束赋形架构如图1所示,其中有N个收发链,每个收发链连接到M个天线。模拟波束成型(ABF,Analog Beam forming)是对每个收发链的M个天线进行操作,可以针对每个天线的相位进行调整。数字波束成型(DBF,Digital Beam forming)是对N个收发链进行操作,可以针对不同的频点进行不同的相位操作。数字-模拟转换器(DAC,Digital Analog Converter)对N个收发链进行操作,功率放大器(PA,Power Amplifier)是针对每个天线的功率放大器。天线0(AT 0),AT 1,…,AT(M-1)分别代表一个收发链的不同天线。一个收发链配置为一个端口,或两个收发链配置为一个端口,具体决定于实现。
本发明实施例提出了一种基站侧和终端侧事先约定的高频帧结构框架下的高频子帧结构,整个子帧分成独立的几个区域,包括:参考信号和同步信号区域、控制信号区域、数据传输区域,以及控制信号反馈区域。图2(a)为本发明实施例中的高频上行子帧结构的组成示意图,如图2(a)所示,上行参考信号和同步信号区域包括上行辅同步信号(SRS)和前导码(Preamble),上行控制信号区域包括上行控制信道,上 行数据传输区域包括上行数据信道,上行控制信号反馈区域包括保护间隔(GP,Guard Period)和下行控制信道。图2(b)为本发明实施例中的高频下行子帧结构的组成示意图,如图2(b)所示,下行参考信号和同步信号区域包括参考信号、主同步信号和辅同步信号(RS、PSS和SSS),下行控制信号区域包括下行控制信道和DM-RS,下行数据传输区域包括下行数据信道,下行控制信号反馈区域包括GP和上行控制信道,上行控制信道主要传输ACK/NACK反馈信息。这里RS的功能相当于LTE中公共参考信号(CRS)和信道状态信息测量导频(CSI-RS)的功能。
本发明实施例的波束处理中,提供了基于不同波束Beam ID的同步信号时频域符号位置及序列设置方法,以及基于不同波束Beam ID的参考信号时频域符号位置及序列设置方法。图3为本发明实施例中波束处理方法的流程图,如图3所示,在基站侧,包括:
步骤300:对不同收发链的不同波束进行处理以获得波束小区ID。
本步骤可以包括:对不同收发链的不同波束进行统一编号,通过将物理小区ID(Cell ID)和波束ID(Beam ID)相加获得新的波束小区
Figure PCTCN2016102172-appb-000012
或者,将物理小区ID、波束ID作为函数的参数,通过线性函数映射为波束小区
Figure PCTCN2016102172-appb-000013
其中,线性函数可以为:f(Cell ID,Beam ID)=k·Cell ID+Beam ID,其中k=0,1,2,..等整数。
举例来看:可以将
Figure PCTCN2016102172-appb-000014
分成若干个如168(0~167)个波束小区ID物理组,每个组中包含预设数目如0~2个波束小区ID物理组编号,即
Figure PCTCN2016102172-appb-000015
其中,
Figure PCTCN2016102172-appb-000016
表示波束小区ID物理组编号,
Figure PCTCN2016102172-appb-000017
表示物理组中的波束ID。
步骤301:利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开,以生成高频子帧。
通过物理组中的波束
Figure PCTCN2016102172-appb-000018
生成主同步信号序列,并进行主同步信号序列映射,通过
Figure PCTCN2016102172-appb-000019
生成辅同步信号序列,并进行辅同步信号序列映射,通过
Figure PCTCN2016102172-appb-000020
生成参考信号序列,并在不同的端口上进行资源映射。并按照图2(a)或图2(b)所示的高频子帧结构生成高频子帧。
本发明实施例中,由于不同波束的参考信号、同步信号在时频域资源上相互错开,避免了波束扫描、多波束同时发射时相互之间的干扰问题。
基站侧在发送广播信息时,广播信息中除了携带端口数,还需要携带每个端口可以发送的不同方向的波束数。
与相关技术相比,本发明实施例中的参考信号和同步信号的基于小区中的物理小 区ID和波束ID进行设置,这样,当相邻波束之间有部分重叠时,达到了降低相邻波束之间的干扰的效果;在多用户多流的工作模式下,使得基站侧不同收发链的不同波束可以同时发送不同的数据流,进而降低了MU-MIMO终端侧配对所需满足的条件;而对于多天线的不同端口,同步信号、参考信号映射时时频域资源相互错开,降低了不同端口参考信号相互之间的干扰。
下面结合具体实施例详细描述步骤301中生成同步信号和参考信号的实现方法。
图4为本发明实施例中基于波束的同步信号时频资源位置的示意图,一个无线帧包括10个无线子帧(Subframe),如图4所示,每个无线子帧为100~250us。每个无线子帧包含2个时隙,每个时隙包括30个正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)符号。在频带中心的6个资源块(RB,Resource Block)上承载PSS、SSS和物理广播信道(PBCH,Physical Broadcast Channel)。本实施例中,假设多天线扫描发送4个波束或同时发送4个波束,那么,需要为每个波束产生1个PSS和SSS序列。其中,
PSS序列产生过程如下:
首先,对多天线发射的波束进行统一编号(或通过函数映射生成),获取波束的统一编号后的Beam ID;对于多端口的情况,不同发射链发射的波束可以统一编号,具体实现可以用一一映射或函数的方式实现。
