WO2017073439A1 - 流体制御弁 - Google Patents

流体制御弁 Download PDF

Info

Publication number
WO2017073439A1
WO2017073439A1 PCT/JP2016/081039 JP2016081039W WO2017073439A1 WO 2017073439 A1 WO2017073439 A1 WO 2017073439A1 JP 2016081039 W JP2016081039 W JP 2016081039W WO 2017073439 A1 WO2017073439 A1 WO 2017073439A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
valve
valve body
fluid
pressure
Prior art date
Application number
PCT/JP2016/081039
Other languages
English (en)
French (fr)
Inventor
山田博介
宍戸賢司
Original Assignee
Smc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc株式会社 filed Critical Smc株式会社
Priority to RU2018119090A priority Critical patent/RU2720870C2/ru
Priority to US15/771,139 priority patent/US10514048B2/en
Priority to KR1020187010472A priority patent/KR20180071261A/ko
Priority to MX2018005112A priority patent/MX2018005112A/es
Priority to DE112016004954.4T priority patent/DE112016004954T5/de
Priority to CN201680063009.4A priority patent/CN108350909B/zh
Priority to BR112018008240-6A priority patent/BR112018008240B1/pt
Publication of WO2017073439A1 publication Critical patent/WO2017073439A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/064Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with devices for saving the compressible medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/149Fluid interconnections, e.g. fluid connectors, passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1825Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism for check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1221Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • F16K31/52408Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve
    • F16K31/52416Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve comprising a multiple-way lift valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • the present invention relates to a fluid control valve, for example, a fluid control valve for disposing between a switching valve connected to a fluid pressure source and a double-acting cylinder having first and second pressure chambers. .
  • Double-acting fluid pressure cylinders that reciprocate with pressure are generally known.
  • the compressed fluid filled in the pressure chamber on the exhaust side is reduced in the pressure chamber as the piston moves.
  • it will be discharged into the atmosphere.
  • it is desirable to reuse the compressed air discharged from the pressure chamber as the fluid pressure actuator operates as much as possible.
  • Patent Document 1 proposes a pneumatic cylinder device that recirculates the exhaust of the rod-side pressure chamber to the head-side pressure chamber for reuse when the rod of the double-acting cylinder is advanced.
  • a 4-port 2-position switching valve having both a function of supplying and discharging compressed air to and from the cylinder and a function of recirculating exhaust gas is used.
  • An object of the present invention is to provide a fluid control valve having a structure suitable for extracting and reusing exhaust gas from a pressure chamber by connecting to the pressure chamber of a fluid pressure actuator.
  • a fluid control valve is a double-acting fluid having a switching valve connected to a fluid pressure source, a first pressure chamber on the head side, and a second pressure chamber on the rod side.
  • the compressed fluid discharged from the second pressure chamber of the fluid pressure cylinder as the fluid pressure cylinder is driven by switching the switching valve is disposed between the first pressure chamber and the pressure cylinder.
  • a fluid control valve for recirculating to the first valve, a first port for connecting to the switching valve, a second port for connecting to the two pressure chambers, and a first port for connecting to the first pressure chamber.
  • a second check valve that allows and prevents flow from the third port side to the second port side, a valve body that opens and closes communication from the second port to the third port, and the valve body A valve hole slidably inserted in the axial direction, and the exhaust passage is formed by a gap formed between the valve hole and the valve body.
  • a first pressure receiving surface for applying the fluid pressure of the first port in the closing direction of the valve body and a second pressure receiving surface for applying the fluid pressure of the second port in the opening direction of the valve body are formed. It is characterized by being.
  • the fluid control valve includes a first port, a second port, and a third port through which the compressed fluid passes, an air supply passage that communicates between the first port and the second port, and the second port.
  • An exhaust passage communicating between the port and the third port; and provided in the air supply passage, allowing the compressed fluid to flow from the first port side to the second port side;
  • a second check valve that prevents the flow from the third port side to the second port side;
  • a valve body that opens and closes communication from the second port to the third port; and an opening / closing operation unit that opens and closes the valve body And the opening / closing operation part is provided on the valve body to provide the first And a second pressure receiving surface that is provided on the valve body and applies the fluid pressure of the second port in the opening direction of the valve body. It is characterized by having.
  • the valve body is formed in a rod shape having a substantially circular cross section, and has a first end on the proximal end side and a second end on the distal end side at both ends in the axial direction.
  • the first end side shaft portion and the valve portion connected to the second end side of the shaft portion are formed, and the second pressure receiving surface is formed on the valve portion.
  • the shaft portion of the valve body has a piston, and the compressed fluid from the first port is supplied to the piston pressure chamber defined by the first pressure receiving surface located on the first end side. More preferably, a pilot flow path is connected.
  • the valve portion includes a large-diameter portion connected to the shaft portion and a small-diameter portion connected to the second end side of the large-diameter portion and having a smaller maximum diameter than the large-diameter portion.
  • the fluid control valve has a flow rate adjusting unit for adjusting the flow rate of the exhaust gas flowing from the second port into the exhaust flow path when the valve unit is opened, and the flow rate adjusting unit is An inclined cam surface spirally disposed around the shaft portion of the valve body, and also disposed around the shaft portion of the valve body so as to contact the inclined cam surface when the valve portion is opened.
  • a stopper piece that contacts and prevents movement of the valve body in the first end direction, and the inclined cam surface and the stopper piece are relatively rotatable about the axis of the valve body.
  • the small-diameter portion of the valve portion is preferably formed in a tapered shape that gradually decreases in diameter toward the second end.
  • the shaft part of the said valve body has a piston, and supplies the compressed fluid from the said 1st port to the piston pressure chamber divided by the said 1st pressure receiving surface located in the said 1st end side.
  • a pilot flow path is connected, the inclined cam surface is provided on the first end side of the piston so as to face the piston, and the valve body is inserted into the valve hole so as to be rotatable in the circumferential direction.
  • the stopper piece protrudes from the outer periphery of the shaft portion into the piston pressure chamber.
  • the compressed fluid can be supplied from the first port to the pressure chamber through the second port by connecting the second port to the pressure chamber of the fluid pressure actuator.
  • the exhaust can be removed from the third port through the second port and reused. For example, by connecting the second port to the pressure chamber on the rod side of the double-acting fluid cylinder and connecting the third port to the pressure chamber on the head side, exhausting from the pressure chamber on the rod side when the rod advances Is returned to the pressure chamber on the head side, and consumption of the compressed fluid can be suppressed.
  • FIG. 1 It is sectional drawing which shows the state which opened the valve body of the flow control valve of this invention. It is an enlarged view of the valve part vicinity shown by FIG. It is sectional drawing which shows the state which closed the valve body of the flow control valve of this invention. It is a front view which shows the flow volume adjustment part and its surrounding structure. It is a circuit diagram which shows an example of the control circuit which controls a double acting type fluid pressure cylinder using the fluid control valve of this invention. It is a graph which shows the relationship between the fluid pressure of each pressure chamber and the stroke amount of a piston at the time of returning a compressed fluid from a head side pressure chamber to a rod side pressure chamber.
  • the fluid control valve of the present invention is used to take out and reuse the exhaust from the pressure chamber by connecting to the pressure chamber of the fluid pressure actuator. Therefore, here, the fluid control valve 10 according to one embodiment of the present invention is connected to a double-acting fluid pressure cylinder 1 having a piston 1c and a rod 1d as shown in FIG.
  • the case where the exhaust gas discharged from the second pressure chamber 1b on the rod side of the fluid pressure cylinder 1 is returned to the first pressure chamber 1a on the head side and reused will be described as an example.
  • the fluid control valve 10 includes a first port 11 for connection to the switching valve 3, a second port 12 for connection to the second pressure chamber 1b, and a first pressure.
  • a third port 13 for connection to the chamber 1a, an air supply passage 14 for communicating between the first port 11 and the second port 12, and an exhaust for communicating between the second port 12 and the third port 13.
  • a flow path 15 for communicating between the first port 11 and the second port 12.
  • the first to third ports 11 to 13, the air supply passage 14, and the exhaust passage 15 are formed in the valve housing 50.
  • the valve housing 50 includes a cylindrical trunk 51a having an axis L (an axis extending in the vertical direction in FIGS. 1 and 3, the upper side being a first end side and the lower side being a second end side), It has a main block 51 composed of cylindrical first and second branch portions 51b and 51c extending from the side wall of the trunk portion 51a. Further, the valve housing 50 is air-tightly fitted to the first branch portion 51b and has a first port block 52 having the first port 11, and the valve housing 50 is air-tightly fitted to the second end side of the trunk portion 51a. A second port block 53 having a second port 12. The third port 13 is provided in the second branch 51c. Furthermore, an end cap 54 is provided on the first end side of the trunk 51a so as to be rotatable about the axis L.
  • the air supply flow path 14 is formed on the first air supply flow path 14a penetrating the first port block 52, the second air supply flow path 14b penetrating the first branch part 51b, and the second end side of the trunk part 51a. And a third air supply passage 14c.
  • the third air supply passage 14c allows the compressed fluid supplied from the fluid pressure source 2 to flow from the first port 11 side to the second port 12 side, and from the second port 12 side to the first port.
  • a first check valve 20 is provided to prevent the flow toward the port 11 side.
  • the exhaust flow path 15 includes a first exhaust flow path 15a penetrating through the second branch portion 51c and a second exhaust flow path 15b formed on the second end side of a rod insertion hole 22 described later. Is formed.
  • the second exhaust passage 15b is allowed to flow from the second port 12 side to the third port 13 side, and is prevented from flowing from the third port 13 side to the second port 12 side.
  • a check valve 21 is provided.
  • the inside of the trunk 51a is partitioned by an inner peripheral wall 51d of the trunk 51a.
  • a valve body 30 slidable in the direction of the axis L is provided.
  • the valve body 30 is for opening and closing the communication from the second port 12 to the exhaust passage 15b, that is, the communication from the second port 12 to the third port 13, and the inside of the rod insertion hole 22 is opened. It is formed in a rod shape with a substantially circular cross section that can rotate around the axis L.
  • the valve body 30 includes a shaft portion 32 provided on the first end side in the axis L direction, that is, the proximal end side, and a valve portion 31 provided on the second end side, that is, the distal end side. .
  • the shaft portion 32 is formed with a first pressure receiving surface for applying the fluid pressure of the first port 11 in the closing direction (second end direction) of the valve body 30, and the valve portion 31 has the second port.
  • a second pressure receiving surface is formed for applying 12 fluid pressures in the opening direction (first end direction) of the valve body 30.
  • the rod insertion hole 22 includes a shaft insertion portion 22a that is provided on the first end side and passes through the shaft portion 32, and a valve insertion portion 22b that is provided on the second end side and passes through the valve portion 31.
  • the shaft insertion portion 22a and the valve insertion portion 22b are airtightly partitioned by a seal member 60 provided on the partition wall 23 that partitions the two.
  • this valve insertion part 22b is formed so that the hole diameter may become larger than the maximum diameter of the said valve part 31 (diameter of the large diameter part 33 mentioned later), and the inner peripheral wall 51d of this valve insertion part 22b and The second exhaust flow path 15b is configured by a gap formed between the outer peripheral surface of the valve portion 31 (that is, the outer peripheral surface of the large-diameter portion 33).
  • a groove 57 is provided on the outer peripheral surface on the second end side of the trunk portion 51 a, and the first check valve 20 is attached to the groove 57. Further, in the valve insertion portion 22b of the rod insertion hole 22, the position is closer to the second end side (that is, the second port 12 side) than the second check valve 21 from the inner peripheral wall 51d inward (radial direction).
  • An annular projecting portion 48 is provided in the projecting manner.
  • a valve seat 44 to which the valve portion 31 contacts and separates is formed by a surface facing the first end side of the protrusion 48, and further, a small diameter of the valve portion 31 described later is formed by the inner periphery of the protrusion 48.
  • a throttle portion 46 that can be inserted through the portion 34 is formed.
  • the valve portion 31 includes a cylindrical large-diameter portion 33 connected to the shaft portion 32 and a small-diameter having a maximum diameter smaller than that of the large-diameter portion 33 connected to the second end side of the large-diameter portion 33.
  • a groove 58 is provided on the outer peripheral surface of the large diameter portion 33, and the above-described second check valve 21 is attached to the groove 58.
  • the small diameter portion 34 is formed in a tapered shape whose diameter gradually decreases toward the second end, and a distal end surface 36a having a normal direction in the axis L direction of the valve body 30 is formed at the distal end.
  • a groove 36b forming a step portion is formed at the connecting portion which is a boundary between the large diameter portion 33 and the small diameter portion 34, and a seal member 35 is attached to the groove 36b.
  • the seal member 35 is brought into contact with the valve seat 44 in a state where the valve body 30 is moved to the second end side, and is separated from the valve seat 44 in a state where the valve body 30 is moved to the first end side. It is arranged in the valve part 31. For this reason, in the state where the seal member 35 and the valve seat 44 are in contact with each other and in the separated state, that is, in the closed state and the open state of the valve portion 31, the open state of the valve portion 31 is the above-described state of the valve portion 31.
  • the area (pressure receiving area) where the fluid pressure acts in the first end direction on the second pressure receiving surface is increased. As a result, the urging force in the first end direction acting on the valve body 30 is increased, and the responsiveness after the valve portion 31 is opened is improved.
  • the shaft portion 32 is connected to the first end side of the large-diameter portion 33, and is connected to the body portion 38 having a larger diameter than the large-diameter portion 33 and the first end side of the body portion 38.
  • the shaft portion 39 protrudes from the opening on the first end side of the trunk portion 51a.
  • the body portion 38 is provided with a piston 37 having a seal member 62 on the outer periphery, and the piston 37 allows the shaft insertion portion 22a of the rod insertion hole 22 described above to be in the first partition chamber 70a on the first end side. And a second compartment 70b on the second end side.
  • the seal member 62 of the piston 37 allows a fluid flow from the second compartment 70b side to the first compartment 70a side, but from the first compartment 70a side to the second compartment.
  • the flow of the fluid to the chamber 70b side is comprised by the check valve which blocks
  • the first compartment 70a forms a piston pressure chamber for driving the piston 37 in the second end direction, while the second compartment 70b is opened to the atmosphere. Yes.
  • the shaft portion 39 is fitted into the mounting hole 59 of the end cap 54, and the end cap 54 is fixedly provided around the axis L with respect to the shaft portion 39. That is, when the end cap 54 is rotated around the axis L, the shaft portion 39 is also rotated at the same time.
  • An annular stator 41 (a cam ring having a helically inclined cam surface 41a) is fixed by fitting at a position closer to the first end side than the piston 37 in the shaft insertion portion 22a.
  • the shaft portion 32 is inserted into the stator 41 so as to be slidable in the direction of the axis L and rotatable about the axis L.
  • an inclined cam surface 41 a that faces the piston 37 and is spirally arranged with the axis L as a center is provided around the shaft portion 32. Is provided.
  • a stopper piece 43 extending from the first end side surface 37 a of the piston 37 toward the stator 41 is projected from the outer peripheral wall of the body portion 38 of the shaft portion 32.
  • the throttle amount of the throttle portion 46 that is, the flow rate of the fluid flowing from the second port 12 through the throttle portion 46 to the exhaust flow path 15.
  • the inclined cam surface 41a and the stopper piece 43 constitute the flow rate adjusting portion 47 in the present invention.
  • An annular cap member 42 is airtightly fitted to the shaft insertion portion 22a adjacent to the first end side of the stator 41, and the shaft portion 32 of the valve body 30 is fitted to the cap member 42. On the other hand, it is inserted in an airtight manner so as to be slidable in the direction of the axis L and rotatable about the axis L.
  • a pilot channel 71 for supplying a compressed fluid from the first port 11 is connected between the first compartment 70a and the second air supply channel 14b. Therefore, a part of the compressed fluid supplied to the first port 11 is supplied to the first compartment 70 a through the pilot channel 71 when it flows to the second port 12 through the supply channel 14.
  • the fluid pressure of the compressed fluid supplied to the first compartment 70a acts on the first pressure receiving surface located on the first end side of the piston 37, so that the piston 37 moves in the second end direction, that is, The valve body 30 is moved in the closing direction.
