WO2017075834A1 - 一种hfc网络故障定位的方法及装置、系统 - Google Patents

一种hfc网络故障定位的方法及装置、系统 Download PDF

Info

Publication number
WO2017075834A1
WO2017075834A1 PCT/CN2015/094060 CN2015094060W WO2017075834A1 WO 2017075834 A1 WO2017075834 A1 WO 2017075834A1 CN 2015094060 W CN2015094060 W CN 2015094060W WO 2017075834 A1 WO2017075834 A1 WO 2017075834A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
point
severity
fault point
relative distance
Prior art date
Application number
PCT/CN2015/094060
Other languages
English (en)
French (fr)
Inventor
张小龙
沈承虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/094060 priority Critical patent/WO2017075834A1/zh
Priority to CN201580081709.1A priority patent/CN107852343B/zh
Priority to EP15907676.9A priority patent/EP3361676B1/en
Publication of WO2017075834A1 publication Critical patent/WO2017075834A1/zh
Priority to US15/971,981 priority patent/US10476737B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for fault location of an HFC network.
  • HFC Hybrid Fiber-Coaxial
  • the HFC network structure generally includes: a network management system, a Cable Modem Terminal System (CMTS), an optical station, a Cable Modem (CM), a user side device, a fiber (fiber), Coaxial cable, amplifier, attenuator, etc.
  • CMTS Cable Modem Terminal System
  • CM Cable Modem
  • CM Cable Modem
  • user side device a fiber
  • fiber fiber
  • Coaxial cable amplifier
  • every device, device, and cable per segment included in the HFC network may have problems, which may cause the uplink signal of the HFC network to be affected by various line distortions such as group delay and micro-reflection.
  • DOCSIS Data Over Cable Service Interface Specifications
  • the signal can be reverse compensated before the CM transmits the signal.
  • the fault group in the network that is, formed by at least one fault point
  • the approximate location of the fault group can be determined.
  • the pre-equalization coefficient of the CM can only calculate the relative distance between the two fault points included in the fault group, and cannot locate the location of each fault point; The location of a fault group containing only a single point of failure.
  • the embodiment of the invention discloses a method, a device and a system for fault location of an HFC network, which can locate a fault group containing only a single fault point and realize positioning of each fault point in the fault group including multiple fault points.
  • a first aspect of the embodiments of the present invention discloses a method for fault location of an HFC network, including:
  • the at least one CM is a CM whose pre-equalization coefficient changes before and after the fault group is generated;
  • the reference fault point is an impedance mismatch point that changes a pre-equalization coefficient of the at least one CM
  • the method further includes:
  • an estimated orientation of the fault group including an approximate direction and a location of the fault group
  • Determining the positions of the respective fault points according to the relative distances of the respective fault points from the reference fault point, the estimated orientation of the fault group, and the position of the reference fault point.
  • the first pre-equalization coefficient set Calculating a relative distance between two fault points in the fault group to obtain a first relative distance set; and calculating a relative distance between two two in the fault point set according to the second pre-equalization coefficient set, Obtain a second relative distance set, including:
  • the first pre-equalization coefficient set to obtain a relative distance between two fault points in the fault group as a first relative distance set; And using the PNMP algorithm to perform analysis processing on the second pre-equalization coefficient set, and obtain a relative distance between two pairs in the fault point set as a second relative distance set.
  • the reflection of the reference fault point The loss is known, and the method further comprises:
  • the calculating, according to the first pre-equalization coefficient set, a fault severity between the two points of the fault point to obtain a first fault severity set; and calculating a fault severity between the two of the fault point sets according to the second set of pre-equalization coefficients to obtain a Two sets of fault severity including:
  • the first pre-equalization coefficient set is analyzed and processed by using a PNMP algorithm to obtain a fault severity between the two fault points as a first fault severity set; and the PNMP algorithm is used to
  • the second set of pre-equalization coefficients is subjected to analysis processing to obtain a fault severity between the two of the fault point sets as a second fault severity set.
  • a fifth possible implementation manner of the first aspect of the embodiments Determining the reflection loss of each fault point by referring to the fault severity between the fault points and the reflection loss of the reference fault point, including:
  • the reflection loss of the fault point is an absolute difference obtained by subtracting the reflection loss of the reference fault point from the fault severity between the fault point and the reference fault point.
  • the second aspect of the embodiments of the present invention discloses an apparatus for fault location of an HFC network, including:
  • An acquiring unit configured to acquire a fault group in a hybrid fiber coaxial cable HFC network, where the fault group includes at least one fault point;
  • a first acquisition unit configured to acquire a pre-equalization coefficient of the at least one cable modem CM to obtain a first pre-equalization coefficient set, where the at least one CM is a CM whose pre-equalization coefficient changes before and after the fault group is generated;
  • An opening unit configured to open a reference fault point whose position corresponding to the fault group is known, wherein the reference fault point is an impedance mismatch point that changes a pre-equalization coefficient of the at least one CM;
  • a second collecting unit configured to acquire a pre-equalization coefficient of the at least one CM to obtain a second pre-equalization coefficient set after the opening unit turns on a reference fault point whose position corresponding to the fault group is known;
  • a calculating unit configured to calculate, according to the first pre-equalization coefficient set obtained by the first collecting unit, a relative distance between two fault points in the fault group to obtain a first relative distance set; and Calculating, according to the second pre-equalization coefficient set obtained by the second collecting unit, a relative distance between two pairs in the fault point set to obtain a second relative distance set, where the fault point set includes the fault group and the Referring to a reference fault point, the second set of relative distances includes the first set of relative distances;
  • a determining unit configured to determine, according to the first relative distance set obtained by the calculating unit and the second relative distance set, a relative distance between each of the fault points and the reference fault point.
  • the acquiring unit is further configured to acquire an estimated orientation of the fault group, where the estimated orientation includes an approximate direction and a location where the fault group is located;
  • the determining unit is further configured to determine a location of each fault point according to a relative distance of each of the fault points to the reference fault point, an estimated orientation of the fault group, and a location of the reference fault point.
  • the computing unit is configured according to the first collecting unit Obtaining the obtained first pre-equalization coefficient set to calculate a relative distance between two of the fault points in the fault group to obtain a first relative distance set; and, according to the second obtaining unit The two sets of pre-equalization coefficients calculate the relative distance between two pairs in the set of fault points to obtain the second set of relative distances:
  • the computing unit maintains the first by using a pre-equalized active network maintenance PNMP algorithm
  • the first pre-equalization coefficient set obtained by the collecting unit performs analysis processing to obtain a relative distance between two fault points in the fault group as a first relative distance set; and, by using the PNMP algorithm
  • the second pre-equalization coefficient set obtained by the second collecting unit performs analysis processing to obtain a relative distance between two two in the fault point set as a second relative distance set.
  • the calculating unit is further configured to calculate, according to the first pre-equalization coefficient set obtained by the first collecting unit, a fault severity between the two fault points to obtain a first fault severity set; Calculating, according to the second pre-equalization coefficient set obtained by the second collecting unit, a fault severity between two of the fault point sets to obtain a second fault severity set, where the second fault
  • the severity set includes the first fault severity set;
  • the determining unit is further configured to determine, according to the first fault severity set obtained by the calculating unit and the second fault severity set, a fault between the respective fault points and the reference fault point Severity;
  • the determining unit is further configured to determine a reflection loss of each fault point according to a fault severity between the respective fault points and the reference fault point and a reflection loss of the reference fault point. Therefore, different degrees of maintenance can be performed for the reflection losses of different fault points.
  • the computing unit is configured according to the first acquiring unit
  • the first pre-equalization coefficient set calculates a fault severity between the two fault points to obtain a first fault severity set; and, according to the second pre-equalization coefficient set obtained by the second acquiring unit,
  • the fault severity between two of the fault point sets to obtain the second fault severity set is specifically as follows:
  • the calculating unit performs an analysis process on the first pre-equalization coefficient set obtained by the first collecting unit by using a PNMP algorithm, and obtains a fault severity between the two fault points as a first fault severity set. And performing the analysis processing on the second pre-equalization coefficient set obtained by the second collecting unit by using the PNMP algorithm to obtain a fault severity between two pairs of the fault point set, as the second fault is serious Degree collection.
  • the determining unit is respectively configured according to the fault points.
  • the manner of determining the reflection loss of each fault point is specifically determined by the severity of the fault between the reference fault point and the reflection loss of the reference fault point:
  • a reflection loss of the fault point is an absolute difference obtained by subtracting a reflection loss of the reference fault point from a fault severity between the fault point and the reference fault point.
  • a third aspect of the embodiments of the present invention discloses an apparatus for fault location of an HFC network, including: a processor, a memory, an input device, and a communication bus;
  • the memory is used to store programs and data
  • the communication bus is configured to establish connection communication between the processor, the memory, and the input device;
  • the processor is configured to invoke the program stored in the memory, and perform the following steps:
  • the reference fault point is an impedance mismatch point that changes a pre-equalization coefficient of the at least one CM
  • the processor is further configured to invoke the program stored in the memory, and perform the following steps:
  • an estimated orientation of the fault group including an approximate direction and a location of the fault group
  • Determining the positions of the respective fault points according to the relative distances of the respective fault points from the reference fault point, the estimated orientation of the fault group, and the position of the reference fault point.
  • the processor is configured according to the first pre-equalization
  • the coefficient set calculates a relative distance between two of the fault points in the fault group to obtain a first relative distance set; and, according to the second pre-equalization coefficient set, calculates a relative between the two points in the fault point set
  • the distance to obtain the second relative distance set is specifically as follows:
  • the first pre-equalization coefficient set to obtain a relative distance between two fault points in the fault group as a first relative distance set; And using the PNMP algorithm to perform analysis processing on the second pre-equalization coefficient set, and obtain a relative distance between two pairs in the fault point set as a second relative distance set.
  • the reflection of the reference fault point The loss is known, and the processor is further configured to invoke the program stored in the memory, and perform the following steps:
  • the processor calculates, according to the first pre-equalization coefficient set. Determining the severity of the fault between the two fault points to obtain a first fault severity set; and calculating a fault severity between the two of the fault point sets according to the second set of pre-equalization coefficients, The way to obtain the second fault severity set is as follows:
  • the first pre-equalization coefficient set is analyzed and processed by using a PNMP algorithm to obtain a fault severity between the two fault points as a first fault severity set; and the PNMP algorithm is used to
  • the second set of pre-equalization coefficients is subjected to analysis processing to obtain a fault severity between the two of the fault point sets as a second fault severity set.
  • the processor is configured according to the fault points respectively.
  • the manner of determining the reflection loss of each fault point is specifically determined by the severity of the fault between the reference fault point and the reflection loss of the reference fault point:
  • the reflection loss of the fault point is an absolute difference obtained by subtracting the reflection loss of the reference fault point from the fault severity between the fault point and the reference fault point.
  • a fourth aspect of the embodiments of the present invention discloses a system for fault location of an HFC network, including: at least one CM and an apparatus for fault location of an HFC network disclosed in the second aspect of the embodiment of the present invention.
  • a fault group in a hybrid fiber-optic coaxial cable HFC network can be obtained, and a pre-equalization coefficient of at least one cable modem CM is acquired to obtain a first pre-equalization coefficient set, and a position corresponding to the fault group is opened.
  • the pre-equalization coefficient of the at least one CM may be collected again to obtain a second pre-equalization coefficient set, and the relative distance between the two fault points in the fault group is calculated according to the first pre-equalization coefficient set.
  • the relative distance between the fault point and the reference fault point, and then the position of each fault point in the fault group can be obtained, thereby not only realizing the position of each fault point in the fault group including multiple fault points, but also Locate a fault group that contains only a single point of failure.
  • FIG. 1 is a schematic structural diagram of an HFC network disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for fault location of an HFC network disclosed in an embodiment of the present invention
  • FIG. 3 is a partial schematic diagram of a fault of an HFC network disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another method for fault location of an HFC network disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for fault location of an HFC network according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another apparatus for fault location of an HFC network according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a system for fault location of an HFC network disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a method, a device and a system for fault location of an HFC network, which can add a reference fault point with a known location in the fault group, and collect the pre-equalization coefficient of the CM twice before adding the reference fault point. Calculate the relative distance between each fault point in the fault group and the reference fault point, and then obtain the position of each fault point in the fault group, so that not only the fault points in the fault group including multiple fault points can be realized. Positioning allows you to locate fault groups that contain only a single point of failure. The details are described below separately.