接着,将物理小区ID与波束ID相加获得新的波束小区ID,或者,将物理小区ID与波束ID作为函数的参数,通过函数映射为波束小区ID即
Figure PCTCN2016102172-appb-000021
Figure PCTCN2016102172-appb-000022
分成若干个如168(0~167)个波束小区ID物理组,每个组中包含预设数目如0~2个物理组中的波束ID,即
Figure PCTCN2016102172-appb-000023
其中,
Figure PCTCN2016102172-appb-000024
表示波束小区ID物理组编号,
Figure PCTCN2016102172-appb-000025
表示物理组中的波束ID。
然后,通过
Figure PCTCN2016102172-appb-000026
生成主同步信号序列,并进行主同步信号序列映射;通过
Figure PCTCN2016102172-appb-000027
生成辅同步信号序列,并进行辅同步信号序列映射。其中,
主同步信号序列d(n)可以由公式(1)所示的频域Zadoff-Chu序列生成:
Figure PCTCN2016102172-appb-000028
在公式(1)中,Zadoff-Chu根序列索引(Root index)u可由表(1)给出。
Figure PCTCN2016102172-appb-000029
表1
辅同步信号序列由d(0),...,d(61)表示,辅同步信号在子帧0和子帧5上产生序列的方式不同,具体公式如下:
Figure PCTCN2016102172-appb-000030
在公式(2)中,0≤n≤30。
在公式(2)中,m0和m1由波束小区ID物理组编号
Figure PCTCN2016102172-appb-000031
获得,如公式(3)所示:
Figure PCTCN2016102172-appb-000032
在公式(2)中,
Figure PCTCN2016102172-appb-000033
图5为本发明实施例中基于波束的参考信号时频资源位置的示意图,如图5所示,本实施例中,在子帧的第一个时隙频段中间传输同步信号,两侧传输参考信号。本实施例中以4个端口,每个端口4个波束为例对参考信号的时频资源映射进行说明。
对端口0的4个波束,RS10,RS20,RS30,RS40对应波束1、波束2、波束3和波束4四个波束的参考信号;对端口1的4个波束,RS11,RS21,RS31,RS41对应波束1、波束2、波束3和波束4的四个波束参考信号;对端口2的4个波束,RS12,RS22,RS32,RS42对应波束1、波束2、波束3和波束4的四个波束参考信号;对端口3的4个波束,RS13,RS23,RS33,RS34对应波束1、波束2、波束3和波束4的四个波束参考信号。参考信号序列
Figure PCTCN2016102172-appb-000034
如公式(4)所示:
Figure PCTCN2016102172-appb-000035
在公式(4)中,ns是一个无线帧中的时隙号,l是时隙中的符号。伪随机序列产生器由如公式(5)所示的cinit初始化:
Figure PCTCN2016102172-appb-000036
在公式(5)中,
Figure PCTCN2016102172-appb-000037
表示波束小区ID,
Figure PCTCN2016102172-appb-000038
本发明实施例中,在终端侧,包括:
步骤302:终端分别通过对不同波束的同步信号和参考信号进行测量,并与对应的预先设置的阈值进行比较,如果都满足所有阈值要求,则认为该物理小区ID和波束ID可以被终端识别。并选择可以被终端识别的波束中的一个进行初始驻留。
本步骤中,终端在进行初始波束发现时,需要搜索所有的波束,只有当某一波束的同步信号(包括主同步信号和辅同步信号)以及波束的信号质量如参考信号接收功率(RSRP,Reference Signal Receiving Power)都满足各自的预设阈值时,该波束可以被终端识别。终端可以从可识别的波束中选择其中信号质量最好的一个作为UE初始驻留的波束。
本发明实施例中,终端可以同时识别不同收发链的不同波束,而不同的波束可以传输不同的数据流,也就是说,本发明提供的波束处理方法降低了多用户多输入多输出(MU-MIMO,Multi-User,Multi-Input Multi-Output)UE配对所需满足的条件。
下面结合具体实施例详细描述基于本发明的波束处理方式,终端进行初始波束发现的具体实现过程。
第一实施例,仅考虑一个收发链,如图1中的Transceiver 0,这个收发链由天线AT 0、天线AT 1、…、天线AT(M-1)组成,每个收发链可以以多个波束方向发送,第一实施例中,以4个波束为例进行说明,即波束的最大值Kmax=4。这里,波束的角度可以是10度左右的窄波束,也可以是30~50度的宽波束。一个波束的初始发现需要经过以下三步完成:PSS信号检测、SSS信号检测和RSRP信号检测,只有当三个检测过程的测量结果都满足预先设置的阈值要求时,才可以判断出该波束可以被终端识别。
第一实施例中,假设预先设置的波束PSS、SSS的阈值分别为PSS阈值 THRD_PSS、SSS阈值THRD_SSS;THRD_PSS缺省值为0dB,THRD_SSS的缺省值为0dB。
图6为本发明第一实施例中单天线端口初始小区发现PSS检测的流程示意图,如图6所示,包括:
步骤600:终端初始化波束编号K为0。
步骤601:判断波束编号K是否大于波束的最大值Kmax,如果大于,则进入步骤607,如果不大于,则进入步骤602。
其中,波束的最大值Kmax可以从广播信息中获取。
步骤602:终端循序检测各波束的信号,直至找到发射波束K的信号。
