WO2017085975A1 - Replaceable-cutting-edge rotary cutting tool and insert - Google Patents

Replaceable-cutting-edge rotary cutting tool and insert Download PDF

Info

Publication number
WO2017085975A1
WO2017085975A1 PCT/JP2016/074240 JP2016074240W WO2017085975A1 WO 2017085975 A1 WO2017085975 A1 WO 2017085975A1 JP 2016074240 W JP2016074240 W JP 2016074240W WO 2017085975 A1 WO2017085975 A1 WO 2017085975A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
corner
angle
tool
insert
Prior art date
Application number
PCT/JP2016/074240
Other languages
French (fr)
Japanese (ja)
Inventor
康博 木内
由幸 小林
中見川 崇夫
史彦 稲垣
裕貴 林
Original Assignee
三菱日立ツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立ツール株式会社 filed Critical 三菱日立ツール株式会社
Priority to EP16865978.7A priority Critical patent/EP3378589B1/en
Priority to KR1020187013421A priority patent/KR102021271B1/en
Priority to CN201680066026.3A priority patent/CN108290231B/en
Priority to JP2016569092A priority patent/JP6086179B1/en
Priority to US15/776,209 priority patent/US10799956B2/en
Publication of WO2017085975A1 publication Critical patent/WO2017085975A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/109Shank-type cutters, i.e. with an integral shaft with removable cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • B23B27/1603Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped with specially shaped plate-like exchangeable cutting inserts, e.g. chip-breaking groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/22Securing arrangements for bits or teeth or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/08Rake or top surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/203Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/28Angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/28Angles
    • B23C2200/283Negative cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0414Cutting angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0421Cutting angles negative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/082Details of the corner region between axial and radial cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/084Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/40Flutes, i.e. chip conveying grooves

Definitions

  • the present invention relates to a blade-tip-exchange-type rotary cutting tool equipped with a cutting insert suitable for side finishing of a work material, and an insert.
  • a square type solid end mill has been used to finish a bottom surface serving as a processing reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold.
  • L / D is 4 or more
  • the machining accuracy is difficult to obtain due to the tilting of the tool.
  • the L value is the length in the direction of the rotation center axis of the tool
  • the D value is the diameter of the rotation locus of the tool cutting edge.
  • the solid type for example, the tool itself is very expensive when the outer diameter is ⁇ 10 mm or more.
  • a blade end replaceable radius end mill is used for long tool overhang.
  • reducing the cutting condition means, for example, that cutting conditions such as a cutting amount and feed are suppressed to a low value. For this reason, various proposals have been made regarding the cutting edge shape of the blade end replaceable radius end mill.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-2815173 discloses a blade-tip-replaceable end mill in which an insert can be detachably held by a V-shaped slit at the tip of a tool body.
  • An outer peripheral blade formed in the axial direction from the tip apex angle of the main body, a bottom blade positioned substantially perpendicular to the outer peripheral blade, and a corner composed of a substantially circular arc in contact with the outer peripheral blade and the bottom blade at the bottom blade corner.
  • a blade-tip-replaceable end mill having an R blade and a non-gash portion with a width of 0.1 to 1 mm parallel to the outer peripheral blade with a gash angle of the bottom blade of 30 to 45 ° is described.
  • Patent Document 2 Japanese Patent No. 5744235
  • a bottom cutting edge that exists at the tip of the tool body and an outer peripheral cutting edge that exists at the outer periphery of the tool body are formed.
  • a radius end mill in which a gap is connected by a corner R cutting edge, a chip discharge groove is provided behind the rake face of the outer peripheral cutting edge, and a corner gash adjacent to the corner R cutting edge is formed.
  • the corner gash is provided on a corner R cutting edge other than the boundary between the corner R cutting edge and the bottom cutting edge and the boundary between the corner R cutting edge and the outer peripheral cutting edge, and is in contact with the corner gash.
  • Patent Document 2 describes that the axial rake at the end on the bottom cutting edge side is set to 5 to 20 °.
  • the chip discharge groove provided on the outer periphery of the end portion of the end mill body or the wall surface facing the rotation direction of the end of the gasche provided on the tip portion of the chip discharge groove is provided.
  • the corner face connecting the bottom cutting edge and the outer peripheral cutting edge includes a convex arcuate corner edge, and the corner edge is a positive edge.
  • the cutting edge that has a cutting edge inclination angle and is located on the side ridge side of the rake face is inclined to the rear side in the end mill rotation direction from the bottom blade side toward the outer peripheral blade side, and the rear side in the end mill rotation direction Is formed in a twisted surface shape that gradually increases from the corner blade toward the center of the convex arc formed by the corner blade.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2011-20192
  • the rake angle of the rake face of the bottom blade is a negative angle
  • the rake angle of the rake face of the corner R and the rake face of the outer peripheral cutting edge is also negative.
  • JP-A-8-281513 Japanese Patent No. 5744235 Japanese Patent No. 5267556 JP 2011-20192 A
  • Patent Document 1 a slit extending in the axial direction is provided at the distal end portion of the holder body, and a chip having a cutting edge is sandwiched by the leading edge protruding from the slit by the slit, and is emitted from the top apex angle of the cutting edge chip.
  • An outer peripheral blade in the axial direction, a bottom blade positioned substantially perpendicular to the outer peripheral blade on a diagonal line including the center of the axis from the apex angle generated by the outer peripheral blade, and an approximately 1/4 arc in contact with the outer peripheral blade and the bottom blade at the bottom blade corner There is described a throw-away end mill characterized in that a cutting edge tip provided with a pair of corner radius blades is provided.
  • the end mill of Patent Document 1 has room for improvement in improving the biting of the outer peripheral cutting edge in the side finishing of the work material and extending the tool life in the bottom finishing.
  • Patent Document 2 a cutting edge shape in which a corner gash is provided in a corner R blade is studied and described.
  • the corner R cutting edge in the vicinity of the outer peripheral cutting edge there is a step or a corner at the joint with the outer peripheral cutting edge.
  • it improves the ability of cross feed processing by improving the sharpness.
  • Patent Document 2 discloses that the axial rake in the vicinity of the bottom blade is small, there is no step on the rake face, and the outflow of chips is not hindered. Are listed.
  • the end mill of Patent Document 2 has room for improvement in the biting of the outer peripheral cutting edge in the side finishing of the work material and the tool life in the bottom finishing.
  • Patent Document 3 with respect to the corner R cutting edge connected from the bottom cutting edge side to the outer peripheral cutting edge side, it is possible to suppress a significant change in the right-angle rake angle along the corner R cutting edge and further suppress a change in the cutting edge inclination angle.
  • the radius and mill cutting edge shape which exhibits more stable cutting performance by ensuring dischargeability, has been studied and described.
  • the end mill of Patent Document 3 has room for improvement in improving the biting of the outer peripheral cutting edge in the side finishing of the work material and extending the tool life in the bottom finishing.
  • the rake angle of the rake face of the bottom blade is a negative angle
  • the rake angle of the rake face of the corner R and the rake face of the outer peripheral cutting edge is also set to a negative angle.
  • a solid-type twisted-blade radius end mill that improves the durability of the tool by improving the chip evacuation performance while increasing the fracture resistance of the blade is described.
  • the end mill of Patent Document 4 has room for improvement in the biting of the outer peripheral cutting edge in the side finishing of the work material and the tool life in the bottom finishing.
  • the present invention improves the cutting performance particularly when machining a long tool protrusion (for example, L / D is 4 or more) when finishing the bottom surface serving as a machining reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold.
  • Another object of the present invention is to provide a blade-tip-replaceable rotary cutting tool and an insert excellent in dimensional accuracy in side finishing perpendicular to a horizontal plane in addition to the finishing dimensional accuracy of the bottom surface of the work material.
  • One aspect of the present invention is a blade-tip-exchange-type rotary cutting tool in which an insert having a cutting edge portion is detachably attached to a mounting seat provided at a distal end portion of a tool main body, and the mounting seat is formed of the tool main body.
  • a slit-like insert fitting groove formed to extend in a radial direction perpendicular to the rotation center axis including the rotation center axis of the tool and the insert inserted into the insert fitting groove are fixed to the distal end portion.
  • a cutting edge portion of the insert extends along the radial direction, a rake face of the outer cutting edge, and a radial direction.
  • a twist angle of the outer peripheral cutting edge has a positive value, and an axial rake angle of the corner R cutting edge at a boundary point between the corner R cutting edge and the outer peripheral cutting edge is negative.
  • the axial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the bottom cutting edge has a negative value, and a predetermined point on the corner R cutting edge And a reference plane including the rotation center axis The angle at which the rake face of the corner R cutting edge is inclined with respect to the reference plane in a virtual plane that is vertical and includes a virtual straight line passing through the arc center point of the corner R cutting edge and the predetermined point.
  • the radial rake angle of the corner R cutting edge has a negative value over the entire length of the corner R cutting edge
  • the radial rake angle is The corner has a minimum value in an intermediate portion located between the pair of boundary points among the corner R cutting edges (hereinafter referred to as “the blade-tip-exchangeable rotary cutting tool of the present invention”). ).
  • An insert according to another aspect of the present invention is characterized by being used in the above-described blade-tip-exchange-type rotary cutting tool (hereinafter referred to as “the insert of the present invention”).
  • the axial rake angle of the corner R cutting edge at the boundary point (outermost peripheral position) between the arcuate corner R cutting edge and the outer peripheral cutting edge has a negative value.
  • the rake angle in the axial direction of the corner R cutting edge at the boundary point (the most advanced position) between the corner R cutting edge and the bottom cutting edge has a negative value. That is, the axial rake angle of the corner R cutting edge is a negative angle.
  • the twist angle of the outer peripheral cutting edge has a positive value and is a positive angle.
  • the boundary point between the corner R cutting edge and the outer peripheral cutting edge is directed to the tool rotation direction in the circumferential direction around the rotation center axis of the tool.
  • the most protruding point (the most convex point).
  • the corner R cutting edge and the outer peripheral cutting edge are covered at the boundary point (the most convex point).
  • Cutting started by point contact from the boundary point expands the cutting range to the corner R cutting edge and the outer peripheral cutting edge as the tool rotates. Since the axial rake angle of the corner R cutting edge is set to a negative angle, the corner R cutting edge has a reverse twisted blade shape. The outer peripheral cutting edge has a positive twisted blade shape. For this reason, of the cutting forces received by the tool from the work material, the cutting force acting in the direction along the rotation center axis (that is, the back component force) is the tip side (cutting edge side) in the direction of the rotation center axis in the outer peripheral cutting edge. In contrast, the corner R cutting edge acts toward the base end side (tool shank side) in the rotation center axis direction.
  • the radial rake angle has a negative value over the entire length of the corner R cutting edge.
  • the radial rake angle is a minimum value in an intermediate portion of the corner R cutting edge located between the pair of boundary points.
  • the radial rake angle is a minimum value in an intermediate portion between the pair of boundary points of the corner R cutting edge, the boundary point between the corner R cutting edge and the bottom cutting edge among these boundary points.
  • the rake angle in the radial direction at can be made closer to the positive angle side (positive angle side) than the minimum value while being a negative value. Thereby, the sharpness of the boundary point between the corner R cutting edge and the bottom cutting edge can be ensured in the bottom finishing.
  • Radial rake angle decreases. That is, the rake angle in the radial direction increases toward the negative angle side (negative angle side) as it approaches the intermediate portion, and reaches a minimum value (that is, maximum value on the negative angle side) on the intermediate portion. Therefore, the edge strength can be remarkably improved by providing the intermediate portion located between the pair of boundary points at the cutting edge boundary portion for cutting the work hardened layer of the work material. Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
  • the present invention when finishing a bottom surface serving as a processing reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold, particularly in processing with a long tool protrusion (for example, L / D is 4 or more).
  • the cutting performance can be improved, and in addition to the finished dimensional accuracy of the bottom surface of the work material, the dimensional accuracy in the side finishing process perpendicular to the horizontal surface can be significantly improved.
  • the radial rake angle of the corner R cutting edge at a boundary point between the corner R cutting edge and the bottom cutting edge is determined by the corner R cutting edge and the outer peripheral cutting edge. It is preferable that it is smaller than the radial rake angle of the corner R cutting edge at the boundary point.
  • the radial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the bottom cutting edge is greater than the radial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the outer peripheral cutting edge. Since it is enlarged to the negative angle side (negative angle side), it is possible to improve the chipping resistance of the bottom cutting edge and improve the chip discharge and maintain the finished surface with high quality.
  • the radial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the outer peripheral cutting edge can be made closer to the positive angle side (positive angle side) while taking a negative value.
  • the cutting force in the tool radial direction (horizontal direction) that the tool that cuts into the work material receives from the work material that is, the feed force
  • the radial rake angle (true rake angle) at the boundary point between the corner R cutting edge and the bottom cutting edge is ⁇
  • the radial rake angle at the boundary point between the corner R cutting edge and the outer peripheral cutting edge Radial rake angle ⁇ , radial rake angle ⁇ , and radial rake angle ⁇ , where ⁇ is the true rake angle and ⁇ is the minimum radial rake angle (true rake angle) in the intermediate portion.
  • the cutting edge boundary that hits the work hardening layer of the work material in roughing or semi-finishing in advance in bottom finishing and side finishing (especially bottom finishing) by having this configuration in the cutting edge exchange rotary cutting tool The radial rake angle of the portion (intermediate portion positioned between a pair of boundary points) can be set to the smallest negative value. This is preferable because the effect of preventing chipping at the boundary of the cutting edge can be remarkably obtained in roughing or intermediate finishing.
  • the cutting edge boundary portion is easily damaged in the bottom finishing and side finishing (especially bottom finishing).
  • an angle at which the virtual straight line projected on the reference plane is inclined with respect to the rotation center axis in the reference plane is defined as a radiation angle, and the radial direction It is preferable that the minimum value of the rake angle is set in a range of 5 ° to 50 ° in terms of the radiation angle among the corner R cutting edges.
  • the “virtual straight line projected on the reference plane” refers to projecting a virtual straight line perpendicular to the reference plane.
  • the edge strength of the boundary portion (intermediate portion located between the pair of boundary points) can be improved. Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
  • the point where the radial rake angle (true rake angle) of the corner R cutting edge is the minimum value is located in the region where the radial angle of the corner R cutting edge is 5 ° or more, so that the bottom finish processing is performed. It is possible to remarkably increase the machining accuracy by preventing the deterioration of the sharpness of the time, and to extend the tool life.
  • the point at which the radial rake angle (true rake angle) of the corner R cutting edge is the minimum value is located in the region of the corner R cutting edge where the radial angle is 50 ° or less.
  • the cutting edge strengthening part formed in the part is likely to be within the range of a general bottom finishing allowance. Therefore, the effect of preventing chipping at the boundary portion of the cutting edge can be remarkably obtained regardless of the finishing cost for bottom finishing.
  • the present invention improves the cutting performance particularly when machining a long tool protrusion (for example, L / D is 4 or more) when finishing the bottom surface serving as a machining reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold.
  • L / D long tool protrusion
  • the bottom surface serving as a machining reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold.
  • the perspective view of the blade-tip-exchange-type rotary cutting tool which is an example of embodiment of this invention is shown.
  • the top view of the blade-tip-exchange-type rotary cutting tool shown in FIG. 1 is shown.
  • the side view of the blade-tip-exchange-type rotary cutting tool shown in FIG. 1 is shown.
  • the front view of the blade-tip-exchange-type rotary cutting tool shown in FIG. 1 is shown.
  • worn is shown.
  • the top view which expanded the corner R cutting blade part vicinity of the insert shown in FIG. 5 is shown.
  • the side view which expanded the corner R cutting-blade part vicinity of the insert shown in FIG. 5 is shown.
  • the front view which expanded the corner R cutting edge part vicinity of the insert shown in FIG. 5 is shown.
  • the enlarged view of the corner R cutting blade part vicinity shown in FIG. 5 is shown.
  • the figure explaining the radial rake angle and radial angle in the corner R cutting edge of the blade-tip-exchange-type rotary cutting tool of this embodiment is shown.
  • tip-exchange-type rotary cutting tool of this embodiment is shown.
  • the insert shape of the comparative example 2 is shown.
  • the insert shape of the comparative example 3 is shown.
  • the shape profile line of the standing wall side part formed by the process using the insert of this invention example 1 is shown.
  • the shape profile line of the standing wall side part formed by the process using the insert of the comparative example 2 is shown.
  • the shape profile line of the standing wall side part formed by the process using the insert of the comparative example 3 is shown.
  • the shape profile line of the standing wall side part formed by the process using the insert of this invention example 1 is shown.
  • the shape profile line of the standing wall side part formed by the process using the insert of the comparative example 2 is shown.
  • the shape profile line of the standing wall side part formed by the process using the insert of the comparative example 3 is shown.
  • blade edge exchange type rotary cutting tool of the present invention is applied to a blade edge exchange type radius end mill (hereinafter referred to as “blade edge exchange type radius end mill”).
  • blade edge exchange type radius end mill This blade-tip-exchange-type rotary cutting tool is particularly suitable for side finishing of a work material performed under cutting conditions with a long tool protrusion (L / D is 4 or more).
  • L / D indicates the length of the tool in the rotation center axis (C) direction
  • D value indicates the diameter of the rotation locus of the tool cutting edge.
  • the embodiment of the present invention described below includes a rake face (14) of a corner R cutting edge (13) connecting a bottom cutting edge (11) and an outer peripheral cutting edge (9), and a rake face (12) of the bottom cutting edge.
  • It is a blade-tip-exchange-type rotary cutting tool in which an insert (5) having a chamfered surface (15) combined with at least a portion located outside in the radial direction is detachably attached to a tool body (1).
  • the blade end replaceable radius end mill (6) will be described.
  • FIG. 1 is a perspective view showing an example of the configuration of a blade end replaceable radius end mill (6) which is an example of an embodiment of the present invention.
  • FIG. 2 is a plan view of the blade end replaceable radius end mill (6) shown in FIG.
  • FIG. 3 is a side view of the blade end replaceable radius end mill (6) shown in FIG.
  • FIG. 4 is a front view of the blade end replaceable radius end mill (6) shown in FIG.
  • FIG. 5 is a perspective view showing the insert (5) of the blade end replaceable radius end mill (6) shown in FIG.
  • the blade end replaceable radius end mill (6) includes a tool body (1) having a substantially cylindrical shape, and a tip portion (2) in the direction of the rotation center axis (C) of the tool body (1). And an insert (5) having a cutting edge portion (4). A shank portion (not shown) is formed integrally with the tool body (1) at the base end in the direction of the rotation center axis (C) of the tool body (1).
  • the blade end replaceable radius end mill (6) of the present embodiment includes a tool body (1) formed of steel, cemented carbide, or the like, and an insert (5) formed of cemented carbide, etc.
  • a plate-like insert (5) is placed on the mounting seat (insert mounting seat) (3) formed at the tip (2) of the tool body (1) rotated about the rotation center axis (C).
  • the shaft (symmetrical axis of the cutting edge portion (4) formed on the insert (5)) is detachably mounted in a state where the shaft is aligned with the rotation center axis (C) of the tool.
  • the insert (5) attached to the attachment seat (3) is disposed so that the cutting edge (4) protrudes to the tip side and the radially outer side of the tool body (1).
  • the blade end replaceable radius end mill (6) has a base end (shank) of the tool body (1) attached to a spindle (not shown) of a machine tool indirectly or directly via a chuck. As the main shaft is driven to rotate, it is rotated in the tool rotation direction (R) around the rotation center axis (C) to subject the workpiece made of a metal material or the like to rolling (milling). .
  • the direction in which the rotation center axis (C) of the tool body (1) extends is referred to as the rotation center axis (C) direction.
  • the direction from the shank portion of the tool body (1) to the mounting seat (3) is referred to as the tip side (the lower side in FIGS. 2 and 3), and the mounting seat (3).
  • the direction from the base to the shank is referred to as the base end side (the upper side in FIGS. 2 and 3).
  • a direction orthogonal to the rotation center axis (C) is referred to as a radial direction.
  • a direction approaching the rotation center axis (C) is referred to as an inner side in the radial direction
  • a direction away from the rotation center axis (C) is referred to as an outer side in the radial direction.
  • a direction around the rotation center axis (C) is referred to as a circumferential direction.
  • the direction in which the tool body (1) is rotated by the rotational drive of the spindle during cutting is called the tool rotation direction (R), and the opposite rotation direction is opposite to the tool rotation direction (R).
  • the side that is, the counter tool rotation direction).
  • the mounting seat (3) includes a slit-like insert fitting groove (7) formed in the distal end portion (2) of the tool body (1) and extending in the radial direction including the rotation center axis (C) of the tool.
  • the insert mounting seat (3) opens at the tip (2) of the tool main body (1), and further extends in the radial direction of the tool main body (1) to provide the tool main body (1).
  • a slit-like insert fitting groove (7) formed in a predetermined length (depth) toward the base end side of the tool body (1).
  • the tip portion (2) of the tool body (1) is divided into two, and a pair of tips.
  • a half body is formed.
  • An insert fixing screw hole is formed from one surface of the tip half so as to cross the insert fitting groove (7) and reach the other tip half.
  • the direction of the screw hole for fixing the insert is formed in a direction orthogonal to the direction in which the insert fitting groove (7) of the tool body (1) extends in the radial direction of the tool body (1).
  • a female screw for fitting with the male screw portion of the fixing screw (8) is inserted into the inner peripheral surface of the screw hole for fixing the insert that passes through the first half portion and reaches the other half portion. Screw part is engraved.
  • FIG. 5 is a perspective view of the insert (5) of the example of the present invention.
  • FIG. 6 is an enlarged plan view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
  • FIG. 7 is an enlarged side view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
  • FIG. 8 is an enlarged front view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
  • FIG. 9 is an enlarged view of the vicinity of the corner R cutting edge (13) shown in FIG.
  • FIG. 6 is an enlarged plan view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
  • FIG. 7 is an enlarged side view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
  • FIG. 8 is an enlarged front view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
  • FIG. 9 is an enlarged view of the vicinity of the corner R cutting edge (13) shown
  • FIG. 10 is a diagram for explaining the radial rake angle ( ⁇ ) and the radial angle ( ⁇ ) in the corner R cutting edge (13) of the blade end replaceable radius end mill (6) of the present embodiment.
  • FIG. 11 is a profile of a radial rake angle in the corner R cutting edge (13) of the blade end replaceable radius end mill (6) of the present embodiment.
  • the insert (5) has a substantially flat plate shape and has a thickness T as shown in FIG.
  • the insert (5) is provided with a screw insertion hole (18) into which a fixing screw (8) for fixing the insert (5) to the mounting seat (3) is inserted, and for cutting and cutting the work material.
  • the insert (5) includes a screw insertion hole (18) penetrating from one outer surface portion (5a) toward the other outer surface portion (5b).
  • the screw insertion hole (18) is a through hole through which the fixing screw (8) is inserted when the insert (5) is mounted and fixed to the mounting seat (3).
  • the cutting edge portion (4) is formed on a rake face that faces the tool rotation direction (R), a flank face that intersects the rake face and faces the radially outer side or the tip side, and an intersecting ridge line of the rake face and the flank face. And a cutting edge.
  • the cutting edge includes an outer peripheral cutting edge (9), a bottom cutting edge (11), and a corner R cutting edge (13).
  • the cutting edge includes a peripheral cutting edge (9), a bottom cutting edge (11), and a corner R cutting edge (13), and thus has a substantially L shape as a whole. Further, a rake face and a flank face are arranged adjacent to each of the cutting edges (9, 11, 13).
  • the insert (5) of the present embodiment is a two-blade cutting insert, and has two sets of the above-mentioned cutting blades provided with an outer peripheral cutting blade (9), a bottom cutting blade (11), and a corner R cutting blade (13).
  • the two sets of cutting edges are arranged 180 degrees rotationally symmetrical about the rotation center axis (C).
  • Reference numeral “9” shown in FIGS. 5 and 6 is the outer peripheral cutting edge (9) of the insert (5).
  • the outer peripheral cutting edge (9) extends along the direction of the rotation center axis (C). Specifically, the outer peripheral cutting edge (9) is twisted in a spiral shape toward the side opposite to the tool rotation direction (R) as it goes from the tip end connected to the corner R cutting edge (13) toward the base end side. It extends. That is, as shown in FIG. 3, the torsion angle ( ⁇ ) of the outer peripheral cutting edge (9) is a positive value (positive angle).
  • the magnitude of the twist angle ( ⁇ ) of the outer peripheral cutting edge (9) is not particularly limited, but is preferably in the range of 2 ° to 20 °.
  • the range of the magnitude of the twist angle ( ⁇ ) of the outer peripheral cutting edge (9) is more preferably 2 ° to 15 °, and particularly preferably 3 ° to 8 °.
  • the boundary point (Q) with (13) is the outermost peripheral point in the direction perpendicular to the rotation center axis (C) (that is, the radial direction).
  • the distal end of the outer peripheral cutting edge (9) and the base end of the corner R cutting edge (13) are connected. That is, the cutting edge from the boundary point (Q) toward the proximal end is the outer peripheral cutting edge (9), and the cutting edge from the boundary point (Q) toward the distal end is the corner R cutting edge (13).
  • the rake face (10) of the outer peripheral cutting edge (9) facing the tool rotation direction (R) is disposed adjacent to the radially inner side of the outer peripheral cutting edge (9).
  • a chip discharge groove (17) is formed on the radially inner side of the rake face (10) of the outer peripheral cutting edge (9).
  • the chip discharge groove (17) extends along the rotation center axis (C) direction.
  • the flank of the outer peripheral cutting edge (9) is disposed adjacent to the opposite side of the outer peripheral cutting edge (9) from the tool rotation direction (R).
  • the flank face is formed facing outward in the radial direction, and is inclined so as to go radially inward from the outer peripheral cutting edge (9) toward the side opposite to the tool rotation direction (R). Is granted.
  • Reference numeral “11” shown in FIGS. 5 and 6 is the bottom cutting edge (11) of the insert (5).
  • the bottom cutting edge (11) extends along the radial direction. Specifically, the bottom cutting edge (11) extends toward the base end side from the radial outer end adjacent to (connected to) the corner R cutting edge (13) toward the inner side in the radial direction, and has a center of rotation. It is slightly inclined with respect to a plane (horizontal plane) perpendicular to the axis (C).
  • the rotation locus of the pair of bottom cutting edges (11) is substantially conical. It is formed in a shape.
  • the boundary point (P) with (11) is located at the foremost part of the tool in the direction of the rotation center axis (C), that is, the lowest point.
  • the radially outer end of the bottom cutting edge (11) and the radially inner end of the corner R cutting edge (13) are connected. That is, the cutting edge that extends radially inward from the boundary point (P) is the bottom cutting edge (11), and the cutting edge that extends radially outward from the boundary point (P) is the corner R cutting edge (13).
  • symbol "U” of FIG. 6 shows the bottom cutting edge area
  • the rake face (12) of the bottom cutting edge (11) facing the tool rotation direction (R) is disposed adjacent to the base end side of the bottom cutting edge (11).
  • a chip discharge groove (16) is formed on the base end side of the rake face (12) of the bottom cutting edge (11).
  • the chip discharge groove (16) extends along the direction of the rotation center axis (C).
  • the chip discharge groove (16) of the bottom cutting edge (11) is disposed adjacent to the inner side in the radial direction of the chip discharge groove (17) of the outer peripheral cutting edge (9), and these chip discharge grooves (16, 17) are arranged with each other. Are formed by different surfaces.
  • the flank of the bottom cutting edge (11) is disposed adjacent to the side of the bottom cutting edge (11) opposite to the tool rotation direction (R).
  • the flank is formed so as to face the distal end side, and is inclined so as to go to the base end side from the bottom cutting edge (11) toward the side opposite to the tool rotation direction (R). Has been granted.
  • the bottom cutting edge (11) is located on the outer side in the radial direction in the blade length region (full length) of the bottom cutting edge (11), and the corner R cutting edge (13). And an outer bottom cutting edge (19) extending radially inward from the corner R cutting edge (13), and of the blade length region, the outer bottom cutting edge (19) is more radial than the outer bottom cutting edge (19).
  • An inner bottom cutting edge (20) which is disposed on the inner side and extends radially inward from the outer bottom cutting edge (19). And the part corresponding to an outer side bottom cutting edge (19) among bottom cutting edges (11) is arrange
  • the plan view of the insert (5) shown in FIG. 6, that is, the plan view in which the rake face (12) of the bottom cutting edge (11) is viewed in front, the outer bottom cutting edge (19) of the bottom cutting edge (11) and The inner bottom cutting edge (20) extends in a straight line so as to form one straight line having no bending point at the connecting portion.
  • the inclination with respect to the direction is larger at the outer bottom cutting edge (19) than at the inner bottom cutting edge (20).
  • the axial rake angle (axial rake) of the bottom cutting edge (11) is larger on the negative angle (negative angle) side at the outer bottom cutting edge (19) than at the inner bottom cutting edge (20).
  • the absolute value of the axial rake angle of the outer bottom cutting edge (19) is larger than that of the inner bottom cutting edge (20).
  • the portion corresponding to the outer bottom cutting edge (19) of the rake face (12) of the bottom cutting edge (11) is disposed on the chamfered surface (15).
  • the chamfered surface (15) will be described later separately.
  • the axial rake angle of the inner bottom cutting edge (20) is 0 °
  • the axial rake angle of the outer bottom cutting edge (19) is a negative value.
  • the front view of the insert (5) shown in FIG. 8 that is, the front view of the insert (5) viewed from the distal end of the rotation center axis (C) toward the proximal end side, in the radial direction of the bottom cutting edge (11)
  • the amount of displacement in the circumferential direction per unit length, that is, the inclination of the bottom cutting edge (11) with respect to the radial direction is larger at the outer bottom cutting edge (19) than at the inner bottom cutting edge (20).
  • the central rake angle (radial rake; radial rake angle) of the bottom cutting edge (11) is a negative angle (negative angle) at the outer bottom cutting edge (19) than the inner bottom cutting edge (20). The side is getting bigger.
  • the absolute value of the rake angle in the center direction of the outer bottom cutting edge (19) is larger than that of the inner bottom cutting edge (20).
  • the rake angle in the center direction of the inner bottom cutting edge (20) and the rake angle in the center direction of the outer bottom cutting edge (19) are both negative values.
  • symbol "13" shown in FIG. 5 is the corner R cutting edge (13) which connects the bottom cutting edge (11) and outer periphery cutting edge (9) of insert (5).
  • the corner R cutting edge (13) connects the outer end in the radial direction of the bottom cutting edge (11) and the tip of the outer peripheral cutting edge (9) and is directed toward the outer periphery of the tip of the tool body (1). It is formed in a convex arc shape.
  • the shape of the cross section including the rotation center axis (C) and parallel to the direction of the rotation center axis (C) is formed in a substantially 1 ⁇ 4 arc shape.
  • the rake face (14) of the corner R cutting edge (13) facing the tool rotation direction (R) is disposed adjacent to the radially inner side and the base end side of the corner R cutting edge (13).
  • the rake face (14) of the corner R cutting edge (13) is gradually inclined toward the tool rotation direction (R) toward the base end side in the rotation center axis (C) direction. That is, the rake angle (Ar) in the axial direction of the corner R cutting edge (13) is set to a negative angle (negative angle) throughout the corner R cutting edge (13).
  • the axial rake angle (Ar1) of the corner R cutting edge (13) at the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9) is negative.
  • the axial rake angle (Ar2) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) also has a negative value. .
  • the radial rake angle (Rr) is set to a negative angle (negative angle) between the boundary point (Q) and the boundary point (P) along the blade length region. Preferably it is.
  • the flank face of the corner R cutting edge (13) is arranged adjacent to the opposite side of the corner R cutting edge (13) from the tool rotation direction (R).
  • the flank has a curved surface that is convex toward the outer periphery of the tip of the tool body (1), and is formed radially outward and toward the tip.
  • the flank is inclined so as to be directed radially inward and proximally from the corner R cutting edge (13) toward the side opposite to the tool rotation direction (R), thereby providing a clearance angle.
  • the 6 is a chamfered surface (15) in which the rake face (14) of the corner R cutting edge (13) and the rake face (12) of the bottom cutting edge (11) are combined.
  • the chamfered surface (15) is a portion positioned at least on the radially outer side of the rake face (14) of the corner R cutting edge (13) and the rake face (12) of the bottom cutting edge (11) (this embodiment).
  • the outer bottom cutting edge (19) is included.
  • the chamfered surface (15) of the present embodiment serves as the rake face (14) of the entire corner R cutting edge (13) and the rake face of the outer bottom cutting edge (19) of the bottom cutting edge (11). ing.
  • the chamfered surface (15) is a boundary point existing in the outer bottom cutting edge (19), the corner R cutting edge (13), and the region (S) of the bottom cutting edge (11). It is formed in a region surrounded by a curved ridge line connecting (Q) and the point G on the rake face and a straight ridge line connecting the point G and the point F on the bottom cutting edge (11).
  • region (S) is an area
  • the relationship between the region (S) and the boundary point (Q) will be described separately in an embodiment described later.
  • the point G is an intersection where a total of three surfaces of the pair of chip discharge grooves (16, 17) and the chamfered surface (15) intersect. From this point G, a ridge line (chip discharge groove ( 16 and 17) and a ridge line that forms a boundary between the chamfered surfaces (15)) extend radially.
  • the point F is a connection point between the outer bottom cutting edge (19) and the inner bottom cutting edge (20) of the bottom cutting edge (11).
  • the chamfered surface (15) is a planar region formed by being surrounded by the above-mentioned cutting edge and ridgeline.
  • the blade end replaceable radius end mill (6) has the following special technical features in the vicinity of the corner R cutting edge (13) of the cutting edge portion (4).
  • Reference sign “Pr” shown in FIG. 10 is a reference plane perpendicular to the main motion direction (tool rotation direction R) of the tool of the blade end replaceable radius end mill (6).
  • the reference plane (Pr) is a virtual plane including the rotation center axis (C).
  • a predetermined point (A) on the corner R cutting edge (13) is the plane.
  • the upper left figure of FIG. 10 is an enlarged view of the vicinity of the corner R cutting edge portion of the insert as seen from the direction perpendicular to the reference plane (Pr).
  • the symbol “O” is the arc center point of the corner R cutting edge (13).
  • the symbol “VL” is an imaginary straight line passing through the arc center point (O) of the corner R cutting edge (13) and the predetermined point (A) of the corner R cutting edge (13).
  • the cross section (hatched surface) of the insert (5) indicated by reference sign “VS” in the lower right diagram of FIG. 10 is a virtual plane that is perpendicular to the reference surface (Pr) and includes a virtual straight line (VL). .
  • is an angle at which the rake face (14) of the corner R cutting edge (13) is inclined with respect to the reference plane (Pr) in the virtual plane (VS) (virtual straight line (VL and rake face). (An angle formed with (14))).
  • the radial rake angle ( ⁇ ) is the true rake angle.
  • the radial rake angle ( ⁇ ) is changed by moving a predetermined point (A) on the corner R cutting edge (13) on the corner R cutting edge (13).
  • the radial rake angle ( ⁇ ) varies depending on the position of the point (A) on the corner R cutting edge (13).
  • is a clearance angle at a predetermined point (A) of the corner R cutting edge (13).
  • A a straight line perpendicular to the virtual straight line (VL) and the corner R on the virtual plane (VS). It is an angle formed by the flank of the cutting edge (13).
  • is a radiation angle that is an angle at which the virtual straight line (VL) is inclined with respect to the rotation center axis (C).
  • the radiation angle ( ⁇ ) is determined by the virtual straight line (VL) projected on the reference plane (Pr) (that is, the virtual straight line (VL) in FIG. 10) within the reference plane (Pr). It is an angle inclined with respect to C).
  • the “virtual straight line (VL) projected on the reference plane (Pr)” refers to projecting the virtual straight line (VL) perpendicular to the reference plane (Pr).
  • the radial rake angle ( ⁇ ) of the corner R cutting edge (13) is In the entire length of the corner R cutting edge (13), it has a negative value and continuously changes.
  • the radial direction rake angle ( ⁇ ) of the corner R cutting edge (13) in FIG. 11 is increased twice or more to the negative angle side (negative angle side). In the example shown in FIG. That's it.
  • the radial rake angle ( ⁇ ) is the minimum value in the intermediate portion located between the pair of boundary points (P, Q) in the corner R cutting edge (13). Become. In other words, the radial rake angle ( ⁇ ) is largest on the negative angle side in the intermediate portion located between the pair of boundary points (P, Q).
  • the intermediate part located between a pair of boundary points (P, Q) is a region (0 ° ⁇ ⁇ 90 °) excluding the boundary point (P, Q) in the corner R cutting edge (13). It is.
  • the minimum value of the radial rake angle ( ⁇ ) is set in the range of 5 ° to 50 ° in the radial angle ( ⁇ ) of the corner R cutting edge (13).
  • the point at which the radial rake angle ( ⁇ ) has the minimum value is located in the corner R cutting edge (13) where the radial angle ( ⁇ ) is 5 ° or more and 50 ° or less.
  • the radial rake angle ( ⁇ ) has a minimum value in the range of 10 ° to 30 ° (particularly around 20 °) in the radiation angle ( ⁇ ).
  • the blade tip replaceable radius end mill (6) and the insert (5) of the present embodiment described above have the boundary point (Q) (the outermost peripheral position) between the arcuate corner R cutting edge (13) and the outer peripheral cutting edge (9). ) Has a negative value in the axial rake angle (Ar1) of the corner R cutting edge (13), and the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) (the most advanced position) ),
  • the axial rake angle (Ar2) of the corner R cutting edge (13) has a negative value. That is, the axial rake angle (Ar) of the corner R cutting edge (13) is a negative angle.
  • the twist angle ( ⁇ ) of the outer peripheral cutting edge (9) has a positive value and is a positive angle.
  • Cutting started by point contact from the boundary point (Q) expands the cutting range to the corner R cutting edge (13) and the outer peripheral cutting edge (9) as the tool rotates. Since the axial rake angle (Ar1) of the corner R cutting edge (13) is set to a negative angle, the corner R cutting edge (13) has a reverse twisted blade shape. The outer peripheral cutting edge (9) has a positive twisted blade shape.
  • the cutting resistance that is, the back force acting in the direction along the rotation center axis (C) is the rotation center axis (C ) Direction toward the distal end side (blade edge side), while the corner R cutting edge (13) acts toward the base end side (tool shank side) in the direction of the rotation center axis (C).
  • the cutting resistance which acts toward the blade edge side in the outer peripheral cutting edge (9) can be canceled. Therefore, it is possible to improve the phenomenon that the tool body (1) is bent by the cutting resistance applied to the cutting edge side in the direction of the rotation center axis (C).
  • the radial rake angle ( ⁇ ) has a negative value over the entire length of the corner R cutting edge (13). Further, the radial rake angle ( ⁇ ) has a minimum value in an intermediate portion of the corner R cutting edge (13) located between the pair of boundary points (P, Q). Thus, since the radial rake angle ( ⁇ ) of the corner R cutting edge (13) at the pair of boundary points (P, Q) is both negative (negative angle), the corner R The cutting edge strength of the cutting edge (13) can be sufficiently ensured.
  • one or both of the radial rake angles ( ⁇ ) of the corner R cutting edge (13) at the pair of boundary points (P, Q) are positive values ( In the case of a positive angle), the strength of the corner R cutting edge (13) is lowered, which is inconvenient.
  • the radial rake angle ( ⁇ ) has a minimum value at an intermediate portion between the pair of boundary points (P, Q) of the corner R cutting edge (13), these boundary points (P, Q ),
  • the radial rake angle ( ⁇ ) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is set to a negative value while being a negative value ( It can be close to the positive angle side). Thereby, the sharpness of the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) can be ensured in the bottom finishing.
  • the rake angle ( ⁇ ) in the radial direction becomes smaller as it goes toward the boundary point (Q) (specifically, as it goes toward the intermediate portion). That is, the radial rake angle ( ⁇ ) increases toward the negative angle side (negative angle side) as it approaches the intermediate portion, and reaches a minimum value (that is, maximum value on the negative angle side) on the intermediate portion. Therefore, the edge strength can be remarkably improved by providing the intermediate portion located between the pair of boundary points (P, Q) at the cutting edge boundary portion for cutting the work hardened layer of the work material. . Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
  • machining with a particularly long tool protrusion for example, L / D is 4 or more.
  • L / D is 4 or more
  • the radial rake angle ( ⁇ ) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is the corner R cutting edge ( 13) and the radial rake angle ( ⁇ ) of the corner R cutting edge (13) at the boundary point (Q) between the outer peripheral cutting edge (9). That is, the radial rake angle ( ⁇ ) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is the corner R cutting edge (13) and the outer periphery.
  • the rake angle ( ⁇ ) in the radial direction of the corner R cutting edge (13) at the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9) is a positive value while setting a negative value.
  • the tool can be moved closer to the side (positive angle side), so in the side finishing process for machining the wall surface (vertical wall) perpendicular to the work material, the tool radial direction (horizontal direction) that the tool cut into the work material receives from the work material It is possible to reduce the cutting resistance (i.e., the feed component force) to the surface. Thereby, chatter vibration is suppressed and the machined surface accuracy can be improved.
  • the radial rake angle ( ⁇ ) (true rake angle) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is ⁇
  • the minimum value is ⁇
  • the radial rake angle ⁇ , the radial rake angle ⁇ , and the radial rake angle ⁇ all have negative values
  • are the absolute values of
  • the blade end replaceable radius end mill (6) is a cut that hits the work hardening layer of the work material in advance roughing or intermediate finishing in bottom finishing and side finishing (especially bottom finishing).
  • the radial rake angle ( ⁇ ) of the blade boundary portion (intermediate portion located between the pair of boundary points P and Q) can be set to the smallest negative value. This is preferable because the effect of preventing chipping at the boundary of the cutting edge can be remarkably obtained in roughing or intermediate finishing.
  • the cutting edge is used in bottom finishing or side finishing (particularly bottom finishing). The boundary may be easily damaged.
  • the angle at which the virtual straight line (VL) projected onto the reference plane (Pr) is inclined with respect to the rotation center axis (C) in the reference plane (Pr) is defined as the radiation angle ( ⁇ ). Then, the point where the radial rake angle ( ⁇ ) becomes the minimum value is located in the corner R cutting edge (13) in the region where the radial angle ( ⁇ ) is 5 ° or more and 50 ° or less. The following effects are exhibited.
  • the blade end replaceable radius end mill (6) has this configuration, while ensuring the sharpness of the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) in the bottom finishing process,
  • the edge strength of the cutting edge boundary portion (intermediate portion located between the pair of boundary points P and Q) for cutting the work hardened layer of the work material can be improved. Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
  • the point at which the radial rake angle ( ⁇ ) (true rake angle) of the corner R cutting edge (13) is the minimum value is that the radial angle ( ⁇ ) on the corner R cutting edge (13) is 5 ° or more.
  • the point which becomes the minimum value of the radial rake angle ( ⁇ ) (true rake angle) of the corner R cutting edge (13) is that the radial angle ( ⁇ ) on the corner R cutting edge (13) is 50 ° or less.
  • the cutting edge reinforcing portion formed in this minimum value portion is likely to be within the range of a general bottom finishing allowance. Therefore, the effect of preventing chipping at the boundary portion of the cutting edge can be remarkably obtained regardless of the finishing cost for bottom finishing.
  • the minimum value of the radial rake angle ( ⁇ ) is set in the range of 5 ° or more and 50 ° or less in the radiation angle ( ⁇ ) of the corner R cutting edge (13).
  • the present invention is not limited to this. That is, the minimum value of the radial rake angle ( ⁇ ) may be set to be less than 5 ° or more than 50 ° in the radiation angle ( ⁇ ).
  • a blade end replaceable radius end mill (6) of the above-described embodiment was prepared.
  • a carbide shank type having a cutting edge diameter (blade diameter) of 20 mm, a shank diameter of 20 mm, a total length of 220 mm, a neck length of 120 mm, and a neck diameter of 19 mm was used.
  • the base material of the tool body (1) As the base material of the tool body (1), a base material obtained by joining a cemented carbide and a SKD61 equivalent material with a brazing material was used, and after adjusting the external shape by lathe processing, the shank portion was finished by polishing. Moreover, the insert fixing
  • the fixing screw (8) for attaching and detaching the insert (5) was a screw size having a nominal diameter of M6 and a pitch of 0.75 mm.
  • the base material of the insert (5) was made of a WC—Co type cemented carbide, and the coating film on the surface of the insert was provided with a CrSi type nitride film.
  • the shape of the insert (5) is substantially flat as shown in FIG. 5, the R dimension of the corner R cutting edge (13) is 1 mm, and the thickness dimension T value shown in FIG. 8 is 5.2 mm, as shown in FIG.
  • the length of the outer peripheral cutting edge (9) in the side view of the insert was 7 mm, and the axial rake angle (that is, the twist angle ⁇ ) of the outer peripheral cutting edge (9) in the side view of the insert was 4 ° as a positive value.
  • the rake angle in the radial direction of the outer peripheral cutting edge (9) (rake angle when viewed from the direction orthogonal to the rotation center axis (C)) was set to 0.5 °.
  • the bottom cutting edge (11) passes through a boundary point (P) between the bottom cutting edge (11) and the corner R cutting edge (13), and the boundary point (P ) Toward the inner side in the radial direction so as to gradually extend toward the base end in the direction of the central axis of rotation (C), and a positive medium / low gradient angle, which is the inclination angle, was set to 3 °.
  • the insert shape of Example 1 of the present invention is shown in FIG.
  • the main parameters indicating the shape of the insert (5) of Example 1 of the present invention are shown in Table 1.
  • the insert (5) of Example 1 of the present invention includes a chamfered surface (15), and the axial rake angle (Ar1) at the position of the boundary point (Q) of the corner R cutting edge (13) and the position of the boundary point (P).
  • the rake angle (Ar2) in the axial direction of the corner R cutting edge (13) was set to ⁇ 6.8 ° which is the same negative value.
  • the boundary point (Q) shown in FIG. 9 is a boundary point between the corner R cutting edge (13) and the outer peripheral cutting edge (9), and the cutting edge around the rotation center axis (C). In the rotation locus, it is also the outermost peripheral point of the outer peripheral cutting edge (9).
  • the insert (5) is manufactured, if the chamfered surface (15) is actually ground, a region where the outer peripheral cutting edge (9) is to be formed (theoretically, the outer peripheral cutting edge (9) is formed.
  • a point E to be an actual boundary point (Q) is formed in any part of the region (S). That is, the position of the point E, which is the actual boundary point (Q), may be slightly shifted from the theoretical boundary point (Q) due to various manufacturing circumstances.
  • the corner R cutting edge (13) is located rather than the position of the point E on the region where the outer peripheral cutting edge (9) is to be formed with respect to the theoretical boundary point (Q). It is preferable to be arranged on the side of the formation scheduled region. Thereby, the inconvenience that a tool diameter becomes small can be prevented reliably.
  • the angle (center angle) between the theoretical boundary point (Q) and the point E (actual boundary point Q) centered on the arc center point (O) is within 2 °. It is preferable.
  • Example 1 of the present invention the point E that is the actual boundary point (Q) is directed from the theoretical boundary point (Q) to the region where the corner R cutting edge (13) is to be formed. Further, the insert (5) was manufactured so as to be disposed within a range of 2 ° or less at the central angle.
  • the point F existing in the bottom cutting edge region (U) was set at a position of 2.5 mm from the straight line passing through the boundary point (Q) and parallel to the rotation center axis (C).
  • FIG. 11 shows a profile of the radial rake angle ( ⁇ ) in the corner R cutting edge (13) of Example 1 of the present invention.
  • the radial rake angle ( ⁇ ) had a minimum value at a position where the radiation angle ( ⁇ ) was 20 °.
  • the radial rake angle ( ⁇ ) at this time was ⁇ 7.2 °.
  • the schematic diagram of the cutting edge cross section in the radiation angle ((theta)) 40 degrees of the corner R cutting edge (13) of the example 1 of this invention is shown in FIG. 10 (lower right figure of FIG. 10).
  • An example of the radial rake angle ( ⁇ ) at a radiation angle ( ⁇ ) of 40 ° is ⁇ 6.6 °.
  • the radial rake angle ( ⁇ ) when the radiation angle ( ⁇ ) is 0 ° (boundary point P) is defined as ⁇ value
  • the radiation angle ( ⁇ ) is 90 ° (boundary point Q) The rake angle ( ⁇ ) in the radial direction is indicated as ⁇ value
  • the minimum value of the rake angle ( ⁇ ) in the radial direction is indicated as ⁇ value.
  • a comparative example insert having a technical idea different from that of the present invention was prepared.
  • the insert shape of Comparative Example 2 is shown in FIG. 12, and the insert shape of Comparative Example 3 is shown in FIG. Table 1 also shows the main parameters indicating the shapes of the inserts of Comparative Examples 2 and 3.
  • the insert of the comparative example was manufactured with the same material as the insert of Example 1 of the present invention.
  • the comparative example does not have the special configuration of the present invention, and specifically does not have the chamfered surface of the corner R cutting edge, the specifications of the corner R cutting edge are different from those of the present invention. .
  • an S55C material having a size of 60 ⁇ 60 ⁇ 30 (mm) was used as the material of the work material. This side shoulder processing was performed, and the standing wall side portion was formed at a depth of 20 mm from the upper surface portion. The measurement location of the tilt accuracy was 10 mm from the top surface at the center and 18 mm from the bottom.
  • Table 1 shows the results of measuring and evaluating the falling accuracy of the side wall portion of the work material in the machining with each insert of Invention Example 1, Comparative Example 2, and Comparative Example 3.
  • the condition of the cutting speed (Vc value) was 100 m / min
  • Invention Example 1 provided with a chamfered surface showed a good result with a tilt accuracy of 5 ( ⁇ m).
  • the cutting speed (Vc value) condition which is a high-efficiency condition, is 200 m / min, it was confirmed that Example 1 of the present invention had a collapse accuracy of 5 ( ⁇ m) and showed a good result.
  • the axial rake angle (Ar1) value of the corner R cutting edge (13) at the position of the boundary point (Q) has a negative angle
  • the axial rake angle (9) of the outer peripheral cutting edge (9) Since the twist angle ⁇ ) is set to be a positive angle, the biting of the outer peripheral cutting edge (9) and the corner R cutting edge (13) to the work material is started by point contact, and chattering occurs. It is thought that the generation of vibration is reduced and the machining is stable.
  • the comparative example when the condition of the cutting speed (Vc value) is 100 m / min, the comparative example 2 shows the result of the tilt accuracy of 5 to 12.5 ( ⁇ m), and in the comparative example 3, Results of 10-15 ( ⁇ m) were shown. Further, when the condition of the cutting speed (Vc value), which is a high efficiency condition, is 200 m / min, Comparative Example 2 shows a result of the tilt accuracy of 7.5 to 12.5 ( ⁇ m), and Comparative Example 3 is The results of 17.5 to 27.5 ( ⁇ m) were shown. From these, the comparative example has confirmed that the fall accuracy is extremely deteriorated by setting the cutting conditions to the high efficiency conditions.
  • FIGS. 14 to 19 show the shape profile lines of the standing wall side surfaces formed by processing using the inserts of Example 1, Comparative Example 2, and Comparative Example 3 of the present invention.
  • 14 to 16 are shape profile lines when the cutting speed (Vc value) is 100 m / min
  • FIGS. 17 to 19 are shape profile lines when the cutting speed (Vc value) is 200 m / min.
  • dotted lines are a horizontal line and a vertical line indicating a bottom surface to be machined and a surface perpendicular to a horizontal plane
  • a solid line is a shape profile line.
  • the vertical wall side portion formed by processing using the inserts of Comparative Examples 2 and 3 has a greater deviation from the vertical line as it approaches the bottom, and this tendency is more prominent as the cutting speed increases. It was.
  • the vertical wall side surface formed by processing using the insert of Example 1 of the present invention has a constant deviation from the vertical line from the top to the bottom, and forms a surface perpendicular to the horizontal plane. It has been confirmed that.
  • the base material of the insert (5) according to Example 1 of the present invention is, for example, cermet, high speed steel, titanium carbide, silicon carbide, in addition to cemented carbide containing tungsten carbide (WC) and cobalt (Co). Ceramics made of silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof, cubic boron nitride sintered body, diamond sintered body, hard phase made of polycrystalline diamond or cubic boron nitride, ceramics and iron group It is also possible to use an ultra-high pressure fired body in which a binder phase such as metal is fired under ultra-high pressure.
  • the tool body (1) and the shank portion according to Example 1 of the present invention are manufactured from a cemented carbide using, for example, an alloy tool steel such as SKD61 and the tool body (1) as an alloy tool steel such as SKD61. It is also possible to use a carbide shank type in which the shank portion is joined to the tool body (1).
  • the dimensional accuracy in vertical side surface finishing can be improved.

Abstract

In this replaceable-cutting-edge rotary cutting tool (6), a cutting edge part (4) of an insert (5) is provided with a bottom cutting edge (11), a radiused-corner cutting edge (13), and a chamfered surface (15). The radial-direction rake angle (δ) of the radiused-corner cutting edge (13) has a negative value for the entire blade length of the radiused-corner cutting edge (13), and the radial-direction rake angle (δ) has the smallest value at the intermediate part located between a pair of boundary points (P, Q) of the radiused-corner cutting edge (13).

Description

刃先交換式回転切削工具及びインサートReplaceable blade cutting tool and insert
 本願発明は、被削材の側面仕上げ加工に好適な切削加工用のインサートを装着した刃先交換式回転切削工具、及びインサートに関する。
 本願は、2015年11月16日に、日本に出願された特願2015-223958号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a blade-tip-exchange-type rotary cutting tool equipped with a cutting insert suitable for side finishing of a work material, and an insert.
This application claims priority based on Japanese Patent Application No. 2015-223958 filed in Japan on November 16, 2015, the contents of which are incorporated herein by reference.
 金型等の被削材に、加工基準面となる底面や水平面に垂直な側面を仕上げ加工する場合、従来からスクエアタイプのソリッドエンドミルが使用されている。しかし、工具突出しが長い(L/Dが4以上)加工においては、工具の倒れにより加工精度が出にくい。なお、前記「L/D」のうち、L値は工具の回転中心軸線方向の長さ、D値は工具切れ刃の回転軌跡の直径である。
 また、ソリッドタイプは、例えば、外径がφ10mm以上のサイズにおいては工具自体も非常に高価であるため、工具突出しの長い(L/Dが4以上)加工においては、刃先交換式ラジアスエンドミルが使用される。加工精度を得るためには、ビビリ振動の発生を抑制するとともに、切れ刃にチッピングや欠損が発生しないように切削条件を落として加工する必要がある。なお、前記「切削条件を落として」とは、例えば、切り込み量や送り等の切削条件を低い値に抑えることである。
 このため、刃先交換式ラジアスエンドミルの切れ刃形状に関しては種々の提案がされている。
Conventionally, a square type solid end mill has been used to finish a bottom surface serving as a processing reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold. However, in machining with a long tool protrusion (L / D is 4 or more), the machining accuracy is difficult to obtain due to the tilting of the tool. Of the “L / D”, the L value is the length in the direction of the rotation center axis of the tool, and the D value is the diameter of the rotation locus of the tool cutting edge.
For the solid type, for example, the tool itself is very expensive when the outer diameter is φ10 mm or more. For long tool overhang (L / D is 4 or more), a blade end replaceable radius end mill is used. Is done. In order to obtain machining accuracy, it is necessary to perform machining under reduced cutting conditions so as to suppress the occurrence of chatter vibration and to prevent chipping and chipping from occurring on the cutting edge. Note that “reducing the cutting condition” means, for example, that cutting conditions such as a cutting amount and feed are suppressed to a low value.
For this reason, various proposals have been made regarding the cutting edge shape of the blade end replaceable radius end mill.
 特許文献1(特開平8-281513号公報)には、工具本体先端部のV字状のスリットによりインサートを着脱自在に挟持することができる刃先交換式エンドミルであり、その切れ刃チップが、工具本体の先端頂角から発して軸線方向に形成される外周刃と、外周刃とほぼ垂直に位置する底刃と、底刃コーナに外周刃と底刃とに接するほぼ1/4円弧からなるコーナR刃とを備え、該底刃のギャッシュ角を30~45°として外周刃に平行な0.1~1mmの幅の未ギャッシュ部を備える刃先交換式エンドミルが記載されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 8-281513) discloses a blade-tip-replaceable end mill in which an insert can be detachably held by a V-shaped slit at the tip of a tool body. An outer peripheral blade formed in the axial direction from the tip apex angle of the main body, a bottom blade positioned substantially perpendicular to the outer peripheral blade, and a corner composed of a substantially circular arc in contact with the outer peripheral blade and the bottom blade at the bottom blade corner. A blade-tip-replaceable end mill having an R blade and a non-gash portion with a width of 0.1 to 1 mm parallel to the outer peripheral blade with a gash angle of the bottom blade of 30 to 45 ° is described.
 特許文献2(特許第5744235号公報)には、工具本体の先端部に存在する底切刃と、工具本体の外周に存在する外周切れ刃とが形成され、底切刃と外周切れ刃との間がコーナR切れ刃によりつながれており、外周切れ刃のすくい面の後方には切屑排出溝が設けられ、コーナR切れ刃に隣接したコーナギャッシュが形成されたラジアスエンドミルが記載されている。そして、コーナギャッシュは、縁の一部がコーナR切れ刃と底切れ刃との境界およびコーナR切れ刃と外周切れ刃との境界以外のコーナR切れ刃上に設けられて、コーナギャッシュと接する底切れ刃側の端部におけるアキシャルレーキが5~20°に設定されていることが特許文献2に記載されている。 In Patent Document 2 (Japanese Patent No. 5744235), a bottom cutting edge that exists at the tip of the tool body and an outer peripheral cutting edge that exists at the outer periphery of the tool body are formed. There is described a radius end mill in which a gap is connected by a corner R cutting edge, a chip discharge groove is provided behind the rake face of the outer peripheral cutting edge, and a corner gash adjacent to the corner R cutting edge is formed. The corner gash is provided on a corner R cutting edge other than the boundary between the corner R cutting edge and the bottom cutting edge and the boundary between the corner R cutting edge and the outer peripheral cutting edge, and is in contact with the corner gash. Patent Document 2 describes that the axial rake at the end on the bottom cutting edge side is set to 5 to 20 °.
 特許文献3(特許第5267556号)に記載のラジアスエンドミルでは、エンドミル本体の先端部外周に設けられた切屑排出溝またはこの切屑排出溝の先端部に設けられたギャッシュのエンドミル回転方向を向く壁面がすくい面となり、このすくい面の先端側が底切れ刃、外周側が外周切れ刃とされ、底切れ刃と外周切れ刃とをつなぐコーナ刃は、凸円弧状のコーナ刃を含み、コーナ刃は正の切れ刃傾き角を有し、すくい面の辺稜部側にある切れ刃は、底刃側から外周刃側に向かうに従い、エンドミル回転方向後方側に向かうように傾斜し、かつエンドミル回転方向後方側への傾斜が、コーナ刃からこのコーナ刃がなす凸円弧の中心に向うに従い漸次大きくなる捩れ面状に形成されている。 In the radius end mill described in Patent Document 3 (Japanese Patent No. 5267556), the chip discharge groove provided on the outer periphery of the end portion of the end mill body or the wall surface facing the rotation direction of the end of the gasche provided on the tip portion of the chip discharge groove is provided. The corner face connecting the bottom cutting edge and the outer peripheral cutting edge includes a convex arcuate corner edge, and the corner edge is a positive edge. The cutting edge that has a cutting edge inclination angle and is located on the side ridge side of the rake face is inclined to the rear side in the end mill rotation direction from the bottom blade side toward the outer peripheral blade side, and the rear side in the end mill rotation direction Is formed in a twisted surface shape that gradually increases from the corner blade toward the center of the convex arc formed by the corner blade.
 特許文献4(特開2011-20192号)には、底刃のすくい面のすくい角が負の角度とされており、さらにコーナRのすくい面、および外周切れ刃のすくい面のすくい角も負の角度とされたソリッドタイプのねじれ刃ラジアスエンドミルが記載されている。 In Patent Document 4 (Japanese Patent Application Laid-Open No. 2011-20192), the rake angle of the rake face of the bottom blade is a negative angle, and the rake angle of the rake face of the corner R and the rake face of the outer peripheral cutting edge is also negative. A solid-type twisted-blade radius end mill with an angle of?
特開平8-281513号公報JP-A-8-281513 特許第5744235号公報Japanese Patent No. 5744235 特許第5267556号公報Japanese Patent No. 5267556 特開2011-20192号公報JP 2011-20192 A
 特許文献1には、ホルダ本体の先端部に軸線方向に延在するスリットを設け、スリットによりスリットから突出する先端縁に切れ刃を有するチップが挟持され、切れ刃チップの先端頂角から発して軸線方向に外周刃と、外周刃が発する頂角から軸中心を含む対角線上に外周刃とほぼ垂直に位置する底刃と、底刃コーナに外周刃と底刃とに接するほぼ1/4円弧からなるコーナアール刃と、を一対備えた切れ刃チップを設けたことを特徴とするスローアウェイ式エンドミルが記載されている。
 しかし、特許文献1のエンドミルには、被削材の側面仕上げ加工における外周切れ刃の食付きを向上することや、底面仕上げ加工における工具寿命を延長することについて改善の余地がある。
In Patent Document 1, a slit extending in the axial direction is provided at the distal end portion of the holder body, and a chip having a cutting edge is sandwiched by the leading edge protruding from the slit by the slit, and is emitted from the top apex angle of the cutting edge chip. An outer peripheral blade in the axial direction, a bottom blade positioned substantially perpendicular to the outer peripheral blade on a diagonal line including the center of the axis from the apex angle generated by the outer peripheral blade, and an approximately 1/4 arc in contact with the outer peripheral blade and the bottom blade at the bottom blade corner There is described a throw-away end mill characterized in that a cutting edge tip provided with a pair of corner radius blades is provided.
However, the end mill of Patent Document 1 has room for improvement in improving the biting of the outer peripheral cutting edge in the side finishing of the work material and extending the tool life in the bottom finishing.
 特許文献2では、コーナR刃の中にコーナギャッシュを設けた切れ刃形状が検討及び記載されており、外周切れ刃近傍のコーナR切れ刃において、外周切れ刃との繋ぎ目に段差や角が出来ることを制御するとともに、切れ味を向上させることで横送り加工の能力を高めている。また、底刃近傍のアキシャルレーキが小さくなり、すくい面の段差がなく、切屑の流出が妨げられることがないので、加工面の面粗度を滑らかにすることが出来ることが特許文献2には記載されている。
 しかし、特許文献2のエンドミルには、被削材の側面仕上げ加工における外周切れ刃の食付き、および底面仕上げ加工における工具寿命について改善の余地がある。
In Patent Document 2, a cutting edge shape in which a corner gash is provided in a corner R blade is studied and described. In the corner R cutting edge in the vicinity of the outer peripheral cutting edge, there is a step or a corner at the joint with the outer peripheral cutting edge. In addition to controlling what can be done, it improves the ability of cross feed processing by improving the sharpness. Further, Patent Document 2 discloses that the axial rake in the vicinity of the bottom blade is small, there is no step on the rake face, and the outflow of chips is not hindered. Are listed.
However, the end mill of Patent Document 2 has room for improvement in the biting of the outer peripheral cutting edge in the side finishing of the work material and the tool life in the bottom finishing.
 特許文献3では、底刃側から外周切れ刃側につながるコーナR切れ刃について、コーナR切れ刃に沿った直角すくい角の大幅な変化を抑えることと、さらに切れ刃傾き角の変化も抑え切屑排出性を確保することでより安定した切削性能を発揮するラジアスアンドミルの切れ刃形状について検討及び記載されている。
 しかし、特許文献3のエンドミルには、被削材の側面仕上げ加工における外周切れ刃の食付きを向上することや、底面仕上げ加工における工具寿命を延長することについて改善の余地がある。
In Patent Document 3, with respect to the corner R cutting edge connected from the bottom cutting edge side to the outer peripheral cutting edge side, it is possible to suppress a significant change in the right-angle rake angle along the corner R cutting edge and further suppress a change in the cutting edge inclination angle. The radius and mill cutting edge shape, which exhibits more stable cutting performance by ensuring dischargeability, has been studied and described.
However, the end mill of Patent Document 3 has room for improvement in improving the biting of the outer peripheral cutting edge in the side finishing of the work material and extending the tool life in the bottom finishing.
 特許文献4には、底刃のすくい面のすくい角が負の角度とされており、さらにコーナRのすくい面、及び外周切れ刃のすくい面のすくい角も負の角度とすることにより、底刃の耐欠損性を高めながら切屑の排出性も向上させて工具の耐久性向上を図ったソリッドタイプのねじれ刃ラジアスエンドミルが記載されている。
 しかし、特許文献4のエンドミルには、被削材の側面仕上げ加工における外周切れ刃の食付き、および底面仕上げ加工における工具寿命について改善の余地がある。
In Patent Document 4, the rake angle of the rake face of the bottom blade is a negative angle, and the rake angle of the rake face of the corner R and the rake face of the outer peripheral cutting edge is also set to a negative angle. A solid-type twisted-blade radius end mill that improves the durability of the tool by improving the chip evacuation performance while increasing the fracture resistance of the blade is described.
However, the end mill of Patent Document 4 has room for improvement in the biting of the outer peripheral cutting edge in the side finishing of the work material and the tool life in the bottom finishing.
 本願発明は、金型等の被削材に加工基準面となる底面や水平面に垂直な側面を仕上げ加工する場合、特に工具突出しの長い(例えばL/Dが4以上)加工における切削性能を改善し、被削材の底面の仕上げ寸法精度のほか、水平面に垂直な側面仕上げ加工における寸法精度に優れた刃先交換式回転切削工具、及びインサートを提供することを目的とする。 The present invention improves the cutting performance particularly when machining a long tool protrusion (for example, L / D is 4 or more) when finishing the bottom surface serving as a machining reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold. Another object of the present invention is to provide a blade-tip-replaceable rotary cutting tool and an insert excellent in dimensional accuracy in side finishing perpendicular to a horizontal plane in addition to the finishing dimensional accuracy of the bottom surface of the work material.
 本願発明の一態様は、工具本体の先端部に設けた取付座に、切れ刃部を有するインサートを着脱自在に装着する刃先交換式回転切削工具であって、前記取付座は、前記工具本体の先端部に、工具の回転中心軸を含んで前記回転中心軸に直交する径方向に延びて形成されたスリット状のインサート嵌合溝と、前記インサート嵌合溝に挿入された前記インサートを固定するための固定用ネジと、を備え、前記インサートの切れ刃部は、前記回転中心軸方向に沿うように延びる外周切れ刃と、前記外周切れ刃のすくい面と、前記径方向に沿うように延びる底切れ刃と、前記底切れ刃のすくい面と、前記底切れ刃の前記径方向の外端と前記外周切れ刃の前記回転中心軸方向の先端とを繋ぐとともに、前記工具本体の先端外周側へ向けて凸となる円弧状に形成されたコーナーR切れ刃と、前記コーナーR切れ刃のすくい面と、前記コーナーR切れ刃のすくい面、及び、前記底切れ刃のすくい面のうち少なくとも前記径方向の外側に位置する部分を含む面取り面と、前記底切れ刃のすくい面の前記回転中心軸方向の基端側に形成される切屑排出溝と、前記外周切れ刃のすくい面の前記径方向の内側に形成される切屑排出溝と、を備え、前記外周切れ刃のねじれ角が、正の値を有し、前記コーナーR切れ刃と前記外周切れ刃との境界点における前記コーナーR切れ刃の軸方向すくい角が、負の値を有し、前記コーナーR切れ刃と前記底切れ刃との境界点における前記コーナーR切れ刃の軸方向すくい角が、負の値を有し、前記コーナーR切れ刃上の所定の点及び前記回転中心軸を含む基準面に対して垂直であり、かつ、前記コーナーR切れ刃の円弧中心点と前記所定の点とを通る仮想直線を含む仮想平面内において、前記基準面に対して前記コーナーR切れ刃のすくい面が傾斜する角度である真のすくい角を、放射方向すくい角と定義して、前記コーナーR切れ刃の放射方向すくい角が、前記コーナーR切れ刃の刃長全域において負の値を有し、前記放射方向すくい角は、前記コーナーR切れ刃のうち、一対の前記境界点同士の間に位置する中間部分において最小値となることを特徴とする(以下、「本願発明の刃先交換式回転切削工具」と称する)。
 また、本願発明の他態様のインサートは、上述の刃先交換式回転切削工具に用いられることを特徴としている(以下、「本願発明のインサート」と称する)。
One aspect of the present invention is a blade-tip-exchange-type rotary cutting tool in which an insert having a cutting edge portion is detachably attached to a mounting seat provided at a distal end portion of a tool main body, and the mounting seat is formed of the tool main body. A slit-like insert fitting groove formed to extend in a radial direction perpendicular to the rotation center axis including the rotation center axis of the tool and the insert inserted into the insert fitting groove are fixed to the distal end portion. And a cutting edge portion of the insert extends along the radial direction, a rake face of the outer cutting edge, and a radial direction. Connecting the bottom cutting edge, the rake face of the bottom cutting edge, the radial outer end of the bottom cutting edge and the tip of the outer peripheral cutting edge in the rotational center axis direction, and the outer peripheral side of the tip of the tool body Arc shape that protrudes toward Of the formed corner R cutting edge, the rake face of the corner R cutting edge, the rake face of the corner R cutting edge, and the rake face of the bottom cutting edge, at least a portion located outside in the radial direction. Including a chamfered surface, a chip discharge groove formed on the base end side of the rake face of the bottom cutting edge in the direction of the rotation center axis, and a chip discharge formed on the inner side of the rake face of the outer peripheral cutting edge in the radial direction. A twist angle of the outer peripheral cutting edge has a positive value, and an axial rake angle of the corner R cutting edge at a boundary point between the corner R cutting edge and the outer peripheral cutting edge is negative. The axial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the bottom cutting edge has a negative value, and a predetermined point on the corner R cutting edge And a reference plane including the rotation center axis The angle at which the rake face of the corner R cutting edge is inclined with respect to the reference plane in a virtual plane that is vertical and includes a virtual straight line passing through the arc center point of the corner R cutting edge and the predetermined point. Is defined as a radial rake angle, and the radial rake angle of the corner R cutting edge has a negative value over the entire length of the corner R cutting edge, and the radial rake angle is The corner has a minimum value in an intermediate portion located between the pair of boundary points among the corner R cutting edges (hereinafter referred to as “the blade-tip-exchangeable rotary cutting tool of the present invention”). ).
An insert according to another aspect of the present invention is characterized by being used in the above-described blade-tip-exchange-type rotary cutting tool (hereinafter referred to as “the insert of the present invention”).
 本願発明の刃先交換式回転切削工具及びインサートでは、円弧状のコーナーR切れ刃と外周切れ刃との境界点(最外周位置)におけるコーナーR切れ刃の軸方向すくい角が負の値を有し、コーナーR切れ刃と底切れ刃との境界点(最先端位置)におけるコーナーR切れ刃の軸方向すくい角が負の値を有している。つまり、コーナーR切れ刃の軸方向すくい角は、ネガティブ角とされている。また、外周切れ刃のねじれ角は、正の値を有しており、ポジティブ角とされている。 In the cutting edge exchange type rotary cutting tool and insert of the present invention, the axial rake angle of the corner R cutting edge at the boundary point (outermost peripheral position) between the arcuate corner R cutting edge and the outer peripheral cutting edge has a negative value. The rake angle in the axial direction of the corner R cutting edge at the boundary point (the most advanced position) between the corner R cutting edge and the bottom cutting edge has a negative value. That is, the axial rake angle of the corner R cutting edge is a negative angle. Further, the twist angle of the outer peripheral cutting edge has a positive value and is a positive angle.
 本願発明の刃先交換式回転切削工具及びインサートが本構成を有することによって、コーナーR切れ刃と外周切れ刃との境界点は、工具の回転中心軸回りの周方向のうち、工具回転方向へ向けて最も突出した点(最凸点)となる。このため、水平面に垂直な壁面(鉛直面。立壁)を被削材に対して加工する側面仕上げ加工においては、コーナーR切れ刃と外周切れ刃とは、前記境界点(最凸点)における被削材との点接触で被削材の切削を開始する。従って、切れ刃の被削材への食付きが改善される。 Since the cutting edge-exchangeable rotary cutting tool and the insert of the present invention have this configuration, the boundary point between the corner R cutting edge and the outer peripheral cutting edge is directed to the tool rotation direction in the circumferential direction around the rotation center axis of the tool. The most protruding point (the most convex point). For this reason, in the side finishing process in which a wall surface (vertical surface, standing wall) perpendicular to the horizontal plane is processed on the work material, the corner R cutting edge and the outer peripheral cutting edge are covered at the boundary point (the most convex point). Cutting of the work material is started by point contact with the work material. Therefore, the biting of the cutting edge on the work material is improved.
 前記境界点から点接触で開始された切削は、工具の回転とともにコーナーR切れ刃と外周切れ刃とに切削範囲が拡大していく。コーナーR切れ刃の軸方向すくい角は、負の角度に設定されているので、コーナーR切れ刃は逆ねじれ刃形形状となる。また、外周切れ刃は正ねじれ刃形形状である。このため、被削材から工具が受ける切削抵抗のうち、回転中心軸に沿う方向へ作用する切削抵抗(つまり背分力)は、外周切れ刃においては回転中心軸方向の先端側(刃先側)へ向けて作用するのに対し、コーナーR切れ刃においては回転中心軸方向の基端側(工具シャンク側)へ向けて作用する。
 これにより、外周切れ刃において刃先側へ向けて作用する切削抵抗を打ち消すことができる。従って、回転中心軸方向の刃先側へかかる切削抵抗によって工具本体が撓む現象を、改善することができる(切削抵抗による工具の撓みを低減できる)。
Cutting started by point contact from the boundary point expands the cutting range to the corner R cutting edge and the outer peripheral cutting edge as the tool rotates. Since the axial rake angle of the corner R cutting edge is set to a negative angle, the corner R cutting edge has a reverse twisted blade shape. The outer peripheral cutting edge has a positive twisted blade shape. For this reason, of the cutting forces received by the tool from the work material, the cutting force acting in the direction along the rotation center axis (that is, the back component force) is the tip side (cutting edge side) in the direction of the rotation center axis in the outer peripheral cutting edge. In contrast, the corner R cutting edge acts toward the base end side (tool shank side) in the rotation center axis direction.
Thereby, the cutting resistance acting toward the cutting edge side in the outer peripheral cutting edge can be canceled out. Accordingly, it is possible to improve the phenomenon that the tool body is bent by the cutting force applied to the cutting edge in the direction of the rotation center axis (the bending of the tool due to the cutting force can be reduced).
 また、被削材の水平面に垂直な側面仕上げ加工における寸法精度に影響を及ぼす外周切れ刃の被削材に対する逃げ量を抑えることができ、垂直側面となる加工基準面を鉛直方向の上部から下部に至るまで極めて高精度に仕上げ加工する事ができる。また、外周切れ刃とコーナーR切れ刃の被削材への食付きが点接触で開始されることにより、びびり振動の発生が低減され、加工が安定するという効果が得られる。 In addition, it is possible to suppress the escape amount of the outer peripheral cutting edge from the work material that affects the dimensional accuracy in the side finishing process perpendicular to the horizontal surface of the work material, and the vertical reference surface from the upper part to the lower part can be reduced. Can be finished with extremely high precision. In addition, since the biting of the outer peripheral cutting edge and the corner R cutting edge on the work material is started by point contact, the occurrence of chatter vibration is reduced, and the effect of stabilizing the processing can be obtained.
 そして、放射方向すくい角が、コーナーR切れ刃の刃長全域において負の値を有している。また、放射方向すくい角が、このコーナーR切れ刃のうち、一対の前記境界点同士の間に位置する中間部分において最小値となっている。
 このように、一対の前記境界点におけるコーナーR切れ刃の放射方向すくい角が、両方ともに負の値(ネガティブ角)とされていることにより、コーナーR切れ刃の刃先強度を十分に確保することができる。
 一方、例えば本願発明とは異なり、一対の前記境界点におけるコーナーR切れ刃の放射方向すくい角のうち、いずれか一方、または両方が正の値(ポジティブ角)の場合は、コーナーR切れ刃の強度低下が生じるため不都合である。
The radial rake angle has a negative value over the entire length of the corner R cutting edge. In addition, the radial rake angle is a minimum value in an intermediate portion of the corner R cutting edge located between the pair of boundary points.
Thus, by ensuring that the radial rake angle of the corner R cutting edge at the pair of boundary points is a negative value (negative angle), the edge strength of the corner R cutting edge is sufficiently ensured. Can do.
On the other hand, for example, unlike the present invention, when one or both of the radial rake angles of the corner R cutting edge at the pair of boundary points are positive values (positive angles), the corner R cutting edge It is inconvenient because strength is reduced.
 また、放射方向すくい角が、コーナーR切れ刃の一対の前記境界点同士の間の中間部分において最小値となるため、これらの境界点のうち、コーナーR切れ刃と底切れ刃との境界点における放射方向すくい角を、負の値としつつも前記最小値よりは正角側(ポジティブ角側)に近づけることができる。これにより、底面仕上げ加工における、コーナーR切れ刃と底切れ刃との境界点の切れ味を確保することができる。 In addition, since the radial rake angle is a minimum value in an intermediate portion between the pair of boundary points of the corner R cutting edge, the boundary point between the corner R cutting edge and the bottom cutting edge among these boundary points. The rake angle in the radial direction at can be made closer to the positive angle side (positive angle side) than the minimum value while being a negative value. Thereby, the sharpness of the boundary point between the corner R cutting edge and the bottom cutting edge can be ensured in the bottom finishing.
 また、コーナーR切れ刃と底切れ刃との境界点から、コーナーR切れ刃に沿って、コーナーR切れ刃と外周切れ刃との境界点へ向かうに従い(詳しくは前記中間部分に向かうに従い)、放射方向すくい角は小さくなっていく。つまり放射方向すくい角は、前記中間部分に近づくに従い負角側(ネガティブ角側)に大きくなり、該中間部分上において最小値(つまり負角側に最大値)となる。従って、被削材の加工硬化層を削る切れ刃境界部に、一対の境界点同士の間に位置する前記中間部分を設けることにより、刃先強度を顕著に向上させることができる。そのため、特に加工硬化が起こり易い被削材、あるいは高能率条件での加工により加工変質層が被削材表面部に形成された場合の底面仕上げ加工における切れ刃の信頼性が高まり好ましい。 Further, from the boundary point between the corner R cutting edge and the bottom cutting edge, along the corner R cutting edge, toward the boundary point between the corner R cutting edge and the outer peripheral cutting edge (specifically, toward the intermediate portion), Radial rake angle decreases. That is, the rake angle in the radial direction increases toward the negative angle side (negative angle side) as it approaches the intermediate portion, and reaches a minimum value (that is, maximum value on the negative angle side) on the intermediate portion. Therefore, the edge strength can be remarkably improved by providing the intermediate portion located between the pair of boundary points at the cutting edge boundary portion for cutting the work hardened layer of the work material. Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
 以上より本願発明によれば、金型等の被削材に加工基準面となる底面や水平面に垂直な側面を仕上げ加工する場合、特に工具突出しの長い(例えばL/Dが4以上)加工における切削性能を改善でき、被削材の底面の仕上げ寸法精度のほか、水平面に垂直な側面仕上げ加工における寸法精度を顕著に向上することができる。 As described above, according to the present invention, when finishing a bottom surface serving as a processing reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold, particularly in processing with a long tool protrusion (for example, L / D is 4 or more). The cutting performance can be improved, and in addition to the finished dimensional accuracy of the bottom surface of the work material, the dimensional accuracy in the side finishing process perpendicular to the horizontal surface can be significantly improved.
 また、上記刃先交換式回転切削工具において、前記コーナーR切れ刃と前記底切れ刃との境界点における前記コーナーR切れ刃の前記放射方向すくい角は、前記コーナーR切れ刃と前記外周切れ刃との境界点における前記コーナーR切れ刃の前記放射方向すくい角よりも小さいことが好ましい。 Further, in the above-mentioned blade tip exchange type rotary cutting tool, the radial rake angle of the corner R cutting edge at a boundary point between the corner R cutting edge and the bottom cutting edge is determined by the corner R cutting edge and the outer peripheral cutting edge. It is preferable that it is smaller than the radial rake angle of the corner R cutting edge at the boundary point.
 この場合、コーナーR切れ刃と底切れ刃との境界点におけるコーナーR切れ刃の放射方向すくい角が、コーナーR切れ刃と外周切れ刃との境界点におけるコーナーR切れ刃の放射方向すくい角よりも負の角度側(ネガティブ角側)に大きくされているので、底切れ刃の耐欠損性の向上と切り屑の排出性の改善を図り、仕上げ面を高品質に維持することができる。 In this case, the radial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the bottom cutting edge is greater than the radial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the outer peripheral cutting edge. Since it is enlarged to the negative angle side (negative angle side), it is possible to improve the chipping resistance of the bottom cutting edge and improve the chip discharge and maintain the finished surface with high quality.
 また、コーナーR切れ刃と外周切れ刃との境界点におけるコーナーR切れ刃の放射方向すくい角を、負の値としつつも正の角度側(ポジティブ角側)に近づけることができるので、被削材に垂直な壁面(立壁)を加工する側面仕上げ加工において、被削材に切り込む工具が被削材から受ける工具径方向(水平方向)への切削抵抗(つまり送り分力)を、小さく抑えることが可能になる。これにより、びびり振動が抑制されて加工面精度を向上することができる。 In addition, the radial rake angle of the corner R cutting edge at the boundary point between the corner R cutting edge and the outer peripheral cutting edge can be made closer to the positive angle side (positive angle side) while taking a negative value. In side finishing to machine a wall surface (vertical wall) perpendicular to the material, the cutting force in the tool radial direction (horizontal direction) that the tool that cuts into the work material receives from the work material (that is, the feed force) must be kept small. Is possible. Thereby, chatter vibration is suppressed and the machined surface accuracy can be improved.
 より詳しくは、例えば、コーナーR切れ刃と底切れ刃との境界点における放射方向すくい角(真のすくい角)をα、コーナーR切れ刃と外周切れ刃との境界点における放射方向すくい角(真のすくい角)をβ、前記中間部分における放射方向すくい角(真のすくい角)の最小値をγとしたときに、放射方向すくい角α、放射方向すくい角β、及び放射方向すくい角γは、いずれも負の値を有し、放射方向すくい角α値、β値、γ値の絶対値を、それぞれ|α|、|β|、|γ|としたとき、|γ|>|α|>|β|、の関係を有することが好ましい。 More specifically, for example, the radial rake angle (true rake angle) at the boundary point between the corner R cutting edge and the bottom cutting edge is α, and the radial rake angle at the boundary point between the corner R cutting edge and the outer peripheral cutting edge ( Radial rake angle α, radial rake angle β, and radial rake angle γ, where β is the true rake angle and γ is the minimum radial rake angle (true rake angle) in the intermediate portion. Are negative values, and when the radial rake angle α value, β value, and γ value are | α |, | β |, and | γ |, respectively, | γ |> | α It is preferable to have a relationship of |> | β |.
 刃先交換式回転切削工具が、本構成を有することによって、底面仕上げ加工や側面仕上げ加工(特に底面仕上げ加工)において、事前の粗加工もしくは中仕上げ加工における被削材の加工硬化層に当たる切れ刃境界部(一対の境界点同士の間に位置する中間部分)の放射方向すくい角を、最も小さい負の値とすることができる。これにより、粗加工や中仕上げ加工において切れ刃境界部のチッピングを防止する効果が顕著に得られるため好ましい。
 一方、上述した|γ|>|α|>|β|、の関係を有していない場合は、底面仕上げ加工や側面仕上げ加工(特に底面仕上げ加工)において、切れ刃境界部が損傷し易くなることがある。
The cutting edge boundary that hits the work hardening layer of the work material in roughing or semi-finishing in advance in bottom finishing and side finishing (especially bottom finishing) by having this configuration in the cutting edge exchange rotary cutting tool The radial rake angle of the portion (intermediate portion positioned between a pair of boundary points) can be set to the smallest negative value. This is preferable because the effect of preventing chipping at the boundary of the cutting edge can be remarkably obtained in roughing or intermediate finishing.
On the other hand, when the above-mentioned | γ |> | α |> | β | is not satisfied, the cutting edge boundary portion is easily damaged in the bottom finishing and side finishing (especially bottom finishing). Sometimes.
 また、上記刃先交換式回転切削工具は、前記基準面に投影した前記仮想直線が、前記基準面内において、前記回転中心軸に対して傾斜する角度を、放射角度と定義して、前記放射方向すくい角の最小値が、前記コーナーR切れ刃のうち、前記放射角度で5°以上50°以下の範囲に設定されていることが好ましい。
 なお、上記「基準面に投影した仮想直線」とは、基準面に対して垂直に、仮想直線を投影させることを指す。
Further, in the blade-tip-exchange-type rotary cutting tool, an angle at which the virtual straight line projected on the reference plane is inclined with respect to the rotation center axis in the reference plane is defined as a radiation angle, and the radial direction It is preferable that the minimum value of the rake angle is set in a range of 5 ° to 50 ° in terms of the radiation angle among the corner R cutting edges.
The “virtual straight line projected on the reference plane” refers to projecting a virtual straight line perpendicular to the reference plane.
 刃先交換式回転切削工具が、本構成を有することによって、底面仕上げ加工における、コーナーR切れ刃と底切れ刃との境界点の切れ味を確保しつつ、被削材の加工硬化層を削る切れ刃境界部(一対の境界点同士の間に位置する中間部分)の刃先強度を向上させることができる。そのため、特に加工硬化が起こり易い被削材、あるいは高能率条件での加工により加工変質層が被削材表面部に形成された場合の底面仕上げ加工における切れ刃の信頼性が高まり好ましい。 The cutting edge that cuts the work hardened layer of the work material while ensuring the sharpness of the boundary point between the corner R cutting edge and the bottom cutting edge in the bottom surface finishing by having the blade tip exchange type rotary cutting tool having this configuration. The edge strength of the boundary portion (intermediate portion located between the pair of boundary points) can be improved. Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
 詳しくは、コーナーR切れ刃の放射方向すくい角(真のすくい角)が最小値となる点が、コーナーR切れ刃のうち放射角度が5°以上となる領域に位置することにより、底面仕上げ加工時の切れ味の低下を防いで加工精度を顕著に高めることができ、かつ工具寿命を延長できる。
 また、コーナーR切れ刃の放射方向すくい角(真のすくい角)が最小値となる点が、コーナーR切れ刃のうち放射角度が50°以下となる領域に位置することにより、この最小値の部分に形成された刃先強化部が、一般的な底面仕上げ代の範囲に収まりやすくなる。従って、底面仕上げの仕上げ加工代に係わらず、切れ刃境界部のチッピングを防止する効果が顕著に得られる。
Specifically, the point where the radial rake angle (true rake angle) of the corner R cutting edge is the minimum value is located in the region where the radial angle of the corner R cutting edge is 5 ° or more, so that the bottom finish processing is performed. It is possible to remarkably increase the machining accuracy by preventing the deterioration of the sharpness of the time, and to extend the tool life.
In addition, the point at which the radial rake angle (true rake angle) of the corner R cutting edge is the minimum value is located in the region of the corner R cutting edge where the radial angle is 50 ° or less. The cutting edge strengthening part formed in the part is likely to be within the range of a general bottom finishing allowance. Therefore, the effect of preventing chipping at the boundary portion of the cutting edge can be remarkably obtained regardless of the finishing cost for bottom finishing.
 本願発明は、金型等の被削材に加工基準面となる底面や水平面に垂直な側面を仕上げ加工する場合、特に工具突出しの長い(例えばL/Dが4以上)加工における切削性能を改善し、被削材の底面の仕上げ寸法精度のほか、水平面に垂直な側面仕上げ加工における寸法精度に優れた刃先交換式回転切削工具、及びインサートを提供することができる。 The present invention improves the cutting performance particularly when machining a long tool protrusion (for example, L / D is 4 or more) when finishing the bottom surface serving as a machining reference surface or a side surface perpendicular to a horizontal surface on a work material such as a mold. In addition to the finishing dimensional accuracy of the bottom surface of the work material, it is possible to provide a blade-tip-exchange-type rotary cutting tool and an insert excellent in dimensional accuracy in side surface finishing processing perpendicular to the horizontal plane.
本願発明の実施形態の1例である刃先交換式回転切削工具の斜視図を示す。The perspective view of the blade-tip-exchange-type rotary cutting tool which is an example of embodiment of this invention is shown. 図1に示す刃先交換式回転切削工具の平面図を示す。The top view of the blade-tip-exchange-type rotary cutting tool shown in FIG. 1 is shown. 図1に示す刃先交換式回転切削工具の側面図を示す。The side view of the blade-tip-exchange-type rotary cutting tool shown in FIG. 1 is shown. 図1に示す刃先交換式回転切削工具の正面図を示す。The front view of the blade-tip-exchange-type rotary cutting tool shown in FIG. 1 is shown. 図1に示す刃先交換式回転切削工具に装着されたインサートの斜視図を示す。The perspective view of the insert with which the blade edge | tip exchange type rotary cutting tool shown in FIG. 1 was mounted | worn is shown. 図5に示すインサートのコーナーR切れ刃部近傍を拡大した平面図を示す。The top view which expanded the corner R cutting blade part vicinity of the insert shown in FIG. 5 is shown. 図5に示すインサートのコーナーR切れ刃部近傍を拡大した側面図を示す。The side view which expanded the corner R cutting-blade part vicinity of the insert shown in FIG. 5 is shown. 図5に示すインサートのコーナーR切れ刃部近傍を拡大した正面図を示す。The front view which expanded the corner R cutting edge part vicinity of the insert shown in FIG. 5 is shown. 図5に示すコーナーR切れ刃部近傍の拡大図を示す。The enlarged view of the corner R cutting blade part vicinity shown in FIG. 5 is shown. 本実施形態の刃先交換式回転切削工具のコーナーR切れ刃における、放射方向すくい角及び放射角度を説明する図を示す。The figure explaining the radial rake angle and radial angle in the corner R cutting edge of the blade-tip-exchange-type rotary cutting tool of this embodiment is shown. 本実施形態の刃先交換式回転切削工具のコーナーR切れ刃における、放射方向すくい角のプロファイルを示す。The profile of the radial rake angle in the corner R cutting edge of the blade edge | tip-exchange-type rotary cutting tool of this embodiment is shown. 比較例2のインサート形状を示す。The insert shape of the comparative example 2 is shown. 比較例3のインサート形状を示す。The insert shape of the comparative example 3 is shown. 本発明例1のインサートを用いた加工により形成された立壁側面部の形状プロファイル線を示す。The shape profile line of the standing wall side part formed by the process using the insert of this invention example 1 is shown. 比較例2のインサートを用いた加工により形成された立壁側面部の形状プロファイル線を示す。The shape profile line of the standing wall side part formed by the process using the insert of the comparative example 2 is shown. 比較例3のインサートを用いた加工により形成された立壁側面部の形状プロファイル線を示す。The shape profile line of the standing wall side part formed by the process using the insert of the comparative example 3 is shown. 本発明例1のインサートを用いた加工により形成された立壁側面部の形状プロファイル線を示す。The shape profile line of the standing wall side part formed by the process using the insert of this invention example 1 is shown. 比較例2のインサートを用いた加工により形成された立壁側面部の形状プロファイル線を示す。The shape profile line of the standing wall side part formed by the process using the insert of the comparative example 2 is shown. 比較例3のインサートを用いた加工により形成された立壁側面部の形状プロファイル線を示す。The shape profile line of the standing wall side part formed by the process using the insert of the comparative example 3 is shown.
 以下、図面に基づいて本願発明に係る刃先交換式ラジアスエンドミルの実施形態について説明する。本実施形態において、本願発明の刃先交換式回転切削工具を、刃先交換式のラジアスエンドミル(以下、「刃先交換式ラジアスエンドミル」と記載する。)に適用する。この刃先交換式回転切削工具は、特に、工具突出しの長い(L/Dが4以上)切削条件において行われる、被削材の側面仕上げ加工に適している。ここで、L値は工具の回転中心軸(C)方向の長さを示し、D値は、工具切れ刃の回転軌跡の直径を示す。
 工具突出しの長い側面仕上げ加工に適している理由の1つは、コーナーR切れ刃(13)に軸方向すくい角(Ar1)値を負とした面取り面(15)を設けることにより、コーナーR切れ刃(13)と外周切れ刃(9)の被削材への食付きを改善したことによる。
Hereinafter, an embodiment of a blade edge replaceable radius end mill according to the present invention will be described with reference to the drawings. In the present embodiment, the blade edge exchange type rotary cutting tool of the present invention is applied to a blade edge exchange type radius end mill (hereinafter referred to as “blade edge exchange type radius end mill”). This blade-tip-exchange-type rotary cutting tool is particularly suitable for side finishing of a work material performed under cutting conditions with a long tool protrusion (L / D is 4 or more). Here, the L value indicates the length of the tool in the rotation center axis (C) direction, and the D value indicates the diameter of the rotation locus of the tool cutting edge.
One of the reasons why it is suitable for side finishing with long tool overhang is to provide corner chamfering by providing a chamfered surface (15) with a negative rake angle (Ar1) in the corner R cutting edge (13). This is because the biting of the blade (13) and the outer peripheral cutting edge (9) on the work material has been improved.
 以下に説明する本願発明の実施形態は、底切れ刃(11)と外周切れ刃(9)をつなぐコーナーR切れ刃(13)のすくい面(14)と、底切れ刃のすくい面(12)のうち少なくとも径方向の外側に位置する部分と、を結合させた面取り面(15)を備えたインサート(5)を、工具本体(1)に着脱自在に装着した刃先交換式回転切削工具である、刃先交換式ラジアスエンドミル(6)について説明する。 The embodiment of the present invention described below includes a rake face (14) of a corner R cutting edge (13) connecting a bottom cutting edge (11) and an outer peripheral cutting edge (9), and a rake face (12) of the bottom cutting edge. It is a blade-tip-exchange-type rotary cutting tool in which an insert (5) having a chamfered surface (15) combined with at least a portion located outside in the radial direction is detachably attached to a tool body (1). The blade end replaceable radius end mill (6) will be described.
 図1は、本願発明の実施形態の一例である刃先交換式ラジアスエンドミル(6)について、その構成例を示す斜視図である。
 図2は、図1に示す刃先交換式ラジアスエンドミル(6)の平面図である。
 図3は、図1に示す刃先交換式ラジアスエンドミル(6)の側面図である。
 図4は、図1に示す刃先交換式ラジアスエンドミル(6)の正面図である。
 図5は、図1に示す刃先交換式ラジアスエンドミル(6)のインサート(5)を示す斜視図である。
FIG. 1 is a perspective view showing an example of the configuration of a blade end replaceable radius end mill (6) which is an example of an embodiment of the present invention.
FIG. 2 is a plan view of the blade end replaceable radius end mill (6) shown in FIG.
FIG. 3 is a side view of the blade end replaceable radius end mill (6) shown in FIG.
FIG. 4 is a front view of the blade end replaceable radius end mill (6) shown in FIG.
FIG. 5 is a perspective view showing the insert (5) of the blade end replaceable radius end mill (6) shown in FIG.
〔刃先交換式ラジアスエンドミルの概略構成〕
 図1~図4に示すように、刃先交換式ラジアスエンドミル(6)は、略円柱状をなす工具本体(1)と、工具本体(1)の回転中心軸(C)方向の先端部(2)に形成された取付座(3)に着脱自在に装着され、切れ刃部(4)を有するインサート(5)と、を備えている。
 工具本体(1)の回転中心軸(C)方向の基端部には、図示しないシャンク部がこの工具本体(1)と一体に形成されている。
[Schematic configuration of the blade end replaceable radius end mill]
As shown in FIGS. 1 to 4, the blade end replaceable radius end mill (6) includes a tool body (1) having a substantially cylindrical shape, and a tip portion (2) in the direction of the rotation center axis (C) of the tool body (1). And an insert (5) having a cutting edge portion (4).
A shank portion (not shown) is formed integrally with the tool body (1) at the base end in the direction of the rotation center axis (C) of the tool body (1).
 本実施形態の刃先交換式ラジアスエンドミル(6)は、鋼材や超硬合金等で形成された工具本体(1)と、超硬合金等で形成されたインサート(5)と、を備えており、回転中心軸(C)回りに回転させられる工具本体(1)の先端部(2)に形成された取付座(インサート取付座)(3)に、板状をなすインサート(5)がそのインサート中心軸(インサート(5)に形成された切れ刃部(4)の対称軸)を工具の回転中心軸(C)に一致させられた状態で、着脱可能に装着される。
 取付座(3)に取り付けられたインサート(5)は、その切れ刃部(4)が、工具本体(1)の先端側及び径方向外側に突出して配置される。
The blade end replaceable radius end mill (6) of the present embodiment includes a tool body (1) formed of steel, cemented carbide, or the like, and an insert (5) formed of cemented carbide, etc. A plate-like insert (5) is placed on the mounting seat (insert mounting seat) (3) formed at the tip (2) of the tool body (1) rotated about the rotation center axis (C). The shaft (symmetrical axis of the cutting edge portion (4) formed on the insert (5)) is detachably mounted in a state where the shaft is aligned with the rotation center axis (C) of the tool.
The insert (5) attached to the attachment seat (3) is disposed so that the cutting edge (4) protrudes to the tip side and the radially outer side of the tool body (1).
 刃先交換式ラジアスエンドミル(6)は、その工具本体(1)の基端部(シャンク部)が、チャックを介して間接的に、又は直接的に、工作機械の主軸(不図示)に取り付けられ、主軸が回転駆動させられるのにともなって、回転中心軸(C)回りの工具回転方向(R)に回転させられて、金属材料等からなる被削材に転削加工(ミーリング加工)を施す。 The blade end replaceable radius end mill (6) has a base end (shank) of the tool body (1) attached to a spindle (not shown) of a machine tool indirectly or directly via a chuck. As the main shaft is driven to rotate, it is rotated in the tool rotation direction (R) around the rotation center axis (C) to subject the workpiece made of a metal material or the like to rolling (milling). .
〔本実施形態で用いる向き(方向)の定義〕
 本実施形態においては、工具本体(1)の回転中心軸(C)が延在する方向、つまり回転中心軸(C)に平行な方向を、回転中心軸(C)方向という。また、回転中心軸(C)方向のうち、工具本体(1)のシャンク部から取付座(3)へ向かう方向を先端側(図2及び図3における下側)といい、取付座(3)からシャンク部へ向かう方向を基端側(図2及び図3における上側)という。
[Definition of direction (direction) used in this embodiment]
In the present embodiment, the direction in which the rotation center axis (C) of the tool body (1) extends, that is, the direction parallel to the rotation center axis (C) is referred to as the rotation center axis (C) direction. Of the rotation center axis (C) direction, the direction from the shank portion of the tool body (1) to the mounting seat (3) is referred to as the tip side (the lower side in FIGS. 2 and 3), and the mounting seat (3). The direction from the base to the shank is referred to as the base end side (the upper side in FIGS. 2 and 3).
 また、回転中心軸(C)に直交する方向を径方向という。径方向のうち、回転中心軸(C)に接近する方向を径方向の内側といい、回転中心軸(C)から離間する方向を径方向の外側という。
 また、回転中心軸(C)回りに周回する方向を周方向という。周方向のうち、切削時に主軸の回転駆動により工具本体(1)が回転させられる向きを工具回転方向(R)といい、これとは反対の回転方向を、工具回転方向(R)とは反対側(つまり反工具回転方向)という。
A direction orthogonal to the rotation center axis (C) is referred to as a radial direction. Of the radial directions, a direction approaching the rotation center axis (C) is referred to as an inner side in the radial direction, and a direction away from the rotation center axis (C) is referred to as an outer side in the radial direction.
Further, a direction around the rotation center axis (C) is referred to as a circumferential direction. Of the circumferential directions, the direction in which the tool body (1) is rotated by the rotational drive of the spindle during cutting is called the tool rotation direction (R), and the opposite rotation direction is opposite to the tool rotation direction (R). The side (that is, the counter tool rotation direction).
 なお、上記した向き(方向)の定義は、刃先交換式ラジアスエンドミル(6)全体において適用されるのはもちろんのこと、この刃先交換式ラジアスエンドミル(6)の回転中心軸(C)に対してインサート中心軸が一致させられる(同軸に配置される)インサート(5)においても、同様に適用される。 The definition of the direction (direction) described above is applied to the entire blade end replaceable radius end mill (6), as well as the rotation center axis (C) of the blade end replaceable radius end mill (6). The same applies to the insert (5) in which the insert central axes are aligned (coaxially arranged).
〔取付座〕
 取付座(3)は、工具本体(1)の先端部(2)に、工具の回転中心軸(C)を含んで径方向に延びて形成されたスリット状のインサート嵌合溝(7)と、インサート嵌合溝(7)に挿入されたインサート(5)を固定するための固定用ネジ(8)と、を備えている。
[Mounting seat]
The mounting seat (3) includes a slit-like insert fitting groove (7) formed in the distal end portion (2) of the tool body (1) and extending in the radial direction including the rotation center axis (C) of the tool. A fixing screw (8) for fixing the insert (5) inserted in the insert fitting groove (7).
 図3及び図4に示すように、インサート取付座(3)は、工具本体(1)の先端部(2)に開口し、さらに、工具本体(1)の径方向に延びて工具本体(1)の外周面に開口するとともに、工具本体(1)の基端側へ向かって所定の長さ(深さ)に形成されたスリット状のインサート嵌合溝(7)を有する。 As shown in FIGS. 3 and 4, the insert mounting seat (3) opens at the tip (2) of the tool main body (1), and further extends in the radial direction of the tool main body (1) to provide the tool main body (1). ) And a slit-like insert fitting groove (7) formed in a predetermined length (depth) toward the base end side of the tool body (1).
 工具本体(1)の先端部(2)にスリット状のインサート嵌合溝(7)を形成したことにより、工具本体(1)の先端部(2)は2つに分割されて、一対の先端半体部が形成されている。そして、先端半体部の一方の表面部から、インサート嵌合溝(7)と交差して他方の先端半体部内に達するインサート固定用ネジ穴が形成されている。このインサート固定用ネジ穴の向きは、工具本体(1)のインサート嵌合溝(7)が工具本体(1)の径方向に延びる向きと直交する方向に形成されている。
 また、一方の先端半体部を通って、他方の先端半体部内に達するインサート固定用ネジ穴の内周面には、固定用ネジ(8)の雄ネジ部とネジ嵌合させるための雌ネジ部が刻設されている。
By forming the slit-like insert fitting groove (7) in the tip portion (2) of the tool body (1), the tip portion (2) of the tool body (1) is divided into two, and a pair of tips. A half body is formed. An insert fixing screw hole is formed from one surface of the tip half so as to cross the insert fitting groove (7) and reach the other tip half. The direction of the screw hole for fixing the insert is formed in a direction orthogonal to the direction in which the insert fitting groove (7) of the tool body (1) extends in the radial direction of the tool body (1).
In addition, a female screw for fitting with the male screw portion of the fixing screw (8) is inserted into the inner peripheral surface of the screw hole for fixing the insert that passes through the first half portion and reaches the other half portion. Screw part is engraved.
〔インサート〕
 切れ刃を備えているインサート(5)の構成例を、図5~図11を参照して説明する。
 図5は、本発明例のインサート(5)の斜視図である。
 図6は、図5に示すインサート(5)のコーナーR切れ刃(13)近傍を拡大した平面図である。
 図7は、図5に示すインサート(5)のコーナーR切れ刃(13)近傍を拡大した側面図である。
 図8は、図5に示すインサート(5)のコーナーR切れ刃(13)近傍を拡大した正面図である。
 図9は、図5に示すコーナーR切れ刃(13)近傍の拡大図である。
 図10は、本実施形態の刃先交換式ラジアスエンドミル(6)のコーナーR切れ刃(13)における、放射方向すくい角(δ)及び放射角度(θ)を説明する図である。
 図11は、本実施形態の刃先交換式ラジアスエンドミル(6)のコーナーR切れ刃(13)における、放射方向すくい角のプロファイルである。
〔insert〕
A configuration example of the insert (5) having a cutting edge will be described with reference to FIGS.
FIG. 5 is a perspective view of the insert (5) of the example of the present invention.
FIG. 6 is an enlarged plan view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
FIG. 7 is an enlarged side view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
FIG. 8 is an enlarged front view of the vicinity of the corner R cutting edge (13) of the insert (5) shown in FIG.
FIG. 9 is an enlarged view of the vicinity of the corner R cutting edge (13) shown in FIG.
FIG. 10 is a diagram for explaining the radial rake angle (δ) and the radial angle (θ) in the corner R cutting edge (13) of the blade end replaceable radius end mill (6) of the present embodiment.
FIG. 11 is a profile of a radial rake angle in the corner R cutting edge (13) of the blade end replaceable radius end mill (6) of the present embodiment.
 図5に示すように、インサート(5)は、略平板形状をなしており、図8に示すように、厚さTを有している。インサート(5)は、該インサート(5)を取付座(3)に固定するための固定用ネジ(8)が挿入されるネジ挿通孔(18)と、被削材に切り込み切削加工を行うための切れ刃部(4)と、を備えている。 As shown in FIG. 5, the insert (5) has a substantially flat plate shape and has a thickness T as shown in FIG. The insert (5) is provided with a screw insertion hole (18) into which a fixing screw (8) for fixing the insert (5) to the mounting seat (3) is inserted, and for cutting and cutting the work material. A cutting edge portion (4).
 図5に示すように、インサート(5)は一方の外側面部(5a)から他方の外側面部(5b)に向けて貫通するネジ挿通孔(18)を備えている。ネジ挿通孔(18)は、インサート(5)を取付座(3)に装着して固定するときに、固定用ネジ(8)を挿通させるための貫通孔である。 As shown in FIG. 5, the insert (5) includes a screw insertion hole (18) penetrating from one outer surface portion (5a) toward the other outer surface portion (5b). The screw insertion hole (18) is a through hole through which the fixing screw (8) is inserted when the insert (5) is mounted and fixed to the mounting seat (3).
 切れ刃部(4)は、工具回転方向(R)を向くすくい面と、すくい面に交差して径方向外側又は先端側を向く逃げ面と、すくい面と逃げ面との交差稜線に形成される切れ刃と、を備えている。前記切れ刃には、外周切れ刃(9)と、底切れ刃(11)と、コーナーR切れ刃(13)と、が含まれる。前記切れ刃は、外周切れ刃(9)、底切れ刃(11)及びコーナーR切れ刃(13)を備えたことにより、全体として略L字状をなしている。また、各切れ刃(9、11、13)に対して、すくい面及び逃げ面がそれぞれ隣接配置されている。 The cutting edge portion (4) is formed on a rake face that faces the tool rotation direction (R), a flank face that intersects the rake face and faces the radially outer side or the tip side, and an intersecting ridge line of the rake face and the flank face. And a cutting edge. The cutting edge includes an outer peripheral cutting edge (9), a bottom cutting edge (11), and a corner R cutting edge (13). The cutting edge includes a peripheral cutting edge (9), a bottom cutting edge (11), and a corner R cutting edge (13), and thus has a substantially L shape as a whole. Further, a rake face and a flank face are arranged adjacent to each of the cutting edges (9, 11, 13).
 本実施形態のインサート(5)は、2枚刃の切削インサートであり、外周切れ刃(9)、底切れ刃(11)及びコーナーR切れ刃(13)を備えた前記切れ刃を2組有し、この2組の切れ刃は回転中心軸(C)を中心として、180°回転対称に配置されている。 The insert (5) of the present embodiment is a two-blade cutting insert, and has two sets of the above-mentioned cutting blades provided with an outer peripheral cutting blade (9), a bottom cutting blade (11), and a corner R cutting blade (13). The two sets of cutting edges are arranged 180 degrees rotationally symmetrical about the rotation center axis (C).
 図5及び図6に示す符号「9」は、インサート(5)の外周切れ刃(9)である。外周切れ刃(9)は、回転中心軸(C)方向に沿うように延びている。詳しくは、外周切れ刃(9)は、コーナーR切れ刃(13)に接続するその先端から基端側へ向かうに従い、工具回転方向(R)とは反対側へ向けて、螺旋状にねじれて延びている。つまり図3に示すように、外周切れ刃(9)のねじれ角(ε)は、正の値(ポジティブ角)とされている。外周切れ刃(9)のねじれ角(ε)の大きさは特に限定されないが、2°~20°の範囲とされることが好ましい。これにより、切削抵抗を低減する効果と切屑排出性を向上する効果とをバランス良く得られる。また、外周切れ刃(9)のねじれ角(ε)の大きさの範囲は2°~15°がより好ましく、3°~8°が特に好ましい。
 取付座(3)にインサート(5)を装着して刃先交換式ラジアスエンドミル(6)を回転中心軸(C)回りに回転させると、一対の外周切れ刃(9)の回転軌跡は、円筒状に形成される。
Reference numeral “9” shown in FIGS. 5 and 6 is the outer peripheral cutting edge (9) of the insert (5). The outer peripheral cutting edge (9) extends along the direction of the rotation center axis (C). Specifically, the outer peripheral cutting edge (9) is twisted in a spiral shape toward the side opposite to the tool rotation direction (R) as it goes from the tip end connected to the corner R cutting edge (13) toward the base end side. It extends. That is, as shown in FIG. 3, the torsion angle (ε) of the outer peripheral cutting edge (9) is a positive value (positive angle). The magnitude of the twist angle (ε) of the outer peripheral cutting edge (9) is not particularly limited, but is preferably in the range of 2 ° to 20 °. Thereby, the effect which reduces cutting resistance and the effect which improves chip discharge | emission property are acquired with sufficient balance. Further, the range of the magnitude of the twist angle (ε) of the outer peripheral cutting edge (9) is more preferably 2 ° to 15 °, and particularly preferably 3 ° to 8 °.
When the insert (5) is mounted on the mounting seat (3) and the blade end replaceable radius end mill (6) is rotated about the rotation center axis (C), the rotation locus of the pair of outer peripheral cutting edges (9) is cylindrical. Formed.
 インサート(5)を工具本体(1)の取付座(3)(インサート嵌合溝7)に装着したときに、図6及び図9に示すように、外周切れ刃(9)とコーナーR切れ刃(13)との境界点(Q)は、回転中心軸(C)に対する垂線方向(つまり径方向)における最外周点になる。境界点(Q)において、外周切れ刃(9)の先端と、コーナーR切れ刃(13)の基端とが接続している。つまり、境界点(Q)から基端側へ向かう切れ刃が外周切れ刃(9)であり、境界点(Q)から先端側へ向かう切れ刃がコーナーR切れ刃(13)である。 When the insert (5) is mounted in the mounting seat (3) (insert fitting groove 7) of the tool body (1), as shown in FIGS. 6 and 9, the outer peripheral cutting edge (9) and the corner R cutting edge The boundary point (Q) with (13) is the outermost peripheral point in the direction perpendicular to the rotation center axis (C) (that is, the radial direction). At the boundary point (Q), the distal end of the outer peripheral cutting edge (9) and the base end of the corner R cutting edge (13) are connected. That is, the cutting edge from the boundary point (Q) toward the proximal end is the outer peripheral cutting edge (9), and the cutting edge from the boundary point (Q) toward the distal end is the corner R cutting edge (13).
 外周切れ刃(9)の径方向内側には、工具回転方向(R)を向く外周切れ刃(9)のすくい面(10)が隣接配置されている。外周切れ刃(9)のすくい面(10)の径方向内側には、切屑排出溝(17)が形成されている。切屑排出溝(17)は、回転中心軸(C)方向に沿うように延びている。 The rake face (10) of the outer peripheral cutting edge (9) facing the tool rotation direction (R) is disposed adjacent to the radially inner side of the outer peripheral cutting edge (9). A chip discharge groove (17) is formed on the radially inner side of the rake face (10) of the outer peripheral cutting edge (9). The chip discharge groove (17) extends along the rotation center axis (C) direction.
 外周切れ刃(9)の工具回転方向(R)とは反対側には、外周切れ刃(9)の逃げ面が隣接配置されている。前記逃げ面は、径方向外側を向いて形成されており、外周切れ刃(9)から工具回転方向(R)とは反対側へ向かうに従い径方向内側へ向かうように傾斜していて、逃げ角が付与されている。 The flank of the outer peripheral cutting edge (9) is disposed adjacent to the opposite side of the outer peripheral cutting edge (9) from the tool rotation direction (R). The flank face is formed facing outward in the radial direction, and is inclined so as to go radially inward from the outer peripheral cutting edge (9) toward the side opposite to the tool rotation direction (R). Is granted.
 図5及び図6に示す符号「11」は、インサート(5)の底切れ刃(11)である。底切れ刃(11)は、径方向に沿うように延びている。詳しくは、底切れ刃(11)は、そのコーナーR切れ刃(13)に隣接(接続)する径方向外端から径方向の内側へ向かうに従い、基端側へ向けて延びており、回転中心軸(C)に垂直な平面(水平面)に対して僅かに傾斜している。
 取付座(3)にインサート(5)を装着して刃先交換式ラジアスエンドミル(6)を回転中心軸(C)回りに回転させると、一対の底切れ刃(11)の回転軌跡は、略円錐状に形成される。
Reference numeral “11” shown in FIGS. 5 and 6 is the bottom cutting edge (11) of the insert (5). The bottom cutting edge (11) extends along the radial direction. Specifically, the bottom cutting edge (11) extends toward the base end side from the radial outer end adjacent to (connected to) the corner R cutting edge (13) toward the inner side in the radial direction, and has a center of rotation. It is slightly inclined with respect to a plane (horizontal plane) perpendicular to the axis (C).
When the insert (5) is mounted on the mounting seat (3) and the blade end replaceable radius end mill (6) is rotated about the rotation center axis (C), the rotation locus of the pair of bottom cutting edges (11) is substantially conical. It is formed in a shape.
 インサート(5)を工具本体(1)の取付座(3)(インサート嵌合溝7)に装着したときに、図6及び図9に示すように、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)は、回転中心軸(C)方向における工具の最先端部に位置し、つまり最下点となる。境界点(P)において、底切れ刃(11)の径方向外端と、コーナーR切れ刃(13)の径方向内端とが接続している。つまり、境界点(P)から径方向内側へ向かう切れ刃が底切れ刃(11)であり、境界点(P)から径方向外側へ向かう切れ刃がコーナーR切れ刃(13)である。なお、図6の符号「U」は、境界点(P)の位置より底切れ刃(11)側(径方向の内側)に向かった切れ刃陵線領域である、底切れ刃領域を示す。 When the insert (5) is mounted in the mounting seat (3) (insert fitting groove 7) of the tool body (1), as shown in FIGS. 6 and 9, the corner R cutting edge (13) and the bottom cutting edge The boundary point (P) with (11) is located at the foremost part of the tool in the direction of the rotation center axis (C), that is, the lowest point. At the boundary point (P), the radially outer end of the bottom cutting edge (11) and the radially inner end of the corner R cutting edge (13) are connected. That is, the cutting edge that extends radially inward from the boundary point (P) is the bottom cutting edge (11), and the cutting edge that extends radially outward from the boundary point (P) is the corner R cutting edge (13). In addition, the code | symbol "U" of FIG. 6 shows the bottom cutting edge area | region which is a cutting edge line | wire area | region which went to the bottom cutting edge (11) side (diameter inside) from the position of the boundary point (P).
 底切れ刃(11)の基端側には、工具回転方向(R)を向く底切れ刃(11)のすくい面(12)が隣接配置されている。底切れ刃(11)のすくい面(12)の基端側には、切屑排出溝(16)が形成されている。切屑排出溝(16)は、回転中心軸(C)方向に沿うように延びている。底切れ刃(11)の切屑排出溝(16)は、外周切れ刃(9)の切屑排出溝(17)の径方向内側に隣接配置されており、これらの切屑排出溝(16、17)同士は、互いに異なる面によって形成されている。 The rake face (12) of the bottom cutting edge (11) facing the tool rotation direction (R) is disposed adjacent to the base end side of the bottom cutting edge (11). A chip discharge groove (16) is formed on the base end side of the rake face (12) of the bottom cutting edge (11). The chip discharge groove (16) extends along the direction of the rotation center axis (C). The chip discharge groove (16) of the bottom cutting edge (11) is disposed adjacent to the inner side in the radial direction of the chip discharge groove (17) of the outer peripheral cutting edge (9), and these chip discharge grooves (16, 17) are arranged with each other. Are formed by different surfaces.
 底切れ刃(11)の工具回転方向(R)とは反対側には、底切れ刃(11)の逃げ面が隣接配置されている。前記逃げ面は、先端側を向いて形成されており、底切れ刃(11)から工具回転方向(R)とは反対側へ向かうに従い基端側へ向かうように傾斜していて、逃げ角が付与されている。 The flank of the bottom cutting edge (11) is disposed adjacent to the side of the bottom cutting edge (11) opposite to the tool rotation direction (R). The flank is formed so as to face the distal end side, and is inclined so as to go to the base end side from the bottom cutting edge (11) toward the side opposite to the tool rotation direction (R). Has been granted.
 なお、本実施形態に示す例では、底切れ刃(11)は、この底切れ刃(11)の刃長領域(全長)のうち、径方向の外側に位置してコーナーR切れ刃(13)に接続されるとともに、該コーナーR切れ刃(13)から径方向内側へ向けて延びる外側底切れ刃(19)と、前記刃長領域のうち、外側底切れ刃(19)よりも径方向の内側に配置されるとともに、該外側底切れ刃(19)から径方向の内側へ向けて延びる内側底切れ刃(20)と、を備えている。そして、底切れ刃(11)のうち、外側底切れ刃(19)に対応する部分が、上記底切れ刃領域(U)に配置される。 In the example shown in the present embodiment, the bottom cutting edge (11) is located on the outer side in the radial direction in the blade length region (full length) of the bottom cutting edge (11), and the corner R cutting edge (13). And an outer bottom cutting edge (19) extending radially inward from the corner R cutting edge (13), and of the blade length region, the outer bottom cutting edge (19) is more radial than the outer bottom cutting edge (19). An inner bottom cutting edge (20) which is disposed on the inner side and extends radially inward from the outer bottom cutting edge (19). And the part corresponding to an outer side bottom cutting edge (19) among bottom cutting edges (11) is arrange | positioned in the said bottom cutting edge area | region (U).
 図6に示すインサート(5)の平面視、つまり底切れ刃(11)のすくい面(12)を正面に見た平面図においては、底切れ刃(11)の外側底切れ刃(19)及び内側底切れ刃(20)が、互いの接続部分に屈曲点を有することのない1つの直線を形成するように、一直線状に延びている。
 ただし、底切れ刃(11)のすくい面(12)における、回転中心軸(C)方向における単位長さあたりの周方向へ向けた変位量、つまりすくい面(12)の回転中心軸(C)方向に対する傾きは、内側底切れ刃(20)よりも外側底切れ刃(19)において大きくされている。
In the plan view of the insert (5) shown in FIG. 6, that is, the plan view in which the rake face (12) of the bottom cutting edge (11) is viewed in front, the outer bottom cutting edge (19) of the bottom cutting edge (11) and The inner bottom cutting edge (20) extends in a straight line so as to form one straight line having no bending point at the connecting portion.
However, the amount of displacement of the rake face (12) of the bottom cutting edge (11) in the circumferential direction per unit length in the direction of the rotation center axis (C), that is, the rotation center axis (C) of the rake face (12). The inclination with respect to the direction is larger at the outer bottom cutting edge (19) than at the inner bottom cutting edge (20).
 具体的には、底切れ刃(11)の軸方向すくい角(アキシャルレーキ)が、内側底切れ刃(20)よりも外側底切れ刃(19)で負角(ネガティブ角)側に大きくなっている。すなわち、外側底切れ刃(19)の軸方向すくい角の絶対値が、内側底切れ刃(20)よりも大きい。
 これは、底切れ刃(11)のすくい面(12)のうち、外側底切れ刃(19)に対応する部分が、面取り面(15)に配置されているためである。面取り面(15)については、別途後述する。なお、本実施形態の例では、内側底切れ刃(20)の軸方向すくい角が0°とされ、外側底切れ刃(19)の軸方向すくい角が負の値とされている。
Specifically, the axial rake angle (axial rake) of the bottom cutting edge (11) is larger on the negative angle (negative angle) side at the outer bottom cutting edge (19) than at the inner bottom cutting edge (20). Yes. That is, the absolute value of the axial rake angle of the outer bottom cutting edge (19) is larger than that of the inner bottom cutting edge (20).
This is because the portion corresponding to the outer bottom cutting edge (19) of the rake face (12) of the bottom cutting edge (11) is disposed on the chamfered surface (15). The chamfered surface (15) will be described later separately. In the example of this embodiment, the axial rake angle of the inner bottom cutting edge (20) is 0 °, and the axial rake angle of the outer bottom cutting edge (19) is a negative value.
 図8に示すインサート(5)の正面視、つまりインサート(5)を回転中心軸(C)の先端から基端側へ向けて見た正面図においては、底切れ刃(11)の径方向における単位長さあたりの周方向へ向けた変位量、つまり底切れ刃(11)の径方向に対する傾きが、内側底切れ刃(20)よりも外側底切れ刃(19)で大きくされている。具体的には、底切れ刃(11)の中心方向すくい角(ラジアルレーキ。径方向すくい角)が、内側底切れ刃(20)よりも外側底切れ刃(19)で負角(ネガティブ角)側に大きくなっている。すなわち、外側底切れ刃(19)の中心方向すくい角の絶対値が、内側底切れ刃(20)よりも大きい。なお、本実施形態の例では、内側底切れ刃(20)の中心方向すくい角、及び、外側底切れ刃(19)の中心方向すくい角が、ともに負の値とされている。 In the front view of the insert (5) shown in FIG. 8, that is, the front view of the insert (5) viewed from the distal end of the rotation center axis (C) toward the proximal end side, in the radial direction of the bottom cutting edge (11) The amount of displacement in the circumferential direction per unit length, that is, the inclination of the bottom cutting edge (11) with respect to the radial direction is larger at the outer bottom cutting edge (19) than at the inner bottom cutting edge (20). Specifically, the central rake angle (radial rake; radial rake angle) of the bottom cutting edge (11) is a negative angle (negative angle) at the outer bottom cutting edge (19) than the inner bottom cutting edge (20). The side is getting bigger. That is, the absolute value of the rake angle in the center direction of the outer bottom cutting edge (19) is larger than that of the inner bottom cutting edge (20). In the example of the present embodiment, the rake angle in the center direction of the inner bottom cutting edge (20) and the rake angle in the center direction of the outer bottom cutting edge (19) are both negative values.
 図5に示す符号「13」は、インサート(5)の底切れ刃(11)と外周切れ刃(9)とを繋ぐコーナーR切れ刃(13)である。コーナーR切れ刃(13)は、底切れ刃(11)の径方向の外端と外周切れ刃(9)の先端とを接続しているとともに、工具本体(1)の先端外周側へ向けて凸となる円弧状に形成されている。
 取付座(3)にインサート(5)を装着して刃先交換式ラジアスエンドミル(6)を回転中心軸(C)回りに回転させると、一対のコーナーR切れ刃(13)の回転軌跡(回転軌跡の回転中心軸(C)を含み回転中心軸(C)方向に平行な断面の形状)は、略1/4円弧状に形成される。
The code | symbol "13" shown in FIG. 5 is the corner R cutting edge (13) which connects the bottom cutting edge (11) and outer periphery cutting edge (9) of insert (5). The corner R cutting edge (13) connects the outer end in the radial direction of the bottom cutting edge (11) and the tip of the outer peripheral cutting edge (9) and is directed toward the outer periphery of the tip of the tool body (1). It is formed in a convex arc shape.
When the insert (5) is mounted on the mounting seat (3) and the blade end replaceable radius end mill (6) is rotated about the rotation center axis (C), the rotation locus (rotation locus) of the pair of corner R cutting edges (13) The shape of the cross section including the rotation center axis (C) and parallel to the direction of the rotation center axis (C) is formed in a substantially ¼ arc shape.
 インサート(5)を工具本体(1)の取付座(3)(インサート嵌合溝7)に装着したときに、図6及び図9に示すように、コーナーR切れ刃(13)は、底切れ刃(11)の径方向外端に位置する工具の最下点(境界点P)から外周切れ刃(9)の先端に位置する工具の最外周点(境界点Q)までを結ぶ円弧刃となる。 When the insert (5) is mounted on the mounting seat (3) (insert fitting groove 7) of the tool body (1), the corner R cutting edge (13) is cut off at the bottom as shown in FIGS. An arcuate blade connecting from the lowest point (boundary point P) of the tool positioned at the radially outer end of the blade (11) to the outermost peripheral point (boundary point Q) of the tool positioned at the tip of the outer peripheral cutting edge (9); Become.
 コーナーR切れ刃(13)の径方向内側かつ基端側には、工具回転方向(R)を向くコーナーR切れ刃(13)のすくい面(14)が隣接配置されている。コーナーR切れ刃(13)のすくい面(14)は、回転中心軸(C)方向において基端側へ向かうに従い漸次工具回転方向(R)に向けて傾斜している。つまり、コーナーR切れ刃(13)の軸方向すくい角(Ar)は、コーナーR切れ刃(13)全域で負角(ネガティブ角)に設定されている。このため、図9に示すように、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)におけるコーナーR切れ刃(13)の軸方向すくい角(Ar1)は、負の値を有し、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)におけるコーナーR切れ刃(13)の軸方向すくい角(Ar2)も、負の値を有する。 The rake face (14) of the corner R cutting edge (13) facing the tool rotation direction (R) is disposed adjacent to the radially inner side and the base end side of the corner R cutting edge (13). The rake face (14) of the corner R cutting edge (13) is gradually inclined toward the tool rotation direction (R) toward the base end side in the rotation center axis (C) direction. That is, the rake angle (Ar) in the axial direction of the corner R cutting edge (13) is set to a negative angle (negative angle) throughout the corner R cutting edge (13). For this reason, as shown in FIG. 9, the axial rake angle (Ar1) of the corner R cutting edge (13) at the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9) is negative. The axial rake angle (Ar2) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) also has a negative value. .
 なお、図9に示す符号「Rr」は、コーナーR切れ刃(13)の径方向すくい角(ラジアルレーキ角)であり、図9では境界点(Q)におけるコーナーR切れ刃(13)の径方向すくい角が図示されている。コーナーR切れ刃(13)は、その刃長領域に沿って境界点(Q)から境界点(P)へ向かう間において、径方向すくい角(Rr)が負角(ネガティブ角)に設定されていることが好ましい。 9 represents the radial rake angle (radial rake angle) of the corner R cutting edge (13), and in FIG. 9, the diameter of the corner R cutting edge (13) at the boundary point (Q). Directional rake angles are shown. In the corner R cutting edge (13), the radial rake angle (Rr) is set to a negative angle (negative angle) between the boundary point (Q) and the boundary point (P) along the blade length region. Preferably it is.
 コーナーR切れ刃(13)の工具回転方向(R)とは反対側には、コーナーR切れ刃(13)の逃げ面が隣接配置されている。前記逃げ面は、工具本体(1)の先端外周側へ向けて凸となる曲面状をなしているとともに、径方向外側かつ先端側を向いて形成されている。前記逃げ面は、コーナーR切れ刃(13)から工具回転方向(R)とは反対側へ向かうに従い径方向内側かつ基端側へ向かうように傾斜していて、逃げ角が付与されている。 The flank face of the corner R cutting edge (13) is arranged adjacent to the opposite side of the corner R cutting edge (13) from the tool rotation direction (R). The flank has a curved surface that is convex toward the outer periphery of the tip of the tool body (1), and is formed radially outward and toward the tip. The flank is inclined so as to be directed radially inward and proximally from the corner R cutting edge (13) toward the side opposite to the tool rotation direction (R), thereby providing a clearance angle.
 図6に示す符号「15」は、コーナーR切れ刃(13)のすくい面(14)と、底切れ刃(11)のすくい面(12)とを結合させた面取り面(15)である。面取り面(15)は、コーナーR切れ刃(13)のすくい面(14)、及び、底切れ刃(11)のすくい面(12)のうち少なくとも径方向の外側に位置する部分(本実施形態の例では外側底切れ刃(19)に対応する部分)を含んでいる。言い換えると、本実施形態の面取り面(15)は、コーナーR切れ刃(13)全体のすくい面(14)と底切れ刃(11)のうち外側底切れ刃(19)のすくい面とを兼ねている。 6 is a chamfered surface (15) in which the rake face (14) of the corner R cutting edge (13) and the rake face (12) of the bottom cutting edge (11) are combined. The chamfered surface (15) is a portion positioned at least on the radially outer side of the rake face (14) of the corner R cutting edge (13) and the rake face (12) of the bottom cutting edge (11) (this embodiment). In this example, the outer bottom cutting edge (19) is included. In other words, the chamfered surface (15) of the present embodiment serves as the rake face (14) of the entire corner R cutting edge (13) and the rake face of the outer bottom cutting edge (19) of the bottom cutting edge (11). ing.
 図6及び図9に示すように、面取り面(15)は、底切れ刃(11)の外側底切れ刃(19)、コーナーR切れ刃(13)、領域(S)内に存在する境界点(Q)とすくい面上の点Gを繋ぐ曲線状稜線、及び、前記点Gと底切れ刃(11)上の点Fを繋ぐ直線状稜線、に囲まれた領域に形成されている。なお、上記領域(S)とは、外周切れ刃(9)の形成予定領域の先端部から、コーナーR切れ刃(13)の形成予定領域の基端部にわたる、領域である。領域(S)と境界点(Q)との関係については、後述する実施例の中で、別途説明する。また、上記点Gは、一対の切屑排出溝(16、17)及び面取り面(15)の計3面が交わる交点であり、この点Gからは、3方に向けて稜線(切屑排出溝(16、17)及び面取り面(15)の境界をなす稜線)が放射状に延びている。また、上記点Fは、底切れ刃(11)における外側底切れ刃(19)と内側底切れ刃(20)との接続点である。
 本実施形態の例では、面取り面(15)が、上述の切れ刃及び稜線に囲まれて形成された平面領域となっている。
As shown in FIGS. 6 and 9, the chamfered surface (15) is a boundary point existing in the outer bottom cutting edge (19), the corner R cutting edge (13), and the region (S) of the bottom cutting edge (11). It is formed in a region surrounded by a curved ridge line connecting (Q) and the point G on the rake face and a straight ridge line connecting the point G and the point F on the bottom cutting edge (11). In addition, the said area | region (S) is an area | region ranging from the front-end | tip part of the formation scheduled area | region of an outer periphery cutting edge (9) to the base end part of the formation scheduled area | region of a corner R cutting edge (13). The relationship between the region (S) and the boundary point (Q) will be described separately in an embodiment described later. The point G is an intersection where a total of three surfaces of the pair of chip discharge grooves (16, 17) and the chamfered surface (15) intersect. From this point G, a ridge line (chip discharge groove ( 16 and 17) and a ridge line that forms a boundary between the chamfered surfaces (15)) extend radially. The point F is a connection point between the outer bottom cutting edge (19) and the inner bottom cutting edge (20) of the bottom cutting edge (11).
In the example of this embodiment, the chamfered surface (15) is a planar region formed by being surrounded by the above-mentioned cutting edge and ridgeline.
〔コーナーR切れ刃の放射方向すくい角及び放射角度〕
 そして、刃先交換式ラジアスエンドミル(6)は、切れ刃部(4)のコーナーR切れ刃(13)近傍に、下記の特別な技術的特徴を備えている。
 図10に示す符号「Pr」は、刃先交換式ラジアスエンドミル(6)の工具の主運動方向(工具回転方向R)に垂直な基準面である。基準面(Pr)は、回転中心軸(C)を含む仮想の平面であり、本実施形態では図10に示すように、コーナーR切れ刃(13)上の所定の点(A)をその面内に含んでいる。また、図10の左上図は、基準面(Pr)に垂直な方向から見たインサートのコーナーR切れ刃部近傍の拡大図である。
[Radial Rake Angle and Radiation Angle of Corner R Cutting Edge]
The blade end replaceable radius end mill (6) has the following special technical features in the vicinity of the corner R cutting edge (13) of the cutting edge portion (4).
Reference sign “Pr” shown in FIG. 10 is a reference plane perpendicular to the main motion direction (tool rotation direction R) of the tool of the blade end replaceable radius end mill (6). The reference plane (Pr) is a virtual plane including the rotation center axis (C). In the present embodiment, as shown in FIG. 10, a predetermined point (A) on the corner R cutting edge (13) is the plane. Contained within. Moreover, the upper left figure of FIG. 10 is an enlarged view of the vicinity of the corner R cutting edge portion of the insert as seen from the direction perpendicular to the reference plane (Pr).
 符号「O」は、コーナーR切れ刃(13)の円弧中心点である。
 符号「VL」は、コーナーR切れ刃(13)の円弧中心点(O)とコーナーR切れ刃(13)の所定の点(A)とを通る仮想直線である。
 図10の右下図に符号「VS」で示すインサート(5)の断面(ハッチングした面)は、基準面(Pr)に対して垂直であり、かつ、仮想直線(VL)を含む仮想平面である。
The symbol “O” is the arc center point of the corner R cutting edge (13).
The symbol “VL” is an imaginary straight line passing through the arc center point (O) of the corner R cutting edge (13) and the predetermined point (A) of the corner R cutting edge (13).
The cross section (hatched surface) of the insert (5) indicated by reference sign “VS” in the lower right diagram of FIG. 10 is a virtual plane that is perpendicular to the reference surface (Pr) and includes a virtual straight line (VL). .
 符号「δ」で示すものは、仮想平面(VS)内において、基準面(Pr)に対してコーナーR切れ刃(13)のすくい面(14)が傾斜する角度(仮想直線(VLとすくい面(14)とのなす角度))である、放射方向すくい角である。放射方向すくい角(δ)は、真のすくい角である。本実施形態では、コーナーR切れ刃(13)上の所定の点(A)が、このコーナーR切れ刃(13)上を移動することにより、放射方向すくい角(δ)が変化する。言い換えると、点(A)のコーナーR切れ刃(13)上の位置によって、放射方向すくい角(δ)が異なる。
 符号「η」で示すものは、コーナーR切れ刃(13)の所定の点(A)における逃げ角であり、言い換えると、仮想平面(VS)において仮想直線(VL)に直交する直線とコーナーR切れ刃(13)の逃げ面とのなす角度である。
What is indicated by a symbol “δ” is an angle at which the rake face (14) of the corner R cutting edge (13) is inclined with respect to the reference plane (Pr) in the virtual plane (VS) (virtual straight line (VL and rake face). (An angle formed with (14))). The radial rake angle (δ) is the true rake angle. In this embodiment, the radial rake angle (δ) is changed by moving a predetermined point (A) on the corner R cutting edge (13) on the corner R cutting edge (13). In other words, the radial rake angle (δ) varies depending on the position of the point (A) on the corner R cutting edge (13).
What is indicated by the symbol “η” is a clearance angle at a predetermined point (A) of the corner R cutting edge (13). In other words, a straight line perpendicular to the virtual straight line (VL) and the corner R on the virtual plane (VS). It is an angle formed by the flank of the cutting edge (13).
 符号「θ」で示すものは、仮想直線(VL)が回転中心軸(C)に対して傾斜する角度である、放射角度である。詳しくは、放射角度(θ)は、基準面(Pr)に投影した仮想直線(VL)(すなわち、図10における仮想直線(VL))が、この基準面(Pr)内において、回転中心軸(C)に対して傾斜する角度である。なお、上記「基準面(Pr)に投影した仮想直線(VL)」とは、基準面(Pr)に対して垂直に、仮想直線(VL)を投影させることを指す。 What is indicated by a symbol “θ” is a radiation angle that is an angle at which the virtual straight line (VL) is inclined with respect to the rotation center axis (C). Specifically, the radiation angle (θ) is determined by the virtual straight line (VL) projected on the reference plane (Pr) (that is, the virtual straight line (VL) in FIG. 10) within the reference plane (Pr). It is an angle inclined with respect to C). The “virtual straight line (VL) projected on the reference plane (Pr)” refers to projecting the virtual straight line (VL) perpendicular to the reference plane (Pr).
 そして、コーナーR切れ刃(13)の放射角度(θ)と放射方向すくい角(δ)との関係を示す図11のように、コーナーR切れ刃(13)の放射方向すくい角(δ)は、コーナーR切れ刃(13)の刃長全域において、負の値を有し、連続的に変化している。
 また、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)(つまりθ=0°)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)は、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)(つまりθ=90°)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)よりも、小さい。
 なお、図11において、θ=90°における右端のデータは、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)における外周切れ刃(9)の真のすくい角であり、正の値を有している。
Then, as shown in FIG. 11 showing the relationship between the radial angle (θ) of the corner R cutting edge (13) and the radial rake angle (δ), the radial rake angle (δ) of the corner R cutting edge (13) is In the entire length of the corner R cutting edge (13), it has a negative value and continuously changes.
Further, the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (P) (that is, θ = 0 °) between the corner R cutting edge (13) and the bottom cutting edge (11) is the corner R It is smaller than the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (Q) (that is, θ = 90 °) between the cutting edge (13) and the outer peripheral cutting edge (9).
In FIG. 11, the data at the right end at θ = 90 ° is the true rake angle of the outer peripheral cutting edge (9) at the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9). Yes, with a positive value.
 本実施形態では、境界点(P)(放射角度θ=0°)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)の値が、境界点(Q)(放射角度θ=90°)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)の値に対して、負角側(ネガティブ角側)に2倍以上大きくされており、図11に示される例では、3倍以上である。 In this embodiment, the value of the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (P) (radiation angle θ = 0 °) is the boundary point (Q) (radiation angle θ = 90 °). ) In the radial direction rake angle (δ) of the corner R cutting edge (13) in FIG. 11 is increased twice or more to the negative angle side (negative angle side). In the example shown in FIG. That's it.
 また、図11に示すように、放射方向すくい角(δ)は、コーナーR切れ刃(13)のうち、一対の境界点(P、Q)同士の間に位置する中間部分において、最小値となる。言い換えると、放射方向すくい角(δ)は、一対の境界点(P、Q)同士の間に位置する中間部分において、負角側に最も大きくなる。なお、一対の境界点(P、Q)同士の間に位置する中間部分とは、コーナーR切れ刃(13)のうち境界点(P、Q)を除く領域(0°<θ<90°)である。
 詳しくは、放射方向すくい角(δ)の最小値は、コーナーR切れ刃(13)のうち、放射角度(θ)で5°以上50°以下の範囲に設定されている。言い換えると、放射すくい角(δ)が最小値となる点が、コーナーR切れ刃(13)のうち放射角度(θ)が5°以上50°以下の領域に位置している。図11に示す例では、放射方向すくい角(δ)が、放射角度(θ)で10°以上30°以下の範囲(特に20°付近)において、最小値となっている。
In addition, as shown in FIG. 11, the radial rake angle (δ) is the minimum value in the intermediate portion located between the pair of boundary points (P, Q) in the corner R cutting edge (13). Become. In other words, the radial rake angle (δ) is largest on the negative angle side in the intermediate portion located between the pair of boundary points (P, Q). In addition, the intermediate part located between a pair of boundary points (P, Q) is a region (0 ° <θ <90 °) excluding the boundary point (P, Q) in the corner R cutting edge (13). It is.
Specifically, the minimum value of the radial rake angle (δ) is set in the range of 5 ° to 50 ° in the radial angle (θ) of the corner R cutting edge (13). In other words, the point at which the radial rake angle (δ) has the minimum value is located in the corner R cutting edge (13) where the radial angle (θ) is 5 ° or more and 50 ° or less. In the example shown in FIG. 11, the radial rake angle (δ) has a minimum value in the range of 10 ° to 30 ° (particularly around 20 °) in the radiation angle (θ).
〔本実施形態による作用効果〕
 以上説明した本実施形態の刃先交換式ラジアスエンドミル(6)及びインサート(5)は、円弧状のコーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)(最外周位置)におけるコーナーR切れ刃(13)の軸方向すくい角(Ar1)が負の値を有し、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)(最先端位置)におけるコーナーR切れ刃(13)の軸方向すくい角(Ar2)が負の値を有している。つまり、コーナーR切れ刃(13)の軸方向すくい角(Ar)は、ネガティブ角とされている。また、外周切れ刃(9)のねじれ角(ε)は、正の値を有しており、ポジティブ角とされている。
[Effects of this embodiment]
The blade tip replaceable radius end mill (6) and the insert (5) of the present embodiment described above have the boundary point (Q) (the outermost peripheral position) between the arcuate corner R cutting edge (13) and the outer peripheral cutting edge (9). ) Has a negative value in the axial rake angle (Ar1) of the corner R cutting edge (13), and the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) (the most advanced position) ), The axial rake angle (Ar2) of the corner R cutting edge (13) has a negative value. That is, the axial rake angle (Ar) of the corner R cutting edge (13) is a negative angle. The twist angle (ε) of the outer peripheral cutting edge (9) has a positive value and is a positive angle.
 本実施形態の刃先交換式ラジアスエンドミル(6)及びインサート(5)が本構成を有することによって、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)は、工具の回転中心軸(C)回りの周方向のうち、工具回転方向(R)へ向けて最も突出した点(最凸点)となる。このため、被削材に対して水平面に垂直な壁面(鉛直面。立壁)を加工する側面仕上げ加工においては、コーナーR切れ刃(13)と外周切れ刃(9)は、前記境界点(Q)(最凸点)における被削材との点接触で被削材の切削を開始する。従って、切れ刃の被削材への食付きが改善される。 Since the blade end replaceable radius end mill (6) and the insert (5) of this embodiment have this configuration, the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9) Among the circumferential directions around the rotation center axis (C), this is the point that protrudes most toward the tool rotation direction (R) (the most convex point). For this reason, in the side finishing process for machining a wall surface (vertical surface, standing wall) perpendicular to the horizontal plane with respect to the work material, the corner R cutting edge (13) and the outer peripheral cutting edge (9) are arranged at the boundary point (Q ) Cutting of the work material is started by point contact with the work material at the most convex point. Therefore, the biting of the cutting edge on the work material is improved.
 前記境界点(Q)から点接触で開始された切削は、工具の回転とともにコーナーR切れ刃(13)と外周切れ刃(9)とに切削範囲が拡大していく。コーナーR切れ刃(13)の軸方向すくい角(Ar1)は、負の角度に設定されているので、コーナーR切れ刃(13)は逆ねじれ刃形形状となる。また、外周切れ刃(9)は正ねじれ刃形形状である。このため、被削材から工具が受ける切削抵抗のうち、回転中心軸(C)に沿う方向へ作用する切削抵抗(つまり背分力)は、外周切れ刃(9)においては回転中心軸(C)方向の先端側(刃先側)へ向けて作用するのに対し、コーナーR切れ刃(13)においては回転中心軸(C)方向の基端側(工具シャンク側)へ向けて作用する。
 これにより、外周切れ刃(9)において刃先側へ向けて作用する切削抵抗を打ち消すことができる。従って、回転中心軸(C)方向の刃先側へかかる切削抵抗によって工具本体(1)が撓む現象を、改善することができる。
Cutting started by point contact from the boundary point (Q) expands the cutting range to the corner R cutting edge (13) and the outer peripheral cutting edge (9) as the tool rotates. Since the axial rake angle (Ar1) of the corner R cutting edge (13) is set to a negative angle, the corner R cutting edge (13) has a reverse twisted blade shape. The outer peripheral cutting edge (9) has a positive twisted blade shape. For this reason, out of the cutting resistance received by the tool from the work material, the cutting resistance (that is, the back force) acting in the direction along the rotation center axis (C) is the rotation center axis (C ) Direction toward the distal end side (blade edge side), while the corner R cutting edge (13) acts toward the base end side (tool shank side) in the direction of the rotation center axis (C).
Thereby, the cutting resistance which acts toward the blade edge side in the outer peripheral cutting edge (9) can be canceled. Therefore, it is possible to improve the phenomenon that the tool body (1) is bent by the cutting resistance applied to the cutting edge side in the direction of the rotation center axis (C).
 また、被削材の水平面に垂直な側面仕上げ加工における寸法精度に影響を及ぼす外周切れ刃(9)の被削材との逃げ量を抑えることができ、垂直側面となる加工基準面を鉛直方向の上部から下部に至るまで極めて高精度に仕上げ加工する事ができる。また、外周切れ刃(9)とコーナーR切れ刃(13)の被削材への食付きが点接触で開始されることにより、びびり振動の発生が低減され、加工が安定するという効果が得られる。 In addition, it is possible to suppress the escape amount of the outer peripheral cutting edge (9) from the work material, which affects the dimensional accuracy in the side surface finishing process perpendicular to the horizontal surface of the work material, and to set the work reference surface serving as the vertical side surface in the vertical direction. Finishing can be done with extremely high precision from the upper part to the lower part. In addition, since the biting of the outer peripheral cutting edge (9) and the corner R cutting edge (13) on the work material is started by point contact, the occurrence of chatter vibration is reduced and the effect of stabilizing the processing is obtained. It is done.
 そして、放射方向すくい角(δ)が、コーナーR切れ刃(13)の刃長全域において負の値を有している。また、放射方向すくい角(δ)が、このコーナーR切れ刃(13)のうち、一対の前記境界点(P、Q)同士の間に位置する中間部分において最小値となっている。
 このように、一対の前記境界点(P、Q)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)が、両方ともに負の値(ネガティブ角)とされていることにより、コーナーR切れ刃(13)の刃先強度を十分に確保することができる。
 一方、例えば本実施形態とは異なり、一対の前記境界点(P、Q)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)のうち、いずれか一方、または両方が正の値(ポジティブ角)の場合は、コーナーR切れ刃(13)の強度低下が生じるため不都合である。
The radial rake angle (δ) has a negative value over the entire length of the corner R cutting edge (13). Further, the radial rake angle (δ) has a minimum value in an intermediate portion of the corner R cutting edge (13) located between the pair of boundary points (P, Q).
Thus, since the radial rake angle (δ) of the corner R cutting edge (13) at the pair of boundary points (P, Q) is both negative (negative angle), the corner R The cutting edge strength of the cutting edge (13) can be sufficiently ensured.
On the other hand, unlike the present embodiment, for example, one or both of the radial rake angles (δ) of the corner R cutting edge (13) at the pair of boundary points (P, Q) are positive values ( In the case of a positive angle), the strength of the corner R cutting edge (13) is lowered, which is inconvenient.
 また、放射方向すくい角(δ)が、コーナーR切れ刃(13)の一対の前記境界点(P、Q)同士の間の中間部分において最小値となるため、これらの境界点(P、Q)のうち、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)における放射方向すくい角(δ)を、負の値としつつも前記最小値よりは正角側(ポジティブ角側)に近づけることができる。これにより、底面仕上げ加工における、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)の切れ味を確保することができる。 In addition, since the radial rake angle (δ) has a minimum value at an intermediate portion between the pair of boundary points (P, Q) of the corner R cutting edge (13), these boundary points (P, Q ), The radial rake angle (δ) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is set to a negative value while being a negative value ( It can be close to the positive angle side). Thereby, the sharpness of the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) can be ensured in the bottom finishing.
 また、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)から、コーナーR切れ刃(13)に沿って、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)へ向かうに従い(詳しくは前記中間部分に向かうに従い)、放射方向すくい角(δ)は小さくなっていく。つまり放射方向すくい角(δ)は、前記中間部分に近づくに従い負角側(ネガティブ角側)に大きくなり、該中間部分上において最小値(つまり負角側に最大値)となる。従って、被削材の加工硬化層を削る切れ刃境界部に、一対の境界点(P、Q)同士の間に位置する前記中間部分を設けることにより、刃先強度を顕著に向上させることができる。そのため、特に加工硬化が起こり易い被削材、あるいは高能率条件での加工により加工変質層が被削材表面部に形成された場合の底面仕上げ加工における切れ刃の信頼性が高まり好ましい。 Further, from the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11), the corner R cutting edge (13) and the outer peripheral cutting edge (9) along the corner R cutting edge (13). The rake angle (δ) in the radial direction becomes smaller as it goes toward the boundary point (Q) (specifically, as it goes toward the intermediate portion). That is, the radial rake angle (δ) increases toward the negative angle side (negative angle side) as it approaches the intermediate portion, and reaches a minimum value (that is, maximum value on the negative angle side) on the intermediate portion. Therefore, the edge strength can be remarkably improved by providing the intermediate portion located between the pair of boundary points (P, Q) at the cutting edge boundary portion for cutting the work hardened layer of the work material. . Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
 以上より本実施形態によれば、金型等の被削材に加工基準面となる底面や水平面に垂直な側面を仕上げ加工する場合、特に工具突出しの長い(例えばL/Dが4以上)加工における切削性能を改善でき、被削材の底面の仕上げ寸法精度のほか、水平面に垂直な側面仕上げ加工における寸法精度を顕著に向上することができる。 As described above, according to the present embodiment, when finishing a bottom surface serving as a processing reference surface or a side surface perpendicular to a horizontal surface on a work material such as a die, machining with a particularly long tool protrusion (for example, L / D is 4 or more). In addition to the finishing dimensional accuracy of the bottom surface of the work material, the dimensional accuracy in the side surface finishing processing perpendicular to the horizontal plane can be remarkably improved.
 また本実施形態では、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)が、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)よりも小さくされている。
 つまり、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)が、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)よりも負の角度側(ネガティブ角側)に大きくされているので、底切れ刃(11)の耐欠損性の向上と切り屑の排出性の改善を図り、仕上げ面を高品質に維持することができる。
In the present embodiment, the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is the corner R cutting edge ( 13) and the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (Q) between the outer peripheral cutting edge (9).
That is, the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is the corner R cutting edge (13) and the outer periphery. Since it is larger on the negative angle side (negative angle side) than the radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (Q) with the cutting edge (9), the bottom cutting edge ( 11) Improvement of chipping resistance and improvement of chip discharge can be achieved, and the finished surface can be maintained in high quality.
 また、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)におけるコーナーR切れ刃(13)の放射方向すくい角(δ)を、負の値としつつも正の角度側(ポジティブ角側)に近づけることができるので、被削材に垂直な壁面(立壁)を加工する側面仕上げ加工において、被削材に切り込む工具が被削材から受ける工具径方向(水平方向)への切削抵抗(つまり送り分力)を、小さく抑えることが可能になる。これにより、びびり振動が抑制されて加工面精度を向上することができる。 Further, the rake angle (δ) in the radial direction of the corner R cutting edge (13) at the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9) is a positive value while setting a negative value. The tool can be moved closer to the side (positive angle side), so in the side finishing process for machining the wall surface (vertical wall) perpendicular to the work material, the tool radial direction (horizontal direction) that the tool cut into the work material receives from the work material It is possible to reduce the cutting resistance (i.e., the feed component force) to the surface. Thereby, chatter vibration is suppressed and the machined surface accuracy can be improved.
 より詳しくは、例えば、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)における放射方向すくい角(δ)(真のすくい角)をα、コーナーR切れ刃(13)と外周切れ刃(9)との境界点(Q)における放射方向すくい角(δ)(真のすくい角)をβ、前記中間部分における放射方向すくい角(δ)(真のすくい角)の最小値をγとしたときに、放射方向すくい角α、放射方向すくい角β、及び放射方向すくい角γは、いずれも負の値を有し、放射方向すくい角α値、β値、γ値の絶対値を、それぞれ|α|、|β|、|γ|としたとき、|γ|>|α|>|β|、の関係を有する。 More specifically, for example, the radial rake angle (δ) (true rake angle) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is α, and the corner R cutting edge (13 ) And the radial rake angle (δ) (true rake angle) at the boundary point (Q) between the outer peripheral cutting edge (9) and the radial rake angle (δ) (true rake angle) in the intermediate portion. When the minimum value is γ, the radial rake angle α, the radial rake angle β, and the radial rake angle γ all have negative values, and the radial rake angle α value, β value, and γ value. Where | α |, | β |, and | γ | are the absolute values of | γ |> | α |> | β |.
 刃先交換式ラジアスエンドミル(6)が、本構成を有することによって、底面仕上げ加工や側面仕上げ加工(特に底面仕上げ加工)において、事前の粗加工もしくは中仕上げ加工における被削材の加工硬化層に当たる切れ刃境界部(一対の境界点P、Q同士の間に位置する中間部分)の放射方向すくい角(δ)を、最も小さい負の値とすることができる。
 これにより、粗加工や中仕上げ加工において切れ刃境界部のチッピングを防止する効果が顕著に得られるため好ましい。
 一方、本実施形態とは異なり、上述した|γ|>|α|>|β|、の関係を有していない場合は、底面仕上げ加工や側面仕上げ加工(特に底面仕上げ加工)において、切れ刃境界部が損傷し易くなることがある。
By having this configuration, the blade end replaceable radius end mill (6) is a cut that hits the work hardening layer of the work material in advance roughing or intermediate finishing in bottom finishing and side finishing (especially bottom finishing). The radial rake angle (δ) of the blade boundary portion (intermediate portion located between the pair of boundary points P and Q) can be set to the smallest negative value.
This is preferable because the effect of preventing chipping at the boundary of the cutting edge can be remarkably obtained in roughing or intermediate finishing.
On the other hand, unlike the present embodiment, when the above-mentioned | γ |> | α |> | β | is not satisfied, the cutting edge is used in bottom finishing or side finishing (particularly bottom finishing). The boundary may be easily damaged.
 また本実施形態では、基準面(Pr)に投影した仮想直線(VL)が、基準面(Pr)内において、回転中心軸(C)に対して傾斜する角度を、放射角度(θ)と定義して、放射方向すくい角(δ)が最小値となる点が、コーナーR切れ刃(13)のうち、放射角度(θ)が5°以上50°以下となる領域に位置しているので、下記の作用効果を奏する。 In this embodiment, the angle at which the virtual straight line (VL) projected onto the reference plane (Pr) is inclined with respect to the rotation center axis (C) in the reference plane (Pr) is defined as the radiation angle (θ). Then, the point where the radial rake angle (δ) becomes the minimum value is located in the corner R cutting edge (13) in the region where the radial angle (θ) is 5 ° or more and 50 ° or less. The following effects are exhibited.
 刃先交換式ラジアスエンドミル(6)が、本構成を有することによって、底面仕上げ加工における、コーナーR切れ刃(13)と底切れ刃(11)との境界点(P)の切れ味を確保しつつ、被削材の加工硬化層を削る切れ刃境界部(一対の境界点P、Q同士の間に位置する中間部分)の刃先強度を向上させることができる。そのため、特に加工硬化が起こり易い被削材、あるいは高能率条件での加工により加工変質層が被削材表面部に形成された場合の底面仕上げ加工における切れ刃の信頼性が高まり好ましい。 While the blade end replaceable radius end mill (6) has this configuration, while ensuring the sharpness of the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) in the bottom finishing process, The edge strength of the cutting edge boundary portion (intermediate portion located between the pair of boundary points P and Q) for cutting the work hardened layer of the work material can be improved. Therefore, it is preferable because the reliability of the cutting edge in the bottom finish processing is particularly high when a work material that is likely to be work hardened or a work-affected layer is formed on the surface of the work material by processing under high efficiency conditions.
 詳しくは、コーナーR切れ刃(13)の放射方向すくい角(δ)(真のすくい角)の最小値となる点が、コーナーR切れ刃(13)上の放射角度(θ)が5°以上となる領域に位置することにより、底面仕上げ加工時の切れ味の低下を防いで加工精度を顕著に高めることができ、かつ工具寿命を延長できる。
 また、コーナーR切れ刃(13)の放射方向すくい角(δ)(真のすくい角)の最小値となる点が、コーナーR切れ刃(13)上の放射角度(θ)が50°以下となる領域に位置することにより、この最小値の部分に形成された刃先強化部が、一般的な底面仕上げ代の範囲に収まりやすくなる。従って、底面仕上げの仕上げ加工代に係わらず、切れ刃境界部のチッピングを防止する効果が顕著に得られる。
Specifically, the point at which the radial rake angle (δ) (true rake angle) of the corner R cutting edge (13) is the minimum value is that the radial angle (θ) on the corner R cutting edge (13) is 5 ° or more. By being located in the region, it is possible to prevent the sharpness from being lowered during the bottom finishing process, to remarkably increase the machining accuracy, and to extend the tool life.
Moreover, the point which becomes the minimum value of the radial rake angle (δ) (true rake angle) of the corner R cutting edge (13) is that the radial angle (θ) on the corner R cutting edge (13) is 50 ° or less. By being located in this area, the cutting edge reinforcing portion formed in this minimum value portion is likely to be within the range of a general bottom finishing allowance. Therefore, the effect of preventing chipping at the boundary portion of the cutting edge can be remarkably obtained regardless of the finishing cost for bottom finishing.
〔本願発明に含まれるその他の構成〕
 なお、本願発明は前述の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
[Other configurations included in the present invention]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、前述の実施形態では、放射方向すくい角(δ)の最小値が、コーナーR切れ刃(13)のうち、放射角度(θ)で5°以上50°以下の範囲に設定されているとしたが、これに限定されるものではない。すなわち、放射方向すくい角(δ)の最小値は、放射角度(θ)で5°未満や、50°を超えて設定されてもよい。 For example, in the above-described embodiment, the minimum value of the radial rake angle (δ) is set in the range of 5 ° or more and 50 ° or less in the radiation angle (θ) of the corner R cutting edge (13). However, the present invention is not limited to this. That is, the minimum value of the radial rake angle (δ) may be set to be less than 5 ° or more than 50 ° in the radiation angle (θ).
 その他、本願発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例及びなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本願発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 In addition, in the range which does not deviate from the meaning of this invention, you may combine each structure (component) demonstrated by the above-mentioned embodiment, a modification, and a remark etc., addition of a structure, omission, substitution, others It can be changed. The present invention is not limited by the above-described embodiments, and is limited only by the scope of the claims.
 以下、本願発明を実施例により具体的に説明する。ただし本願発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to this embodiment.
〔刃先交換式ラジアスエンドミルの作製及び切削試験〕
 まず、本願発明の実施例である本発明例1として、前述した実施形態の刃先交換式ラジアスエンドミル(6)を用意した。
 工具本体(1)は、刃先径(刃径)がφ20mm、シャンク径がφ20mm、全長220mm、首下長さ120mm、首下径がφ19mmとされた超硬シャンクタイプを用いた。
[Production and cutting test of radius end mill with replaceable cutting edge]
First, as the present invention example 1 which is an example of the present invention, a blade end replaceable radius end mill (6) of the above-described embodiment was prepared.
As the tool body (1), a carbide shank type having a cutting edge diameter (blade diameter) of 20 mm, a shank diameter of 20 mm, a total length of 220 mm, a neck length of 120 mm, and a neck diameter of 19 mm was used.
 工具本体(1)の基材は、超硬合金とSKD61相当材とをロウ材で接合した基材を用い、旋盤加工により外観形状を整えた後、シャンク部を研磨加工により仕上げた。
 また、取付座(3)のインサート固定部(インサート嵌合溝7)はマシニングセンターにてフライス加工により形成した。インサート(5)を着脱するための固定用ネジ(8)は、呼び径がM6、ピッチが0.75mmのネジサイズを使用した。
As the base material of the tool body (1), a base material obtained by joining a cemented carbide and a SKD61 equivalent material with a brazing material was used, and after adjusting the external shape by lathe processing, the shank portion was finished by polishing.
Moreover, the insert fixing | fixed part (insert fitting groove | channel 7) of the attachment seat (3) was formed by milling in the machining center. The fixing screw (8) for attaching and detaching the insert (5) was a screw size having a nominal diameter of M6 and a pitch of 0.75 mm.
 インサート(5)の基材は、WC-Co系の超硬合金製とし、インサート表面のコーティング被膜は、CrSi系の窒化物被膜を施した。
 インサート(5)の形状は図5に示すように略平板形状であり、コーナーR切れ刃(13)のR寸法が1mm、図8に示す厚さ寸法T値が5.2mm、図3に示すインサート側面視における外周切れ刃(9)の長さは7mm、このインサート側面視における外周切れ刃(9)の軸方向すくい角(つまりねじれ角ε)を正の値で4°とした。また、外周切れ刃(9)の径方向すくい角(回転中心軸(C)に直交する方向から見た場合のすくい角)を0.5°とした。
 底切れ刃(11)は、該底切れ刃(11)とコーナーR切れ刃(13)との境界点(P)を通り回転中心軸(C)に垂直な水平面に対して、境界点(P)から径方向内側へ向かうに従い漸次回転中心軸(C)方向の基端側へ向けて延びるように傾斜し、この傾斜する角度である正の中低勾配角を3°に設定した。
The base material of the insert (5) was made of a WC—Co type cemented carbide, and the coating film on the surface of the insert was provided with a CrSi type nitride film.
The shape of the insert (5) is substantially flat as shown in FIG. 5, the R dimension of the corner R cutting edge (13) is 1 mm, and the thickness dimension T value shown in FIG. 8 is 5.2 mm, as shown in FIG. The length of the outer peripheral cutting edge (9) in the side view of the insert was 7 mm, and the axial rake angle (that is, the twist angle ε) of the outer peripheral cutting edge (9) in the side view of the insert was 4 ° as a positive value. The rake angle in the radial direction of the outer peripheral cutting edge (9) (rake angle when viewed from the direction orthogonal to the rotation center axis (C)) was set to 0.5 °.
The bottom cutting edge (11) passes through a boundary point (P) between the bottom cutting edge (11) and the corner R cutting edge (13), and the boundary point (P ) Toward the inner side in the radial direction so as to gradually extend toward the base end in the direction of the central axis of rotation (C), and a positive medium / low gradient angle, which is the inclination angle, was set to 3 °.
 本発明例1のインサート形状を、図5に示す。また、本発明例1のインサート(5)の形状を示す主なパラメータは、表1に示した。
 本発明例1のインサート(5)は面取り面(15)を備え、コーナーR切れ刃(13)の境界点(Q)の位置における軸方向すくい角(Ar1)と、境界点(P)の位置におけるコーナーR切れ刃(13)の軸方向すくい角(Ar2)を、同じ負の値となる-6.8°に設定した。
The insert shape of Example 1 of the present invention is shown in FIG. The main parameters indicating the shape of the insert (5) of Example 1 of the present invention are shown in Table 1.
The insert (5) of Example 1 of the present invention includes a chamfered surface (15), and the axial rake angle (Ar1) at the position of the boundary point (Q) of the corner R cutting edge (13) and the position of the boundary point (P). The rake angle (Ar2) in the axial direction of the corner R cutting edge (13) was set to −6.8 ° which is the same negative value.
 ここで、上述したように図9に示す境界点(Q)は、コーナーR切れ刃(13)と外周切れ刃(9)との境界点であり、回転中心軸(C)回りの切れ刃の回転軌跡において、外周切れ刃(9)の最外周点でもある。このような理論上(理想)の境界点(Q)は、コーナーR切れ刃(13)においては放射角度(θ)=90°となる点である。
 しかしながら、インサート(5)の製作時において、実際に面取り面(15)の研削加工を行ったときには、外周切れ刃(9)の形成予定領域(理論上、外周切れ刃(9)が形成されることが予定される領域)の先端部から、コーナーR切れ刃(13)の形成予定領域(理論上、コーナーR切れ刃13が形成されることが予定される領域)の基端部にわたる、所定の領域(S)におけるいずれかの部分に、実際の境界点(Q)となる点Eが形成される。つまり、理論上の境界点(Q)に対して、実際の境界点(Q)である点Eの位置が、製造上の諸事情等により僅かにずれて配置される場合がある。
Here, as described above, the boundary point (Q) shown in FIG. 9 is a boundary point between the corner R cutting edge (13) and the outer peripheral cutting edge (9), and the cutting edge around the rotation center axis (C). In the rotation locus, it is also the outermost peripheral point of the outer peripheral cutting edge (9). Such a theoretical (ideal) boundary point (Q) is a point at which the radiation angle (θ) = 90 ° in the corner R cutting edge (13).
However, when the insert (5) is manufactured, if the chamfered surface (15) is actually ground, a region where the outer peripheral cutting edge (9) is to be formed (theoretically, the outer peripheral cutting edge (9) is formed. From the tip of the region where the corner R cutting edge (13) is to be formed to the base end of the region where the corner R cutting edge (13) is to be formed (theoretically, the region where the corner R cutting edge 13 is expected to be formed). A point E to be an actual boundary point (Q) is formed in any part of the region (S). That is, the position of the point E, which is the actual boundary point (Q), may be slightly shifted from the theoretical boundary point (Q) due to various manufacturing circumstances.
 このような場合には、点Eの位置が、理論上の境界点(Q)に対して、外周切れ刃(9)の形成予定領域側に配置されるよりは、コーナーR切れ刃(13)の形成予定領域側に配置されることが好ましい。これにより、工具径が小さくなる不都合を確実に防ぐことができる。またこの場合、円弧中心点(O)を中心とする、理論上の境界点(Q)と、点E(実際の境界点Q)との間の角度(中心角)を、2°以内に収めることが好ましい。 In such a case, the corner R cutting edge (13) is located rather than the position of the point E on the region where the outer peripheral cutting edge (9) is to be formed with respect to the theoretical boundary point (Q). It is preferable to be arranged on the side of the formation scheduled region. Thereby, the inconvenience that a tool diameter becomes small can be prevented reliably. In this case, the angle (center angle) between the theoretical boundary point (Q) and the point E (actual boundary point Q) centered on the arc center point (O) is within 2 °. It is preferable.
 上記のことを鑑みて、本発明例1では、実際の境界点(Q)である点Eが、理論上の境界点(Q)から、コーナーR切れ刃(13)の形成予定領域側へ向けた前記中心角で2°以下の範囲内に配置されるように、インサート(5)を製作した。 In view of the above, in Example 1 of the present invention, the point E that is the actual boundary point (Q) is directed from the theoretical boundary point (Q) to the region where the corner R cutting edge (13) is to be formed. Further, the insert (5) was manufactured so as to be disposed within a range of 2 ° or less at the central angle.
 また、図6において底切れ刃領域(U)内に存在する点Fは、境界点(Q)を通り回転中心軸(C)に平行な直線からの距離を2.5mmの位置に設定した。 Further, in FIG. 6, the point F existing in the bottom cutting edge region (U) was set at a position of 2.5 mm from the straight line passing through the boundary point (Q) and parallel to the rotation center axis (C).
 また、本発明例1のコーナーR切れ刃(13)における、放射方向すくい角(δ)のプロファイルを図11に示す。図11より放射角度(θ)が20°の位置において、放射方向すくい角(δ)は最小値を有した。このときの放射方向すくい角(δ)は-7.2°を示した。
 また、本発明例1のコーナーR切れ刃(13)の放射角度(θ)40°における切れ刃断面の模式図を図10に示す(図10の右下図)。放射角度(θ)40°における放射方向すくい角(δ)は、-6.6°の例を示す。
 なお、表1においては、放射角度(θ)が0°のとき(境界点P)の放射方向すくい角(δ)を、α値とし、放射角度(θ)が90°のとき(境界点Q)の放射方向すくい角(δ)を、β値とし、放射方向すくい角(δ)の最小値を、γ値として示している。
FIG. 11 shows a profile of the radial rake angle (δ) in the corner R cutting edge (13) of Example 1 of the present invention. As shown in FIG. 11, the radial rake angle (δ) had a minimum value at a position where the radiation angle (θ) was 20 °. The radial rake angle (δ) at this time was −7.2 °.
Moreover, the schematic diagram of the cutting edge cross section in the radiation angle ((theta)) 40 degrees of the corner R cutting edge (13) of the example 1 of this invention is shown in FIG. 10 (lower right figure of FIG. 10). An example of the radial rake angle (δ) at a radiation angle (θ) of 40 ° is −6.6 °.
In Table 1, the radial rake angle (δ) when the radiation angle (θ) is 0 ° (boundary point P) is defined as α value, and when the radiation angle (θ) is 90 ° (boundary point Q The rake angle (δ) in the radial direction is indicated as β value, and the minimum value of the rake angle (δ) in the radial direction is indicated as γ value.
 また、本願発明とは技術思想が異なる比較例のインサートを用意した。比較例2のインサート形状を図12に、比較例3のインサート形状を図13に示す。また、比較例2、比較例3のインサートの形状を示す主なパラメータも、表1に示した。比較例のインサートは、本発明例1のインサートと略同形状の同材質で製作した。ただし比較例は、本願発明の特別な構成を有しておらず、具体的には、コーナーR切れ刃の面取り面を有していないため、コーナーR切れ刃の諸元が本願発明とは異なる。 Also, a comparative example insert having a technical idea different from that of the present invention was prepared. The insert shape of Comparative Example 2 is shown in FIG. 12, and the insert shape of Comparative Example 3 is shown in FIG. Table 1 also shows the main parameters indicating the shapes of the inserts of Comparative Examples 2 and 3. The insert of the comparative example was manufactured with the same material as the insert of Example 1 of the present invention. However, since the comparative example does not have the special configuration of the present invention, and specifically does not have the chamfered surface of the corner R cutting edge, the specifications of the corner R cutting edge are different from those of the present invention. .
 比較例3は、底切れ刃のすくい面と、コーナーR切れ刃のすくい面と、外周切れ刃のすくい面とを同一平面に形成し、その軸方向すくい角は0°に設定した。さらに、底切れ刃のすくい面と、コーナーR切れ刃のすくい面は、底切れ刃のすくい面の基端側に延在する切屑排出溝とも同一平面に形成した。また、外周切れ刃の真のすくい角を負の値に設定した。 In Comparative Example 3, the rake face of the bottom cutting edge, the rake face of the corner R cutting edge, and the rake face of the outer peripheral cutting edge were formed in the same plane, and the axial rake angle was set to 0 °. Further, the rake face of the bottom cutting edge and the rake face of the corner R cutting edge were formed in the same plane as the chip discharge groove extending to the base end side of the rake face of the bottom cutting edge. The true rake angle of the outer peripheral cutting edge was set to a negative value.
 このように作製した本発明例1、比較例2、比較例3のインサートを、刃先交換式ラジアスエンドミルの工具本体に装着して、切削評価を行なった。それぞれのインサートを取付けた工具本体を、工具保持具であるチャックへ取付けた後、フライス盤の主軸に装着した。切削速度(Vc)を変えた下記の切削条件を用いて立壁側面部の等高線仕上げ加工を実施した。その際に形成された被削材立壁側面部の倒れ精度を、形状測定機を用いて測定した。側面部の倒れ精度の測定結果を、表1に示す。
 ここで言う倒れ精度とは、被削材立壁側面部の形状プロファイル線と鉛直線とを、被削材立壁側面部の頂点を基準として比較した場合において、両者の乖離寸法の最大値を倒れ精度(μm)としている。即ち、形状プロファイル線と鉛直線とが一致している場合は、理想的な加工が行えていることを示している。切削速度(Vc)ごとの立壁側面部の形状プロファイル線を図14~19に示す。
The inserts of Invention Example 1, Comparative Example 2, and Comparative Example 3 produced in this way were mounted on the tool body of a blade end replaceable radius end mill, and cutting evaluation was performed. The tool body with each insert attached was attached to a chuck, which is a tool holder, and then attached to the spindle of the milling machine. Contour line finishing of the standing wall side surface was performed using the following cutting conditions with different cutting speeds (Vc). The falling accuracy of the side surface portion of the workpiece standing wall formed at that time was measured using a shape measuring machine. Table 1 shows the measurement results of the side part tilt accuracy.
The tilt accuracy mentioned here is the tilt accuracy when the shape profile line and vertical line of the work material standing wall side are compared with the apex of the work material standing wall side as a reference. (Μm). That is, when the shape profile line and the vertical line coincide with each other, it indicates that ideal machining can be performed. 14 to 19 show the shape profile lines of the standing wall side surface for each cutting speed (Vc).
 実験には、被削材の材料としてS55C材、寸法は60×60×30(mm)を用いた。この側面肩削り加工を行い、上面部から20mmの深さに立壁側面部を形成した。倒れ精度の測定箇所は、上面から10mmの位置を中央、18mmの位置を底部とした。 In the experiment, an S55C material having a size of 60 × 60 × 30 (mm) was used as the material of the work material. This side shoulder processing was performed, and the standing wall side portion was formed at a depth of 20 mm from the upper surface portion. The measurement location of the tilt accuracy was 10 mm from the top surface at the center and 18 mm from the bottom.
<切削条件>
被削材        :炭素鋼S55C(プラスチック金型用途)
被削材硬さ      :220HB(ブリネル硬さ)
切削速度(Vc)   :100m/分、200m/分
主軸の回転数(n)  :1592回転/分、3184回転/分
1刃辺りの送り(fz):0.15mm(一定)
テーブル送り(Vf) :478mm/分、955mm/分
軸方向切込み量(ap):1mm(一定)
径方向切込み幅(ae):0.1mm(一定)
工具突出し      :140mm
加工方法       :乾式、立壁側面部の等高線仕上げ加工
<Cutting conditions>
Work material: Carbon steel S55C (for plastic molds)
Work material hardness: 220HB (Brinell hardness)
Cutting speed (Vc): 100 m / min, 200 m / min Spindle speed (n): 1592 rev / min, 3184 rev / min Feed per tooth (fz): 0.15 mm (constant)
Table feed (Vf): 478 mm / min, 955 mm / min. Axial cut amount (ap): 1 mm (constant)
Radial cut width (ae): 0.1 mm (constant)
Tool overhang: 140 mm
Processing method: Dry type, contour line finishing of the side wall of the standing wall
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1には、本発明例1、比較例2、比較例3の各インサートによる加工において被削材の立壁側面部の倒れ精度を測定し評価した結果を示す。
 切削速度(Vc値)の条件が100m/分の場合においては、面取り面を備えた本発明例1は、倒れ精度が5(μm)となり良好な結果を示した。さらに、高能率条件である、切削速度(Vc値)の条件が200m/分の場合においても、本発明例1は、倒れ精度が5(μm)となり良好な結果を示すことが確認できた。
Table 1 shows the results of measuring and evaluating the falling accuracy of the side wall portion of the work material in the machining with each insert of Invention Example 1, Comparative Example 2, and Comparative Example 3.
When the condition of the cutting speed (Vc value) was 100 m / min, Invention Example 1 provided with a chamfered surface showed a good result with a tilt accuracy of 5 (μm). Furthermore, even when the cutting speed (Vc value) condition, which is a high-efficiency condition, is 200 m / min, it was confirmed that Example 1 of the present invention had a collapse accuracy of 5 (μm) and showed a good result.
 本発明例1では、境界点(Q)の位置におけるコーナーR切れ刃(13)の軸方向すくい角(Ar1)値が負の角度を有し、外周切れ刃(9)の軸方向すくい角(ねじれ角ε)が正角となるように設定したことより、外周切れ刃(9)とコーナーR切れ刃(13)の被削材への食付きが点接触で開始されることになり、びびり振動の発生が低減され加工が安定したものと考えられる。 In the present invention example 1, the axial rake angle (Ar1) value of the corner R cutting edge (13) at the position of the boundary point (Q) has a negative angle, and the axial rake angle (9) of the outer peripheral cutting edge (9) ( Since the twist angle ε) is set to be a positive angle, the biting of the outer peripheral cutting edge (9) and the corner R cutting edge (13) to the work material is started by point contact, and chattering occurs. It is thought that the generation of vibration is reduced and the machining is stable.
 一方、比較例では、切削速度(Vc値)の条件が100m/分の場合に、比較例2においては、倒れ精度が5~12.5(μm)の結果を示し、比較例3においては、10~15(μm)の結果を示した。また、高能率条件となる切削速度(Vc値)の条件が200m/分の場合に、比較例2は、倒れ精度が7.5~12.5(μm)の結果を示し、比較例3は、17.5~27.5(μm)の結果を示した。これらより、比較例は、切削条件を高能率条件にすることで倒れ精度が極めて悪化することを確認することができた。
 この理由は、被削材へ食付くコーナーR切れ刃の軸方向すくい角が、外周切れ刃の軸方向すくい角(ねじれ角)と同一であることにより、食付きが線接触で開始されるために、びびり振動の発生率が高いことが影響していると考えられる。
On the other hand, in the comparative example, when the condition of the cutting speed (Vc value) is 100 m / min, the comparative example 2 shows the result of the tilt accuracy of 5 to 12.5 (μm), and in the comparative example 3, Results of 10-15 (μm) were shown. Further, when the condition of the cutting speed (Vc value), which is a high efficiency condition, is 200 m / min, Comparative Example 2 shows a result of the tilt accuracy of 7.5 to 12.5 (μm), and Comparative Example 3 is The results of 17.5 to 27.5 (μm) were shown. From these, the comparative example has confirmed that the fall accuracy is extremely deteriorated by setting the cutting conditions to the high efficiency conditions.
The reason for this is that, since the axial rake angle of the corner R cutting edge that bites into the work material is the same as the axial rake angle (twist angle) of the outer peripheral cutting edge, the biting is started by line contact. In addition, it is considered that the high occurrence rate of chatter vibration has an effect.
 また、本発明例1、比較例2、比較例3の各インサートを用いた加工により形成された立壁側面部の形状プロファイル線を図14~19に示す。図14~16は切削速度(Vc値)が100m/分の場合、図17~19は切削速度(Vc値)が200m/分の場合の形状プロファイル線である。これらの図において、点線が加工すべき底面及び水平面に垂直な面を示す水平線及び鉛直線であり、実線が形状プロファイル線である。
 比較例2、3のインサートを用いた加工により形成された立壁側面部は、底部に近づくほど鉛直線との乖離が大きくなっており、切削速度が大きいほどこの傾向が顕著であることが確認できた。これに対し、本発明例1のインサートを用いた加工により形成された立壁側面部は、上部から底部に至るまで鉛直線との乖離寸法が一定に保たれており、水平面に垂直な面が形成されていることが確認できた。
In addition, FIGS. 14 to 19 show the shape profile lines of the standing wall side surfaces formed by processing using the inserts of Example 1, Comparative Example 2, and Comparative Example 3 of the present invention. 14 to 16 are shape profile lines when the cutting speed (Vc value) is 100 m / min, and FIGS. 17 to 19 are shape profile lines when the cutting speed (Vc value) is 200 m / min. In these drawings, dotted lines are a horizontal line and a vertical line indicating a bottom surface to be machined and a surface perpendicular to a horizontal plane, and a solid line is a shape profile line.
It can be confirmed that the vertical wall side portion formed by processing using the inserts of Comparative Examples 2 and 3 has a greater deviation from the vertical line as it approaches the bottom, and this tendency is more prominent as the cutting speed increases. It was. On the other hand, the vertical wall side surface formed by processing using the insert of Example 1 of the present invention has a constant deviation from the vertical line from the top to the bottom, and forms a surface perpendicular to the horizontal plane. It has been confirmed that.
 なお、本発明例1に係るインサート(5)の基体の材質は、炭化タングステン(WC)とコバルト(Co)を含む超硬合金の他に、例えば、サーメット、高速度鋼、炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム、及びこれらの混合体からなるセラミックス、立方晶窒化硼素焼結体、ダイヤモンド焼結体、多結晶ダイヤモンドあるいは立方晶窒化硼素からなる硬質相と、セラミックスや鉄族金属などの結合相とを超高圧下で焼成する超高圧焼成体を用いることも可能である。
 本発明例1に係る工具本体(1)とシャンク部は、例えば、SKD61等の合金工具鋼で製造する場合と、工具本体(1)をSKD61等の合金工具鋼とし、超硬合金で製造したシャンク部を工具本体(1)に接合した超硬シャンクタイプを用いることも可能である。
The base material of the insert (5) according to Example 1 of the present invention is, for example, cermet, high speed steel, titanium carbide, silicon carbide, in addition to cemented carbide containing tungsten carbide (WC) and cobalt (Co). Ceramics made of silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof, cubic boron nitride sintered body, diamond sintered body, hard phase made of polycrystalline diamond or cubic boron nitride, ceramics and iron group It is also possible to use an ultra-high pressure fired body in which a binder phase such as metal is fired under ultra-high pressure.
The tool body (1) and the shank portion according to Example 1 of the present invention are manufactured from a cemented carbide using, for example, an alloy tool steel such as SKD61 and the tool body (1) as an alloy tool steel such as SKD61. It is also possible to use a carbide shank type in which the shank portion is joined to the tool body (1).
 本願発明の刃先交換式回転切削工具及びインサートによれば、被削材の底面の仕上げ寸法精度のほか、垂直な側面仕上げ加工における寸法精度も向上させることができる。 According to the cutting edge exchange type rotary cutting tool and insert of the present invention, in addition to the finish dimensional accuracy of the bottom surface of the work material, the dimensional accuracy in vertical side surface finishing can be improved.
 1 工具本体
 2 先端部
 3 取付座
 4 切れ刃部
 5 インサート
 6 刃先交換式ラジアスエンドミル(刃先交換式回転切削工具)
 7 インサート嵌合溝
 8 固定用ネジ
 9 外周切れ刃
 10 外周切れ刃のすくい面
 11 底切れ刃
 12 底切れ刃のすくい面
 13 コーナーR切れ刃
 14 コーナーR切れ刃のすくい面
 15 面取り面
 16、17 切屑排出溝
 A コーナーR切れ刃上の所定の点
 Ar1、Ar2 軸方向すくい角(アキシャルレーキ)
 C 回転中心軸
 O 円弧中心点
 P、Q 境界点
 Pr 基準面
 VL 仮想直線
 VS 仮想平面
 δ 放射方向すくい角(真のすくい角)
 ε ねじれ角
 θ 放射角度
DESCRIPTION OF SYMBOLS 1 Tool body 2 Tip part 3 Mounting seat 4 Cutting edge part 5 Insert 6 Cutting edge exchange type radius end mill (Cutting edge exchange type rotary cutting tool)
7 Insert fitting groove 8 Fixing screw 9 Peripheral cutting edge 10 Rake face of outer peripheral cutting edge 11 Bottom cutting edge 12 Rake face of bottom cutting edge 13 Corner R cutting edge 14 Rake face of corner R cutting edge 15 Chamfering faces 16, 17 Chip discharge groove A Predetermined point on corner R cutting edge Ar1, Ar2 Axial rake angle (axial rake)
C Rotation center axis O Arc center point P, Q Boundary point Pr Reference plane VL Virtual straight line VS Virtual plane δ Radial rake angle (true rake angle)
ε Twist angle θ Radiation angle

Claims (4)

  1.  工具本体(1)の先端部(2)に設けた取付座(3)に、切れ刃部(4)を有するインサート(5)を着脱自在に装着する刃先交換式回転切削工具(6)であって、
     前記取付座(3)は、
     前記工具本体(1)の先端部(2)に、工具の回転中心軸(C)を含んで前記回転中心軸(C)に直交する径方向に延びて形成されたスリット状のインサート嵌合溝(7)と、
     前記インサート嵌合溝(7)に挿入された前記インサート(5)を固定するための固定用ネジ(8)と、を備え、
     前記インサート(5)の切れ刃部(4)は、
     前記回転中心軸(C)方向に沿うように延びる外周切れ刃(9)と、
     前記外周切れ刃(9)のすくい面(10)と、
     前記径方向に沿うように延びる底切れ刃(11)と、
     前記底切れ刃(11)のすくい面(12)と、
     前記底切れ刃(11)の前記径方向の外端と前記外周切れ刃(9)の前記回転中心軸(C)方向の先端とを繋ぐとともに、前記工具本体(1)の先端外周側へ向けて凸となる円弧状に形成されたコーナーR切れ刃(13)と、
     前記コーナーR切れ刃(13)のすくい面(14)と、
     前記コーナーR切れ刃(13)のすくい面(14)、及び、前記底切れ刃(11)のすくい面(12)のうち少なくとも前記径方向の外側に位置する部分を含む面取り面(15)と、
     前記底切れ刃(11)のすくい面(12)の前記回転中心軸(C)方向の基端側に形成される切屑排出溝(16)と、
     前記外周切れ刃(9)のすくい面(10)の前記径方向の内側に形成される切屑排出溝(17)と、を備え、
     前記外周切れ刃(9)のねじれ角(ε)が、正の値を有し、
     前記コーナーR切れ刃(13)と前記外周切れ刃(9)との境界点(Q)における前記コーナーR切れ刃(13)の軸方向すくい角(Ar1)が、負の値を有し、
     前記コーナーR切れ刃(13)と前記底切れ刃(11)との境界点(P)における前記コーナーR切れ刃(13)の軸方向すくい角(Ar2)が、負の値を有し、
     前記コーナーR切れ刃(13)上の所定の点(A)及び前記回転中心軸(C)を含む基準面(Pr)に対して垂直であり、かつ、前記コーナーR切れ刃(13)の円弧中心点(O)と前記所定の点(A)とを通る仮想直線(VL)を含む仮想平面(VS)内において、前記基準面(Pr)に対して前記コーナーR切れ刃(13)のすくい面(14)が傾斜する角度である真のすくい角を、放射方向すくい角(δ)と定義して、
     前記コーナーR切れ刃(13)の放射方向すくい角(δ)が、前記コーナーR切れ刃(13)の刃長全域において負の値を有し、
     前記放射方向すくい角(δ)は、前記コーナーR切れ刃(13)のうち、一対の前記境界点(P、Q)同士の間に位置する中間部分において最小値となることを特徴とする刃先交換式回転切削工具(6)。
    A cutting edge exchange type rotary cutting tool (6) in which an insert (5) having a cutting edge (4) is detachably attached to a mounting seat (3) provided at a tip (2) of a tool body (1). And
    The mounting seat (3)
    A slit-like insert fitting groove formed in the distal end portion (2) of the tool body (1) so as to extend in the radial direction perpendicular to the rotation center axis (C) including the rotation center axis (C) of the tool. (7) and
    A fixing screw (8) for fixing the insert (5) inserted in the insert fitting groove (7),
    The cutting edge (4) of the insert (5)
    An outer peripheral cutting edge (9) extending along the rotation center axis (C) direction;
    A rake face (10) of the outer peripheral cutting edge (9);
    A bottom cutting edge (11) extending along the radial direction;
    A rake face (12) of the bottom cutting edge (11);
    The radially outer end of the bottom cutting edge (11) and the distal end of the outer peripheral cutting edge (9) in the direction of the rotation center axis (C) are connected to the outer peripheral side of the distal end of the tool body (1). Corner R cutting edge (13) formed in a circular arc shape that is convex,
    A rake face (14) of the corner R cutting edge (13);
    A chamfered surface (15) including a rake face (14) of the corner R cutting edge (13) and a rake face (12) of the bottom cutting edge (11) at least a portion located outside in the radial direction; ,
    A chip discharge groove (16) formed on the base end side of the rake face (12) of the bottom cutting edge (11) in the direction of the rotation center axis (C);
    A chip discharge groove (17) formed inside the radial direction of the rake face (10) of the outer peripheral cutting edge (9),
    The twist angle (ε) of the outer peripheral cutting edge (9) has a positive value,
    The axial rake angle (Ar1) of the corner R cutting edge (Ar) at the boundary point (Q) between the corner R cutting edge (13) and the outer peripheral cutting edge (9) has a negative value,
    The axial rake angle (Ar2) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) has a negative value,
    An arc of the corner R cutting edge (13) that is perpendicular to a reference point (Pr) including a predetermined point (A) on the corner R cutting edge (13) and the rotation center axis (C). Rake of the corner R cutting edge (13) with respect to the reference plane (Pr) in a virtual plane (VS) including a virtual straight line (VL) passing through a center point (O) and the predetermined point (A) The true rake angle, which is the angle at which the surface (14) is inclined, is defined as the radial rake angle (δ),
    The radial rake angle (δ) of the corner R cutting edge (13) has a negative value over the entire cutting edge length of the corner R cutting edge (13),
    The radial rake angle (δ) has a minimum value in an intermediate portion located between the pair of boundary points (P, Q) in the corner R cutting edge (13). Replaceable rotary cutting tool (6).
  2.  請求項1に記載の刃先交換式回転切削工具(6)であって、
     前記コーナーR切れ刃(13)と前記底切れ刃(11)との境界点(P)における前記コーナーR切れ刃(13)の前記放射方向すくい角(δ)は、前記コーナーR切れ刃(13)と前記外周切れ刃(9)との境界点(Q)における前記コーナーR切れ刃(13)の前記放射方向すくい角(δ)よりも小さいことを特徴とする刃先交換式回転切削工具(6)。
    It is a blade-tip-exchange-type rotary cutting tool (6) according to claim 1,
    The radial rake angle (δ) of the corner R cutting edge (13) at the boundary point (P) between the corner R cutting edge (13) and the bottom cutting edge (11) is the corner R cutting edge (13 ) And the outer peripheral cutting edge (9) at a boundary point (Q) smaller than the radial rake angle (δ) of the corner R cutting edge (13) (6) ).
  3.  請求項1又は2に記載の刃先交換式回転切削工具(6)であって、
     前記基準面(Pr)に投影した前記仮想直線(VL)が、前記基準面(Pr)内において、前記回転中心軸(C)に対して傾斜する角度を、放射角度(θ)と定義して、
     前記放射方向すくい角(δ)の最小値が、前記コーナーR切れ刃(13)のうち、前記放射角度(θ)で5°以上50°以下の範囲に設定されていることを特徴とする刃先交換式回転切削工具(6)。
    It is a blade-tip-exchange-type rotary cutting tool (6) according to claim 1 or 2,
    An angle at which the virtual straight line (VL) projected onto the reference plane (Pr) is inclined with respect to the rotation center axis (C) in the reference plane (Pr) is defined as a radiation angle (θ). ,
    Cutting edge characterized in that the minimum value of the radial rake angle (δ) is set in the range of 5 ° to 50 ° in the radial angle (θ) of the corner R cutting edge (13). Replaceable rotary cutting tool (6).
  4.  請求項1~3のいずれか一項に記載の刃先交換式回転切削工具(6)に用いられることを特徴とするインサート(5)。 An insert (5) used for the cutting edge exchange type rotary cutting tool (6) according to any one of claims 1 to 3.
PCT/JP2016/074240 2015-11-16 2016-08-19 Replaceable-cutting-edge rotary cutting tool and insert WO2017085975A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16865978.7A EP3378589B1 (en) 2015-11-16 2016-08-19 Replaceable-cutting-edge rotary cutting tool and insert
KR1020187013421A KR102021271B1 (en) 2015-11-16 2016-08-19 Interchangeable Blade Cutting Tools and Inserts
CN201680066026.3A CN108290231B (en) 2015-11-16 2016-08-19 Indexable insert blade type rotary cutting tool and blade
JP2016569092A JP6086179B1 (en) 2015-11-16 2016-08-19 Replaceable blade cutting tool and insert
US15/776,209 US10799956B2 (en) 2015-11-16 2016-08-19 Indexable rotary cutting tool and insert

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223958 2015-11-16
JP2015-223958 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017085975A1 true WO2017085975A1 (en) 2017-05-26

Family

ID=58718613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074240 WO2017085975A1 (en) 2015-11-16 2016-08-19 Replaceable-cutting-edge rotary cutting tool and insert

Country Status (5)

Country Link
US (1) US10799956B2 (en)
EP (1) EP3378589B1 (en)
KR (1) KR102021271B1 (en)
CN (1) CN108290231B (en)
WO (1) WO2017085975A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124698A1 (en) * 2019-12-16 2021-06-24 株式会社Subaru Milling method
US11786981B2 (en) 2019-12-16 2023-10-17 Subaru Corporation Cutting insert, cutting edge-replaceable rotary cutting tool and rotary cutting method
WO2024053506A1 (en) * 2022-09-09 2024-03-14 株式会社Moldino End mill

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023294A (en) * 2018-09-18 2018-12-18 陕西航天时代导航设备有限公司 A kind of diamond coatings slotting cutter and its manufacturing process
EP3785830A1 (en) * 2019-08-30 2021-03-03 Walter Ag Cutting insert for parting off a metal work piece
CN111185942B (en) * 2020-02-25 2023-10-27 深圳市誉和光学精密刀具有限公司 Cutter and processing method thereof
WO2023281889A1 (en) * 2021-07-08 2023-01-12 兼房株式会社 Rotary cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744235B2 (en) 1976-07-14 1982-09-20
JPH08281513A (en) 1995-04-10 1996-10-29 Hitachi Tool Eng Ltd Throw away type end mill
JP2003071626A (en) * 2001-08-30 2003-03-12 Hitachi Tool Engineering Ltd Radius end mill
JP2004050338A (en) * 2002-07-18 2004-02-19 Btt Kk Radius end mill
WO2009123192A1 (en) * 2008-03-31 2009-10-08 三菱マテリアル株式会社 Radius end mill and cutting insert
JP2011020192A (en) 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp Spiral radius end mill

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267556A (en) 1975-12-03 1977-06-04 Hitachi Ltd High voltage proof mis switching circuit
JPS6055890B2 (en) 1980-08-26 1985-12-07 三菱電機株式会社 Optical information recording and reproducing device
US6846135B2 (en) * 2002-03-25 2005-01-25 Hitachi Tool Engineering Ltd. Radius end mill having radius edge enhanced in resistance to chipping and fracture
US7402004B2 (en) * 2002-12-26 2008-07-22 Mitsubishi Materials Corporation Radius end mill
DE20310713U1 (en) * 2003-07-12 2003-09-18 Fette Gmbh end mill
US7226249B2 (en) * 2004-10-29 2007-06-05 Mitsubishi Materials Corporation Ball nose cutting insert and ball end mill thereof
US20110008113A1 (en) 2008-03-31 2011-01-13 Mitsubishi Materials Corporation Radius end mill and cutting insert
JP5641204B2 (en) * 2010-06-02 2014-12-17 日立ツール株式会社 Christmas cutter and turbine blade root cutting method using the same
WO2013057776A1 (en) * 2011-10-17 2013-04-25 三菱マテリアル株式会社 Head replacement-type cutting tool
DE102011012140B4 (en) * 2011-02-24 2020-07-09 Kennametal Inc. Milling cutters, in particular ball end mills
US9707627B2 (en) 2011-12-27 2017-07-18 Kyocera Corporation Radius end mill
JP5344204B2 (en) * 2012-03-05 2013-11-20 三菱マテリアル株式会社 Surface coated cutting tool
CN102717138A (en) * 2012-06-01 2012-10-10 上海交通大学 Re-constructable formed milling cutter for fine machining of circular-arc-shaped curved mortise of wheel disc
CN103203492A (en) * 2012-09-29 2013-07-17 成都飞机工业(集团)有限责任公司 Combined type special milling cutter for honeycomb
JP5614511B2 (en) * 2012-10-10 2014-10-29 日立ツール株式会社 Ball end mill and insert
CN103962590B (en) * 2013-01-31 2017-07-21 三菱综合材料株式会社 Surface-coated cutting tool and its manufacture method
KR200469788Y1 (en) 2013-05-10 2013-11-12 이성근 Insert tip
JP5939208B2 (en) 2013-06-18 2016-06-22 三菱日立ツール株式会社 Ball end mill
CN108290233B (en) * 2016-02-12 2019-09-13 三菱日立工具株式会社 Indexable insert blade type rotary cutting tool and blade

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744235B2 (en) 1976-07-14 1982-09-20
JPH08281513A (en) 1995-04-10 1996-10-29 Hitachi Tool Eng Ltd Throw away type end mill
JP2003071626A (en) * 2001-08-30 2003-03-12 Hitachi Tool Engineering Ltd Radius end mill
JP2004050338A (en) * 2002-07-18 2004-02-19 Btt Kk Radius end mill
WO2009123192A1 (en) * 2008-03-31 2009-10-08 三菱マテリアル株式会社 Radius end mill and cutting insert
JP5267556B2 (en) 2008-03-31 2013-08-21 三菱マテリアル株式会社 Radius end mill and cutting insert
JP2011020192A (en) 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp Spiral radius end mill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378589A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124698A1 (en) * 2019-12-16 2021-06-24 株式会社Subaru Milling method
JP2021094619A (en) * 2019-12-16 2021-06-24 株式会社Subaru Rotary cutting processing method
CN114746202A (en) * 2019-12-16 2022-07-12 株式会社斯巴鲁 Turning machining method
US11786981B2 (en) 2019-12-16 2023-10-17 Subaru Corporation Cutting insert, cutting edge-replaceable rotary cutting tool and rotary cutting method
JP7411312B2 (en) 2019-12-16 2024-01-11 株式会社Subaru Milling method
WO2024053506A1 (en) * 2022-09-09 2024-03-14 株式会社Moldino End mill

Also Published As

Publication number Publication date
EP3378589A4 (en) 2019-07-17
KR102021271B1 (en) 2019-09-16
KR20180069016A (en) 2018-06-22
US20200254529A1 (en) 2020-08-13
EP3378589B1 (en) 2022-09-28
CN108290231B (en) 2019-09-10
CN108290231A (en) 2018-07-17
EP3378589A1 (en) 2018-09-26
US10799956B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2017085975A1 (en) Replaceable-cutting-edge rotary cutting tool and insert
US8807882B2 (en) Face milling cutter
US20070172321A1 (en) Ball endmill
WO2017047700A1 (en) Cutting insert and replaceable-blade-type cutting tool
US9028179B2 (en) Drilling tool
WO2015037617A1 (en) Replaceable-cutting-edge rotary cutting tool and insert used in same
CN109641293B (en) Cutting insert and indexable insert type rotary cutting tool
JP5614511B2 (en) Ball end mill and insert
US10926344B2 (en) Taper reamer
US10688570B2 (en) Indexable rotary cutting tool and insert
JP6086179B1 (en) Replaceable blade cutting tool and insert
CN109414771B (en) Cutting insert and indexable insert type rotary cutting tool
WO2018074542A1 (en) Cutting insert and cutting edge-interchangeable rotary cutting tool
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JP6086180B1 (en) Replaceable blade cutting tool and insert
JP7020162B2 (en) Square end mill
EP3505284B1 (en) Cutting insert, and indexable rotational cutting tool
JP2013013962A (en) Cbn end mill
JP7453566B2 (en) Cutting inserts and indexable rotary cutting tools
JP7239864B2 (en) Cutting inserts and indexable rotary cutting tools
JP7265208B2 (en) Cutting inserts and indexable rotary cutting tools
JP2022007242A (en) Two-blade ball end mill

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016569092

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016865978

Country of ref document: EP