WO2017069460A2 - High electron mobility transistor and manufacturing method therefor - Google Patents

High electron mobility transistor and manufacturing method therefor Download PDF

Info

Publication number
WO2017069460A2
WO2017069460A2 PCT/KR2016/011534 KR2016011534W WO2017069460A2 WO 2017069460 A2 WO2017069460 A2 WO 2017069460A2 KR 2016011534 W KR2016011534 W KR 2016011534W WO 2017069460 A2 WO2017069460 A2 WO 2017069460A2
Authority
WO
WIPO (PCT)
Prior art keywords
source electrode
insulating layer
pad
electrode wiring
drain electrode
Prior art date
Application number
PCT/KR2016/011534
Other languages
French (fr)
Korean (ko)
Other versions
WO2017069460A3 (en
Inventor
이상민
정연국
구황섭
김현제
정희석
Original Assignee
(주)기가레인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160047549A external-priority patent/KR101856687B1/en
Application filed by (주)기가레인 filed Critical (주)기가레인
Publication of WO2017069460A2 publication Critical patent/WO2017069460A2/en
Publication of WO2017069460A3 publication Critical patent/WO2017069460A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Definitions

  • the present invention relates to a high electron mobility transistor and a method of manufacturing the same, and more particularly, to a high electron mobility transistor and a method of manufacturing the same to improve the yield of the device and the reliability of the device.
  • gallium nitride-based transistors Due to the development of information and communication technology, the demand for high withstand voltage transistors operating in a high speed switching environment or a high voltage environment is increasing. Recently, gallium nitride-based transistors have a high-speed switching operation compared to conventional silicon-based transistors, and are suitable for high-speed signal processing and can be applied to high-voltage environments through the high voltage resistance of the material itself. It is getting attention. Particularly in the case of High Electron Mobility Transistor (HEMT) using gallium nitride, electron mobility (2DEG; 2-Dimensional Electron Gas) generated at the interface between heterogeneous materials is used. Mobility can be increased, which is an advantage for high speed signal transmission.
  • HEMT High Electron Mobility Transistor
  • a source electrode wiring electrically connected to the source electrode is formed under the source electrode in order to minimize the size thereof. Etching to a depth to form a source electrode wiring via penetrating the lower portion of the source electrode, and to form a source electrode wiring by plating a thin metal film on the surface of the source electrode wiring via.
  • the source electrode wiring forming process performs the back-grinding process to etch to a predetermined depth from the rear surface of the thinned substrate, the etching rate is reduced and the etching uniformity is lowered than the case of etching the thick substrate before the back-grinding process.
  • cracks are generated in the substrate, thereby lowering the yield of the device and the reliability of the device.
  • the process of forming the source electrode wiring is one of materials in which a substrate made of the SiC wafer, etc., is difficult to form vias, and thus, the substrate is formed at a predetermined depth from a rear surface of the substrate. -As the grinding process does not use the low temperature binder and the high temperature binder is difficult to remove, the process is very difficult and the yield of the device is lowered.
  • the source electrode wiring forming process forms a source electrode wiring by plating a thin metal film on the surface of the source electrode wiring via, so that most of the source electrode wiring via is empty so that the thermal conductivity of the device is low due to low thermal conductivity. There is this.
  • the solder used for solder bonding for packaging the device may be located at the front of the substrate through the bottom of the via. There is a problem that the reliability of the device may be lowered and the life of the device may be shortened.
  • An object of the present invention is to simplify the process by forming a source electrode wiring electrically connected to the source electrode under the source electrode to minimize the size of the transistor, to form the source electrode wiring in the front and to fill the via for source electrode wiring with a conductor. To provide a high electron mobility transistor and a method of manufacturing the same that can improve the heat dissipation of the device.
  • a high electron mobility transistor according to an embodiment of the present invention
  • the stepped portion may be formed at both sides of the source electrode and the drain electrode to cover a portion of an upper surface of the first insulating layer.
  • a second insulating layer formed on the first insulating layer, wherein the second insulating layer covers a portion of an upper surface of each of the source electrode and the drain electrode, between the first insulating layer and the via pad for source electrode wiring.
  • the recess is formed on the upper portion of the source electrode at all times.
  • the source electrode pad and the drain electrode pad cover portions of upper surfaces of both sides of the electrode, and the source electrode and the exposed portion of the source electrode and the drain electrode are removed by removing a portion of the first insulating layer and the second insulating layer, respectively. It is formed on the drain electrode.
  • the diameter of the upper portion of the via pad for source electrode wiring is greater than that of the lower portion of the rear side.
  • the via pad for source electrode wiring may be any one of copper and gold.
  • the base layer includes a gallium nitride (GaN) layer.
  • forming a second insulating layer on an entire surface of the gate electrode After forming the gate electrode, forming a second insulating layer on an entire surface of the gate electrode; And removing a portion of the first insulating layer and the second insulating layer on the source electrode and the drain electrode to form a source electrode pad and a drain electrode pad on the exposed source electrode and the drain electrode, respectively.
  • a method of manufacturing a high electron mobility transistor includes forming a base layer on a substrate on which a source electrode wiring forming portion is defined; Forming a first insulating layer on the front surface; Forming vias for source electrode wiring by etching the first insulating layer, the base layer, and the substrate on the source electrode wiring forming portion to a predetermined depth from a front surface thereof; Filling the source electrode wiring via with a conductor to form a via pad for source electrode wiring; A source on the base layer exposed by removing a portion of the first insulating layer adjacent to the source electrode wiring via pad and a portion of the first insulating layer spaced apart from the source electrode via via pad Forming an electrode and a drain electrode; And removing a portion of the first insulating layer between the source electrode and the drain electrode to form a gate electrode on the exposed base layer.
  • the gate electrode After forming the gate electrode, forming a second insulating layer on an entire surface of the gate electrode; And removing a portion of the second insulating layer on the source electrode and the drain electrode to form a source electrode pad and a drain electrode pad on the exposed source electrode and the drain electrode, respectively.
  • a diameter of an upper portion in a front side direction is larger than a diameter of a lower portion in a rear side direction.
  • An upper surface area of the via pad for source electrode wiring occupies 50% or more of the bottom area of the source electrode.
  • At least one via pad for source electrode wiring is formed. It said base layer includes a gallium nitride (GaN) layer.
  • the high electron mobility transistor according to the present invention and a method of manufacturing the same have a method of forming a source electrode wiring electrically connected to the source electrode under the source electrode.
  • the back-grinding process is performed to increase the etching speed, improve the etching uniformity, and improve the cracking of the substrate, compared to the conventional technique of etching the back surface of the thinned substrate to a predetermined depth. By suppressing the effect of improving the yield of the device and the reliability of the device.
  • the present invention forms a via pad for the source electrode wiring and performs the back-grinding process, so that the back-grinding process is performed without the substrate etching process for forming the source electrode wiring via, so that the high temperature bonding agent in the back-grinding process is performed.
  • a low temperature binder which can be more easily removed can be used to facilitate the process, thereby improving the yield of the device.
  • the present invention forms a via pad for source electrode wiring by etching and filling to a predetermined depth from the entire surface of the substrate in a thick state, so that all the vias for the source electrode wiring are filled, so that the thermal conductivity of the prior art is higher than that of the via for the empty source electrode wiring. It has a high effect to improve the heat dissipation of the device to improve the performance of the device.
  • the present invention forms a via pad for source electrode wiring by etching and filling to a predetermined depth from the entire surface of the thick substrate, so that solder and flux used for solder bonding for packaging the device cannot flow into the substrate, thereby ensuring reliability of the device. It has the effect of improving the performance and preventing the shortening of the life of the device.
  • the present invention can be etched more stably by etching a thick substrate to a predetermined depth from the front surface, it is possible to form a wider width of the via pad for source electrode wiring than the etching of a thin substrate to a predetermined depth from the rear surface. There can improve the electrical conductivity and thermal conductivity.
  • FIG. 1 is a cross-sectional view showing a high electron mobility transistor according to a first embodiment.
  • FIG. 2 is a plan view illustrating a plurality of via pads for source electrode wiring formed in the source electrode of FIG. 1.
  • FIG. 3 is a plan view illustrating one via pad for source electrode wiring formed in the source electrode of FIG. 1.
  • 4A to 4H are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to an embodiment.
  • FIG. 5 is a cross-sectional view illustrating a high electron mobility transistor according to a second embodiment.
  • 6A to 6G are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to a second embodiment.
  • barrier layer 19 metal mask
  • BSP Back layer VA: Via for source electrode wiring
  • VAP Via pad for source electrode wiring SE: Source electrode
  • drain electrode PDE drain electrode pad
  • PAS1 First Insulation Layer
  • PAS2 Second Insulation Layer
  • SD1 first seed layer SD2: second seed layer
  • SD3 third seed layer SD4: fourth seed layer
  • first, second, etc. are used herein to describe various members, regions, and / or portions, it is obvious that these members, components, regions, layers, and / or portions are not limited by these terms. Do. These terms do not imply any particular order, up or down, or superiority, and are only used to distinguish one member, region or region from another member, region or region. Accordingly, the first member, region, or region described below may refer to the second member, region, or region without departing from the teachings of the present invention.
  • the high electron mobility transistor according to the first embodiment includes a substrate 11 having a source electrode wiring forming portion, a base layer 10 formed on the substrate 11, and a source electrode wiring.
  • the drain electrode DE, the source electrode SE, and the drain electrode formed on the base layer 10 and spaced apart from the source electrode SE and the source electrode SE formed on the base layer 10 of the formation portion.
  • a source formed by etching the base layer 10 and the substrate 11 of the gate electrode GE and the source electrode wiring forming portion formed on the base layer 10 between DE to a predetermined depth from the front surface and filling the conductor.
  • a via pad for electrode wiring (VAP) is included.
  • the first insulating layer PAS1 formed on the base layer 10, the second insulating layer PAS2 formed on the first insulating layer PAS1, and the source electrode SE are electrically connected to each other.
  • the semiconductor device may further include a drain electrode pad PDE formed on the drain electrode DE and electrically connected to the source electrode pad PSE and the drain electrode DE formed on the SE.
  • the first insulating layer PAS1 is formed so that the first insulating layer PAS1 is the source electrode SE and the drain electrode DE. Cover part of the upper surface of both sides.
  • the source electrode pad PSE and the drain electrode pad PDE may be exposed by removing portions of the first insulating layer PAS1 and the second insulating layer PAS2 on the source electrode SE and the drain electrode DE, respectively. It is formed on the source electrode SE and the drain electrode DE.
  • the substrate 11 may include a source electrode wiring forming portion, and may be formed of sapphire (Al 2 O 3 ), gallium nitride (GaN), silicon (Si), silicon carbide (SiC), or the like.
  • the base layer 10 is formed on the substrate 11, the buffer layer 13 is formed on the nucleation layer 12, and the barrier layer 15 is formed on the buffer layer 13.
  • the nucleation layer 12, the buffer layer 13, and the barrier layer 15 may be made of aluminum nitride (AlN), gallium nitride (GaN), and aluminum gallium nitride (AlGaN), respectively.
  • the source electrode SE is formed on the via pad VAP for source electrode wiring.
  • the drain electrode DE is formed on the base layer 10 spaced apart from the source electrode SE.
  • the gate electrode GE is formed on the base layer 10 between the source electrode SE and the drain electrode DE.
  • FIG. 2 is a plan view illustrating a plurality of source electrode wiring via pads formed in the source electrode of FIG. 1
  • FIG. 3 is a plan view illustrating one source electrode wiring via pad formed in the source electrode of FIG. 1.
  • the source electrode wiring via pad VAP is surrounded by the substrate 11 and the base layer 10, and is formed by etching and filling the source electrode wiring forming portion from a front surface to a predetermined depth.
  • the via pad for source electrode wiring is formed by etching and filling the base layer 10 and the substrate 11 to a predetermined depth from the front surface, so that the diameter of the upper portion of the front side is lower than that of the rear side. It may be formed larger than the diameter. In this case, it is formed to be opposite to the shape of the prior art and the source electrode wiring via pad (VAP) that is etched from the rear surface. However, it is also possible to etch the same diameter of the upper portion and the lower portion by the Bosch process.
  • the via pad VAP for source electrode wiring penetrates to the rear surface of the substrate 11 during the back-grinding process after forming the source electrode pad PSE and the drain electrode pad PDE to be described later.
  • the source electrode wiring via pads VAP penetrating the front and rear surfaces are formed in the same manner as the source electrode wiring via pads VAP are formed on the rear surface of the substrate 11 in the related art. Therefore, the source electrode wiring via pads (VAP) penetrating the front and rear surfaces are formed while solving the problems occurring when the source electrode wiring via pads (VAP) are formed on the rear surface.
  • the via pad for source electrode wiring is formed by filling the source electrode wiring forming portion with a conductor such as copper (Cu), gold (Au) to improve the electrical conductivity and the thermal conductivity of the transistor.
  • a conductor such as copper (Cu), gold (Au) to improve the electrical conductivity and the thermal conductivity of the transistor.
  • At least one via pad VAP for source electrode wiring is formed in the source electrode SE, as shown in FIG. 2, or as shown in FIG. 3, 50 of the bottom area of the source electrode SE. It can be formed accounting for more than%. In order to improve electrical conductivity and thermal conductivity through the via pad for source electrode wiring (VAP).
  • the via pad for source electrode wiring (VAP) is formed on the front surface
  • the number thereof may be at least one. That is, only one may be formed, or two or more may be formed in order to improve the heat dissipation efficiency of the transistor.
  • the via pad VAP for the source electrode wiring is formed with 50% or more of the bottom area of the source electrode SE, thereby providing electrical conductivity and heat. The conductivity can be improved.
  • the electrical conductivity and thermal conductivity may be improved by forming the size close to the size and shape of the source electrode SE.
  • the substrate 11 in a thick state is etched to a predetermined depth from the front side, so that the substrate 11 in a thin state can be etched more stably than the etching depth from the back side to a predetermined depth, so that a via pad for source electrode wiring (VAP) Since the width of the film can be widened, the via pad for source electrode wiring (VAP) can be formed as shown in FIGS. 2 and 3, thereby improving the electrical conductivity and the thermal conductivity.
  • VAP via pad for source electrode wiring
  • 4A to 4H are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to a first embodiment.
  • a method of manufacturing a high electron mobility transistor includes forming a base layer 10 on a substrate 11 on which a source electrode wiring forming portion is defined, and a base layer 10 and a substrate 11 on the source electrode wiring forming portion.
  • a source electrode wiring via (VA) by etching the substrate to a predetermined depth from the front surface, and filling the source electrode wiring via (VA) with a conductor to form a source electrode wiring via pad (VAP), and a source electrode wiring via
  • VA source electrode wiring via
  • VAP source electrode wiring via pad
  • Forming a drain electrode DE Forming a drain electrode DE, forming a first insulating layer PAS1 on the entire surface of the source electrode SE, the drain electrode DE, and the base layer 10, and forming the source electrode SE and the drain electrode. A portion of the first insulating layer PAS1 between the layers DE is exposed on the exposed base layer 10. Forming a gate electrode GE in the portion.
  • the method may further include forming a source electrode pad PSE and a drain electrode pad PDE on the exposed source electrode SE and the drain electrode DE by removing a portion of the insulating layer PAS2.
  • the base layer 10 is deposited on the substrate 11 on which the source electrode wiring forming region is defined.
  • the base layer 10 may be formed by stacking the nucleation layer 12, the buffer layer 13, and the barrier layer 15.
  • the nucleation layer 12, the buffer layer 13, and the barrier layer 15 may be made of aluminum nitride (AlN), gallium nitride (GaN), and aluminum gallium nitride (AlGaN), respectively.
  • a first seed layer SD1 is deposited on the base layer 10.
  • the first seed layer SD1 may be deposited using a deposition process such as sputtering, and may be formed of Ti / Cu, Ti / Al, Ti / W, Ti / Au, Ti / Ni / Cu, or the like. .
  • a photosensitive film (not shown) is coated on the first seed layer SD1 to perform a photolithography process. Thereafter, the photosensitive film is selectively exposed and developed such that the photosensitive film remains only on the source electrode wiring forming portion.
  • a metal mask 19 is grown on the first seed layer SD1 on both sides of the remaining photoresist. At this time, the metal mask 19 is grown to about 7 ⁇ 10 ⁇ m.
  • the metal mask 19 may be made of nickel (Ni), copper (Cu), gold (Au), or the like.
  • the remaining photoresist layer is removed to expose the first seed layer SD1 of the source electrode wiring forming region, and then the exposed first seed layer SD1 is exposed using the metal mask 19 as a mask. Etch it.
  • the base layer 10 and the substrate 11 of the source electrode wiring forming portion are etched to a predetermined depth from the entire surface to form a via for source electrode wiring ( VA).
  • a via pad VAP for source electrode wiring is formed by filling the source electrode wiring via VA with a conductor.
  • the metal mask 19 and the first seed layer SD1 are removed, and the second seed layer SD2 is deposited on the entire surface including the via VA for source electrode wiring.
  • the photolithography process is performed to expose only the second seed layer SD2 on the source electrode wiring via VA, and then grow a conductor on the exposed second seed layer SD2 to form a via pad for source electrode wiring ( VAP).
  • VAP via pad for source electrode wiring
  • the second seed layer SD2 on the base layer 10 on both sides of the via pad VAP for the source electrode wiring is removed.
  • FIG. 4D illustrates the removal of the second seed layer SD2 on the base layer 10 on both sides of the via pad VAP for the source electrode wiring.
  • the second seed layer SD2 may be made of Ti / Cu, Ti / Al, Ti / Ni / Cu, Ti / Au, or the like.
  • the conductor may be made of copper (Cu), gold (Au), or the like.
  • the source electrode SE is formed on the via pad VAP for source electrode wiring
  • the drain electrode DE is formed on the base layer 10 by being spaced apart from the source electrode SE. do.
  • the photolithography process is performed to form the via pad VAP for the source electrode wiring and the base layer 10 where the base layer 10 and the drain electrode DE are to be formed.
  • the source electrode SE and the drain electrode DE are formed by performing a lift-off process or the like.
  • the first conductive layer may be made of an ohmic contact metal such as Ti / Al / Ni / Au, Ti / Al / Ti / Ni / Au.
  • the first conductive layer is deposited and then heat treated to form an ohmic contact.
  • the first insulating layer PAS1 is deposited on the entire surface including the source electrode SE and the drain electrode DE. Then, the first insulating layer PAS1 is selectively etched by performing a photolithography process so that the base layer 10 on which the lower portion of the gate electrode GE to be formed in the later step is formed is exposed.
  • the first insulating layer PAS1 may be formed of silicon nitride or the like.
  • the photolithography process is performed to expose the first insulating layer PAS1 on which the upper portion of the gate electrode GE is to be seated. Let's do it.
  • the exposed first insulating layer PAS1 may be both sides of the first insulating layer PAS1 etched for the lower portion of the gate electrode GE.
  • a second conductive layer (not shown) is deposited on the entire surface of the portion where the gate electrode GE is to be exposed, and a lift off process is performed to form the gate electrode GE.
  • the second conductive layer may be made of Ni / Au, Ti / Al / Ni / Au, Ti / Al / Ti / Ni / Au, and the like.
  • the gate electrode GE is formed between the source electrode SE and the drain electrode DE.
  • a second insulating layer PAS2 is deposited on the gate electrode GE and on the first insulating layer PAS1.
  • the second insulating layer PAS2 may be formed of silicon nitride or the like.
  • the photolithography process is performed such that the source electrode SE is exposed to be connected to the lower portion of the source electrode pad PSE to be formed in a later process and the drain electrode DE to be connected to the lower portion of the drain electrode pad PDE is exposed.
  • the second insulating layer PAS2 and the first insulating layer PAS1 are selectively etched.
  • a third seed layer SD3 is deposited on the second insulating layer PAS2, on the exposed source electrode SE, and on the exposed drain electrode DE.
  • the third seed layer SD3 may be formed of Ti / Cu, Ti / Al, Ti / W, Ti / Au, Ti / Ni / Cu, and the like.
  • the photolithography process is performed to expose only the third seed layer SD3 on which the source electrode pad PSE and the drain electrode pad PDE are to be formed, and then, on the exposed third seed layer SD3. 3, a conductive layer (not shown) is grown to form a source electrode pad PSE above the source electrode SE, and a drain electrode pad PDE above the drain electrode DE.
  • each of the source electrode pad PSE and the drain electrode pad PDE is made of copper (Cu), gold (Au), or the like.
  • the back surface of the substrate 11 facing the front surface of the substrate 11 on which the source electrode pad PSE and the drain electrode pad PDE are formed is back-grinded.
  • a rear end of the via pad VAP for source electrode wiring is exposed by a back-grinding process under the substrate 11.
  • the height of the via pad VAP for source electrode wiring is about 50 ⁇ m to 100 ⁇ m.
  • the back-grinding process is not shown, a low temperature conjugate, a carrier wafer, and the like are used.
  • a low temperature binder may be used that is easier to remove than a high temperature binder.
  • the back-grinding process is performed using a low temperature wax (Wax) as a low temperature binder.
  • a fourth seed layer SD4 is deposited on the rear surface of the substrate 11 where the rear end of the via pad VAP for source electrode wiring is exposed, and then a fourth conductive layer (not shown) is formed from the fourth seed layer SD4.
  • the fourth seed layer SD4 may be formed of Ti / Cu, Ti / Al, Ti / W, Ti / Au, Ti / Ni / Cu, and the like.
  • the back layer BSP may be formed of a conductor such as copper (Cu), gold (Au), and the like to improve electrical conductivity and thermal conductivity.
  • the high electron mobility transistor according to the first embodiment and the method of manufacturing the same have a method of forming a source electrode wiring electrically connected to the source electrode SE under the source electrode, before the back-grinding process.
  • a via pad (VAP) for source electrode wiring is formed by etching and filling from a front surface of a thick substrate to a predetermined depth, thereby performing back-grinding process to etch to a predetermined depth from a rear surface of a thinned substrate.
  • VAP via pad
  • the high electron mobility transistor according to the first embodiment and the manufacturing method thereof form a via pad (VAP) for source electrode wiring and perform a back-grinding process, so that the back-grinding process is easier to remove than a high temperature binder.
  • VAP via pad
  • One low temperature binder can be used and the process is easy to improve the yield of the device.
  • the high electron mobility transistor according to the first embodiment and the method of manufacturing the same are etched and filled to a predetermined depth from the entire surface of the substrate in a thick state to form a via pad (VAP) for source electrode wiring. Since the whole is filled, most of the related arts have higher thermal conductivity than the vias for the empty source electrode wirings (VA), thereby improving heat dissipation of the device, thereby improving performance of the device.
  • VAP via pad
  • the high electron mobility transistor according to the first embodiment and the method of manufacturing the same are filled with all of the source electrode wiring vias as described above, the solder and the flux used for solder bonding for packaging the device are transferred to the substrate. It can not flow in, improving the reliability of the device and preventing the device from shortening its lifespan.
  • the present invention can be etched more stably than the etching of the thin substrate 11 to a predetermined depth from the rear surface of the via pad for source electrode wiring ( The width of the VAP) can be widened to improve the electrical conductivity and the thermal conductivity.
  • FIG. 5 is a cross-sectional view illustrating a high electron mobility transistor according to a second embodiment.
  • 6A to 6G are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to a second embodiment.
  • the high electron mobility transistor according to the second embodiment of the present invention includes a substrate 11 having a source electrode wiring forming portion, a base layer 10 formed on the substrate 11, A source electrode SE formed on the base layer 10 of the source electrode wiring forming portion, a drain electrode DE formed on the base layer 10 and spaced apart from the source electrode SE, and a source electrode SE.
  • the base layer 10 and the substrate 11 of the gate electrode GE and the source electrode wiring forming portion formed on the base layer 10 between the drain electrodes DE are etched to a predetermined depth from the front surface and filled with a conductor. And a via pad (VAP) for forming a source electrode wiring.
  • VAP via pad
  • the via pad for source electrode wiring is formed after the first insulating layer PAS1 is first deposited on the base layer 10 deposited on the substrate 11, and thus the via pad for source electrode wiring is formed.
  • the VAP and the source electrode SE may be different from the configuration of the first embodiment.
  • the via pad VAP for source electrode wiring is surrounded by the substrate 11, the base layer 10, and the source electrode SE.
  • the source electrode SE and the drain electrode DE have a stepped portion S on which both sides of the source electrode SE and the drain electrode DE cover a portion of an upper surface of the first insulating layer PAS1.
  • a recess C is formed on the source electrode SE between the first insulating layer PAS1 and the via pad VAP for source electrode wiring.
  • the high electron mobility transistor according to the present invention further includes a first insulating layer PAS1 formed on the base layer 10, and includes a source electrode SE, a drain electrode DE, and a gate electrode.
  • the GE is formed on the base layer 10 by removing the first insulating layer PAS1 after the first insulating layer PAS1 is formed on the base layer 10, and forming the source electrode SE and the gate electrode GE.
  • both sides of the drain electrode DE cover a portion of the upper surface of the first insulating layer PAS1.
  • the second insulating layer PAS2 further includes a second insulating layer PAS2 formed on the first insulating layer PAS1, and the second insulating layer PAS2 covers a portion of an upper surface of each of the source electrode SE and the drain electrode DE.
  • the gate electrode GE is covered.
  • the semiconductor device may further include a source electrode pad PSE formed on the source electrode SE and a drain electrode pad PDE formed on the drain electrode DE, and further include a source electrode pad PSE and a drain electrode pad PDE. ) Is formed on the exposed source electrode SE and the drain electrode DE by removing a portion of the second insulating layer PAS2 formed on the source electrode SE and the drain electrode DE, respectively.
  • the method may include forming the base layer 10 on the substrate 11 on which the source electrode wiring forming region is defined, and forming a first layer on the top surface of the base layer 10. Forming the insulating layer PAS1, and etching the first insulating layer PAS1, the base layer 10, and the substrate 11 on the source electrode wiring forming region to a predetermined depth from the entire surface of the source electrode wiring via.
  • a portion of the first insulating layer PAS1 and a portion of the first insulating layer PAS1 spaced apart from the via pad VAP for source electrode wiring are removed to expose the source electrode SE and the drain on the exposed base layer 10.
  • Forming an electrode DE, the first insulating layer PAS1 between the source electrode SE and the drain electrode DE Removing a portion of the gate electrode to form a gate electrode GE on the exposed base layer 10.
  • the base layer 10 is deposited on the substrate 11 on which the source electrode wiring forming region is defined.
  • the base layer 10 may be formed by stacking the nucleation layer 12, the buffer layer 13, and the barrier layer 15.
  • a first insulating layer PAS1 is deposited on the base layer 10.
  • the first seed layer SD1 is deposited on the first insulating layer PAS1, the source electrode wiring forming portion is covered with a photoresist (not shown), and then the metal mask 19 is first coated. It is grown on the seed layer SD1. Then, the photoresist covered on the source electrode wiring forming region is removed, and the first insulating layer PAS1, the base layer 10 and the substrate 11 of the source electrode wiring forming region are etched to a predetermined depth from the entire surface for source electrode wiring. Form a via (VA).
  • VA via
  • the second seed layer SD2 is formed on the entire surface, and the via VA for source electrode wiring is formed.
  • a via pad for source electrode wiring (VAP) is formed by filling the source electrode wiring via (VA) with a conductor.
  • the first insulating layer PAS1 is etched along a predetermined outer circumference of the via pad VAP for defining the source electrode to define the source electrode forming region, and the source electrode forming region and the source electrode forming region.
  • the first insulating layer PAS1 of the spaced portion is etched to define the drain electrode forming region.
  • a source electrode SE is formed on an upper surface of the via pad VAP for source electrode wiring and the source electrode forming portion, and a drain electrode DE is formed on the drain electrode forming portion on the base layer 10.
  • a stepped portion S in which both sides of the source electrode SE and the drain electrode DE cover a part of the upper surface of the first insulating layer PAS1 is formed.
  • a recess C is formed on the source electrode SE between the first insulating layer PAS1 and the via pad VAP for source electrode wiring. The recess C is generated due to the space between the first insulating layer PAS1 and the via pad VAP for source electrode wiring.
  • the subsequent process of forming the third seed layer SD3 and back-grinding the back surface of the substrate and forming the fourth seed layer SD4 and the back layer BSP is substantially the same as the process of the first embodiment.
  • the present invention is capable of improving the reliability of a high electron mobility transistor by forming a source wiring via and preventing solder flux from flowing therein.