步骤603:终端对发射波束K的PSS进行信干比(SNR,Signal-to-Noise Ratio)检测。本步骤的具体实现可以采用如LTE中对小区PSS的检测实现,具体实现并不用于限定本发明的保护范围,这里不再赘述。
步骤604:判断检测出的PSS的SNR是否大于预先设置的PSS阈值THRD_PSS,如果大于,则进入步骤605,如果不大于,则进入步骤606。
步骤605:将PSS的SNR记录在满足阈值要求的波束ID集合中,并从PSS中解析物理小区组中的波束
Figure PCTCN2016102172-appb-000039
具体方法同LTE从PSS中解析物理组中的小区ID。
步骤606:波束编号K递增处理,如加1,之后返回步骤601。
需要说明的是,波束的循环可以按顺序进行,也可以不按顺序进行。
步骤607:波束PSS检测过程结束,统计满足阈值要求的Beam ID集合。
图7为本发明第一实施例中单天线端口初始小区发现SSS检测的流程示意图,如图7所示,包括:
步骤700:对满足PSS阈值THRD_PSS的波束集合中的波束用整数L重新进行编号,并设置为L的初初始值为0。
步骤701:判断循环波束编号L是否大于满足PSS阈值THRD_PSS的波束集合中波束的最大值Lmax,如果大于,则结束本流程;如果不大于,则进入步骤702。
其中,Lmax是满足阈值THRD_PSS的波束数。
步骤702:终端调整到接收循环发射波束L的模式,即调整到接收发射波束L的SSS信号的状态。具体实现属于本领域技术人员的公知技术,并不用于限定本发明的保护范围,这里不再赘述。
步骤703:终端对循环发射波束L的SSS进行SNR检测。
步骤704:判断检测出的SSS的SNR是否大于预先设置的SSS阈值THRD_SSS,如果大于,则进入步骤705,如果不大于,则进入步骤706。
步骤705:记录SSS的SNR在满足阈值要求的波束ID集合中,并从SSS中解析物理小区组中的物理小区组
Figure PCTCN2016102172-appb-000040
具体实现属于本领域技术人员的公知技术,并不用于限定本发明的保护范围,这里不再赘述;结合在图6所示的PSS检测过程中获得的
Figure PCTCN2016102172-appb-000041
生成波束小区
Figure PCTCN2016102172-appb-000042
步骤706:循环波束编号L递增处理,如加1,之后返回步骤701。
需要说明的是,波束的循环可以按顺序进行,也可以不按顺序进行。
图8为本发明第一实施例中单天线端口初始小区发现RSRP检测的流程示意图,如图8所示,包括:
步骤800:对PSS检测和SSS检测均满足阈值要求的波束,用循环编号M重新进行编号。
步骤801:终端初始化波束循环编号M初始值0。
步骤802:判断波束循环编号M是否大于Mmax,如果大于,则结束本流程,如果不大于,则进入步骤803。
其中,Mmax是同时满足PSS检测和SSS检测的阈值要求的波束数。
步骤803:终端调整到接收发射波束M的状态,即调整到对发射波束M进行接收,此时,波束M的信号作为接收信号,其它波束的信号作为噪声。
步骤804:终端对发射波束M进行RSRP和资源单元的接收能量/噪声和干扰的接收功率谱密度(Es/Iot)的测量,比如:RSRP的阈值可以设置为-127dBm,Es/Iot的阈值可以设置为-6dB。本步骤的具体实现可以采用如LTE中RSRP和Es/Iot的测量实现,具体实现并不用于限定本发明的保护范围,这里不再赘述。
步骤805:如果RSRP的测量值和Es/Iot的测量值均大于各自相应的预设阈值,则进入步骤806,如果不是都大于,则进入步骤807。
步骤806:记录RSRP和Es/Iot均同时满足预设阈值要求的物理组中的波束ID集合。此时,物理组中的波束ID集合中的所有波束都是终端就可以识别出的波束小区ID。
步骤807:波束循环编号M递增处理,如加1。
需要说明的是,波束的循环可以按顺序进行,也可以不按顺序进行。
第二实施例,考虑天线的多端口情况,在第二实施例中,一个端口对应一个收发 链,如图1中有N个端口。一个波束的初始发现需要经过以下三步完成:PSS信号检测、SSS信号检测和RSRP信号检测。只有当三个检测过程的测量结果都满足预先设置的阈值要求时,才可以判断出该波束可以被终端识别。第二实施例中,以4个波束为例进行说明,即波束的最大值Kmax=4,端口最大值Amax为N,N可以取8、16、32等。
第二实施例中,假设预先设置的波束PSS、SSS的阈值分别为PSS阈值THRD_PSS、SSS阈值THRD_SSS。
图9为本发明第二实施例中多天线端口初始小区发现PSS检测的流程示意图,如图9所示,包括:
步骤900:终端对端口编号A进行初始化,设置为0。
步骤901:判断端口编号A是否大于或等于端口最大值Amax,如果大于或等于,则进入步骤910,如果小于,则进入步骤902。
本发明实施例中,在基站侧的广播信息中除了提供端口数,还携带有每个端口下的最大波束数。端口的最大值Amax,终端可以在广播信息中提前获取。
步骤902:终端初始化波束编号K为0。
步骤903:判断波束编号K是否大于波束编号最大值Kmax,如果大于,则进入步骤904,如果不大于,则进入步骤905。
其中,波束的最大值Kmax可以从广播信息中获取。
步骤904:端口编号A递增处理,如加1,之后返回步骤901。需要说明的是,端口循环可以按照顺序进行,也可以不按照顺序进行。
步骤905:终端调整到对发射波束K进行接收,即将发射波束K的信号作为接收信号,其它波束的信号作为噪声。
步骤906:终端对发射波束K的PSS进行SNR检测。
步骤907:判断检测到的PSS的SNR检测值是否大于PSS阈值THRD_PSS,如果大于,则进入步骤908,如果不大于,则进入步骤909。
步骤908:将PSS的SNR记录在满足阈值要求的波束ID集合中,并从中解析物理小区组中的波束
