WO2017094397A1 - Ultrasonic wave analyzing device, ultrasonic wave analyzing method, and ultrasonic wave analyzing program - Google Patents

Ultrasonic wave analyzing device, ultrasonic wave analyzing method, and ultrasonic wave analyzing program Download PDF

Info

Publication number
WO2017094397A1
WO2017094397A1 PCT/JP2016/081571 JP2016081571W WO2017094397A1 WO 2017094397 A1 WO2017094397 A1 WO 2017094397A1 JP 2016081571 W JP2016081571 W JP 2016081571W WO 2017094397 A1 WO2017094397 A1 WO 2017094397A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
cartilage
subchondral bone
signal
angle
Prior art date
Application number
PCT/JP2016/081571
Other languages
French (fr)
Japanese (ja)
Inventor
弥 喜屋武
竜雄 新井
武士 河尻
拓生 嶋田
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to CN201680080749.9A priority Critical patent/CN108601584B/en
Priority to JP2017553705A priority patent/JP6496042B2/en
Publication of WO2017094397A1 publication Critical patent/WO2017094397A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic analysis apparatus, an ultrasonic analysis method, and an ultrasonic analysis program for transmitting an ultrasonic signal inside a subject and analyzing an echo signal of the ultrasonic signal reflected inside the subject.
  • Patent Literature 1 As an apparatus for analyzing the state of cartilage, for example, there is an ultrasonic analysis apparatus described in Patent Document 1.
  • the ultrasonic analysis apparatus of Patent Literature 1 transmits an ultrasonic signal from an ultrasonic probe that is in contact with the surface of the knee, and receives an echo signal reflected inside the knee with the ultrasonic probe. Then, the state of the cartilage is analyzed from the received echo signal.
  • the echo signal from the inside of the knee varies depending on the contact angle of the ultrasonic probe with respect to the knee, so that the state of the cartilage is not required unless the ultrasonic probe is contacted with the knee at an appropriate angle. There is a problem that it cannot be analyzed accurately.
  • an object of the present invention is to provide an ultrasonic analysis apparatus, an ultrasonic analysis method, and an ultrasonic analysis program that can easily adjust the contact angle of an ultrasonic probe to a subject.
  • the ultrasonic analysis apparatus controls the ultrasonic source to direct a predetermined sound axis from the ultrasonic source toward a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject.
  • a control unit that transmits an ultrasonic signal at the control unit, an echo data input unit that receives echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted from the control unit inside the subject, and the ultrasonic data
  • a position detection unit that detects positions of a plurality of different cartilage surfaces or subchondral bone surfaces different from the acoustic wave source, and the cartilage surface or the cartilage based on information on each position detected by the position detection unit
  • the angle of the ultrasonic probe since the user can grasp the angle of the ultrasonic probe with respect to the cartilage surface or the subchondral bone surface calculated by the angle calculation unit, the angle of the ultrasonic probe can be easily adjusted.
  • the ultrasonic analysis method includes a transmission control step, an echo data input step, a position detection step, a shape detection step, and an angle calculation step.
  • an ultrasonic signal is controlled from the ultrasonic source to a plurality of different positions on the cartilage surface or the subchondral bone surface inside the subject with a predetermined sound axis by controlling the ultrasonic source.
  • the echo data input step receives the input of echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted in the control transmission step inside the subject.
  • the position detecting step detects positions of the plurality of cartilage surfaces or the subchondral bone surfaces different from the ultrasonic source.
  • the shape detection step detects the shape of the cartilage surface or the subchondral bone surface based on the information on each position detected in the position detection step.
  • the angle calculation step calculates an angle formed by a normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted and the sound axis of the ultrasonic signal.
  • This ultrasonic analysis method is performed by the above ultrasonic analysis apparatus. Therefore, this ultrasonic analysis method has the same effect as the above ultrasonic analysis apparatus.
  • the ultrasonic analysis program controls the ultrasonic source so that the ultrasonic source is directed toward a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject.
  • a transmission control step for transmitting an ultrasonic signal with a predetermined sound axis from an echo, and an echo that receives an input of echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted by the transmission control step inside the subject
  • the position detection step for detecting the positions of the plurality of different cartilage surfaces or the subchondral bone surfaces different from the ultrasonic source, and information on each position detected in the position detection step
  • a shape detecting step for detecting a shape of the cartilage surface or the subchondral bone surface, and the cartilage surface at the position where the ultrasonic signal is transmitted or Serial and angle calculation step of calculating the angle formed the acoustic axis in the normal direction and the ultrasonic signal subchondral bone surface, to function as a.
  • This ultrasonic analysis program is a program installed in the ultrasonic analysis apparatus. Therefore, this ultrasonic analysis program has the same effect as the ultrasonic analysis apparatus.
  • the contact angle of the ultrasonic probe to the subject can be easily adjusted.
  • the block diagram which shows the structure of the ultrasonic analyzer which concerns on embodiment
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic analysis apparatus 10 according to the present embodiment.
  • FIG. 2 is a diagram illustrating the ultrasonic probe 100 and the subject of the ultrasonic analysis apparatus 10 according to the present embodiment.
  • an ultrasonic analysis apparatus 10 an ultrasonic analysis method, and an ultrasonic analysis program that analyze the inside of a human knee as an example of a subject will be described.
  • the ultrasonic analyzer 10 includes an ultrasonic probe 100.
  • the ultrasonic probe 100 is a single transducer (ultrasonic source) that is mechanically scanned in a two-dimensional manner along the surface of the subject, for example, the knee (x-direction and y-direction scanning directions shown in FIG. 2). )have.
  • the vibrator transmits an ultrasonic signal from the surface of the subject toward the inside of the subject at a predetermined time interval.
  • the transmitted ultrasonic signal is reflected inside the subject, and the transducer receives the reflected echo signal.
  • the ultrasonic probe 100 is not limited to the above-described configuration.
  • the ultrasonic probe 100 includes a plurality of transducers arranged in one direction (for example, the x direction shown in FIG. 2) and scans in a two-dimensional manner. It may be a configuration.
  • the user moves the ultrasonic probe 100 in a direction (y direction) orthogonal to the one direction, and the ultrasonic analysis apparatus 10 receives an ultrasonic signal having a predetermined transmission beam angle of the subject. An echo signal transmitted from the surface and reflected inside the subject is received.
  • the ultrasonic analysis device 10 causes the knee surface (surface of the soft tissue 903) 905 to abut the end surface on the transmission / reception surface side of the ultrasonic probe 100, transmits an ultrasonic signal, and Explore the inside.
  • the soft tissue 903 is a part inside the body including skin and muscles, and is a part that exists on the surface side of the subject with respect to the cartilage 901.
  • the cartilage 901 is attached to the subchondral bone 904, and the subchondral bone 904 is a tissue connected to the bone (cancellous bone) 902.
  • a direction from the knee surface 905 toward the inside of the bone 902 side is referred to as a depth direction, and this direction is referred to as a z direction (a direction orthogonal to the x direction and the y direction).
  • the ultrasonic signal transmitted from the transducer of the ultrasonic probe 100 in the depth direction is reflected inside the subject (for example, soft tissue 903 or bone 902).
  • the transducer of the ultrasonic probe 100 receives the reflected echo signal.
  • the ultrasonic analysis device 10 generates image data of the cartilage 901 and the like based on the echo signal received by the ultrasonic probe 100.
  • the ultrasonic analysis apparatus 10 displays this image data on a monitor (not shown) or the like, and allows the user to determine the state of the cartilage 901 or the like.
  • the sound axis (not shown) of the ultrasonic signal is the surface of the cartilage 901 (hereinafter referred to as the cartilage surface) or the surface of the subchondral bone 904 (hereinafter referred to as the cartilage surface).
  • the contact angle of the ultrasound probe 100 (the angle of the sound axis) is adjusted so that the ultrasound probe 100 is substantially perpendicular (within a predetermined angle range) to the subchondral bone surface). It is preferable to contact 905.
  • the ultrasonic analysis apparatus 10 according to the present embodiment has a function that can easily adjust the contact angle of the ultrasonic probe 100. The function will be described in detail below.
  • the ultrasonic analysis apparatus 10 includes an operation unit 11, a control unit 12, a transmission / reception unit 13, and a signal processing unit 14.
  • the operation unit 11 receives a user operation input, and includes, for example, a key, a mouse, a touch panel, and the like. In the present embodiment, the operation unit 11 includes a plurality of operators (not shown).
  • the control unit 12 receives an instruction relating to the start of execution of the cartilage analysis process or the like by an operation on the operation element. Note that the ultrasonic analysis apparatus 10 (control unit 12) may be configured not to include the operation unit 11 and to receive an operation instruction from the outside.
  • the control unit 12 is configured by a processor such as a CPU, for example, and controls the operation of the ultrasonic analysis apparatus 10. For example, when receiving an instruction to start execution of a predetermined process such as a cartilage analysis process from the operation unit 11, the control unit 12 instructs the transmission / reception unit 13 and the signal processing unit 14 to start processing.
  • a processor such as a CPU
  • control unit 12 controls the ultrasonic source (vibrator) of the ultrasonic probe 100 to direct the ultrasonic source toward a plurality of different positions on the surface of the cartilage or the subchondral bone inside the subject.
  • the control unit 12 controls the position of the transducer of the ultrasonic probe 100 with respect to the subject, or controls the transmission angle of the ultrasonic signal with respect to the subject of the ultrasonic source, thereby controlling the inside of the subject.
  • the ultrasonic signal is transmitted to a plurality of different positions on the cartilage surface or subchondral bone surface.
  • the transmission / reception unit 13 When the start of processing is instructed from the control unit 12, the transmission / reception unit 13 generates an ultrasonic wave generation signal obtained by shaping a carrier wave having a frequency in the ultrasonic band into a pulse shape. Then, the transmission / reception unit 13 outputs an ultrasonic wave generation signal to the ultrasonic probe 100. Thereby, an ultrasonic signal is transmitted from the transducer of the ultrasonic probe 100 to the inside of the subject in the depth direction.
  • the transmission / reception unit 13 converts the echo signal from the inside of the subject received by the transducer of the ultrasonic probe 100 into discrete data by sampling at a predetermined time interval.
  • the echo signal converted into discrete data becomes echo data.
  • echo data sampled at predetermined intervals in the depth direction can be obtained.
  • the transmission / reception unit 13 performs envelope amplitude data D (x, z), D (y, z) obtained by performing envelope detection processing and log compression processing on the echo data. Is generated.
  • FIG. 3 is a diagram showing image data generated from the amplitude data D (x, z).
  • the signal processing unit 14 includes a computer including a processor such as a CPU, for example, and includes an echo data input unit 141, a position detection unit 142, a shape detection unit 143, an angle calculation unit 144, and an image data generation / output unit 145. And a notification unit 146 and a determination unit 147.
  • a processor such as a CPU, for example, and includes an echo data input unit 141, a position detection unit 142, a shape detection unit 143, an angle calculation unit 144, and an image data generation / output unit 145.
  • a notification unit 146 and a determination unit 147 includes a notification unit 146 and a determination unit 147.
  • the echo data input unit 141 is composed of an input interface (I / F), for example, and receives echo data such as amplitude data generated by the transmission / reception unit 13.
  • the signal processing unit 14 includes a storage unit (not shown) configured from a memory or the like.
  • the storage unit performs echo analysis generated by the transmission / reception unit 13, each data generated by another processing unit such as the position detection unit 142, and ultrasonic analysis for executing various processes related to the ultrasonic analysis method described later according to the present invention. Stores programs and the like.
  • the position detection unit 142 calculates the distance (ultrasonic propagation time) between the transducer (ultrasonic source) of the ultrasonic probe and the cartilage surface or the subchondral bone surface based on the echo data from the transmission / reception unit 13.
  • the position of the cartilage surface or subchondral bone surface is detected (in other words, the time position of the cartilage surface or subchondral bone surface is calculated, and the cartilage surface or subchondral bone surface is calculated based on the assumed sound speed. Is detected).
  • the position detection unit 142 includes a subchondral bone surface position detection unit 142A and a cartilage surface position detection unit 142B.
  • the subchondral bone surface position detection unit 142A uses the amplitude data D (x, z) and D (y, z) generated by the transmission / reception unit 13, and the surface position of the subchondral bone 904 in the z direction with respect to the x direction, And the surface position of the subchondral bone 904 in the z direction with respect to the y direction is detected.
  • the surface position of the subchondral bone 904 is a boundary position between the cartilage 901 and the subchondral bone 904.
  • a method for detecting the surface position of the subchondral bone 904 in the z direction with respect to the x direction will be described.
  • the subchondral bone surface position detection unit 142A takes a moving average of the amplitude data D (x, z) and generates smooth amplitude data Dm (x, z). In this case, even if the continuity of the amplitude data in the scanning direction and the depth direction is poor, the surface position of the subchondral bone 904 can be easily detected by smoothing.