  • FIG. 1 is a schematic diagram of an HFC network architecture disclosed in an embodiment of the present invention.
  • the HFC network architecture shown in FIG. 1 may include a network management system, a coaxial cable central office access device CMTS, an optical station, an amplifier, an attenuator, a splitter, a splitter, a cable modem CM, a user side device, such as Equipment or devices such as STB (Set Top Box), PC (Personal Computer), etc. (the individual devices are not shown in the figure).
  • the network management system can communicate with the CMTS through a Metropolitan Area Network (MAN).
  • MAN Metropolitan Area Network
  • the network management system is a control center of the entire HFC network, and can be used to monitor and manage the operation of the entire HFC network, and may include, but is not limited to, a computer, a network management server, and the like.
  • the CMTS is used to manage and control the CM device.
  • One or more CM devices may be included in the HFC network, and each CM device may be connected to one or more user devices (such as an STB, a PC, etc.).
  • each device, device, and cable in the HFC network may be faulty, so that the uplink signal of the HFC network is affected by various line distortions.
  • a micro-reflection also called echo
  • the mismatch point ie, the fault point
  • the fault point is caused by the reflection of the input impedance and the output impedance.
  • a pre-equalizer can be placed inside each CM, wherein the pre-equalizer is a linear filter with 24 tap coefficients, and 24 coefficients constitute the pre-form of the CM. Equalization factor. By analyzing the pre-equalization coefficient of the CM, the fault and the approximate position in the HFC network can be found in advance.
  • a known impedance mismatch point can be set in each device and device of the HFC network, which can be turned on or Closed, when turned on, is configured as a reference fault point with a known position, so that the specific location of other fault points can be obtained based on the reference fault point.
  • a reference fault point with a known location can be added to the fault group, and each fault point in the fault group can be calculated by acquiring the pre-equalization coefficient of the CM twice before and after adding the reference fault point.
  • the relative distance between the fault point and the fault point can be used to determine the position of each fault point in the fault group, so that not only the position of each fault point in the fault group containing multiple fault points can be located, but also A fault group containing a single point of failure is positioned.
  • FIG. 2 is a schematic flowchart diagram of a method for fault location of an HFC network according to an embodiment of the present invention.
  • the network management system may be used as an execution entity as an example. When the execution entity is another device or device, the implementation of the embodiment of the present invention is not affected.
  • the method for fault location of the HFC network may include the following steps:
  • the network management system obtains a fault group in the hybrid fiber coaxial cable HFC network.
  • a fault caused by one or more fault points may be referred to as a fault group, and a fault group may include at least one fault point. There may be one fault group in the HFC network, or multiple faults at the same time. group.
  • the network management system can obtain the historical fault group in the HFC network as the fault group of the current operation; under the condition that the fault condition is completely unknown, the network management system can also collect the CM through the HFC network.
  • the pre-equalization coefficient is used to analyze the pre-equalization coefficient to find the fault group in the HFC network.
  • the network management system can also analyze the CM performance parameters under each line to obtain the fault group.
  • the performance parameters can include MER (Modulation Error). Rate, modulation error rate), level value, number of packet loss, etc., such as MER variability of all CMs under a certain route, or frequent MER or level hopping, or simultaneous error or packet loss , indicating that there is a fault group on the line.
  • MER Modulation Error
  • Rate modulation error rate
  • level value such as MER variability of all CMs under a certain route, or frequent MER or level hopping, or simultaneous error or packet loss , indicating that there is a fault group on the line.
  • FIG. 3 is a partial schematic diagram of a fault of an HFC network disclosed in an embodiment of the present invention. Only some of the devices, devices, and circuits in the HFC network are shown in FIG. 3, and the structure thereof does not constitute a limitation on the embodiment of the present invention. It may include more or less components than those illustrated, or may combine certain components. , or different parts layout.
  • the pre-equalization coefficients can be collected for all the CMs shown in Figure 3, and all CM pre-equalization coefficients are analyzed.
  • CM1 ⁇ CM4 When the pre-equalization coefficients of CM1 ⁇ CM4 have large changes (the reason for the change is that the pre-equalization coefficients are caused by the fault) The line distortion is compensated), and when the pre-equalization coefficient of CM5 does not change significantly, it can be explained that CM1 ⁇ CM4 are affected by the fault group (ie, CM1 ⁇ CM4 are subjected to signal distortion due to the influence of fault group 1 when performing uplink transmission). The CM5 is not affected by the fault group, and it can be preliminarily determined that there is a fault group 1 between the branches T1 and T2.
  • the network management system acquires a pre-equalization coefficient of the at least one cable modem CM to obtain a first set of pre-equalization coefficients.
  • the network management system may collect a pre-equalization coefficient of at least one CM associated with the fault group for each fault group, and The pre-equalization coefficients of the at least one CM are combined into a first set of pre-equalization coefficients.
  • the at least one CM may refer to a CM whose pre-equalization coefficient changes before and after the fault group is generated, that is, at least one CM affected by the fault group, for example, before the fault group occurs, the at least one CM
  • the pre-equalization coefficient is relatively stable. When the fault group occurs, the pre-equalization coefficient of the at least one CM fluctuates greatly.
  • the HFC local network fault shown in FIG. 3 is taken as an example for analysis. It can be seen that CM1 to CM4 are affected by the fault group 1, and CM2 is affected by the fault group 2.
  • the pre-equalization coefficients of CM3 and CM4 can be acquired to obtain the first pre-equalization coefficient set ⁇ CM3, CM4 ⁇ for the fault group 1, and for the fault group 2, the pre-equalization of the CM2 can be collected. Coefficients to obtain a first set of pre-equalization coefficients ⁇ CM2 ⁇ for fault group 2.
  • the network management system starts a reference fault point with a known location corresponding to the fault group.
  • the reference fault point may refer to an impedance mismatch point that changes the pre-equalization coefficient of the at least one CM collected for the fault group, and the impedance mismatch point may refer to a point where the input impedance does not match the output impedance.
  • a fault occurs due to impedance mismatch, which causes signal reflection.
  • An impedance mismatch point can be set in each device and device in the HFC network. The impedance mismatch point can be automatically turned on or off remotely, or can be turned on or off manually. Since the position of each impedance mismatch point is known, when an impedance mismatch point is turned on, the impedance mismatch point is constructed as a reference fault point with a known position.
  • the impedance mismatch point can be selectively turned on.
  • a fault group which can be in the devices at both ends of the line where the fault group is located. Select one to open.
  • the fault group's position range is too large to determine which impedance mismatch point to open, you can use the enumeration method to try to open the fault one by one. Impedance mismatch points within the area.
  • the impedance at T2 is turned on.
  • the mismatch point preferably, the impedance mismatch point that is selected to be turned on is on the same line as the fault group.
  • the impedance mismatch point across the device is generally not turned on, for example, the impedance in the distributor S2 is generally not turned on. Does not match the point.
  • the impedance mismatch point at CM2 is turned on in Figure 3.
  • the network management system collects the pre-equalization coefficients of the at least one CM again to obtain a second pre-equalization coefficient set.
  • the pre-equalization coefficient of the at least one CM collected for the fault group changes, so the foregoing may be collected again.
  • a pre-equalization coefficient of at least one CM to obtain a second set of pre-equalization coefficients.
  • the pre-equalization coefficients of CM3 and CM4 can be collected again, Obtaining a second pre-equalization coefficient set ⁇ CM3', CM4' ⁇ for the fault group 1; for the fault group 2, after constructing the reference fault point ⁇ 2 with the impedance mismatch point at the CM2 turned on, the pre-equalization of the CM2 can be acquired again Coefficient to obtain a second set of pre-equalization coefficients ⁇ CM2' ⁇ for fault group 2.
  • the network management system calculates, according to the first pre-equalization coefficient set, a relative distance between two fault points in the fault group to obtain a first relative distance set, and calculates a fault point set according to the second pre-equalization coefficient set. The relative distance between the two to obtain a second set of relative distances.
  • the network management system may calculate a relative distance between two fault points included in the fault group according to the obtained first pre-equalization coefficient set of the fault group, and calculate The result is taken as a first relative distance set; and the relative distance between the two fault points in the fault point set is calculated according to the acquired second pre-equalization coefficient set of the fault group, and the calculated result is used as the second relative Distance collection.
  • the fault point set includes each fault point included in the fault group and a reference fault point added for the fault group.
  • the second set of relative distances includes a first set of relative distances.
  • step 205 calculates a fault group according to the first pre-equalization coefficient set. a relative distance between two fault points in each of the two fault points to obtain a first relative distance set; and calculating a relative distance between the two of the fault point sets according to the second set of pre-equalization coefficients to obtain a second relative distance set
  • the specific implementation may include the following steps:
  • the network management system analyzes and processes the first pre-equalization coefficient set by using the pre-equalized active network maintenance PNMP algorithm, and obtains a relative distance between two fault points in the fault group as the first relative distance set; And, the second pre-equalization coefficient set is analyzed and processed by using the PNMP algorithm, and the relative distance between the two points in the fault point set is obtained as the second relative distance set.
  • PNMP Proactive Network Maintenance Using Pre-equalization
  • the distances of the fault points in the fault group 1 can be calculated according to the first pre-equalization coefficient set ⁇ CM3, CM4 ⁇ , if only one segment is obtained.
  • the distance is L1
  • fault group 1 contains two fault points, such as fault point R1 and fault point R2, and the relative distance between the two fault points is L1, that is, for fault group 1
  • the first relative distance set is ⁇ L1 ⁇
  • the relative distance between the two fault points in the fault point set can be calculated according to the second pre-equalization coefficient set ⁇ CM3', CM4' ⁇ as the relative distances L1, L2, and L1, respectively.
  • the second relative distance set for the fault group 1 is ⁇ L1, L2, L1+L2 ⁇ .
  • the distance of each fault point in fault group 1 can be calculated according to the first pre-equalization coefficient set ⁇ CM2 ⁇ . If the calculation result is 0, it can be determined that fault group 2 contains only a single fault point, as shown in the figure.
  • the fault point R3 is shown, then the first relative distance set for the fault group 2 is ⁇ 0 ⁇ ; the relative distance between the two fault points in the fault point set can be calculated according to the second pre-equalization coefficient set ⁇ CM2' ⁇ , That is, the relative distance L3 between the fault point R3 and the reference fault point can be calculated, and then the second relative distance set for the fault group 2 is ⁇ 0, L3 ⁇ .
  • a plurality of devices are spanned between the fault point R2 and the fault point R3, so that the micro-reflection generated between the fault point R2 and the fault point R3 is small and negligible, so the fault point R3 and the fault point R2 are not present. Within the same fault group.
  • the network management system determines, according to the first relative distance set and the second relative distance set, a relative distance between each fault point in the fault group and the reference fault point.
  • the network management system may determine the relative distance of each fault point included in the fault group to the reference fault point by analyzing the relative distance calculated by adding the pre-equalization coefficient collected before and after the reference fault point. Since the second relative distance set includes the first relative distance set, the first relative distance set may be filtered out from the second relative distance set, and the remaining ones are respectively the fault points in the fault group and the reference fault points respectively. distance.
  • the first relative distance set is ⁇ L1 ⁇
  • the second relative distance set is ⁇ L1, L2, L1+L2 ⁇
  • the second relative The first relative distance set is filtered out in the distance set, and the remaining two distances are the relative distance between the fault point R1 and the reference fault point ⁇ 1 , and the relative distance between the fault point R2 and the reference fault point ⁇ 1 . .
  • each fault point in the fault group may be further determined according to the relative distance between each fault point in the fault group and the reference fault point and the position of the reference fault point. position.
  • the network management system may remove the added reference fault point, that is, turn off the reference fault point, to reduce the impact on the service.
  • a fault group in the HFC network may be acquired, and a pre-equalization coefficient of at least one CM is acquired to obtain a first pre-equalization coefficient set, and a reference fault point with a known location corresponding to the fault group is turned on.
  • the pre-equalization coefficients of the at least one CM may be collected again to obtain a second pre-equalization coefficient set, and the relative distance between the two fault points in the fault group is calculated according to the first pre-equalization coefficient set to obtain the first a relative distance set; and calculating, according to the second set of pre-equalization coefficients, a relative distance between the two fault points in the fault point set including each fault point and the reference fault point, to obtain a second relative distance set, and according to the first relative The distance set and the second relative distance set determine a relative distance between each fault point and the reference fault point.