Figure PCTCN2016102172-appb-000043
步骤909:波束编号K递增处理,如加1,之后返回步骤903。
需要说明的是,波束的循环可以按顺序进行,也可以非顺序进行。
步骤910:波束PSS检测结束,统计满足阈值要求的波束ID集合。
图10为本发明第二实施例中多天线端口初始小区发现SSS检测的流程示意图,如图10所示,包括:
步骤1000:对满足PSS阈值THRD_PSS的波束集合中的波束用整数波束编号L重新编号。
步骤1001:终端对端口编号A进行初始化,设置为0。
步骤1002:判断端口编号A是否大于或等于端口的最大数Amax,如果大于或等于,则进入步骤1011,如果不大于,则进入步骤1003。
步骤1003:终端初始化波束编号L为0。
步骤1004:判断波束编号L是否大于满足PSS阈值THRD_PSS的波束集合中波束的最大值L’max,如果大于,则进入步骤1005,如果不大于,则进入步骤1006。
其中,L’max是某一端口下满足THRD_PSS阈值的波束数。
步骤1005:端口编号A递增处理,如加1,之后返回步骤1002。需要说明的是,端口循环可以按照顺序进行,也可以不按照顺序进行。
步骤1006:终端调整到对发射波束L进行接收,即将发射波束L的信号作为接收信号,其它波束的信号作为噪声。
步骤1007:终端对发射波束L进行SSS的SNR检测。
步骤1008:判断检测到的SSS的SNR是否大于SSS阈值THRD_SSS,如果大于,则进入步骤1009,如果不大于,则进入步骤1010。
步骤1009:将SSS的SNR记录在满足阈值要求的波束ID集合中,并从中解析物理小区组中的波束小区ID物理组编号
Figure PCTCN2016102172-appb-000044
结合在图9所示的PSS检测过程中获得的
Figure PCTCN2016102172-appb-000045
生成波束小区
Figure PCTCN2016102172-appb-000046
步骤1010:波束编号递增处理,如加1,之后返回步骤1004。需要说明的是,波束循环可以按照顺序进行,也可以不按照顺序进行。
步骤1011:波束SSS检测结束,统计满足SSS阈值要求的波束ID(BEAM ID)集合。
图11为本发明第二实施例中多天线端口初始小区发现RSRP检测的流程示意图,如图11所示,包括:
步骤1100:对PSS检测和SSS检测均满足阈值要求的波束,用循环波束编号M重新进行编号。
步骤1101:终端初始化端口编号A为0。
步骤1102:判断端口编号A是否大于或等于端口最大值Amax,如果大于或等于,结束本流程;如果小于,则进入步骤1103。
步骤1103:终端初始化循环波束编号M的初始值为0。
步骤1104:如果循环波束编号M大于同时满足SSS阈值THRD_SSS和PSS阈值THRD_PSS的波束集合中波束的最大值M’max,则进入步骤1105,如果不大于,则进入步骤1106。
其中,M’max是某一端口下同时满足PSS检测和SSS检测的阈值要求的波束数。
步骤1105:端口编号递增处理,如加1,之后返回步骤1102。需要说明的是,端口循环可以按照顺序进行,也可以不按照顺序进行。
步骤1106:终端调整到对发射波束M进行接收,即强发射波束M的信号作为接收信号,其它波束的信号作为噪声。
步骤1107:终端对发射波束M进行RSRP和Es/Iot的测量。
步骤1108:终端测量结束后,判断RSRP的测量值和Es/Iot的测量值均大于各自相应的预设阈值即THRD_RSRP和THRD_Es,如果均大于,则进入步骤1109,如果不是都大于,则进入步骤1110。
步骤1109:记录RSRP和Es/Iot均同时满足预设阈值要求的波束ID集合。此时,波束ID集合中的所有波束都是终端就可以识别出的波束小区ID。
步骤1110:波束循环编号M递增处理,如加1。需要说明的是,波束循环可以按照顺序进行,也可以不按照顺序进行。
图12为本发明基站的组成结构示意图,如图12所示,至少包括:波束处理模块,生成模块,其中,
波束处理模块,用于对不同收发链的不同波束进行处理以获得波束小区ID;
生成模块,用于利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开。
其中,
波束处理模块具体用于:对不同收发链的不同波束进行统一编号,通过将物理小区ID和波束ID相加获得新的波束小区ID;或者,将物理小区ID、波束ID作为函数的参数,通过函数映射为波束小区ID。
生成模块具体用于:将所述波束小区ID分成若干个波束小区ID物理组,每个组中包含预设数目个波束小区ID物理组编号;通过
Figure PCTCN2016102172-appb-000047
生成主同步信号序列,并进行主同步信号序列映射,通过波束小区ID物理组编号
Figure PCTCN2016102172-appb-000048
生成辅同步信号序列,并进行辅同步信号序列映射,通过
Figure PCTCN2016102172-appb-000049
生成参考信号序列,并在不同的端口上进行资源映射,以生成高频子帧;其中,
高频子帧包括:参考信号和同步信号区域、控制信号区域、数据传输区域,以及控 制信号反馈区域。
波束处理模块和生成模块可以由硬件、软件或二者的结合来实现。例如,波束处理模块和生成模块可以由基站中的数字信号处理器件或无线信号处理芯片结合存储在存储器中的具体算法来实现。
图13为本发明终端的组成结构示意图,如图13所示,至少包括:测量模块,处理模块;其中,
测量模块,用于对不同波束的同步信号和参考信号进行测量;
处理模块,用于将测量结果与对应的预先设置的阈值进行比较,如果都满足所有阈值要求,则认为该物理小区ID和波束ID可以被终端识别;选择可以被终端识别的波束中的一个进行初始驻留。
其中,