  • the second partition chamber 70 b is provided with a compression spring 25 that applies a biasing force in the first end direction (that is, the opening direction of the valve body 30) to the piston 37.
  • the compression spring 25 includes a spring receiving portion 24 attached to a connecting portion (that is, the partition wall 23) between the shaft insertion portion 22a and the valve insertion portion 22b, and a surface 37b on the second end side of the piston 37. It is shrunk in between.
  • the 1st pressure receiving surface of the said shaft part 32, the 2nd pressure receiving surface of the said valve part 31, and this compression spring 25 comprise the opening / closing operation part in this invention.
  • the elastic coefficient of the compression spring 25 should be appropriately determined based on the pressure of the compressed fluid to be applied, the necessary characteristics of the fluid pressure actuator to be connected, and the like.
  • the sum of the urging forces in the first end direction due to the compression spring 25 and the fluid pressure acting on the second pressure receiving surface is the fluid acting on the first pressure receiving surface. It is set to be smaller than the urging force in the second end direction due to the pressure.
  • the compression spring 25 is not necessarily provided, and may be omitted, and the valve body 30 may be operated in the opening direction only by the fluid pressure of the second port 12 acting on the second pressure receiving surface. Is possible.
  • the fluid control valve 10 is connected to a double-acting fluid pressure cylinder 1 having a piston 1c and a rod 1d so that the rod of the fluid pressure cylinder 1 is moved when the piston 1c is advanced.
  • a specific operation of the multi-fluid control valve 10 in the case where the exhaust discharged from the second pressure chamber 1b on the side is recirculated to the first pressure chamber 1a on the head side will be described.
  • the fluid control valve 10 is connected between the switching valve 3 connected to the fluid pressure source 2 and the fluid pressure cylinder 1 having the first pressure chamber 1a on the head side and the second pressure chamber 1b on the rod side. Has been.
  • a first flow path 4a that connects the switching valve 3 and the first port 11 of the fluid control valve 10, a second pressure chamber 1b, and a fluid control valve.
  • the second flow path 4 b connecting the second port 12
  • the third flow path 4 c connecting the first pressure chamber 1 a and the switching valve 3
  • the third flow path 4 c and the second flow control valve 10 A fourth flow path 4d that connects the three ports is provided. Further, the flow rate of the compressed fluid discharged from the first pressure chamber 1a is adjusted in the third flow channel 4c between the connection portion of the third flow channel 4c and the fourth flow channel 4d and the first pressure chamber 1a.
  • a meter-out control type throttle valve 5 is provided.
  • the switching valve 3 is selected as the first position for supplying the compressed fluid from the fluid pressure source 2 to the second pressure chamber 1b or the second position for supplying the compressed fluid from the fluid pressure source 2 to the first pressure chamber 1a. Can be switched automatically. Therefore, first, the case where the switching valve 3 is switched to the first position, that is, the case where the rod 1d of the fluid pressure cylinder 1 is retracted will be described.
  • the compressed fluid supplied from the fluid pressure source 2 is supplied to the first port 11 of the fluid control valve 10 described above through the first flow path 4a.
  • the compressed fluid supplied to the first port 11 sequentially flows through the first air supply channel 14a and the second air supply channel 14b, a part of which is supplied to the pilot channel 71 described above, and the rest is the above It is supplied to the third air supply channel 14c.
  • the compressed fluid supplied to the third air supply passage 14 c passes through the first check valve 20, is output from the second port 12, and is supplied to the second pressure chamber 1 b of the fluid pressure cylinder 1.
  • the compressed air in the first pressure chamber 1 b of the fluid pressure cylinder 1 is released to the atmosphere through the throttle valve 5 and the switching valve 3.
  • the compressed fluid that has flowed into the pilot flow path 71 is supplied to the first compartment 70a as the piston pressure chamber described above.
  • the pressure of the compressed fluid supplied to the first compartment 70a and the fluid pressure of the compressed fluid output from the second port 12 are substantially the same.
  • the biasing force in the second end direction (the closing direction of the valve body 30) due to the fluid pressure acting on the first pressure receiving surface of the shaft portion 32 is applied to the second pressure receiving surface of the valve portion 31.
  • the biasing force in the first end direction (the opening direction of the valve body 30) due to the acting fluid pressure is smaller.
  • the difference in the urging force due to the fluid pressure is always set to be larger than the urging force in the first end direction by the compression spring 25 when the valve portion 31 is seated and closed. Therefore, as shown in FIG. 3, the valve element 30 is in communication with the second port 12 and the exhaust flow path 15 in a state of being seated on the valve seat 44, that is, from the second port 12 to the third port 13. Communication is closed.
  • valve body 30 is biased in the opening direction by the compression spring 25. Therefore, as shown in FIG. 1, the valve body 30 is separated from the valve seat 44 and communicates between the second port 12 and the exhaust flow path 15, that is, from the second port 12 to the third port 13. Communication is opened.
  • the first pressure chamber 1a communicates with the fluid pressure source 2, the compressed fluid is supplied to the first pressure chamber 1a on the head side. Then, as shown in FIG. 6, the pressure in the first pressure chamber 1a on the head side suddenly rises to a predetermined value, and the piston 1c of the fluid pressure cylinder 1 starts moving to the rod side (right side in FIG. 5). . As the piston 1c moves to the rod side, the volume of the second pressure chamber 1b decreases and the pressure in the second pressure chamber 1b slightly increases, but the piston 1c on the first pressure chamber 1a side is slightly increased.
  • the piston 1c continues to move to the rod side.
  • the compressed fluid discharged from the second pressure chamber 1b flows into the fourth flow path 4d from the exhaust flow path 15 through the third port 13, but is discharged from the second pressure chamber 1b as described above.
  • the compressed fluid in the fourth flow path 4d is returned to the first pressure chamber 1a through the third flow path 4c.
  • the end cap 54 is turned to adjust the throttle amount of the throttle portion 46, that is, the flow rate of the exhaust gas from the second pressure chamber 1b flowing through the throttle portion 46. Adjust it.
  • the flow rate control valve 10 of the present embodiment connects the second port 12 to the second pressure chamber 1b of the fluid pressure cylinder 1 that is a fluid pressure actuator, so that the first port 11 to the second port.
  • the compressed fluid can be supplied to the second pressure chamber 1 b through 12, and the exhaust from the second pressure chamber 1 b can be taken out from the third port 13 through the second port 12. Therefore, this exhaust gas can be efficiently reused.
  • the second port 12 is connected to the second pressure chamber 1b, and the third port 13 is connected to the first pressure chamber 1a. At the time of advancement, exhaust from the second pressure chamber 1b can be recirculated to the first pressure chamber 1a to suppress consumption of the compressed fluid.
  • the valve body 30 is configured to be opened and closed using compressed air that drives the fluid pressure cylinder 1, it is possible to reduce manufacturing costs and running costs.
  • the large-diameter portion 33 and the small-diameter portion 34 are provided in the rod-shaped valve portion 31, and the seal member 35 that contacts and separates the valve seat 44 is disposed at the boundary between them.
  • the seal member 35 and the valve seat 44 In the state in which the seal member 35 and the valve seat 44 are in contact with each other and in the separated state, that is, in the closed state and the open state of the valve portion 31, the latter has a fluid pressure on the second pressure receiving surface of the valve portion 31.
  • the area (pressure receiving area) acting in the first end direction is increased.
  • the urging force in the first end direction acting on the valve body 30 is increased, and the responsiveness after the valve portion 31 is opened is improved.
  • the valve portion 31 is a needle valve, and the inclined cam surface 41a of the stator 41 arranged in a spiral shape and the stopper piece 43 in contact with the inclined cam surface 41 around the axis L. Since the valve body 30 is rotated to adjust the contact position between the inclined cam surface 41a and the stopper piece 43, the exhaust in the throttle portion 46 when the valve body 30 is opened. Can be easily controlled.
  • the valve portion 31 is a needle valve, but is not necessarily limited thereto, and may be a valve of another form such as a poppet valve.
  • the inclined cam surface 41a is fixed to the rod insertion hole 22, and the stopper piece 43 to be brought into contact with the rod insertion hole 22 is fixed to the valve body 30.
  • the inclined cam surface 41a is fixed to the valve body.
  • the stopper piece 43 may be fixed to the rod insertion hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Driven Valves (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Multiple-Way Valves (AREA)
  • Lift Valve (AREA)
  • Check Valves (AREA)