  • FIG. 4 is a diagram showing image data generated from the amplitude data Dm (x, z) after the moving average processing.
  • the subchondral bone surface position detection unit 142A performs a compressor process for suppressing the signal intensity exceeding a predetermined value level to a predetermined value level or less from the amplitude data Dm (x, z), and the amplitude data Dcomp (x, z) Generate. Thereby, unnecessary high echo amplitude such as noise can be suppressed.
  • FIG. 5 is a diagram showing image data generated from the amplitude data Dcomp (x, z) after the compressor processing.
  • the subchondral bone surface position detection unit 142A may thin the number of data from the amplitude data Dm (x, z) after the moving average process in order to shorten the subsequent calculation processing time. Further, the subchondral bone surface position detection unit 142A causes the storage unit to store the generated amplitude data as needed.
  • the subchondral bone surface position detection unit 142A uses the amplitude data Dcomp (x, z) to create a cost map by the method described below, and detects the surface position of the subchondral bone 904 in the depth direction. As shown in FIG. 5, the subchondral bone surface position detection unit 142A sets two regions Nfw and Nbw adjacent along the depth direction. The region Nbw is located on the skin side in the depth direction, and the region Nbw is a region located on the inner side (bone side) than the region Nbw. Further, the sizes of the areas Nfw and Nbw to be set can be changed as appropriate.
  • Each of the regions Nfw and Nbw includes a plurality of amplitude data Dcomp (x, z).
  • the subchondral bone surface position detection unit 142A calculates the average value of the amplitude levels from the amplitude data Dcomp (x, z) in the regions Nfw and Nbw. Then, the average value of the amplitude level in the region Nbw is subtracted from the average value of the amplitude level in the region Nfw.
  • the subchondral bone surface position detection unit 142A stores the calculation result in the storage unit as a cost map.
  • the subchondral bone surface position detection unit 142A may detect the position of the subchondral bone 904 by the Dijkstra method (minimum cost path search). For example, position detection is performed in the order of a plurality of different positions x1, x2, x3 in the x direction. For example, when position detection is performed at the position x2, from the surface position of the subchondral bone 904 detected at the immediately preceding x1, A predetermined range is set in the depth direction, and the surface position of the subchondral bone 904 is detected in the range. Thereby, the search time can be shortened and erroneous detection can be suppressed.
  • Dijkstra method minimum cost path search
  • the ultrasound signal When an ultrasound signal is transmitted to the subject knee, the ultrasound signal is not reflected inside the cartilage 901, and the echo signal is reflected by the subchondral bone 904, whereas the echo signal is minute or no echo (signal).
  • the echo signal has a high amplitude. Therefore, for example, when one of the regions Nfw and Nbw is located in the cartilage 901, the difference between the average values of the amplitude levels is large. On the other hand, the difference between the average values of the amplitude levels when the regions Nfw and Nbw are not located in the cartilage 901 is small.
  • the subchondral bone surface position detection unit 142A detects a position with a large difference from the cost map stored in the storage unit as the surface position of the subchondral bone 904 in the depth direction.
  • the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 in the depth direction, more specifically, the boundary position between the cartilage 901 and the soft tissue 903. Similarly to the subchondral bone surface position detection unit 142A, the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 in each of the x and y directions. A method for detecting the surface position 901 will be described.
  • FIG. 6 is a diagram for explaining a method for detecting the surface position of the cartilage 901.
  • FIG. 6 shows a part of the image shown in FIG.
  • the cartilage surface position detection unit 142B extracts the amplitude data Dcomp (x, z) included in the predetermined region from the storage unit.
  • the predetermined region is a region having a thickness Th on the soft tissue 903 side in the depth direction from the surface position of the subchondral bone 904 detected by the subchondral bone position detection unit 142A.
  • the thickness Th is a maximum value of the thickness of a human measurement site (cartilage) that is generally assumed. Then, the cartilage surface position detection unit 142B determines the search range in the depth direction according to the assumed maximum value of the cartilage thickness.
  • the cartilage surface position detection unit 142B sets two regions Cfw and Cbw from the extracted amplitude data Dcomp (x, z) in the same manner as described in FIG. Then, the cartilage surface position detection unit 142B calculates the difference between the average values of the amplitude levels in the regions Cfw and Cbw, and stores the calculation result in the storage unit as cost map data.
  • the ultrasonic signal is not reflected at the cartilage 901 portion, and becomes an echo-free signal.
  • the cartilage surface position detection unit 142B determines the position where the difference is large from the cost map data stored in the storage unit. The surface position of the cartilage 901 in the direction is detected.
  • FIG. 7 is a diagram showing image data generated based on the cost map.
  • the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 in each of the x and y directions, and obtains information Z (x, y) of the three-dimensional coordinates of the surface position of the cartilage 901.
  • the shape detection unit 143 detects the shape of the cartilage surface or the subchondral bone surface based on the information on each position detected by the position detection unit 142.
  • the shape detection unit 143 calculates the plane of the cartilage surface or the subchondral bone surface (detects the shape) by performing surface fitting on the three-dimensional information Z (x, y) obtained by the position detection unit 142. For this surface fitting, for example, a least square method is used.
  • the angle calculation unit 144 calculates the angle formed by the normal direction of the cartilage surface or subchondral bone surface at the position where the ultrasonic signal is transmitted and the sound axis of the ultrasonic signal. That is, the angle calculation unit 144 detects a normal vector corresponding to the position where the calculated ultrasonic signal of the plane is transmitted. As described above, it is preferable that the ultrasonic probe 100 is brought into contact with the surface of the knee so that the sound axis of the ultrasonic signal is substantially perpendicular to the surface of the cartilage 901. For this reason, it is preferable that the detected normal vector is parallel to the depth direction. Therefore, the angle calculation unit 144 calculates the angles ⁇ x and ⁇ y of the normal vector with respect to the depth direction.
  • the angle ⁇ x is a moment in the x direction
  • the angle ⁇ y is a moment in the y direction.
  • the image data generation / output unit 145 generates image data for displaying the angles ⁇ x and ⁇ y calculated by the angle calculation unit 144 on a monitor (not shown), and outputs the image data to the monitor.
  • FIG. 8 is a diagram illustrating an example of the display of the contact angle guide. On the screen, the ⁇ x axis, the ⁇ y axis, the allowable range 101, and the angle pointer 102 are displayed. The angle pointer 102 indicates the current angle of the ultrasonic probe 100. Based on whether or not the angle pointer 102 is within the allowable range 101, the user can grasp whether or not the angle of the ultrasonic probe 100 with respect to the knee surface is appropriate. The user can transmit an ultrasonic signal substantially perpendicular to the surface of the cartilage 901 by adjusting the angle of the ultrasonic probe 100 so that the angle pointer 102 falls within the allowable range 101. .
  • the numerical range of the allowable range 101 can be appropriately changed within a range in which cartilage analysis using an ultrasonic signal is normally performed.
  • an image in which the amplitude of the echo signal is displayed as the brightness (luminance) of the point may be displayed on the monitor.
  • the notification unit 146 indicates the detection result (for example, whether or not the angle of the ultrasonic probe 100 is included in the predetermined angle range or information on the angle of the ultrasonic probe 100) by sound or light. A notification signal to be notified is generated. Based on a notification signal from the notification unit 146, a notification device (not shown) such as a speaker or LED notifies the user of the notification signal. Thereby, the user can further easily adjust the angle of the ultrasonic probe.
  • the determination unit 147 determines whether or not the angle detected by the angle calculation unit 144 is within a predetermined angle range. The determination unit 147 compares the position of the angle pointer 102 with the position of the allowable range 101. If the position of the angle pointer 102 is in the position of the allowable range 101, the angle detected by the angle calculation unit 144 is the predetermined angle range. Is determined to be within.
  • FIG. 9 is a flowchart of the contact angle calculation process executed by the ultrasonic analysis apparatus 10, and is a flowchart of the ultrasonic analysis method.
  • the ultrasonic analysis apparatus 10 starts the predetermined process shown in FIG.
  • the transmission / reception unit 13 transmits an ultrasonic signal from the transducer (ultrasonic source) of the ultrasonic probe 100 (transmission control step), and an echo signal of the ultrasonic signal received by the ultrasonic probe 100.
  • Echo data (for example, amplitude data) is generated from the data and stored in the storage unit (S1).
  • the echo data input unit 141 receives the amplitude data (S2: echo data input step).
  • the position detector 142 (subchondral bone surface position detector 142A and cartilage surface position detector 142B) detects the surface positions of the subchondral bone 904 and cartilage 901 (S3 and S4: Position detection step).
  • FIG. 10 is a flowchart of the surface position detection process of the subchondral bone 904.
  • the cartilage surface position detection unit 142B takes a moving average of the amplitude data (S11). Next, the subchondral bone surface position detection unit 142B thins out the number of amplitude data after moving average, and performs noise level detection (S12).
  • Noise level detection refers to, for example, amplitude data corresponding to no-echo (or micro-echo) data in a region deviated from a position such as cartilage 901 in the depth direction generally assumed from amplitude data corresponding to echo data. delete. Thereby, shortening of processing time etc. can be aimed at.
  • the cartilage surface position detection unit 142B performs a compressor process for suppressing the signal intensity of echo data exceeding a predetermined value level to a predetermined value level or less (S13). Thereafter, the cartilage surface position detection unit 142B generates a cost map using the amplitude data after the compressor processing (S14). The method for generating the cost map is as described above.
  • the subchondral bone surface position detection unit 142B stores the generated cost map data in the storage unit.
  • the subchondral bone surface position detection unit 142A detects the surface position of the subchondral bone 904 from the generated cost map by the Dijkstra method (S15).
  • the subchondral bone surface position detection unit 142A stores the detected surface position of the subchondral bone 904 in the storage unit.
  • FIG. 11 is a flowchart of the surface position detection process of the cartilage 901.
  • the cartilage surface position detection unit 142B obtains amplitude data (echo data) included in a predetermined region based on the surface position of the subchondral bone 904 detected by the subchondral bone surface position detection unit 142A in the process shown in FIG. Then, it is extracted from the storage unit (S21).
  • the amplitude data extracted here is amplitude data generated by the transmission / reception unit 13 and stored in the storage unit.
  • the predetermined region is a region having a thickness Th on the soft tissue 903 side in the depth direction from the surface position of the subchondral bone 904 detected by the subchondral bone surface position detection unit 142B. is there.
  • the cartilage surface position detection unit 142B takes a moving average of the extracted amplitude data (S22) and thins out the number of data (S23). Note that the cartilage surface position detection unit 142B may perform noise level detection after the thinning-out process, similarly to the subchondral bone surface position detection unit 142A. Then, the cartilage surface position detection unit 142B performs a compressor process for suppressing the signal intensity exceeding the predetermined value level to be equal to or lower than the predetermined value level (S24). Thereafter, the cartilage surface position detection unit 142B generates a cost map (S25). Then, the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 from the generated cost map by the Dijkstra method (S26).
  • the shape detection unit 143 calculates a plane (detects a shape) by performing surface fitting to the three-dimensional information Z (x, y) obtained by the cartilage surface position detection unit 142B (S5: shape detection step). ).
  • the angle calculation unit 144 detects the normal vector of the calculated plane (shape), and the angle of the normal vector with respect to the depth direction (the surface of the cartilage surface or the subchondral bone surface at the position irradiated with the ultrasonic signal). Angles ⁇ x and ⁇ y formed between the normal direction and the sound axis of the ultrasonic signal are calculated (S6: angle calculation step). Then, the image data generation / output unit 145 generates image data for displaying the calculated angles ⁇ x, ⁇ y, etc. on the monitor (S7: angle display step). Thereby, the image shown in FIG. 8 is displayed on the monitor.
  • the ultrasonic analysis device 10 detects the surface position of the cartilage 901 and detects the angle of the sound axis of the ultrasonic signal with respect to the surface position. The angle of the sound axis of the ultrasonic signal may be detected. In the present embodiment, the ultrasonic analysis device 10 displays the angles ⁇ x and ⁇ y as images and notifies the user, but may notify the user by sound or light via the notification unit 146.
  • the ultrasonic analysis apparatus 10 may be configured to generate and output image data only when the determination unit 147 determines that the angle detected by the angle calculation unit 144 is within a predetermined angle range. With this configuration, image data such as cartilage with higher accuracy can be obtained, and the user can more accurately analyze the state of cartilage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