测量模块具体用于:搜索所有的波束,对于各个波束,测量主同步信号的SNR、辅同步信号的SNR,以及参考信号的RSRP和Es/Iot。
测量模块和处理模块可以由硬件、软件或二者的结合来实现。例如,测量模块和处理模块可以由终端中的数字信号处理器件或无线信号处理芯片结合存储在存储器中的具体算法来实现。
工业实用性
本申请提供的波束处理方法、初始波束发现方法、基站及终端可以应用于通信领域,尤其是可以应用于基站与终端之间的信号传输。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种波束处理方法,其中,包括:基站对不同收发链的不同波束进行处理以获得波束小区标识ID;
    利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开,以生成高频子帧。
  2. 根据权利要求1所述的波束处理方法,其中,所述对不同收发链的不同波束进行处理以获得波束小区ID包括:
    对所述不同收发链的不同波束进行统一编号,通过将物理小区ID和波束ID相加获得所述波束小区ID;
    或者,将物理小区ID、波束ID作为函数的参数,通过函数映射为波束小区ID。
  3. 根据权利要求2所述的波束处理方法,其中,所述同步信号包括主同步信号和辅同步信号;
    所述利用波束小区ID生成同步信号和参考信号包括:
    将所述波束小区ID分成若干个波束小区ID物理组,每个组中包含预设数目个波束小区ID物理组编号;
    通过分成的物理组中的波束ID生成主同步信号序列,并进行主同步信号序列映射;通过波束小区ID物理组编号生成辅同步信号序列,并进行辅同步信号序列映射;通过所述波束小区ID生成参考信号序列,并在不同的端口上进行资源映射。
  4. 根据权利要求3所述的波束处理方法,其中,按照下式生成所述主同步信号序列:
    Figure PCTCN2016102172-appb-100001
    其中,
    Zadoff-Chu根序列索引u可由下表给出:
    Figure PCTCN2016102172-appb-100002
    其中,
    Figure PCTCN2016102172-appb-100003
    表示所述物理组中的波束ID。
  5. 根据权利要求3所述的波束处理方法,其中,按照下式生成所述辅同步信号序列:
    Figure PCTCN2016102172-appb-100004
    其中,
    辅同步信号序列由d(0),...,d(61)表示,辅同步信号在子帧0和子帧5上产生序列的方式不同;
    Figure PCTCN2016102172-appb-100005
    m0和m1由波束小区ID物理组编号获得:
    m0=m'mod 31
    Figure PCTCN2016102172-appb-100006
    Figure PCTCN2016102172-appb-100007
    其中,
    Figure PCTCN2016102172-appb-100008
    表示波束小区ID物理组编号。
  6. 根据权利要求3所述的波束处理方法,其中,按照下式生成所述参考信号序列:
    Figure PCTCN2016102172-appb-100009
    其中,
    ns是一个无线帧中的时隙号,l是时隙中的符号号;
    伪随机序列产生器由下式所示的cinit初始化:
    Figure PCTCN2016102172-appb-100010
    其中,
    Figure PCTCN2016102172-appb-100011
    表示波束小区ID,
    Figure PCTCN2016102172-appb-100012
  7. 根据权利要求1~6任一项所述的波束处理方法,其中,所述高频子帧包括:参考信号和同步信号区域、控制信号区域、数据传输区域,以及控制信号反馈区域。
  8. 根据权利要求7所述的波束处理方法,其中,所述高频子帧包括上行高频子帧和/或下行高频子帧;其中,
    上行高频子帧中:所述上行参考信号和同步信号区域包括上行辅同步信号SRS 和前导码Preambl,所述上行控制信号区域包括上行控制信道,所述上行数据传输区域包括上行数据信道,所述上行控制信号反馈区域包括保护间隔GP和下行控制信道;
    下行高频子帧中:所述下行参考信号和同步信号区域包括参考信号RS、主同步信号PSS和辅同步信号SSS,所述下行控制信号区域包括下行控制信道和DM-RS,所述下行数据传输区域包括下行数据信道,所述下行控制信号反馈区域包括GP和上行控制信道。
  9. 一种初始波束发现方法,其中,包括:终端分别通过对不同波束的同步信号和参考信号进行测量;
    分别将测量结果与对应的预先设置的阈值进行比较,如果所有都满足各自对应的阈值要求,则认为该物理小区ID和波束ID可以被终端识别;
    选择可以被终端识别的波束中的一个进行初始驻留。
  10. 根据权利要求9所述的初始波束发现方法,其中,所述同步信号包括主同步信号和辅同步信号。
  11. 根据权利要求10所述的初始波束发现方法,其中,所述对不同波束的同步信号和参考信号进行测量包括:
    测量所述主同步信号的信干比SNR;测量所述辅同步信号的SNR;测量所述参考信号的参考信号接收功率RSRP和Es/Iot。
  12. 一种基站,其中,包括:波束处理模块,生成模块,其中,
    波束处理模块,设置为对不同收发链的不同波束进行处理以获得波束小区ID;
    生成模块,设置为利用波束小区ID生成同步信号和参考信号,且不同波束的同步信号或参考信号在时频资源上位置错开。