Abstract

A high electron mobility transistor and a manufacturing method therefor are provided. The high electron mobility transistor according to an embodiment of the present invention comprises: a substrate in which a source electrode wiring forming portion is defined; a base layer formed on the substrate; a source electrode formed on the base layer of the source electrode wiring forming portion; a drain electrode spaced apart from the source electrode and formed on the base layer; a gate electrode formed on the base layer between the source electrode and the drain electrode; and a via pad for a source electrode wiring, which is formed by etching the base layer of the source electrode wiring forming portion and the substrate to a predetermined depth from the front surface thereof and then filling a conductor therein.

Description

고전자이동도 트랜지스터 및 그의 제조방법High Variability Transistor and Manufacturing Method
본 발명은 고전자이동도 트랜지스터 및 그의 제조방법에 관한 것으로서, 보다 상세하게는 소자의 수율 및 소자의 신뢰성을 향상시키는 고전자이동도 트랜지스터 및 그의 제조방법에 관한 것이다.The present invention relates to a high electron mobility transistor and a method of manufacturing the same, and more particularly, to a high electron mobility transistor and a method of manufacturing the same to improve the yield of the device and the reliability of the device.
정보통신기술의 발달로 인해, 고속 스위칭 환경이나 고전압 환경에서 동작하는 고내압 트랜지스터의 요청이 증가하고 있다. 이에 최근에 등장한 갈륨 나이트라이드계 트랜지스터는 종래의 실리콘계 트랜지스터에 비해 고속 스위칭 동작이 가능하여 초고속 신호 처리에 적합할 뿐만 아니라 소재 자체의 고내압 특성을 통해 고전압 환경에 적용할 수 있는 장점이 있어 업계의 주목을 받고 있다. 특히 갈륨나이트라이드를 이용한 고전자이동도 트랜지스터(HEMT: High Electron Mobility Transistor)의 경우, 이종 물질간 계면에서 발생하는 2차원 전자가스(2DEG; 2-Dimensional Electron Gas)를 이용함으로써 전자의 이동도(mobility)를 높일 수 있어 고속 신호 전송에 적합한 장점이 있다.Due to the development of information and communication technology, the demand for high withstand voltage transistors operating in a high speed switching environment or a high voltage environment is increasing. Recently, gallium nitride-based transistors have a high-speed switching operation compared to conventional silicon-based transistors, and are suitable for high-speed signal processing and can be applied to high-voltage environments through the high voltage resistance of the material itself. It is getting attention. Particularly in the case of High Electron Mobility Transistor (HEMT) using gallium nitride, electron mobility (2DEG; 2-Dimensional Electron Gas) generated at the interface between heterogeneous materials is used. Mobility can be increased, which is an advantage for high speed signal transmission.
이러한, 고전자이동도 트랜지스터는 크기를 최소화하기 위하여 소스 전극과 전기적으로 연결되는 소스전극배선을 소스 전극 하부에 형성하는 공정에 있어서, 백-그라인딩(backgrinding) 공정을 진행하여 얇아진 기판의 후면에서부터 소정 깊이로 식각하여 소스 전극의 하부를 관통하는 소스전극배선용 비아를 형성하고 소스전극배선용 비아의 표면에 얇은 금속막을 도금하여 소스전극배선을 형성한다.In the high electron mobility transistor, a source electrode wiring electrically connected to the source electrode is formed under the source electrode in order to minimize the size thereof. Etching to a depth to form a source electrode wiring via penetrating the lower portion of the source electrode, and to form a source electrode wiring by plating a thin metal film on the surface of the source electrode wiring via.
그러나 상기 소스전극배선 형성 공정은 백-그라인딩 공정을 진행하여 얇아진 기판의 후면에서부터 소정 깊이로 식각하기 때문에, 백-그라인딩 공정 전의 두꺼운 기판을 식각하는 경우보다 식각속도가 감소되고, 식각 균일도가 저하되며 기판에 크랙(crack)이 발생하여 소자의 수율 및 소자의 신뢰성이 저하되는 문제점이 있다.However, since the source electrode wiring forming process performs the back-grinding process to etch to a predetermined depth from the rear surface of the thinned substrate, the etching rate is reduced and the etching uniformity is lowered than the case of etching the thick substrate before the back-grinding process. There is a problem in that cracks are generated in the substrate, thereby lowering the yield of the device and the reliability of the device.
또한, 상기 소스전극배선 형성 공정은 상기 SiC 웨이퍼(Wafer) 등으로 이루어진 기판이 비아를 형성하기 어려운 물질 중 하나이기 때문에, 상기 기판의 후면에서부터 소정 깊이로 식각하는 공정에 의한 기판의 온도 상승으로 백-그라인딩 공정 시 저온 접합제를 사용하지 못하고 제거가 어려운 고온 접합제를 사용함에 따라 공정을 매우 어렵게 하여 소자의 수율이 저하되는 문제점이 있다.In addition, the process of forming the source electrode wiring is one of materials in which a substrate made of the SiC wafer, etc., is difficult to form vias, and thus, the substrate is formed at a predetermined depth from a rear surface of the substrate. -As the grinding process does not use the low temperature binder and the high temperature binder is difficult to remove, the process is very difficult and the yield of the device is lowered.
또한, 상기 소스전극배선 형성 공정은 소스전극배선용 비아의 표면에 얇은 금속막을 도금하여 소스전극배선을 형성하기 때문에, 소스전극배선용 비아의 대부분이 비어 있어서 열전도도가 낮아 소자의 열방출이 저하되는 문제점이 있다.In addition, the source electrode wiring forming process forms a source electrode wiring by plating a thin metal film on the surface of the source electrode wiring via, so that most of the source electrode wiring via is empty so that the thermal conductivity of the device is low due to low thermal conductivity. There is this.
또한, 상기 소스전극배선 형성 공정은 소스전극배선용 비아의 대부분이 비어 있기 때문에, 소자의 패키징을 위한 솔더본딩(solder bonding) 시 사용되는 솔더가 비아의 바닥면을 통하여 기판의 전면에 위치될 수 있어 소자의 신뢰성이 저하되고 소자의 수명이 단축될 수 있는 문제점이 있다.In the process of forming the source electrode wiring, since most of the via for the source electrode wiring is empty, the solder used for solder bonding for packaging the device may be located at the front of the substrate through the bottom of the via. There is a problem that the reliability of the device may be lowered and the life of the device may be shortened.
본 발명의 목적은, 소스 전극과 전기적으로 연결되는 소스전극배선을 소스 전극 하부에 형성하여 트랜지스터의 크기를 최소화하고, 소스전극배선 형성을 전면에서 하고 소스전극배선용 비아를 전도체로 충진함으로써 공정이 용이하고 소자의 열방출을 향상시킬 수 있는 고전자이동도 트랜지스터 및 그의 제조방법을 제공하는 것이다.An object of the present invention is to simplify the process by forming a source electrode wiring electrically connected to the source electrode under the source electrode to minimize the size of the transistor, to form the source electrode wiring in the front and to fill the via for source electrode wiring with a conductor. To provide a high electron mobility transistor and a method of manufacturing the same that can improve the heat dissipation of the device.
본 발명의 일실시예에 따른 고전자이동도 트랜지스터는,A high electron mobility transistor according to an embodiment of the present invention,
소스전극배선형성부위가 정의된 기판, 상기 기판 상부에 형성되는 베이스층, 상기 소스전극배선형성부위의 상기 베이스층 상부에 형성되는 소스전극, 상기 소스전극과 이격되어 상기 베이스층 상부에 형성되는 드레인전극, 상기 소스전극과 상기 드레인전극 사이 상기 베이스층 상부에 형성되는 게이트전극 및 상기 소스전극배선형성부위의 상기 베이스층 및 상기 기판을 전면에서부터 소정 깊이로 식각하고 전도체를 충진하여 형성되는 소스전극배선용 비아패드를 포함한다.A substrate on which a source electrode wiring forming portion is defined, a base layer formed on the substrate, a source electrode formed on the base layer on the source electrode wiring forming portion, a drain spaced apart from the source electrode and formed on the base layer A source electrode wiring formed by etching a base electrode and the substrate on the source layer and the source electrode wiring forming portion to a predetermined depth from an entire surface and filling a conductor between an electrode, the source electrode and the drain electrode. Contains via pads.
상기 베이스층 상부에 형성되는 제1 절연층을 더 포함하고, 상기 소스전극과 상기 드레인전극은 상기 제1 절연층이 형성된 후에 상기 제1 절연층 일부를 제거하여 노출된 상기 베이스층 상부에 형성되어, 상기 소스전극과 드레인전극의 양측이 상기 제1 절연층 상면 일부를 덮는 단차부가 형성된다.And a first insulating layer formed on the base layer, wherein the source electrode and the drain electrode are formed on the exposed base layer by removing a portion of the first insulating layer after the first insulating layer is formed. The stepped portion may be formed at both sides of the source electrode and the drain electrode to cover a portion of an upper surface of the first insulating layer.
상기 제1 절연층 상부에 형성되는 제2 절연층을 더 포함하고, 상기 제2 절연층은 상기 소스전극과 상기 드레인전극 각각의 상면 일부를 덮어 상기 제1절연층과 상기 소스전극배선용 비아패드 사이의 상시 소스전극의 상부에 요부가 형성된다.And a second insulating layer formed on the first insulating layer, wherein the second insulating layer covers a portion of an upper surface of each of the source electrode and the drain electrode, between the first insulating layer and the via pad for source electrode wiring. The recess is formed on the upper portion of the source electrode at all times.
상기 소스전극 상부에 형성되는 소스전극패드 및 상기 드레인전극 상부에 형성되는 드레인전극패드를 더 포함하고, 상기 소스전극패드와 상기 드레인전극패드는 각각 상기 소스전극과 상기 드레인전극 상부에 형성된 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극과 상기 드레인전극 상부에 형성된다.A source electrode pad formed on the source electrode and a drain electrode pad formed on the drain electrode, wherein the source electrode pad and the drain electrode pad are respectively formed on the source electrode and the drain electrode; A portion of the insulating layer is removed to be formed on the exposed source electrode and the drain electrode.
본 발명의 일실시예에 따른 고전자이동도 트랜지스터의 변형예에 따르면, 상기 베이스층 상부에 형성되는 제1 절연층; 상기 제1 절연층 상부에 형성되는 제2 절연층; 상기 소스전극 상부에 형성되는 소스전극패드; 및 상기 드레인전극 상부에 형성되는 드레인전극패드를 더 포함하고, 상기 소스전극과 상기 드레인전극이 상기 베이스층 상부에 형성된 후에 상기 제1 절연층이 형성되어 상기 제1 절연층이 상기 소스전극과 드레인전극의 양측 상면 일부를 덮으며, 상기 소스전극패드와 상기 드레인전극패드는 각각 상기 소스전극과 드레인전극 상부의 상기 제1 절연층 및 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극 및 상기 드레인전극 상부에 형성된다.According to a modification of the high electron mobility transistor according to an embodiment of the present invention, the first insulating layer formed on the base layer; A second insulating layer formed on the first insulating layer; A source electrode pad formed on the source electrode; And a drain electrode pad formed on the drain electrode, wherein the first insulating layer is formed after the source electrode and the drain electrode are formed on the base layer, and the first insulating layer is formed of the source electrode and the drain. The source electrode pad and the drain electrode pad cover portions of upper surfaces of both sides of the electrode, and the source electrode and the exposed portion of the source electrode and the drain electrode are removed by removing a portion of the first insulating layer and the second insulating layer, respectively. It is formed on the drain electrode.
상기 소스전극배선용 비아패드는 전면측 방향인 상부부위의 직경이 후면측 방향인 하부부위의 직경보다 크다.The diameter of the upper portion of the via pad for source electrode wiring is greater than that of the lower portion of the rear side.
상기 소스전극배선용 비아패드는 구리, 금 중 어느 하나일 수 있다.The via pad for source electrode wiring may be any one of copper and gold.
상기 소스전극배선용 비아패드의 상면 면적은, 상기 소스전극의 저면 면적의 50% 이상을 차지한다. 상기 소스전극배선용 비아패드는, 상기 적어도 하나 이상 형성된다. 상기 베이스층은, 갈륨나이트라이드(GaN)층을 포함한다.An upper surface area of the via pad for source electrode wiring occupies 50% or more of the bottom area of the source electrode. At least one via pad for source electrode wiring is formed. The base layer includes a gallium nitride (GaN) layer.
본 발명의 다른 실시예에 따른 고전자이동도 트랜지스터의 제조방법은, Method of manufacturing a high electron mobility transistor according to another embodiment of the present invention,
소스전극배선형성부위가 정의된 기판상부에 베이스층을 형성하는 단계; 상기 소스전극배선형성부위의 상기 베이스층 및 상기 기판을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아를 형성하는 단계; 상기 소스전극배선용 비아를 전도체로 충진하여 소스전극배선용 비아패드를 형성하는 단계; 상기 소스전극배선용 비아패드 상부 및 상기 소스전극배선용 비아패드와 인접한 베이스층 상부와, 상기 소스전극배선용 비아패드와 이격된 상기 베이스층 상부에 각각 소스전극 및 드레인전극을 형성하는 단계; 전면에 제1 절연층을 형성하는 단계; 상기 소스전극과 상기 드레인전극 사이 상기 제1 절연층의 일부를 제거하여 노출된 상기 베이스층 상부에 게이트전극을 형성하는 단계;를 포함한다.Forming a base layer on the substrate where the source electrode wiring forming portion is defined; Forming a via for source electrode wiring by etching the base layer and the substrate on the source electrode wiring forming portion to a predetermined depth from a front surface; Filling the source electrode wiring via with a conductor to form a via pad for source electrode wiring; Forming a source electrode and a drain electrode on an upper portion of the via pad for source electrode wiring and a base layer adjacent to the via pad for source electrode wiring, and an upper portion of the base layer spaced apart from the via pad for source electrode wiring; Forming a first insulating layer on the front surface; And removing a portion of the first insulating layer between the source electrode and the drain electrode to form a gate electrode on the exposed base layer.
상기 게이트전극을 형성하는 단계 이후에, 전면에 제2 절연층을 형성하는 단계; 및 상기 소스전극과 상기 드레인전극 상부의 상기 제1절연층 및 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극과 상기 드레인전극 상부에 각각 소스전극패드 및 드레인전극패드를 형성하는 단계를 더 포함한다.After forming the gate electrode, forming a second insulating layer on an entire surface of the gate electrode; And removing a portion of the first insulating layer and the second insulating layer on the source electrode and the drain electrode to form a source electrode pad and a drain electrode pad on the exposed source electrode and the drain electrode, respectively. Include.
본 발명의 또 다른 실시예에 따른 고전자이동도 트랜지스터의 제조방법은, 소스전극배선형성부위가 정의된 기판상에 베이스층을 형성하는 단계; 전면에 제1 절연층을 형성하는 단계; 상기 소스전극배선형성부위의 상기 제1 절연층, 상기 베이스층 및 상기 기판을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아를 형성하는 단계; 상기 소스전극배선용 비아를 전도체로 충진하여 소스전극배선용 비아패드를 형성하는 단계; 상기 소스전극배선용 비아패드 상부 상기 소스전극배선용 비아패드와 인접한 제1 절연층 입루와, 상기 소스전극배선용 비아패드와 이격된 상기 제1 절연층의 일부를 제거하여 노출된 상기 베이스층 상부에 각각 소스전극 및 드레인전극을 형성하는 단계; 상기 소스전극과 상기 드레인전극 사이 상기 제1 절연층의 일부를 제거하여 노출된 상기 베이스층 상부에 게이트전극을 형성하는 단계;를 포함한다.A method of manufacturing a high electron mobility transistor according to another embodiment of the present invention includes forming a base layer on a substrate on which a source electrode wiring forming portion is defined; Forming a first insulating layer on the front surface; Forming vias for source electrode wiring by etching the first insulating layer, the base layer, and the substrate on the source electrode wiring forming portion to a predetermined depth from a front surface thereof; Filling the source electrode wiring via with a conductor to form a via pad for source electrode wiring; A source on the base layer exposed by removing a portion of the first insulating layer adjacent to the source electrode wiring via pad and a portion of the first insulating layer spaced apart from the source electrode via via pad Forming an electrode and a drain electrode; And removing a portion of the first insulating layer between the source electrode and the drain electrode to form a gate electrode on the exposed base layer.
상기 게이트전극을 형성하는 단계 이후에, 전면에 제2 절연층을 형성하는 단계; 및 상기 소스전극 및 상기 드레인전극 상부의 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극과 상기 드레인전극 상부에 각각 소스전극패드 및 드레인전극패드를 형성하는 단계를 더 포함한다.After forming the gate electrode, forming a second insulating layer on an entire surface of the gate electrode; And removing a portion of the second insulating layer on the source electrode and the drain electrode to form a source electrode pad and a drain electrode pad on the exposed source electrode and the drain electrode, respectively.
위 두 실시예에서의 고전자이동도 트랜지스터의 제조방법은, 소스전극패드 및 드레인전극패드를 형성하는 단계 이후에, 상기 소스전극배선용 비아패드의 후단이 노출되도록 상기 기판 후면을 백-그라인딩하는 단계; 및 상기 기판의 후면에 노출된 상기 소스전극배선용 비아패드와 연결되는 배면층을 형성하는 단계를 더 포함한다.In the method of manufacturing a high electron mobility transistor in the above two embodiments, after forming the source electrode pad and the drain electrode pad, back-grinding the back surface of the substrate so that the rear end of the via pad for source electrode wiring is exposed. ; And forming a rear layer connected to the via pad for source electrode wiring exposed on the rear surface of the substrate.
상기 소스전극배선용 비아패드는, 전면측 방향인 상부부위의 직경이 후면측 방향인 하부부위의 직경보다 크다. 상기 소스전극배선용 비아패드의 상면 면적은, 상기 소스전극의 저면 면적의 50% 이상을 차지한다. 상기 소스전극배선용 비아패드는, 상기 적어도 하나 이상 형성된다. 상기 베이스층은 , 갈륨나이트라이드(GaN)층을 포함한다. In the via pad for source electrode wiring, a diameter of an upper portion in a front side direction is larger than a diameter of a lower portion in a rear side direction. An upper surface area of the via pad for source electrode wiring occupies 50% or more of the bottom area of the source electrode. At least one via pad for source electrode wiring is formed. It said base layer includes a gallium nitride (GaN) layer.
본 발명의 고전자이동도 트랜지스터 및 그의 제조 방법은 소스 전극과 전기적으로 연결되는 소스전극배선을 소스 전극 하부에 형성하는 공정에 있어서, 백-그라인딩 공정 전의 소자 형성 공정 중에 두꺼운 상태의 기판 전면에서부터 소정 깊이로 식각하고 충진하여 소스전극배선용 비아패드를 형성함으로써, 백-그라인딩 공정을 진행하여 얇아진 기판의 후면에서부터 소정 깊이로 식각하는 종래 기술보다 식각속도가 증가하고, 식각 균일도를 향상시키며 기판의 크랙 발생을 억제하여 소자의 수율 및 소자의 신뢰성을 향상시키는 효과를 가진다.The high electron mobility transistor according to the present invention and a method of manufacturing the same have a method of forming a source electrode wiring electrically connected to the source electrode under the source electrode. By etching and filling to a depth to form a via pad for source electrode wiring, the back-grinding process is performed to increase the etching speed, improve the etching uniformity, and improve the cracking of the substrate, compared to the conventional technique of etching the back surface of the thinned substrate to a predetermined depth. By suppressing the effect of improving the yield of the device and the reliability of the device.
또한, 본 발명은 소스전극배선용 비아패드를 형성하고 백-그라인딩 공정을 진행함으로써, 소스전극배선용 비아를 형성하기 위한 기판 식각 공정 없이 백-그라인딩 공정이 진행되기 때문에, 백-그라인딩 공정 시 고온 접합제보다 제거가 용이한 저온 접합제를 사용할 수 있어 공정이 용이하여 소자의 수율을 향상시키는 효과를 가진다.In addition, the present invention forms a via pad for the source electrode wiring and performs the back-grinding process, so that the back-grinding process is performed without the substrate etching process for forming the source electrode wiring via, so that the high temperature bonding agent in the back-grinding process is performed. A low temperature binder which can be more easily removed can be used to facilitate the process, thereby improving the yield of the device.
또한, 본 발명은 두꺼운 상태의 기판 전면에서부터 소정 깊이로 식각하고 충진하여 소스전극배선용 비아패드를 형성함으로써, 소스전극배선용 비아 전부가 충진되기 때문에 종래 기술의 대부분이 빈 소스전극배선용 비아보다 열 전도율이 높아 소자의 열방출을 향상시켜 소자의 성능을 향상시키는 효과를 가진다.In addition, the present invention forms a via pad for source electrode wiring by etching and filling to a predetermined depth from the entire surface of the substrate in a thick state, so that all the vias for the source electrode wiring are filled, so that the thermal conductivity of the prior art is higher than that of the via for the empty source electrode wiring. It has a high effect to improve the heat dissipation of the device to improve the performance of the device.
또한, 본 발명은 두꺼운 상태의 기판 전면에서부터 소정 깊이로 식각하고 충진하여 소스전극배선용 비아패드를 형성함으로써, 소자의 패키징을 위한 솔더본딩 시 사용되는 솔더와 플럭스가 기판으로 유입될 수 없어 소자의 신뢰성을 향상시키고 소자의 수명 단축을 방지하는 효과를 가진다.In addition, the present invention forms a via pad for source electrode wiring by etching and filling to a predetermined depth from the entire surface of the thick substrate, so that solder and flux used for solder bonding for packaging the device cannot flow into the substrate, thereby ensuring reliability of the device. It has the effect of improving the performance and preventing the shortening of the life of the device.
또한, 본 발명은 두꺼운 상태의 기판을 전면에서부터 소정 깊이로 식각함으로써, 얇은 상태의 기판을 후면에서부터 소정 깊이로 식각하는 것에 비해 안정적으로 식각할 수 있어 소스전극배선용 비아패드의 폭을 넓게 형성할 수 있어 전기 전도율 및 열 전도율을 향상시킬 수 있다.In addition, the present invention can be etched more stably by etching a thick substrate to a predetermined depth from the front surface, it is possible to form a wider width of the via pad for source electrode wiring than the etching of a thin substrate to a predetermined depth from the rear surface. There can improve the electrical conductivity and thermal conductivity.
도 1은 제 1실시예에 따른 고전자이동도 트랜지스터를 나타낸 단면도이다.1 is a cross-sectional view showing a high electron mobility transistor according to a first embodiment.
도 2는 도 1의 소스 전극에 형성된 복수의 소스전극배선용 비아패드를 나타낸 평면도이다.2 is a plan view illustrating a plurality of via pads for source electrode wiring formed in the source electrode of FIG. 1.
도 3은 도 1의 소스 전극에 형성된 하나의 소스전극배선용 비아패드를 나타낸 평면도이다.3 is a plan view illustrating one via pad for source electrode wiring formed in the source electrode of FIG. 1.
도 4a 내지 도 4h는 실시예에 따른 고전자이동도 트랜지스터의 제조 방법을 나타내기 위한 단면도이다.4A to 4H are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to an embodiment.
도 5는 제 2실시예에 따른 고전자이동도 트랜지스터를 나타낸 단면도이다.5 is a cross-sectional view illustrating a high electron mobility transistor according to a second embodiment.
도 6a 내지 도 6g는 제 2실시예에 따른 고전자이동도 트랜지스터의 제조 방법을 나타내기 위한 단면도이다.6A to 6G are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to a second embodiment.
- 부호의 설명 -Description of the sign
10 : 베이스층 11 : 기판10 base layer 11 substrate
12 : 핵형성층 13 : 버퍼층12: nucleation layer 13: buffer layer
15 : 배리어층 19 : 메탈마스크15: barrier layer 19: metal mask
BSP : 배면층 VA : 소스전극배선용 비아BSP: Back layer VA: Via for source electrode wiring
VAP : 소스전극배선용 비아패드 SE : 소스전극VAP: Via pad for source electrode wiring SE: Source electrode
PSE : 소스전극패드 GE : 게이트전극PSE: Source electrode pad GE: Gate electrode
DE : 드레인전극 PDE : 드레인전극패드DE: drain electrode PDE: drain electrode pad
PAS1 : 제1 절연층 PAS2 : 제2 절연층PAS1: First Insulation Layer PAS2: Second Insulation Layer
SD1 : 제1 시드층 SD2 : 제2 시드층SD1: first seed layer SD2: second seed layer
SD3 : 제3 시드층 SD4 : 제4 시드층SD3: third seed layer SD4: fourth seed layer
S : 단차부 C : 요부S: stepped part C: main part
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 아래의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하며 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. Embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following embodiments may be modified in many different forms, the scope of the present invention It is not limited to the following embodiments. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는"포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 영역 및/또는 부위들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부위들은 이들 용어에 의해 한정이 되지 않음은 자명하다. 이들 용어는 특정 순서나 상하, 또는 우열을 의미하지 않으며, 하나의 부재, 영역 또는 부위를 다른 부재, 영역 또는 부위와 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1 부재, 영역 또는 부위는 본 발명의 가르침으로부터 벗어나지 않고서도 제2 부재, 영역 또는 부위를 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, regions, and / or portions, it is obvious that these members, components, regions, layers, and / or portions are not limited by these terms. Do. These terms do not imply any particular order, up or down, or superiority, and are only used to distinguish one member, region or region from another member, region or region. Accordingly, the first member, region, or region described below may refer to the second member, region, or region without departing from the teachings of the present invention.
이하, 본 발명의 실시예들은 본 발명의 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.Hereinafter, embodiments of the present invention will be described with reference to the drawings schematically showing embodiments of the present invention. In the drawings, for example, variations in the shape shown may be expected, depending on manufacturing techniques and / or tolerances. Accordingly, embodiments of the present invention should not be construed as limited to the specific shapes of the regions shown herein, but should include, for example, changes in shape resulting from manufacturing.
제1 First 실시예Example
도 1은 제1 실시예에 따른 고전자이동도 트랜지스터를 나타낸 단면도이다. 도 1에 도시된 바와 같이, 제1 실시예에 따른 고전자이동도 트랜지스터는 소스전극배선형성부위가 정의된 기판(11), 기판(11) 상부에 형성되는 베이스층(10), 소스전극배선형성부위의 베이스층(10) 상부에 형성되는 소스전극(SE), 소스전극(SE)과 이격되어 베이스층(10) 상부에 형성되는 드레인전극(DE), 소스전극(SE)과 드레인전극(DE) 사이의 베이스층(10) 상부에 형성되는 게이트전극(GE) 및 소스전극배선형성부위의 베이스층(10)과 기판(11)을 전면에서부터 소정 깊이로 식각하고 전도체를 충진하여 형성되는 소스전극배선용 비아패드(VAP)를 포함한다.1 is a cross-sectional view illustrating a high electron mobility transistor according to a first embodiment. As shown in FIG. 1, the high electron mobility transistor according to the first embodiment includes a substrate 11 having a source electrode wiring forming portion, a base layer 10 formed on the substrate 11, and a source electrode wiring. The drain electrode DE, the source electrode SE, and the drain electrode formed on the base layer 10 and spaced apart from the source electrode SE and the source electrode SE formed on the base layer 10 of the formation portion. A source formed by etching the base layer 10 and the substrate 11 of the gate electrode GE and the source electrode wiring forming portion formed on the base layer 10 between DE to a predetermined depth from the front surface and filling the conductor. A via pad for electrode wiring (VAP) is included.
여기서, 베이스층(10) 상부에 형성되는 제1 절연층(PAS1), 제1 절연층(PAS1) 상부에 형성되는 제2 절연층(PAS2), 소스전극(SE)과 전기적으로 연결되며 소스전극(SE) 상부에 형성되는 소스전극패드(PSE) 및 드레인전극(DE)과 전기적으로 연결되며 드레인전극(DE) 상부에 형성되는 드레인전극패드(PDE)를 더 포함한다.Here, the first insulating layer PAS1 formed on the base layer 10, the second insulating layer PAS2 formed on the first insulating layer PAS1, and the source electrode SE are electrically connected to each other. The semiconductor device may further include a drain electrode pad PDE formed on the drain electrode DE and electrically connected to the source electrode pad PSE and the drain electrode DE formed on the SE.
소스전극(SE)과 드레인전극(DE)은 베이스층(10) 상부에 형성된 후에 제1 절연층(PAS1)이 형성되어 제1 절연층(PAS1)이 소스전극(SE)과 드레인전극(DE)의 양측 상면 일부를 덮는다.After the source electrode SE and the drain electrode DE are formed on the base layer 10, the first insulating layer PAS1 is formed so that the first insulating layer PAS1 is the source electrode SE and the drain electrode DE. Cover part of the upper surface of both sides.
또한, 소스전극패드(PSE)와 드레인전극패드(PDE)는 각각 소스전극(SE) 드레인전극(DE) 상부의 제1 절연층(PAS1) 및 제2 절연층(PAS2) 일부를 제거하여 노출된 소스전극(SE)과 드레인전극(DE) 상부에 형성된다.In addition, the source electrode pad PSE and the drain electrode pad PDE may be exposed by removing portions of the first insulating layer PAS1 and the second insulating layer PAS2 on the source electrode SE and the drain electrode DE, respectively. It is formed on the source electrode SE and the drain electrode DE.
기판(11)은 소스전극배선형성부위가 정의되며, 사파이어(Al2O3), 질화 갈륨(GaN), 실리콘(Si), 실리콘 카바이드(SiC) 등으로 이루어질 수 있다. 그리고 베이스층(10)은 기판(11) 상부에 형성되고, 핵형성층(12) 상부에 버퍼층(13)이 형성되고 버퍼층(13) 상부에 배리어층(15)이 형성되어 이루어진다.The substrate 11 may include a source electrode wiring forming portion, and may be formed of sapphire (Al 2 O 3 ), gallium nitride (GaN), silicon (Si), silicon carbide (SiC), or the like. The base layer 10 is formed on the substrate 11, the buffer layer 13 is formed on the nucleation layer 12, and the barrier layer 15 is formed on the buffer layer 13.
여기서, 핵형성층(12), 버퍼층(13) 및 배리어층(15)은 각각 알루미늄나이트라이드(AlN), 갈륨나이트라이드(GaN) 및 알루미늄 갈륨나이트라이드(AlGaN)로 이루어질 수 있다.The nucleation layer 12, the buffer layer 13, and the barrier layer 15 may be made of aluminum nitride (AlN), gallium nitride (GaN), and aluminum gallium nitride (AlGaN), respectively.
소스전극(SE)은 소스전극배선용 비아패드(VAP) 상부에 형성된다. 그리고 드레인전극(DE)은 소스전극(SE)과 이격되어 베이스층(10) 상부에 형성된다.The source electrode SE is formed on the via pad VAP for source electrode wiring. The drain electrode DE is formed on the base layer 10 spaced apart from the source electrode SE.
게이트전극(GE)은 소스전극(SE)과 드레인전극(DE) 사이의 베이스층(10) 상부에 형성된다.The gate electrode GE is formed on the base layer 10 between the source electrode SE and the drain electrode DE.
이하, 상기 소스전극배선용 비아패드(VAP)에 대해 상세하게 설명한다.Hereinafter, the via pad VAP for source electrode wiring will be described in detail.
도 2는 도 1의 소스전극에 형성된 복수의 소스전극배선용 비아패드를 나타낸 평면도이고, 도 3은 도 1의 소스전극에 형성된 하나의 소스전극배선용 비아패드를 나타낸 평면도이다.FIG. 2 is a plan view illustrating a plurality of source electrode wiring via pads formed in the source electrode of FIG. 1, and FIG. 3 is a plan view illustrating one source electrode wiring via pad formed in the source electrode of FIG. 1.
상기 소스전극배선용 비아패드(VAP)는 기판(11)과 베이스층(10)으로 둘러싸이고, 상기 소스전극배선형성부위를 전면에서부터 소정 깊이로 식각하고 충진하여 형성된다.The source electrode wiring via pad VAP is surrounded by the substrate 11 and the base layer 10, and is formed by etching and filling the source electrode wiring forming portion from a front surface to a predetermined depth.
이때, 소스전극배선용 비아패드(VAP)는 베이스층(10)과 기판(11)을 전면에서부터 소정 깊이로 식각하고 충진하여 형성되기 때문에 전면측 방향인 상부부위의 직경이 후면측 방향인 하부부위의 직경보다 크게 형성될 수 있다. 이 경우, 후면에서부터 식각하는 종래 기술과 소스전극배선용 비아패드(VAP)의 모양과 반대로 형성된다. 하지만, 보쉬공정(Bosch process) 등으로 상부부위와 하부부위의 직경을 동일하게 식각 할 수도 있다.At this time, the via pad for source electrode wiring (VAP) is formed by etching and filling the base layer 10 and the substrate 11 to a predetermined depth from the front surface, so that the diameter of the upper portion of the front side is lower than that of the rear side. It may be formed larger than the diameter. In this case, it is formed to be opposite to the shape of the prior art and the source electrode wiring via pad (VAP) that is etched from the rear surface. However, it is also possible to etch the same diameter of the upper portion and the lower portion by the Bosch process.
그리고 소스전극배선용 비아패드(VAP)는 후술될 소스전극패드(PSE) 및 드레인전극패드(PDE) 형성 이후 백-그라인딩 공정 시, 기판(11)의 후면까지 관통된다. 그렇게 하면 종래 기술에 기판(11) 후면에서 소스전극배선용 비아패드(VAP)를 형성한 것과 같이 전면과 후면을 관통하는 소스전극배선용 비아패드(VAP)가 형성된다. 따라서 종래 기술에서처럼 후면에서 소스전극배선용 비아패드(VAP)를 형성할 경우 발생하는 문제점들을 해결하면서도 전면과 후면을 관통하는 소스전극 배선용 비아패드(VAP)가 형성되는 것이다.The via pad VAP for source electrode wiring penetrates to the rear surface of the substrate 11 during the back-grinding process after forming the source electrode pad PSE and the drain electrode pad PDE to be described later. As a result, the source electrode wiring via pads VAP penetrating the front and rear surfaces are formed in the same manner as the source electrode wiring via pads VAP are formed on the rear surface of the substrate 11 in the related art. Therefore, the source electrode wiring via pads (VAP) penetrating the front and rear surfaces are formed while solving the problems occurring when the source electrode wiring via pads (VAP) are formed on the rear surface.
여기서, 소스전극배선용 비아패드(VAP)는 트랜지스터의 전기 전도율 및 열 전도율을 향상시키도록, 상기 소스전극배선형성부위를 구리(Cu), 금(Au) 등 전도체로 충진하여 형성된다.Here, the via pad for source electrode wiring (VAP) is formed by filling the source electrode wiring forming portion with a conductor such as copper (Cu), gold (Au) to improve the electrical conductivity and the thermal conductivity of the transistor.
또한, 상기 소스전극배선용 비아패드(VAP)는 도 2에 도시된 바와 같이, 소스전극(SE)에 적어도 하나 이상 형성되거나, 도 3에 도시된 바와 같이, 소스전극(SE)의 저면 면적의 50% 이상을 차지하며 형성될 수 있다. 모두 소스전극배선용 비아패드(VAP)를 통한 전기 전도율 및 열 전도율을 향상시키기 위함이다.In addition, at least one via pad VAP for source electrode wiring is formed in the source electrode SE, as shown in FIG. 2, or as shown in FIG. 3, 50 of the bottom area of the source electrode SE. It can be formed accounting for more than%. In order to improve electrical conductivity and thermal conductivity through the via pad for source electrode wiring (VAP).
전면에서 소스전극배선용 비아패드(VAP)를 형성할 경우, 그 개수를 적어도 하나 이상으로 형성할 수 있다. 즉, 하나만 형성할 수도 있고, 트랜지스터의 열방출 효율을 향상시키기 위하여 둘 이상의 복수개로 형성할 수 있다. 또한, 소스전극배선용 비아패드(VAP)를 하나만 형성할 경우에도 도 3에 도시된 것처럼 소스전극(SE)의 저면 면적의 50% 이상으로 소스전극배선용 비아패드(VAP)를 형성함으로써 전기 전도율 및 열 전도율을 향상시킬 수 있다. 소스전극배선용 비아패드(VAP)를 하나만 형성할 경우 도 3에 도시된 것처럼 그 크기를 소스전극(SE)의 크기와 모양에 근접하게 형성한다면 전기 전도율 및 열 전도율을 향상시킬 수 있다.When the via pad for source electrode wiring (VAP) is formed on the front surface, the number thereof may be at least one. That is, only one may be formed, or two or more may be formed in order to improve the heat dissipation efficiency of the transistor. In addition, even when only one via pad VAP is formed for the source electrode wiring, as shown in FIG. 3, the via pad VAP for the source electrode wiring is formed with 50% or more of the bottom area of the source electrode SE, thereby providing electrical conductivity and heat. The conductivity can be improved. When only one via pad VAP for source electrode wiring is formed, as shown in FIG. 3, the electrical conductivity and thermal conductivity may be improved by forming the size close to the size and shape of the source electrode SE.
본 발명은 두꺼운 상태의 기판(11)을 전면에서부터 소정 깊이로 식각함으로써, 얇은 상태의 기판(11)을 후면에서부터 소정 깊이로 식각하는 것에 비해 안정적으로 식각할 수 있어 소스전극배선용 비아패드(VAP)의 폭을 넓게 형성할 수 있으므로 도 2와 도 3과 같이 소스전극배선용 비아패드(VAP)를 형성할 수 있어 전기 전도율 및 열 전도율을 향상시킬 수 있다.According to the present invention, the substrate 11 in a thick state is etched to a predetermined depth from the front side, so that the substrate 11 in a thin state can be etched more stably than the etching depth from the back side to a predetermined depth, so that a via pad for source electrode wiring (VAP) Since the width of the film can be widened, the via pad for source electrode wiring (VAP) can be formed as shown in FIGS. 2 and 3, thereby improving the electrical conductivity and the thermal conductivity.
이하, 제1 실시예에 따른 고전자이동도 트랜지스터의 제조 방법을 상세하게 설명한다.Hereinafter, the manufacturing method of the high electron mobility transistor according to the first embodiment will be described in detail.
도 4a 내지 도 4h는 제1 실시예에 따른 고전자이동도 트랜지스터의 제조 방법을 나타내기 위한 단면도이다.4A to 4H are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to a first embodiment.
고전자이동도 트랜지스터의 제조 방법은, 소스전극배선형성부위가 정의된 기판(11) 상부에 베이스층(10)을 형성하는 단계, 소스전극배선형성부위의 베이스층(10) 및 기판(11)을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아(VA)를 형성하는 단계, 소스전극배선용 비아(VA)를 전도체로 충진하여 소스전극배선용 비아패드(VAP)를 형성하는 단계, 소스전극배선용 비아패드(VAP) 상부 및 소스전극배선용 비아패드(VAP)와 인접한 베이스층(10) 상부와, 소스전극배선용 비아패드(VAP)와 이격된 상기 베이스층(10) 상부에 각각 소스전극(SE) 및 드레인전극(DE)을 형성하는 단계, 소스전극(SE)과 드레인전극(DE) 및 베이스층(10)의 전면에 제1 절연층(PAS1)을 형성하는 단계, 소스전극(SE)과 드레인전극(DE) 사이 제1 절연층(PAS1)의 일부를 제거하여 노출된 베이스층(10) 상부에 게이트전극(GE)을 형성하는 단계를 포함한다.A method of manufacturing a high electron mobility transistor includes forming a base layer 10 on a substrate 11 on which a source electrode wiring forming portion is defined, and a base layer 10 and a substrate 11 on the source electrode wiring forming portion. To form a source electrode wiring via (VA) by etching the substrate to a predetermined depth from the front surface, and filling the source electrode wiring via (VA) with a conductor to form a source electrode wiring via pad (VAP), and a source electrode wiring via The source electrode SE and the upper portion of the pad VAP and the base layer 10 adjacent to the via pad VAP for the source electrode wiring, and the base layer 10 spaced apart from the via pad VAP for the source electrode wiring, respectively. Forming a drain electrode DE, forming a first insulating layer PAS1 on the entire surface of the source electrode SE, the drain electrode DE, and the base layer 10, and forming the source electrode SE and the drain electrode. A portion of the first insulating layer PAS1 between the layers DE is exposed on the exposed base layer 10. Forming a gate electrode GE in the portion.
또한, 게이트전극(GE)을 형성하는 단계 이후에, 전면에 제2 절연층(PAS2)을 형성하는 단계, 소스전극(SE) 및 드레인전극(DE) 상부의 제1 절연층(PAS1) 및 제2 절연층(PAS2) 일부를 제거하여 노출된 소스전극(SE)과 드레인전극(DE) 상부에 각각 소스전극패드(PSE) 및 드레인전극패드(PDE)를 형성하는 단계를 더 포함한다.In addition, after the gate electrode GE is formed, the second insulating layer PAS2 is formed on the entire surface, and the first insulating layer PAS1 and the first insulating layer on the source electrode SE and the drain electrode DE are formed. The method may further include forming a source electrode pad PSE and a drain electrode pad PDE on the exposed source electrode SE and the drain electrode DE by removing a portion of the insulating layer PAS2.
또한, 소스전극패드(PSE) 및 드레인전극패드(PDE)를 형성하는 단계 이후에, 소스전극배선용 비아패드(VAP)의 후단이 노출되도록 기판(11) 후면을 백-그라인딩하는 단계 및 기판(11)의 후면에 노출된 소스전극배선용 비아패드(VAP)와 연결되는 배면층(BSP)을 형성하는 단계를 더 포함한다.In addition, after forming the source electrode pad PSE and the drain electrode pad PDE, back-grinding the back surface of the substrate 11 so that the rear ends of the via pads VAP for the source electrode wiring are exposed and the substrate 11. And forming a rear layer BSP connected to the source electrode wiring via pad VAP exposed on the rear surface of the substrate.
도 4a에 도시된 바와 같이, 제1 실시예에 따른 고전자이동도 트랜지스터의 제조 방법은 소스전극배선형성부위가 정의된 기판(11) 상부에 베이스층(10)을 증착한다. 여기서, 상기 베이스층(10)은 핵형성층(12)과 버퍼층(13) 및 배리어층(15)이 적층되어 이루어질 수 있다. 그리고 핵형성층(12)과 버퍼층(13) 및 배리어층(15)은 각각 알루미늄나이트라이드(AlN)와 갈륨나이트라이드(GaN)와 알루미늄 갈륨나이트라이드(AlGaN)로 이루어질 수 있다.As shown in FIG. 4A, in the method of manufacturing the high electron mobility transistor according to the first embodiment, the base layer 10 is deposited on the substrate 11 on which the source electrode wiring forming region is defined. Here, the base layer 10 may be formed by stacking the nucleation layer 12, the buffer layer 13, and the barrier layer 15. The nucleation layer 12, the buffer layer 13, and the barrier layer 15 may be made of aluminum nitride (AlN), gallium nitride (GaN), and aluminum gallium nitride (AlGaN), respectively.
도 4b에 도시된 바와 같이, 상기 베이스층(10) 상부에 제1 시드(seed)층(SD1)을 증착한다. 여기서, 제1 시드층(SD1)은 스퍼터링(sputtering) 등의 증착 공정을 이용하여 증착되고, Ti/Cu, Ti/Al, Ti/W, Ti/Au, Ti/Ni/Cu 등으로 이루어질 수 있다.As shown in FIG. 4B, a first seed layer SD1 is deposited on the base layer 10. Here, the first seed layer SD1 may be deposited using a deposition process such as sputtering, and may be formed of Ti / Cu, Ti / Al, Ti / W, Ti / Au, Ti / Ni / Cu, or the like. .
그리고 제1 시드층(SD1) 상부에 포토리소그래피(photolithography) 공정을 진행하기 위해 감광막(미도시)을 도포한다. 이후, 상기 소스전극배선형성부위에만 상기 감광막이 잔류되도록, 상기 감광막을 선택적으로 노광 및 현상한다.A photosensitive film (not shown) is coated on the first seed layer SD1 to perform a photolithography process. Thereafter, the photosensitive film is selectively exposed and developed such that the photosensitive film remains only on the source electrode wiring forming portion.
그 다음, 상기 잔류된 감광막 양측의 제1 시드층(SD1) 상부에 메탈마스크(19)를 성장시킨다. 이때, 상기 메탈마스크(19)는 약 7~10㎛로 성장시킨다.Next, a metal mask 19 is grown on the first seed layer SD1 on both sides of the remaining photoresist. At this time, the metal mask 19 is grown to about 7 ~ 10㎛.
여기서, 상기 메탈마스크(19)는 니켈(Ni), 구리(Cu), 금(Au) 등으로 이루어질 수 있다.Here, the metal mask 19 may be made of nickel (Ni), copper (Cu), gold (Au), or the like.
이후, 상기 잔류된 감광막을 제거하여 상기 소스전극배선형성부위의 제1 시드층(SD1)을 노출시킨 다음, 상기 메탈마스크(19)를 마스크로 사용하여 상기 노출된 제1 시드층(SD1)을 식각한다.Thereafter, the remaining photoresist layer is removed to expose the first seed layer SD1 of the source electrode wiring forming region, and then the exposed first seed layer SD1 is exposed using the metal mask 19 as a mask. Etch it.
도 4c에 도시된 바와 같이, 상기 메탈마스크(19)를 마스크로 사용하여 상기 소스전극배선형성부위의 베이스층(10)과 기판(11)을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아(VA)를 형성한다.As shown in FIG. 4C, by using the metal mask 19 as a mask, the base layer 10 and the substrate 11 of the source electrode wiring forming portion are etched to a predetermined depth from the entire surface to form a via for source electrode wiring ( VA).
도 4d에 도시된 바와 같이, 소스전극배선용 비아(VA)를 전도체로 채운 소스전극배선용 비아패드(VAP)를 형성한다.As shown in FIG. 4D, a via pad VAP for source electrode wiring is formed by filling the source electrode wiring via VA with a conductor.
즉, 상기 메탈마스크(19)와 제1 시드층(SD1)을 제거하고, 소스전극배선용 비아(VA)를 포함한 전면에 제2 시드층(SD2)을 증착한다. 그리고 포토리소그래피 공정을 진행하여 소스전극배선용 비아(VA) 상부의 제2 시드층(SD2)만 노출시킨 다음, 상기 노출된 제2 시드층(SD2) 상부에 전도체를 성장시켜 소스전극배선용 비아패드(VAP)를 형성한다. 그 후, 소스전극배선용 비아패드(VAP) 양측 상기 베이스층(10) 상부의 제2 시드층(SD2)을 제거한다. 도 4d에는 소스전극배선용 비아패드(VAP) 양측 상기 베이스층(10) 상부의 제2 시드층(SD2)이 제거된 모습이 도시된다.That is, the metal mask 19 and the first seed layer SD1 are removed, and the second seed layer SD2 is deposited on the entire surface including the via VA for source electrode wiring. The photolithography process is performed to expose only the second seed layer SD2 on the source electrode wiring via VA, and then grow a conductor on the exposed second seed layer SD2 to form a via pad for source electrode wiring ( VAP). Thereafter, the second seed layer SD2 on the base layer 10 on both sides of the via pad VAP for the source electrode wiring is removed. FIG. 4D illustrates the removal of the second seed layer SD2 on the base layer 10 on both sides of the via pad VAP for the source electrode wiring.
여기서, 제2 시드층(SD2)은 Ti/Cu, Ti/Al, Ti/Ni/Cu, Ti/Au 등으로 이루어질 수 있다. 그리고 상기 전도체는 구리(Cu), 금(Au) 등으로 이루어질 수 있다.Here, the second seed layer SD2 may be made of Ti / Cu, Ti / Al, Ti / Ni / Cu, Ti / Au, or the like. The conductor may be made of copper (Cu), gold (Au), or the like.
도 4e에 도시된 바와 같이, 소스전극배선용 비아패드(VAP) 상부에 소스전극(SE)을 형성하고, 소스전극(SE)과 이격되어 상기 베이스층(10) 상부에 드레인전극(DE)을 형성한다.As shown in FIG. 4E, the source electrode SE is formed on the via pad VAP for source electrode wiring, and the drain electrode DE is formed on the base layer 10 by being spaced apart from the source electrode SE. do.
즉, 포토리소그래피 공정을 진행하여 소스전극(SE)이 형성될 부위의 소스전극배선용 비아패드(VAP)와 상기 베이스층(10) 및 드레인전극(DE)이 형성될 부위의 상기 베이스층(10)만 노출시킨 다음, 전면에 제1 도전층(미도시)을 증착하고, 리프트 오프(lift-off) 공정 등을 진행하여 소스전극(SE) 및 드레인전극(DE)을 형성한다. 여기서, 상기 제1 도전층은 Ti/Al/Ni/Au, Ti/Al/Ti/Ni/Au 등의 오믹 접촉(ohmic contact)용 금속으로 이루어질 수 있다. 또한, 상기 제1 도전층을 증착한 후 열처리하여 오믹 접촉을 형성한다.That is, the photolithography process is performed to form the via pad VAP for the source electrode wiring and the base layer 10 where the base layer 10 and the drain electrode DE are to be formed. After exposing only the first conductive layer (not shown) on the entire surface, the source electrode SE and the drain electrode DE are formed by performing a lift-off process or the like. Here, the first conductive layer may be made of an ohmic contact metal such as Ti / Al / Ni / Au, Ti / Al / Ti / Ni / Au. In addition, the first conductive layer is deposited and then heat treated to form an ohmic contact.
도 4f에 도시된 바와 같이, 소스전극(SE) 및 드레인전극(DE)을 포함한 전면에 제1 절연층(PAS1)을 증착한다. 그리고 후공정에서 형성될 게이트전극(GE) 하부부위가 형성될 베이스층(10)이 노출되도록, 포토리소그래피 공정을 진행하여 제1 절연층(PAS1)을 선택 식각한다. 여기서, 제1 절연층(PAS1)은 질화규소(silicon nitride) 등으로 이루어진다.As shown in FIG. 4F, the first insulating layer PAS1 is deposited on the entire surface including the source electrode SE and the drain electrode DE. Then, the first insulating layer PAS1 is selectively etched by performing a photolithography process so that the base layer 10 on which the lower portion of the gate electrode GE to be formed in the later step is formed is exposed. The first insulating layer PAS1 may be formed of silicon nitride or the like.
이후, 게이트전극(GE) 상부부위가 게이트전극(GE)의 하부부위보다 면적이 넓기 때문에, 포토리소그래피 공정을 진행하여 게이트전극(GE)의 상부부위가 안착될 제1 절연층(PAS1)을 노출시킨다. 노출된 제1 절연층(PAS1)부분은 게이트전극(GE)의 하부부위를 위해서 식각된 제1 절연층(PAS1)의 양측부분이다.Since the upper portion of the gate electrode GE is larger than the lower portion of the gate electrode GE, the photolithography process is performed to expose the first insulating layer PAS1 on which the upper portion of the gate electrode GE is to be seated. Let's do it. The exposed first insulating layer PAS1 may be both sides of the first insulating layer PAS1 etched for the lower portion of the gate electrode GE.
그 다음, 상기 게이트전극(GE)을 형성할 부위가 노출된 전면에 제2도전층(미도시)을 증착하고 리프트 오프 공정을 진행하여 게이트전극(GE)을 형성한다. 여기서, 상기 제2 도전층은 Ni/Au, Ti/Al/Ni/Au, Ti/Al/Ti/Ni/Au 등으로 이루어질 수 있다. 그리고 게이트전극(GE)은 소스전극(SE)과 드레인전극(DE) 사이에 형성된다.Next, a second conductive layer (not shown) is deposited on the entire surface of the portion where the gate electrode GE is to be exposed, and a lift off process is performed to form the gate electrode GE. Here, the second conductive layer may be made of Ni / Au, Ti / Al / Ni / Au, Ti / Al / Ti / Ni / Au, and the like. The gate electrode GE is formed between the source electrode SE and the drain electrode DE.
도 4g에 도시된 바와 같이, 상기 게이트전극(GE) 상부 및 제1 절연층(PAS1) 상부에 제2 절연층(PAS2)을 증착한다. 여기서, 상기 제2 절연층(PAS2)은 질화규소(silicon nitride) 등으로 이루어진다.As shown in FIG. 4G, a second insulating layer PAS2 is deposited on the gate electrode GE and on the first insulating layer PAS1. The second insulating layer PAS2 may be formed of silicon nitride or the like.
그리고 후공정에서 형성될 소스전극패드(PSE) 하부부위와 접속되도록 소스전극(SE)이 노출되고 드레인전극패드(PDE) 하부부위와 접속될 드레인전극(DE)이 노출되도록, 포토리소그래피 공정을 진행하여 제2 절연층(PAS2)과 제1 절연층(PAS1)을 선택 식각한다.The photolithography process is performed such that the source electrode SE is exposed to be connected to the lower portion of the source electrode pad PSE to be formed in a later process and the drain electrode DE to be connected to the lower portion of the drain electrode pad PDE is exposed. The second insulating layer PAS2 and the first insulating layer PAS1 are selectively etched.
그 후, 상기 제2 절연층(PAS2) 상부, 상기 노출된 소스전극(SE) 상부 및 상기 노출된 드레인전극(DE) 상부에 제3 시드층(SD3)을 증착한다. 여기서, 상기 제3 시드층(SD3)은 Ti/Cu, Ti/Al, Ti/W, Ti/Au, Ti/Ni/Cu 등으로 이루어질 수 있다.Thereafter, a third seed layer SD3 is deposited on the second insulating layer PAS2, on the exposed source electrode SE, and on the exposed drain electrode DE. The third seed layer SD3 may be formed of Ti / Cu, Ti / Al, Ti / W, Ti / Au, Ti / Ni / Cu, and the like.
계속해서, 포토리소그래피 공정을 진행하여 상기 소스전극패드(PSE) 및 드레인전극패드(PDE)가 형성될 제3 시드층(SD3)만 노출시킨 다음, 노출된 제3시드층(SD3) 상부에 제3 도전층(미도시)을 성장시켜 소스전극(SE) 상측에 소스전극패드(PSE)를 형성하고, 드레인전극(DE) 상측에 드레인전극패드(PDE)를 형성한다.Subsequently, the photolithography process is performed to expose only the third seed layer SD3 on which the source electrode pad PSE and the drain electrode pad PDE are to be formed, and then, on the exposed third seed layer SD3. 3, a conductive layer (not shown) is grown to form a source electrode pad PSE above the source electrode SE, and a drain electrode pad PDE above the drain electrode DE.
그 후, 소스전극패드(PSE) 양측과 드레인전극패드(PDE) 양측 제2 절연층(PAS2) 상부의 제3 시드층(SD3)을 제거한다. 여기서, 상기 소스전극패드(PSE)와 드레인전극패드(PDE) 각각은 구리(Cu), 금(Au) 등으로 이루어진다.Thereafter, the third seed layer SD3 on the second insulating layer PAS2 on both sides of the source electrode pad PSE and the drain electrode pad PDE is removed. Here, each of the source electrode pad PSE and the drain electrode pad PDE is made of copper (Cu), gold (Au), or the like.
도 4h에 도시된 바와 같이, 상기 소스전극패드(PSE) 및 드레인전극패드(PDE)가 형성된 기판(11)의 전면과 대향하는 기판(11)의 후면을 백-그라인딩한다. 여기서, 상기 기판(11) 하부의 백-그라인딩 공정으로 소스전극배선용 비아패드(VAP)의 후단이 노출된다. 이때, 소스전극배선용 비아패드(VAP)의 높이는 약 50㎛ ~ 100㎛이다. 그리고 상기 백-그라인딩 공정은 도시하지 않았으나, 저온접합체, 캐리어 웨이퍼(carrier wafer) 등을 사용하여 진행한다. 이때, 상기 백-그라인딩 공정은 소스전극배선용 비아(VA)를 형성하기 위한 기판 식각 공정 없이 진행되기 때문에, 고온 접합제보다 제거가 용이한 저온 접합제를 사용할 수 있다. 여기서, 상기 백-그라인딩 공정은 저온 접합제로써 저온 왁스(Wax)를 사용하여 진행한다.As shown in FIG. 4H, the back surface of the substrate 11 facing the front surface of the substrate 11 on which the source electrode pad PSE and the drain electrode pad PDE are formed is back-grinded. Here, a rear end of the via pad VAP for source electrode wiring is exposed by a back-grinding process under the substrate 11. In this case, the height of the via pad VAP for source electrode wiring is about 50 μm to 100 μm. Although the back-grinding process is not shown, a low temperature conjugate, a carrier wafer, and the like are used. In this case, since the back-grinding process is performed without a substrate etching process for forming a via (VA) for source electrode wiring, a low temperature binder may be used that is easier to remove than a high temperature binder. Here, the back-grinding process is performed using a low temperature wax (Wax) as a low temperature binder.
그 다음, 소스전극배선용 비아패드(VAP)의 후단이 노출된 기판(11)의 후면에 제4 시드층(SD4)을 증착한 다음, 제4 시드층(SD4)으로부터 제4 도전층(미도시)을 성장시켜 기판(11) 후면의 배면층(BSP)을 형성한다. 여기서, 상기 제4시드층(SD4)은 Ti/Cu, Ti/Al, Ti/W, Ti/Au, Ti/Ni/Cu 등으로 이루어질 수 있다. 그리고 상기 배면층(BSP)은 전기 전도율 및 열 전도율을 향상시키도록, 구리(Cu), 금(Au) 등의 전도체로 이루어질 수 있다.Next, a fourth seed layer SD4 is deposited on the rear surface of the substrate 11 where the rear end of the via pad VAP for source electrode wiring is exposed, and then a fourth conductive layer (not shown) is formed from the fourth seed layer SD4. ) Is grown to form a back layer (BSP) on the back of the substrate (11). The fourth seed layer SD4 may be formed of Ti / Cu, Ti / Al, Ti / W, Ti / Au, Ti / Ni / Cu, and the like. The back layer BSP may be formed of a conductor such as copper (Cu), gold (Au), and the like to improve electrical conductivity and thermal conductivity.
상술한 바와 같이, 제1 실시예에 따른 고전자이동도 트랜지스터 및 그의 제조방법은 소스전극(SE)과 전기적으로 연결되는 소스전극배선을 소스전극 하부에 형성하는 공정에 있어서, 백-그라인딩 공정 전의 소자 형성 공정 중에 두꺼운 상태의 기판 전면에서부터 소정 깊이로 식각하고 충진하여 소스전극배선용 비아패드(VAP)를 형성함으로써, 백-그라인딩 공정을 진행하여 얇아진 기판의 후면에서부터 소정 깊이로 식각하는 종래 기술보다 식각속도가 증가하고, 식각 균일도를 향상시키며 기판의 크랙 발생을 억제하여 소자의 수율 및 소자의 신뢰성을 향상시킬 수 있다.As described above, the high electron mobility transistor according to the first embodiment and the method of manufacturing the same have a method of forming a source electrode wiring electrically connected to the source electrode SE under the source electrode, before the back-grinding process. During the device formation process, a via pad (VAP) for source electrode wiring is formed by etching and filling from a front surface of a thick substrate to a predetermined depth, thereby performing back-grinding process to etch to a predetermined depth from a rear surface of a thinned substrate. Increasing the speed, improving the etching uniformity and suppressing the occurrence of cracking of the substrate can improve the yield of the device and the reliability of the device.
또한, 제1 실시예에 따른 고전자이동도 트랜지스터 및 그의 제조방법은 소스전극배선용 비아패드(VAP)를 형성하고 백-그라인딩 공정을 진행하기 때문에, 백-그라인딩 공정 시 고온 접합제보다 제거가 용이한 저온 접합제를 사용할 수 있어 공정이 용이하여 소자의 수율을 향상시킬 수 있다.In addition, the high electron mobility transistor according to the first embodiment and the manufacturing method thereof form a via pad (VAP) for source electrode wiring and perform a back-grinding process, so that the back-grinding process is easier to remove than a high temperature binder. One low temperature binder can be used and the process is easy to improve the yield of the device.
또한, 제1 실시예에 따른 고전자이동도 트랜지스터 및 그의 제조방법은 두꺼운 상태의 기판 전면에서부터 소정 깊이로 식각하고 충진하여 소스전극배선용 비아패드(VAP)를 형성함으로써, 소스전극배선용 비아(VA) 전부가 충진되기 때문에 종래 기술의 대부분이 빈 소스전극배선용 비아(VA)보다 열 전도율이 높아 소자의 열방출을 향상시켜 소자의 성능을 향상시킬 수 있다.In addition, the high electron mobility transistor according to the first embodiment and the method of manufacturing the same are etched and filled to a predetermined depth from the entire surface of the substrate in a thick state to form a via pad (VAP) for source electrode wiring. Since the whole is filled, most of the related arts have higher thermal conductivity than the vias for the empty source electrode wirings (VA), thereby improving heat dissipation of the device, thereby improving performance of the device.
또한, 제1 실시예에 따른 고전자이동도 트랜지스터 및 그의 제조방법은 상기와 같이 소스전극배선용 비아(VA) 전부가 충진되기 때문에, 소자의 패키징을 위한 솔더본딩 시 사용되는 솔더와 플럭스가 기판으로 유입될 수 없어 소자의 신뢰성을 향상시키고 소자의 수명 단축을 방지할 수 있다.In addition, since the high electron mobility transistor according to the first embodiment and the method of manufacturing the same are filled with all of the source electrode wiring vias as described above, the solder and the flux used for solder bonding for packaging the device are transferred to the substrate. It can not flow in, improving the reliability of the device and preventing the device from shortening its lifespan.
또한, 본 발명은 두꺼운 상태의 기판(11)을 전면에서부터 소정 깊이로 식각함으로써, 얇은 상태의 기판(11)을 후면에서부터 소정 깊이로 식각하는 것에 비해 안정적으로 식각할 수 있어 소스전극배선용 비아패드(VAP)의 폭을 넓게 형성할 수 있어 전기 전도율 및 열 전도율을 향상시킬 수 있다.In addition, by etching the thick substrate 11 to a predetermined depth from the front surface, the present invention can be etched more stably than the etching of the thin substrate 11 to a predetermined depth from the rear surface of the via pad for source electrode wiring ( The width of the VAP) can be widened to improve the electrical conductivity and the thermal conductivity.
제2 2nd 실시예Example
도 5는 제2 실시예에 따른 고전자이동도 트랜지스터를 나타낸 단면도이다. 그리고 도 6a 내지 도 6g는 제2 실시예에 따른 고전자이동도 트랜지스터의 제조 방법을 나타내기 위한 단면도이다.5 is a cross-sectional view illustrating a high electron mobility transistor according to a second embodiment. 6A to 6G are cross-sectional views illustrating a method of manufacturing a high mobility transistor according to a second embodiment.
다음은 도 5와 도 6a 내지 도 6g를 참조하여, 본 발명의 고전자이동도 트랜지스터 및 그의 제조 방법의 제2 실시예를 설명한다.Next, a second embodiment of the high electron mobility transistor of the present invention and a method of manufacturing the same will be described with reference to FIGS. 5 and 6A to 6G.
상기 제2 실시예를 설명함에 있어, 제1 실시예와 동일한 구성 및 제조 방법의 설명은 생략하기로 한다.In describing the second embodiment, description of the same configuration and manufacturing method as the first embodiment will be omitted.
도 5에 도시된 바와 같이, 제2 실시예에 따른 본 발명의 고전자이동도 트랜지스터는 소스전극배선형성부위가 정의된 기판(11), 기판(11) 상부에 형성되는 베이스층(10), 소스전극배선형성부위의 베이스층(10) 상부에 형성되는 소스전극(SE), 소스전극(SE)과 이격되어 베이스층(10) 상부에 형성되는 드레인전극(DE), 소스전극(SE)과 드레인전극(DE) 사이의 베이스층(10) 상부에 형성되는 게이트전극(GE) 및 소스전극배선형성부위의 베이스층(10)과 기판(11)을 전면에서부터 소정 깊이로 식각하고 전도체를 충진하여 형성되는 소스전극배선용 비아패드(VAP)를 포함한다.As shown in FIG. 5, the high electron mobility transistor according to the second embodiment of the present invention includes a substrate 11 having a source electrode wiring forming portion, a base layer 10 formed on the substrate 11, A source electrode SE formed on the base layer 10 of the source electrode wiring forming portion, a drain electrode DE formed on the base layer 10 and spaced apart from the source electrode SE, and a source electrode SE. The base layer 10 and the substrate 11 of the gate electrode GE and the source electrode wiring forming portion formed on the base layer 10 between the drain electrodes DE are etched to a predetermined depth from the front surface and filled with a conductor. And a via pad (VAP) for forming a source electrode wiring.
여기서, 상기 소스전극배선용 비아패드(VAP)가 기판(11) 상부에 증착된 베이스층(10) 상부에 제1 절연층(PAS1)이 먼저 증착된 후에 형성되고, 그에 따라 상기 소스전극배선용 비아패드(VAP)와 소스전극(SE)은 제1 실시예의 구성과 상이할 수 있다.Here, the via pad for source electrode wiring (VAP) is formed after the first insulating layer PAS1 is first deposited on the base layer 10 deposited on the substrate 11, and thus the via pad for source electrode wiring is formed. The VAP and the source electrode SE may be different from the configuration of the first embodiment.
즉, 상기 소스전극배선용 비아패드(VAP)는 기판(11), 상기 베이스층(10) 및 소스전극(SE)으로 둘러싸인다. 그리고 소스전극(SE)과 드레인전극(DE)은 상기 소스전극(SE)과 상기 드레인전극(DE)의 양측이 상기 제1 절연층(PAS1) 상면 일부를 덮는 단차부(S)가 형성된다. 또한, 제1 절연층(PAS1)과 소스전극배선용 비아패드(VAP) 사이의 소스전극(SE)의 상부에는 요부(C)가 형성된다.That is, the via pad VAP for source electrode wiring is surrounded by the substrate 11, the base layer 10, and the source electrode SE. In addition, the source electrode SE and the drain electrode DE have a stepped portion S on which both sides of the source electrode SE and the drain electrode DE cover a portion of an upper surface of the first insulating layer PAS1. In addition, a recess C is formed on the source electrode SE between the first insulating layer PAS1 and the via pad VAP for source electrode wiring.
좀 더 설명하면, 본 발명의 고전자이동도 트랜지스터는 베이스층(10) 상부에 형성되는 제1 절연층(PAS1)을 더 포함하고, 소스전극(SE)과 드레인전극(DE) 및 게이트전극(GE)은 베이스층(10) 상부에 제1 절연층(PAS1)이 형성된 후에 제1 절연층(PAS1)을 제거하고 베이스층(10) 상부에 형성되며, 소스전극(SE), 게이트전극(GE) 및 드레인전극(DE)의 양측이 제1 절연층(PAS1) 상면 일부를 덮는다.In more detail, the high electron mobility transistor according to the present invention further includes a first insulating layer PAS1 formed on the base layer 10, and includes a source electrode SE, a drain electrode DE, and a gate electrode. The GE is formed on the base layer 10 by removing the first insulating layer PAS1 after the first insulating layer PAS1 is formed on the base layer 10, and forming the source electrode SE and the gate electrode GE. ) And both sides of the drain electrode DE cover a portion of the upper surface of the first insulating layer PAS1.
그리고, 제1 절연층(PAS1) 상부에 형성되는 제2 절연층(PAS2)을 더포함하고, 제2 절연층(PAS2)은 소스전극(SE)과 드레인전극(DE) 각각의 상면 일부를 덮고, 게이트전극(GE)을 덮는다.The second insulating layer PAS2 further includes a second insulating layer PAS2 formed on the first insulating layer PAS1, and the second insulating layer PAS2 covers a portion of an upper surface of each of the source electrode SE and the drain electrode DE. The gate electrode GE is covered.
또한, 소스전극(SE) 상부에 형성되는 소스전극패드(PSE)와 드레인전극(DE) 상부에 형성되는 드레인전극패드(PDE)를 더 포함하고, 소스전극패드(PSE)와 드레인전극패드(PDE)는 각각 소스전극(SE)과 드레인전극(DE) 상부에 형성된 제2절연층(PAS2) 일부를 제거하고 노출된 소스전극(SE)과 드레인전극(DE) 상부에 형성된다.The semiconductor device may further include a source electrode pad PSE formed on the source electrode SE and a drain electrode pad PDE formed on the drain electrode DE, and further include a source electrode pad PSE and a drain electrode pad PDE. ) Is formed on the exposed source electrode SE and the drain electrode DE by removing a portion of the second insulating layer PAS2 formed on the source electrode SE and the drain electrode DE, respectively.
이하, 제2 실시예에 따른 고전자이동도 트랜지스터의 제조 방법을 상세하게 설명한다. 제2 실시예에 따른 고전자이동도 트랜지스터의 제조 방법은, 소스전극배선형성부위가 정의된 기판(11) 상부에 베이스층(10)을 형성하는 단계, 베이스층(10)의 상면에 제1 절연층(PAS1)을 형성하는 단계, 소스전극배선형성부위의 제1 절연층(PAS1), 베이스층(10) 및 기판(11)을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아(VA)를 형성하는 단계, 소스전극배선용 비아(VA)를 전도체로 충진하여 소스전극배선용 비아패드(VAP)를 형성하는 단계, 소스전극배선용 비아패드(VAP) 상부 및 소스전극배선용 비아패드(VAP)와 인접한 제1 절연층(PAS1) 일부와, 소스전극배선용 비아패드(VAP)와 이격된 제1 절연층(PAS1)의 일부를 제거하여 노출된 베이스층(10) 상부에 각각 소스전극(SE) 및 드레인전극(DE)을 형성하는 단계, 소스전극(SE)과 드레인전극(DE) 사이 제1 절연층(PAS1)의 일부를 제거하여 노출된 베이스층(10) 상부에 게이트전극(GE)을 형성하는 단계를 포함한다.Hereinafter, the manufacturing method of the high electron mobility transistor according to the second embodiment will be described in detail. In the method of manufacturing the high electron mobility transistor according to the second embodiment, the method may include forming the base layer 10 on the substrate 11 on which the source electrode wiring forming region is defined, and forming a first layer on the top surface of the base layer 10. Forming the insulating layer PAS1, and etching the first insulating layer PAS1, the base layer 10, and the substrate 11 on the source electrode wiring forming region to a predetermined depth from the entire surface of the source electrode wiring via. Forming a source electrode wiring via (VA) with a conductor to form a via pad for source electrode wiring (VAP), adjacent to the source electrode wiring via pad (VAP) and a source electrode wiring via pad (VAP) A portion of the first insulating layer PAS1 and a portion of the first insulating layer PAS1 spaced apart from the via pad VAP for source electrode wiring are removed to expose the source electrode SE and the drain on the exposed base layer 10. Forming an electrode DE, the first insulating layer PAS1 between the source electrode SE and the drain electrode DE Removing a portion of the gate electrode to form a gate electrode GE on the exposed base layer 10.
이후에, 전면에 제2 절연층(PAS2)을 형성하고, 소스전극패드(PSE)와 드레인전극패드(PDE)를 형성하는 단계는 제1 실시예에서와 동일하므로 상세한 설명을 생략한다.Subsequently, since the second insulating layer PAS2 is formed on the entire surface and the source electrode pad PSE and the drain electrode pad PDE are the same as in the first embodiment, detailed description thereof will be omitted.
도 6a에 도시된 바와 같이, 제2 실시예에 따른 고전자이동도 트랜지스터의 제조 방법은 소스전극배선형성부위가 정의된 기판(11) 상부에 베이스층(10)을 증착한다. 여기서, 상기 베이스층(10)은 핵형성층(12)과 버퍼층(13) 및 배리어층(15)이 적층되어 이루어질 수 있다.As shown in FIG. 6A, in the method of manufacturing the high electron mobility transistor according to the second embodiment, the base layer 10 is deposited on the substrate 11 on which the source electrode wiring forming region is defined. Here, the base layer 10 may be formed by stacking the nucleation layer 12, the buffer layer 13, and the barrier layer 15.
도 6b에 도시된 바와 같이, 상기 베이스층(10) 상부에 제1 절연층(PAS1)을 증착한다.As shown in FIG. 6B, a first insulating layer PAS1 is deposited on the base layer 10.
도 6c에 도시된 바와 같이, 제1 절연층(PAS1) 상부에 제1 시드층(SD1)을 증착하고 소스전극배선형성부위를 포토레지스터(미도시)로 덮은 뒤 메탈마스크(19)를 제1 시드층(SD1) 상부에 성장시킨다. 그리고 소스전극배선형성부위에 덮힌 포토레지스터를 제거하고 상기 소스전극배선형성부위의 제1 절연층(PAS1)과 베이스층(10) 및 기판(11)을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아(VA)를 형성한다.As illustrated in FIG. 6C, the first seed layer SD1 is deposited on the first insulating layer PAS1, the source electrode wiring forming portion is covered with a photoresist (not shown), and then the metal mask 19 is first coated. It is grown on the seed layer SD1. Then, the photoresist covered on the source electrode wiring forming region is removed, and the first insulating layer PAS1, the base layer 10 and the substrate 11 of the source electrode wiring forming region are etched to a predetermined depth from the entire surface for source electrode wiring. Form a via (VA).
도 6d에 도시된 바와 같이, 메탈마스크(19)와 제1 시드층(SD1)을 스트립(strip) 한 후, 전면에 제2 시드층(SD2)을 형성하고 소스전극배선용 비아(VA) 부분을 제외한 전면을 포토레지스터로 덮은 후 소스전극배선용 비아(VA)를 전도체로 채운 소스전극배선용 비아패드(VAP)를 형성한다.As shown in FIG. 6D, after stripping the metal mask 19 and the first seed layer SD1, the second seed layer SD2 is formed on the entire surface, and the via VA for source electrode wiring is formed. After covering the entire surface with the photoresist, a via pad for source electrode wiring (VAP) is formed by filling the source electrode wiring via (VA) with a conductor.
도 6e 내지 도 6f에 도시된 바와 같이, 상기 소스전극배선용 비아패드(VAP)의 둘레 외측 소정부위를 따라 제1 절연층(PAS1)을 식각하여 소스전극형성부위를 정의하고, 소스전극형성부위와 이격된 부위의 제1 절연층(PAS1)을 식각하여 드레인전극형성부위를 정의한다.As illustrated in FIGS. 6E to 6F, the first insulating layer PAS1 is etched along a predetermined outer circumference of the via pad VAP for defining the source electrode to define the source electrode forming region, and the source electrode forming region and the source electrode forming region. The first insulating layer PAS1 of the spaced portion is etched to define the drain electrode forming region.
그리고 상기 소스전극배선용 비아패드(VAP) 상면과 상기 소스전극형성부위에 소스전극(SE)을 형성하고, 베이스층(10) 상부의 드레인전극형성부위에 드레인전극(DE)을 형성한다. 여기서, 소스전극(SE)과 드레인전극(DE)은 소스전극(SE)과 드레인전극(DE)의 양측이 상기 제1 절연층(PAS1) 상면 일부를 덮는 단차부(S)가 형성된다. 그리고 제1 절연층(PAS1)과 소스전극배선용 비아패드(VAP) 사이의 소스전극(SE)의 상부에는 요부(C)가 형성된다. 요부(C)는 제1 절연층(PAS1)과 소스전극배선용 비아패드(VAP)사이의 공간 때문에 발생된다.A source electrode SE is formed on an upper surface of the via pad VAP for source electrode wiring and the source electrode forming portion, and a drain electrode DE is formed on the drain electrode forming portion on the base layer 10. Here, in the source electrode SE and the drain electrode DE, a stepped portion S in which both sides of the source electrode SE and the drain electrode DE cover a part of the upper surface of the first insulating layer PAS1 is formed. A recess C is formed on the source electrode SE between the first insulating layer PAS1 and the via pad VAP for source electrode wiring. The recess C is generated due to the space between the first insulating layer PAS1 and the via pad VAP for source electrode wiring.
이후 제3 시드층(SD3) 형성과 기판 후면을 백-그라인딩 후 제4 시드층(SD4) 및 배면층(BSP)을 형성하는 후속 공정은 제1 실시예의 공정과 실질적으로 동일하다.Subsequently, the subsequent process of forming the third seed layer SD3 and back-grinding the back surface of the substrate and forming the fourth seed layer SD4 and the back layer BSP is substantially the same as the process of the first embodiment.
상기 제2 실시예에서의 소스전극배선용 비아패드(VAP)가 상기 기판(11) 전면에서부터 소정의 깊이로 식각하고 충진하여 형성되는 경우의 효과 및 장점도 제1 실시예와 실질적으로 동일할 수 있다.Effects and advantages when the via pad for source electrode wiring VAP is formed by etching and filling the substrate 11 to a predetermined depth from the front surface of the substrate 11 may also be substantially the same as those of the first embodiment. .
이상, 본 발명의 실시예에 따른 고전자이동도 트랜지스터 및 그의 제조방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.As mentioned above, although the specific embodiment regarding the high electron mobility transistor and its manufacturing method which concerns on the Example of this invention was described, it is obvious that various implementation can be changed as long as it does not depart from the scope of the present invention.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.In other words, the foregoing embodiments are to be understood in all respects as illustrative and not restrictive, the scope of the invention being indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be interpreted as being included in the scope of the present invention.
본 발명은 소스 배선용 비아를 형성하되 솔더 플럭스의 유입을 방지함으로써, 고전자이동도 트랜지스터의 신뢰성을 향상시킬 수 있는 것으로 산업상 이용 가능성이 있다.Industrial Applicability The present invention is capable of improving the reliability of a high electron mobility transistor by forming a source wiring via and preventing solder flux from flowing therein.

Claims (19)

  1. 소스전극배선형성부위가 정의된 기판;A substrate on which a source electrode wiring forming portion is defined;
    상기 기판 상부에 형성되는 베이스층;A base layer formed on the substrate;
    상기 소스전극배선형성부위의 상기 베이스층 상부에 형성되는 소스전극;A source electrode formed on the base layer on the source electrode wiring forming portion;
    상기 소스전극과 이격되어 상기 베이스층 상부에 형성되는 드레인전극;A drain electrode spaced apart from the source electrode and formed on the base layer;
    상기 소스전극과 상기 드레인전극 사이의 상기 베이스층 상부에 형성되는 게이트전극; 및A gate electrode formed on the base layer between the source electrode and the drain electrode; And
    상기 소스전극배선형성부위의 상기 베이스층 및 상기 기판을 전면에서부터 소정 깊이로 식각하고 전도체를 충진하여 형성되는 소스전극배선용 비아패드를 포함하는 고전자이동도 트랜지스터.And a via pad for source electrode wiring formed by etching the base layer and the substrate on the source electrode wiring forming portion to a predetermined depth from a front surface and filling a conductor.
  2. 제 1항에 있어서,The method of claim 1,
    상기 베이스층 상부에 형성되는 제1 절연층을 더 포함하고,Further comprising a first insulating layer formed on the base layer,
    상기 소스전극과 상기 드레인전극은 상기 제1 절연층이 형성된 후에 상기 제1 절연층 일부를 제거하여 노출된 상기 베이스층 상부에 형성되어 상기 소스전극과 상기 드레인전극의 양측이 상기 제1 절연층 상면 일부를 덮는 단차부가 형성되는 것을 특징으로 하는 고전자이동도 트랜지스터.The source electrode and the drain electrode are formed on the exposed base layer by removing a portion of the first insulating layer after the first insulating layer is formed, so that both sides of the source electrode and the drain electrode are formed on the upper surface of the first insulating layer. A high electron mobility transistor, characterized in that a stepped portion is formed to cover a portion.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제1 절연층 상부에 형성되는 제2 절연층을 더 포함하고,Further comprising a second insulating layer formed on the first insulating layer,
    상기 제2 절연층은 상기 소스전극과 상기 드레인전극 각각의 상면 일부를 덮어 상기 제1 절연층과 상기 소스전극배선용 비아패드 사이의 상기 소스전극의 상부에는 요부가 형성되는 것을 특징으로 하는 고전자이동도 트랜지스터.The second insulating layer may cover a portion of an upper surface of each of the source electrode and the drain electrode, and a recess is formed on an upper portion of the source electrode between the first insulating layer and the via pad for source electrode wiring. Degree transistor.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 소스전극 상부에 형성되는 소스전극패드; 및A source electrode pad formed on the source electrode; And
    상기 드레인전극 상부에 형성되는 드레인전극패드를 더 포함하고,Further comprising a drain electrode pad formed on the drain electrode,
    상기 소스전극패드와 상기 드레인전극패드는 각각 상기 소스전극과 상기 드레인전극 상부에 형성된 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극과 상기 드레인전극 상부에 형성되는 것을 특징으로 하는 고전자이동도 트랜지스터.The source electrode pad and the drain electrode pad are formed on the source electrode and the drain electrode exposed by removing a portion of the second insulating layer formed on the source electrode and the drain electrode, respectively. Degree transistor.
  5. 제 1항에 있어서,The method of claim 1,
    상기 베이스층 상부에 형성되는 제1 절연층;A first insulating layer formed on the base layer;
    상기 제1 절연층 상부에 형성되는 제2 절연층;A second insulating layer formed on the first insulating layer;
    상기 소스전극 상부에 형성되는 소스전극패드; 및A source electrode pad formed on the source electrode; And
    상기 드레인전극 상부에 형성되는 드레인전극패드를 더 포함하고,Further comprising a drain electrode pad formed on the drain electrode,
    상기 소스전극과 상기 드레인전극은 상기 베이스층 상부에 형성된 후에 상기The source electrode and the drain electrode are formed on the base layer and then
    제1 절연층이 형성되어 상기 제1 절연층이 상기 소스전극과 드레인전극의 양측 상면 일부를 덮는 것을 특징으로 하고,A first insulating layer is formed so that the first insulating layer covers a part of the upper surface of both sides of the source electrode and the drain electrode,
    상기 소스전극패드와 상기 드레인전극패드는 각각 상기 소스전극과 드레인전극 상부의 상기 제1 절연층 및 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극 및 상기 드레인 전극 상부에 형성되는 것을 특징으로 하는 고전자이동도 트랜지스터.The source electrode pad and the drain electrode pad may be formed on the exposed source electrode and the drain electrode by removing portions of the first insulating layer and the second insulating layer on the source electrode and the drain electrode, respectively. Classical high mobility transistor.
  6. 제 1항에 있어서, 상기 소스전극배선용 비아패드는,The via pad of claim 1, wherein the via pad for source electrode wiring comprises:
    전면측 방향인 상부부위의 직경이 후면측 방향인 하부부위의 직경보다 큰 고전자이동도 트랜지스터.A high electron mobility transistor having a diameter of an upper portion in a front side larger than a diameter of a lower portion in a rear side.
  7. 제 1항에 있어서, 상기 소스전극배선용 비아패드는,The via pad of claim 1, wherein the via pad for source electrode wiring comprises:
    구리, 금 중 어느 하나인 고전자이동도 트랜지스터.A high electron mobility transistor, either copper or gold.
  8. 제 1항에 있어서, 상기 소스전극배선용 비아패드의 상면 면적은,The method of claim 1, wherein the upper surface area of the via pad for source electrode wiring,
    상기 소스전극의 저면 면적의 50% 이상을 차지하는 것을 특징으로 하는 고전자이동도 트랜지스터.The high electron mobility transistor, characterized in that occupies more than 50% of the bottom area of the source electrode.
  9. 제 1항에 있어서, 상기 소스전극배선용 비아패드는,The via pad of claim 1, wherein the via pad for source electrode wiring comprises:
    상기 적어도 하나 이상 형성되는 것을 특징으로 하는 고전자이동도 트랜지스터.At least one high electron mobility transistor, characterized in that formed.
  10. 제 1항에 있어서, 상기 베이스층은,The method of claim 1, wherein the base layer,
    갈륨나이트라이드(GaN)층을 포함하는 것을 특징으로 하는 고전자이동도 트랜지스터.A high electron mobility transistor comprising a gallium nitride (GaN) layer.
  11. 소스전극배선형성부위가 정의된 기판 상부에 베이스층을 형성하는 단계;Forming a base layer on the substrate on which the source electrode wiring forming region is defined;
    상기 소스전극배선형성부위의 상기 베이스층 및 상기 기판을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아를 형성하는 단계;Forming a via for source electrode wiring by etching the base layer and the substrate on the source electrode wiring forming portion to a predetermined depth from a front surface;
    상기 소스전극배선용 비아를 전도체로 충진하여 소스전극배선용 비아패드를 형성하는 단계;Filling the source electrode wiring via with a conductor to form a via pad for source electrode wiring;
    상기 소스전극배선용 비아패드 상부 및 상기 소스전극배선용 비아패드와 인접한 상기 베이스층 상부와, 상기 소스전극배선용 비아패드와 이격된 상기 베이스층 상부에 각각 소스전극 및 드레인전극을 형성하는 단계;Forming a source electrode and a drain electrode on an upper portion of the via pad for source electrode wiring and the base layer adjacent to the via pad for source electrode wiring, and an upper portion of the base layer spaced apart from the via pad for source electrode wiring;
    전면에 제1 절연층을 형성하는 단계; 및Forming a first insulating layer on the front surface; And
    상기 소스전극과 상기 드레인전극 사이 상기 제1 절연층 일부를 제거하여 노출된 상기 베이스층 상부에 게이트전극을 형성하는 단계를 포함하는 고전자이동도 트랜지스터의 제조방법.And removing a portion of the first insulating layer between the source electrode and the drain electrode to form a gate electrode on the exposed base layer.
  12. 제 11항 있어서, 상기 게이트전극을 형성하는 단계 이후에,The method of claim 11, after the forming of the gate electrode,
    전면에 제2 절연층을 형성하는 단계; 및Forming a second insulating layer on the front surface; And
    상기 소스전극과 상기 드레인전극 상부의 상기 제1절연층 및 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극과 상기 드레인전극 상부에 각각 소스전극패드 및 드레인전극패드를 형성하는 단계를 더 포함하는 고전자이동도 트랜지스터의 제조방법.And removing a portion of the first insulating layer and the second insulating layer on the source electrode and the drain electrode to form a source electrode pad and a drain electrode pad on the exposed source electrode and the drain electrode, respectively. A method of manufacturing a high electron mobility transistor.
  13. 소스전극배선형성부위가 정의된 기판상에 베이스층을 형성하는 단계;Forming a base layer on a substrate on which a source electrode wiring forming portion is defined;
    전면에 제1 절연층을 형성하는 단계;Forming a first insulating layer on the front surface;
    상기 소스전극배선형성부위의 상기 제1 절연층, 상기 베이스층 및 상기 기판을 전면에서부터 소정의 깊이로 식각하여 소스전극배선용 비아를 형성하는 단계;Forming vias for source electrode wiring by etching the first insulating layer, the base layer, and the substrate on the source electrode wiring forming portion to a predetermined depth from a front surface thereof;
    상기 소스전극배선용 비아를 전도체로 충진하여 소스전극배선용 비아패드를 형성하는 단계;Filling the source electrode wiring via with a conductor to form a via pad for source electrode wiring;
    상기 소스전극배선용 비아패드 상부 및 상기 소스전극배선용 비아패드와 인접한 상기 제1 절연층 일부와, 상기 소스전극배선용 비아패드와 이격된 상기 제1 절연층의 일부를 제거하여 노출된 상기 베이스층 상부에 각각 소스전극 및 드레인전극을 형성하는 단계; 및A portion of the first insulating layer adjacent to the via pad for the source electrode wiring and the via pad for the source electrode wiring and a portion of the first insulating layer spaced apart from the via pad for the source electrode wiring are removed to expose the base layer. Forming a source electrode and a drain electrode, respectively; And
    상기 소스전극과 상기 드레인전극 사이 상기 제1 절연층의 일부를 제거하여 노출된 상기 베이스층 상부에 게이트전극을 형성하는 단계를 포함하는 고전자이동도 트랜지스터의 제조방법.And removing a portion of the first insulating layer between the source electrode and the drain electrode to form a gate electrode on the exposed base layer.
  14. 제 13항에 있어서, 상기 게이트전극을 형성하는 단계 이후에,The method of claim 13, wherein after forming the gate electrode,
    전면에 제2 절연층을 형성하는 단계; 및Forming a second insulating layer on the front surface; And
    상기 소스전극 및 상기 드레인전극 상부의 상기 제2 절연층 일부를 제거하여 노출된 상기 소스전극과 상기 드레인전극 상부에 각각 소스전극패드 및 드레인전극패드를 형성하는 단계를 더 포함하는 고전자이동도 트랜지스터의 제조방법.And removing a portion of the second insulating layer on the source electrode and the drain electrode to form a source electrode pad and a drain electrode pad on the exposed source electrode and the drain electrode, respectively. Manufacturing method.
  15. 제 12항 또는 제 14항에 있어서, 상기 소스전극패드 및 드레인전극패드를 형성하는 단계 이후에,The method of claim 12 or 14, wherein after forming the source electrode pad and the drain electrode pad,
    상기 소스전극배선용 비아패드의 후단이 노출되도록 상기 기판 후면을 백-그라인딩하는 단계; 및Back-grinding the back surface of the substrate such that a rear end of the via pad for source electrode wiring is exposed; And
    상기 기판의 후면에 노출된 상기 소스전극배선용 비아패드와 연결되는 배면층을 형성하는 단계를 더 포함하는 고전자이동도 트랜지스터의 제조방법.And forming a rear layer connected to the via pad for source electrode wiring exposed on the rear surface of the substrate.
  16. 제 11항 또는 제 13항에 있어서, 상기 소스전극배선용 비아패드는,The via pad of claim 11 or 13, wherein the via pad for source electrode wiring comprises:
    전면측 방향인 상부부위의 직경이 후면측 방향인 하부부위의 직경보다 큰 고전자이동도 트랜지스터의 제조방법.A method for manufacturing a high electron mobility transistor having a diameter of an upper portion in a front side larger than a diameter of a lower portion in a rear side.
  17. 제 11항 또는 제 13항에 있어서, 상기 소스전극배선용 비아패드의 상면 면적은,The method of claim 11 or 13, wherein the top surface area of the via pad for source electrode wiring,
    상기 소스전극의 저면 면적의 50% 이상을 차지하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조방법.And at least 50% of the bottom area of the source electrode.
  18. 제 11항 또는 제 13항에 있어서, 상기 소스전극배선용 비아패드는,The via pad of claim 11 or 13, wherein the via pad for source electrode wiring comprises:
    상기 적어도 하나 이상 형성되는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조방법.The method of manufacturing a high electron mobility transistor, characterized in that formed at least one.
  19. 제 11항 또는 제 13항에 있어서, 상기 베이스층은,The method of claim 11 or 13, wherein the base layer,
    갈륨나이트라이드(GaN)층을 포함하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조방법.A method of manufacturing a high electron mobility transistor comprising a gallium nitride (GaN) layer.
PCT/KR2016/011534 2015-10-23 2016-10-14 High electron mobility transistor and manufacturing method therefor WO2017069460A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150147655 2015-10-23
KR10-2015-0147655 2015-10-23
KR10-2016-0047549 2016-04-19
KR1020160047549A KR101856687B1 (en) 2015-10-23 2016-04-19 High electron mobility transistor and fabrication method thereof