Abstract

流体圧アクチュエータの圧力室からの排気を取り出して再利用するのに適した構造を有する流体制御弁を提供する。流体制御弁は、第1ポート(11)と第2ポート(12)との間を連通させる給気流路(14)と、第2ポート(12)と第3ポート(13)との間を連通させる排気流路(15)と、給気流路(15)に設けられる第1チェック弁(20)と、排気流路(15)に設けられる第2チェック弁(21)と、第2ポート(12)から第3ポート(13)への連通を開閉する弁体(30)と、弁体(30)がその軸方向に摺動自在に挿入された弁孔(22)とを有し、排気流路(15)は、弁孔(22)と弁体(30)との間に形成された間隙(15b)によって形成され、弁体(30)には、第1ポート(11)の流体圧を弁体(30)の閉方向に作用させる第1受圧面と、第2ポート(12)の流体圧を弁体(30)の開方向に作用させる第2受圧面とが形成されている。

Description

流体制御弁
 本発明は、流体制御弁、例えば、流体圧源に繋がれた切換弁と第1及び第2圧力室を備えた複動式シリンダとの間に配設するための流体制御弁に関するものである。
 ピストンで区画された双方の圧力室に給排気ポートをそれぞれ設け、流体圧源に繋がれた電磁弁を切り換えるなどして、給排気ポートを相互に流体圧源に接続することにより、ピストンを流体圧で往復動させる複動式の流体圧シリンダは、従来から一般的に知られている。
 ところで、このような複動式の流体圧シリンダにおいては、通常、ピストンを流体圧で往復動させたとき、排気側の圧力室に充填された圧縮流体は、ピストンの移動に伴う圧力室の縮小に伴って大気に排出されてしまう。
 しかしながら、省エネルギーの観点からすれば、そのような流体圧アクチュエータの動作に伴って圧力室から排出される圧縮空気は、できるだけ再利用することが望ましい。
 そこで、特許文献1においては、複動式シリンダのロッドを進出させるにあたって、ロッド側圧力室の排気をヘッド側圧力室に還流させて再利用する空気圧シリンダ装置が提案されているが、空圧源に繋ぐ切換弁として、上記シリンダに対して圧縮空気を給排する機能と、排気を還流させる機能とを兼ね備えた4ポート2位置切換弁を用いている。
特開平8-42511号公報
 本発明の課題は、流体圧アクチュエータの圧力室に接続することにより、該圧力室からの排気を取り出して再利用するのに適した構造を有する流体制御弁を提供することにある。
 上記課題を解決するため、本発明に係る流体制御弁は、流体圧源に繋がれた切換弁とヘッド側の第1及圧力室及びロッド側の第2圧力室を備えた複動式の流体圧シリンダとの間に配設するためのもので、上記切換弁の切換えによる流体圧シリンダの駆動に伴って、流体圧シリンダの上記第2圧力室から排出される圧縮流体を上記第1圧力室へと還流させるための流体制御弁であって、上記切換弁に接続するための第1ポートと、上記2圧力室に接続するための第2ポートと、上記1圧力室に接続するための第3ポートと、上記第1ポートと第2ポートとの間を連通させる給気流路と、上記第2ポートと第3ポートとの間を連通させる排気流路と、上記給気流路に設けられ、圧縮流体が上記第1ポート側から第2ポート側へと流れるのを許容し、上記第2ポート側から第1ポート側へと流れるのを阻止する第1チェック弁と、上記排気流路に設けられ、圧縮流体が上記第2ポート側から第3ポート側へと流れるのを許容し、上記第3ポート側から第2ポート側へと流れるのを阻止する第2チェック弁と、上記第2ポートから上記第3ポートへの連通を開閉する弁体と、該弁体がその軸方向に摺動自在に挿入された弁孔と、を有しており、上記排気流路は、上記弁孔と上記弁体との間に形成された間隙によって形成され、上記弁体には、上記第1ポートの流体圧を該弁体の閉方向に作用させる第1受圧面と、上記第2ポートの流体圧を該弁体の開方向に作用させる第2受圧面とが形成されていることを特徴とする。
 また、本発明に係る流体制御弁は、圧縮流体が通る第1ポート、第2ポート及び第3ポートと、上記第1ポートと第2ポートとの間を連通させる給気流路と、上記第2ポートと第3ポートとの間を連通させる排気流路と、上記給気流路に設けられ、上記圧縮流体が上記第1ポート側から第2ポート側へと流れるのを許容し、上記第2ポート側から第1ポート側へと流れるのを阻止する第1チェック弁と、上記排気流路に設けられ、上記圧縮流体が上記第2ポート側から第3ポート側へと流れるのを許容し、上記第3ポート側から第2ポート側へと流れるのを阻止する第2チェック弁と、上記第2ポートから上記第3ポートへの連通を開閉する弁体と、該弁体を開閉する開閉操作部と、を有し、該開閉操作部が、上記弁体に設けられて上記第1ポートの流体圧を該弁体の閉方向に作用させる第1受圧面と、同じく該弁体に設けられて上記第2ポートの流体圧を該弁体の開方向に作用させる第2受圧面とを有していることを特徴とする。
 この場合において、該流体制御弁は、上記弁体がその軸方向に摺動自在に挿入された弁孔を有していて、上記排気流路が、上記弁孔と上記弁体との間に形成された間隙によって形成されているものが好ましい。
 また、この場合において、上記弁体は、断面略円形のロッド状に形成されていて、その軸方向の両端に基端側の第1端と先端側の第2端とをそれぞれ有しており、上記第1端側のシャフト部と、該シャフト部の上記第2端側に連接された弁部とにより形成され、該弁部に上記第2受圧面が形成されていることが好ましい。
 このとき、上記弁体のシャフト部がピストンを有していて、その上記第1端側に位置する上記第1受圧面によって区画されたピストン圧力室に、上記第1ポートからの圧縮流体を供給するパイロット流路が接続されていることがさらに好ましい。
 また、上記弁部は、上記シャフト部に連接された大径部と、該大径部の上記第2端側に連接され該大径部よりも最大径が小さい小径部とにより構成されていて、該大径部と小径部との間にシール部材を有し、上記弁孔には、上記第2ポートと排気流路との間に、上記弁部の小径部が挿入される絞り部が形成されていて、該絞り部には、上記シール部材を接離させる弁座が形成されていることが好ましい。
 このとき、該流体制御弁は、上記弁部の開放時に上記第2ポートから上記排出流路へと流入する排気の流量を調節するための流量調節部を有しており、該流量調節部が、該弁体のシャフト部の周囲に螺旋状に配された傾斜カム面と、同じく該弁体のシャフト部の周囲に配され、上記弁部が開放されたときに、上記傾斜カム面に当接して上記弁体の第1端方向への移動を阻止するストッパ片とを有し、上記傾斜カム面とストッパ片とは、上記弁体の軸廻りに相対的に回動可能となっており、上記弁部の小径部は、上記第2端に向けて除々に径が小径化する先細り状に形成されていることが好ましい。
 そして、上記弁体のシャフト部がピストンを有していて、その上記第1端側に位置する上記第1受圧面によって区画されたピストン圧力室に、上記第1ポートからの圧縮流体を供給するパイロット流路が接続され、上記傾斜カム面が、上記ピストンの第1端側において該ピストンに対向させて設けられ、上記弁体が、上記弁孔に対して周方向に回動自在に挿入されていて、上記ストッパ片が、上記シャフト部の外周から上記ピストン圧力室内に突設されていることがさらに好ましい。
 本発明によれば、第2ポートを流体圧アクチュエータの圧力室に接続することにより、第1ポートから第2ポートを通じて上記圧力室に圧縮流体を供給することができ、また、該圧力室からの排気を、第2ポートを通じて第3ポートから取り出し、再利用に供することができる。例えば、第2ポートを複動式の流体シリンダのロッド側の圧力室に接続し、第3ポートをヘッド側の圧力室に接続することにより、ロッドの進出時に、ロッド側の圧力室からの排気をヘッド側の圧力室に還流させて、圧縮流体の消費を抑制することが可能となる。
本発明の流量制御弁の弁体を開いた状態を示す断面図である。 図1に示される弁部付近の拡大図である。 本発明の流量制御弁の弁体を閉じた状態を示す断面図である。 流量調節部及びその周辺の構造を示す正面図である。 本発明の流体制御弁を使用して複動式の流体圧シリンダを制御する制御回路の一例を示す回路図である。 ヘッド側圧力室からロッド側圧力室に圧縮流体を還流する際の各圧力室の流体圧とピストンのストローク量との関係を示すグラフである。
 以下、本発明に係る流体制御弁の一実施形態について、図面を用いて詳細に説明する。本発明の流体制御弁は、流体圧アクチュエータの圧力室に接続することにより、該圧力室からの排気を取り出して再利用するのに用いられるものである。そこで、ここでは、本発明の一実施形態に係る流体制御弁10を、図5に示すように、ピストン1cとロッド1dを有する複動式の流体圧シリンダ1に接続し、ピストン1cの進出時に、この流体圧シリンダ1のロッド側の第2圧力室1bから排出される排気を、ヘッド側の第1圧力室1aに還流させて再利用する場合を例に挙げて説明することとする。
 図1~図5に示すように、この流体制御弁10は、切換弁3に接続するための第1ポート11と、第2圧力室1bに接続するための第2ポート12と、第1圧力室1aに接続するための第3ポート13と、第1ポート11と第2ポート12との間を連通させる給気流路14と、第2ポート12と第3ポート13との間を連通させる排気流路15とを有している。
