WO2017080388A1 - 一种变流器多重化的载波移相方法 - Google Patents

一种变流器多重化的载波移相方法 Download PDF

Info

Publication number
WO2017080388A1
WO2017080388A1 PCT/CN2016/104227 CN2016104227W WO2017080388A1 WO 2017080388 A1 WO2017080388 A1 WO 2017080388A1 CN 2016104227 W CN2016104227 W CN 2016104227W WO 2017080388 A1 WO2017080388 A1 WO 2017080388A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
carrier
bit
sequence number
converters
Prior art date
Application number
PCT/CN2016/104227
Other languages
English (en)
French (fr)
Inventor
冯江华
刘可安
尚敬
罗文广
胡景瑜
张志学
梅文庆
章志兵
付刚
陈志博
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to EP16863565.4A priority Critical patent/EP3376657B1/en
Publication of WO2017080388A1 publication Critical patent/WO2017080388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Definitions

  • the present invention relates to the field of converter technology, and in particular to a carrier phase shifting method for multiplexer of a converter.
  • the carrier phase shift SPWM modulation technology solves the contradiction between the switching frequency and the capacity of the power device. It obtains a higher equivalent switching frequency by canceling each other with lower harmonics, so that the SPWM modulation technology is obtained in high power.
  • a wide range of applications, and the resulting multi-technology is also becoming more and more popular, but with the increasingly complex system conditions, there are still deficiencies in the key phase carrier phase shifting of multiple technologies. Under normal circumstances, the number of converters operating in the system is fixed, and the system will assign a fixed phase to each heavy converter according to a certain phase error angle. However, as the system conditions become more and more complex, a system will encounter one during operation.
  • the object of the present invention is to provide a carrier phase shifting method for multiplexer of a converter, which can solve the problem that the traditional carrier phase shifting method cannot realize real-time dynamic phase-shifting of the converters in real time under different working conditions. problem.
  • the invention provides a carrier phase shifting method for multiplexer of a converter, the method comprising:
  • the multi-converter is sequentially sorted in real time based on the start-stop state information of the multiple converters to form a dynamic sequence number of each converter;
  • Carrier phase shifting is performed on each converter according to the carrier initial phase angle.
  • the steps of sorting the multiple converters in real time include:
  • sequence number array is a set of initial numbers of the multiple converters arranged by number
  • the sequence number array element is moved in real time based on the start and stop state of the multiple converters to form a dynamic sequence number corresponding to the number of each converter.
  • the method includes:
  • the initial sequence number of the multiple converter is the same as its number. If the converter numbered k in the multiple converter stops working, the sequence array element moves from the k bit to the high bit by one bit, if the multiple The converter numbered k in the converter starts to work, and the sequence array element moves from the k bit to the low bit by one bit. After the sequence number array is moved, the k bit element is the dynamic sequence number of the converter numbered k.
  • the steps for numbering multiple converters include:
  • command word information including start and stop information of the binary multiple converter sorted according to the number, wherein 1 indicates that the converter is in an open state , 0 means the converter is off.
  • the method includes:
  • the u-bit element in the sequence number array is taken out as the dynamic sequence number of the converter numbered u.
  • the steps for numbering multiple converters include:
  • the multiple converters are numbered i+j*N(1 ⁇ i ⁇ N) (0 ⁇ j ⁇ M), where N is the number of transformers in the converter multiplex system, and M is a transformer
  • N is the number of transformers in the converter multiplex system
  • M is a transformer
  • the step of calculating the carrier initial phase angle of each converter according to the dynamic sequence number of each converter includes:
  • Calculating the carrier initial phase angle of the converter is the product of the dynamic sequence number of the converter and the dynamic total number of the converter and 180°, and the dynamic total number of the converter is based on the multiple converter Stop status information obtained.
  • the steps of carrier phase shifting each converter according to the carrier initial phase angle include:
  • the carrier initial phase angle is applied to the carrier generation of the converter when the converter input voltage fundamental zero crossing.
  • the carrier phase shifting method of the multiplexer of the converter provided by the embodiment of the invention adopts the control logic combining the command word information and the converter number, and sets the numbering rule, the sequence number array construction and the movement rule according to the requirement, and realizes the N-fold change.
  • the 2 N kinds of distribution modes of the system carrier initial phase angle of the streamer module can realize the carrier initial phase angle distribution of any combination.
  • the carrier initial phase angle of the corresponding heavy converter is generated adaptively in real time by running the converter module multiplicity in the command word information analysis system. Single or multiple converters will frequently join or leave the system as the operating conditions of the system change, causing the number of converters to change during the operation of the system.
  • the control strategy provided by the present invention can be changed according to the current operation of the system.