  • a reference fault point with a known location can be added to the fault group, and each fault point in the fault group is calculated by acquiring the pre-equalization coefficient of the CM twice before and after adding the reference fault point. Referring to the relative distance between the fault points, the position of each fault point in the fault group can be obtained, thereby not only realizing the position of each fault point in the fault group including multiple fault points, but also including only the single The fault group of the fault point is located.
  • FIG. 4 is a schematic flowchart diagram of another method for fault location of an HFC network according to an embodiment of the present invention.
  • the network management system may be used as an execution entity as an example.
  • the execution entity is another device or device, the implementation of the embodiment of the present invention is not affected.
  • the method for fault location of the HFC network may include the following steps:
  • the network management system acquires a fault group in the hybrid fiber coaxial cable HFC network.
  • one or more fault groups may be included in the HFC network, and at least one fault point may be included in one fault group.
  • the network management system acquires a pre-equalization coefficient of the at least one cable modem CM to obtain a first pre-equalization coefficient set.
  • At least one CM may refer to a CM whose pre-equalization coefficient changes before and after the fault group is generated.
  • the network management system starts a reference fault point where the location and the reflection loss corresponding to the fault group are known.
  • the reference fault point is an impedance mismatch point that changes a pre-equalization coefficient of the at least one CM collected for the fault group, and the impedance mismatch point may refer to a fault that the input impedance does not match the output impedance. point.
  • the reference fault point is known in addition to its known position, and its reflection loss is also known.
  • the network management system collects the pre-equalization coefficients of the at least one CM again to obtain a second pre-equalization coefficient set.
  • the network management system calculates, according to the first pre-equalization coefficient set, a relative distance between two fault points in the fault group to obtain a first relative distance set, and calculates a fault point set according to the second pre-equalization coefficient set. The relative distance between the two to obtain a second set of relative distances.
  • the fault point set may include each fault point in the fault point and the added reference fault point.
  • the network management system determines, according to the first relative distance set and the second relative distance set, a relative distance between each fault point in the fault group and the reference fault point.
  • the network management system obtains an estimated orientation of the fault group.
  • the estimated orientation of the fault group may refer to the approximate direction and position of the fault group.
  • the estimated position of the fault group may be referenced by the reference fault point to estimate which direction of the fault fault group is located substantially at the reference fault point, such as the fault group being located to the left or the right of the reference fault point.
  • step 407 may be performed after the step 406, or may be performed before the step 406, and may be performed in synchronization with the step 406, which is not limited by the embodiment of the present invention.
  • the network management system determines an exact location of each fault point in the fault group according to a relative distance between each fault point in the fault group and the reference fault point, an estimated orientation of the fault group, and a location of the reference fault point.
  • the network management system may respectively determine the relative distance from each fault point in the acquired fault group to the reference fault point, the estimated orientation of the fault group, and the reference fault point. The location to ultimately determine the location of each fault point in the fault group. Obtaining the location of each fault point can facilitate maintenance personnel to repair each fault point, and reduce the manpower and material resources for finding the fault point.
  • the network management system calculates, according to the first pre-equalization coefficient set, a fault severity between two fault points in the fault group to obtain a first fault severity set; and calculates a fault point according to the second pre-equalization coefficient set. The severity of the fault between the two in the set to obtain a second set of fault severity.
  • the fault severity may be referred to as a Micro-reflection Level (MRL), and may be used to reflect the degree of micro-reflection between two fault points.
  • the network management system may calculate the relative distance between two fault points in the fault group according to the first pre-equalization coefficient set, and calculate each fault point in the fault group according to the first pre-equalization coefficient set.
  • the severity of the fault in dB; and, based on the second set of pre-equalization coefficients, the relative distance between the two fault points in the fault point set can be calculated, and the second pre-equalization coefficient set can also be calculated.
  • the severity of the fault between two or two fault points in the set of fault points can be referred to as a Micro-reflection Level (MRL), and may be used to reflect the degree of micro-reflection between two fault points.
  • the network management system may calculate the relative distance between two fault points in the fault group according to the first pre-equalization coefficient set, and calculate each fault point in the fault group according to the first pre
  • the severity of the fault between two fault points is related to the relative distance between the two fault points.
  • step 409 calculates, according to the first pre-equalization coefficient set, a fault severity between two fault points in the fault group to obtain a first fault severity set; and, according to the second pre- The set of equalization coefficients calculates the severity of the fault between the two points in the set of fault points to obtain the first
  • the specific implementation of the second fault severity set may include the following steps:
  • the network management system analyzes and processes the first pre-equalization coefficient set by using the PNMP algorithm, and obtains the fault severity between the two fault points in the fault group as the first fault severity set; and, by using the PNMP algorithm
  • the second set of pre-equalization coefficients is subjected to analysis processing to obtain a fault severity between two of the fault point sets as a second fault severity set.
  • the relative distance between the fault points R1 and R2 can be calculated as L1 according to the first pre-equalization coefficient set, and the fault severity is MRL1;
  • the relative distance between the two points of the fault point R1, R2 and the reference fault point ⁇ 1 is L1, L2, L1+L2, and the fault severity is MRL1, respectively.
  • the relative distance between the fault point R3 and the reference fault point ⁇ 2 can be calculated as L3 according to the second pre-equalization coefficient set, and the fault severity is MRL3.
  • the network management system determines, according to the first fault severity set and the second fault severity set, a fault severity between each fault point in the fault group and the reference fault point.
  • the second fault severity set includes a first fault severity set
  • the network management system may filter the first fault severity set from the second fault severity set, and the remaining ones in the fault group The severity of the fault between each fault point and the reference fault point.
  • the HFC local network fault shown in FIG. 3 is taken as an example.
  • the first fault severity set is ⁇ MRL1 ⁇
  • the second fault severity set is ⁇ MRL1, MRL2, MRL12 ⁇
  • the second fault is generated.
  • the first fault severity set is filtered out in the severity set, and the remaining fault severity is the fault severity between the fault point R1 and the reference fault point ⁇ 1 , and between the fault point R2 and the reference fault point ⁇ 1 .
  • the severity of the failure is taken as an example.
  • the first fault severity set is ⁇ MRL1 ⁇
  • the second fault severity set is ⁇ MRL1, MRL2, MRL12 ⁇
  • the first fault severity set is filtered out in the severity set
  • the remaining fault severity is the fault severity between the fault point R1 and the reference fault point ⁇ 1 , and between the fault point R2 and the reference fault point ⁇ 1 .
  • the severity of the failure is taken as an example.
  • the network management system determines the reflection loss of each fault point in the fault group according to the fault severity between each fault point in the fault group and the reference fault point and the reflection loss of the reference fault point.
  • the fault can be determined according to the fault severity between each fault point in the fault group and the reference fault point and the reflection loss of the reference fault point. Reflection loss at each fault point in the group.
  • step 411 determines each fault group according to the fault severity between each fault point in the fault group and the reference fault point and the reflection loss of the reference fault point.
  • the specific implementation of the reflection loss of the fault point may include the following steps:
  • the network management system calculates, for each fault point of each fault point of the fault group, the reflection loss of the fault point according to the fault severity between the fault point and the reference fault point and the reflection loss of the reference fault point, wherein The reflection loss at the fault point is the absolute difference obtained by subtracting the reflection loss of the reference fault point from the fault severity between the fault point and the reference fault point.
  • the fault severity between fault point R1 and reference fault point ⁇ 1 is MRL12, and between fault point R2 and reference fault point ⁇ 1 .
  • the fault severity is MRL2, and the reflection loss of the reference fault point ⁇ 1 is known as G1.
  • the reflection loss of the fault point R1 can be obtained as MRL12-G1 (dB), the fault point.
  • the reflection loss of R2 is MRL2-G1 (dB).
  • steps 405-408 may be performed before steps 409-411, and steps 405-408 may be performed after steps 409-411.
  • steps 405-408 and the steps 409-411 can also be performed synchronously or in parallel, which is not limited in the embodiment of the present invention.
  • a reference fault point whose position and reflection loss are known is added to the fault group, and the pre-equalization coefficient of the CM is collected twice before and after the reference fault point is added.
  • the relative distance between each fault point in the fault group and the reference fault point, and then the position of each fault point in the fault group can be obtained, thereby not only realizing the position of each fault point in the fault group including multiple fault points For positioning, you can also locate a fault group that contains only a single point of failure.
  • the fault severity between each fault point in the fault group and the reference fault point can be calculated according to the pre-equalization coefficient of the CM collected twice before and after the reference fault point is added, and then the fault points in the fault group can be obtained.
  • the reflection loss allows for different levels of maintenance for the reflection losses at different points of failure.
  • FIG. 5 is a schematic structural diagram of an apparatus for fault location of an HFC network according to an embodiment of the present invention, which may be used to perform a method for fault location of an HFC network disclosed in the embodiment of the present invention.
  • the device for fault location of the HFC network shown in FIG. 5 may be a network management system in physical form.
  • the device for fault location of the HFC network may include:
  • the obtaining unit 501 is configured to acquire a fault group in the hybrid fiber coaxial cable HFC network.
  • one fault group in the HFC network there may be one fault group in the HFC network, or multiple fault groups at the same time, and one fault group may include at least one fault point.
  • the first collecting unit 502 is configured to collect pre-equalization coefficients of the at least one cable modem CM to obtain a first pre-equalization coefficient set.
  • At least one CM may refer to a CM whose pre-equalization coefficient changes before and after the fault group is generated, that is, at least one CM affected by the fault group.
  • the opening unit 503 is configured to open a reference fault point whose position corresponding to the fault group is known.
  • the reference fault point may refer to an impedance mismatch point that can change the pre-equalization coefficient of the at least one CM collected for the fault group after the opening, and the impedance mismatch point is that the input impedance does not match the output impedance.
  • the impedance mismatch point is that the input impedance does not match the output impedance.
  • the second collecting unit 504 is configured to collect the pre-equalization coefficients of the at least one CM after the opening unit 503 turns on the reference fault point whose position corresponding to the fault group is known to obtain the second pre-equalization coefficient set.
  • the calculating unit 505 is configured to calculate, according to the first pre-equalization coefficient set obtained by the first collecting unit 502, a relative distance between two fault points in the fault group to obtain a first relative distance set; and, according to the second collecting
  • the second set of pre-equalization coefficients obtained by unit 504 calculates a relative distance between two of the sets of fault points to obtain a second set of relative distances.
  • the fault point set includes each fault point included in the fault group and a reference fault point added for the fault group.
  • the second relative distance set includes a first relative distance set.
  • the calculating unit 505 calculates, according to the first pre-equalization coefficient set obtained by the first collecting unit 502, a relative distance between two fault points in the fault group to obtain a first relative distance set; And calculating, according to the second pre-equalization coefficient set obtained by the second collecting unit 504, a relative distance between two pairs in the fault point set to obtain a second relative distance set.
  • the specific implementation manner may be:
  • the computing unit 505 maintains the PNMP algorithm against the first acquisition list by using the pre-equalized active network.
  • the first pre-equalization coefficient set obtained by the element 502 is subjected to analysis processing, and the relative distance between the two fault points in the fault group is obtained as the first relative distance set; and the second acquisition unit 504 is obtained by using the PNMP algorithm.
  • the second set of pre-equalization coefficients is subjected to analysis processing to obtain a relative distance between two of the fault point sets as a second relative distance set.
  • the determining unit 506 is configured to determine, according to the first relative distance set obtained by the calculating unit 505 and the second relative distance set, a relative distance between each fault point in the fault group and the reference fault point.
  • the first relative distance set may be filtered out from the second relative distance set, and the remaining ones are respectively the fault points in the fault group. The relative distance from the reference point of failure.
  • the acquiring unit 501 is further configured to acquire an estimated orientation of the fault group, where the estimated orientation may include a general direction and a location where the fault group is located.
  • the determining unit 506 is further configured to determine each of the fault groups according to a relative distance between each fault point in the fault group and the reference fault point, an estimated orientation of the fault group acquired by the acquiring unit 501, and a position of the reference fault point. The location of the fault point.
  • the reflection loss of the reference fault point is known, in the HFC network fault location device shown in FIG. 5:
  • the calculating unit 505 is further configured to calculate, according to the first pre-equalization coefficient set obtained by the first collecting unit 502, a fault severity between two fault points in the fault group to obtain a first fault severity set; and, according to The second pre-equalization coefficient set obtained by the second collecting unit 504 calculates a fault severity between two of the fault point sets to obtain a second fault severity set.