 これらの第1~第3ポート11~13、給気流路14、及び排気流路15は、バルブハウジング50内に形成されている。このバルブハウジング50は、軸L(図1、図3における上下方向に延びる軸であり、上側を第1端側、下側を第2端側とする)を有する筒状の幹部51aと、この幹部51aの側壁から延びている筒状の第1及び第2枝部51b、51cとからなる主ブロック51を有している。また、バルブハウジング50は、第1枝部51bに対して気密に外嵌し上記第1ポート11を有する第1ポートブロック52と、幹部51aの第2端側に対して気密に外嵌し上記第2ポート12を有する第2ポートブロック53とを有している。また、上記第3ポート13は、上記第2枝部51cに設けられている。さらに、幹部51aの第1端側には、エンドキャップ54が軸Lを中心として回転可能に設けられている。
 上記給気流路14は、第1ポートブロック52内を貫通する第1給気流路14aと、第1枝部51bを貫通する第2給気流路14bと、幹部51aの第2端側に形成される第3給気流路14cとから形成されている。また、第3給気流路14cには、流体圧源2から供給される圧縮流体について、第1ポート11側から第2ポート12側へと流れるのを許容し、第2ポート12側から第1ポート11側へと流れるのを阻止する第1チェック弁20が設けられている。
 一方で、上記排気流路15は、第2枝部51c内を貫通する第1排気流路15aと、後述するロッド挿通孔22の第2端側に形成される第2排気流路15bとから形成されている。また、第2排気流路15bには、第2ポート12側から第3ポート13側へと流れるのを許容し、第3ポート13側から第2ポート12側へと流れるのを阻止する第2チェック弁21が設けられている。
 上記幹部51aの内部には、この幹部51aの内周壁51dによって区画され、この幹部51aを長手方向(軸線L方向)に貫通する弁孔としてのロッド挿通孔22と、このロッド挿通孔22内を軸線L方向に摺動自在な弁体30が設けられている。この弁体30は、上記第2ポート12から排気流路15bへの連通、すなわち、第2ポート12から第3ポート13への連通を開閉するためのものであり、上記ロッド挿通孔22内を軸線L廻りに回動自在な断面略円形のロッド状に形成されている。また、この弁体30は、その軸線L方向の第1端側すなわち基端側に設けられたシャフト部32と、第2端側すなわち先端側に設けられた弁部31とから構成されている。そして、シャフト部32には、上記第1ポート11の流体圧を弁体30の閉方向(第2端方向)に作用させる第1受圧面が形成され、弁部31には、上記第2ポート12の流体圧を弁体30の開方向(第1端方向)に作用させる第2受圧面が形成されている。このとき、弁体30の開閉時にかかわらず、常時、上記第1受圧面の軸線L方向の受圧面積は、上記第2受圧面における軸線L方向の受圧面積よりも大きく形成されている。
 上記ロッド挿通孔22は、第1端側に設けられ上記シャフト部32を挿通するシャフト挿入部22aと、第2端側に設けられ上記弁部31を挿通する弁挿入部22bとから構成されており、これらシャフト挿入部22aと弁挿入部22bとは、両者間を仕切る区画壁23に設けられたシール部材60によって気密に仕切られている。そして、この弁挿入部22bは、その孔径が上記弁部31の最大径(後述する大径部33の径)よりも大きくなるように形成されていて、この弁挿入部22bの内周壁51dと弁部31の外周面(すなわち、大径部33の外周面)との間に形成された間隙により、上記第2排気流路15bが構成されている。
 上記幹部51aの第2端側の外周面には溝57が設けられており、この溝57に上記第1チェック弁20が取り付けられている。また、上記ロッド挿通孔22の弁挿入部22bにおける、上記第2チェック弁21よりも第2端側(すなわち、第2ポート12側)の位置には、内周壁51dから内向き(径方向)に環状の突部48が突設されている。そして、この突部48の第1端側を向く面によって上記弁部31が接離する弁座44が形成されており、さらに、この突部48の内周により、後述する弁部31の小径部34を挿通することが可能な絞り部46が形成されている。
 一方で、上記弁部31は、上記シャフト部32に連接された円柱状の大径部33と、大径部33の第2端側に連接されこの大径部33よりも最大径の小さい小径部34とにより構成されている。この大径部33の外周面には溝58が設けられており、この溝58に上述した第2チェック弁21が取り付けられている。また、小径部34は、第2端に向けて除々に径が小径化する先細り状に形成されており、その先端に弁体30の軸線L方向を法線方向とする先端面36aが形成されている。また、大径部33と小径部34との境界である連接部には、段部を成す溝36bが形成されて、この溝36bにシール部材35が取り付けられている。
 このシール部材35は、弁体30を第2端側に移動させた状態で弁座44に当接され、弁体30を第1端側に移動させた状態で弁座44から離れるように、弁部31に配されている。このため、シール部材35と弁座44とが当接した状態と離間した状態、すなわち、弁部31の閉塞状態と開放状態とでは、弁部31の開放状態の方が、弁部31の上記第2受圧面において流体圧が第1端方向に作用する面積(受圧面積)が大きくなる。その結果、弁体30に作用する第1端方向の付勢力が大きくなり、弁部31が開いてからの応答性が向上する。
 一方、シャフト部32は、上記大径部33の第1端側に連接され、この大径部33よりも大径に形成された胴体部38と、胴体部38の第1端側に連接され、幹部51aの第1端側の開口から突出した軸部39とから構成されている。この胴体部38には、外周にシール部材62を有するピストン37が設けられていて、このピストン37により、上述したロッド挿入孔22のシャフト挿入部22aが、第1端側の第1区画室70aと第2端側の第2区画室70bとに区画されている。なお、本実施形態においては、上記ピストン37のシール部材62は、第2区画室70b側から第1区画室70a側への流体の流れは許容するが、第1区画室70a側から第2区画室70b側への流体の流れは阻止するチェック弁によって構成されている。このように、上記第1区画室70aは、上記ピストン37を第2端方向へ駆動するためのピストン圧力室を形成しており、その一方で、上記第2区画室70bは大気に開放されている。
 上記軸部39は上記エンドキャップ54の取付孔59に嵌合されていて、エンドキャップ54は軸部39に対して軸線L廻りに固定的に設けられている。すなわち、エンドキャップ54を軸線L廻りに回転させると軸部39も同時に回転するようになっている。
 上記シャフト挿入部22aにおける上記ピストン37よりも第1端側の位置には、環状のステータ41(螺旋状に傾斜するカム面41aを有するカムリング)が嵌合により固定されており、上記弁体30のシャフト部32が、このステータ41に対して、軸線L方向に摺動自在かつ軸線L廻りに回動自在に内挿されている。このステータ41の第2端側の面には、図4に示すように、上記ピストン37に対向し、上記軸線Lを中心として螺旋状に配された傾斜カム面41aが、シャフト部32の周囲に設けられている。一方で、上記シャフト部32における胴体部38の外周壁からは、このピストン37の第1端側の面37aからステータ41側に延びるストッパ片43が突設されている。
 そして、上記エンドキャップ54を回動させると、ステータ41が幹部51aに固定されている状態で、胴体部38がエンドキャップ54と共に回動する。そのため、胴体部38に突設されているストッパ片43はステータ41に対して軸線L回りに回動する。このとき、ステータ41の傾斜カム面41aは螺旋状に配されて傾斜面を形成しているため、エンドキャップ54の回動位置を調節することで、傾斜カム面41aに対するストッパ片43の当接位置、すなわち、上記ピストン37の第1端方向へのストローク量を調節することができる。その結果、弁体30が第1端側の開放位置に移動した時における上記絞り部46の絞り量、すなわち、第2ポート12から絞り部46を通って排気流路15に流れる流体の流量を調節することができる。このように、上記傾斜カム面41aとストッパ片43は、本発明における流量調節部47を構成している。
 なお、上記シャフト挿入部22aには、ステータ41の第1端側に隣接して環状のキャップ部材42が気密に嵌合されており、上記弁体30のシャフト部32が、このキャップ部材42に対して、気密で軸線L方向に摺動自在かつ軸線L廻りに回動自在に内挿されている。
 上記第1区画室70aと第2給気流路14bとの間には、第1ポート11からの圧縮流体を供給するパイロット流路71が接続されている。そのため、第1ポート11に供給される圧縮流体は、給気流路14を通じて第2ポート12に流通する際に、その一部がパイロット流路71を通じて第1区画室70aに供給される。そして、第1区画室70aに供給された圧縮流体の流体圧が、上記ピストン37の第1端側に位置する上記第1受圧面に作用することで、ピストン37が第2端方向、すなわち、弁体30を閉じる方向に移動する。
 一方で、上記第2区画室70bには、このピストン37に対して第1端方向(すなわち、弁体30の開方向)の付勢力を付与する圧縮ばね25が設けられている。この圧縮ばね25は、シャフト挿入部22aと弁挿入部22bとの連接部分(すなわち、上記区画壁23)に取り付けられているばね受け部24と、ピストン37の第2端側の面37bとの間に縮設されている。
 このように、上記シャフト部32の第1受圧面、上記弁部31の第2受圧面及びこの圧縮ばね25は、本発明における開閉操作部を構成している。
 ここで、上記圧縮ばね25の弾性係数は、適用する圧縮流体の圧力や、接続する流体圧アクチュエータの必要な特性等に基づいて適宜決定されるべきものである。ただし、上記弁部31が着座して閉じた状態において、圧縮ばね25と第2受圧面に作用する流体圧とによる第1端方向への付勢力の和が、第1受圧面に作用する流体圧による第2端方向への付勢力よりも小さくなるように設定されている。
なお、この圧縮ばね25は必ずしも設ける必要性はなく、それを省略して、上記第2受圧面に作用する第2ポート12の流体圧のみにより、上記弁体30を開方向に動作させることも可能である。
 次に、図5のように、上記流体制御弁10を、ピストン1cとロッド1dを有する複動式の流体圧シリンダ1に接続することにより、ピストン1cの進出時に、この流体圧シリンダ1のロッド側の第2圧力室1bから排出される排気を、ヘッド側の第1圧力室1aに還流させる場合における、上記複流体制御弁10の具体的な動作について説明する。
 ここでは、上記流体制御弁10は、流体圧源2に繋がれた切換弁3とヘッド側の第1圧力室1a及びロッド側の第2圧力室1bを有する流体圧シリンダ1との間に接続されている。そして、この切換弁3と流体圧シリンダ1との間には、切換弁3と流体制御弁10の第1ポート11とを接続する第1流路4aと、第2圧力室1bと流体制御弁10の第2ポート12とを接続する第2流路4bと、第1圧力室1aと切換弁3とを接続する第3流路4cと、この第3流路4cと流体制御弁10の第3ポートとを接続する第4流路4dとが設けられている。また、第3流路4cと第4流路4dとの接続部と第1圧力室1aとの間の第3流路4cには、第1圧力室1aから排出される圧縮流体の流量を調節するためのメータアウト制御式の絞り弁5が設けられている。
 上記切換弁3は、第2圧力室1bに流体圧源2からの圧縮流体を供給する第1位置、又は第1圧力室1aに流体圧源2からの圧縮流体を供給する第2位置に選択的に切り換えることができる。
 そこで、まず、切換弁3を上記第1位置に切り換えた場合、すなわち、流体圧シリンダ1のロッド1dを後退させる場合について説明する。
 流体圧源2から供給される圧縮流体は、第1流路4aを通じて上述した流体制御弁10の第1ポート11に供給される。第1ポート11に供給された圧縮流体は、上記第1給気流路14a、第2給気流路14bを順次流れ、その一部が上述したパイロット流路71に供給されると共に、その残りが上記第3給気流路14cに供給される。第3給気流路14cに供給された圧縮流体は、上記第1チェック弁20を通過し第2ポート12から出力されて流体圧シリンダ1の第2圧力室1bに供給される。その一方で、流体圧シリンダ1の第1圧力室1bの圧縮空気は、絞り弁5及び切換弁3を通じて大気に放出される。
 そして、パイロット流路71に流入した圧縮流体は、上述したピストン圧力室としての第1区画室70aに供給される。このとき、第1区画室70aに供給されている圧縮流体の圧力と第2ポート12から出力されている圧縮流体の流体圧は実質的に同じである。しかしながら、受圧面積の差により、シャフト部32の第1受圧面に作用する流体圧による第2端方向(弁体30の閉方向)への付勢力よりも、弁部31の第2受圧面に作用する流体圧による第1端方向(弁体30の開方向)への付勢力の方が小さくなっている。しかも、これら流体圧による付勢力の差が、上記弁部31が着座して閉じた状態おける、上記圧縮ばね25による第1端方向への付勢力よりも常に大きくなるように設定されている。そのため、図3に示すように、弁体30は弁座44に着座した状態で、上記第2ポート12と排気流路15との間の連通、すなわち、第2ポート12から第3ポート13への連通は閉じられている。
 次に、図5に示すように切換弁3を上記第2位置に切り換えた場合、すなわち、流体圧シリンダ1のロッド1dを進出させる場合について説明する。
 この場合には、第1流路4aは切換弁3を通じて大気に開放されるため、上記流体制御弁10における、第1ポート11から第1チェック弁20までの給気流路14、パイロット流路71及び第1区画室70aも同様にして大気に開放される。それに対して、第1チェック弁20から流体圧シリンダ1の第2圧力室1bまでの圧縮流体は、上記第1チェック弁20により第1ポート11側へ流れるのを阻止され、その流体圧が上記弁部31の第2受圧面に作用し弁体30を開方向に付勢する。また同時に、上記圧縮ばね25により弁体30は開方向に付勢されている。そのため、図1に示すように、弁体30は弁座44から離間して、上記第2ポート12と排気流路15との間の連通、すなわち、第2ポート12から第3ポート13への連通が開かれる。
 一方で、第1圧力室1aは流体圧源2に連通されるため、ヘッド側の第1圧力室1aに圧縮流体が供給される。そうすると、図6に示すように、ヘッド側の第1圧力室1a内の圧力は所定値まで急激に上昇し、流体圧シリンダ1のピストン1cはロッド側(図5における右側)に移動を開始する。
 そして、このピストン1cのロッド側への移動に伴って、第2圧力室1bの体積が減少し、第2圧力室1b内の圧力が若干上昇するが、第1圧力室1a側におけるピストン1cの受圧面積が、第2圧力室1b側におけるピストン1cの受圧面積よりも、ロッド1dの横断面の面積分大きいため、ピストン1cはロッド側へ移動し続ける。この間、第2圧力室1bから排出された圧縮流体は、上記排気流路15から第3ポート13を通じて第4流路4dに流入するが、上述のように、第2圧力室1b内から排出される圧縮流体の圧力は、第1圧力室1a内の圧力よりも若干高いため、第4流路4d内の圧縮流体が第3流路4cを通じて第1圧力室1aに還流される。なお、上記ロッド1dの進出速度を調整する場合には、上記エンドキャップ54を回して上記絞り部46の絞り量、すなわち、絞り部46を通って流れる第2圧力室1bからの排気の流量を調節すれば良い。
 以上説明したように、本実施形態の流量制御弁10は、第2ポート12を流体圧アクチュエータである流体圧シリンダ1の第2圧力室1bに接続することにより、第1ポート11から第2ポート12を通じて第2圧力室1bに圧縮流体を供給することができ、また、この第2圧力室1bからの排気を、第2ポート12を通じて第3ポート13から取り出すことができる。そのため、この排気を効率良く再利用に供することができる。特に、上述のような複動式の流体圧シリンダ1においては、第2ポート12を第2圧力室1bに接続し、第3ポート13を第1圧力室1aに接続することにより、ロッド1dの進出時に第2圧力室1bからの排気を第1圧力室1aに還流させて、圧縮流体の消費を抑制することが可能となる。
 また、流体圧シリンダ1を駆動する圧縮空気を利用して弁体30を開閉するように構成したため、製造コストやランニングコストを抑制することが可能である。
 そして、本実施形態の流量制御弁10によれば、ロッド状の弁部31に大径部33と小径部34を設け、それらの境界に弁座44に接離させるシール部材35を配したため、シール部材35と弁座44とが当接した状態と離間した状態、すなわち、弁部31の閉塞状態と開放状態とでは、後者の方が、弁部31の上記第2受圧面において流体圧が第1端方向に作用する面積(受圧面積)が大きくなる。その結果、弁体30に作用する第1端方向の付勢力が大きくなり、弁部31が開いてからの応答性が向上する。
 さらに、本実施形態の流量制御弁10においては、上記弁部31をニードル弁とし、螺旋状に配された上記ステータ41の傾斜カム面41aと、それに当接するストッパ片43とを軸線L廻りに相対的に回動可能としたため、弁体30を回動させて傾斜カム面41aとストッパ片43との当接位置を調節することにより、上記弁体30を開いたときの絞り部46における排気の流量を容易に制御することができる。
 以上、本発明に係る流量制御弁10の実施形態について詳細に説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な設計変更が可能である。例えば、上述した実施形態では、弁部31をニードル弁としたが、必ずしもそれに限られるものではなく、ポペット弁など他の形態の弁であっても良い。
 また、本実施形態では、傾斜カム面41aをロッド挿通孔22に対して固定し、それに当接させるストッパ片43を弁体30に固定しているが、逆に、傾斜カム面41aを弁体30に対して固定し、ストッパ片43をロッド挿通孔に固定しても良い。
1 流体圧シリンダ
1a 第1圧力室
1b 第2圧力室
2 流体圧源
3 切換弁
10 流体制御弁
11 第1ポート
12 第2ポート
13 第3ポート
14 給気流路
15 排気流路
15b 第2排気流路(間隙)
20 第1チェック弁
21 第2チェック弁
22 ロッド挿通孔(弁孔)
30 弁体
31 弁部
32 シャフト部
33 大径部
34 小径部
35 シール部材
37 ピストン
41 ステータ
41a 傾斜カム面
43 ストッパ片
44 弁座
46 絞り部
47 流量調節部
70a 第1区画室(ピストン圧力室)
71 パイロット流路

