WO2017092490A1 - 一种频偏处理方法和系统 - Google Patents

一种频偏处理方法和系统 Download PDF

Info

Publication number
WO2017092490A1
WO2017092490A1 PCT/CN2016/100219 CN2016100219W WO2017092490A1 WO 2017092490 A1 WO2017092490 A1 WO 2017092490A1 CN 2016100219 W CN2016100219 W CN 2016100219W WO 2017092490 A1 WO2017092490 A1 WO 2017092490A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
state
historical
current
offset estimation
Prior art date
Application number
PCT/CN2016/100219
Other languages
English (en)
French (fr)
Inventor
陈跃潭
张晓娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US15/781,467 priority Critical patent/US10608861B2/en
Priority to EP16869801.7A priority patent/EP3373540B1/en
Publication of WO2017092490A1 publication Critical patent/WO2017092490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/266Fine or fractional frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a frequency offset processing method and system.
  • the frequency between the carrier frequency received by the receiving device and the frequency of the local crystal oscillator is present. Offset, referred to as frequency offset.
  • the device user equipment
  • the moving speed of the device is generally above 300 km/h
  • the maximum Doppler frequency can reach above 1500 Hz. This will cause the frequency of the base station to be biased, and the phase of the constellation point of the equalizer output will be seriously rotated, resulting in failure to correctly demodulate and decode.
  • the frequency offset caused by the Doppler effect
  • it is generally adopted to estimate the frequency offset, compensate the sampling deviation and phase rotation, and eliminate the influence of the Doppler shift as much as possible.
  • the cyclic prefix is used to perform coarse frequency estimation and pre-compensation.
  • the error of the coarse frequency offset estimation is often large or even completely invalid, and the frequency offset cannot be accurately compensated.
  • the present application provides a frequency offset processing method and system to solve the problem that the frequency offset cannot be accurately compensated due to inaccurate frequency offset estimation.
  • a frequency offset processing method including:
  • the fine frequency offset estimation is pre-compensated according to the historical effective frequency offset state.
  • determining whether the current frequency offset state is consistent with a historical effective frequency offset state includes:
  • the current frequency offset state includes: the current antenna state and the current field frame number;
  • the historical effective frequency offset state includes: the historical effective antenna state, the historical effective field number And the historical effective frequency offset estimate.
  • the fine frequency offset estimation is pre-compensated according to the historical effective frequency offset state, including:
  • the fine frequency offset estimate is pre-compensated using the historical effective frequency offset estimate.
  • the method further includes:
  • the historical effective frequency offset estimation value is invalid.
  • the method further includes:
  • the fine frequency offset estimation is pre-compensated by using a clipping compensation strategy.
  • the fine frequency offset estimation is pre-compensated by using a clipping compensation strategy, including:
  • the method further includes:
  • the frequency offset is pre-compensated by a frequency domain extension compensation strategy.
  • determining whether the current frequency offset state is consistent with a historical frequency offset state comprises:
  • the current frequency offset state includes: the current antenna state and the current field frame number;
  • the historical frequency offset state includes: the historical antenna state, the historical field number, and the historical frequency offset estimation value.
  • the frequency offset is pre-compensated by using a frequency domain extension compensation strategy, including:
  • the fine frequency offset estimation is pre-compensated according to the frequency domain extension result.
  • the method further includes:
  • the historical frequency offset estimation value is invalid.
  • the method further includes:
  • the fine frequency offset estimation is not pre-compensated.
  • the method further includes:
  • the final frequency offset estimation result includes: a final antenna state, a final field number, and a final frequency offset estimation value
  • the historical frequency offset state is updated based on the final antenna state, the final field number, and the final frequency offset estimate.
  • the application also discloses a frequency offset processing system, including:
  • the first obtaining module is configured to acquire a current frequency offset state
  • the first determining module is configured to determine whether the current frequency offset state is consistent with a historical effective frequency offset state, where the historical effective frequency offset state is a corresponding frequency offset state when the decoding result is correct;
  • the first execution module is configured to pre-compensate the fine frequency offset estimation according to the historical effective frequency offset state when the current frequency offset state is consistent with the historical effective frequency offset state.
  • the first determining module is configured to determine whether the current antenna state is consistent with the historical effective antenna state; and determining whether the difference between the current field number and the historical effective field number satisfies the first threshold; and determining the historical effective frequency offset Whether the estimated value is invalidated;
  • the current frequency offset state includes: the current antenna state and the current field frame number;
  • the historical effective frequency offset state includes: the historical effective antenna state, the historical effective field number, and the history Effective frequency offset estimate.
  • the first execution module when pre-compensating the fine frequency offset estimation according to the historical effective frequency offset state, comprises: pre-compensating the fine frequency offset estimation by using the historical effective frequency offset estimation value.
  • the system further comprises:
  • the second execution module is configured to set the historical effective frequency offset estimation value when the current antenna state is inconsistent with the historical effective antenna state, or when the difference between the current field number and the historical effective field number does not satisfy the first threshold. invalid.
  • the system further comprises:
  • the second determining module is configured to determine whether the current pilot signal to noise ratio satisfies the second threshold when the current frequency offset state is inconsistent with the historical effective frequency offset state;
  • the third execution module is configured to pre-compensate the fine frequency offset estimation by using a clipping compensation strategy when the current pilot signal to noise ratio satisfies the second threshold.
  • the method includes: performing coarse frequency offset estimation to obtain a coarse frequency offset estimation result; and determining whether the coarse frequency offset estimation result is satisfied.
  • the actual frequency offset range if yes, pre-compensating the fine frequency offset estimation according to the coarse frequency offset estimation result; if not, limiting the coarse frequency offset estimation result according to the actual frequency offset range, A clipping result is obtained, and the fine frequency offset estimation is pre-compensated according to the limiting result.
  • the system further comprises:
  • the third determining module is configured to determine whether the current frequency offset state and the historical frequency offset state are consistent when the pilot signal to noise ratio does not satisfy the second threshold;
  • the fourth execution module is configured to pre-compensate the fine frequency offset by using a frequency domain extension compensation strategy when the current frequency offset state is consistent with the historical frequency offset state.
  • the third determining module is configured to determine whether the current antenna state is consistent with the historical antenna state; and determining whether the difference between the current field number and the historical frame number satisfies a third threshold; and determining the historical frequency offset estimation value. Whether it is invalidated;
  • the current frequency offset state includes: the current antenna state and the current field frame number;
  • the historical frequency offset state includes: the historical antenna state, the historical field number, and the historical frequency offset estimation value.
  • the fourth execution module performs pre-compensation on the fine frequency offset by using a frequency domain extension compensation strategy, including: performing frequency domain extension according to the historical frequency offset estimation value; and performing frequency domain extension result according to the frequency domain extension result And pre-compensating the fine frequency offset estimation.
  • a frequency domain extension compensation strategy including: performing frequency domain extension according to the historical frequency offset estimation value; and performing frequency domain extension result according to the frequency domain extension result And pre-compensating the fine frequency offset estimation.
  • the system further comprises:
  • the fifth execution module is configured to set the historical frequency offset estimation value to be invalid when the current antenna state is inconsistent with the historical antenna state, or when the difference between the current field number and the historical field number does not satisfy the third threshold.
  • the system further comprises:
  • the sixth execution module is configured to perform pre-compensation on the fine frequency offset estimation when the current frequency offset state is inconsistent with the historical frequency offset state.
  • the system further comprises:
  • the calculation module is set to perform fine frequency offset estimation to obtain a fine frequency offset estimation result
  • a second obtaining module configured to obtain a final frequency offset estimation result according to the fine frequency offset estimation result, where the final frequency offset estimation result includes: a final antenna state, a final field number, and a final frequency offset estimation value;
  • the fourth determining module is configured to determine whether the decoding of the data after the frequency offset compensation is performed according to the final frequency offset estimation result is correct;
  • an update module configured to: when the decoding is correct, update the historical effective frequency offset state according to the final antenna state, the final field number, and the final frequency offset estimation value; and, when decoding the error, according to the final antenna state, The final field number and the final frequency offset estimate update the historical frequency offset state.
  • the embodiment of the present application also discloses a computer readable recording medium on which a program for the above method is recorded.
  • the present application includes the following advantages:
  • the frequency offset processing method described in the present application may compare the obtained current frequency offset state with the historical effective frequency offset state to determine whether the two are consistent; and when the determination result is consistent, the fine frequency is determined according to the historical effective frequency offset state.
  • the partial estimation is pre-compensated.
  • the historical effective frequency offset state is the decoding result
  • the corresponding frequency offset state is confirmed, and the accuracy of the pre-compensation is ensured, so that after the pre-compensation, the fine frequency offset estimation can be performed according to the pre-compensation result, and the frequency offset compensation due to the coarse frequency offset estimation error is overcome or
  • the problem that can not be compensated improves the accuracy and stability of the frequency offset estimation, and reduces the computational complexity to a certain extent, and improves the uplink throughput rate in the high-speed scene as a whole.
  • FIG. 1 is a flow chart showing the steps of a frequency offset processing method in Embodiment 1 of the present application;
  • FIG. 2 is a flow chart showing the steps of a frequency offset processing method in Embodiment 2 of the present application.
  • FIG. 3 is a flow chart showing the steps of a frequency offset processing method in Embodiment 3 of the present application.
  • FIG. 4 is a structural block diagram of a frequency offset processing system in Embodiment 4 of the present application.
  • FIG. 5 is a structural block diagram of a preferred frequency offset processing system in Embodiment 4 of the present application.
  • the two slots of each subframe respectively have pilots in the frequency domain, and the time interval of each slot is 0.5 ms. This determines that if the two columns of pilot channel estimation results are simply used for correlation calculation to perform frequency offset estimation, the maximum range of the estimation results of the frequency offset estimation is: -1000 Hz to +1000 Hz, which is insufficient to cover the Doppler frequency. range.
  • coarse frequency offset estimation using the cyclic prefix, the time domain signal of the pilot of the same time slot is FFT with different positions (Fast Fourier) Transformation, fast Fourier transform) window, respectively, FFT operation. After compensating for the frequency domain phase deviation caused by the cyclic shift, the correlation result is calculated by using the FFT result twice, and the complex angle of the operation result is divided by the time at which the start position of the window is different. An estimate of the coarse frequency offset estimate is obtained. The range of the estimation results of the coarse frequency offset estimation is much larger than the actual frequency offset range.
  • Coarse frequency offset estimation using the estimation result of the coarse frequency offset estimation, compensating the phase difference caused by the frequency offset on the frequency domain channel estimation of the second column pilot, and then using the frequency domain channel estimation of the two time slot pilots Related summation operations. By calculating the complex angle of the result and dividing by the time interval of the two time slot pilots by 0.5 ms, the estimation result of the fine frequency offset estimation can be obtained. Finally, the estimation results of the coarse and fine frequency offset estimates can be added, and the added result is used as the final frequency offset estimation result.
  • the frequency offset processing method includes:
  • Step 102 Acquire a current frequency offset state.
  • the frequency offset state may be a parameter for indicating a frequency offset, and preferably, the frequency offset state includes, but is not limited to, an antenna state and a field number. That is, the current frequency offset state includes, but is not limited to, a current antenna state and a current field frame number.
  • Step 104 Determine whether the current frequency offset state is consistent with a historical effective frequency offset state.
  • the historical effective frequency offset state is a frequency offset state corresponding to the correct decoding result. For example, if the user's last PUSCH (Physical Uplink Shared Channel) scheduling and decoding is correct, the frequency offset estimation result can be considered to meet the requirements, and further, the frequency offset corresponding to the user's last PUSCH scheduling and decoding can be correctly decoded.
  • the status is the historical effective frequency offset state.
  • Step 106 If the current frequency offset state is consistent with the historical effective frequency offset state, the fine frequency offset estimation is pre-compensated according to the historical effective frequency offset state.
  • the usual method for performing frequency estimation is to perform coarse frequency offset estimation first, and then perform fine frequency offset estimation based on the coarse frequency offset estimation result.
  • the coarse frequency offset estimation may not be performed, and the fine frequency offset estimation may be pre-compensated directly according to the historical effective frequency offset state.
  • the fine frequency offset estimation is performed to obtain the final frequency offset estimation result, which ensures the validity and accuracy of the finally obtained frequency offset estimation result and improves the processing efficiency of the frequency offset estimation.
  • the frequency offset processing method in this embodiment can compare the obtained current frequency offset state with the historical effective frequency offset state to determine whether the two are consistent; and when the determination result is consistent, it is valid according to the history.
  • the frequency offset state precompensates the fine frequency offset estimation. Since the historical effective frequency offset state is the corresponding frequency offset state when the decoding result is correct, the accuracy of the pre-compensation is ensured, so that the fine frequency offset estimation can be performed according to the pre-compensation result after the pre-compensation, and the coarse frequency offset estimation is overcome.
  • the problem of inaccurate or uncompensated frequency offset compensation caused by error improves the accuracy and stability of frequency offset estimation, and reduces the computational complexity to a certain extent, and improves the uplink throughput rate in high-speed scenarios as a whole. .
  • the frequency offset processing method includes:
  • Step 202 Acquire a current frequency offset state.
  • the current frequency offset state includes but is not limited to: a current antenna state and a current field frame number.
  • Step 204 Determine whether the current frequency offset state is consistent with a historical effective frequency offset state.
  • the historical effective frequency offset state is a frequency offset state corresponding to the correct decoding result.
  • the historical effective frequency offset state includes, but is not limited to, a historical effective antenna state, a historical effective field number, and a historical effective frequency offset estimation value.
  • the step 204 may specifically include: determining a current antenna state and a historical effective day Whether the line status is consistent; and determining whether the difference between the current field number and the historical effective field number satisfies the first threshold; and determining whether the historical effective frequency offset estimation value is invalid. It should be noted that whether the current antenna state is consistent with the historical effective antenna state, whether the difference between the current field number and the historical effective field number satisfies the first threshold, and whether the historical effective frequency offset estimation value is invalid is determined. It can be executed in any suitable order, or can be performed at the same time, which is not limited in this embodiment.
  • the specific value of the first threshold may be determined according to actual conditions. For example, the values of the first threshold include, but are not limited to, 2, 4, 6, and 8.
  • the field number is used to indicate the time: the field number is different by one, and the time difference is 5 ms. For example, if the difference between the field numbers is less than 4, the time difference is less than 20 ms.
  • the current antenna state is consistent with the historical effective antenna state, and the difference between the current field number and the historical effective field number satisfies the first threshold, and the historical effective frequency offset estimation value is not set to be invalid. It can be considered that the current frequency offset state is consistent with the historical effective frequency offset state; when any one of the judgment results is not satisfied, the current frequency offset state is considered to be inconsistent with the historical effective frequency offset state.
  • the historical effective frequency offset estimation value may be preset as invalid, and the current antenna state and the current field frame number are preset to be satisfied.
  • Condition satisfying the historical effective frequency offset state
  • the current antenna state or the current field frame number may also be preset as an unsatisfied condition (the historical effective frequency offset state is not satisfied). This embodiment does not limit this.
  • step 228 may also be performed to invalidate the historical effective frequency offset estimation value.
  • the following step 206 may be performed; otherwise, the following step 208 is performed.
  • Step 206 Perform pre-compensation on the fine frequency offset estimation according to the historical effective frequency offset state.
  • the fine frequency offset estimation may be pre-compensated using the historical effective frequency offset estimation value, and the following step 218 may be performed after the pre-compensation.
  • Step 208 Determine whether the current pilot signal to noise ratio satisfies a second threshold.
  • Signal-to-noise ratio is a major technical indicator for measuring the reliability of communication system communication quality. Different expressions can be used depending on the different needs of the communication.
  • the signal-to-noise ratio generally refers to the ratio of the average signal energy of each digital waveform (bit) at the output of the digital demodulator or decoder of the terminal to the noise power in the component band. It is a commonly used indicator for normalizing the signal to noise ratio or energy signal to noise ratio.
  • a threshold of a pilot signal to noise ratio that is, the second threshold, is set, wherein a specific value of the second threshold may be determined according to an actual situation, for example, a second threshold. Values include, but are not limited to, 3, 5, 6, and 9.
  • the current pilot signal to noise ratio is greater than or equal to the second threshold, that is, when The preamble signal to noise ratio satisfies the second threshold, and the following step 210 can be performed. If the current pilot signal to noise ratio is less than the second threshold, that is, the current pilot signal to noise ratio does not satisfy the second threshold, the following step 212 may be performed.
  • Step 210 Pre-compensation of the fine frequency offset estimation by using a clipping compensation strategy.
  • a feasible limiting compensation strategy can be implemented as follows: performing coarse frequency offset estimation to obtain a coarse frequency offset estimation result; determining whether the coarse frequency offset estimation result satisfies the actual frequency offset range; if yes, according to The coarse frequency offset estimation result performs pre-compensation on the fine frequency offset estimation; if not, the coarse frequency offset estimation result is limited according to the actual frequency offset range, and a clipping result is obtained, and according to the The clipping result precompensates the fine frequency offset estimate.
  • the following step 218 can be performed after pre-compensation.
  • the actual frequency offset range may be determined according to the environment in which the device (user equipment) is located, for example, may be, but not limited to, determined according to the speed (vehicle speed) and frequency band of the device.
  • the calculated actual frequency offset g 1600Hz.
  • any appropriate and reasonable actual frequency offset range can be determined according to the calculation result of the actual frequency offset g. If the coarse frequency offset estimation result satisfies the actual frequency offset range, the fine frequency offset estimation may be pre-compensated directly according to the coarse frequency offset estimation result. Otherwise, the coarse frequency offset estimation result may be subjected to clipping processing to obtain the limited clipping. The result satisfies the actual frequency offset range.
  • Step 212 Determine whether the current frequency offset state is consistent with a historical frequency offset state.
  • the historical frequency offset state may be a frequency offset state corresponding to the historical frequency offset estimation, and when the historical effective frequency offset state is different, in this embodiment, the historical frequency offset state may specifically be when the decoding result is incorrect.
  • Corresponding frequency offset state; the historical frequency offset state includes but is not limited to: historical antenna state, historical field number, and historical frequency offset estimation value.
  • determining whether the current frequency offset state is consistent with the historical frequency offset state may specifically include: determining whether the current antenna state is consistent with the historical antenna state; and determining whether the difference between the current field frame number and the historical frame number satisfies the third Threshold; and, to determine whether the historical frequency offset estimate is set to be invalid.
  • the current antenna state is consistent with the historical antenna state, whether the difference between the current field frame number and the historical field frame number satisfies the first threshold value, and whether the historical frequency offset estimation value is invalidated may be arbitrarily determined.
  • the execution may be performed in an appropriate order, and may be performed at the same time. This embodiment does not limit this.
  • the specific value of the third threshold may be determined according to actual conditions.
  • the values of the third threshold include, but are not limited to, 2, 4, 6, and 8.
  • the current antenna state when the current antenna state is consistent with the historical antenna state, and the difference between the current field number and the historical field number satisfies the third threshold, and the historical frequency offset estimation value is not set to be invalid, it may be considered.
  • the current frequency offset state is consistent with the historical frequency offset state; when any one of the judgment results is not satisfied, the current frequency offset state is considered to be inconsistent with the historical frequency offset state.
  • the historical frequency offset estimation value may be preset as invalid, and the current antenna state and the current field frame number are preset to satisfy the condition. (The historical frequency offset state is satisfied).
  • the current antenna state or the current field frame number may also be preset as an unsatisfied condition (the historical frequency offset state is not satisfied). This embodiment does not limit this.
  • the historical frequency offset estimate is set to be invalid.
  • step 214 may continue; otherwise, the following step 216 is performed.
  • step 214 the fine frequency offset is pre-compensated by using a frequency domain extension compensation strategy.
  • a feasible frequency domain extension compensation strategy may be implemented as follows: performing frequency domain extension according to the historical frequency offset estimation value; and performing the fine frequency offset estimation according to the frequency domain extension result Pre-compensation.
  • the following step 218 can be performed after the pre-compensation.
  • step 216 the fine frequency offset estimation is not pre-compensated.
  • the fine frequency may not be The partial estimation is compensated, and the fine frequency offset estimation is directly performed, that is, the following step 218 can be directly performed.
  • the method may further include:
  • step 218 a fine frequency offset estimation is performed to obtain a fine frequency offset estimation result.
  • Step 220 Obtain a final frequency offset estimation result according to the fine frequency offset estimation result.
  • the final frequency offset estimation result includes, but is not limited to, a final antenna state, a final field number, and a final frequency offset estimation value.
  • Step 222 Determine whether the decoding of the data after the frequency offset compensation is performed according to the final frequency offset estimation result is correct.
  • step 224 if the decoding is correct, the following step 224 is performed; otherwise, the following step 226 is performed.
  • Step 224 Update the historical effective frequency offset state according to the final antenna state, the final field number, and the final frequency offset estimation value.
  • Step 226 Update the historical frequency offset state according to the final antenna state, the final field number, and the final frequency offset estimation value.
  • the frequency offset processing method in this embodiment can compare the obtained current frequency offset state with the historical effective frequency offset state to determine whether the two are consistent; and when the determination result is consistent, it is valid according to the history.
  • the frequency offset state precompensates the fine frequency offset estimation. Since the historical effective frequency offset state is the corresponding frequency offset state when the decoding result is correct, the accuracy of the pre-compensation is ensured, so that the fine frequency offset estimation can be performed according to the pre-compensation result after the pre-compensation, and the coarse frequency offset estimation is overcome.
  • the problem of inaccurate or uncompensated frequency offset compensation caused by error improves the accuracy and stability of the frequency offset estimation, and reduces the computational complexity to a certain extent, and improves the overall speed in the high-speed scene. Line throughput.
  • the coarse frequency offset estimation may not be performed, the computational complexity is reduced, and the accuracy and stability of the frequency offset estimation are further improved.
  • the frequency offset compensation scheme matching the determination result may be selected to perform pre-compensation by multiple times. For example, when the current pilot signal-to-noise ratio satisfies the second threshold, the estimation may be based on the coarse frequency offset. The limiting processing result is pre-compensated, effectively avoiding the situation that the coarse frequency offset estimation is invalid. Further, when the current pilot signal to noise ratio does not satisfy the second threshold, the embodiment further provides a frequency domain extension compensation strategy, which uses the historical frequency offset value and the frequency domain extension rule to invalidate the coarse frequency offset estimation. In this case, an accurate pre-compensation value can still be estimated, and an accurate frequency offset estimation value can be obtained.
  • the embodiment describes the frequency offset processing method in detail by using a specific example.
  • the frequency offset processing method includes:
  • Step 302 Acquire a current frequency offset state.
  • the current frequency offset state includes: a current antenna state and a current field frame number.
  • Step 304 Determine whether the current antenna state is consistent with the historical effective antenna state.
  • step 306 is performed.
  • Step 306 Determine whether the difference between the current field number and the historical effective field number is less than 4.
  • the foregoing first threshold may be a value of 4.
  • the difference between the current field number and the historical effective field number is less than 4, the difference between the current field number and the historical effective field number is determined to satisfy the first A threshold continues with step 308.
  • Step 308 Determine whether the historical effective frequency offset estimation value is valid.
  • step 310 may continue.
  • Step 310 Precompensation of the fine frequency offset estimation using the historical effective frequency offset estimation value.
  • step 312 a fine frequency offset estimation is performed to obtain a final frequency offset estimation result.
  • Step 314 determining translation of data after frequency offset compensation according to the final frequency offset estimation result Is the code correct?
  • the historical effective frequency offset state is updated: the historical effective antenna state, the historical effective field number, and the history are updated according to the final antenna state, the final field number, and the final frequency offset estimation value.
  • the frequency offset estimation value if the decoding is wrong, updating the historical frequency offset state: updating the historical antenna state, the historical field number, and the historical frequency offset estimation value according to the final antenna state, the final field number, and the final frequency offset estimation value.
  • step 316 may be performed. In addition, if it is determined according to the determination result of step 306 that the difference between the current field number and the historical effective field number is greater than or equal to 4, the following step 316 may also be performed.
  • step 316 the historical effective frequency offset estimate is set to be invalid.
  • step 318 can be performed after step 316.
  • the following step 318 can also be performed.
  • step 318 it is determined whether the current pilot signal to noise ratio is greater than or equal to 3 db.
  • the value of the foregoing second threshold may be 3 db.
  • the following step 320 may be performed. Otherwise, perform the following step 322.
  • step 320 the fine frequency offset estimation is pre-compensated based on the clipping compensation strategy.
  • the manner of pre-compensating the fine frequency offset estimation based on the limiting compensation strategy may be specifically as follows: performing coarse frequency offset estimation, and limiting the result exceeding the actual frequency offset range; according to the limiting result, The fine frequency offset estimation is performed for pre-compensation.
  • step 312 can be performed after step 320.
  • Step 322 Determine whether the current antenna state is consistent with the historical antenna state.
  • step 324 if it is determined that the current antenna state is consistent with the historical antenna state, the following step 324 is performed.
  • Step 324 Determine whether the difference between the current field number and the historical field number is less than 4.
  • the foregoing third threshold may be a value of 4.
  • the difference between the current field number and the historical field number is less than 4, it is determined that the difference between the current field number and the historical field number satisfies the third threshold. , proceed to step 326.
  • step 326 it is determined whether the historical frequency offset estimation value is valid.
  • step 328 may continue.
  • Step 328 pre-compensating the fine frequency offset estimation based on the frequency domain extension compensation strategy.
  • the specific manner of pre-compensating the fine frequency offset estimation based on the frequency domain extension compensation strategy may be as follows: performing frequency domain extension according to the historical frequency offset estimation value; and performing the frequency domain extension result according to the frequency domain extension result The fine frequency offset estimation is performed for pre-compensation.
  • step 312 can be performed after step 328.
  • step 330 if it is determined according to the determination result of step 322 that the current antenna state is inconsistent with the historical antenna state, the following step 330 may be performed. In addition, if it is determined according to the determination result of step 324 that the difference between the current field number and the historical field number is greater than or equal to 4, the following step 330 may also be performed.
  • step 330 the historical frequency offset estimate is set to be invalid.
  • step 332 can be performed after step 330. Furthermore, if it is determined in step 326 that the historical effective frequency offset estimate is invalid, then step 332 described below may also be performed.
  • step 332 the fine frequency offset estimation is not pre-compensated.
  • step 312 can be performed after step 332.
  • the frequency offset processing method in this embodiment can compare the obtained current frequency offset state with the historical effective frequency offset state to determine whether the two are consistent; and when the determination result is consistent, it is valid according to the history.
  • the frequency offset state precompensates the fine frequency offset estimation. Since the historical effective frequency offset state is the corresponding frequency offset state when the decoding result is correct, the accuracy of the pre-compensation is ensured, so that the fine frequency offset estimation can be performed according to the pre-compensation result after the pre-compensation, and the coarse frequency offset estimation is overcome.
  • the problem of inaccurate or uncompensated frequency offset compensation caused by error improves the accuracy and stability of frequency offset estimation, and reduces the computational complexity to a certain extent, and improves the uplink throughput rate in high-speed scenarios as a whole. .
  • the coarse frequency offset estimation may not be performed, the computational complexity is reduced, and the accuracy and stability of the frequency offset estimation are further improved.
  • the frequency offset compensation scheme matching the determination result may be selected to perform pre-compensation by multiple times. For example, when the current pilot signal-to-noise ratio satisfies the second threshold, the estimation may be based on the coarse frequency offset. The limiting processing result is pre-compensated, effectively avoiding the situation that the coarse frequency offset estimation is invalid. Further, when the current pilot signal to noise ratio does not satisfy the second threshold, the embodiment further provides a frequency domain extension compensation strategy, which uses the historical frequency offset value and the frequency domain extension rule to invalidate the coarse frequency offset estimation. In this case, an accurate pre-compensation value can still be estimated, and an accurate frequency offset estimation value can be obtained.
  • the frequency offset processing system includes:
  • the first obtaining module 402 is configured to acquire a current frequency offset state.
  • the first determining module 404 is configured to determine whether the current frequency offset state and the historical effective frequency offset state are consistent.
  • the historical effective frequency offset state is a frequency offset state corresponding to the correct decoding result.
  • the first execution module 406 is configured to pre-compensate the fine frequency offset estimation according to the historical effective frequency offset state when the current frequency offset state is consistent with the historical effective frequency offset state.
  • the first determining module 404 is specifically configured to determine whether the current antenna state is consistent with the historical effective antenna state, and whether the difference between the current field number and the historical effective field number is satisfied. a first threshold; and determining whether the historical effective frequency offset estimate is set to be invalid.
  • the current frequency offset state includes: the current antenna state and the current field frame number;
  • the historical effective frequency offset state includes: the historical effective antenna state, the historical effective field number, and the history Effective frequency offset estimate.
  • the first execution module 406 may include: pre-compensating the fine frequency offset estimation by using the historical effective frequency offset estimation value.
  • the frequency offset processing system may further include:
  • the second execution module 408 is configured to set the historical effective frequency offset estimation value when the current antenna state is inconsistent with the historical effective antenna state, or when the difference between the current field number and the historical effective field number does not satisfy the first threshold. Invalid.
  • system may further comprise:
  • the second determining module 410 is configured to determine whether the current pilot signal to noise ratio satisfies the second threshold when the current frequency offset state is inconsistent with the historical effective frequency offset state.
  • the third execution module 412 is configured to pre-compensate the fine frequency offset estimation by using a clipping compensation strategy when the current pilot signal to noise ratio satisfies the second threshold. Further preferably, when the third execution module 412 performs pre-compensation on the fine frequency offset estimation by using a clipping compensation strategy, the method may include: performing coarse frequency offset estimation, and limiting the result exceeding the actual frequency offset range; The fine frequency offset estimation is pre-compensated according to the clipping result.
  • system may further comprise:
  • the third determining module 414 is configured to determine whether the current frequency offset state and the historical frequency offset state are consistent when the pilot signal to noise ratio does not satisfy the second threshold.
  • the fourth execution module 416 is configured to pre-compensate the fine frequency offset by using a frequency domain extension compensation strategy when the current frequency offset state is consistent with the historical frequency offset state. Further, the third determining module 414 may be configured to determine whether the current antenna state is consistent with the historical antenna state, and determine whether the difference between the current field number and the historical frame number meets a third threshold; and Whether the frequency offset estimate is set to be invalid.
  • the current frequency offset state includes: the current antenna state and the current field frame number;
  • the historical frequency offset state includes: the historical antenna state, the historical field number, and the historical frequency offset estimation value.
  • the fourth execution module 416 may perform the frequency domain extension according to the historical frequency offset estimation value when the frequency offset is pre-compensated by using the frequency domain extension compensation strategy; The fine frequency offset estimation is pre-compensated.
  • system may further comprise:
  • the fifth execution module 418 is configured to set the historical frequency offset estimation value to be invalid when the current antenna state is inconsistent with the historical antenna state, or when the difference between the current field number and the historical field number does not satisfy the third threshold.
  • system may further comprise:
  • the sixth execution module 420 is configured to not pre-compensate the fine frequency offset estimation when the current frequency offset state is inconsistent with the historical frequency offset state.
  • system may further comprise:
  • the calculation module 422 is configured to perform fine frequency offset estimation to obtain a fine frequency offset estimation result.
  • the second obtaining module 424 is configured to obtain a final frequency offset estimation result according to the fine frequency offset estimation result.
  • the final frequency offset estimation result includes: a final antenna state, a final field number, and a final frequency offset estimation value.
  • the fourth determining module 426 is configured to determine whether the decoding of the data after the frequency offset compensation is performed according to the final frequency offset estimation result is correct.
  • An update module 428 configured to update a historical effective frequency offset state according to the final antenna state, a final field number, and a final frequency offset estimate when the decoding is correct; and, in the case of a decoding error, according to the final antenna state
  • the final field number and the final frequency offset estimate update the historical frequency offset state.
  • the frequency offset processing system in this embodiment can compare the obtained current frequency offset state with the historical effective frequency offset state to determine whether the two are consistent; and when the determination result is consistent, it is valid according to the history.
  • the frequency offset state precompensates the fine frequency offset estimation. Since the historical effective frequency offset state is the corresponding frequency offset state when the decoding result is correct, the accuracy of the pre-compensation is ensured, so that the fine frequency offset estimation can be performed according to the pre-compensation result after the pre-compensation, and the coarse frequency offset estimation is overcome.
  • the problem of inaccurate or uncompensated frequency offset compensation caused by error improves the accuracy and stability of frequency offset estimation, and reduces the computational complexity to a certain extent, and improves the uplink throughput rate in high-speed scenarios as a whole. .
  • the coarse frequency offset estimation may not be performed, the computational complexity is reduced, and the accuracy and stability of the frequency offset estimation are further improved.
  • the frequency offset compensation scheme matching the determination result may be selected to perform pre-compensation by multiple times. For example, when the current pilot signal-to-noise ratio satisfies the second threshold, the estimation may be based on the coarse frequency offset. The limiting processing result is pre-compensated, effectively avoiding the situation that the coarse frequency offset estimation is invalid. Further, when the current pilot signal to noise ratio does not satisfy the second threshold, the embodiment further provides a frequency domain extension compensation strategy, which uses the historical frequency offset value and the frequency domain extension rule to invalidate the coarse frequency offset estimation. In this case, an accurate pre-compensation value can still be estimated, and an accurate frequency offset estimation value can be obtained.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the embodiment of the present application also discloses a computer readable recording medium on which a program for executing the above method is recorded.
  • the computer readable recording medium includes any mechanism for storing or transmitting information in a form readable by a computer (eg, a computer).
  • a machine-readable medium includes a read only memory (ROM), a random access memory (RAM), a magnetic disk storage medium, an optical storage medium, a flash storage medium, electricity, Optical, acoustic or other forms of propagating signals (eg, carrier waves, infrared signals, digital signals, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

一种频偏处理方法和系统,其中,所述方法包括:获取当前频偏状态;判断所述当前频偏状态与历史有效频偏状态是否一致;其中,所述历史有效频偏状态为译码结果正确时对应的频偏状态;若一致,则根据所述历史有效频偏状态对细频偏估计进行预补偿。通过本申请解决了因频偏估计不准确而导致的无法准确补偿频偏的问题。

Description

一种频偏处理方法和系统 技术领域
本申请涉及通信技术领域,特别是涉及一种频偏处理方法和系统。
背景技术
在无线通信系统中,由于发送设备和接收设备间的频差,以及发送设备移动所带来的多普勒频移等影响,使得接收设备接收到的载波频率与本地晶振的频率之间存在频率偏移,简称频偏。特别是在移动通信系统覆盖的高速铁路等场景的小区,设备(用户设备)移动速度较高(如,在移动通信系统覆盖的高速铁路等场景的小区,设备移动速度一般在300km/h以上),会导致非常严重的多普勒效应,最大多普勒频率可以达到1500Hz以上,这会使基站的频率采用出现偏差,均衡器输出的星座点相位旋转严重,导致无法正确解调译码。
目前,为了消除由于多普勒效应导致的频偏通常采用的做法是:对频偏进行估计,补偿采样偏差和相位旋转,尽可能消除多普勒频移带来的影响。例如,利用循环前缀进行频偏粗估计和预补偿。然而,由于实际环境的信噪比不能得到保证,往往会导致粗频偏估计的误差很大,甚至完全无效,进而无法准确补偿频偏。
发明内容
本申请提供一种频偏处理方法和系统,以解决因频偏估计不准确而导致的无法准确补偿频偏的问题。
为了解决上述问题,本申请公开了一种频偏处理方法,包括:
获取当前频偏状态;
判断所述当前频偏状态与历史有效频偏状态是否一致;其中,所述历史有效频偏状态为译码结果正确时对应的频偏状态;
若一致,则根据所述历史有效频偏状态对细频偏估计进行预补偿。
优选地,判断所述当前频偏状态与历史有效频偏状态是否一致,包括:
判断当前天线状态与历史有效天线状态是否一致;以及,
判断当前半帧号与历史有效半帧号之差是否满足第一阈值;以及,
判断历史有效频偏估计值是否被置为无效;
其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史有效频偏状态包括:所述历史有效天线状态、所述历史有效半帧号 和所述历史有效频偏估计值。
优选地,根据所述历史有效频偏状态对细频偏估计进行预补偿,包括:
使用所述历史有效频偏估计值对所述细频偏估计进行预补偿。
优选地,所述方法还包括:
若当前天线状态与历史有效天线状态不一致,或,当前半帧号与历史有效半帧号之差不满足第一阈值,则将所述历史有效频偏估计值置为无效。
优选地,所述方法还包括:
若所述当前频偏状态与历史有效频偏状态不一致,则,判断当前导频信噪比是否满足第二阈值;若是,则采用限幅补偿策略对所述细频偏估计进行预补偿。
优选地,采用限幅补偿策略对所述细频偏估计进行预补偿,包括:
进行粗频偏估计,得到粗频偏估计结果;
判断粗频偏估计结果是否满足实际频偏范围;若是,则根据所述粗频偏估计结果对所述细频偏估计进行预补偿;若否,则根据所述实际频偏范围对所述粗频偏估计结果进行限幅,得到限幅结果,并根据所述限幅结果对所述细频偏估计进行预补偿。
优选地,所述方法还包括:
若导频信噪比不满足第二阈值,则,判断所述当前频偏状态与历史频偏状态是否一致;
若一致,则采用频域延拓补偿策略对所述细频偏进行预补偿。
优选地,判断所述当前频偏状态与历史频偏状态是否一致,包括:
判断当前天线状态与历史天线状态是否一致;以及,
判断当前半帧号与历史帧号之差是否满足第三阈值;以及,
判断历史频偏估计值是否被置为无效;
其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史频偏状态包括:所述历史天线状态、所述历史半帧号和所述历史频偏估计值。
优选地,采用频域延拓补偿策略对所述细频偏进行预补偿,包括:
根据所述历史频偏估计值进行频域延拓;
根据频域延拓结果,对所述细频偏估计进行预补偿。
优选地,所述方法还包括:
若当前天线状态与历史天线状态不一致,或,当前半帧号与历史半帧号之差不满足第三阈值,则将所述历史频偏估计值置为无效。
优选地,所述方法还包括:
若所述当前频偏状态与历史频偏状态不一致,则不对细频偏估计进行预补偿。
优选地,所述方法还包括:
进行细频偏估计,得到细频偏估计结果;
根据所述细频偏估计结果得到最终频偏估计结果;其中,所述最终频偏估计结果包括:最终天线状态、最终半帧号和最终频偏估计值;
判断根据所述最终频偏估计结果进行频偏补偿后的数据的译码是否正确;
若译码正确,则根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效频偏状态;
若译码错误,则根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史频偏状态。
本申请还公开了一种频偏处理系统,包括:
第一获取模块,设置为获取当前频偏状态;
第一判断模块,设置为判断所述当前频偏状态与历史有效频偏状态是否一致;其中,所述历史有效频偏状态为译码结果正确时对应的频偏状态;
第一执行模块,设置为在所述当前频偏状态与历史有效频偏状态一致时,根据所述历史有效频偏状态对细频偏估计进行预补偿。
优选地,第一判断模块,设置为判断当前天线状态与历史有效天线状态是否一致;以及,判断当前半帧号与历史有效半帧号之差是否满足第一阈值;以及,判断历史有效频偏估计值是否被置为无效;
其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史有效频偏状态包括:所述历史有效天线状态、所述历史有效半帧号和所述历史有效频偏估计值。
优选地,所述第一执行模块在根据所述历史有效频偏状态对细频偏估计进行预补偿时,包括:使用所述历史有效频偏估计值对所述细频偏估计进行预补偿。
优选地,所述系统还包括:
第二执行模块,设置为在当前天线状态与历史有效天线状态不一致,或,当前半帧号与历史有效半帧号之差不满足第一阈值时,将所述历史有效频偏估计值置为无效。
优选地,所述系统还包括:
第二判断模块,设置为在所述当前频偏状态与历史有效频偏状态不一致时,判断当前导频信噪比是否满足第二阈值;
第三执行模块,设置为在当前导频信噪比满足第二阈值时,采用限幅补偿策略对所述细频偏估计进行预补偿。
优选地,所述第三执行模块在采用限幅补偿策略对所述细频偏估计进行预补偿时,包括:进行粗频偏估计,得到粗频偏估计结果;判断粗频偏估计结果是否满足实际频偏范围;若是,则根据所述粗频偏估计结果对所述细频偏估计进行预补偿;若否,则根据所述实际频偏范围对所述粗频偏估计结果进行限幅,得到限幅结果,并根据所述限幅结果对所述细频偏估计进行预补偿。
优选地,所述系统还包括:
第三判断模块,设置为在导频信噪比不满足第二阈值时,判断所述当前频偏状态与历史频偏状态是否一致;
第四执行模块,设置为在所述当前频偏状态与历史频偏状态一致时,采用频域延拓补偿策略对所述细频偏进行预补偿。
优选地,所述第三判断模块,设置为判断当前天线状态与历史天线状态是否一致;以及,判断当前半帧号与历史帧号之差是否满足第三阈值;以及,判断历史频偏估计值是否被置为无效;
其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史频偏状态包括:所述历史天线状态、所述历史半帧号和所述历史频偏估计值。
优选地,所述第四执行模块在采用频域延拓补偿策略对所述细频偏进行预补偿时,包括:根据所述历史频偏估计值进行频域延拓;根据频域延拓结果,对所述细频偏估计进行预补偿。
优选地,所述系统还包括:
第五执行模块,设置为在当前天线状态与历史天线状态不一致,或,当前半帧号与历史半帧号之差不满足第三阈值时,将所述历史频偏估计值置为无效。
优选地,所述系统还包括:
第六执行模块,设置为在所述当前频偏状态与历史频偏状态不一致时,不对细频偏估计进行预补偿。
优选地,所述系统还包括:
计算模块,设置为进行细频偏估计,得到细频偏估计结果;
第二获取模块,设置为根据所述细频偏估计结果得到最终频偏估计结果;其中,所述最终频偏估计结果包括:最终天线状态、最终半帧号和最终频偏估计值;
第四判断模块,设置为判断根据所述最终频偏估计结果进行频偏补偿后的数据的译码是否正确;
更新模块,设置为在译码正确时,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效频偏状态;以及,在译码错误时,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史频偏状态。
本申请实施例还公开了一种在其上记录有用于上述方法的程序的计算机可读记录介质。
与现有技术相比,本申请包括以下优点:
本申请所述的频偏处理方法,可以将获取的当前频偏状态与历史有效频偏状态进行比较,判断两者是否一致;并在判断结果一致时根据所述历史有效频偏状态对细频偏估计进行预补偿。由于历史有效频偏状态为译码结果正 确时对应的频偏状态,进而保证了预补偿的准确性,以在预补偿之后可以根据预补偿结果进行细频偏估计,克服了由于粗频偏估计误差而导致的频偏补偿不准确或无法补偿的问题,提高了频偏估计的准确性和稳定性,并且在一定程度上降低了计算的复杂度,整体上提高了高速场景下的上行吞吐率。
附图说明
图1是本申请实施例一中一种频偏处理方法的步骤流程图;
图2是本申请实施例二中一种频偏处理方法的步骤流程图;
图3是本申请实施例三中一种频偏处理方法的步骤流程图;
图4是本申请实施例四中一种频偏处理系统的结构框图;
图5是本申请实施例四中一种优选的频偏处理系统的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
在PUSCH,Physical Uplink Shared Channel,物理上行共享信道中,每个子帧的两个时隙分别有频域的导频,每个时隙的时间间隔是0.5ms。这就决定了,如果单纯使用两列导频信道估计结果做相关运算来进行频偏估计,则频偏估计的估计结果的最大范围为:-1000Hz至+1000Hz,不足以覆盖多普勒频率的范围。因此,在PUSCH频偏估计方案,大多采用粗、细频偏估计结合的方式:粗频偏估计:利用循环前缀,对同一时隙的导频的时域信号,采用不同位置的FFT(Fast Fourier Transformation,快速傅氏变换)窗,分别进行FFT运算。在补偿了由于循环移位导致的频域相位偏差后,使用两次FFT结果进行相关求和运算,求运算结果的复角度,再除以两次取窗的起始位置相差的时间,则可以得到一个粗频偏估计的估计结果。粗频偏估计的估计结果的范围要远远大于实际频偏范围。粗频偏估计:利用粗频偏估计的估计结果,在第二列导频的频域信道估计上补偿由频偏带来的相位差,再使用两个时隙导频的频域信道估计做相关求和运算。对结果求复角度,并除以两个时隙导频的时间间隔0.5ms,可以得到细频偏估计的估计结果。最后,可以将粗、细频偏估计的估计结果相加,将相加后的结果作为最终的频偏估计结果。
参照图1,示出了本申请实施例一中一种频偏处理方法的步骤流程图。在本实施例中,所述频偏处理方法包括:
步骤102,获取当前频偏状态。
在无线通信系统中,由于发送设备和接收设备间的频差,以及发送设备移动所带来的多普勒频移等影响,使得接收设备接收到的载波频率与本地晶 振的频率之间存在频率偏移,简称频偏。在本实施例中,频偏状态可以是用于指示频偏的参数,优选地,频偏状态包括但不仅限于:天线状态和半帧号。即,所述当前频偏状态包括但不仅限于:当前天线状态和当前半帧号。
步骤104,判断所述当前频偏状态与历史有效频偏状态是否一致。
在本实施例中,所述历史有效频偏状态为译码结果正确时对应的频偏状态。例如,若用户上一次PUSCH(Physical Uplink Shared Channel,物理上行共享信道)调度译码正确,则可以认为频偏估计结果符合要求,进而,可以将用户上一次PUSCH调度译码正确所对应的频偏状态作为历史有效频偏状态。
步骤106,若当前频偏状态与历史有效频偏状态一致,则根据所述历史有效频偏状态对细频偏估计进行预补偿。
一般地,在进行频率估计时通常的做法是:先做粗频偏估计,然后根据粗频偏估计结果进行细频偏估计。在本实施例中,若所述当前频偏状态与历史有效频偏状态一致,则可以不进行粗频偏估计,而直接根据历史有效频偏状态对细频偏估计进行预补偿,以在预补偿之后进行细频偏估计,得到最终的频偏估计结果,保证了最终得到的频偏估计结果的有效性和准确性,提高了频偏估计处理效率。
综上所述,本实施例所述的频偏处理方法,可以将获取的当前频偏状态与历史有效频偏状态进行比较,判断两者是否一致;并在判断结果一致时根据所述历史有效频偏状态对细频偏估计进行预补偿。由于历史有效频偏状态为译码结果正确时对应的频偏状态,进而保证了预补偿的准确性,以在预补偿之后可以根据预补偿结果进行细频偏估计,克服了由于粗频偏估计误差而导致的频偏补偿不准确或无法补偿的问题,提高了频偏估计的准确性和稳定性,并且在一定程度上降低了计算的复杂度,整体上提高了高速场景下的上行吞吐率。
实施例二
参照图2,示出了本申请实施例二中一种频偏处理方法的步骤流程图。在本实施例中,所述频偏处理方法包括:
步骤202,获取当前频偏状态。
在本实施例中,所述当前频偏状态包括但不仅限于:当前天线状态和当前半帧号。
步骤204,判断所述当前频偏状态与历史有效频偏状态是否一致。
在本实施例中,所述历史有效频偏状态为译码结果正确时对应的频偏状态。所述历史有效频偏状态包括但不仅限于:历史有效天线状态、历史有效半帧号和历史有效频偏估计值。
优选地,所述步骤204具体可以包括:判断当前天线状态与历史有效天 线状态是否一致;以及,判断当前半帧号与历史有效半帧号之差是否满足第一阈值;以及,判断历史有效频偏估计值是否被置为无效。需要说明的是,当前天线状态与历史有效天线状态是否一致、当前半帧号与历史有效半帧号之差是否满足第一阈值、以及历史有效频偏估计值是否被置为无效三个判断流程可以按照任意适当的顺序执行,也可以同时执行,本实施例对此不作限制。其中,所述第一阈值的具体取值可以根据实际情况确定,例如,第一阈值的取值包括但不仅限于:2、4、6和8等。当前半帧号与历史有效半帧号之差小于第一阈值,则确定当前半帧号与历史有效半帧号之差满足第一阈值;否则,确定当前半帧号与历史有效半帧号之差不满足第一阈值。其中,在本实施例中,半帧号用于指示时间:半帧号每相差1,时间相差5ms,例如,半帧号之差小于4,则指示时间差小于20ms。
在本实施例中,在当前天线状态与历史有效天线状态一致,且,当前半帧号与历史有效半帧号之差满足第一阈值,且,历史有效频偏估计值未被置为无效时,可以认为当前频偏状态与历史有效频偏状态一致;当有任意一个判断结果不满足时,则认为当前频偏状态与历史有效频偏状态不一致。
需要说明的是,在本实施例所述的频偏处理方法首次执行时,可以将所述历史有效频偏估计值预置为无效,以及,将当前天线状态和当前半帧号预置为满足条件(满足历史有效频偏状态),当然,也可以将当前天线状态或当前半帧号预置为不满足条件(不满足历史有效频偏状态)。本实施例对此不作限制。
进一步优选地,在本实施例中,还可以在根据当前频偏状态与历史有效频偏状态的判断结果确定当前天线状态与历史有效天线状态不一致,或,当前半帧号与历史有效半帧号之差不满足第一阈值时,还可以执行步骤228,将历史有效频偏估计值置为无效。
在本实施例中,若当前频偏状态与历史有效频偏状态一致,则可以执行下述步骤206;否则,执行下述步骤208。
步骤206,根据所述历史有效频偏状态对细频偏估计进行预补偿。
在本实施例中,优选地,可以使用所述历史有效频偏估计值对所述细频偏估计进行预补偿,在预补偿之后可以执行下述步骤218。
步骤208,判断当前导频信噪比是否满足第二阈值。
信噪比是度量通信系统通信质量可靠性的一个主要技术指标。根据通信中不同的需要,可以有不同的表达方式。例如,在数字通信系统中,信噪比一般是指终端机的数字解调器或译码器输出端的每个数字波形(比特)的平均信号能量与单位频带内的噪声功率的比值,又称为归一化信噪比或能量信噪比,是常用的指标。优选地,在本实施例中,设置了导频信噪比的阈值,即,所述第二阈值,其中,所述第二阈值的具体取值可以根据实际情况确定,例如,第二阈值的取值包括但不仅限于:3、5、6和9等。
在本实施例中,若当前导频信噪比大于等于所述第二阈值,即,所述当 前导频信噪比满足所述第二阈值,则可以执行下述步骤210。若当前导频信噪比小于所述第二阈值,即,所述当前导频信噪比不满足所述第二阈值,则可以执行下述步骤212。
步骤210,采用限幅补偿策略对所述细频偏估计进行预补偿。
在本实施例中,一种可行的限幅补偿策略的实现方式可以如下:进行粗频偏估计,得到粗频偏估计结果;判断粗频偏估计结果是否满足实际频偏范围;若是,则根据所述粗频偏估计结果对所述细频偏估计进行预补偿;若否,则根据所述实际频偏范围对所述粗频偏估计结果进行限幅,得到限幅结果,并根据所述限幅结果对所述细频偏估计进行预补偿。优选地,在预补偿之后可以执行下述步骤218。
需要说明的是,实际频偏范围可以根据设备(用户设备)所处的环境所决定,如,可以但不仅限于根据设备的速度(车速)和频段确定。以高速运行的高铁为例,一般地,频段在f=2GHz附近时,认为高铁的速度可以达到360km/h,也就是v=100m/s,假设实际频偏为g,则g=2*f*v/c=1333Hz,光速为c=3*10^8m/s。如果高铁再提速,实际频偏g的值会更大,如高铁的速度达到432km/h时,计算得到的实际频偏g=1600Hz。在本实施例中,可以根据实际频偏g的计算结果确定任意适当合理的实际频偏范围。粗频偏估计结果满足实际频偏范围,则可以直接根据粗频偏估计结果对细频偏估计进行预补偿,否则,则可以对粗频偏估计结果进行限幅处理,以使得到的限幅结果满足所述实际频偏范围。
步骤212,判断所述当前频偏状态与历史频偏状态是否一致。
在本实施例中,历史频偏状态可以是历史频偏估计对应的频偏状态,与历史有效频偏状态不同的时,在本实施例中,历史频偏状态具体可以为译码结果错误时对应的频偏状态;所述历史频偏状态包括但不仅限于:历史天线状态、历史半帧号和历史频偏估计值。
优选地,判断所述当前频偏状态与历史频偏状态是否一致,具体可以包括:判断当前天线状态与历史天线状态是否一致;以及,判断当前半帧号与历史帧号之差是否满足第三阈值;以及,判断历史频偏估计值是否被置为无效。
需要说明的是,当前天线状态与历史天线状态是否一致、当前半帧号与历史半帧号之差是否满足第一阈值、以及历史频偏估计值是否被置为无效三个判断流程可以按照任意适当的顺序执行,也可以同时执行,本实施例对此不作限制。其中,所述第三阈值的具体取值可以根据实际情况确定,例如,第三阈值的取值包括但不仅限于:2、4、6和8等。
在本实施例中,在当前天线状态与历史天线状态一致,且,当前半帧号与历史半帧号之差满足第三阈值,且,历史频偏估计值未被置为无效时,可以认为当前频偏状态与历史频偏状态一致;当有任意一个判断结果不满足时,则认为当前频偏状态与历史频偏状态不一致。
需要说明的是,在本实施例所述的频偏处理方法首次执行时,可以将所述历史频偏估计值预置为无效,以及,将当前天线状态和当前半帧号预置为满足条件(满足历史频偏状态),当然,也可以将当前天线状态或当前半帧号预置为不满足条件(不满足历史频偏状态)。本实施例对此不作限制。
进一步优选地,在本实施例中,还可以在根据当前频偏状态与历史频偏状态的判断结果确定当前天线状态与历史天线状态不一致,或,当前半帧号与历史半帧号之差不满足第三阈值时,将历史频偏估计值置为无效。
在本实施例中,若当前频偏状态与历史频偏状态一致,则可以继续执行下述步骤214;否则,执行下述步骤216。
步骤214,采用频域延拓补偿策略对所述细频偏进行预补偿。
在本实施例中,一种可行的频域延拓补偿策略的实现方式可以如下:根据所述历史频偏估计值进行频域延拓;根据频域延拓结果,对所述细频偏估计进行预补偿。在预补偿之后可以执行下述步骤218。
步骤216,不对细频偏估计进行预补偿。
在本实施例中,若当前频偏状态与历史有效频偏状态不一致,且,当前信噪比不满足第二阈值,且当前频偏状态与历史频偏状态也不一致,则,可以不对细频偏估计进行补偿,直接进行细频偏估计,也即,可以直接执行下述步骤218。
在本实施例的一优选方案中,所述方法还可以包括:
步骤218,进行细频偏估计,得到细频偏估计结果。
步骤220,根据所述细频偏估计结果得到最终频偏估计结果。
在本实施例中,所述最终频偏估计结果包括但不仅限于:最终天线状态、最终半帧号和最终频偏估计值。
步骤222,判断根据所述最终频偏估计结果进行频偏补偿后的数据的译码是否正确。
在本实施例中,若译码正确,则执行下述步骤224;否则,执行下述步骤226。
步骤224,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效频偏状态。
步骤226,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史频偏状态。
综上所述,本实施例所述的频偏处理方法,可以将获取的当前频偏状态与历史有效频偏状态进行比较,判断两者是否一致;并在判断结果一致时根据所述历史有效频偏状态对细频偏估计进行预补偿。由于历史有效频偏状态为译码结果正确时对应的频偏状态,进而保证了预补偿的准确性,以在预补偿之后可以根据预补偿结果进行细频偏估计,克服了由于粗频偏估计误差而导致的频偏补偿不准确或无法补偿的问题,提高了频偏估计的准确性和稳定性,并且在一定程度上降低了计算的复杂度,整体上提高了高速场景下的上 行吞吐率。
其次,在本实施例中,在确定历史有效频偏估计可以使用时,可以不进行粗频偏估计,降低了计算复杂度,进一步提高了频偏估计的准确性和稳定性。
此外,在本实施例中,可以通过多次判断选择与判断结果相匹配的频偏补偿方案进行预补偿,如,在当前导频信噪比满足第二阈值时可以根据对粗频偏估计的限幅处理结果进行预补偿,有效规避了粗频偏估计无效的情况。进一步地,在当前导频信噪比不满足第二阈值时,本实施例还提供了频域延拓补偿策略,利用历史频偏值和频域延拓的规律,在粗频偏估计无效的情况下,依然可以估计出准确的预补偿值,得到准确的频偏估计值。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请所必需的。
实施例三
结合上述实施例,本实施例以一个具体实例对所述频偏处理方法进行详细说明。
参照图3,示出了本申请实施例三中一种频偏处理方法的步骤流程图。在本实施例中,所述频偏处理方法包括:
步骤302,获取当前频偏状态。
在本实施例中,当前频偏状态包括:当前天线状态和当前半帧号。
步骤304,判断当前天线状态与历史有效天线状态是否一致。
在本实施例中,若确定当前天线状态与历史有效天线状态一致,则执行下述步骤306。
步骤306,判断当前半帧号与历史有效半帧号之差是否小于4。
在本实施例中,前述的第一阈值可以取值为4,在当前半帧号与历史有效半帧号之差小于4时,则确定当前半帧号与历史有效半帧号之差满足第一阈值,继续执行步骤308。
步骤308,判断历史有效频偏估计值是否有效。
在本实施例中,由于历史有效频偏估计值可能被置为无效,因此,需要对历史有效频偏估计值的有效性进行判断。优选地,若历史有效频偏估计值有效,则可以继续执行步骤310。
步骤310,使用所述历史有效频偏估计值对细频偏估计进行预补偿。
步骤312,进行细频偏估计,得到最终频偏估计结果。
步骤314,判断根据所述最终频偏估计结果进行频偏补偿后的数据的译 码是否正确。
在本实施例中,若译码正确,则更新历史有效频偏状态:根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效天线状态、历史有效半帧号和历史有效频偏估计值;若译码错误,则更新历史频偏状态:根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史天线状态、历史半帧号和历史频偏估计值。
在本实施例的一优选方案中,若根据步骤304的判断结果确定当前天线状态与历史有效天线状态不一致,则可以执行下述步骤316。此外,若根据步骤306的判断结果确定当前半帧号与历史有效半帧号之差大于等于4,则也可以执行下述步骤316。
步骤316,将历史有效频偏估计值置为无效。
进一步优选地,在步骤316之后可以执行下述步骤318。此外,若根据步骤308确定历史有效频偏估计值是无效的,则也可以执行下述步骤318。
步骤318,判断当前导频信噪比是否大于等于3db。
在本实施例中,前述的第二阈值的取值可以为3db。优选地,若当前导频信噪比大于等于3db则可以执行下述步骤320。否则,执行下述步骤322。
步骤320,基于限幅补偿策略对细频偏估计进行预补偿。
在本实施例中,基于限幅补偿策略对细频偏估计进行预补偿的方式具体可以如下:进行粗频偏估计,对超出实际频偏范围的结果做限幅;根据限幅结果,对所述细频偏估计进行预补偿。
在本实施例中,如图3所示,在步骤320之后可以执行上述步骤312。
步骤322,判断当前天线状态与历史天线状态是否一致。
在本实施例中,若确定当前天线状态与历史天线状态一致,则执行下述步骤324。
步骤324,判断当前半帧号与历史半帧号之差是否小于4。
在本实施例中,前述的第三阈值可以取值为4,在当前半帧号与历史半帧号之差小于4时,则确定当前半帧号与历史半帧号之差满足第三阈值,继续执行步骤326。
步骤326,判断历史频偏估计值是否有效。
在本实施例中,由于历史频偏估计值可能被置为无效,因此,需要对历史频偏估计值的有效性进行判断。优选地,若历史频偏估计值有效,则可以继续执行步骤328。
步骤328,基于频域延拓补偿策略对细频偏估计进行预补偿。
在本实施例中,基于频域延拓补偿策略对细频偏估计进行预补偿的具体方式可以如下:根据所述历史频偏估计值进行频域延拓;根据频域延拓结果,对所述细频偏估计进行预补偿。
在本实施例中,如图3所示,在步骤328之后可以执行上述步骤312。
在本实施例的又一优选方案中,若根据步骤322的判断结果确定当前天线状态与历史天线状态不一致,则可以执行下述步骤330。此外,若根据步骤324的判断结果确定当前半帧号与历史半帧号之差大于等于4,则也可以执行下述步骤330。
步骤330,将历史频偏估计值置为无效。
进一步优选地,在步骤330之后可以执行下述步骤332。此外,若根据步骤326确定历史有效频偏估计值是无效的,则也可以执行下述步骤332。
步骤332,不对细频偏估计做预补偿。
在本实施例中,如图3所示,在步骤332之后可以执行上述步骤312。
综上所述,本实施例所述的频偏处理方法,可以将获取的当前频偏状态与历史有效频偏状态进行比较,判断两者是否一致;并在判断结果一致时根据所述历史有效频偏状态对细频偏估计进行预补偿。由于历史有效频偏状态为译码结果正确时对应的频偏状态,进而保证了预补偿的准确性,以在预补偿之后可以根据预补偿结果进行细频偏估计,克服了由于粗频偏估计误差而导致的频偏补偿不准确或无法补偿的问题,提高了频偏估计的准确性和稳定性,并且在一定程度上降低了计算的复杂度,整体上提高了高速场景下的上行吞吐率。
其次,在本实施例中,在确定历史有效频偏估计可以使用时,可以不进行粗频偏估计,降低了计算复杂度,进一步提高了频偏估计的准确性和稳定性。
此外,在本实施例中,可以通过多次判断选择与判断结果相匹配的频偏补偿方案进行预补偿,如,在当前导频信噪比满足第二阈值时可以根据对粗频偏估计的限幅处理结果进行预补偿,有效规避了粗频偏估计无效的情况。进一步地,在当前导频信噪比不满足第二阈值时,本实施例还提供了频域延拓补偿策略,利用历史频偏值和频域延拓的规律,在粗频偏估计无效的情况下,依然可以估计出准确的预补偿值,得到准确的频偏估计值。
实施例四
基于与上述方法实施例同一发明构思,参照图4,示出了本申请实施例四中一种频偏处理系统的结构框图。在本实施例中,所述频偏处理系统包括:
第一获取模块402,设置为获取当前频偏状态。
第一判断模块404,设置为判断所述当前频偏状态与历史有效频偏状态是否一致。
在本实施例中,所述历史有效频偏状态为译码结果正确时对应的频偏状态。
第一执行模块406,设置为在所述当前频偏状态与历史有效频偏状态一致时,根据所述历史有效频偏状态对细频偏估计进行预补偿。
在本实施例中,优选地,所述第一判断模块404,具体可以设置为判断当前天线状态与历史有效天线状态是否一致;以及,判断当前半帧号与历史有效半帧号之差是否满足第一阈值;以及,判断历史有效频偏估计值是否被置为无效。其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史有效频偏状态包括:所述历史有效天线状态、所述历史有效半帧号和所述历史有效频偏估计值。所述第一执行模块406在根据所述历史有效频偏状态对细频偏估计进行预补偿时,可以包括:使用所述历史有效频偏估计值对所述细频偏估计进行预补偿。
参照图5,示出了本申请实施例四中一种优选的频偏处理系统的结构框图。在本实施例中,所述频偏处理系统还可以包括:
第二执行模块408,设置为在当前天线状态与历史有效天线状态不一致,或,当前半帧号与历史有效半帧号之差不满足第一阈值时,将所述历史有效频偏估计值置为无效。
优选地,所述系统还可以包括:
第二判断模块410,设置为在所述当前频偏状态与历史有效频偏状态不一致时,判断当前导频信噪比是否满足第二阈值。第三执行模块412,设置为在当前导频信噪比满足第二阈值时,采用限幅补偿策略对所述细频偏估计进行预补偿。进一步优选地,所述第三执行模块412在采用限幅补偿策略对所述细频偏估计进行预补偿时,可以包括:进行粗频偏估计,对超出实际频偏范围的结果做限幅;根据限幅结果,对所述细频偏估计进行预补偿。
优选地,所述系统还可以包括:
第三判断模块414,设置为在导频信噪比不满足第二阈值时,判断所述当前频偏状态与历史频偏状态是否一致。第四执行模块416,设置为在所述当前频偏状态与历史频偏状态一致时,采用频域延拓补偿策略对所述细频偏进行预补偿。进一步优选地,所述第三判断模块414,具体可以设置为判断当前天线状态与历史天线状态是否一致;以及,判断当前半帧号与历史帧号之差是否满足第三阈值;以及,判断历史频偏估计值是否被置为无效。其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史频偏状态包括:所述历史天线状态、所述历史半帧号和所述历史频偏估计值。所述第四执行模块416在采用频域延拓补偿策略对所述细频偏进行预补偿时,可以包括:根据所述历史频偏估计值进行频域延拓;根据频域延拓结果,对所述细频偏估计进行预补偿。
优选地,所述系统还可以包括:
第五执行模块418,设置为在当前天线状态与历史天线状态不一致,或,当前半帧号与历史半帧号之差不满足第三阈值时,将所述历史频偏估计值置为无效。
优选地,所述系统还可以包括:
第六执行模块420,设置为在所述当前频偏状态与历史频偏状态不一致时,不对细频偏估计进行预补偿。
优选地,所述系统还可以包括:
计算模块422,设置为进行细频偏估计,得到细频偏估计结果。第二获取模块424,设置为根据所述细频偏估计结果得到最终频偏估计结果。其中,所述最终频偏估计结果包括:最终天线状态、最终半帧号和最终频偏估计值。第四判断模块426,设置为判断根据所述最终频偏估计结果进行频偏补偿后的数据的译码是否正确。更新模块428,设置为在译码正确时,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效频偏状态;以及,在译码错误时,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史频偏状态。
综上所述,本实施例所述的频偏处理系统,可以将获取的当前频偏状态与历史有效频偏状态进行比较,判断两者是否一致;并在判断结果一致时根据所述历史有效频偏状态对细频偏估计进行预补偿。由于历史有效频偏状态为译码结果正确时对应的频偏状态,进而保证了预补偿的准确性,以在预补偿之后可以根据预补偿结果进行细频偏估计,克服了由于粗频偏估计误差而导致的频偏补偿不准确或无法补偿的问题,提高了频偏估计的准确性和稳定性,并且在一定程度上降低了计算的复杂度,整体上提高了高速场景下的上行吞吐率。
其次,在本实施例中,在确定历史有效频偏估计可以使用时,可以不进行粗频偏估计,降低了计算复杂度,进一步提高了频偏估计的准确性和稳定性。
此外,在本实施例中,可以通过多次判断选择与判断结果相匹配的频偏补偿方案进行预补偿,如,在当前导频信噪比满足第二阈值时可以根据对粗频偏估计的限幅处理结果进行预补偿,有效规避了粗频偏估计无效的情况。进一步地,在当前导频信噪比不满足第二阈值时,本实施例还提供了频域延拓补偿策略,利用历史频偏值和频域延拓的规律,在粗频偏估计无效的情况下,依然可以估计出准确的预补偿值,得到准确的频偏估计值。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还公开了一种在其上记录有用于执行上述方法的程序的计算机可读记录介质。
所述计算机可读记录介质包括用于以计算机(例如计算机)可读的形式存储或传送信息的任何机制。例如,机器可读介质包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、 光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
以上对本申请所提供的一种频偏处理方法和系统,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (25)

  1. 一种频偏处理方法,其特征在于,包括:
    获取当前频偏状态;
    判断所述当前频偏状态与历史有效频偏状态是否一致;其中,所述历史有效频偏状态为译码结果正确时对应的频偏状态;
    若一致,则根据所述历史有效频偏状态对细频偏估计进行预补偿。
  2. 根据权利要求1所述的方法,其特征在于,判断所述当前频偏状态与历史有效频偏状态是否一致,包括:
    判断当前天线状态与历史有效天线状态是否一致;以及,
    判断当前半帧号与历史有效半帧号之差是否满足第一阈值;以及,
    判断历史有效频偏估计值是否被置为无效;
    其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史有效频偏状态包括:所述历史有效天线状态、所述历史有效半帧号和所述历史有效频偏估计值。
  3. 根据权利要求2所述的方法,其特征在于,根据所述历史有效频偏状态对细频偏估计进行预补偿,包括:
    使用所述历史有效频偏估计值对所述细频偏估计进行预补偿。
  4. 根据权利要求2所述的方法,其特征在于,还包括:
    若当前天线状态与历史有效天线状态不一致,或,当前半帧号与历史有效半帧号之差不满足第一阈值,则将所述历史有效频偏估计值置为无效。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述当前频偏状态与历史有效频偏状态不一致,则,判断当前导频信噪比是否满足第二阈值;若是,则采用限幅补偿策略对所述细频偏估计进行预补偿。
  6. 根据权利要求5所述的方法,其特征在于,采用限幅补偿策略对所述细频偏估计进行预补偿,包括:
    进行粗频偏估计,得到粗频偏估计结果;
    判断粗频偏估计结果是否满足实际频偏范围;若是,则根据所述粗频偏估计结果对所述细频偏估计进行预补偿;若否,则根据所述实际频偏范围对 所述粗频偏估计结果进行限幅,得到限幅结果,并根据所述限幅结果对所述细频偏估计进行预补偿。
  7. 根据权利要求5所述的方法,其特征在于,还包括:
    若导频信噪比不满足第二阈值,则,判断所述当前频偏状态与历史频偏状态是否一致;
    若一致,则采用频域延拓补偿策略对所述细频偏进行预补偿。
  8. 根据权利要求7所述的方法,其特征在于,判断所述当前频偏状态与历史频偏状态是否一致,包括:
    判断当前天线状态与历史天线状态是否一致;以及,
    判断当前半帧号与历史帧号之差是否满足第三阈值;以及,
    判断历史频偏估计值是否被置为无效;
    其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史频偏状态包括:所述历史天线状态、所述历史半帧号和所述历史频偏估计值。
  9. 根据权利要求8所述的方法,其特征在于,采用频域延拓补偿策略对所述细频偏进行预补偿,包括:
    根据所述历史频偏估计值进行频域延拓;
    根据频域延拓结果,对所述细频偏估计进行预补偿。
  10. 根据权利要求8所述的方法,其特征在于,还包括:
    若当前天线状态与历史天线状态不一致,或,当前半帧号与历史半帧号之差不满足第三阈值,则将所述历史频偏估计值置为无效。
  11. 根据权利要求7所述的方法,其特征在于,还包括:
    若所述当前频偏状态与历史频偏状态不一致,则不对细频偏估计进行预补偿。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,还包括:
    进行细频偏估计,得到细频偏估计结果;
    根据所述细频偏估计结果得到最终频偏估计结果;其中,所述最终频偏估计结果包括:最终天线状态、最终半帧号和最终频偏估计值;
    判断根据所述最终频偏估计结果进行频偏补偿后的数据的译码是否正确;
    若译码正确,则根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效频偏状态;
    若译码错误,则根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史频偏状态。
  13. 一种频偏处理系统,其特征在于,包括:
    第一获取模块,设置为获取当前频偏状态;
    第一判断模块,设置为判断所述当前频偏状态与历史有效频偏状态是否一致;其中,所述历史有效频偏状态为译码结果正确时对应的频偏状态;
    第一执行模块,设置为在所述当前频偏状态与历史有效频偏状态一致时,根据所述历史有效频偏状态对细频偏估计进行预补偿。
  14. 根据权利要求13所述的系统,其特征在于,
    第一判断模块,设置为判断当前天线状态与历史有效天线状态是否一致;以及,判断当前半帧号与历史有效半帧号之差是否满足第一阈值;以及,判断历史有效频偏估计值是否被置为无效;
    其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史有效频偏状态包括:所述历史有效天线状态、所述历史有效半帧号和所述历史有效频偏估计值。
  15. 根据权利要求14所述的系统,其特征在于,所述第一执行模块在根据所述历史有效频偏状态对细频偏估计进行预补偿时,包括:使用所述历史有效频偏估计值对所述细频偏估计进行预补偿。
  16. 根据权利要求14所述的系统,其特征在于,还包括:
    第二执行模块,设置为在当前天线状态与历史有效天线状态不一致,或,当前半帧号与历史有效半帧号之差不满足第一阈值时,将所述历史有效频偏估计值置为无效。
  17. 根据权利要求13所述的系统,其特征在于,还包括:
    第二判断模块,设置为在所述当前频偏状态与历史有效频偏状态不一致时,判断当前导频信噪比是否满足第二阈值;
    第三执行模块,设置为在当前导频信噪比满足第二阈值时,采用限幅补偿策略对所述细频偏估计进行预补偿。
  18. 根据权利要求17所述的系统,其特征在于,所述第三执行模块在采用限幅补偿策略对所述细频偏估计进行预补偿时,包括:进行粗频偏估计,得到粗频偏估计结果;判断粗频偏估计结果是否满足实际频偏范围;若是,则根据所述粗频偏估计结果对所述细频偏估计进行预补偿;若否,则根据所述实际频偏范围对所述粗频偏估计结果进行限幅,得到限幅结果,并根据所述限幅结果对所述细频偏估计进行预补偿。
  19. 根据权利要求17所述的系统,其特征在于,还包括:
    第三判断模块,设置为在导频信噪比不满足第二阈值时,判断所述当前频偏状态与历史频偏状态是否一致;
    第四执行模块,设置为在所述当前频偏状态与历史频偏状态一致时,采用频域延拓补偿策略对所述细频偏进行预补偿。
  20. 根据权利要求19所述的系统,其特征在于,
    所述第三判断模块,设置为判断当前天线状态与历史天线状态是否一致;以及,判断当前半帧号与历史帧号之差是否满足第三阈值;以及,判断历史频偏估计值是否被置为无效;
    其中,所述当前频偏状态包括:所述当前天线状态和所述当前半帧号;所述历史频偏状态包括:所述历史天线状态、所述历史半帧号和所述历史频偏估计值。
  21. 根据权利要求20所述的系统,其特征在于,所述第四执行模块在采用频域延拓补偿策略对所述细频偏进行预补偿时,包括:根据所述历史频偏估计值进行频域延拓;根据频域延拓结果,对所述细频偏估计进行预补偿。
  22. 根据权利要求20所述的系统,其特征在于,还包括:
    第五执行模块,设置为在当前天线状态与历史天线状态不一致,或,当前半帧号与历史半帧号之差不满足第三阈值时,将所述历史频偏估计值置为 无效。
  23. 根据权利要求19所述的系统,其特征在于,还包括:
    第六执行模块,设置为在所述当前频偏状态与历史频偏状态不一致时,不对细频偏估计进行预补偿。
  24. 根据权利要求13-23任一项所述的系统,其特征在于,还包括:
    计算模块,设置为进行细频偏估计,得到细频偏估计结果;
    第二获取模块,设置为根据所述细频偏估计结果得到最终频偏估计结果;其中,所述最终频偏估计结果包括:最终天线状态、最终半帧号和最终频偏估计值;
    第四判断模块,设置为判断根据所述最终频偏估计结果进行频偏补偿后的数据的译码是否正确;
    更新模块,设置为在译码正确时,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史有效频偏状态;以及,在译码错误时,根据所述最终天线状态、最终半帧号和最终频偏估计值更新历史频偏状态。
  25. 一种在其上记录有用于执行权利要求1所述方法的程序的计算机可读记录介质。
PCT/CN2016/100219 2015-12-04 2016-09-27 一种频偏处理方法和系统 WO2017092490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/781,467 US10608861B2 (en) 2015-12-04 2016-09-27 Method and system for processing frequency offset
EP16869801.7A EP3373540B1 (en) 2015-12-04 2016-09-27 Frequency offset processing method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510884498.7 2015-12-04
CN201510884498.7A CN106850482B (zh) 2015-12-04 2015-12-04 一种频偏处理方法和系统

Publications (1)

Publication Number Publication Date
WO2017092490A1 true WO2017092490A1 (zh) 2017-06-08

Family

ID=58796207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100219 WO2017092490A1 (zh) 2015-12-04 2016-09-27 一种频偏处理方法和系统

Country Status (4)

Country Link
US (1) US10608861B2 (zh)
EP (1) EP3373540B1 (zh)
CN (1) CN106850482B (zh)
WO (1) WO2017092490A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070703A (zh) * 2021-11-18 2022-02-18 成都中科微信息技术研究院有限公司 基于低轨卫星dvb-rcs2系统的低信噪比下频偏估计跟踪与补偿的通用方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023845A (zh) * 2017-11-22 2018-05-11 余仪琳 超窄带物联网通信的频偏处理方法
CN109889460B (zh) * 2019-01-25 2021-07-27 武汉虹信科技发展有限责任公司 上行频偏跟踪补偿方法及装置
WO2020246290A1 (ja) * 2019-06-05 2020-12-10 ソニー株式会社 通信装置および方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068593B2 (en) * 2001-02-08 2006-06-27 Chung-Ang University Industry Academic Cooperation Foundation Apparatus and method for synchronizing frequency in orthogonal frequency division multiplexing communication system
US20080273641A1 (en) * 2007-05-04 2008-11-06 Jingnong Yang Ofdm-based device and method for performing synchronization
CN102546485A (zh) * 2010-12-27 2012-07-04 中兴通讯股份有限公司 一种频偏估计的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706458B2 (en) * 2001-04-24 2010-04-27 Mody Apurva N Time and frequency synchronization in Multi-Input, Multi-Output (MIMO) systems
US7123670B2 (en) 2001-09-24 2006-10-17 Atheros Communications, Inc. Fine frequency offset estimation and calculation and use to improve communication system performance
US7539241B1 (en) 2004-10-22 2009-05-26 Xilinx, Inc. Packet detector for a communication system
CN101202725A (zh) * 2006-12-11 2008-06-18 昂达博思公司 在tdd无线ofdm通信系统中的自动频率偏移补偿
US8565324B2 (en) * 2008-09-17 2013-10-22 Harris Corporation Communications device using measured signal-to-noise ratio to adjust phase and frequency tracking
CN101753168B (zh) * 2008-12-19 2014-04-09 中兴通讯股份有限公司 用于对移动通信系统的频偏进行校正的方法及系统
CN101958744B (zh) * 2009-07-13 2013-11-20 电信科学技术研究院 频偏预校准方法和设备
CN105282072B (zh) * 2014-06-30 2019-04-30 深圳市中兴微电子技术有限公司 光传输网络中的频偏估计方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068593B2 (en) * 2001-02-08 2006-06-27 Chung-Ang University Industry Academic Cooperation Foundation Apparatus and method for synchronizing frequency in orthogonal frequency division multiplexing communication system
US20080273641A1 (en) * 2007-05-04 2008-11-06 Jingnong Yang Ofdm-based device and method for performing synchronization
CN102546485A (zh) * 2010-12-27 2012-07-04 中兴通讯股份有限公司 一种频偏估计的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373540A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070703A (zh) * 2021-11-18 2022-02-18 成都中科微信息技术研究院有限公司 基于低轨卫星dvb-rcs2系统的低信噪比下频偏估计跟踪与补偿的通用方法及系统
CN114070703B (zh) * 2021-11-18 2024-01-19 成都中科微信息技术研究院有限公司 低信噪比下频偏估计跟踪与补偿的通用方法及系统

Also Published As

Publication number Publication date
EP3373540A4 (en) 2019-07-24
EP3373540B1 (en) 2021-12-15
US20190268196A1 (en) 2019-08-29
CN106850482A (zh) 2017-06-13
EP3373540A1 (en) 2018-09-12
CN106850482B (zh) 2019-11-29
US10608861B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2017092490A1 (zh) 一种频偏处理方法和系统
EP2579533B1 (en) Robust and Low-Complexity Combined Signal Power Estimation for OFDM
JP5604601B2 (ja) トーン信号の未知の周波数誤差を推定するための装置および方法
US10313172B2 (en) System and method for enhanced channel estimation using tap-dependent frequency offset (FO) estimation
US20220038206A1 (en) Wireless communications device and method of wireless communications
US20220038318A1 (en) Wireless communications device and method of wireless communications
US9906389B2 (en) Receiver, receiving method, and non-transitory computer readable medium
JP2010532139A (ja) 通信受信機のためのバースト的干渉抑圧
CN109803369B (zh) 联合时频估计及补偿方法、装置及用户设备
US8422354B2 (en) Channel estimation method and apparatus using data channel
EP1685685B1 (en) Improved method for joint dc offset correction and channel coefficient estimation in a receiver
US8660216B2 (en) Method and apparatus for mitigating the residual CFO effect on channel estimation for OFDM receivers
CN106878213B (zh) 一种lte上行频偏估计的方法
CN103368882A (zh) 一种相位噪声估计的方法及装置
EP3945700B1 (en) Method and system for adjusting the bandwidth of a frequency domain smoothing filter for channel tracking loop in ofdm communication system
EP3506579A1 (en) Receiving device, equalization processing program, and signal receiving method
US8619923B2 (en) System and method for optimizing use of channel state information
CN104904172A (zh) 估算和去除dc偏移的方法
KR20210082891A (ko) 고속 모바일 수신환경에서의 잡음 레벨 보정을 이용한 채널 복호화 방법 및 이를 위한 장치
KR101088042B1 (ko) 직교주파수 분할 다중 기반에서 채널상태정보를 적용한 수신신호 처리방법
CN101414989B (zh) 基于块传输的单载波系统的定时跟踪方法
CN114363134B (zh) 一种信号解调方法、装置、电子设备及存储介质
EP3035567A1 (en) Method and apparatus for noise power estimation
CN118509288A (zh) 一种单载波信号的解调方法、解调装置和介质
WO2013190922A1 (ja) 受信装置および受信方法、並びにコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016869801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016869801

Country of ref document: EP

Effective date: 20180608