  • the calculating unit 505 calculates, according to the first pre-equalization coefficient set obtained by the first collecting unit 502, the fault severity between the two fault points in the fault group to obtain the first fault severity. And determining, according to the second pre-equalization coefficient set obtained by the second collecting unit 504, the fault severity between the two of the fault point sets to obtain the second fault severity set may be:
  • the calculating unit 505 analyzes the first pre-equalization coefficient set obtained by the first collecting unit 502 by using the PNMP algorithm, and obtains the fault severity between the two fault points in the fault group as the first fault severity set;
  • the second pre-equalization coefficient set obtained by the second collecting unit 504 is analyzed and processed by using the PNMP algorithm, and the fault severity between the two points in the fault point set is obtained.
  • a set of second failure severity is obtained.
  • the determining unit 506 is further configured to determine, according to the first fault severity set obtained by the calculating unit 505 and the second fault severity set, the fault severity between each fault point in the fault group and the reference fault point.
  • the determining unit 506 is further configured to determine, according to the fault severity between each fault point in the fault group and the reference fault point, and the reflection loss of the reference fault point, the reflection loss of each fault point in the fault group.
  • the determining unit 506 determines the reflection loss of each fault point in the fault group according to the fault severity between each fault point in the fault group and the reference fault point and the reflection loss of the reference fault point.
  • the specific implementation can be:
  • the determining unit 506 calculates, for each of the fault points in the fault group, the reflection loss of the fault point according to the fault severity between the fault point and the reference fault point and the reflection loss of the reference fault point, where The reflection loss at the fault point is the absolute difference obtained by subtracting the reflection loss of the reference fault point from the fault severity between the fault point and the reference fault point.
  • the apparatus for performing fault location of the HFC network shown in FIG. 5 is configured to add a reference fault point whose position and reflection loss are known to the fault group, and the CM pre-collection is acquired twice before adding the reference fault point.
  • the equalization coefficient is used to calculate the relative distance between each fault point in the fault group and the reference fault point, and then the position of each fault point in the fault group can be obtained, thereby not only achieving the fault group in which multiple fault points are included.
  • the location of the fault point is located, and the fault group containing only a single fault point can also be located.
  • the fault severity between each fault point in the fault group and the reference fault point can be calculated according to the pre-equalization coefficient of the CM collected twice before and after the reference fault point is added, and then the fault points in the fault group can be obtained.
  • the reflection loss allows for different levels of maintenance for the reflection losses at different points of failure.
  • FIG. 6 is a schematic structural diagram of another apparatus for fault location of an HFC network according to an embodiment of the present invention, which may be used to perform a method for fault location of an HFC network disclosed in the embodiment of the present invention.
  • the device for fault location of the HFC network shown in FIG. 6 may be a network management system in physical form.
  • the H600 network fault location device 600 The method may include: at least one processor 601, such as a CPU (Central Processing Unit), at least one input device 602, a memory 603, and the like.
  • these components are communicatively connected by one or more buses 604.
  • the structure of the apparatus for fault location of the HFC network shown in FIG. 6 does not constitute a limitation of the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may also include a ratio. More or fewer components are illustrated, or some components are combined, or different component arrangements. among them:
  • the input device 602 can include a wired interface, a wireless interface, and the like, and can be used to collect pre-equalization coefficients of the CM in the HFC network.
  • the memory 603 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
  • the memory 603 can also optionally be at least one storage device located remotely from the aforementioned processor 601.
  • the operating system, the application program, the data, and the like may be included in the memory 603 as a computer storage medium, which is not limited by the embodiment of the present invention.
  • the processor 601 can be used to call an application stored in the memory 603 to perform the following operations:
  • the control input device 602 collects a pre-equalization coefficient of the at least one cable modem CM to obtain a first pre-equalization coefficient set, and the at least one CM is a CM whose pre-equalization coefficient changes before and after the fault group is generated;
  • the reference fault point is an impedance mismatch point that changes a pre-equalization coefficient of the at least one CM
  • the control input device 602 again acquires the pre-equalization coefficients of the at least one CM to obtain a second pre-equalization coefficient set;
  • the fault point set includes each fault point and a reference fault point in the fault group;
  • the processor 601 is further configured to invoke an application stored in the memory 603, and perform the following steps:
  • the position of each fault point in the fault group is determined according to the relative distance between each fault point in the fault group and the reference fault point, the estimated orientation of the fault group, and the position of the reference fault point.
  • the processor 601 calculates, according to the first pre-equalization coefficient set, a relative distance between two fault points in the fault group to obtain a first relative distance set; and, according to the second pre-equalization The coefficient set calculates the relative distance between two pairs of fault point sets to obtain a second relative distance set.
  • the specific implementation manner may be:
  • the first pre-equalization coefficient set is analyzed and processed by using the pre-equalized active network maintenance PNMP algorithm, and the relative distance between the two fault points in the fault group is obtained as the first relative distance set; and the PNMP algorithm is utilized.
  • the second pre-equalization coefficient set is analyzed and processed, and the relative distance between two pairs in the fault point set is obtained as the second relative distance set.
  • the reflection loss of the reference fault point is known, and the processor 601 is further configured to call an application stored in the memory 603, and perform the following steps:
  • the reflection loss of each fault point in the fault group is determined according to the fault severity between each fault point in the fault group and the reference fault point and the reflection loss of the reference fault point.
  • the processor 601 calculates, according to the first pre-equalization coefficient set, a fault severity between two fault points in the fault group to obtain a first fault severity set; and, according to the second The pre-equalization coefficient set calculates the fault severity between two of the fault point sets to obtain the second fault severity set.
  • the specific implementation manner may be:
  • the first pre-equalization coefficient set is analyzed and processed by using the PNMP algorithm, and the fault severity between the two fault points in the fault group is obtained as the first fault severity set; and the second pre-equalization coefficient is determined by the PNMP algorithm.
  • the set is analyzed and processed to obtain the fault between two of the fault point sets. Severity, as a second set of severity of failure.
  • the processor 601 determines the reflection loss of each fault point in the fault group according to the fault severity between each fault point in the fault group and the reference fault point and the reflection loss of the reference fault point.
  • the specific implementation can be:
  • the reflection loss of the fault point is calculated according to the fault severity between the fault point and the reference fault point and the reflection loss of the reference fault point, wherein the fault point
  • the reflection loss is the absolute difference obtained by subtracting the reflection loss of the reference fault point from the fault severity between the fault point and the reference fault point.
  • the device for fault location of the HFC network introduced in the embodiment of the present invention may implement some or all of the processes in the method embodiment of the HFC network fault location described in conjunction with FIG. 2 or FIG.
  • the apparatus for performing fault location of the HFC network shown in FIG. 6 is configured to add a reference fault point whose position and reflection loss are known to the fault group, and collect the CM pre-buy twice before adding the reference fault point.
  • the equalization coefficient is used to calculate the relative distance between each fault point in the fault group and the reference fault point, and then the position of each fault point in the fault group can be obtained, thereby not only achieving the fault group in which multiple fault points are included.
  • the location of the fault point is located, and the fault group containing only a single fault point can also be located.
  • the fault severity between each fault point in the fault group and the reference fault point can be calculated according to the pre-equalization coefficient of the CM collected twice before and after the reference fault point is added, and then the fault points in the fault group can be obtained.
  • the reflection loss allows for different levels of maintenance for the reflection losses at different points of failure.
  • FIG. 7 is a schematic structural diagram of a system for fault location of an HFC network according to an embodiment of the present invention.
  • the HFC network fault location system may include: at least one CM and the HFC network fault location device shown in FIG. 5, wherein the HFC network fault location device and CM1, CM2, ..., CMn A communication connection is established between (n is a positive integer).
  • CM1, CM2, ..., CMn A communication connection is established between (n is a positive integer).
  • the specific function of the HFC network fault locating device is described in detail in the foregoing embodiment.
  • the device for fault location of the HFC network and the at least one CM in the embodiment of the present invention may refer to the content in the foregoing embodiment, and details are not described herein again. .
  • the units in the apparatus of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Abstract

本发明实施例公开了一种HFC网络故障定位的方法及装置,其中,该方法包括:获取HFC网络中的故障组;采集至少一个CM的预均衡系数;开启与故障组对应的位置已知的参考故障点;再次采集上述至少一个CM的预均衡系数;根据前后两次采集的预均衡系数,确定故障组中的各个故障点分别与参考故障点的相对距离。本发明不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。

Description

一种HFC网络故障定位的方法及装置、系统 技术领域
本发明涉及通信技术领域,尤其涉及一种HFC网络故障定位的方法及装置、系统。
背景技术
HFC(Hybrid Fiber-Coaxial,混合光纤同轴电缆)网络技术是一种经济实用的综合数字服务宽带网接入技术。HFC网络结构一般包括:网络管理系统、同轴电缆局端接入设备(Cable Modem Terminal System,简称CMTS)、光站、电缆调制解调器(Cable Modem,简称CM)、用户侧设备、光缆(fiber)、同轴电缆(cable)、放大器、衰减器等等。然而,HFC网络中包括的每个设备、器件、每段电缆都有可能出现问题,从而会使HFC网络的上行信号受到各种线路失真的影响,如群时延、微反射等。为了对HFC的线路失真进行补偿,第三代有线电缆数据服务接口规范(Data Over Cable Service Interface Specifications,DOCSIS)3.0定义了预均衡器(Pre-equalization),每个CM内部都有一个预均衡器,可以使信号在CM发射信号前就得到反向补偿。可以通过对CM的预均衡系数进行分析,预先发现网络中的故障组(即由至少一个故障点形成的),并确定出故障组的大致位置。然而,针对上述故障定位的方法,利用CM的预均衡系数只能计算出故障组中包含的两两故障点间的相对距离,而无法定位出各故障点所在的位置;此外,也无法实现对仅包含单故障点的故障组的定位。
发明内容
本发明实施例公开了一种HFC网络故障定位的方法及装置、系统,能够定位仅包含单故障点的故障组以及实现对包含多个故障点的故障组中各故障点的位置进行定位。
本发明实施例第一方面公开了一种HFC网络故障定位的方法,包括:
获取混合光纤同轴电缆HFC网络中的故障组,所述故障组包含至少一个故障点;
采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数 集合,所述至少一个CM为预均衡系数在所述故障组产生前后发生变化的CM;
开启与所述故障组对应的位置已知的参考故障点,其中,所述参考故障点为使所述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
再次采集所述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,所述故障点集合包括所述故障组和所述参考故障点,所述第二相对距离集合包含所述第一相对距离集合;
根据所述第一相对距离集合以及所述第二相对距离集合,确定所述各个故障点分别与所述参考故障点的相对距离。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实施方式中,所述方法还包括:
获取所述故障组的估计方位,所述估计方位包括所述故障组所处的大致方向和位置;
根据所述各个故障点分别与所述参考故障点的相对距离、所述故障组的估计方位以及所述参考故障点的位置,确定所述各个故障点的位置。
结合本发明实施例第一方面或第一方面的第一种可能的实施方式,在本发明实施例第一方面的第二种可能的实施方式中,所述根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,包括:
利用基于预均衡的主动式网络维护PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
结合本发明实施例第一方面或第一方面的第一种或第二种可能的实施方式,在本发明实施例第一方面的第三种可能的实施方式中,所述参考故障点的反射损耗为已知的,所述方法还包括:
根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合,其中,所述第二故障严重度集合包含所述第一故障严重度集合;
根据所述第一故障严重度集合以及所述第二故障严重度集合,确定所述各个故障点分别与所述参考故障点之间的故障严重度;
根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗。因此能够针对不同故障点的反射损耗进行不同程度的维修。
结合本发明实施例第一方面的第三种可能的实施方式,在本发明实施例第一方面的第四种可能的实施方式中,所述根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合,包括:
利用PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得所述故障点集合中两两之间的故障严重度,作为第二故障严重度集合。
结合本发明实施例第一方面的第三种或第四种可能的实施方式,在本发明实施例第一方面的第五种可能的实施方式中,所述根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗,包括:
针对所述各个故障点中的每一个故障点,根据所述故障点与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,计算所述故障点的反射损耗,其中,所述故障点的反射损耗为所述故障点与所述参考故障点之间的故障严重度减去所述参考故障点的反射损耗而获得的绝对差值。
本发明实施例第二方面公开了一种HFC网络故障定位的装置,包括:
获取单元,用于获取混合光纤同轴电缆HFC网络中的故障组,所述故障组包含至少一个故障点;
第一采集单元,用于采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,所述至少一个CM为预均衡系数在所述故障组产生前后发生变化的CM;
开启单元,用于开启与所述故障组对应的位置已知的参考故障点,其中,所述参考故障点为使所述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
第二采集单元,用于在所述开启单元开启与所述故障组对应的位置已知的参考故障点之后,采集所述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
计算单元,用于根据所述第一采集单元获得的所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,所述故障点集合包括所述故障组和所述参考故障点,所述第二相对距离集合包含所述第一相对距离集合;
确定单元,用于根据所述计算单元获得的所述第一相对距离集合以及所述第二相对距离集合,确定所述各个故障点分别与所述参考故障点的相对距离。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实施方式中,
所述获取单元,还用于获取所述故障组的估计方位,所述估计方位包括所述故障组所处的大致方向和位置;
所述确定单元,还用于根据所述各个故障点分别与所述参考故障点的相对距离、所述故障组的估计方位以及所述参考故障点的位置,确定所述各个故障点的位置。
结合本发明实施例第二方面或第二方面的第一种可能的实施方式,在本发明实施例第二方面的第二种可能的实施方式中,所述计算单元根据所述第一采集单元获得的所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的方式具体为:
所述计算单元利用基于预均衡的主动式网络维护PNMP算法对所述第一 采集单元获得的所述第一预均衡系数集合进行分析处理,获得所述故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用所述PNMP算法对所述第二采集单元获得的所述第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
结合本发明实施例第二方面或第二方面的第一种或第二种可能的实施方式,在本发明实施例第二方面的第三种可能的实施方式中,所述参考故障点的反射损耗为已知的,
所述计算单元,还用于根据所述第一采集单元获得的所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合,其中,所述第二故障严重度集合包含所述第一故障严重度集合;
所述确定单元,还用于根据所述计算单元获得的所述第一故障严重度集合以及所述第二故障严重度集合,确定所述各个故障点分别与所述参考故障点之间的故障严重度;
所述确定单元,还用于根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗。因此能够针对不同故障点的反射损耗进行不同程度的维修。
结合本发明实施例第二方面的第三种可能的实施方式,在本发明实施例第二方面的第四种可能的实施方式中,所述计算单元根据所述第一采集单元获得的所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合的方式具体为:
所述计算单元利用PNMP算法对所述第一采集单元获得的所述第一预均衡系数集合进行分析处理,获得所述各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用所述PNMP算法对所述第二采集单元获得的所述第二预均衡系数集合进行分析处理,获得所述故障点集合中两两之间的故障严重度,作为第二故障严重度集合。
结合本发明实施例第二方面的第三种或第四种可能的实施方式,在本发明实施例第二方面的第五种可能的实施方式中,所述确定单元根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗的方式具体为:
所述确定单元针对所述各个故障点中的每一个故障点,根据所述故障点与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,计算所述故障点的反射损耗,其中,所述故障点的反射损耗为所述故障点与所述参考故障点之间的故障严重度减去所述参考故障点的反射损耗而获得的绝对差值。
本发明实施例第三方面公开了一种HFC网络故障定位的装置,包括:处理器、存储器、输入装置以及通信总线;
其中,所述存储器用于存储程序和数据;
所述通信总线用于建立所述处理器、所述存储器和所述输入装置之间的连接通信;
所述处理器用于调用所述存储器存储的程序,执行如下步骤:
获取混合光纤同轴电缆HFC网络中的故障组,所述故障组包含至少一个故障点;
控制所述输入装置采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,所述至少一个CM为预均衡系数在所述故障组产生前后发生变化的CM;
开启与所述故障组对应的位置已知的参考故障点,其中,所述参考故障点为使所述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
控制所述输入装置再次采集所述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,所述故障点集合包括所述故障组和所述参考故障点,所述第二相对距离集合包含所述第一相对距离集合;
根据所述第一相对距离集合以及所述第二相对距离集合,确定所述各个故 障点分别与所述参考故障点的相对距离。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种可能的实施方式中,所述处理器还用于调用所述存储器存储的程序,执行如下步骤:
获取所述故障组的估计方位,所述估计方位包括所述故障组所处的大致方向和位置;
根据所述各个故障点分别与所述参考故障点的相对距离、所述故障组的估计方位以及所述参考故障点的位置,确定所述各个故障点的位置。
结合本发明实施例第三方面或第三方面的第一种可能的实施方式,在本发明实施例第三方面的第二种可能的实施方式中,所述处理器根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的方式具体为:
利用基于预均衡的主动式网络维护PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
结合本发明实施例第三方面或第三方面的第一种或第二种可能的实施方式,在本发明实施例第三方面的第三种可能的实施方式中,所述参考故障点的反射损耗为已知的,所述处理器还用于调用所述存储器存储的程序,执行如下步骤:
根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合,其中,所述第二故障严重度集合包含所述第一故障严重度集合;
根据所述第一故障严重度集合以及所述第二故障严重度集合,确定所述各个故障点分别与所述参考故障点之间的故障严重度;
根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗。因此能够针对不同故障点的反射损耗进行不同程度的维修。
结合本发明实施例第三方面的第三种可能的实施方式,在本发明实施例第三方面的第四种可能的实施方式中,所述处理器根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合的方式具体为:
利用PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得所述故障点集合中两两之间的故障严重度,作为第二故障严重度集合。
结合本发明实施例第三方面的第三种或第四种可能的实施方式,在本发明实施例第三方面的第五种可能的实施方式中,所述处理器根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗的方式具体为:
针对所述各个故障点中的每一个故障点,根据所述故障点与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,计算所述故障点的反射损耗,其中,所述故障点的反射损耗为所述故障点与所述参考故障点之间的故障严重度减去所述参考故障点的反射损耗而获得的绝对差值。