  13. 根据权利要求12所述的基站,其中,所述波束处理模块设置为:对所述不同收发链的不同波束进行统一编号,通过将物理小区ID和波束ID相加获得新的波束小区ID;或者,将物理小区ID、波束ID作为函数的参数,通过函数映射为波束小区ID。
  14. 根据权利要求13所述的基站,其中,所述同步信号包括主同步信号和辅同步信号;
    所述生成模块设置为:将所述波束小区ID分成若干个波束小区ID物理组,每个组中包含预设数目个波束小区ID物理组编号;通过分成的物理组中的波束ID生成主同步信号序列,并进行主同步信号序列映射;通过波束小区ID物理组编号生成辅同步信号序 列,并进行辅同步信号序列映射;通过所述波束小区ID生成参考信号序列,并在不同的端口上进行资源映射,以生成高频子帧。
  15. 根据权利要求12~14任一项所述的基站,其中,所述高频子帧包括:参考信号和同步信号区域、控制信号区域、数据传输区域,以及控制信号反馈区域。
  16. 一种终端,其中,包括:测量模块,处理模块;其中,
    测量模块,设置为对不同波束的同步信号和参考信号进行测量;
    处理模块,设置为将测量结果与对应的预先设置的阈值进行比较,如果都满足所有阈值要求,则认为该物理小区ID和波束ID可以被终端识别;选择可以被终端识别的波束中的一个进行初始驻留。
  17. 根据权利要求16所述的终端,其中,所述同步信号包括主同步信号和辅同步信号;
    所述测量模块设置为:测量所述主同步信号的SNR、所述辅同步信号的SNR,以及所述参考信号的RSRP和Es/Iot。
PCT/CN2016/102172 2015-12-08 2016-10-14 波束处理方法、初始波束发现方法及基站和终端 WO2017097033A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018529264A JP6579562B2 (ja) 2015-12-08 2016-10-14 ビーム処理方法、初期ビームの発見方法及び基地局、端末
EP16872227.0A EP3389319B1 (en) 2015-12-08 2016-10-14 Beam processing method and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510897285.8A CN106856611B (zh) 2015-12-08 2015-12-08 波束处理方法、初始波束发现方法及基站和终端
CN201510897285.8 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017097033A1 true WO2017097033A1 (zh) 2017-06-15

Family

ID=59012660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102172 WO2017097033A1 (zh) 2015-12-08 2016-10-14 波束处理方法、初始波束发现方法及基站和终端

Country Status (4)

Country Link
EP (1) EP3389319B1 (zh)
JP (1) JP6579562B2 (zh)
CN (1) CN106856611B (zh)
WO (1) WO2017097033A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312988B2 (en) 2017-09-15 2019-06-04 At&T Intellectual Property I, L.P. Two reference signal beam reporting and identification
WO2020018383A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated Beam index and link index dependent sequence generation for positioning beacon
WO2020062023A1 (en) * 2018-09-28 2020-04-02 Lenovo (Beijing) Limited Beam reporting
CN111095888A (zh) * 2017-09-12 2020-05-01 联发科技股份有限公司 无线通信系统中波束成形技术的参考信号设计
CN112740571A (zh) * 2018-09-26 2021-04-30 瑞典爱立信有限公司 针对远程干扰的ssb到ro映射
CN113507313A (zh) * 2021-07-30 2021-10-15 中国电子科技集团公司第五十四研究所 基于天通一号卫星移动通信系统的资源申请方法及装置
US20220149875A1 (en) * 2019-03-21 2022-05-12 Continental Automotive Gmbh Method for estimating a signal-to-noise ratio

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398789B1 (ko) * 2017-08-10 2022-05-18 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
CN111279645B (zh) * 2017-08-11 2022-09-27 联想(北京)有限公司 对参考信号接收功率进行编码
CN108111286B (zh) 2017-11-17 2022-04-19 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器