Claims (8)

  1.  流体圧源に繋がれた切換弁とヘッド側の第1及圧力室及びロッド側の第2圧力室を備えた複動式の流体圧シリンダとの間に配設するためのもので、上記切換弁の切換えによる流体圧シリンダの駆動に伴って、流体圧シリンダの上記第2圧力室から排出される圧縮流体を上記第1圧力室へと還流させるための流体制御弁であって、
     上記切換弁に接続するための第1ポートと、
     上記2圧力室に接続するための第2ポートと、
     上記1圧力室に接続するための第3ポートと、
     上記第1ポートと第2ポートとの間を連通させる給気流路と、
     上記第2ポートと第3ポートとの間を連通させる排気流路と、
     上記給気流路に設けられ、圧縮流体が上記第1ポート側から第2ポート側へと流れるのを許容し、上記第2ポート側から第1ポート側へと流れるのを阻止する第1チェック弁と、
     上記排気流路に設けられ、圧縮流体が上記第2ポート側から第3ポート側へと流れるのを許容し、上記第3ポート側から第2ポート側へと流れるのを阻止する第2チェック弁と、
     上記第2ポートから上記第3ポートへの連通を開閉する弁体と、
     該弁体がその軸方向に摺動自在に挿入された弁孔と、
    を有しており、
     上記排気流路は、上記弁孔と上記弁体との間に形成された間隙によって形成され、
     上記弁体には、上記第1ポートの流体圧を該弁体の閉方向に作用させる第1受圧面と、上記第2ポートの流体圧を該弁体の開方向に作用させる第2受圧面とが形成されている、
    ことを特徴とするもの。
  2.  流体制御弁であって、
     圧縮流体が通る第1ポート、第2ポート及び第3ポートと、
     上記第1ポートと第2ポートとの間を連通させる給気流路と、
     上記第2ポートと第3ポートとの間を連通させる排気流路と、
     上記給気流路に設けられ、上記圧縮流体が上記第1ポート側から第2ポート側へと流れるのを許容し、上記第2ポート側から第1ポート側へと流れるのを阻止する第1チェック弁と、
     上記排気流路に設けられ、上記圧縮流体が上記第2ポート側から第3ポート側へと流れるのを許容し、上記第3ポート側から第2ポート側へと流れるのを阻止する第2チェック弁と、
     上記第2ポートから上記第3ポートへの連通を開閉する弁体と、
     該弁体を開閉する開閉操作部と、
    を有し、
     該開閉操作部が、上記弁体に設けられて上記第1ポートの流体圧を該弁体の閉方向に作用させる第1受圧面と、同じく該弁体に設けられて上記第2ポートの流体圧を該弁体の開方向に作用させる第2受圧面とを有している、
    ことを特徴とするもの。
  3.  請求項2に記載の流体制御弁であって、
     該流体制御弁は、上記弁体がその軸方向に摺動自在に挿入された弁孔を有していて、上記排気流路が、上記弁孔と上記弁体との間に形成された間隙によって形成されている、
    ことを特徴とするもの。
  4.  請求項1又は3に記載の流体制御弁であって、
     上記弁体は、断面略円形のロッド状に形成されていて、その軸方向の両端に基端側の第1端と先端側の第2端とをそれぞれ有しており、上記第1端側のシャフト部と、該シャフト部の上記第2端側に連接された弁部とにより形成され、該弁部に上記第2受圧面が形成されている、
    ことを特徴とするもの。
  5.  請求項4に記載の流体制御弁であって、
     上記弁体のシャフト部がピストンを有していて、その上記第1端側に位置する上記第1受圧面によって区画されたピストン圧力室に、上記第1ポートからの圧縮流体を供給するパイロット流路が接続されている、
    ことを特徴とするもの。
  6.  請求項4に記載の流体制御弁であって、
     上記弁部は、上記シャフト部に連接された大径部と、該大径部の上記第2端側に連接され該大径部よりも最大径が小さい小径部とにより構成されていて、該大径部と小径部との間にシール部材を有し、
     上記弁孔には、上記第2ポートと排気流路との間に、上記弁部の小径部が挿入される絞り部が形成されていて、
     該絞り部には、上記シール部材を接離させる弁座が形成されている、
    ことを特徴とするもの。
  7.  請求項6に記載の流体制御弁であって、
     該流体制御弁は、上記弁部の開放時に上記第2ポートから上記排出流路へと流入する排気の流量を調節するための流量調節部を有しており、
     該流量調節部が、該弁体のシャフト部の周囲に螺旋状に配された傾斜カム面と、同じく該弁体のシャフト部の周囲に配され、上記弁部が開放されたときに、上記傾斜カム面に当接して上記弁体の第1端方向への移動を阻止するストッパ片とを有し、
     上記傾斜カム面とストッパ片とは、上記弁体の軸廻りに相対的に回動可能となっており、
     上記弁部の小径部は、上記第2端に向けて除々に径が小径化する先細り状に形成されている、
    ことを特徴とするもの。
  8.  請求項7に記載の流体制御弁であって、
     上記弁体のシャフト部がピストンを有していて、その上記第1端側に位置する上記第1受圧面によって区画されたピストン圧力室に、上記第1ポートからの圧縮流体を供給するパイロット流路が接続され、
     上記傾斜カム面が、上記ピストンの第1端側において該ピストンに対向させて設けられ、
     上記弁体が、上記弁孔に対して周方向に回動自在に挿入されていて、上記ストッパ片が、上記シャフト部の外周から上記ピストン圧力室内に突設されている、
    ことを特徴とするもの。
PCT/JP2016/081039 2015-10-28 2016-10-20 流体制御弁 WO2017073439A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2018119090A RU2720870C2 (ru) 2015-10-28 2016-10-20 Регулирующий клапан для текучей среды
US15/771,139 US10514048B2 (en) 2015-10-28 2016-10-20 Fluid control valve
KR1020187010472A KR20180071261A (ko) 2015-10-28 2016-10-20 유체 제어 밸브
MX2018005112A MX2018005112A (es) 2015-10-28 2016-10-20 Valvula de control de fluido.
DE112016004954.4T DE112016004954T5 (de) 2015-10-28 2016-10-20 Fluidsteuerventil
CN201680063009.4A CN108350909B (zh) 2015-10-28 2016-10-20 流体控制阀
BR112018008240-6A BR112018008240B1 (pt) 2015-10-28 2016-10-20 Válvula de controle de fluido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212084A JP6551740B2 (ja) 2015-10-28 2015-10-28 流体制御弁
JP2015-212084 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073439A1 true WO2017073439A1 (ja) 2017-05-04