本发明实施例第四方面公开了一种HFC网络故障定位的系统,包括:至少一个CM和本发明实施例第二方面公开的HFC网络故障定位的装置。
本发明实施例中,可以获取混合光纤同轴电缆HFC网络中的故障组,采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,开启与故障组对应的位置已知的参考故障点,接着,可以再次采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合,根据第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算包括各个故障点和参考故障点的故障点集合中两两故障点之间的相对距离,以获得第二相对距离集合,并根据第一相对距离集合以及第二相对距离集合,确定各个故障点分别与参考故障点的相对距离。可见,实施本发明实施例,能够在故障组中添加一个位置已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个 故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种HFC网络架构示意图;
图2是本发明实施例公开的一种HFC网络故障定位的方法的流程示意图;
图3是本发明实施例公开的一种HFC网络故障的局部示意图;
图4是本发明实施例公开的另一种HFC网络故障定位的方法的流程示意图;
图5是本发明实施例公开的一种HFC网络故障定位的装置的结构示意图;
图6是本发明实施例公开的另一种HFC网络故障定位的装置的结构示意图;
图7是本发明实施例公开的一种HFC网络故障定位的系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种HFC网络故障定位的方法及装置、系统,能够在故障组中添加一个位置已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。以下分别进行详细说明。
为了更好的理解本发明实施例,下面先对本发明实施例公开的一种HFC网 络架构进行描述。请参阅图1,图1是本发明实施例公开的一种HFC网络架构示意图。在图1所示的HFC网络架构中,可以包括网络管理系统、同轴电缆局端接入设备CMTS、光站、放大器、衰减器、分支器、分配器、电缆调制解调器CM、用户侧设备,如STB(Set Top Box,机顶盒)、PC(Personal Computer,个人电脑)等设备或器件(图中未将各个器件一一示出)。其中,网络管理系统可以通过城域网(Metropolitan Area Network,MAN)与CMTS进行通信连接。HFC网络中的其余设备和器件之间可以通过光缆或同轴电缆进行通信连接。在图1所示的HFC网络架构中,网络管理系统为整个HFC网络的控制中心,可以用于监控和管理整个HFC网络的运行,可以包括但不限于计算机、网管服务器等等设备。CMTS用于管理和控制CM设备,HFC网络中可以包括一个或多个CM设备,且每个CM设备又可以连接一个或多个用户设备(如STB、PC等)。
在图1所示的HFC网络架构中,HFC网络中存在的每个设备、器件、每段电缆都有可能出现故障,从而使得HFC网络的上行信号受到各种线路失真的影响。如图1所示,当在放大器与分配器TAP之间的线路中存在故障时,会在两个故障点之间形成微反射(也称作回声),其中,微反射是由于网络上的阻抗不匹配点(即故障点)所引起的,即输入阻抗与输出阻抗不匹配而造成的反射。在发生失配的地方,一部分入射波的能量被反射回来,反射回的信号和主信号在CMTS的接收端相互叠加形成驻波,导致线路失真。为了对HFC网络中的线路失真进行补偿,可以在每个CM的内部设置一个预均衡器,其中,预均衡器为一个具有24个抽头系数的线性滤波器,且24个系数即构成CM的预均衡系数。通过对CM的预均衡系数进行分析,可以预先发现HFC网络中的故障和大致位置,此外,在HFC网络的每个器件和设备中都可以设置一个位置已知的阻抗不匹配点,可以开启或关闭,当开启时,则构造成一个位置已知的参考故障点,从而以该参考故障点为依据可以获得其他故障点的具体位置。通过实施图1所示的HFC网络架构,能够在故障组中添加一个位置已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。
基于图1所示的HFC网络架构,本发明实施例公开了一种HFC网络故障定位的方法。请参阅图2,图2是本发明实施例公开的一种HFC网络故障定位的方法的流程示意图。本发明实施例中,可以以网络管理系统作为执行主体为例进行描述,当执行主体为其他装置或设备时,不影响本发明实施例的实现。如图2所示,该HFC网络故障定位的方法可以包括以下步骤:
201、网络管理系统获取混合光纤同轴电缆HFC网络中的故障组。
本发明实施例中,可以将由一个或多个故障点引起的故障称为故障组,一个故障组中可以包含有至少一个故障点,HFC网络中可以有一个故障组,也可以同时有多个故障组。
本发明实施例中,网络管理系统可以通过获取HFC网络中历史故障组来作为本次操作的故障组;在完全不知道故障情况的条件下,网络管理系统也可以通过在HFC全网采集CM的预均衡系数,通过对预均衡系数进行分析,来发现HFC网络中的故障组;网络管理系统还可以对各条线路下的CM性能参数进行分析来获取故障组,性能参数可以包括MER(Modulation Error Rate,调制误码率)、电平值、丢包次数等参数,如某条路线下所有CM的MER变差,或上行MER或者电平时常跳变,或同时存在误码或丢包等现象,则说明该条线路上存在故障组。上述方法可以单独使用,也可以结合使用,本发明实施例不作限定。
请参阅图3,图3是本发明实施例公开的一种HFC网络故障的局部示意图。在图3中仅示出了HFC网络中的部分器件、设备和线路,其结构并不构成对本发明实施例的限定,它可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。可以对图3中所示的所有CM进行预均衡系数的采集,并分析所有CM预均衡系数,当CM1~CM4的预均衡系数有较大变化(发生变化的原因是预均衡系数要对故障引起的线路失真进行补偿),而CM5的预均衡系数无明显变化时,可以说明CM1~CM4受故障组的影响(即CM1~CM4在进行上行传输时因故障组1的影响而发生信号失真),而CM5未受故障组的影响,可以初步判定大致位于分支器T1和T2之间存在一个故障组1。进一步地,可以查询该HFC网络中是否还存在单故障点组成的故障组,可以通过获取每个CM的 性能参数,当CM2的MER变差或丢包严重,而其他CM的性能参数较稳定,则说明CM2受故障组的影响,其他CM未受故障组的影响,可以初步判定大致在分配器S1和CM2之间存在另一个故障组2。
202、网络管理系统采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合。
本发明实施例中,当获取到HFC网络中存在多个故障组时,为了不混淆,针对每一个故障组,网络管理系统可以采集与该故障组相关联的至少一个CM的预均衡系数,并将至少一个CM的预均衡系数组合成第一预均衡系数集合。其中,上述至少一个CM可以是指其的预均衡系数在该故障组产生前后发生变化的CM,即受该故障组影响的至少一个CM,例如,在该故障组出现之前,上述至少一个CM的预均衡系数较稳定,当该故障组出现后,上述至少一个CM的预均衡系数波动较大。
以图3所示的HFC局部网络故障为例进行说明,分析可知,受故障组1影响的有CM1~CM4,受故障组2影响的有CM2。为了不混淆,针对于故障组1,可以采集CM3和CM4的预均衡系数,以获得针对故障组1的第一预均衡系数集合{CM3,CM4};针对故障组2,可以采集CM2的预均衡系数,以获得针对故障组2的第一预均衡系数集合{CM2}。
203、网络管理系统开启与故障组对应的位置已知的参考故障点。
本发明实施例中,参考故障点可以是指使针对故障组采集的上述至少一个CM的预均衡系数发生变化的阻抗不匹配点,阻抗不匹配点可以是指输入阻抗与输出阻抗不匹配的一个点,由于阻抗不匹配会造成信号反射,从而出现故障。可以在HFC网络中的每个器件和设备中设置一个阻抗不匹配点,该阻抗不匹配点可以远程自动开启或关闭,也可以手动开启或关闭。由于每个阻抗不匹配点的位置是已知的,当开启一个阻抗不匹配点时,该阻抗不匹配点则构造成了一个位置已知的参考故障点。
本发明实施例中,可以选择性地开启阻抗不匹配点,为了防止系统过于复杂,一般针对一个故障组只开启一个位置已知的阻抗不匹配点,可以在故障组所在的线路两端的设备中选择其中一个进行开启。当故障组的位置范围过大而不好确定开启哪个阻抗不匹配点时,可以采用枚举的方法,一一尝试开启故障 区域范围内的阻抗不匹配点。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,可以选择开启T1或T2处的阻抗不匹配点来构造参考故障点Γ1,图3中开启的是T2处的阻抗不匹配点,优选的,选择开启的阻抗不匹配点与故障组在同一线路上,为了避免受设备的影响,一般不进行跨设备开启阻抗不匹配点,如一般不开启分配器S2中的阻抗不匹配点。针对故障组2,可以选择开启S1或CM2处的阻抗不匹配点来构造参考故障点Γ2,图3中开启的是CM2处的阻抗不匹配点。
204、网络管理系统再次采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合。
本发明实施例中,当网络管理系统开启了与故障组对应的位置已知的参考故障点时,针对该故障组采集的上述至少一个CM的预均衡系数则会发生变化,因此可以再次采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,在开启了T2处的阻抗不匹配点构造参考故障点Γ1后,可以再次采集CM3和CM4的预均衡系数,以获得针对故障组1的第二预均衡系数集合{CM3',CM4'};针对故障组2,在开启了CM2处的阻抗不匹配点构造参考故障点Γ2后,可以再次采集CM2的预均衡系数,以获得针对故障组2的第二预均衡系数集合{CM2'}。
205、网络管理系统根据第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合。
本发明实施例中,针对每一个故障组,网络管理系统可以根据获取到的该故障组的第一预均衡系数集合来计算该故障组包含的各个故障点两两之间的相对距离,将计算出的结果作为第一相对距离集合;以及根据获取到的该故障组的第二预均衡系数集合来计算故障点集合中两两故障点之间的相对距离,将计算出的结果作为第二相对距离集合。其中,故障点集合包括该故障组中包含的各个故障点以及针对该故障组添加的参考故障点。第二相对距离集合中包含第一相对距离集合。
作为一种可选的实施方式,步骤205根据第一预均衡系数集合计算故障组 中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的具体实施方式可以包括以下步骤:
21)网络管理系统利用基于预均衡的主动式网络维护PNMP算法对第一预均衡系数集合进行分析处理,获得故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用PNMP算法对第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
在该实施方式中,基于预均衡的主动式网络维护(Proactive Network Maintenance Using Pre-equalization,PNMP)算法可以用于对预均衡系数进行分析处理,可以计算出故障组中各个故障点之间的相对距离。PNMP算法的原理在此不作叙述,可参考PNMP的标准《CM-GL-PNMP-V02-110623》及其他相关资料。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,可以根据第一预均衡系数集合{CM3,CM4}计算出故障组1中各个故障点的距离,如果只获取到一段距离为L1,可以确定故障组1中包含了两个故障点,如图中所示的故障点R1和故障点R2,且这两个故障点之间的相对距离为L1,即针对故障组1的第一相对距离集合为{L1};可以根据第二预均衡系数集合{CM3',CM4'}计算出故障点集合中两两故障点之间的相对距离分别为相对距离L1、L2以及L1+L2,即针对故障组1的第二相对距离集合为{L1、L2、L1+L2}。针对故障组2,可以根据第一预均衡系数集合{CM2}计算出故障组1中各个故障点的距离,如果计算结果为0,可以确定故障组2中只包含单个故障点,如图中所示的故障点R3,则针对故障组2的第一相对距离集合为{0};可以根据第二预均衡系数集合{CM2'}计算出故障点集合中两两故障点之间的相对距离,即可以计算出故障点R3与参考故障点之间的相对距离L3,则针对故障组2的第二相对距离集合为{0,L3}。需要说明的是,故障点R2与故障点R3之间跨越了多个设备,使得故障点R2和故障点R3之间产生的微反射很小,可以忽略不计,因此故障点R3与故障点R2不在同一个故障组内。
206、网络管理系统根据第一相对距离集合以及第二相对距离集合,确定故障组中的各个故障点分别与参考故障点的相对距离。
本发明实施例中,网络管理系统可以通过分析添加参考故障点前后采集的预均衡系数计算到的相对距离,确定出故障组包含的各个故障点分别到参考故障点的相对距离。由于第二相对距离集合包含有第一相对距离集合,可以从第二相对距离集合中过滤掉第一相对距离集合,则剩下的即为故障组中的各个故障点分别与参考故障点的相对距离。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,第一相对距离集合为{L1},第二相对距离集合为{L1、L2、L1+L2},从第二相对距离集合中过滤掉第一相对距离集合,则剩下的两段距离分别为故障点R1与参考故障点Γ1之间的相对距离,以及故障点R2与参考故障点Γ1之间的相对距离。
本发明实施例中,由于参考故障点的位置是已知的,可以根据故障组中的各个故障点分别与参考故障点的相对距离以及参考故障点的位置,进一步确定故障组中各个故障点的位置。
本发明实施例中,当定位到故障组中包含的各个故障点的位置时,网络管理系统可以将添加的参考故障点移除,即关闭该参考故障点,以减少对业务的影响。
在图2所描述的方法中,可以获取HFC网络中的故障组,采集至少一个CM的预均衡系数,以获得第一预均衡系数集合,开启与故障组对应的位置已知的参考故障点,接着,可以再次采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合,根据第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算包括各个故障点和参考故障点的故障点集合中两两故障点之间的相对距离,以获得第二相对距离集合,并根据第一相对距离集合以及第二相对距离集合,确定各个故障点分别与参考故障点的相对距离。通过实施图2所描述的方法,能够在故障组中添加一个位置已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。
基于图1所示的HFC网络架构,本发明实施例公开了另一种HFC网络故障定位的方法。请参阅图4,图4是本发明实施例公开的另一种HFC网络故障定位的方法的流程示意图。本发明实施例中,可以以网络管理系统作为执行主体为例进行描述,当执行主体为其他装置或设备时,不影响本发明实施例的实现。如图4所示,该HFC网络故障定位的方法可以包括以下步骤:
401、网络管理系统获取混合光纤同轴电缆HFC网络中的故障组。
本发明实施例中,HFC网络中可以包含一个或多个故障组,一个故障组中可以包含至少一个故障点。
402、网络管理系统采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合。
本发明实施例中,至少一个CM可以是指其预均衡系数在该故障组产生前后发生变化的CM。
403、网络管理系统开启与故障组对应的位置和反射损耗均已知的参考故障点。
本发明实施例中,该参考故障点为使针对故障组采集的上述至少一个CM的预均衡系数发生变化的阻抗不匹配点,且阻抗不匹配点可以是指输入阻抗与输出阻抗不匹配的一个点。该参考故障点除位置是已知的外,其反射损耗也是已知的。
404、网络管理系统再次采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合。
405、网络管理系统根据第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合。
本发明实施例中,故障点集合可以包括故障点中的各个故障点以及添加的参考故障点。
406、网络管理系统根据第一相对距离集合以及第二相对距离集合,确定故障组中的各个故障点分别与参考故障点的相对距离。
407、网络管理系统获取故障组的估计方位。
本发明实施例中,故障组的估计方位可以是指故障组所处的大致方向和位 置,故障组的估计方位可以以参考故障点为参照物,以估计故障组大致位于参考故障点的哪个方位,如故障组位于参考故障点的左边或右边等。
可以理解的是,步骤407可以后于步骤406执行,也可以先于步骤406执行,还可以与步骤406同步执行,本发明实施例不作限定。
408、网络管理系统根据故障组中的各个故障点分别与参考故障点的相对距离、故障组的估计方位以及参考故障点的位置,确定故障组中的各个故障点的确切位置。
本发明实施例中,由于参考故障点的位置是已知的,网络管理系统可以根据获取到的故障组中的各个故障点分别与参考故障点的相对距离、故障组的估计方位以及参考故障点的位置来最终确定故障组中的各个故障点的位置。获得各个故障点的位置,可以方便维修人员对各个故障点进行维修,而降低了查找故障点的人力和物力。
409、网络管理系统根据第一预均衡系数集合计算故障组中的各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的故障严重度,以获得第二故障严重度集合。
本发明实施例中,故障严重度可以称为微反射严重度(Micro-reflection Level,MRL),可以用于反映两个故障点之间的微反射程度。网络管理系统可以根据第一预均衡系数集合计算出故障组中的各个故障点两两之间的相对距离外,还可以根据第一预均衡系数集合计算出故障组中的各个故障点两两之间的故障严重度(以dB为单位);以及,可以根据第二预均衡系数集合计算出故障点集合中两两故障点之间的相对距离外,还可以根据第二预均衡系数集合计算出故障点集合中两两故障点之间的故障严重度。
本发明实施例中,两个故障点之间的故障严重度与这两个故障点的相对距离有关,相对距离越大,故障严重度越小;反之,相对距离越小,故障严重度越大。
作为一种可选的实施方式,步骤409根据第一预均衡系数集合计算故障组中的各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的故障严重度,以获得第 二故障严重度集合的具体实施方式可以包括以下步骤:
41)网络管理系统利用PNMP算法对第一预均衡系数集合进行分析处理,获得故障组中的各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用PNMP算法对第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的故障严重度,作为第二故障严重度集合。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,可以根据第一预均衡系数集合计算出故障点R1、R2之间的相对距离为L1,故障严重度为MRL1;以及,可以根据第二预均衡系数集合计算出故障点R1、R2、参考故障点Γ1三者中两两之间的相对距离分别为L1、L2、L1+L2,以及故障严重度分别为MRL1、MRL2、MRL12。针对故障组2,可以根据第二预均衡系数集合计算出故障点R3与参考故障点Γ2之间的相对距离为L3,故障严重度为MRL3。
410、网络管理系统根据第一故障严重度集合以及第二故障严重度集合,确定故障组中的各个故障点分别与参考故障点之间的故障严重度。