[Problem] To provide an ultrasonic wave analyzing device, an ultrasonic wave analyzing method, and an ultrasonic wave analyzing program that can easily adjust the angle of contact of an ultrasonic probe to a subject. [Solution] An ultrasonic wave analyzing device 10 comprising: a control unit 12 that controls an ultrasonic wave source so as to cause an ultrasonic signal to be transmitted from the ultrasonic wave source on a prescribed sound axis toward a plurality of mutually different positions on the surfaces of cartilage or the surfaces of subchondral bone of a subject; an echo data input unit 141 that receives the input of echo data of an echo signal formed by the ultrasonic signal transmitted by the control unit being reflected inside the subject; a position detection unit 142 that detects the position of the ultrasonic wave source and the positions of the mutually different plurality of cartilage surfaces or subchondral bone surfaces; a shape detection unit 143 that detects the shape of the cartilage surface or the subchondral bone surface on the basis of information from each position detected by the position detection unit; and an angle calculation unit 144 that calculates the angle formed by the sound axis of the ultrasonic signal and the normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted.

Description

超音波解析装置、超音波解析方法及び超音波解析プログラムUltrasonic analysis apparatus, ultrasonic analysis method, and ultrasonic analysis program
 本発明は、被検体の内部に超音波信号を送信して、被検体の内部で反射した超音波信号のエコー信号を解析する超音波解析装置、超音波解析方法及び超音波解析プログラムに関する。 The present invention relates to an ultrasonic analysis apparatus, an ultrasonic analysis method, and an ultrasonic analysis program for transmitting an ultrasonic signal inside a subject and analyzing an echo signal of the ultrasonic signal reflected inside the subject.
 軟骨の状態を解析する装置として、例えば、特許文献1に記載の超音波解析装置がある。特許文献1の超音波解析装置は、膝の表面に当接させた超音波プローブから超音波信号を送信し、膝の内部で反射したエコー信号を超音波プローブで受信する。そして、受信したエコー信号から、軟骨の状態を解析する。 As an apparatus for analyzing the state of cartilage, for example, there is an ultrasonic analysis apparatus described in Patent Document 1. The ultrasonic analysis apparatus of Patent Literature 1 transmits an ultrasonic signal from an ultrasonic probe that is in contact with the surface of the knee, and receives an echo signal reflected inside the knee with the ultrasonic probe. Then, the state of the cartilage is analyzed from the received echo signal.
特開2010-305号公報JP 2010-305 A
 特許文献1の超音波解析装置では、膝の内部からのエコー信号は、膝に対する超音波プローブの当接角度によって異なるため、適切な角度で超音波プローブを膝に当接しなければ、軟骨の状態を正確に解析することができないといった問題がある。 In the ultrasonic analysis device of Patent Document 1, the echo signal from the inside of the knee varies depending on the contact angle of the ultrasonic probe with respect to the knee, so that the state of the cartilage is not required unless the ultrasonic probe is contacted with the knee at an appropriate angle. There is a problem that it cannot be analyzed accurately.
 そこで、本発明の目的は、被検体への超音波プローブの当接角度の調節を容易に行える超音波解析装置、超音波解析方法及び超音波解析プログラムを提供することにある。 Therefore, an object of the present invention is to provide an ultrasonic analysis apparatus, an ultrasonic analysis method, and an ultrasonic analysis program that can easily adjust the contact angle of an ultrasonic probe to a subject.
 本発明に係る超音波解析装置は、超音波源を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、前記超音波源から所定の音軸で超音波信号を送信させる制御部と、前記制御部により送信された前記超音波信号が前記被検体の内部で反射されてなるエコー信号のエコーデータの入力を受けるエコーデータ入力部と、前記超音波源と前記互いに異なる複数の前記軟骨表面又は前記軟骨下骨表面の位置を検出する位置検出部と、前記位置検出部で検出された前記各位置の情報に基づいて、前記軟骨表面又は前記軟骨下骨表面の形状を検出する形状検出部と、前記超音波信号が送信された前記位置における前記軟骨表面又は前記軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する角度算出部と、を備える。 The ultrasonic analysis apparatus according to the present invention controls the ultrasonic source to direct a predetermined sound axis from the ultrasonic source toward a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject. A control unit that transmits an ultrasonic signal at the control unit, an echo data input unit that receives echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted from the control unit inside the subject, and the ultrasonic data A position detection unit that detects positions of a plurality of different cartilage surfaces or subchondral bone surfaces different from the acoustic wave source, and the cartilage surface or the cartilage based on information on each position detected by the position detection unit An angle formed by a shape detection unit for detecting the shape of the lower bone surface, and a normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted and the sound axis of the ultrasonic signal. Calculated angle It includes a detecting section, a.
 この構成では、ユーザは、角度算出部によって算出された軟骨表面又は軟骨下骨表面に対する超音波プローブの角度を把握できるため、超音波プローブの角度の調節を容易に行うことができる。 In this configuration, since the user can grasp the angle of the ultrasonic probe with respect to the cartilage surface or the subchondral bone surface calculated by the angle calculation unit, the angle of the ultrasonic probe can be easily adjusted.
 また、本発明に係る超音波解析方法は、送信制御ステップと、エコーデータ入力ステップと、位置検出ステップと、形状検出ステップと、角度算出ステップとを備える。送信制御ステップは、超音波源を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、前記超音波源から所定の音軸で超音波信号を送信させる。エコーデータ入力ステップは、前記制御送信ステップにより送信された前記超音波信号が前記被検体の内部で反射されてなるエコー信号のエコーデータの入力を受ける。位置検出ステップは、前記超音波源と前記互いに異なる複数の前記軟骨表面又は前記軟骨下骨表面の位置を検出する。形状検出ステップは、前記位置検出ステップで検出された前記各位置の情報に基づいて、前記軟骨表面又は前記軟骨下骨表面の形状を検出する。角度算出ステップは、前記超音波信号が送信された前記位置における前記軟骨表面又は前記軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する。 The ultrasonic analysis method according to the present invention includes a transmission control step, an echo data input step, a position detection step, a shape detection step, and an angle calculation step. In the transmission control step, an ultrasonic signal is controlled from the ultrasonic source to a plurality of different positions on the cartilage surface or the subchondral bone surface inside the subject with a predetermined sound axis by controlling the ultrasonic source. Send it. The echo data input step receives the input of echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted in the control transmission step inside the subject. The position detecting step detects positions of the plurality of cartilage surfaces or the subchondral bone surfaces different from the ultrasonic source. The shape detection step detects the shape of the cartilage surface or the subchondral bone surface based on the information on each position detected in the position detection step. The angle calculation step calculates an angle formed by a normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted and the sound axis of the ultrasonic signal.
 この超音波解析方法は、上記超音波解析装置で行われる方法である。そのため、この超音波解析方法は、上記超音波解析装置と同様の効果を奏する。 This ultrasonic analysis method is performed by the above ultrasonic analysis apparatus. Therefore, this ultrasonic analysis method has the same effect as the above ultrasonic analysis apparatus.
 また、本発明に係る超音波解析プログラムは、コンピュータを、超音波源を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、前記超音波源から所定の音軸で超音波信号を送信させる送信制御ステップと、前記送信制御ステップにより送信された前記超音波信号が前記被検体の内部で反射されてなるエコー信号のエコーデータの入力を受けるエコーデータ入力ステップと、前記超音波源と前記互いに異なる複数の前記軟骨表面又は前記軟骨下骨表面の位置を検出する位置検出ステップと、前記位置検出ステップで検出された前記各位置の情報に基づいて、前記軟骨表面又は前記軟骨下骨表面の形状を検出する形状検出ステップと、前記超音波信号が送信された前記位置における前記軟骨表面又は前記軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する角度算出ステップと、として機能させる。 Further, the ultrasonic analysis program according to the present invention controls the ultrasonic source so that the ultrasonic source is directed toward a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject. A transmission control step for transmitting an ultrasonic signal with a predetermined sound axis from an echo, and an echo that receives an input of echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted by the transmission control step inside the subject Based on the data input step, the position detection step for detecting the positions of the plurality of different cartilage surfaces or the subchondral bone surfaces different from the ultrasonic source, and information on each position detected in the position detection step A shape detecting step for detecting a shape of the cartilage surface or the subchondral bone surface, and the cartilage surface at the position where the ultrasonic signal is transmitted or Serial and angle calculation step of calculating the angle formed the acoustic axis in the normal direction and the ultrasonic signal subchondral bone surface, to function as a.
 この超音波解析プログラムは、上記超音波解析装置に実装されるプログラムである。そのため、この超音波解析プログラムは、上記超音波解析装置と同様の効果を奏する。 This ultrasonic analysis program is a program installed in the ultrasonic analysis apparatus. Therefore, this ultrasonic analysis program has the same effect as the ultrasonic analysis apparatus.
 本発明によれば、ユーザは、軟骨表面又は軟骨下骨表面に対する、超音波プローブの角度を把握できるため、被検体への超音波プローブの当接角度の調節を容易に行うことができる。 According to the present invention, since the user can grasp the angle of the ultrasonic probe with respect to the cartilage surface or the subchondral bone surface, the contact angle of the ultrasonic probe to the subject can be easily adjusted.
実施形態に係る超音波解析装置の構成を示すブロック図The block diagram which shows the structure of the ultrasonic analyzer which concerns on embodiment 実施形態に係る超音波解析装置の超音波プローブと被検体を示す図The figure which shows the ultrasonic probe and subject of the ultrasonic analyzer which concern on embodiment 振幅データから生成される画像データを表示した図Diagram showing image data generated from amplitude data 移動平均処理後の振幅データから生成した画像データを表示した図Figure showing image data generated from amplitude data after moving average processing コンプレッサ処理後の振幅データDcomp(x、z)から生成した画像データを表示した図The figure which displayed the image data produced | generated from the amplitude data Dcomp (x, z) after a compressor process 軟骨の表面位置検出を行う方法を説明するための図The figure for explaining the method of detecting the surface position of the cartilage コストマップに基づいて生成した画像データを表示した図Diagram showing image data generated based on cost map 当接角度ガイドの表示の一例を示す図The figure which shows an example of the display of a contact angle guide 超音波解析装置が実行する当接角度算出処理のフローチャートFlowchart of contact angle calculation processing executed by the ultrasonic analyzer 軟骨下骨の表面位置検出処理のフローチャートFlow chart of surface position detection process of subchondral bone 軟骨の表面位置検出処理のフローチャートFlow chart of cartilage surface position detection process
 図1は、本実施形態に係る超音波解析装置10の構成を示すブロック図である。図2は、本実施形態に係る超音波解析装置10の超音波プローブ100と被検体を示す図である。本実施形態では、被検体の一例として人の膝の内部を解析する超音波解析装置10、超音波解析方法、及び超音波解析プログラムについて説明する。 FIG. 1 is a block diagram showing a configuration of an ultrasonic analysis apparatus 10 according to the present embodiment. FIG. 2 is a diagram illustrating the ultrasonic probe 100 and the subject of the ultrasonic analysis apparatus 10 according to the present embodiment. In the present embodiment, an ultrasonic analysis apparatus 10, an ultrasonic analysis method, and an ultrasonic analysis program that analyze the inside of a human knee as an example of a subject will be described.
 超音波解析装置10は超音波プローブ100を備える。超音波プローブ100は、被検体である例えば膝の表面に沿って二次元状に(図2に示すx方向およびy方向の走査方向)に機械的に走査される一つの振動子(超音波源)を有している。振動子は、超音波信号を被検体の表面から被検体の内部に向けて所定の時間間隔で送信する。送信された超音波信号は被検体の内部で反射し、振動子は、その反射されたエコー信号を受信する。 The ultrasonic analyzer 10 includes an ultrasonic probe 100. The ultrasonic probe 100 is a single transducer (ultrasonic source) that is mechanically scanned in a two-dimensional manner along the surface of the subject, for example, the knee (x-direction and y-direction scanning directions shown in FIG. 2). )have. The vibrator transmits an ultrasonic signal from the surface of the subject toward the inside of the subject at a predetermined time interval. The transmitted ultrasonic signal is reflected inside the subject, and the transducer receives the reflected echo signal.