Family

ID=58631483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081039 WO2017073439A1 (ja) 2015-10-28 2016-10-20 流体制御弁

Country Status (10)

Country Link
US (1) US10514048B2 (ja)
JP (1) JP6551740B2 (ja)
KR (1) KR20180071261A (ja)
CN (1) CN108350909B (ja)
BR (1) BR112018008240B1 (ja)
DE (1) DE112016004954T5 (ja)
MX (1) MX2018005112A (ja)
RU (1) RU2720870C2 (ja)
TW (1) TWI707101B (ja)
WO (1) WO2017073439A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167298B (zh) * 2018-11-21 2023-07-21 Smc 株式会社 缸驱动装置及流路单元
JP6960585B2 (ja) * 2018-12-03 2021-11-05 Smc株式会社 流量コントローラ及びそれを備えた駆動装置
WO2020157829A1 (ja) * 2019-01-29 2020-08-06 株式会社エイシン技研 サーボ弁ユニット
CN110440037B (zh) * 2019-05-14 2024-05-10 开能健康科技集团股份有限公司 控制阀配件及包含其的软水机
JP7076686B2 (ja) * 2019-09-06 2022-05-30 Smc株式会社 流量コントローラ及びそれを備えた駆動装置
KR102580656B1 (ko) * 2019-10-28 2023-09-21 가부시키가이샤 코스멕 클램프 장치
JP7447689B2 (ja) * 2020-06-10 2024-03-12 Smc株式会社 ガスシリンダ
JP7528563B2 (ja) * 2020-06-29 2024-08-06 オムロン株式会社 ロボットの関節構造
CN118408057A (zh) * 2020-09-30 2024-07-30 三花控股集团有限公司 流体控制组件及热管理系统
CN117267417B (zh) * 2023-11-10 2024-02-02 靖江市新世纪液压件制造有限公司 一种能够过压自开启进行压力调节的安全阀

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153269A (ja) * 1996-11-22 1998-06-09 Smc Corp パイロットチェック弁付スピードコントローラ
US20140360349A1 (en) * 2013-06-11 2014-12-11 Demolition And Recycling Equipment B.V. Hydraulic cylinder for use for example in a hydraulic tool

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654835A (en) * 1970-05-25 1972-04-11 Ato Inc Regeneration valve
FR2544403B1 (fr) * 1983-04-12 1985-08-09 Legris Dispositif economiseur automatique d'air comprime
LU88277A1 (de) * 1993-05-27 1994-12-01 Hydrolux Sarl Vorgesteuertes Servoventil
JPH0842511A (ja) 1994-08-02 1996-02-13 Konan Denki Kk 空気圧シリンダ装置
JP3400557B2 (ja) * 1994-08-10 2003-04-28 大阪瓦斯株式会社 弁駆動装置
JP3558556B2 (ja) * 1999-03-10 2004-08-25 Smc株式会社 圧力流量制御弁
JP3598235B2 (ja) * 1999-03-10 2004-12-08 Smc株式会社 圧力流量制御弁
JP2001116008A (ja) * 1999-10-18 2001-04-27 Smc Corp 圧力調整機構
DE10253340B4 (de) * 2002-04-26 2007-02-15 Volkmann Gmbh Betätigungsventil für einen zweiseitig wirksamen Pneumatikzylinder sowie Verwendung eines solchen Betätigungsventils für mittels Pneumatikzylindern ansteuerbare Spulengatter
RU2347127C1 (ru) * 2007-07-02 2009-02-20 Открытое акционерное общество "Павловский машиностроительный завод ВОСХОД" (ОАО "ПМЗ ВОСХОД") Клапан
CN202109077U (zh) * 2011-06-07 2012-01-11 谢志平 气动式太阳能热水器排空阀
CN104718150B (zh) * 2012-10-18 2016-10-12 株式会社丰田自动织机 升降装置
JP6327421B2 (ja) * 2013-09-02 2018-05-23 Smc株式会社 流体制御弁
CN204164076U (zh) * 2014-10-28 2015-02-18 徐工集团工程机械股份有限公司 一种负载敏感功能阀及其多路阀、液压系统、小型挖掘机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153269A (ja) * 1996-11-22 1998-06-09 Smc Corp パイロットチェック弁付スピードコントローラ
US20140360349A1 (en) * 2013-06-11 2014-12-11 Demolition And Recycling Equipment B.V. Hydraulic cylinder for use for example in a hydraulic tool

Also Published As

Publication number Publication date
CN108350909A (zh) 2018-07-31
RU2018119090A (ru) 2019-11-28
KR20180071261A (ko) 2018-06-27
DE112016004954T5 (de) 2018-08-02
BR112018008240A2 (ja) 2018-10-23
TW201727109A (zh) 2017-08-01
TWI707101B (zh) 2020-10-11
JP6551740B2 (ja) 2019-07-31
JP2017082916A (ja) 2017-05-18
RU2018119090A3 (ja) 2020-03-03
MX2018005112A (es) 2018-06-06
CN108350909B (zh) 2020-04-10
RU2720870C2 (ru) 2020-05-13
US10514048B2 (en) 2019-12-24
US20180355892A1 (en) 2018-12-13
BR112018008240B1 (pt) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2017073439A1 (ja) 流体制御弁
KR101262772B1 (ko) 감압 스위칭 밸브
US8978701B2 (en) Energy-saving valve
JP2017082916A5 (ja)
KR20160114046A (ko) 액압식 타격 장치
KR20150074164A (ko) 완충 밸브
CN105114663A (zh) 换向阀的动态换向方法、换向阀和换向阀结构
JP6067953B1 (ja) 流量制御弁
KR20210015930A (ko) 릴리프 밸브
CN108533539A (zh) 双作用液压增压器
US10006474B2 (en) Flow passage unit and switching valve
BR112021004709A2 (pt) cilindro hidráulico
US6941789B2 (en) Die cushion device
TWI747474B (zh) 流量控制器及具備該流量控制器的驅動裝置
JP6796291B2 (ja) エアシリンダ
JP6056773B2 (ja) 油圧作動装置及びパンチャー
JP2006316800A (ja) ジャッキ装置
JP5684166B2 (ja) 流体圧シリンダ
EP2865493A1 (en) Percussion device
JP4335694B2 (ja) シリンダピストン駆動装置
JP7436426B2 (ja) 増圧装置
WO2004072487A1 (en) Control valve for a pneumatic cylinder
JP7008321B2 (ja) 油圧作動装置及びパンチャー
JP2526615Y2 (ja) エアードリブンポンプ
CN117307553A (zh) 液压油缸和作业机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187010472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/005112

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112016004954

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008240

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018119090

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112018008240

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180424

122 Ep: pct application non-entry in european phase

Ref document number: 16859669

Country of ref document: EP

Kind code of ref document: A1