本发明实施例中,第二故障严重度集合包含第一故障严重度集合,网络管理系统可以从第二故障严重度集合中过滤掉第一故障严重度集合,剩下的则为故障组中的各个故障点分别与参考故障点之间的故障严重度。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,第一故障严重度集合为{MRL1},第二故障严重度集合为{MRL1、MRL2、MRL12},从第二故障严重度集合中过滤掉第一故障严重度集合,则剩下的故障严重度分别为故障点R1与参考故障点Γ1之间的故障严重度,以及故障点R2与参考故障点Γ1之间的故障严重度。
411、网络管理系统根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗,确定故障组中的各个故障点的反射损耗。
本发明实施例中,由于参考故障点的反射损耗是已知的,因此可以根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗来求出故障组中各个故障点的反射损耗。
作为一种可选的实施方式,步骤411根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗,确定故障组中的各个 故障点的反射损耗的具体实施方式可以包括以下步骤:
42)网络管理系统针对故障组的各个故障点中的每一个故障点,根据该故障点与参考故障点之间的故障严重度以及参考故障点的反射损耗,计算该故障点的反射损耗,其中,该故障点的反射损耗为该故障点与参考故障点之间的故障严重度减去参考故障点的反射损耗而获得的绝对差值。
以图3所示的HFC局部网络故障为例进行说明,针对故障组1,假设故障点R1与参考故障点Γ1之间的故障严重度为MRL12,故障点R2与参考故障点Γ1之间的故障严重度为MRL2,且已知参考故障点Γ1的反射损耗为G1,在不考虑低频电缆衰减的情况下,可以得出故障点R1的反射损耗为MRL12-G1(dB),故障点R2的反射损耗为MRL2-G1(dB)。针对故障组2,假设故障点R3与参考故障点Γ2之间的故障严重度为MRL3,且已知参考故障点Γ2的反射损耗为G2,可以得出故障点R3的反射损耗为MRL3-G2(dB)。
可以理解的是,步骤405~408与步骤409~411之间没有必然的执行先后顺序,步骤405~408可以先于步骤409~411执行,步骤405~408也可以后于步骤409~411执行,步骤405~408与步骤409~411还可以同步执行或交错执行,本发明实施例不作限定。
本发明实施例中,通过实施图4所描述的方法,在故障组中添加一个位置和反射损耗均已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。此外,还可以根据在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的故障严重度,进而可以得出故障组中各故障点的反射损耗,从而可以针对不同故障点的反射损耗进行不同程度的维修。
基于图1所示的HFC网络架构,本发明实施例公开了一种HFC网络故障定位的装置。请参阅图5,图5是本发明实施例公开的一种HFC网络故障定位的装置的结构示意图,可以用于执行本发明实施例公开的HFC网络故障定位的方法。 本发明实施例中,图5所示的HFC网络故障定位的装置在物理形态上可以是网络管理系统。如图5所示,该HFC网络故障定位的装置可以包括:
获取单元501,用于获取混合光纤同轴电缆HFC网络中的故障组。
本发明实施例中,HFC网络中可以有一个故障组,也可以同时有多个故障组,一个故障组中可以包含有至少一个故障点。
第一采集单元502,用于采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合。
本发明实施例中,至少一个CM可以是指预均衡系数在故障组产生前后发生变化的CM,即受该故障组影响的至少一个CM。
开启单元503,用于开启与故障组对应的位置已知的参考故障点。
本发明实施例中,参考故障点可以是指开启后能够使得针对故障组采集的上述至少一个CM的预均衡系数发生变化的阻抗不匹配点,且阻抗不匹配点为输入阻抗与输出阻抗不匹配的一个点。
第二采集单元504,用于在开启单元503开启与故障组对应的位置已知的参考故障点之后,采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合。
计算单元505,用于根据第一采集单元502获得的第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二采集单元504获得的第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合。
本发明实施例中,故障点集合包括该故障组中包含的各个故障点以及针对该故障组添加的参考故障点。其中,第二相对距离集合中包含第一相对距离集合。
作为一种可选的实施方式,计算单元505根据第一采集单元502获得的第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二采集单元504获得的第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的具体实施方式可以为:
计算单元505利用基于预均衡的主动式网络维护PNMP算法对第一采集单 元502获得的第一预均衡系数集合进行分析处理,获得故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用PNMP算法对第二采集单元504获得的第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
确定单元506,用于根据计算单元505获得的第一相对距离集合以及第二相对距离集合,确定故障组中的各个故障点分别与参考故障点的相对距离。
本发明实施例中,由于第二相对距离集合包含有第一相对距离集合,可以从第二相对距离集合中过滤掉第一相对距离集合,则剩下的即为故障组中的各个故障点分别与参考故障点的相对距离。
作为一种可选的实施方式,获取单元501,还用于获取故障组的估计方位,该估计方位可以包括故障组所处的大致方向和位置。
相应地,确定单元506,还用于根据故障组中的各个故障点分别与参考故障点的相对距离、获取单元501获取的故障组的估计方位以及参考故障点的位置,确定故障组中的各个故障点的位置。
作为一种可选的实施方式,参考故障点的反射损耗为已知的,在图5所示的HFC网络故障定位的装置中:
计算单元505,还用于根据第一采集单元502获得的第一预均衡系数集合计算故障组中的各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据第二采集单元504获得的第二预均衡系数集合计算故障点集合中两两之间的故障严重度,以获得第二故障严重度集合。
作为一种可选的实施方式,计算单元505根据第一采集单元502获得的第一预均衡系数集合计算故障组中的各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据第二采集单元504获得的第二预均衡系数集合计算故障点集合中两两之间的故障严重度,以获得第二故障严重度集合的具体实施方式可以为:
计算单元505利用PNMP算法对第一采集单元502获得的第一预均衡系数集合进行分析处理,获得故障组中的各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用PNMP算法对第二采集单元504获得的第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的故障严重度,作 为第二故障严重度集合。
相应地,确定单元506,还用于根据计算单元505获得的第一故障严重度集合以及第二故障严重度集合,确定故障组中的各个故障点分别与参考故障点之间的故障严重度。
确定单元506,还用于根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗,确定故障组中的各个故障点的反射损耗。
作为一种可选的实施方式,确定单元506根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗,确定故障组中的各个故障点的反射损耗的具体实施方式可以为:
确定单元506针对故障组内的各个故障点中的每一个故障点,根据该故障点与参考故障点之间的故障严重度以及参考故障点的反射损耗,计算该故障点的反射损耗,其中,该故障点的反射损耗为该故障点与参考故障点之间的故障严重度减去参考故障点的反射损耗而获得的绝对差值。
本发明实施例中,实施图5所示的HFC网络故障定位的装置,在故障组中添加一个位置和反射损耗均已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。此外,还可以根据在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的故障严重度,进而可以得出故障组中各故障点的反射损耗,从而可以针对不同故障点的反射损耗进行不同程度的维修。
基于图1所示的HFC网络构架,本发明实施例公开了另一种HFC网络故障定位的装置。请参阅图6,图6是本发明实施例公开的另一种HFC网络故障定位的装置的结构示意图,可以用于执行本发明实施例公开的HFC网络故障定位的方法。本发明实施例中,图6所示的HFC网络故障定位的装置在物理形态上可以是网络管理系统。如图6所示,该HFC网络故障定位的装置600 可以包括:至少一个处理器601,例如CPU(Central Processing Unit,中央处理器),至少一个输入装置602,存储器603等组件。其中,这些组件通过一条或多条总线604进行通信连接。本领域技术人员可以理解,图6中示出的HFC网络故障定位的装置的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置602可以包括有线接口、无线接口等,可以用于采集HFC网络中的CM的预均衡系数。
本发明实施例中,存储器603可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器603可选的还可以是至少一个位于远离前述处理器601的存储装置。如图6所示,作为一种计算机存储介质的存储器603中可以包括操作系统、应用程序和数据等,本发明实施例不作限定。
在图6所示的HFC网络故障定位的装置中,处理器601可以用于调用存储器603中存储的应用程序以执行以下操作:
获取混合光纤同轴电缆HFC网络中的故障组,故障组包含至少一个故障点;
控制输入装置602采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,上述至少一个CM为预均衡系数在故障组产生前后发生变化的CM;
开启与故障组对应的位置已知的参考故障点,其中,该参考故障点为使上述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
控制输入装置602再次采集上述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
根据第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,故障点集合包括故障组中的各个故障点和参考故障点;
根据第一相对距离集合以及第二相对距离集合,确定故障组中的各个故障点分别与参考故障点的相对距离。
作为一种可选的实施方式,处理器601还用于调用存储器603中存储的应用程序,并执行以下步骤:
获取故障组的估计方位,该估计方位包括故障组所处的大致方向和位置;
根据故障组中的各个故障点分别与参考故障点的相对距离、故障组的估计方位以及参考故障点的位置,确定故障组中的各个故障点的位置。
作为一种可选的实施方式,处理器601根据第一预均衡系数集合计算故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的具体实施方式可以为:
利用基于预均衡的主动式网络维护PNMP算法对第一预均衡系数集合进行分析处理,获得故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用PNMP算法对第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
作为一种可选的实施方式,所述参考故障点的反射损耗为已知的,处理器601还用于调用存储器603中存储的应用程序,并执行以下步骤:
根据第一预均衡系数集合计算故障组中的各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的故障严重度,以获得第二故障严重度集合;
根据第一故障严重度集合以及第二故障严重度集合,确定故障组中的各个故障点分别与参考故障点之间的故障严重度;
根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗,确定故障组中的各个故障点的反射损耗。
作为一种可选的实施方式,处理器601根据第一预均衡系数集合计算故障组中的各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据第二预均衡系数集合计算故障点集合中两两之间的故障严重度,以获得第二故障严重度集合的具体实施方式可以为:
利用PNMP算法对第一预均衡系数集合进行分析处理,获得故障组中的各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用PNMP算法对第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的故障 严重度,作为第二故障严重度集合。
作为一种可选的实施方式,处理器601根据故障组中的各个故障点分别与参考故障点之间的故障严重度以及参考故障点的反射损耗,确定故障组中的各个故障点的反射损耗的具体实施方式可以为:
针对故障组中的各个故障点中的每一个故障点,根据该故障点与参考故障点之间的故障严重度以及参考故障点的反射损耗,计算该故障点的反射损耗,其中,该故障点的反射损耗为该故障点与参考故障点之间的故障严重度减去参考故障点的反射损耗而获得的绝对差值。
具体地,本发明实施例中介绍的HFC网络故障定位的装置可以实施本发明结合图2或图4介绍的HFC网络故障定位的方法实施例中的部分或全部流程。
本发明实施例中,实施图6所示的HFC网络故障定位的装置,在故障组中添加一个位置和反射损耗均已知的参考故障点,通过在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的相对距离,进而可以得出故障组中各故障点的位置,从而不仅可以实现对包含多个故障点的故障组中各故障点的位置进行定位,还可以对仅包含单故障点的故障组进行定位。此外,还可以根据在添加参考故障点前后两次采集CM的预均衡系数来计算出故障组中各个故障点分别与参考故障点之间的故障严重度,进而可以得出故障组中各故障点的反射损耗,从而可以针对不同故障点的反射损耗进行不同程度的维修。
基于图1所示的HFC网络构架,本发明实施例公开了一种HFC网络故障定位的系统。请参阅图7,图7是本发明实施例公开的一种HFC网络故障定位的系统的结构示意图。如图7所示,该HFC网络故障定位的系统可以包括:至少一个CM和图5所示的HFC网络故障定位的装置,其中,该HFC网络故障定位的装置与CM1、CM2、……、CMn(n为正整数)之间建立有通信连接。该HFC网络故障定位的装置的具体功能在前述实施例中已有详细介绍,本发明实施例涉及的HFC网络故障定位的装置和至少一个CM可以参考前述实施例中的内容,在此不再赘述。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表 述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例的装置中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种HFC网络故障定位的方法及装置、系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (19)

  1. 一种HFC网络故障定位的方法,其特征在于,包括:
    获取混合光纤同轴电缆HFC网络中的故障组,所述故障组包含至少一个故障点;
    采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,所述至少一个CM为预均衡系数在所述故障组产生前后发生变化的CM;
    开启与所述故障组对应的位置已知的参考故障点,其中,所述参考故障点为使所述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
    再次采集所述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
    根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,所述故障点集合包括所述故障组和所述参考故障点;
    根据所述第一相对距离集合以及所述第二相对距离集合,确定所述各个故障点分别与所述参考故障点的相对距离。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述故障组的估计方位,所述估计方位包括所述故障组所处的大致方向和位置;
    根据所述各个故障点分别与所述参考故障点的相对距离、所述故障组的估计方位以及所述参考故障点的位置,确定所述各个故障点的位置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,包括:
    利用基于预均衡的主动式网络维护PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进 行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述参考故障点的反射损耗为已知的,所述方法还包括:
    根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合;
    根据所述第一故障严重度集合以及所述第二故障严重度集合,确定所述各个故障点分别与所述参考故障点之间的故障严重度;
    根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合,包括:
    利用PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得所述故障点集合中两两之间的故障严重度,作为第二故障严重度集合。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗,包括:
    针对所述各个故障点中的每一个故障点,根据所述故障点与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,计算所述故障点的反射损耗,其中,所述故障点的反射损耗为所述故障点与所述参考故障点之间的故障严重度减去所述参考故障点的反射损耗而获得的绝对差值。
  7. 一种HFC网络故障定位的装置,其特征在于,包括:
    获取单元,用于获取混合光纤同轴电缆HFC网络中的故障组,所述故障组包含至少一个故障点;
    第一采集单元,用于采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,所述至少一个CM为预均衡系数在所述故障组产生前后发生变化的CM;
    开启单元,用于开启与所述故障组对应的位置已知的参考故障点,其中,所述参考故障点为使所述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
    第二采集单元,用于在所述开启单元开启与所述故障组对应的位置已知的参考故障点之后,采集所述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
    计算单元,用于根据所述第一采集单元获得的所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,所述故障点集合包括所述故障组和所述参考故障点;
    确定单元,用于根据所述计算单元获得的所述第一相对距离集合以及所述第二相对距离集合,确定所述各个故障点分别与所述参考故障点的相对距离。
  8. 根据权利要求7所述的装置,其特征在于,