Publications (2)

Publication Number Publication Date
WO2017069460A2 true WO2017069460A2 (en) 2017-04-27
WO2017069460A3 WO2017069460A3 (en) 2017-08-31

Family

ID=58557660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011534 WO2017069460A2 (en) 2015-10-23 2016-10-14 High electron mobility transistor and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017069460A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3184493B2 (en) * 1997-10-01 2001-07-09 松下電子工業株式会社 Electronic device manufacturing method
JP2006086398A (en) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2007157829A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Semiconductor device
KR101890749B1 (en) * 2011-10-27 2018-08-23 삼성전자주식회사 Electrode structure, gallium nitride based semiconductor device including the same and methods of manufacturing the same
KR101946008B1 (en) * 2012-07-17 2019-02-08 삼성전자주식회사 High electron mobility transistor and method of manufacturing the same

Also Published As

Publication number Publication date
WO2017069460A3 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2009145465A2 (en) Light emitting device and manufacturing method for same
US6803294B2 (en) Semiconductor wafer and manufacturing method of semiconductor device
WO2016056750A1 (en) Semiconductor device and method of manufacturing the same
WO2018097410A1 (en) Semiconductor package having reliability and method for producing same
WO2014025195A1 (en) Wafer level light-emitting diode array and method for manufacturing same
WO2010095785A1 (en) Led and led package
WO2017155284A1 (en) Semiconductor element, display panel, and display panel production method
WO2017069461A1 (en) High electron mobility transistor and manufacturing method therefor
WO2014061906A1 (en) Method for separating growth substrate, method for manufacturing light-emitting diode, and light-emitting diode manufactured using methods
WO2020036423A1 (en) Light-emitting device
WO2012060619A2 (en) Semiconductor device and a manufacturing method thereof
CN103811461A (en) Package structure and method of forming the same
WO2014017871A2 (en) Semiconductor light-emitting device
WO2010018946A2 (en) Semiconductor light‑emitting device and method for manufacturing same
KR101856687B1 (en) High electron mobility transistor and fabrication method thereof
WO2017069460A2 (en) High electron mobility transistor and manufacturing method therefor
WO2016032069A1 (en) Sic semiconductor element implemented on insulating or semi-insulating sic substrate and method for manufacturing same
WO2011065665A2 (en) Method of manufacturing nitride semiconductor device
WO2017069464A1 (en) High-electron-mobility transistor and method for fabricating same
WO2017069462A1 (en) High electron mobility transistor and method for manufacturing same
WO2017069463A1 (en) High electron mobility transistor and manufacturing method therefor
WO2012074228A2 (en) Nitride semiconductor device and method for manufacturing same
WO2023075093A1 (en) Transistor and manufacturing method therefor
WO2015050328A1 (en) Semiconductor devices and methods of manufacturing the same
WO2018110831A1 (en) Nitride-based electronic device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857718

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857718

Country of ref document: EP

Kind code of ref document: A2