 なお、超音波プローブ100は、上記の構成に限定されるものではなく、例えば、一方向(例えば図2に示すx方向)に配列された複数の振動子を有し、二次元状に走査する構成であってもよい。この構成の場合、ユーザが当該一方向に直交する方向(y方向)に対して超音波プローブ100を移動させ、超音波解析装置10が、所定の送信ビーム角からなる超音波信号を被検体の表面から送信し、被検体の内部で反射されたエコー信号を受信する。 The ultrasonic probe 100 is not limited to the above-described configuration. For example, the ultrasonic probe 100 includes a plurality of transducers arranged in one direction (for example, the x direction shown in FIG. 2) and scans in a two-dimensional manner. It may be a configuration. In the case of this configuration, the user moves the ultrasonic probe 100 in a direction (y direction) orthogonal to the one direction, and the ultrasonic analysis apparatus 10 receives an ultrasonic signal having a predetermined transmission beam angle of the subject. An echo signal transmitted from the surface and reflected inside the subject is received.
 超音波解析装置10は、図2に示すように、膝表面(軟組織903の表面)905に、超音波プローブ100の送受信面側の端面を当接させ、超音波信号を送信して、膝の内部を探索する。軟組織903とは、皮膚及び筋肉を含む体内部分であり、軟骨901よりも被検体の表面側に存在する部位である。軟骨901は、軟骨下骨904に付着しており、軟骨下骨904は、骨(海綿骨)902に結合した組織である。以下では、膝表面905から骨902側内部へ向かう方向を深度方向といい、この方向をz方向(x方向及びy方向に直交する方向)とする。 As shown in FIG. 2, the ultrasonic analysis device 10 causes the knee surface (surface of the soft tissue 903) 905 to abut the end surface on the transmission / reception surface side of the ultrasonic probe 100, transmits an ultrasonic signal, and Explore the inside. The soft tissue 903 is a part inside the body including skin and muscles, and is a part that exists on the surface side of the subject with respect to the cartilage 901. The cartilage 901 is attached to the subchondral bone 904, and the subchondral bone 904 is a tissue connected to the bone (cancellous bone) 902. Hereinafter, a direction from the knee surface 905 toward the inside of the bone 902 side is referred to as a depth direction, and this direction is referred to as a z direction (a direction orthogonal to the x direction and the y direction).
 超音波プローブ100の振動子から深度方向へ送信された超音波信号は、被検体の内部(例えば軟組織903又は骨902等)で反射する。超音波プローブ100の振動子は、反射したエコー信号を受信する。超音波解析装置10は、超音波プローブ100が受信したエコー信号に基づいて、軟骨901等の画像データを生成する。超音波解析装置10は、この画像データをモニタ(図示略)等に表示させて、ユーザに軟骨901の状態等を判断させる。 The ultrasonic signal transmitted from the transducer of the ultrasonic probe 100 in the depth direction is reflected inside the subject (for example, soft tissue 903 or bone 902). The transducer of the ultrasonic probe 100 receives the reflected echo signal. The ultrasonic analysis device 10 generates image data of the cartilage 901 and the like based on the echo signal received by the ultrasonic probe 100. The ultrasonic analysis apparatus 10 displays this image data on a monitor (not shown) or the like, and allows the user to determine the state of the cartilage 901 or the like.
 なお、被検体の内部に超音波信号を送信する場合、超音波信号の音軸(図示せず)が軟骨901の表面(以下、これを軟骨表面という)又は軟骨下骨904の表面(以下、これを軟骨下骨表面という)に対して略垂直(所定角度範囲内)となるように、超音波プローブ100の当接角度(音軸の角度)を調整して、超音波プローブ100を膝表面905に当接させることが好ましい。本実施形態に係る超音波解析装置10は、この超音波プローブ100の当接角度の調整を容易に行うことができる機能を備えている。以下、その機能について詳述する。 When transmitting an ultrasonic signal to the inside of the subject, the sound axis (not shown) of the ultrasonic signal is the surface of the cartilage 901 (hereinafter referred to as the cartilage surface) or the surface of the subchondral bone 904 (hereinafter referred to as the cartilage surface). The contact angle of the ultrasound probe 100 (the angle of the sound axis) is adjusted so that the ultrasound probe 100 is substantially perpendicular (within a predetermined angle range) to the subchondral bone surface). It is preferable to contact 905. The ultrasonic analysis apparatus 10 according to the present embodiment has a function that can easily adjust the contact angle of the ultrasonic probe 100. The function will be described in detail below.
 超音波解析装置10は、操作部11、制御部12、送受信部13及び信号処理部14を備える。 The ultrasonic analysis apparatus 10 includes an operation unit 11, a control unit 12, a transmission / reception unit 13, and a signal processing unit 14.
 操作部11は、ユーザの操作入力を受け付けるものであり、例えばキー、マウス、タッチパネル等から構成される。本実施形態では、操作部11は、複数の操作子(図示せず)から構成される。この操作子に対する操作により、制御部12は、軟骨解析処理等の実行開始に関する指示を受信する。なお、超音波解析装置10(制御部12)は、操作部11を備えず、外部から操作指示を受信する構成であってもよい。 The operation unit 11 receives a user operation input, and includes, for example, a key, a mouse, a touch panel, and the like. In the present embodiment, the operation unit 11 includes a plurality of operators (not shown). The control unit 12 receives an instruction relating to the start of execution of the cartilage analysis process or the like by an operation on the operation element. Note that the ultrasonic analysis apparatus 10 (control unit 12) may be configured not to include the operation unit 11 and to receive an operation instruction from the outside.
 制御部12は、例えばCPU等のプロセッサから構成され、超音波解析装置10の動作を制御する。例えば、制御部12は、軟骨解析処理等の所定の処理の実行開始の指示を操作部11から受信すると、送受信部13及び信号処理部14へ、処理開始を指示する。 The control unit 12 is configured by a processor such as a CPU, for example, and controls the operation of the ultrasonic analysis apparatus 10. For example, when receiving an instruction to start execution of a predetermined process such as a cartilage analysis process from the operation unit 11, the control unit 12 instructs the transmission / reception unit 13 and the signal processing unit 14 to start processing.
 また、制御部12は、超音波プローブ100の超音波源(振動子)を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、超音波源から所定の音軸で超音波信号を送信させる。制御部12は、例えば、超音波プローブ100の振動子の被検体に対する位置を制御することにより、又は、超音波源の被検体に対する超音波信号の送信角を制御することにより、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に超音波信号を送信させる。 In addition, the control unit 12 controls the ultrasonic source (vibrator) of the ultrasonic probe 100 to direct the ultrasonic source toward a plurality of different positions on the surface of the cartilage or the subchondral bone inside the subject. To transmit an ultrasonic signal with a predetermined sound axis. For example, the control unit 12 controls the position of the transducer of the ultrasonic probe 100 with respect to the subject, or controls the transmission angle of the ultrasonic signal with respect to the subject of the ultrasonic source, thereby controlling the inside of the subject. The ultrasonic signal is transmitted to a plurality of different positions on the cartilage surface or subchondral bone surface.
 送受信部13は、制御部12から処理開始が指示された場合、超音波帯域の周波数からなる搬送波をパルス状に波形成形した超音波生成信号を生成する。そして、送受信部13は、超音波生成信号を超音波プローブ100へ出力する。これにより、超音波プローブ100の振動子からは超音波信号が深度方向に被検体の内部に送信される。 When the start of processing is instructed from the control unit 12, the transmission / reception unit 13 generates an ultrasonic wave generation signal obtained by shaping a carrier wave having a frequency in the ultrasonic band into a pulse shape. Then, the transmission / reception unit 13 outputs an ultrasonic wave generation signal to the ultrasonic probe 100. Thereby, an ultrasonic signal is transmitted from the transducer of the ultrasonic probe 100 to the inside of the subject in the depth direction.
 また、送受信部13は、超音波プローブ100の振動子が受信した被検体の内部からのエコー信号を、所定の時間間隔でサンプリングすることで、離散データ化する。この離散データ化されたエコー信号がエコーデータとなる。これにより、深度方向に所定間隔でデータサンプリングされたエコーデータを得ることができる。また、x方向及びy方向それぞれに対して、送受信部13は、エコーデータに、包絡検波処理及びlog圧縮処理を施して得られるエンベロープの振幅データD(x、z)、D(y、z)を生成する。図3は、振幅データD(x、z)から生成される画像データを表示した図である。 Further, the transmission / reception unit 13 converts the echo signal from the inside of the subject received by the transducer of the ultrasonic probe 100 into discrete data by sampling at a predetermined time interval. The echo signal converted into discrete data becomes echo data. Thereby, echo data sampled at predetermined intervals in the depth direction can be obtained. Further, for each of the x direction and the y direction, the transmission / reception unit 13 performs envelope amplitude data D (x, z), D (y, z) obtained by performing envelope detection processing and log compression processing on the echo data. Is generated. FIG. 3 is a diagram showing image data generated from the amplitude data D (x, z).
 信号処理部14は、例えばCPU等のプロセッサを含むコンピュータから構成され、エコーデータ入力部141と、位置検出部142と、形状検出部143と、角度算出部144と、画像データ生成・出力部145と、通知部146と、判定部147とを備える。 The signal processing unit 14 includes a computer including a processor such as a CPU, for example, and includes an echo data input unit 141, a position detection unit 142, a shape detection unit 143, an angle calculation unit 144, and an image data generation / output unit 145. And a notification unit 146 and a determination unit 147.
 エコーデータ入力部141は、例えば入力インターフェース(I/F)から構成され、送受信部13が生成した振幅データ等のエコーデータの入力を受ける。なお、信号処理部14は、メモリなどから構成される記憶部(図示せず)を備えている。記憶部は、送受信部13が生成したエコーデータ、位置検出部142等の他の処理部が生成した各データ、及び、本発明に係る後述する超音波解析方法に関する各種処理を実行する超音波解析プログラム等を記憶する。 The echo data input unit 141 is composed of an input interface (I / F), for example, and receives echo data such as amplitude data generated by the transmission / reception unit 13. The signal processing unit 14 includes a storage unit (not shown) configured from a memory or the like. The storage unit performs echo analysis generated by the transmission / reception unit 13, each data generated by another processing unit such as the position detection unit 142, and ultrasonic analysis for executing various processes related to the ultrasonic analysis method described later according to the present invention. Stores programs and the like.
 位置検出部142は、送受信部13からのエコーデータに基づき、超音波プローブの振動子(超音波源)と、軟骨表面又は軟骨下骨表面との間の距離(超音波伝搬時間)を算出することにより、当該軟骨表面又は軟骨下骨表面の位置を検出する(換言すれば、軟骨表面又は軟骨下骨表面の時間位置を算出し、仮定音速に基づいて、当該当該軟骨表面又は軟骨下骨表面の位置を検出する)ものである。位置検出部142は、軟骨下骨表面位置検出部142Aと、軟骨表面位置検出部142Bとを含む。 The position detection unit 142 calculates the distance (ultrasonic propagation time) between the transducer (ultrasonic source) of the ultrasonic probe and the cartilage surface or the subchondral bone surface based on the echo data from the transmission / reception unit 13. Thus, the position of the cartilage surface or subchondral bone surface is detected (in other words, the time position of the cartilage surface or subchondral bone surface is calculated, and the cartilage surface or subchondral bone surface is calculated based on the assumed sound speed. Is detected). The position detection unit 142 includes a subchondral bone surface position detection unit 142A and a cartilage surface position detection unit 142B.
 軟骨下骨表面位置検出部142Aは、送受信部13で生成された振幅データD(x、z)、D(y、z)を用いて、x方向に対するz方向の軟骨下骨904の表面位置、及び、y方向に対するz方向の軟骨下骨904の表面位置をそれぞれ検出する。軟骨下骨904の表面位置とは、軟骨901と軟骨下骨904との境界位置である。以下では、x方向に対するz方向の軟骨下骨904の表面位置の検出方法について説明する。 The subchondral bone surface position detection unit 142A uses the amplitude data D (x, z) and D (y, z) generated by the transmission / reception unit 13, and the surface position of the subchondral bone 904 in the z direction with respect to the x direction, And the surface position of the subchondral bone 904 in the z direction with respect to the y direction is detected. The surface position of the subchondral bone 904 is a boundary position between the cartilage 901 and the subchondral bone 904. Hereinafter, a method for detecting the surface position of the subchondral bone 904 in the z direction with respect to the x direction will be described.
 軟骨下骨表面位置検出部142Aは、振幅データD(x、z)の移動平均を取り、平滑した振幅データDm(x、z)を生成する。この場合、走査方向及び深度方向への振幅データの連続性が悪い場合であっても、平滑化することで、軟骨下骨904の表面位置検出は行いやすくなる。図4は、移動平均処理後の振幅データDm(x、z)から生成した画像データを表示した図である。 The subchondral bone surface position detection unit 142A takes a moving average of the amplitude data D (x, z) and generates smooth amplitude data Dm (x, z). In this case, even if the continuity of the amplitude data in the scanning direction and the depth direction is poor, the surface position of the subchondral bone 904 can be easily detected by smoothing. FIG. 4 is a diagram showing image data generated from the amplitude data Dm (x, z) after the moving average processing.
 軟骨下骨表面位置検出部142Aは、振幅データDm(x、z)のうち、所定値レベルを超える信号強度を所定値レベル以下に抑制するコンプレッサ処理を行い、振幅データDcomp(x、z)を生成する。これにより、ノイズ等の不要な高エコー振幅を抑制できる。図5は、コンプレッサ処理後の振幅データDcomp(x、z)から生成した画像データを表示した図である。 The subchondral bone surface position detection unit 142A performs a compressor process for suppressing the signal intensity exceeding a predetermined value level to a predetermined value level or less from the amplitude data Dm (x, z), and the amplitude data Dcomp (x, z) Generate. Thereby, unnecessary high echo amplitude such as noise can be suppressed. FIG. 5 is a diagram showing image data generated from the amplitude data Dcomp (x, z) after the compressor processing.
 なお、軟骨下骨表面位置検出部142Aは、以降の計算処理時間を短縮するために、移動平均処理後の振幅データDm(x、z)からデータ数を間引いてもよい。また、軟骨下骨表面位置検出部142Aは、生成した各振幅データを記憶部に随時記憶させる。 Note that the subchondral bone surface position detection unit 142A may thin the number of data from the amplitude data Dm (x, z) after the moving average process in order to shorten the subsequent calculation processing time. Further, the subchondral bone surface position detection unit 142A causes the storage unit to store the generated amplitude data as needed.
 軟骨下骨表面位置検出部142Aは、振幅データDcomp(x、z)を用いて、以下に示す方法でコストマップを作成し、深度方向における軟骨下骨904の表面位置を検出する。軟骨下骨表面位置検出部142Aは、図5に示すように、深度方向に沿って隣接する二つの領域Nfw、Nbwを設定する。なお、領域Nbwは、深度方向において、皮膚側に位置し、領域Nbwは、領域Nbwよりも内部側(骨側)に位置する領域である。また、設定する領域Nfw、Nbwの大きさは適宜変更可能である。 The subchondral bone surface position detection unit 142A uses the amplitude data Dcomp (x, z) to create a cost map by the method described below, and detects the surface position of the subchondral bone 904 in the depth direction. As shown in FIG. 5, the subchondral bone surface position detection unit 142A sets two regions Nfw and Nbw adjacent along the depth direction. The region Nbw is located on the skin side in the depth direction, and the region Nbw is a region located on the inner side (bone side) than the region Nbw. Further, the sizes of the areas Nfw and Nbw to be set can be changed as appropriate.
 領域Nfw、Nbwそれぞれには、複数の振幅データDcomp(x、z)が含まれている。軟骨下骨表面位置検出部142Aは、領域Nfw、Nbw内にある振幅データDcomp(x、z)から、振幅レベルの平均値を算出する。そして、領域Nfw内の振幅レベルの平均値から、領域Nbw内の振幅レベルの平均値を減算する。軟骨下骨表面位置検出部142Aは、算出結果をコストマップとして記憶部に記憶させる。 Each of the regions Nfw and Nbw includes a plurality of amplitude data Dcomp (x, z). The subchondral bone surface position detection unit 142A calculates the average value of the amplitude levels from the amplitude data Dcomp (x, z) in the regions Nfw and Nbw. Then, the average value of the amplitude level in the region Nbw is subtracted from the average value of the amplitude level in the region Nfw. The subchondral bone surface position detection unit 142A stores the calculation result in the storage unit as a cost map.
 なお、軟骨下骨表面位置検出部142Aは、ダイクストラ法(最小コスト経路探索)により、軟骨下骨904の位置検出を行うようにしてもよい。例えば、x方向の互いに異なる複数の位置x1、x2、x3、の順に位置検出を行い、例えば位置x2で位置検出を行うときは、その直前のx1で検出した軟骨下骨904の表面位置から、深度方向に所定範囲を設定し、その範囲において、軟骨下骨904の表面位置を検出する。これにより、探索時間を短縮でき、誤検出を抑制することができる。 It should be noted that the subchondral bone surface position detection unit 142A may detect the position of the subchondral bone 904 by the Dijkstra method (minimum cost path search). For example, position detection is performed in the order of a plurality of different positions x1, x2, x3 in the x direction. For example, when position detection is performed at the position x2, from the surface position of the subchondral bone 904 detected at the immediately preceding x1, A predetermined range is set in the depth direction, and the surface position of the subchondral bone 904 is detected in the range. Thereby, the search time can be shortened and erroneous detection can be suppressed.
 被検体である膝に超音波信号を送信した場合、軟骨901内部では、超音波信号は反射せず、エコー信号が微小となるまたは無エコー(信号)のに対し、軟骨下骨904で反射したエコー信号は高振幅となる。したがって、例えば、領域Nfw、Nbwの一方が軟骨901に位置している場合における、振幅レベルの平均値の差分は大きい。これに対し、領域Nfw、Nbw両方が軟骨901に位置していない場合における、振幅レベルの平均値の差分は小さい。これを利用して、軟骨下骨表面位置検出部142Aは、記憶部に記憶したコストマップから、差分が大きい位置を、深度方向における軟骨下骨904の表面位置として検出する。 When an ultrasound signal is transmitted to the subject knee, the ultrasound signal is not reflected inside the cartilage 901, and the echo signal is reflected by the subchondral bone 904, whereas the echo signal is minute or no echo (signal). The echo signal has a high amplitude. Therefore, for example, when one of the regions Nfw and Nbw is located in the cartilage 901, the difference between the average values of the amplitude levels is large. On the other hand, the difference between the average values of the amplitude levels when the regions Nfw and Nbw are not located in the cartilage 901 is small. Using this, the subchondral bone surface position detection unit 142A detects a position with a large difference from the cost map stored in the storage unit as the surface position of the subchondral bone 904 in the depth direction.
 軟骨表面位置検出部142Bは、深度方向における軟骨901の表面位置、より詳しくは、軟骨901と軟組織903との境界位置を検出する。軟骨表面位置検出部142Bは、軟骨下骨表面位置検出部142Aと同様に、この軟骨901の表面位置検出を、x、y方向それぞれに対して行うが、以下では、x方向に対するz方向の軟骨901の表面位置の検出方法について説明する。 The cartilage surface position detection unit 142B detects the surface position of the cartilage 901 in the depth direction, more specifically, the boundary position between the cartilage 901 and the soft tissue 903. Similarly to the subchondral bone surface position detection unit 142A, the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 in each of the x and y directions. A method for detecting the surface position 901 will be described.
 図6は、軟骨901の表面位置検出を行う方法を説明するための図である。図6では、図5に示す画像の一部を表した図である。 FIG. 6 is a diagram for explaining a method for detecting the surface position of the cartilage 901. FIG. 6 shows a part of the image shown in FIG.
 軟骨表面位置検出部142Bは、所定領域内に含まれる振幅データDcomp(x、z)を、記憶部から抽出する。所定領域とは、軟骨下骨位置検出部142Aが検出した軟骨下骨904の表面位置から、深度方向の軟組織903側に、厚さThを有する領域である。厚さThは、一般的に想定される人間の測定部位(軟骨)の厚さの最大値である。そして、軟骨表面位置検出部142Bは、想定される軟骨の厚さの最大値に応じて、深度方向の探索範囲を決定する。すなわち、軟骨表面位置検出部142Bは、抽出した領域内の振幅データDcomp(x、z)から、図5での説明と同様、二つの領域Cfw、Cbwを設定する。そして、軟骨表面位置検出部142Bは、領域Cfw、Cbwそれぞれでの振幅レベルの平均値の差分を算出し、算出結果をコストマップのデータとして記憶部に記憶させる。 The cartilage surface position detection unit 142B extracts the amplitude data Dcomp (x, z) included in the predetermined region from the storage unit. The predetermined region is a region having a thickness Th on the soft tissue 903 side in the depth direction from the surface position of the subchondral bone 904 detected by the subchondral bone position detection unit 142A. The thickness Th is a maximum value of the thickness of a human measurement site (cartilage) that is generally assumed. Then, the cartilage surface position detection unit 142B determines the search range in the depth direction according to the assumed maximum value of the cartilage thickness. That is, the cartilage surface position detection unit 142B sets two regions Cfw and Cbw from the extracted amplitude data Dcomp (x, z) in the same manner as described in FIG. Then, the cartilage surface position detection unit 142B calculates the difference between the average values of the amplitude levels in the regions Cfw and Cbw, and stores the calculation result in the storage unit as cost map data.
 前記したように、軟骨901部分では超音波信号は反射せず、無エコー信号となる。そして、軟骨下骨表面位置検出部142Aによる軟骨下骨904の位置検出方法と同様に、軟骨表面位置検出部142Bは、記憶部に記憶されたコストマップのデータから、差分が大きい位置を、深度方向における軟骨901の表面位置として検出する。図7は、コストマップに基づいて生成した画像データを表示した図である。軟骨表面位置検出部142Bは、この軟骨901の表面位置検出を、x、y方向それぞれに対して行い、軟骨901の表面位置の3次元座標の情報Z(x、y)を得る。 As described above, the ultrasonic signal is not reflected at the cartilage 901 portion, and becomes an echo-free signal. Then, similarly to the method for detecting the position of the subchondral bone 904 by the subchondral bone surface position detection unit 142A, the cartilage surface position detection unit 142B determines the position where the difference is large from the cost map data stored in the storage unit. The surface position of the cartilage 901 in the direction is detected. FIG. 7 is a diagram showing image data generated based on the cost map. The cartilage surface position detection unit 142B detects the surface position of the cartilage 901 in each of the x and y directions, and obtains information Z (x, y) of the three-dimensional coordinates of the surface position of the cartilage 901.
 形状検出部143は、位置検出部142で検出された各位置の情報に基づいて軟骨表面又は軟骨下骨表面の形状を検出する。形状検出部143は、位置検出部142により得られる3次元情報Z(x、y)に面フィッティングを行うことで、軟骨表面又は軟骨下骨表面の平面を算出(形状を検出)する。この面フィッティングには、例えば、最小自乗法が用いられる。 The shape detection unit 143 detects the shape of the cartilage surface or the subchondral bone surface based on the information on each position detected by the position detection unit 142. The shape detection unit 143 calculates the plane of the cartilage surface or the subchondral bone surface (detects the shape) by performing surface fitting on the three-dimensional information Z (x, y) obtained by the position detection unit 142. For this surface fitting, for example, a least square method is used.
 角度算出部144は、超音波信号が送信された位置における軟骨表面又は軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する。すなわち、角度算出部144は、算出された平面の超音波信号が送信された位置に対応する法線ベクトルを検出する。前記のように、超音波信号の音軸が軟骨901の表面に対して略垂直となるように、超音波プローブ100を膝の表面に当接させることが好ましい。このため、検出される法線ベクトルは、深度方向に平行であることが好ましい。そこで、角度算出部144は、深度方向に対する法線ベクトルの角度θx、θyを算出する。角度θxは、x方向のモーメントであり、角度θyは、y方向のモーメントである。この角度θx、θyが、軟骨901の軟骨表面に対する超音波信号の音軸の入射角となる。 The angle calculation unit 144 calculates the angle formed by the normal direction of the cartilage surface or subchondral bone surface at the position where the ultrasonic signal is transmitted and the sound axis of the ultrasonic signal. That is, the angle calculation unit 144 detects a normal vector corresponding to the position where the calculated ultrasonic signal of the plane is transmitted. As described above, it is preferable that the ultrasonic probe 100 is brought into contact with the surface of the knee so that the sound axis of the ultrasonic signal is substantially perpendicular to the surface of the cartilage 901. For this reason, it is preferable that the detected normal vector is parallel to the depth direction. Therefore, the angle calculation unit 144 calculates the angles θx and θy of the normal vector with respect to the depth direction. The angle θx is a moment in the x direction, and the angle θy is a moment in the y direction. These angles θx and θy are incident angles of the sound axis of the ultrasonic signal with respect to the cartilage surface of the cartilage 901.
 画像データ生成・出力部145は、角度算出部144が算出した角度θx、θyを、不図示のモニタに表示するための画像データを生成し、モニタに出力する。図8は、当接角度ガイドの表示の一例を示す図である。画面には、θx軸、θy軸、許容範囲101、及び角度ポインタ102が表示される。角度ポインタ102は、現在の超音波プローブ100の角度を示す。この角度ポインタ102が、許容範囲101内にあるか否かにより、ユーザは、膝表面に対する超音波プローブ100の角度が適切であるか否かを把握できる。そして、この角度ポインタ102が、許容範囲101内に収まるように、ユーザは超音波プローブ100の角度調整を行うことで、軟骨901の表面に対して略垂直に超音波信号を送信することができる。 The image data generation / output unit 145 generates image data for displaying the angles θx and θy calculated by the angle calculation unit 144 on a monitor (not shown), and outputs the image data to the monitor. FIG. 8 is a diagram illustrating an example of the display of the contact angle guide. On the screen, the θx axis, the θy axis, the allowable range 101, and the angle pointer 102 are displayed. The angle pointer 102 indicates the current angle of the ultrasonic probe 100. Based on whether or not the angle pointer 102 is within the allowable range 101, the user can grasp whether or not the angle of the ultrasonic probe 100 with respect to the knee surface is appropriate. The user can transmit an ultrasonic signal substantially perpendicular to the surface of the cartilage 901 by adjusting the angle of the ultrasonic probe 100 so that the angle pointer 102 falls within the allowable range 101. .
 なお、許容範囲101の数値範囲は、超音波信号による軟骨解析が正常に行われる範囲内で、適宜変更可能である。また、図8に示す画像と共に、モニタには、エコー信号の振幅を点の明るさ(輝度)として表示した画像(所謂Bモード像)を表示するようにしてもよい。 It should be noted that the numerical range of the allowable range 101 can be appropriately changed within a range in which cartilage analysis using an ultrasonic signal is normally performed. In addition to the image shown in FIG. 8, an image (so-called B-mode image) in which the amplitude of the echo signal is displayed as the brightness (luminance) of the point may be displayed on the monitor.
 通知部146は、角度算出部144による検出結果(例えば、超音波プローブ100の角度が所定角度範囲に含まれているか否か、又は、超音波プローブ100の角度に関する情報を)を音又は光等で通知する通知信号を生成する。通知部146からの通知信号に基づいて、スピーカやLED等の通知装置(図示せず)が通知信号をユーザに通知する。これにより、ユーザは、超音波プローブの角度調整をさらに容易に行うことができる。 The notification unit 146 indicates the detection result (for example, whether or not the angle of the ultrasonic probe 100 is included in the predetermined angle range or information on the angle of the ultrasonic probe 100) by sound or light. A notification signal to be notified is generated. Based on a notification signal from the notification unit 146, a notification device (not shown) such as a speaker or LED notifies the user of the notification signal. Thereby, the user can further easily adjust the angle of the ultrasonic probe.
 判定部147は、角度算出部144が検出した角度が所定角度範囲内であるか否かを判定する。判定部147は、角度ポインタ102の位置と、許容範囲101の位置とを比較し、角度ポインタ102の位置が許容範囲101の位置にある場合に、角度算出部144が検出した角度が所定角度範囲内であると判定する。 The determination unit 147 determines whether or not the angle detected by the angle calculation unit 144 is within a predetermined angle range. The determination unit 147 compares the position of the angle pointer 102 with the position of the allowable range 101. If the position of the angle pointer 102 is in the position of the allowable range 101, the angle detected by the angle calculation unit 144 is the predetermined angle range. Is determined to be within.
 図9は、超音波解析装置10が実行する当接角度算出処理のフローチャートであり、超音波解析方法のフローチャートである。 FIG. 9 is a flowchart of the contact angle calculation process executed by the ultrasonic analysis apparatus 10, and is a flowchart of the ultrasonic analysis method.
 操作部11の操作を介して制御部12が軟骨解析処理等の所定の処理の実行開始指示を受信すると、超音波解析装置10は、図9に示す所定の処理を開始する。まず、送受信部13(制御部12)は、超音波プローブ100の振動子(超音波源)から超音波信号を送信させ(送信制御ステップ)、超音波プローブ100が受信した超音波信号のエコー信号からエコーデータ(例えば振幅データ)を生成し、記憶部に記憶する(S1)。そして、エコーデータ入力部141がこの振幅データの入力を受ける(S2:エコーデータ入力ステップ)。この振幅データを用いて、位置検出部142(軟骨下骨表面位置検出部142A及び軟骨表面位置検出部142B)は、軟骨下骨904及び軟骨901の各表面位置の検出を行う(S3及びS4:位置検出ステップ)。 When the control unit 12 receives an instruction to start execution of a predetermined process such as a cartilage analysis process through the operation of the operation unit 11, the ultrasonic analysis apparatus 10 starts the predetermined process shown in FIG. First, the transmission / reception unit 13 (control unit 12) transmits an ultrasonic signal from the transducer (ultrasonic source) of the ultrasonic probe 100 (transmission control step), and an echo signal of the ultrasonic signal received by the ultrasonic probe 100. Echo data (for example, amplitude data) is generated from the data and stored in the storage unit (S1). The echo data input unit 141 receives the amplitude data (S2: echo data input step). Using this amplitude data, the position detector 142 (subchondral bone surface position detector 142A and cartilage surface position detector 142B) detects the surface positions of the subchondral bone 904 and cartilage 901 (S3 and S4: Position detection step).
 図10は、軟骨下骨904の表面位置検出処理のフローチャートである。 FIG. 10 is a flowchart of the surface position detection process of the subchondral bone 904.
 軟骨表面位置検出部142Bは、振幅データの移動平均を取る(S11)。次に、軟骨下骨表面位置検出部142Bは、移動平均後の振幅データのデータ数を間引きし、ノイズレベル検出を行う(S12)。ノイズレベル検出とは、例えば、一般的に想定される深度方向の軟骨901等の位置から外れた領域の無エコー(または微小エコー)のデータに対応する振幅データをエコーデータに対応する振幅データから削除する。これにより、処理時間の短縮等を図ることができる。 The cartilage surface position detection unit 142B takes a moving average of the amplitude data (S11). Next, the subchondral bone surface position detection unit 142B thins out the number of amplitude data after moving average, and performs noise level detection (S12). Noise level detection refers to, for example, amplitude data corresponding to no-echo (or micro-echo) data in a region deviated from a position such as cartilage 901 in the depth direction generally assumed from amplitude data corresponding to echo data. delete. Thereby, shortening of processing time etc. can be aimed at.
 軟骨表面位置検出部142Bは、所定値レベルを超えるエコーデータの信号強度を所定値レベル以下に抑制するコンプレッサ処理を行う(S13)。その後、軟骨表面位置検出部142Bは、コンプレッサ処理後の振幅データを用いて、コストマップを生成する(S14)。コストマップの生成方法は、前記の通りである。軟骨下骨表面位置検出部142Bは、生成したコストマップのデータを記憶部に記憶させる。 The cartilage surface position detection unit 142B performs a compressor process for suppressing the signal intensity of echo data exceeding a predetermined value level to a predetermined value level or less (S13). Thereafter, the cartilage surface position detection unit 142B generates a cost map using the amplitude data after the compressor processing (S14). The method for generating the cost map is as described above. The subchondral bone surface position detection unit 142B stores the generated cost map data in the storage unit.
 軟骨下骨表面位置検出部142Aは、生成したコストマップから、ダイクストラ法により、軟骨下骨904の表面位置を検出する(S15)。軟骨下骨表面位置検出部142Aは、検出した軟骨下骨904の表面位置を記憶部に記憶させる。 The subchondral bone surface position detection unit 142A detects the surface position of the subchondral bone 904 from the generated cost map by the Dijkstra method (S15). The subchondral bone surface position detection unit 142A stores the detected surface position of the subchondral bone 904 in the storage unit.
 図9に戻り、上述したように、軟骨表面位置検出部142Bは、軟骨901の表面位置の検出を行う(S4)。図11は、軟骨901の表面位置検出処理のフローチャートである。 Referring back to FIG. 9, as described above, the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 (S4). FIG. 11 is a flowchart of the surface position detection process of the cartilage 901.
 軟骨表面位置検出部142Bは、図9に示す処理で、軟骨下骨表面位置検出部142Aが検出した軟骨下骨904の表面位置を基準とした所定領域内に含まれる振幅データ(エコーデータ)を、記憶部から抽出する(S21)。ここで抽出される振幅データは、送受信部13により生成され、記憶部に記憶された振幅データである。また、所定領域とは、図6で説明したように、軟骨下骨表面位置検出部142Bが検出した軟骨下骨904の表面位置から、深度方向の軟組織903側に、厚さThを有する領域である。 The cartilage surface position detection unit 142B obtains amplitude data (echo data) included in a predetermined region based on the surface position of the subchondral bone 904 detected by the subchondral bone surface position detection unit 142A in the process shown in FIG. Then, it is extracted from the storage unit (S21). The amplitude data extracted here is amplitude data generated by the transmission / reception unit 13 and stored in the storage unit. Further, as described in FIG. 6, the predetermined region is a region having a thickness Th on the soft tissue 903 side in the depth direction from the surface position of the subchondral bone 904 detected by the subchondral bone surface position detection unit 142B. is there.
 軟骨表面位置検出部142Bは、抽出した振幅データの移動平均を取り(S22)、データ数を間引きする(S23)。なお、軟骨表面位置検出部142Bは、この間引き処理後に、軟骨下骨表面位置検出部142Aと同様、ノイズレベル検出を行ってもよい。そして、軟骨表面位置検出部142Bは、所定値レベルを超える信号強度を所定値レベル以下に抑制するコンプレッサ処理を行う(S24)。その後、軟骨表面位置検出部142Bは、コストマップを生成する(S25)。そして、軟骨表面位置検出部142Bは、生成したコストマップから、ダイクストラ法により、軟骨901の表面位置を検出する(S26)。 The cartilage surface position detection unit 142B takes a moving average of the extracted amplitude data (S22) and thins out the number of data (S23). Note that the cartilage surface position detection unit 142B may perform noise level detection after the thinning-out process, similarly to the subchondral bone surface position detection unit 142A. Then, the cartilage surface position detection unit 142B performs a compressor process for suppressing the signal intensity exceeding the predetermined value level to be equal to or lower than the predetermined value level (S24). Thereafter, the cartilage surface position detection unit 142B generates a cost map (S25). Then, the cartilage surface position detection unit 142B detects the surface position of the cartilage 901 from the generated cost map by the Dijkstra method (S26).
 図9に戻り、形状検出部143は、軟骨表面位置検出部142Bにより得られる3次元情報Z(x、y)に面フィッティングすることで平面を算出(形状を検出)する(S5:形状検出ステップ)。 Returning to FIG. 9, the shape detection unit 143 calculates a plane (detects a shape) by performing surface fitting to the three-dimensional information Z (x, y) obtained by the cartilage surface position detection unit 142B (S5: shape detection step). ).
 次に、角度算出部144は、算出された平面(形状)の法線ベクトルを検出し、深度方向に対する法線ベクトルの角度(超音波信号が照射された位置における軟骨表面又は軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度)θx、θyを算出する(S6:角度算出ステップ)。そして、画像データ生成・出力部145は、算出した角度θx、θy等を、モニタに表示するための画像データを生成する(S7:角度表示ステップ)。これにより、モニタには、図8に示す画像が表示される。 Next, the angle calculation unit 144 detects the normal vector of the calculated plane (shape), and the angle of the normal vector with respect to the depth direction (the surface of the cartilage surface or the subchondral bone surface at the position irradiated with the ultrasonic signal). Angles θx and θy formed between the normal direction and the sound axis of the ultrasonic signal are calculated (S6: angle calculation step). Then, the image data generation / output unit 145 generates image data for displaying the calculated angles θx, θy, etc. on the monitor (S7: angle display step). Thereby, the image shown in FIG. 8 is displayed on the monitor.
 なお、本実施形態では、超音波解析装置10は、軟骨901の表面位置を検出し、その表面位置に対する超音波信号の音軸の角度を検出しているが、軟骨下骨904の表面位置に対する超音波信号の音軸の角度を検出してもよい。また、本実施形態では、超音波解析装置10は、角度θx、θyを画像表示して、ユーザに通知しているが、通知部146を介して音又は光等により通知してもよい。 In the present embodiment, the ultrasonic analysis device 10 detects the surface position of the cartilage 901 and detects the angle of the sound axis of the ultrasonic signal with respect to the surface position. The angle of the sound axis of the ultrasonic signal may be detected. In the present embodiment, the ultrasonic analysis device 10 displays the angles θx and θy as images and notifies the user, but may notify the user by sound or light via the notification unit 146.
 また、超音波解析装置10は、判定部147に角度算出部144が検出した角度が所定角度範囲内であると判定された場合のみ、画像データを生成・出力する構成としてもよい。この構成により、より精度の高い軟骨等の画像データが得られ、ユーザは、より正確に、軟骨の状態を解析することができる。 Also, the ultrasonic analysis apparatus 10 may be configured to generate and output image data only when the determination unit 147 determines that the angle detected by the angle calculation unit 144 is within a predetermined angle range. With this configuration, image data such as cartilage with higher accuracy can be obtained, and the user can more accurately analyze the state of cartilage.
Cbw、Cfw…領域
Nbw、Nfw…領域
10…超音波解析装置
11…操作部
12…制御部
13…送受信部
14…信号処理部
100…超音波プローブ
101…許容範囲
102…角度ポインタ
141…エコーデータ入力部
142…表面位置検出部
142A…軟骨下骨表面位置検出部
142B…軟骨表面位置検出部
143…形状検出部
144…角度算出部
145…画像データ生成・出力部
146…通知部
147…判定部
901…軟骨
902…骨
903…軟組織
904…軟骨下骨
905…膝表面
Cbw, Cfw ... area Nbw, Nfw ... area 10 ... ultrasound analyzer 11 ... operating section 12 ... control section 13 ... transmitting / receiving section 14 ... signal processing section 100 ... ultrasonic probe 101 ... allowable range 102 ... angle pointer 141 ... echo data Input unit 142 ... surface position detection unit 142A ... subchondral bone surface position detection unit 142B ... cartilage surface position detection unit 143 ... shape detection unit 144 ... angle calculation unit 145 ... image data generation / output unit 146 ... notification unit 147 ... determination unit 901 ... Cartilage 902 ... Bone 903 ... Soft tissue 904 ... Subchondral bone 905 ... Knee surface

Claims (9)

  1.  超音波源を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、前記超音波源から所定の音軸で超音波信号を送信させる制御部と、
     前記制御部により送信された前記超音波信号が前記被検体の内部で反射されてなるエコー信号のエコーデータの入力を受けるエコーデータ入力部と、
     前記超音波源と前記互いに異なる複数の前記軟骨表面又は前記軟骨下骨表面の位置を検出する位置検出部と、
     前記位置検出部で検出された前記各位置の情報に基づいて、前記軟骨表面又は前記軟骨下骨表面の形状を検出する形状検出部と、
     前記超音波信号が送信された前記位置における前記軟骨表面又は前記軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する角度算出部と、
     を備える超音波解析装置。
    A control unit for controlling the ultrasonic source to transmit ultrasonic signals from the ultrasonic source to a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject with a predetermined sound axis; ,
    An echo data input unit that receives an input of echo data of an echo signal in which the ultrasonic signal transmitted by the control unit is reflected inside the subject;
    A position detector for detecting positions of the ultrasonic source and the plurality of different cartilage surfaces or subchondral bone surfaces different from each other;
    A shape detection unit that detects the shape of the cartilage surface or the subchondral bone surface based on the information of each position detected by the position detection unit;
    An angle calculation unit that calculates an angle formed by a normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted and a sound axis of the ultrasonic signal;
    An ultrasonic analysis apparatus comprising:
  2.  請求項1に記載の超音波解析装置であって、
     前記制御部は、前記超音波源の前記被検体に対する位置を制御することにより、又は、前記超音波源の前記被検体に対する前記超音波信号の送信角を制御することにより、前記被検体の内部にある前記軟骨表面又は前記軟骨下骨表面の互いに異なる複数の位置に前記超音波信号を送信させる超音波解析装置。
    The ultrasonic analysis apparatus according to claim 1,
    The control unit controls the position of the ultrasound source with respect to the subject, or controls the transmission angle of the ultrasound signal with respect to the subject of the ultrasound source, thereby controlling the inside of the subject. An ultrasonic analysis apparatus that transmits the ultrasonic signals to a plurality of different positions on the surface of the cartilage or the subchondral bone in the body.
  3.  請求項1又は請求項2に記載の超音波解析装置であって、
     前記角度算出部による検出結果を通知する通知部をさらに備える超音波解析装置。
    The ultrasonic analysis apparatus according to claim 1 or 2, wherein
    An ultrasonic analysis apparatus further comprising a notification unit that notifies a detection result by the angle calculation unit.
  4.  請求項1から請求項3のいずれかに記載の超音波解析装置であって、
     前記角度算出部が検出した角度が所定角度範囲内であるか否かを判定する判定部、をさらに備える超音波解析装置。
    The ultrasonic analysis apparatus according to any one of claims 1 to 3,
    An ultrasonic analysis apparatus further comprising: a determination unit that determines whether the angle detected by the angle calculation unit is within a predetermined angle range.
  5.  請求項1から請求項4のいずれかに記載の超音波解析装置であって、
     前記形状検出部は、
     前記超音波源から前記被検体の内部に向かう深度方向及び前記深度方向に直交する直交方向の複数サンプルのエコー信号からなる第1領域での信号レベル、及び、前記深度方向において前記第1領域に隣接する第2領域での前記エコー信号の信号レベルの差から、前記軟骨表面、又は前記軟骨下骨表面を探索し、
     前記角度算出部は、
     前記形状検出部による探索結果を用いて、角度を検出する、
     超音波解析装置。
    The ultrasonic analysis apparatus according to claim 1, wherein:
    The shape detector
    A signal level in a first region composed of echo signals of a plurality of samples in a depth direction from the ultrasonic source toward the inside of the subject and in a direction orthogonal to the depth direction, and in the first region in the depth direction From the difference in signal level of the echo signal in the adjacent second region, search for the cartilage surface or the subchondral bone surface,
    The angle calculator is
    An angle is detected using a search result by the shape detection unit.
    Ultrasonic analyzer.
  6.  請求項5に記載の超音波解析装置であって、
     前記形状検出部は、
     前記深度方向における,想定される測定部位の軟骨の最大厚さに応じて、前記深度方向の探索範囲を決定する、
     超音波解析装置。
    The ultrasonic analyzer according to claim 5,
    The shape detector
    In accordance with the maximum thickness of the cartilage at the assumed measurement site in the depth direction, the search range in the depth direction is determined.
    Ultrasonic analyzer.
  7.  請求項1から請求項6のいずれかに記載の超音波解析装置であって、
     前記位置検出部は、
     所定値を超えるエコー信号の信号レベルを前記所定値以下に抑制し、
     前記角度算出部は、
     前記位置検出部による抑制後のエコー信号のエコーデータを用いて、前記角度を検出する、
     超音波解析装置。
    The ultrasonic analysis apparatus according to any one of claims 1 to 6,
    The position detector is
    Suppressing the signal level of the echo signal exceeding a predetermined value below the predetermined value;
    The angle calculator is
    Using the echo data of the echo signal after suppression by the position detection unit, the angle is detected.
    Ultrasonic analyzer.
  8.  超音波源を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、前記超音波源から所定の音軸で超音波信号を送信させる送信制御ステップと、
    前記送信制御ステップにより送信された前記超音波信号が前記被検体の内部で反射されてなるエコー信号のエコーデータの入力を受けるエコーデータ入力ステップと、
     前記超音波源と前記互いに異なる複数の前記軟骨表面又は前記軟骨下骨表面の位置を検出する位置検出ステップと、
     前記位置検出ステップで検出された前記各位置の情報に基づいて、前記軟骨表面又は前記軟骨下骨表面の形状を検出する形状検出ステップと、
     前記超音波信号が送信された前記位置における前記軟骨表面又は前記軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する角度算出ステップと、
    を備える超音波解析方法。
    A transmission control step of controlling the ultrasonic source to transmit ultrasonic signals from the ultrasonic source to a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject with a predetermined sound axis. When,
    An echo data input step for receiving an input of echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted by the transmission control step inside the subject;
    A position detecting step for detecting positions of the ultrasonic source and the plurality of different cartilage surfaces or subchondral bone surfaces;
    A shape detection step of detecting the shape of the cartilage surface or the subchondral bone surface based on the information of each position detected in the position detection step;
    An angle calculation step of calculating an angle formed by a normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted and a sound axis of the ultrasonic signal;
    An ultrasonic analysis method comprising:
  9.  コンピュータを、
     超音波源を制御して、被検体の内部にある軟骨表面又は軟骨下骨表面の互いに異なる複数の位置に向けて、前記超音波源から所定の音軸で超音波信号を送信させる送信制御ステップと、
     前記送信制御ステップにより送信された前記超音波信号が前記被検体の内部で反射されてなるエコー信号のエコーデータの入力を受けるエコーデータ入力ステップと、
     前記超音波源と前記互いに異なる複数の前記軟骨表面又は前記軟骨下骨表面の位置を検出する位置検出ステップと、
     前記位置検出ステップで検出された前記各位置の情報に基づいて、前記軟骨表面又は前記軟骨下骨表面の形状を検出する形状検出ステップと、
     前記超音波信号が送信された前記位置における前記軟骨表面又は前記軟骨下骨表面の法線方向と該超音波信号の音軸とがなす角度を算出する角度算出ステップと、
     として機能させる超音波解析プログラム。
    Computer
    A transmission control step of controlling the ultrasonic source to transmit ultrasonic signals from the ultrasonic source to a plurality of different positions on the cartilage surface or subchondral bone surface inside the subject with a predetermined sound axis. When,
    An echo data input step for receiving an input of echo data of an echo signal obtained by reflecting the ultrasonic signal transmitted by the transmission control step inside the subject;
    A position detecting step for detecting positions of the ultrasonic source and the plurality of different cartilage surfaces or subchondral bone surfaces;
    A shape detection step of detecting the shape of the cartilage surface or the subchondral bone surface based on the information of each position detected in the position detection step;
    An angle calculation step of calculating an angle formed by a normal direction of the cartilage surface or the subchondral bone surface at the position where the ultrasonic signal is transmitted and a sound axis of the ultrasonic signal;
    Ultrasonic analysis program to function as
PCT/JP2016/081571 2015-12-04 2016-10-25 Ultrasonic wave analyzing device, ultrasonic wave analyzing method, and ultrasonic wave analyzing program WO2017094397A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680080749.9A CN108601584B (en) 2015-12-04 2016-10-25 Ultrasonic analysis device, ultrasonic analysis method, and storage medium
JP2017553705A JP6496042B2 (en) 2015-12-04 2016-10-25 Ultrasonic analysis apparatus, ultrasonic analysis method, and ultrasonic analysis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015237340 2015-12-04
JP2015-237340 2015-12-04

Publications (1)

Publication Number Publication Date
WO2017094397A1 true WO2017094397A1 (en) 2017-06-08

Family

ID=58797043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081571 WO2017094397A1 (en) 2015-12-04 2016-10-25 Ultrasonic wave analyzing device, ultrasonic wave analyzing method, and ultrasonic wave analyzing program

Country Status (3)

Country Link
JP (1) JP6496042B2 (en)
CN (1) CN108601584B (en)
WO (1) WO2017094397A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208971A (en) * 2018-06-07 2019-12-12 古野電気株式会社 Ultrasonic analyzer, ultrasonic analysis method and ultrasonic analysis program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045925A1 (en) * 2012-09-19 2014-03-27 古野電気株式会社 Ultrasonic analysis device, ultrasonic analysis method, and program
WO2014103512A1 (en) * 2012-12-28 2014-07-03 古野電気株式会社 Soft tissue cartilage interface detection method, soft tissue cartilage interface detection device, and soft tissue cartilage interface detection program
JP2014136133A (en) * 2013-01-18 2014-07-28 Yamaguchi Univ Ultrasonic diagnostic apparatus
WO2015053007A1 (en) * 2013-10-07 2015-04-16 古野電気株式会社 Ultrasound diagnosis device, ultrasound diagnosis method, and ultrasound diagnosis program
WO2015137131A1 (en) * 2014-03-12 2015-09-17 古野電気株式会社 Ultrasound diagnostic device and ultrasound diagnostic method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2183054A1 (en) * 1994-12-14 1996-06-15 Tetsuya Ishii Osteoporosis diagnosing apparatus and method
JP2001231788A (en) * 2000-02-22 2001-08-28 Hitachi Ltd Bone treatment and healy-diagnosing method and its device
EP1448099B1 (en) * 2001-11-30 2008-08-13 Petro Moilanen A method for the non-invasive assessment of bones
JP5235103B2 (en) * 2008-06-18 2013-07-10 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
JP5280927B2 (en) * 2009-04-14 2013-09-04 古野電気株式会社 Sonic velocity measuring device and sonic velocity measuring method
JP5406077B2 (en) * 2010-03-04 2014-02-05 国立大学法人 東京大学 Ultrasonic diagnostic equipment
JP5467987B2 (en) * 2010-11-18 2014-04-09 古野電気株式会社 Ultrasonic cartilage analyzer, ultrasonic cartilage analyzing method and program
WO2014013816A1 (en) * 2012-07-17 2014-01-23 古野電気株式会社 Ultrasound measurement instrument and ultrasound measurement device
WO2014045924A1 (en) * 2012-09-19 2014-03-27 古野電気株式会社 Method for detecting soft tissue/cartilage boundary surface, device for detecting soft tissue/cartilage boundary surface, and program for detecting soft tissue/cartilage boundary surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045925A1 (en) * 2012-09-19 2014-03-27 古野電気株式会社 Ultrasonic analysis device, ultrasonic analysis method, and program
WO2014103512A1 (en) * 2012-12-28 2014-07-03 古野電気株式会社 Soft tissue cartilage interface detection method, soft tissue cartilage interface detection device, and soft tissue cartilage interface detection program
JP2014136133A (en) * 2013-01-18 2014-07-28 Yamaguchi Univ Ultrasonic diagnostic apparatus
WO2015053007A1 (en) * 2013-10-07 2015-04-16 古野電気株式会社 Ultrasound diagnosis device, ultrasound diagnosis method, and ultrasound diagnosis program
WO2015137131A1 (en) * 2014-03-12 2015-09-17 古野電気株式会社 Ultrasound diagnostic device and ultrasound diagnostic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208971A (en) * 2018-06-07 2019-12-12 古野電気株式会社 Ultrasonic analyzer, ultrasonic analysis method and ultrasonic analysis program
CN110575197A (en) * 2018-06-07 2019-12-17 古野电气株式会社 Ultrasonic analysis device, ultrasonic analysis method, and storage medium
JP7107522B2 (en) 2018-06-07 2022-07-27 古野電気株式会社 Ultrasonic analysis device, ultrasonic analysis method and ultrasonic analysis program

Also Published As

Publication number Publication date
CN108601584A (en) 2018-09-28
JP6496042B2 (en) 2019-04-03
JPWO2017094397A1 (en) 2018-09-20
CN108601584B (en) 2021-05-28

Similar Documents

Publication Publication Date Title
US10722215B2 (en) Ultrasound diagnostic device and ultrasound diagnostic device control method
EP3603527B1 (en) Ultrasonic diagnostic device and operating method thereof
JP6006769B2 (en) Ultrasonic diagnostic equipment
JP6038338B2 (en) Ultrasonic diagnostic apparatus, ultrasonic diagnostic method, and ultrasonic diagnostic program
JP5767002B2 (en) Ultrasonic transmission / reception device and fish quantity detection method
KR20160125934A (en) Ultrasonic image display apparatus and control program thereof
JP6134323B2 (en) Thickness measuring device and thickness measuring method
JP6496042B2 (en) Ultrasonic analysis apparatus, ultrasonic analysis method, and ultrasonic analysis program
JP2012105950A (en) Ultrasound diagnostic apparatus and program
CN112043307B (en) Ultrasonic diagnostic apparatus, control method thereof, and computer-readable recording medium
JP4761999B2 (en) Ultrasonic diagnostic apparatus, image processing method thereof, and image processing program thereof
JP6496045B2 (en) Ultrasonic analysis apparatus, ultrasonic analysis method, and ultrasonic analysis program
JP6190375B2 (en) Ultrasonic analysis apparatus, ultrasonic analysis method and program
JP2019208971A (en) Ultrasonic analyzer, ultrasonic analysis method and ultrasonic analysis program
US11896435B2 (en) Ultrasound diagnostic apparatus and examination method
JP4796777B2 (en) Underwater detector
WO2014196288A1 (en) Ultrasound diagnostic device, ultrasound diagnostic method and program
CN113925528B (en) Doppler imaging method and ultrasonic equipment
JPWO2019187647A1 (en) Ultrasonic diagnostic device and control method of ultrasonic diagnostic device
JP5023206B2 (en) Underwater detector
JP6463653B2 (en) Ultrasonic flaw detector and ultrasonic probe moving distance detection method
JP2014226497A (en) Method and apparatus for measuring thickness
JP2016022249A (en) Ultrasonic diagnostic device and program
JP6224572B2 (en) Ultrasonic diagnostic apparatus and program
JP2013244222A (en) Ultrasonic diagnostic equipment, method for determining reliability of set sound velocity, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553705

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870337

Country of ref document: EP

Kind code of ref document: A1