WO2019120523A1 (en) 2017-12-20 2019-06-27 Huawei Technologies Co., Ltd. Devices, methods and computer programs for wireless communication with rotational beam management
ES2795693T3 (es) * 2017-12-22 2020-11-24 Deutsche Telekom Ag Sistema de control de automatización para controlar una función de seguridad de una máquina remota
CN110890909B (zh) * 2018-09-07 2022-09-27 南京理工大学 一种用于5g nr初始接入过程的波束搜索方法
CN110944405B (zh) * 2018-09-21 2021-06-08 展讯通信(上海)有限公司 数据传输方法、终端及计算机可读存储介质
CN112672403B (zh) * 2020-12-08 2022-04-12 复旦大学 适用于5g-nr毫米波通信系统的初始小区发现方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782636A (zh) * 2011-09-09 2014-05-07 三星电子株式会社 用于在无线通信系统中同步并获得系统信息的装置及方法
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
CN103918196A (zh) * 2011-09-16 2014-07-09 三星电子株式会社 用于在无线通信系统中的波束分配的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895486A (zh) * 2010-07-16 2010-11-24 北京创毅视通科技有限公司 一种lte下行波束赋形方法、装置、基站和用户终端
CN103795668B (zh) * 2012-11-02 2017-08-18 电信科学技术研究院 一种信号处理方法、基站、终端、及系统
EP2989730B1 (en) * 2013-04-25 2021-08-18 Samsung Electronics Co., Ltd. Method and system for acquiring high frequency carrier in a wireless communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782636A (zh) * 2011-09-09 2014-05-07 三星电子株式会社 用于在无线通信系统中同步并获得系统信息的装置及方法
CN103918196A (zh) * 2011-09-16 2014-07-09 三星电子株式会社 用于在无线通信系统中的波束分配的方法及装置
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095888A (zh) * 2017-09-12 2020-05-01 联发科技股份有限公司 无线通信系统中波束成形技术的参考信号设计
CN111095888B (zh) * 2017-09-12 2022-11-22 联发科技股份有限公司 用于波束扫描的方法及其用户设备
US10693548B2 (en) 2017-09-15 2020-06-23 At&T Intellectual Property I, L.P. Two reference signal beam reporting and identification
US10312988B2 (en) 2017-09-15 2019-06-04 At&T Intellectual Property I, L.P. Two reference signal beam reporting and identification
WO2020018383A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated Beam index and link index dependent sequence generation for positioning beacon
US11327140B2 (en) 2018-07-19 2022-05-10 Qualcomm Incorporated Beam index and link index dependent sequence generation for positioning beacon
CN112740571A (zh) * 2018-09-26 2021-04-30 瑞典爱立信有限公司 针对远程干扰的ssb到ro映射
US11522596B2 (en) 2018-09-28 2022-12-06 Lenovo (Beijing) Limited Beam reporting
WO2020062023A1 (en) * 2018-09-28 2020-04-02 Lenovo (Beijing) Limited Beam reporting
US20220149875A1 (en) * 2019-03-21 2022-05-12 Continental Automotive Gmbh Method for estimating a signal-to-noise ratio
US11757480B2 (en) * 2019-03-21 2023-09-12 Continental Automotive Technologies GmbH Method for estimating a signal-to-noise ratio
CN113507313A (zh) * 2021-07-30 2021-10-15 中国电子科技集团公司第五十四研究所 基于天通一号卫星移动通信系统的资源申请方法及装置
CN113507313B (zh) * 2021-07-30 2022-08-02 中国电子科技集团公司第五十四研究所 基于天通一号卫星移动通信系统的资源申请方法及装置

Also Published As

Publication number Publication date
EP3389319A4 (en) 2019-03-06
EP3389319A1 (en) 2018-10-17
JP6579562B2 (ja) 2019-09-25
CN106856611A (zh) 2017-06-16
JP2019506026A (ja) 2019-02-28
CN106856611B (zh) 2021-08-10
EP3389319B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2017097033A1 (zh) 波束处理方法、初始波束发现方法及基站和终端
US11632279B2 (en) Method of sounding a terminal in a wireless communication system and apparatus therefor
US11206069B2 (en) Method for transmitting and receiving reference signal and apparatus therefor
US11540191B2 (en) Method for transmitting and receiving reference signal and device therefor
JP6974482B2 (ja) 下りリンクチャネルを送受信する方法及びそのための装置
CN114944903B (zh) 无线通信系统中终端和基站发送/接收信号的方法和设备
US9362997B2 (en) Method for performing hierarchical beamforming in wireless access system and device therefor
ES2776455T3 (es) Sincronización en un sistema de formación de haces
US10396873B2 (en) Control signaling in a beamforming system
US9468022B2 (en) Method and apparatus for random access in communication system with large number of antennas
US11146321B2 (en) Method and apparatus for transmitting and receiving signals in wireless communication system
US10849076B2 (en) Physical random access channel preamble retransmission for NR
KR20190086372A (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
US10361830B2 (en) Method and apparatus for designing uplink reference signal according to repeating pattern considering cell coverage in wireless communication system
US10492161B2 (en) Method and device for acquiring uplink synchronism in consideration of beam forming effect in wireless communication system
US11476992B2 (en) Method for transmitting and receiving SRS, and communication apparatus therefor
KR20180036602A (ko) 초기 억세스 및 랜덤 억세스를 위한 방법, 기지국 장치 및 사용자 장치
US11343042B1 (en) Method for transmitting and receiving sounding reference signal in wireless communication system and apparatus therefor
CN116569495A (zh) 用于基于默认操作频率(dof)失配在多发送和接收点(多trp)系统中指示优选波束的技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018529264

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872227

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016872227

Country of ref document: EP

Effective date: 20180709