  • the streamer multiplicity performs the adaptive allocation of the carrier's initial phase angle in real time, and does not require the system to be powered off and restarted, which improves the continuous and effective running time of the system.
  • the carrier time of each heavy converter is selected at the fundamental zero crossing of the input voltage. Therefore, the current distribution of the initial phase angle of the carrier does not cause a sudden change in the current of the converter, and the stability and reliability of the system are improved.
  • FIG. 1 is a flowchart of a carrier phase shifting method of a converter multiplexed according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a carrier phase shifting system in which a converter is multiplexed according to an embodiment of the present invention
  • FIG. 3 is a flow chart of carrier phase shifting of a converter control unit according to an embodiment of the present invention.
  • the method includes: step 101, step 102, step 103, and step 104.
  • step 101 the start/stop state information of the multiple converters is acquired, and the start/stop state information is information about the on or off states of the respective converters in the multiple converter system.
  • step 102 the multiple converters are sorted in real time based on the start and stop state information of the multiple converters. When the converters are cut out from the system or put into the system in the multiple converter system, the system is The multiple converters in the reordering are performed, and the dynamic sequence numbers of the respective converters are formed in the sorting.
  • step 103 after reordering, the carrier initial phase angle of each converter is calculated according to the dynamic sequence number of each converter.
  • step 104 carrier phase shifting is performed on each converter according to the calculated carrier initial phase angle of each converter, so that the system automatically performs dynamic carrier phase shifting, so that the carrier of the multiple converters in the system is A certain angle is out of phase to achieve the effect of suppressing harmonics.
  • the process of sorting the multiple converters in real time is specifically: first, each converter in the multiple converter is numbered, and the numbering is performed according to a preset rule, and the numbering rule is performed. The setting is based on the needs analysis. After the numbering is completed, the serial number array is constructed according to the number of the multiple converters, and the serial number array is the set of the initial serial numbers of the multiple converters according to the number, the elements of the serial number array are the initial serial numbers, and the specific construction form of the serial number array, such as corresponding The initial serial number corresponding to the number is determined by the corresponding analysis of the requirements analysis.
  • the serial number array element is moved in real time based on the start and stop state of the multiple converter, and the moving method of the element can be set correspondingly with the structure of the serial number array.
  • the sequence number array is moved according to the start and stop state,
  • the dynamic serial number corresponding to the number of each converter is formed, that is, the dynamic serial number of the converter is the serial number corresponding to the number of the converter in the serial number array.
  • the initial number of the multiple converter is the same as its number, and it is determined that all the converters are in an open state in the initial state.
  • the sequence number array moves according to the start and stop information of the converter: if the converter numbered k in the multiple converter stops working, the sequence array element moves from the k bit to the high bit by one bit, that is, The k-bit element in the sequence number array before the move is k, the k-bit element is 0 after the move, the k+1-bit element is k, and so on.
  • the sequence array element moves from the k bit to the low bit by one bit, the original k bit is 0, and the k+1 bit is k. After moving k For k, k+1 bits are k+1.
  • the k-bit element after the sequence number array is moved is the dynamic sequence number of the converter numbered k.
  • calculating the carrier initial phase angle of the converter according to the dynamic sequence number includes: calculating a carrier initial phase angle of the converter as a dynamic sequence number of the converter and a dynamic total number of the converter The quotient of the product with 180°.
  • the 180°/N phase-shifting method has a low harmonic content and is suitable for practical applications.
  • the dynamic total number of converters in the multi-converter that are on is obtained based on the start-stop status information of the multi-converter.
  • the carrier generation of the carrier initial phase angle is applied to the converter when the converter input voltage fundamental zero crossing is calculated. This ensures that the initial phase angle distribution of each converter is performed at the same time.
  • the embodiment of the invention further provides a carrier phase shifting system with multiple converters.
  • the system includes a system control unit and a plurality of converter control units.
  • a conventional vehicle-mounted four-quadrant converter system is further described in the carrier phase shifting method and system of the converter provided by the embodiment of the present invention.
  • the vehicle four-quadrant converter system there are N transformers, each of which has N transformers.
  • the transformer supplies power to the M four-quadrant modules.
  • Each four-quadrant converter is equipped with a converter control unit.
  • the system has a total of M*N four-quadrant converters.
  • the demand of the system is that the four quadrant modules of each transformer are in the wrong direction of M weight, and the whole vehicle is in the wrong phase of M*N to achieve the minimum harmonic content of the system.
  • the system control unit numbers all four-quadrant converters, and the four-quadrant converter is numbered i+j*N(1 ⁇ i ⁇ N) (0 ⁇ j ⁇ M), where N is The number of transformers in the converter multiplex system, M is the number of converters powered by each transformer, i is the serial number of the transformer (from 1 to N), and j is the serial number of the converter powered by a transformer ( From 0 to M-1).
  • Each four-quadrant converter control unit responds to the system control unit with its four-quadrant converter start-stop status information, and generates command word information according to the start-stop status information and number of each converter.
  • the command word information includes sorting by number.
  • the start and stop information of the binary multiple converter where 1 indicates that the converter is on, and 0 indicates that the converter is off.
  • the i+j*N bit of the command word represents the start and stop state of the jth four-quadrant module under the i-th transformer.
  • the system control unit sends the command word information Command and the number Number to each four-quadrant converter control unit, and the converter control unit obtains its own number, and parses the received command word information to obtain a four-quadrant change in the system.
  • the four-quadrant converter control unit generates a dynamic sequence number according to the command word information Command and the number Number to perform dynamic carrier phase shifting on the four-quadrant converter as follows:
  • step 201 the four-quadrant converter control unit determines whether the command word information Command is changed. If the change indicates that a four-quadrant converter is cut out from the system or put into the system, step 202 to step 204 are performed, from the command word information. The first bit starts from the first bit to the last bit and judges whether it is 0 or not.
  • step 202 if the i-th bit is 0, step 203 is performed; if the i-th bit is not 0, step 204 is performed.
  • the initial value of i is 1.
  • the total number of dynamics of the device is reduced by 1, and then step 204 is performed.
  • step 204 the value of i is incremented by 1, and it is determined whether i ⁇ M * N. If yes, then return to step 202 to continue to judge i+1 bits until i>M*N, that is, all bits of the command word information are After the judgment is completed, the updated sequence number array and the converter dynamic total number are obtained, and then step 205 is performed. It is also possible to set the initial value of i to 0 in correspondence with the first bit of the command word information, and then it is judged in this step whether i ⁇ M * N or not.
  • the four-quadrant converter control unit numbered u takes the u-bit element NUM[u] from the sequence number array NUM[M*N] after the movement as the dynamic sequence number of the four-quadrant converter.
  • the carrier initial phase angle of the four-quadrant converter is calculated as (NUM[u]*180°)/m, where m is the dynamic total of the four-quadrant converters operating in the system.
  • step 206 carrier generation to generate a carrier initial phase angle for the converter is calculated at the converter input voltage fundamental zero crossing. Since each transformer is powered in parallel from the power supply network, the waveform of the network voltage received by each four-quadrant converter is the same, and the zero-crossing point is also the same. Therefore, the distribution of the initial phase angle of the carrier at the zero-crossing point can ensure each The four-quadrant converter initial phase angle distribution is performed at the same time.
  • the carrier phase shifting method of the multiplexer of the converter provided by the embodiment of the invention adopts the control logic combining the command word information and the converter number, and sets the numbering rule, the sequence number array construction and the movement rule according to the requirement, and realizes the N-fold change.
  • the 2 N kinds of distribution modes of the system carrier initial phase angle of the streamer module can realize the carrier initial phase angle distribution of any combination.
  • the carrier initial phase angle of the corresponding heavy converter is generated adaptively in real time by running the converter module multiplicity in the command word information analysis system. Single or multiple converters will frequently join or leave the system as the operating conditions of the system change, causing the number of converters to change during the operation of the system.
  • the control strategy provided by the present invention can be changed according to the current operation of the system.
  • the streamer multiplicity performs the adaptive allocation of the carrier's initial phase angle in real time, and does not require the system to be powered off and restarted, which improves the continuous and effective running time of the system.
  • the carrier time of each heavy converter is selected at the fundamental zero crossing of the input voltage. Therefore, the current distribution of the initial phase angle of the carrier does not cause a sudden change in the current of the converter, and the stability and reliability of the system are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种变流器多重化的载波移相方法,属于变流器技术领域,解决了传统的载波移相方法无法实现在不同的工况下实时对运行的变流器重数动态地错相的技术问题。该变流器多重化的载波移相方法包括:获取多重变流器的启停状态信息(S101);基于多重变流器的启停状态信息对多重变流器进行实时地排序,形成各变流器的动态序号(S102);根据各变流器的动态序号计算各变流器的载波初相角(S103);根据载波初相角对各变流器进行载波移相(S104)。

Description

一种变流器多重化的载波移相方法
相关技术的交叉引用
本申请要求享有2015年11月11日提交的名称为“一种变流器多重化的载波移相方法”的中国专利申请为CN201510766068.5的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及变流器技术领域,具体的说,涉及一种变流器多重化的载波移相方法。
背景技术
在电力电子技术飞速发展的今天,电力电子整流装置得以广泛应用于大功率电力电子变换场合,如轨道交通、风力发电、光伏发电和冶金等重工业领域。随着控制技术不断提升,电力电子整流装置由之前的不控制整流逐渐发展成为采用SPWM调制的全控方式。同时,由于不断增大的功率等级和日益苛刻的谐波指标,往往需要对PWM整流器进行多重化并联以实现大功率运行的同时降低系统谐波的目的。多重化技术通常采用载波相移SPWM调制的方式,对不同变流器载波调制中的三角载波进行载波移相,达到对特定次谐波的消除的目的。
载波相移SPWM调制技术的提出,解决了功率器件开关频率与容量之间的矛盾,它通过较低次谐波的互相抵消得到较高的等效开关频率,使得SPWM调制技术在大功率场合得到了广泛的应用,随之而来的多重化技术也日渐普及,但随着系统工况的日益复杂,多重化技术的关键点载波移相方面仍存在着不足之处。一般情况下,系统中运行的变流器重数固定,系统会按照一定的错相角给每重变流器分配固定的相位,但是随着系统工况日益复杂,系统运行过程中会遇到一个或多个变流器单元动态的投入或退出情况,而目前并没有一种成熟的载波移相调制方法可以在不同的工况下实时对运行的变流器重数动态地错相以达到最佳的谐波抑制效果,并且如果没有及时地根据运行的四象限变流器重数进行错相,会引起谐波含量的突增。
因此,亟需一种能够实现在不同的工况下实时对运行的变流器重数动态地错相以达到最佳的谐波抑制效果的变流器多重化的载波移相方法。
发明内容
本发明的目的在于提供一种变流器多重化的载波移相方法,以解决的传统的载波移相方法无法实现在不同的工况下实时对运行的变流器重数动态地错相的技术问题。
本发明提供一种变流器多重化的载波移相方法,该方法包括:
获取多重变流器的启停状态信息;
基于多重变流器的启停状态信息对多重变流器进行实时地排序,形成各变流器的动态序号;
根据各变流器的动态序号计算各变流器的载波初相角;
根据载波初相角对各变流器进行载波移相。
在对多重变流器进行实时地排序的步骤中包括:
对多重变流器进行编号;
根据所述多重变流器的编号构建序号数组,所述序号数组为多重变流器的初始序号按照编号排列的集合;
基于多重变流器的启停状态实时地移动所述序号数组元素,形成各变流器的编号所对应的动态序号。
在形成各变流器的编号所对应的动态序号的步骤中包括:
所述多重变流器的初始序号与其编号相同,若所述多重变流器中编号为k的变流器停止工作,则序号数组元素从k位开始向高位循环移动一位,若所述多重变流器中编号为k的变流器开始工作,则序号数组元素从k位开始向低位循环移动一位,序号数组移动后k位元素为编号为k的变流器的动态序号。
在对多重变流器进行编号的步骤中包括:
根据所述多重变流器的启停状态信息和编号生成命令字信息,所述命令字信息包括按照所述编号排序的二进制多重变流器的启停信息,其中1表示变流器处于开启状态,0表示变流器处于关闭状态。
在形成各变流器的编号所对应的动态序号的步骤中包括:
逐一判断命令字信息中各编号位是否为0;
当命令字信息中k位为0时,序号数组元素从k位开始向高位循环移动一位;
在对命令字信息所有编号位判断完成后,取出所述序号数组中u位元素作为编号为u的变流器的动态序号。
在对多重变流器进行编号的步骤中包括:
所述多重变流器的编号为i+j*N(1≤i≤N)(0≤j<M),其中,N为变流器多重化系统中变压器的数量,M为由一台变压器供电的变流器重数,i为变压器的序号,j为由一台变压器供电的变流器的序号。
在根据各变流器的动态序号计算各变流器的载波初相角的步骤中包括:
计算变流器的载波初相角为该变流器的所述动态序号与变流器的动态总数的商与180°的乘积,变流器的动态总数是根据所述多重变流器的启停状态信息获得的。
在根据载波初相角对各变流器进行载波移相的步骤中包括:
在变流器输入电压基波过零点时,将所述载波初相角应用于变流器的载波生成。
本发明实施例提供的变流器多重化的载波移相方法,采用命令字信息与变流器编号相结合的控制逻辑,根据需求设定编号规则、序号数组构建和移动规则,实现N重变流器模块的系统载波初相角全部的2N种分配方式,能实现任意组合的载波初相角分配。
通过命令字信息解析系统中运行变流器模块重数,实时自适应地生成对应重变流器的载波初相角。单台或多台变流器会随着系统运行工况的变化频繁地加入或退出系统,造成系统运行过程中变流器运行重数改变,本发明提供的控制策略能根据系统当前运行的变流器重数实时地进行载波初相角的自适应分配,不需要系统断电重启,提高了系统的连续有效运行时间。
各重变流器载波分配时间选择在输入电压基波过零点,因此动态分配载波初相角的过程中不会引起变流器的电流突变,系统稳定性与可靠性得到提高。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分的从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
图1是本发明实施例提供的变流器多重化的载波移相方法的流程图;
图2是本发明实施例提供的变流器多重化的载波移相系统的示意图;
图3是本发明实施例提供的变流器控制单元的载波移相流程图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
本发明实施例提供的变流器多重化的载波移相方法,如图1所示,该方法包括:步骤101、步骤102、步骤103和步骤104。其中,在步骤101中,获取多重变流器的启停状态信息,启停状态信息即关于多重变流器系统中各个变流器的开启或者关闭状态的信息。在步骤102中,基于多重变流器的启停状态信息对多重变流器进行实时地排序,在多重变流器系统中有变流器从系统中切出或投入到系统中时,对系统中的多重变流器进行重新排序,在排序后中形成各变流器的动态序号。在步骤103中,在进行过重新排序后,根据各变流器的动态序号计算各变流器的载波初相角。在步骤104中,根据计算得到的各个变流器的载波初相角对各变流器进行载波移相,实现系统自动的完成动态的载波移相,使系统中的多重变流器的载波以一定的角度错相,达到抑制谐波的效果。
在本发明实施例中,在对多重变流器进行实时地排序的过程具体为:首先,对多重变流器中每个变流器进行编号,编号依据预先设定的规则进行,编号规则的设定根据需求分析制定。在进行完编号后,根据多重变流器的编号构建序号数组,序号数组为多重变流器的初始序号按照编号排列的集合,序号数组的元素为初始序号,序号数组的具体构建形式,如相应编号所对应的初始序号,通过需求分析制定相应的协议来确定。在序号数组构建好后,基于多重变流器的启停状态实时地移动序号数组元素,元素的移动方法可以配合序号数组的结构进行相应的设置,在根据启停状态完成序号数组的移动后,形成各变流器的编号所对应的动态序号,即变流器的动态序号为序号数组中该变流器的编号所对应的序号。
进一步的,在本发明提供的一种实施方式中,多重变流器的初始序号与其编号相同,在初始状态下判定所有变流器都处于开启状态下。序号数组依据变流器的启停信息的移动方式为:若多重变流器中编号为k的变流器停止工作,则序号数组元素从k位开始向高位循环移动一位,也就是说,移动前序号数组中k位元素为k,在移动后k位元素为0,k+1位元素为k,依次类推。若多重变流器中编号为k的变流器由停止状态转为进入工作状态,则序号数组元素从k位开始向低位循环移动一位,原k位为0,k+1位为k,移动后k位 为k,k+1位为k+1。序号数组移动后k位元素即为编号为k的变流器的动态序号。
更具体的,在步骤103中,根据动态序号计算变流器的载波初相角的过程中包括:计算变流器的载波初相角为该变流器的动态序号与变流器的动态总数的商与180°的乘积。采用180°/N的错相调制方法谐波含量较低,比较适合工程的实际应用。多重变流器中处于开启状态的变流器的动态总数是根据多重变流器的启停状态信息获得的。
进一步的,进行载波移相的过程中,在变流器输入电压基波过零点时将计算生成载波初相角应用于变流器的载波生成。从而保证各变流器的初相角分配在同一时刻进行。
本发明实施例还提供一种变流器多重化的载波移相系统,如图2所示,该系统中包括系统控制单元和多个变流器控制单元。下面结合传统的车载四象限变流器系统对本发明实施例提供的变流器多重化的载波移相方法和系统做进一步的说明,在车载四象限变流器系统中有N台变压器,每台变压器为M个四象限模块供电,每个四象限变流器都配置有变流器控制单元,系统总共有M*N个四象限变流器。系统的需求为每个变压器下四象限模块按M重错相,同时整车按M*N重错相,以达到系统谐波含量最小的目的。
在初始状态下系统控制单元对所有的四象限变流器进行编号,四象限变流器的编号为i+j*N(1≤i≤N)(0≤j<M),其中,N为变流器多重化系统中变压器的数量,M为由每台变压器供电的变流器重数,i为变压器的序号(由1至N),j为由一台变压器供电的变流器的序号(由0至M-1)。
每重四象限变流器控制单元向系统控制单元反应自己的四象限变流器启停状态信息,根据各个变流器的启停状态信息和编号生成命令字信息,命令字信息包括按照编号排序的二进制多重变流器的启停信息,其中1表示变流器处于开启状态,0表示变流器处于关闭状态。命令字的第i+j*N位即代表第i台变压器下的第j个四象限模块的启停状态。
系统控制单元将命令字信息Command和编号Number发给每重四象限变流器控制单元,变流器控制单元获得自身的编号,对接收到的命令字信息进行解析获得系统中运行的四象限变流器总数并生成序号数组NUM[M*N]。序号数组NUM[M*N]中初始序号和编号一致,NUM[M*N]={(M*N,M*N)、……(2,2)、(1,1)}。
如图3所示,四象限变流器控制单元根据命令字信息Command和编号Number生成动态序号对四象限变流器进行动态载波移相的步骤如下:
在步骤201中,四象限变流器控制单元判断命令字信息Command是否改变,若改变则说明有四象限变流器从系统切出或投入系统,则进行步骤202至步骤204,从命令字信息的第1位开始到最后一个位逐一进行判断是否为0。
在步骤202中,若第i位为0,则进行步骤203;若第i位不为0,则进行步骤204。 i的初始值为1。
在步骤203中,将序号数组元素NUM[M*N]从i位开始向高位循环移动一位,数组第i位为0,NUM[i]=0,移动后的数组NUM[M*N]={(M*N-1,M*N)、……(i,i+1),(0,i)……(2,2)、(1,1)},同时,四象限变流器动态总数m减1,然后执行步骤204。
在步骤204中,对i值加1,判断是否i≤M*N,若是,则返回步骤202中继续对i+1位进行判断,直至i>M*N,即对命令字信息所有位都判断完毕后,获得更新后的序号数组和变流器动态总数,然后执行步骤205。也可以对应命令字信息的第1位将i的初始值设为0,那么在本步骤中判断是否i<M*N。
在步骤205中,编号为u的四象限变流器控制单元从进行完移动后的序号数组NUM[M*N]中取出u位元素NUM[u]作为该四象限变流器的动态序号,计算该四象限变流器的载波初相角为(NUM[u]*180°)/m,m为系统中运行的四象限变流器动态总数。
在步骤206中,在变流器输入电压基波过零点时将计算生成载波初相角应用于变流器的载波生成。由于各台变压器都是并联从供电网取电,因此,每重四象限变流器接收到的网压波形是一致的,过零点也相同,因此在过零点时分配载波初相角能保证各四象限变流器初相角分配在同一时刻进行。
本发明实施例提供的变流器多重化的载波移相方法,采用命令字信息与变流器编号相结合的控制逻辑,根据需求设定编号规则、序号数组构建和移动规则,实现N重变流器模块的系统载波初相角全部的2N种分配方式,能实现任意组合的载波初相角分配。
通过命令字信息解析系统中运行变流器模块重数,实时自适应地生成对应重变流器的载波初相角。单台或多台变流器会随着系统运行工况的变化频繁地加入或退出系统,造成系统运行过程中变流器运行重数改变,本发明提供的控制策略能根据系统当前运行的变流器重数实时地进行载波初相角的自适应分配,不需要系统断电重启,提高了系统的连续有效运行时间。
各重变流器载波分配时间选择在输入电压基波过零点,因此动态分配载波初相角的过程中不会引起变流器的电流突变,系统稳定性与可靠性得到提高。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (8)

  1. 一种变流器多重化的载波移相方法,其特征在于,包括:
    获取多重变流器的启停状态信息;
    基于多重变流器的启停状态信息对多重变流器进行实时地排序,形成各变流器的动态序号;
    根据各变流器的动态序号计算各变流器的载波初相角;
    根据载波初相角对各变流器进行载波移相。
  2. 根据权利要求1所述的载波移相方法,其特征在于,在对多重变流器进行实时地排序的步骤中包括:
    对多重变流器进行编号;
    根据所述多重变流器的编号构建序号数组,所述序号数组为多重变流器的初始序号按照编号排列的集合;
    基于多重变流器的启停状态实时地移动所述序号数组元素,形成各变流器的编号所对应的动态序号。
  3. 根据权利要求2所述的载波移相方法,其特征在于,在形成各变流器的编号所对应的动态序号的步骤中包括:
    所述多重变流器的初始序号与其编号相同,若所述多重变流器中编号为k的变流器停止工作,则序号数组元素从k位开始向高位循环移动一位,若所述多重变流器中编号为k的变流器开始工作,则序号数组元素从k位开始向低位循环移动一位,序号数组移动后k位元素为编号为k的变流器的动态序号。
  4. 根据权利要求2或3所述的载波移相方法,其特征在于,在对多重变流器进行编号的步骤中包括:
    根据所述多重变流器的启停状态信息和编号生成命令字信息,所述命令字信息包括按照所述编号排序的二进制多重变流器的启停信息,其中1表示变流器处于开启状态,0表示变流器处于关闭状态。
  5. 根据权利要求4所述的载波移相方法,其特征在于,在形成各变流器的编号所对应的动态序号的步骤中包括:
    逐一判断命令字信息中各编号位是否为0;
    当命令字信息中k位为0时,序号数组元素从k位开始向高位循环移动一位;
    在对命令字信息所有编号位判断完成后,取出所述序号数组中u位元素作为编号为u的变流器的动态序号。
  6. 根据权利要求5所述的载波移相方法,其特征在于,在对多重变流器进行编号的步骤中包括:
    所述多重变流器的编号为i+j*N(1≤i≤N)(0≤j<M),其中,N为变流器多重化系统中变压器的数量,M为由一台变压器供电的变流器重数,i为变压器的序号,j为由一台变压器供电的变流器的序号。
  7. 根据权利要求6所述的载波移相方法,其特征在于,在根据各变流器的动态序号计算各变流器的载波初相角的步骤中包括:
    计算变流器的载波初相角为该变流器的所述动态序号与变流器的动态总数的商与180°的乘积,变流器的动态总数是根据所述多重变流器的启停状态信息获得的。
  8. 根据权利要求7所述的载波移相方法,其特征在于,在根据载波初相角对各变流器进行载波移相的步骤中包括:
    在变流器输入电压基波过零点时,将所述载波初相角应用于变流器的载波生成。
PCT/CN2016/104227 2015-11-11 2016-11-01 一种变流器多重化的载波移相方法 WO2017080388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16863565.4A EP3376657B1 (en) 2015-11-11 2016-11-01 Multiplexed carrier phase shift method for converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510766068.5A CN106685239B (zh) 2015-11-11 2015-11-11 一种变流器多重化的载波移相方法
CN201510766068.5 2015-11-11

Publications (1)

Publication Number Publication Date
WO2017080388A1 true WO2017080388A1 (zh) 2017-05-18

Family

ID=58694537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104227 WO2017080388A1 (zh) 2015-11-11 2016-11-01 一种变流器多重化的载波移相方法

Country Status (3)

Country Link
EP (1) EP3376657B1 (zh)
CN (1) CN106685239B (zh)
WO (1) WO2017080388A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149577A (zh) * 2017-06-27 2019-01-04 西安中车永电捷通电气有限公司 四象限整流器组件的控制方法及装置
CN107769264A (zh) * 2017-11-21 2018-03-06 北京合力电气传动控制技术有限责任公司 风力发电机组的控制方法、装置、系统、风电变流器
CN110504850B (zh) * 2018-05-17 2020-11-10 株洲中车时代电气股份有限公司 一种整流装置及其环流抑制方法
CN110518587B (zh) * 2019-06-13 2023-12-26 江苏经纬轨道交通设备有限公司 多重变流器系统的移相控制方法、系统、装置及存储介质
CN110445380B (zh) * 2019-07-26 2021-07-16 成都芯源系统有限公司 含菊花链架构的多相开关变换器及其序号分配方法
CN110618629B (zh) * 2019-09-10 2021-10-01 中国铁道科学研究院集团有限公司 基于可编辑逻辑器件的spwm同步脉冲生成电路、方法及系统
CN113497455B (zh) * 2020-03-19 2022-07-26 新疆金风科技股份有限公司 对风电场中的风电机组的变流器进行调控的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203589729U (zh) * 2013-12-03 2014-05-07 威凡智能电气高科技有限公司 一种多重化自适应容错控制的有源电力滤波器
CN103915845A (zh) * 2014-04-11 2014-07-09 淮阴工学院 一种基于lcl滤波的多重化有源电力滤波器
US20140225457A1 (en) * 2013-02-14 2014-08-14 Aeg Power Solutions Bv Methods for anti-islanding in distributed-source electrical power generation and distribution systems and electrical systems and apparatus using same
CN104578070A (zh) * 2014-12-15 2015-04-29 国家电网公司 双电压闭环控制谐波电流检测方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638955B (zh) * 2015-03-06 2017-03-01 南京南瑞继保电气有限公司 一种基于多绕组变压器的变流器的载波移相控制器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140225457A1 (en) * 2013-02-14 2014-08-14 Aeg Power Solutions Bv Methods for anti-islanding in distributed-source electrical power generation and distribution systems and electrical systems and apparatus using same
CN203589729U (zh) * 2013-12-03 2014-05-07 威凡智能电气高科技有限公司 一种多重化自适应容错控制的有源电力滤波器
CN103915845A (zh) * 2014-04-11 2014-07-09 淮阴工学院 一种基于lcl滤波的多重化有源电力滤波器
CN104578070A (zh) * 2014-12-15 2015-04-29 国家电网公司 双电压闭环控制谐波电流检测方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376657A4 *

Also Published As

Publication number Publication date
CN106685239B (zh) 2019-11-15
EP3376657B1 (en) 2020-09-02
EP3376657A1 (en) 2018-09-19
CN106685239A (zh) 2017-05-17
EP3376657A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2017080388A1 (zh) 一种变流器多重化的载波移相方法
Mo et al. Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter
CN103390916B (zh) 储能链式功率转换系统阶梯波调制相内soc均衡方法
US11824461B2 (en) MMC submodules scale-up methodology for MV and HV power conversion system applications
CN103337951A (zh) 一种基于载波移相调制的mmc冗余保护策略的实现方法
CN104584357A (zh) 利用分布式能量源控制降低配电系统的损耗
CN103825478A (zh) 基于工频固定开关频率模块化多电平变流器的控制方法
WO2023130799A1 (zh) 光储直柔系统及其控制方法和装置、存储介质
CN107968424A (zh) 柔性直流输电分层控制方法
Zadeh et al. Centralized stabilizer for marine DC microgrid
KR101665436B1 (ko) Cascade H-bridge Multi-level 구조의 배터리 충/방전 시스템의 SOC 균형 제어 방법
CN103199719A (zh) 一种模块化多电平换流器的子模块电容电压优化均衡方法
CN103580291B (zh) 兼顾能量型功率型的电池储能系统及其控制方法
Mo et al. DC impedance modeling and stability analysis of modular multilevel converter for MVDC application
CN104935175B (zh) 隔离型模块化多电平直流变换器的改进两电平调制方法
JP5072097B2 (ja) 3相電圧形インバータシステム
Zhang et al. Energy management strategy for supercapacitor in autonomous DC microgrid using virtual impedance
CN109103948B (zh) 城市轨道交通牵引变电所控制方法及系统
CN112491028A (zh) 一种改进的直流系统下垂控制方法、装置及存储介质
CN107078654A (zh) 电力转换装置
CN103559331A (zh) 电流源型数模综合仿真系统接口和物理仿真子系统接口
Meng et al. An isolated modular multi‐level AC/AC converter with high‐frequency link and pulse flip circuit for fractional frequency transmission system application
Gao et al. An enhanced secondary control approach for voltage restoration in the DC distribution system
Nademi et al. Low frequency operation of modular multilevel matrix converter using optimization-oriented predictive control scheme
CN110994705B (zh) 具有电能质量治理的共直流母线双向变流器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016863565

Country of ref document: EP