    所述获取单元,还用于获取所述故障组的估计方位,所述估计方位包括所述故障组所处的大致方向和位置;
    所述确定单元,还用于根据所述各个故障点分别与所述参考故障点的相对距离、所述故障组的估计方位以及所述参考故障点的位置,确定所述各个故障点的位置。
  9. 根据权利要求7或8所述的装置,其特征在于,所述计算单元根据所述第一采集单元获得的所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二采集 单元获得的所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的方式具体为:
    所述计算单元利用基于预均衡的主动式网络维护PNMP算法对所述第一采集单元获得的所述第一预均衡系数集合进行分析处理,获得所述故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用所述PNMP算法对所述第二采集单元获得的所述第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
  10. 根据权利要求7-9中任一项所述的装置,其特征在于,所述参考故障点的反射损耗为已知的,
    所述计算单元,还用于根据所述第一采集单元获得的所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合;
    所述确定单元,还用于根据所述计算单元获得的所述第一故障严重度集合以及所述第二故障严重度集合,确定所述各个故障点分别与所述参考故障点之间的故障严重度;
    所述确定单元,还用于根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗。
  11. 根据权利要求10所述的装置,其特征在于,所述计算单元根据所述第一采集单元获得的所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二采集单元获得的所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合的方式具体为:
    所述计算单元利用PNMP算法对所述第一采集单元获得的所述第一预均衡系数集合进行分析处理,获得所述各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用所述PNMP算法对所述第二采集单元获得的所述第二预均衡系数集合进行分析处理,获得所述故障点集合中两两之间的故 障严重度,作为第二故障严重度集合。
  12. 根据权利要求10或11所述的装置,其特征在于,所述确定单元根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗的方式具体为:
    所述确定单元针对所述各个故障点中的每一个故障点,根据所述故障点与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,计算所述故障点的反射损耗,其中,所述故障点的反射损耗为所述故障点与所述参考故障点之间的故障严重度减去所述参考故障点的反射损耗而获得的绝对差值。
  13. 一种HFC网络故障定位的装置,其特征在于,包括:处理器、存储器、输入装置以及通信总线;
    其中,所述存储器用于存储程序和数据;
    所述通信总线用于建立所述处理器、所述存储器和所述输入装置之间的连接通信;
    所述处理器用于调用所述存储器存储的程序,执行如下步骤:
    获取混合光纤同轴电缆HFC网络中的故障组,所述故障组包含至少一个故障点;
    控制所述输入装置采集至少一个电缆调制解调器CM的预均衡系数,以获得第一预均衡系数集合,所述至少一个CM为预均衡系数在所述故障组产生前后发生变化的CM;
    开启与所述故障组对应的位置已知的参考故障点,其中,所述参考故障点为使所述至少一个CM的预均衡系数发生变化的阻抗不匹配点;
    控制所述输入装置再次采集所述至少一个CM的预均衡系数,以获得第二预均衡系数集合;
    根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合,所述故障点集合包括所述故障组和所述参考故障点;
    根据所述第一相对距离集合以及所述第二相对距离集合,确定所述各个故障点分别与所述参考故障点的相对距离。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器还用于调用所述存储器存储的程序,执行如下步骤:
    获取所述故障组的估计方位,所述估计方位包括所述故障组所处的大致方向和位置;
    根据所述各个故障点分别与所述参考故障点的相对距离、所述故障组的估计方位以及所述参考故障点的位置,确定所述各个故障点的位置。
  15. 根据权利要求13或14所述的装置,其特征在于,所述处理器根据所述第一预均衡系数集合计算所述故障组中的各个故障点两两之间的相对距离,以获得第一相对距离集合;以及,根据所述第二预均衡系数集合计算故障点集合中两两之间的相对距离,以获得第二相对距离集合的方式具体为:
    利用基于预均衡的主动式网络维护PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述故障组中的各个故障点两两之间的相对距离,作为第一相对距离集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得故障点集合中两两之间的相对距离,作为第二相对距离集合。
  16. 根据权利要求13-15中任一项所述的装置,其特征在于,所述参考故障点的反射损耗为已知的,所述处理器还用于调用所述存储器存储的程序,执行如下步骤:
    根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合;
    根据所述第一故障严重度集合以及所述第二故障严重度集合,确定所述各个故障点分别与所述参考故障点之间的故障严重度;
    根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗。
  17. 根据权利要求16所述的装置,其特征在于,所述处理器根据所述第一预均衡系数集合计算所述各个故障点两两之间的故障严重度,以获得第一故障严重度集合;以及,根据所述第二预均衡系数集合计算所述故障点集合中两两之间的故障严重度,以获得第二故障严重度集合的方式具体为:
    利用PNMP算法对所述第一预均衡系数集合进行分析处理,获得所述各个故障点两两之间的故障严重度,作为第一故障严重度集合;以及,利用所述PNMP算法对所述第二预均衡系数集合进行分析处理,获得所述故障点集合中两两之间的故障严重度,作为第二故障严重度集合。
  18. 根据权利要求16或17所述的装置,其特征在于,所述处理器根据所述各个故障点分别与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,确定所述各个故障点的反射损耗的方式具体为:
    针对所述各个故障点中的每一个故障点,根据所述故障点与所述参考故障点之间的故障严重度以及所述参考故障点的反射损耗,计算所述故障点的反射损耗,其中,所述故障点的反射损耗为所述故障点与所述参考故障点之间的故障严重度减去所述参考故障点的反射损耗而获得的绝对差值。
  19. 一种HFC网络故障定位的系统,其特征在于,包括:至少一个CM和如权利要求7-12中任一项所述的HFC网络故障定位的装置。
PCT/CN2015/094060 2015-11-06 2015-11-06 一种hfc网络故障定位的方法及装置、系统 WO2017075834A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/094060 WO2017075834A1 (zh) 2015-11-06 2015-11-06 一种hfc网络故障定位的方法及装置、系统
CN201580081709.1A CN107852343B (zh) 2015-11-06 2015-11-06 一种hfc网络故障定位的方法及装置、系统
EP15907676.9A EP3361676B1 (en) 2015-11-06 2015-11-06 Method, apparatus and system for fault localization of hfc network
US15/971,981 US10476737B2 (en) 2015-11-06 2018-05-04 Hybrid fiber coaxial (HFC) network fault locating method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094060 WO2017075834A1 (zh) 2015-11-06 2015-11-06 一种hfc网络故障定位的方法及装置、系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/971,981 Continuation US10476737B2 (en) 2015-11-06 2018-05-04 Hybrid fiber coaxial (HFC) network fault locating method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2017075834A1 true WO2017075834A1 (zh) 2017-05-11

Family

ID=58661403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094060 WO2017075834A1 (zh) 2015-11-06 2015-11-06 一种hfc网络故障定位的方法及装置、系统

Country Status (4)

Country Link
US (1) US10476737B2 (zh)
EP (1) EP3361676B1 (zh)
CN (1) CN107852343B (zh)
WO (1) WO2017075834A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088766A (zh) * 2018-08-15 2018-12-25 无锡江南计算技术研究所 一种基于配对测试的互连网络故障检测与定位方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311728B (zh) * 2019-04-02 2020-08-04 广东有线广播电视网络有限公司 有线电视双向网络的故障检查处理方法,系统及存储介质
CN110324066A (zh) * 2019-07-09 2019-10-11 北京市天元网络技术股份有限公司 一种基于cm预均衡值的hfc网络故障分析方法以及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484904A (zh) * 2000-12-14 2004-03-24 ���dz� 用于对hfc网络中的入口噪声进行远程监控的系统
US20070133425A1 (en) * 2005-12-07 2007-06-14 Jds Uniphase Corporation End Of Line Monitor Using DOCSIS
CN102967803A (zh) * 2012-12-13 2013-03-13 山东理工大学 基于d型行波原理的配电网故障定位方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706252B2 (en) * 2005-07-21 2010-04-27 Time Warner Cable, Inc. System and method for locating faults in a hybrid fiber coax (HFC) cable network
CN101079668B (zh) * 2007-07-05 2011-07-20 华为技术有限公司 光纤故障定位设备、方法及装置
US8416697B2 (en) * 2010-02-05 2013-04-09 Comcast Cable Communications, Llc Identification of a fault
US10477199B2 (en) * 2013-03-15 2019-11-12 Arris Enterprises Llc Method for identifying and prioritizing fault location in a cable plant
CN103969554A (zh) * 2014-05-30 2014-08-06 智友光电技术发展有限公司 高压电缆线路在线故障定位装置及其定位方法
EP3190714B1 (en) * 2014-09-28 2018-12-05 Huawei Technologies Co., Ltd. Method and apparatus for acquiring channel transmission characteristics
CN105007182B (zh) * 2015-07-08 2018-08-28 广州珠江数码集团股份有限公司 一种docsis网络系统的主动式网络维护方法及系统
US10531228B2 (en) * 2015-12-16 2020-01-07 Sk Planet Co., Ltd. Approaching user detection, user authentication and location registration method and apparatus based on RF fingerprint
US10348554B2 (en) * 2016-04-25 2019-07-09 Cisco Technology, Inc. Hybrid fibre coaxial fault locationing in cable network environments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484904A (zh) * 2000-12-14 2004-03-24 ���dz� 用于对hfc网络中的入口噪声进行远程监控的系统
US20070133425A1 (en) * 2005-12-07 2007-06-14 Jds Uniphase Corporation End Of Line Monitor Using DOCSIS
CN102967803A (zh) * 2012-12-13 2013-03-13 山东理工大学 基于d型行波原理的配电网故障定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088766A (zh) * 2018-08-15 2018-12-25 无锡江南计算技术研究所 一种基于配对测试的互连网络故障检测与定位方法
CN109088766B (zh) * 2018-08-15 2021-10-29 无锡江南计算技术研究所 一种基于配对测试的互连网络故障检测与定位方法

Also Published As

Publication number Publication date
EP3361676A1 (en) 2018-08-15
CN107852343B (zh) 2020-11-17
CN107852343A (zh) 2018-03-27
EP3361676B1 (en) 2020-09-16
US10476737B2 (en) 2019-11-12
EP3361676A4 (en) 2018-10-24
US20180254946A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
EP3240239B1 (en) Hybrid fibre coaxial fault locationing in cable network environments
US20170310361A1 (en) Radio frequency signal fault signature isolation in cable network environments
US10644748B2 (en) Network test instrument with cable connection and signature testing
EP2579561A1 (en) Smart gateway
US20170077988A1 (en) Method and device for simultaneous upstream and downstream measurements in cable tv networks
US9042236B2 (en) Method using equalization data to determine defects in a cable plant
US20180270143A1 (en) Spectrum analysis capability in network and/or system communication devices
WO2017075834A1 (zh) 一种hfc网络故障定位的方法及装置、系统
US9015786B2 (en) Noise ingress detection
US6209108B1 (en) Method for testing VDSL loops
US9985836B2 (en) Determining a network taxonomy using network transmission data
US11626935B2 (en) Network test instrument with testing session analysis
JP2015537200A (ja) パッシブ光ネットワーク損失解析システム
US7515692B2 (en) System and method for qualifying telephone lines for very-high-bit-rate digital subscriber line service
CN107251488A (zh) 反向分接头(rdt)、远程诊断管理工具(rdmt)以及使用所述rdt和所述rdmt的分析
EP3163313A1 (en) Fault analysis method and device
US7589535B2 (en) Network device detection using frequency domain reflectometer
US8908538B1 (en) Impairment discovery using automatic geographical clustering
CN105007182B (zh) 一种docsis网络系统的主动式网络维护方法及系统
WO2016045131A1 (zh) 信道传输特性获取方法和装置
US20210037131A1 (en) Method and network analyzer of evaluating a communication line
JP5759016B2 (ja) 第1の局所的に測定可能なループ特性と第1の組のパラメータとを用いて第1のループ特徴値推定方法を較正するための方法およびシステム
EP2961076A1 (en) A device enabling the measurement of the transmission power spectrum density of a transceiver in a DSL system
US9215173B1 (en) Fiber node discovery using ranging delay data
TW201301913A (zh) 智慧型dsl高穩定性之服務供裝方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015907676

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE