WO2017069198A1 - 隙間部材、内燃機関 - Google Patents

隙間部材、内燃機関 Download PDF

Info

Publication number
WO2017069198A1
WO2017069198A1 PCT/JP2016/081111 JP2016081111W WO2017069198A1 WO 2017069198 A1 WO2017069198 A1 WO 2017069198A1 JP 2016081111 W JP2016081111 W JP 2016081111W WO 2017069198 A1 WO2017069198 A1 WO 2017069198A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinder liner
gap
cylinder head
peripheral side
Prior art date
Application number
PCT/JP2016/081111
Other languages
English (en)
French (fr)
Inventor
鈴木 元
吉栖 博史
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/769,152 priority Critical patent/US10619557B2/en
Priority to CN201680060825.XA priority patent/CN108431393B/zh
Priority to EP16857511.6A priority patent/EP3351784B1/en
Priority to KR1020187011048A priority patent/KR20180065020A/ko
Publication of WO2017069198A1 publication Critical patent/WO2017069198A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F11/00Arrangements of sealings in combustion engines 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F11/00Arrangements of sealings in combustion engines 
    • F02F11/002Arrangements of sealings in combustion engines  involving cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F11/00Arrangements of sealings in combustion engines 
    • F02F11/005Arrangements of sealings in combustion engines  involving cylinder liners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S277/00Seal for a joint or juncture
    • Y10S277/935Seal made of a particular material
    • Y10S277/944Elastomer or plastic

Definitions

  • the present invention relates to a gap member and an internal combustion engine.
  • Priority is claimed on Japanese Patent Application No. 2015-207874, filed Oct. 22, 2015, the content of which is incorporated herein by reference.
  • gas engine operated by burning a gaseous fuel (fuel gas) such as natural gas or city gas.
  • fuel gas gaseous fuel
  • This gas engine can obtain high efficiency and high output. Therefore, gas engines are widely used mainly for engines for power generation for regular use and emergency, engines for construction machinery, engines mounted on ships, railways and the like.
  • Patent Document 1 describes a premix combustion type sub-chamber gas engine.
  • the fuel gas supplied to the sub chamber is transferred to the sub chamber. It is ignited by the spark of the spark plug prepared for. As a result, a flame is generated from the sub chamber, and the flame is ejected from the mouthpiece provided in the sub chamber into the main combustion chamber. Then, the mixture in the main combustion chamber is ignited by this flame.
  • Gas engines generally include a cylinder block (crankcase) and a cylinder head.
  • the cylinder block is formed with a hole that opens toward the cylinder head and accommodates the piston. Inside the hole, a cylindrical cylinder liner that forms a sliding surface with the piston is attached.
  • the cylinder head is fastened to the cylinder block by a bolt or the like, and closes the opening of the cylinder block at that time.
  • a space surrounded by the cylinder head, the cylinder liner, and the piston is a main combustion chamber to which the mixture is supplied.
  • a seal member such as a gasket for sealing the main combustion chamber is provided between the cylinder block and the cylinder head.
  • the seal member is generally disposed between the cylinder block or the cylinder liner on the outer circumferential side of the cylinder liner and the cylinder head.
  • the seal member is sandwiched and pressed between the cylinder head and the cylinder block by the axial force of a bolt that fastens the cylinder head and the cylinder block, and exhibits high sealing performance.
  • the object of the present invention is to provide a clearance member and an internal combustion engine which can further improve the fuel efficiency and reduce the emission and can suppress the damage of the cylinder liner.
  • the clearance member is used in an internal combustion engine provided with a cylinder liner, a cylinder body, a cylinder head, and a seal portion.
  • the cylinder liner is formed in a cylindrical shape in which the piston reciprocates.
  • the cylinder body has a cylinder liner attached.
  • the cylinder head is provided opposite to the cylinder body to close the opening of the cylinder liner.
  • the seal portion is provided to surround the outer peripheral side of the opening, and seals between at least one of the cylinder body and the cylinder liner and the cylinder head.
  • the gap member is disposed in the gap between the cylinder head and the cylinder liner on the inner peripheral side of the seal portion, and is formed of a material having a lower Young's modulus than the seal portion.
  • the gap member By disposing the gap member in the gap between the cylinder head and the cylinder liner on the inner peripheral side of the seal portion, it is possible to suppress the entry of fuel into the gap. By this, it is possible to suppress that the fuel which has entered into the gap remains without being burned when fuel is burned in the internal combustion engine, and that the lubricating oil enters the gap to cause abnormal combustion. Furthermore, the gap member has a lower Young's modulus than the seal portion. Therefore, when a pressing force is exerted by fastening the cylinder body and the cylinder head with a bolt or the like, the repulsive force generated at the seal portion is larger than the repulsive force generated by the gap member being sandwiched.
  • the fastening force which fastens a cylinder body and a cylinder head can be made to act mainly via a seal part instead of a crevice member. Therefore, it is possible to reduce the damage of the cylinder liner by suppressing the application of the shear force to the cylinder liner by the fastening force.
  • the gap member according to the first aspect is characterized in that the internal combustion engine is provided with fuel in a combustion chamber defined by being surrounded by the cylinder liner, the cylinder head and the piston. A mixture of air and air may be supplied.
  • the internal combustion engine such as a gas engine in which an air-fuel mixture in which fuel and air are mixed in advance is supplied to the combustion chamber, the air-fuel mixture easily enters the gap between the cylinder head and the cylinder liner.
  • the gap member in the gap, it is possible to suppress the mixture from entering the gap.
  • the gap member according to the first or second aspect may be formed into a shape corresponding to the gap between the cylinder head and the cylinder liner.
  • the prefabricated gap member may be inserted between the cylinder head and the cylinder liner, and the assemblability of the internal combustion engine can be enhanced.
  • an internal combustion engine includes a cylinder liner, a cylinder body, a cylinder head, and a seal portion.
  • the piston reciprocates inside.
  • the cylinder body is attached with the cylinder liner.
  • a cylinder head is provided opposite to the cylinder body to close the opening of the cylinder liner.
  • a seal portion is provided so as to surround the outer peripheral side of the opening, and seals between the cylinder head and at least one of the cylinder body and the cylinder liner.
  • a gap member according to any one of the first to third aspects is disposed in the gap between the cylinder head and the cylinder liner on the inner peripheral side of the seal portion.
  • the fastening force for fastening the cylinder body and the cylinder head is not the gap member but the gap member.
  • the gap member and the internal combustion engine described above it is possible to further improve the fuel consumption and reduce the emission, and it is possible to suppress the damage of the cylinder liner.
  • FIG. 1 is a cross-sectional view taken along the periphery of a cylinder head of an internal combustion engine according to a first embodiment of the present invention. It is an expanded sectional view showing the junction structure of the cylinder block of the above-mentioned internal combustion engine, and a cylinder head. It is an expanded sectional view showing the joined structure of the cylinder block and cylinder head of an internal combustion engine concerning a second embodiment of the present invention. It is sectional drawing which shows the structure of the modification of the said internal combustion engine.
  • FIG. 1 is a cross-sectional view along a cylinder center axis showing a configuration around a cylinder head of a gas engine according to an embodiment of the present invention.
  • the engine (internal combustion engine) 10 at least includes a cylinder block (cylinder body) 20, a cylinder head 30A, and a sub chamber member 40.
  • the engine 10 in this embodiment is a gas engine which burns and operates gaseous fuel (fuel gas), such as natural gas and city gas.
  • the engine 10 in this embodiment is a stationary sub-chamber gas engine further used for a power generation facility or the like.
  • the cylinder block 20 is formed with a hole 20 h opening in a head surface 20 f opposed to the cylinder head 30 A.
  • a cylindrical cylinder liner 21 is disposed inside the hole 20 h.
  • the cylinder liner 21 integrally includes a flange portion 21 f.
  • the flange portion 21 f is formed at one end 21 a closer to the cylinder head 30 ⁇ / b> A.
  • the flange portion 21 f is further formed so as to expand in diameter toward the outer peripheral side (hereinafter simply referred to as the outer peripheral side) centering on the central axis C of the cylinder liner 21.
  • the cylinder block 20 is provided with a receiving groove 20m at the opening periphery of the hole 20h.
  • the accommodation groove 20m is formed in an annular shape for accommodating the flange portion 21f of the cylinder liner 21.
  • the cylinder liner 21 is positioned with respect to the cylinder block 20 by accommodating the flange portion 21 f in the accommodation groove 20 m of the cylinder block 20.
  • the cylinder liner 21 accommodates the piston 22 therein.
  • the piston 22 is guided by the cylinder liner 21 and can linearly reciprocate in a direction in which the central axis C of the cylinder liner 21 extends (hereinafter referred to as a cylinder axial direction).
  • the piston 22 is connected via a connecting rod 23 to a crankshaft 24 housed in a crankcase (not shown).
  • the connecting rod 23 is rotatably connected to the piston 22 via a pin 25.
  • the connecting rod 23 is further rotatably connected to the crankshaft 24 via a pin 26.
  • the cylinder head 30A is fastened to the head surface 20f of the cylinder block 20 by a bolt (not shown) or the like. Thus, the cylinder head 30A closes the opening 21o of the one end 21a of the cylinder liner 21.
  • a roof surface 31 having a flat shape, a hemispherical shape, or a curved surface orthogonal to the central axis C of the cylinder liner 21 is formed.
  • the roof surface 31 is formed in a region facing the cylinder liner 21.
  • a main combustion chamber (combustion chamber) 33 is defined by the cylinder liner 21 described above, the roof surface 31 of the cylinder head 30A, and the piston 22.
  • An intake port 34 and an exhaust port 35 are formed in the cylinder head 30A.
  • the intake port 34 and the exhaust port 35 are formed at intervals in the circumferential direction around the central axis C of the cylinder liner 21 respectively.
  • the end portions 34a and 35a on the main combustion chamber 33 side of the intake port 34 and the exhaust port 35 are open to the roof surface 31 and face the main combustion chamber 33.
  • the intake port 34 is in communication with a mixed gas supply source (not shown).
  • the mixed gas supply source enables the intake port 34 to be supplied with a premixed gas in which air and combustion gas are mixed in advance.
  • An intake valve 36 is provided at the end 34 a of the intake port 34 closer to the main combustion chamber 33.
  • the intake valve 36 is displaceable from the closed position to the open position by a valve drive mechanism (not shown). By displacing the intake valve 36 from the closed position to the open position, the mixed gas supplied from the mixed gas supply source is supplied from the intake port 34 to the main combustion chamber 33.
  • the exhaust port 35 is connected to an exhaust gas flow path (not shown).
  • the exhaust port 35 is provided with an exhaust valve 37 at an end 35 a closer to the main combustion chamber 33.
  • the sub chamber member 40 includes a sub chamber holder 42 and a sub chamber cap 43.
  • the sub chamber holder 42 is provided in the cylinder head 30A.
  • the central axis of the sub chamber holder 42 is provided on an extension of the central axis C of the cylinder liner 21.
  • the auxiliary chamber base 43 is provided to project into the main combustion chamber 33 from the center of the roof surface 31 of the cylinder head 30A.
  • the sub-chamber nozzle 43 is formed hollow and its internal space is the sub-chamber 41. Fuel gas is supplied to the sub chamber 41 from the outside.
  • the auxiliary chamber holder 42 is provided with a spark plug 45.
  • spark discharge with the spark plug 45 the fuel gas supplied into the sub chamber 41 from the outside is ignited and burned to generate a flame.
  • the flame generated by this ignition is ejected from the auxiliary chamber cap 43 into the main combustion chamber 33. This flame ignites and burns the mixed gas supplied into the main combustion chamber 33 through the intake port 34 (see FIG. 1).
  • the piston 22 linearly reciprocates in the cylinder axis direction of the cylinder liner 21 in the cylinder liner 21 and the engine 10 is driven.
  • FIG. 2 is an enlarged sectional view showing a joint structure of a cylinder block and a cylinder head of the internal combustion engine.
  • the cylinder liner 21 has an outer peripheral end surface 21 p and an inner peripheral end surface 21 q.
  • the outer peripheral side end face 21p and the inner peripheral side end face 21q face the cylinder head 30A side in the cylinder axial direction.
  • the outer peripheral end surface 21 p and the inner peripheral end surface 21 q are formed to be orthogonal to the central axis C of the cylinder liner 21.
  • the outer peripheral side end face 21 p is provided on the outer peripheral side of the cylinder liner 21, that is, at a position far from the central axis C.
  • the outer peripheral side end face 21p is formed so as to include at least a surface facing the cylinder head 30A side of the flange portion 21f.
  • the inner peripheral side end face 21 q is provided on the inner peripheral side of the cylinder liner 21, that is, at a position close to the central axis C.
  • the inner circumferential end surface 21 q is formed at a position closer to the central axis C than the flange portion 21 f.
  • the inner peripheral side end face 21 q is formed at a position protruding toward the cylinder head 30 A side than the outer peripheral side end face 21 p. Between the outer peripheral side end face 21p and the inner peripheral side end face 21q, a stepped portion 21r extending in the cylinder axial direction is formed.
  • the cylinder head 30A includes an inner peripheral facing surface 31q and an outer peripheral facing surface 31p facing the inner peripheral end surface 21q and the outer peripheral end surface 21p of the cylinder liner 21, respectively.
  • the inner facing surface 31 q and the outer facing surface 31 p are formed to be orthogonal to the central axis C, respectively.
  • the inner peripheral side facing surface 31 q is formed on the outer peripheral side of the roof surface 31.
  • the outer peripheral side facing surface 31p is formed on the outer peripheral side than the inner peripheral side facing surface 31q.
  • the outer peripheral side facing surface 31p is formed at a position protruding toward the cylinder liner 21 with respect to the inner peripheral side facing surface 31q.
  • a step 31r extending in the cylinder axial direction is formed between the inner facing surface 31q and the outer facing surface 31p.
  • the height of the step 31r between the inner facing surface 31q and the outer facing surface 31p is smaller than the height of the step 21r between the outer end face 21p and the inner end face 21q.
  • a gasket (seal portion) 41A is provided between the cylinder liner 21 and the cylinder head 30A.
  • the gasket 41A is disposed to surround the outer peripheral side of the opening 21o of the cylinder liner 21. More specifically, the gasket 41A seals the outer peripheral end surface 21p and the outer peripheral facing surface 31p so as to seal between the outer peripheral end surface 21p of the cylinder liner 21 and the outer peripheral facing surface 31p of the cylinder head 30A. It is caught in The gasket 41A is sandwiched by the cylinder head 30A and the cylinder block 20 together with the flange portion 21f by an axial force of a bolt (not shown) for fastening the cylinder head 30A and the cylinder block 20. Thus, the gasket 41A is slightly compressed and deformed to exhibit high sealing performance.
  • a slight gap S is formed between the inner circumferential end surface 21 q and the inner circumferential facing surface 31 q.
  • the clearance S is set such that the cylinder head 30A and the cylinder liner 21 do not directly abut each other when assembled with the gasket 41A interposed therebetween, and a dimension equal to or less than 1 mm, which is the flame extinction distance.
  • the engine 10 is provided with a gap member 50 disposed in the gap S.
  • the gap member 50 is formed in a shape corresponding to the shape of the gap S. More specifically, the gap member 50 is formed in an annular shape continuous in the circumferential direction along the inner peripheral side end face 21 q of the cylinder liner 21 when viewed from the cylinder axial direction. Furthermore, the gap member 50 in this embodiment is formed in a solid band shape (in other words, a sheet shape) having a thickness substantially equal to that of the gap S.
  • the gap member 50 in this embodiment is formed with the same thickness as the gap S when it is molded. However, the gap member 50 formed in this manner is made to be slightly crushed by the inner peripheral side facing surface 31 q and the inner peripheral side end surface 21 q by thermal expansion and tightening with a bolt. It is arranged.
  • the gap member 50 is made of a material that is softer than the cylinder head 30A, the cylinder liner 21, and the gasket 41A, and has a lower Young's modulus.
  • the gap member 50 has heat resistance that can withstand the temperature rise due to the combustion of the premixed gas in the main combustion chamber 33.
  • the ratio of the Young's modulus of the gasket 41A to the Young's modulus of the gap member 50 may be in the range of 1: 0.001 to 1: 0.7.
  • the material of the gap member 50 is selected by the temperature in the main combustion chamber 33 and the flow of force to the cylinder liner 21. When the temperature in the main combustion chamber 33 is 300 ° C.
  • the ratio of the Young's modulus of the gasket 41A to the Young's modulus of the gap member 50 may be in the range of 1: 0.001 to 1: 0.01. .
  • the ratio of the Young's modulus of the gasket 41A to the Young's modulus of the gap member 50 may be in the range of 1: 0.01 to 1: 0.7. .
  • a resin-based material having a lower Young's modulus is selected as compared to the case where the temperature is 300 ° C. or higher.
  • the temperature in the main combustion chamber 33 is 300 ° C.
  • the gap member 50 has heat resistance that can withstand the temperature rise due to the combustion of the premixed gas, and prevents fuel from entering the gap between the cylinder head 30A and the cylinder liner 21 on the inner peripheral side of the gasket 41A. . Furthermore, during fuel combustion in the internal combustion engine, it is possible to suppress that the fuel that has entered the gap remains without being burned and that the lubricating oil enters the gap to cause abnormal combustion.
  • the fastening force for fastening the cylinder body 20 and the cylinder head 30A can be operated mainly via the gasket 41A, not the gap member 50. Therefore, it is possible to reduce the damage of the cylinder liner 21 by suppressing the application of the shear force to the cylinder liner 21 by the fastening force.
  • the gasket 41A is a cold-rolled steel plate (SPCC) material (Young's modulus: 205 [GPa]).
  • SPCC cold-rolled steel plate
  • the temperature rise of the gap member 50 due to the combustion of the premixed gas in the main combustion chamber 33 is, for example, 200.degree.
  • a resin material such as PTFE (polytetrafluoroethylene: polytetrafluoroethylene resin, Young's modulus: 0.53 to 0.58 [GPa], maximum use temperature 260 ° C.), etc.
  • It can be formed of a metallic material such as copper (Young's modulus: 130 [GPa], maximum use temperature 1000 ° C.), tin (Young's modulus: 50 [GPa], maximum use temperature 230 ° C.).
  • a resin material forming the gap member 50 PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, Young's modulus: 0.54 to 0.64 [GPa], maximum use temperature 260 ° C.
  • the metal-based material zinc (Young's modulus: 108), aluminum alloy (Young's modulus: 69 to 76), lead (Young's modulus: 16.1) or the like can be used.
  • the gap member 50 fills the gap S between the cylinder head 30A and the inner peripheral side end face 21q of the cylinder liner 21 on the inner peripheral side of the gasket 41A.
  • the fuel and lubricating oil can be suppressed from entering the gap S.
  • the engine 10 is a premixed combustion system, an air-fuel mixture in which fuel and air are mixed in advance is supplied to the main combustion chamber 33.
  • the air-fuel mixture particularly easily enters the gap S between the cylinder head 30A and the cylinder liner 21. Therefore, by filling the gap S with the gap member 50, it is possible to suppress the fuel contained in the air-fuel mixture from entering the gap S. As a result, the fuel efficiency of the engine 10 can be efficiently improved and the emission can be reduced.
  • the gap member 50 has a lower Young's modulus than the gasket 41A.
  • the repulsive force generated by the gasket 41A can be made larger than the repulsive force generated by the gap member 50. Therefore, the fastening force between the cylinder block 20 and the cylinder head 30A can be applied to the cylinder block 20 mainly through the gasket 41A instead of the gap member 50.
  • the gap member 50 is formed in an annular band shape (sheet shape) having a shape corresponding to the gap S between the cylinder head 30A and the inner peripheral side end face 21q of the cylinder liner 21. With such a configuration, it is sufficient to sandwich the preformed gap member 50 between the cylinder head 30A and the cylinder liner 21, and the assemblability of the engine 10 can be enhanced.
  • FIG. 3 is an enlarged sectional view showing a joint structure of a cylinder block and a cylinder head of an internal combustion engine according to a second embodiment of the present invention.
  • the engine 10 in this embodiment is provided with a gap member 60 filling the gap S between the inner peripheral side facing surface 31 q of the cylinder head 30 A and the inner peripheral side end face 21 q of the cylinder liner 21. .
  • the gap member 60 has a band-like (in other words, sheet-like) annular portion 60c sandwiched between the inner facing surface 31q of the cylinder head 30A and the inner end surface 21q of the cylinder liner 21, and an annular portion A curved portion 60w integrally formed on the outer peripheral side of 60c is integrally provided.
  • the curved portion 60 w is bent from the outer peripheral end of the annular portion 60 c along the inner peripheral end surface 21 q and extends along the step portion 21 r.
  • the clearance member 60 of this embodiment is also solid like the clearance member 50 of the first embodiment.
  • Such a gap member 60 may be formed in advance in a shape in which the curved portion 60 w is integrally provided on the outer peripheral side of the annular portion 60 c.
  • the gap member 60 is disposed also in the space between the step portion 21 r and the step portion 31 r. Space can be reduced. As a result, when fuel is burned in the main combustion chamber 33, the fuel that has entered the gap S can be further suppressed from remaining without being burned. Furthermore, the formation of the curved portion 60 w can facilitate positioning of the gap member 60 with respect to the gap S.
  • the gap member 60 is formed in a shape corresponding to the gap S between the cylinder head 30A and the inner peripheral side end face 21q of the cylinder liner 21. By configuring in this manner, the gap S can be filled more reliably. Further, the prefabricated gap member 60 may be inserted between the cylinder head 30A and the cylinder liner 21 to improve the assemblability of the engine 10.
  • the cylinder head 30A has the step 31r between the inner facing surface 31q and the outer facing surface 31p.
  • the gasket 41A is sandwiched between the outer peripheral end surface 21p of the cylinder liner 21 and the outer peripheral opposing surface 31p of the cylinder head 30A on the outer peripheral side of the stepped portion 31r.
  • FIG. 4 is a cross-sectional view showing the configuration of a modification of the internal combustion engine. As shown in FIG. 4, in the cylinder head 30 ⁇ / b> B, the outer peripheral side of the roof surface 31 may be a flat portion 39 without a step.
  • the gasket 41B is sandwiched between the outer peripheral end face 21p of the cylinder liner 21 and the flat portion 39 of the cylinder head 30B.
  • the gasket 41B may extend to the head surface 20f of the cylinder block 20 further to the outer peripheral side than the outer peripheral end surface 21p.
  • the present invention is not limited to the above-described embodiment, and includes the above-described embodiment with various modifications added thereto, without departing from the spirit of the present invention. That is, the specific shape, configuration, and the like described in the embodiment are merely examples, and can be changed as appropriate.
  • the configuration of the engine 10 may be anything. In the embodiment described above, although the case where the engine 10 is a gas engine has been described, the present invention is also applicable to an engine using fuel other than gas.
  • the gas engine of the embodiment described above has been described by way of example of a stationary gas engine used for a power generation facility or the like, it is not limited to the stationary gas engine.
  • the premixed combustion engine has been described as an example, the present invention is also applicable to a diffusion combustion engine.
  • the present invention is applied to an engine of a premixed combustion system, it is advantageous in that a greater effect can be obtained with respect to fuel efficiency improvement and emission reduction compared with a diffusion combustion engine.
  • the gaskets 41A and 41B are used as the seal portion.
  • the gasket it is not limited to the gasket as long as it can be sealed by crushing.
  • the cylinder head 30A (30B) and the cylinder liner 21 may be brought into direct contact and sealed.
  • the Young's modulus of the seal portion of the present invention may be a Young's modulus lower than that of each of the cylinder head 30A (30B) and the cylinder liner 21.
  • the gap member 50 is cut out and formed in an annular shape from a sheet-like material.
  • the method of forming the gap member 50 is not limited to the above-described forming method as long as the gap S can be filled even by the gap member 50.
  • the present invention is applicable to the gap member and the internal combustion engine.
  • the present invention By applying the present invention to the gap member and the internal combustion engine, it is possible to further improve the fuel efficiency and reduce the emission of the internal combustion engine, and to suppress the breakage of the cylinder liner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

エンジン(10)は、シリンダライナ(21)と、シリンダブロック(20)と、シリンダヘッド(30A)と、シール部(41A)と、隙間部材(50)と、を備える。シール部(41A)は、シリンダライナ(21)の外周側を取り囲むように設けられ、シリンダブロック(20)とシリンダヘッド(30A)との間をシールする。隙間部材(50)は、シール部(41A)よりも内周側でシリンダヘッド(30A)とシリンダライナ(21)の内周側端面との隙間を埋め、シール部(41A)よりもヤング率が低い材料で形成されている。

Description

隙間部材、内燃機関
 この発明は、隙間部材、内燃機関に関する。
 本願は、2015年10月22日に、日本に出願された特願2015-207874号に基づき優先権を主張し、その内容をここに援用する。
 天然ガス、都市ガス等の気体燃料(燃料ガス)を燃焼させて運転するガスエンジンが知られている。このガスエンジンは、高効率且つ高出力を得ることができる。そのため、ガスエンジンは、主に常用・非常用の発電用エンジン、建設機械用エンジン、船舶、鉄道等に搭載されるエンジン等に幅広く利用されている。
 特許文献1には、予混合燃焼方式の副室式ガスエンジンが記載されている。この特許文献1に記載されたガスエンジンは、主燃焼室内でピストンが圧縮上死点近くになり、主燃焼室内の燃料ガスが圧縮されると、副室内に供給された燃料ガスが、副室に備えた点火プラグのスパークにより点火される。これによって副室から火炎が発生し、この火炎が、副室に設けられた口金から主燃焼室内へと噴出する。すると、この火炎によって主燃焼室内の混合気が点火される。
 ガスエンジンは、一般に、シリンダブロック(クランクケース)と、シリンダヘッドと、を備えている。シリンダブロックには、シリンダヘッドに向かって開口し、ピストンを収容する孔が形成されている。この孔の内部には、ピストンとの摺動面を形成する円筒状のシリンダライナが取り付けられている。シリンダヘッドは、シリンダブロックにボルト等によって締結されて、その際に上記シリンダブロックの開口部を塞ぐ。このシリンダヘッドと、シリンダライナと、ピストンとに囲まれる空間が、上記混合気が供給される主燃焼室となっている。
 シリンダブロックとシリンダヘッドとの間には、主燃焼室を封止するガスケット等のシール部材が設けられている。シール部材は、一般に、シリンダライナよりも外周側のシリンダブロック、またはシリンダライナと、シリンダヘッドとの間に挟み込まれて配置される。シール部材は、シリンダヘッドとシリンダブロックとを締結するボルトの軸力によって、シリンダヘッドとシリンダブロックとに挟み込まれて押圧され、高いシール性を発揮する。
特開2010-150983号公報
 上述した内燃機関においては、シール部材を正しく挟み込むために、特にシール部材よりも内周側の位置でシリンダヘッドとシリンダライナとが直接突き当たらないようになっている。そのため、シリンダヘッドと、シリンダライナとの間に、僅かな隙間(クリアランス)が形成されてしまう。
 とりわけ予混合燃焼方式の場合、燃焼室に供給される混合気の一部がシリンダヘッドとシリンダライナとの間の隙間に入り込む可能性が有る。このように混合気の一部がシリンダヘッドとシリンダライナとの間の隙間に入り込むと、主燃焼室内の混合気が着火した際に、シリンダヘッドとシリンダライナとの間の隙間に入り込んだ混合気まで火炎が到達せずに、シリンダヘッドとシリンダライナとの隙間に入り込んだ混合気が未燃焼の状態になってしまう可能性がある。
 さらに、上記隙間には、シリンダライナの内壁面を潤滑するための潤滑油が入り込む場合がある。この隙間に入り込んだ潤滑油は、混合気と共に燃焼して、異常燃焼の原因になってしまう可能性が有る。
 つまり、上述したエンジンにおいては、未燃分の混合気の存在や、潤滑油の燃焼により、更なる燃費向上や低エミッション化が困難になってしまうという課題がある。
 さらに、上述したエンジンにおいて、シリンダヘッドとシリンダライナとの間に隙間が形成されないようにシール部材をシリンダライナの内周側に配置しようとすると、シリンダライナの内周側の部分にボルトの軸力が作用して、シリンダライナが破損する可能性がある。
 この発明は、更なる燃費向上、および、低エミッション化を図ることが可能であるとともに、シリンダライナの破損を抑制できる隙間部材、内燃機関を提供することを目的とする。
 この発明の第一態様によれば、隙間部材は、シリンダライナと、シリンダ本体と、シリンダヘッドと、シール部と、を備える内燃機関に用いられる。シリンダライナは、内部でピストンが往復動する筒状に形成されている。シリンダ本体は、シリンダライナが取り付けられている。シリンダヘッドは、シリンダ本体と対向して設けられ、シリンダライナの開口部を閉塞する。シール部は、開口部の外周側を取り囲むように設けられ、シリンダ本体およびシリンダライナの少なくとも一方とシリンダヘッドとの間をシールする。隙間部材は、シール部よりも内周側でシリンダヘッドとシリンダライナとの隙間に配置されて、シール部よりもヤング率が低い材料で形成されている。
 隙間部材が、シール部よりも内周側でシリンダヘッドとシリンダライナとの隙間に配置されることで、この隙間に燃料が入り込むことを抑制できる。これによって、内燃機関における燃料燃焼時に、隙間に入り込んだ燃料が燃焼せずに残ってしまうことや、隙間に潤滑油が入り込んで異常燃焼を誘発することを抑制できる。
 さらに、隙間部材は、シール部よりもヤング率が低い。そのため、シリンダ本体とシリンダヘッドとをボルト等で締結することによる押圧力が作用した場合、シール部で生じる反発力の方が、隙間部材が挟み込まれることで発生する反発力よりも大きくなる。これにより、シリンダ本体とシリンダヘッドとを締結する締結力を、隙間部材ではなく、主にシール部を介して作用させることができる。そのため、上記締結力によりシリンダライナにせん断力が作用することを抑制してシリンダライナの破損を低減できる。
 この発明の第二態様によれば、第一態様に係る隙間部材は、前記内燃機関が、前記シリンダライナと前記シリンダヘッドと前記ピストンとで囲まれることで画成される燃焼室に、燃料と空気とが混合された混合気が供給されるようにしてもよい。
 予め燃料と空気とが混合された混合気が燃焼室に供給されるガスエンジン等の内燃機関においては、シリンダヘッドとシリンダライナとの隙間に混合気が入り込みやすい。このような構成において、隙間に隙間部材が配置されることで、混合気が隙間に入り込むことを抑制できる。
 この発明の第三態様によれば、第一又は第二態様に係る隙間部材は、前記シリンダヘッドと前記シリンダライナとの隙間に応じた形状に成形されていてもよい。
 このように構成することで、予め成形した隙間部材をシリンダヘッドとシリンダライナとの間に挟み込めばよく、内燃機関の組立性を高めることができる。
 この発明の第四態様によれば、内燃機関は、シリンダライナと、シリンダ本体と、シリンダヘッドと、シール部と、を備えている。シリンダライナは、内部でピストンが往復動する。シリンダ本体は、前記シリンダライナが取り付けられている。シリンダヘッドは、前記シリンダ本体と対向して設けられ、前記シリンダライナの開口部を閉塞する。シール部は、前記開口部の外周側を取り囲むように設けられ、前記シリンダ本体および前記シリンダライナの少なくとも一方と前記シリンダヘッドとの間をシールする。前記シール部よりも内周側で前記シリンダヘッドと前記シリンダライナとの隙間には、第一態様から第三態様の何れか一つの態様に係る隙間部材が配置されている。
 このように構成することで、隙間部材をシリンダヘッドとシリンダライナとの間に挟み込んでシリンダヘッドとシリンダブロックとを締結すれば、シリンダ本体とシリンダヘッドとを締結する締結力を、隙間部材ではなく、主にシール部を介して作用させることができる。そのため、上記締結力によりシリンダライナにせん断力が作用することを抑制してシリンダライナの破損を低減できる。これにより、内燃機関における燃費向上、および、低エミッション化が実現できる。
 上述した隙間部材、内燃機関によれば、更なる燃費向上、および、低エミッション化を図ることが可能であるとともに、シリンダライナの破損を抑制できる。
この発明の第一実施形態に係る内燃機関のシリンダヘッド周辺の構成を示す沿う断面図である。 上記内燃機関のシリンダブロックとシリンダヘッドとの接合構造を示す拡大断面図である。 この発明の第二実施形態に係る内燃機関のシリンダブロックとシリンダヘッドとの接合構造を示す拡大断面図である。 上記内燃機関の変形例の構成を示す断面図である。
 以下、この発明の実施形態に係る隙間部材、内燃機関を図面に基づき説明する。
(第一実施形態)
 図1は、この発明の実施形態に係るガスエンジンのシリンダヘッド周辺の構成を示すシリンダ中心軸に沿う断面図である。
 図1に示すように、エンジン(内燃機関)10は、シリンダブロック(シリンダ本体)20と、シリンダヘッド30Aと、副室部材40と、を少なくとも備えている。この実施形態におけるエンジン10は、天然ガス、都市ガス等の気体燃料(燃料ガス)を燃焼させて運転するガスエンジンである。この実施形態におけるエンジン10は、さらに、発電設備などに用いられる定置型の副室式ガスエンジンである。
 シリンダブロック20には、シリンダヘッド30Aに対向するヘッド面20fに開口する孔20hが形成されている。孔20hの内側には、円筒状のシリンダライナ21が配置されている。
 シリンダライナ21は、フランジ部21fを一体に備えている。フランジ部21fは、シリンダヘッド30Aに近い側の一端21aに形成されている。フランジ部21fは、さらに、シリンダライナ21の中心軸Cを中心とした外周側(以下、単に外周側と称する)に向かって拡径するように形成されている。シリンダブロック20は、孔20hの開口周縁に収容溝20mを備えている。収容溝20mは、シリンダライナ21のフランジ部21fを収容する環状に形成されている。シリンダライナ21は、シリンダブロック20の収容溝20mにフランジ部21fを収容することで、シリンダブロック20に対して位置決めされている。
 シリンダライナ21は、その内部に、ピストン22を収納している。このピストン22は、シリンダライナ21にガイドされて、シリンダライナ21の中心軸Cの延びる方向(以下、これをシリンダ軸方向と称する)に直線的に往復動可能となっている。ピストン22は、コンロッド23を介して、クランクケース(図示せず)内に収容されたクランクシャフト24に連結されている。
 コンロッド23は、ピン25を介してピストン22に回動自在に連結されている。コンロッド23は、さらに、ピン26を介してクランクシャフト24に回動自在に連結されている。これらにより、シリンダライナ21内でシリンダ軸方向にピストン22が直線運動すると、このピストン22の直線運動がコンロッド23によってクランクシャフト24に伝達されてクランクシャフト24の回転運動に変換される。
 シリンダヘッド30Aは、シリンダブロック20のヘッド面20fにボルト(図示せず)等により締結されている。これにより、シリンダヘッド30Aは、シリンダライナ21の一端21aの開口部21oを閉塞している。シリンダヘッド30Aのシリンダブロック20側を向く面には、シリンダライナ21の中心軸Cに直交する平坦状、あるいは半球面状、湾曲面状をなすルーフ面31が形成されている。このルーフ面31は、シリンダライナ21に対向する領域に形成されている。
 上述したシリンダライナ21と、シリンダヘッド30Aのルーフ面31と、ピストン22と、によって、主燃焼室(燃焼室)33が画成されている。
 シリンダヘッド30Aには、吸気ポート34、排気ポート35が、形成されている。これら吸気ポート34と排気ポート35とは、それぞれシリンダライナ21の中心軸Cを中心として周方向に間隔をあけて形成されている。吸気ポート34、排気ポート35の主燃焼室33側の端部34a,35aは、ルーフ面31に開口して主燃焼室33に面している。
 吸気ポート34は、混合ガス供給源(図示無し)に連通している。この混合ガス供給源によって、吸気ポート34には、空気と燃焼ガスとが予め混合された予混合ガスが供給可能となっている。
 吸気ポート34には、主燃焼室33に近い側の端部34aに、吸気弁36が設けられている。吸気弁36は、弁駆動機構(図示無し)により閉位置から開位置に変位可能とされている。吸気弁36を閉位置から開位置に変位させることで、混合ガス供給源から供給された混合ガスが、吸気ポート34から主燃焼室33へと供給される。
 排気ポート35は、排気ガス流路(図示無し)に接続されている。排気ポート35には、主燃焼室33に近い側の端部35aに、排気弁37が設けられている。排気弁37を弁駆動機構(図示無し)により閉位置から開位置に変位させることで、主燃焼室33で燃焼した排気ガスが、主燃焼室33から排気ポート35を経て、排気ガス流路を介して外部に排出される。
 副室部材40は、副室ホルダ42と、副室口金43と、を備えている。
 副室ホルダ42は、シリンダヘッド30A内に設けられている。副室ホルダ42の中心軸は、シリンダライナ21の中心軸Cの延長線上に設けられている。
 副室口金43は、シリンダヘッド30Aのルーフ面31の中心から主燃焼室33内に突出するよう設けられている。副室口金43は、中空に形成され、その内部空間が副室41になっている。この副室41には、外部から燃料ガスが供給される。
 副室ホルダ42には、点火プラグ45が設けられている。この点火プラグ45で火花放電することで、外部から副室41内に供給された燃料ガスを着火燃焼させ、火炎を発生させる。この点火によって発生する火炎は、副室口金43から主燃焼室33に噴出される。この火炎により、主燃焼室33内に吸気ポート34(図1参照)を通して供給された混合ガスが着火して燃焼する。すると、シリンダライナ21内でピストン22がシリンダライナ21のシリンダ軸方向に直線往復運動し、エンジン10が駆動される。
 次に、上述したシリンダブロック20とシリンダヘッド30Aとのシール構造について説明する。
 図2は、上記内燃機関のシリンダブロックとシリンダヘッドとの接合構造を示す拡大断面図である。
 図2に示すように、シリンダライナ21は、外周側端面21pと、内周側端面21qと、を有している。外周側端面21pと、内周側端面21qとは、シリンダ軸方向でシリンダヘッド30A側を向く。外周側端面21p、内周側端面21qは、それぞれシリンダライナ21の中心軸Cに直交するよう形成されている。
 外周側端面21pは、シリンダライナ21の外周側、すなわち中心軸Cから遠い位置に設けられている。言い換えれば、外周側端面21pは、少なくともフランジ部21fのシリンダヘッド30A側を向く面を含むように形成されている。内周側端面21qは、シリンダライナ21の内周側、すなわち中心軸Cに近い位置に設けられている。言い換えれば、内周側端面21qは、フランジ部21fよりも中心軸Cに近い位置に形成されている。内周側端面21qは、外周側端面21pよりも、シリンダヘッド30A側に突出した位置に形成されている。これら外周側端面21pと内周側端面21qとの間には、シリンダ軸線方向に延びる段差部21rが形成されている。
 シリンダヘッド30Aは、シリンダライナ21の内周側端面21q、外周側端面21pのそれぞれに対向する内周側対向面31q、外周側対向面31pを備えている。内周側対向面31q、外周側対向面31pは、それぞれ中心軸Cに直交するよう形成されている。内周側対向面31qは、ルーフ面31の外周側に形成されている。外周側対向面31pは、内周側対向面31qよりも外周側に形成されている。外周側対向面31pは、内周側対向面31qよりもシリンダライナ21側に突出した位置に形成されている。これら内周側対向面31qと外周側対向面31pとの間には、シリンダ軸線方向に延びる段差部31rが形成されている。内周側対向面31qと外周側対向面31pとの段差部31rの高さは、外周側端面21pと内周側端面21qとの段差部21rの高さよりも小さくなっている。
 シリンダライナ21とシリンダヘッド30Aとの間には、ガスケット(シール部)41Aが設けられている。このガスケット41Aは、シリンダライナ21の開口部21oの外周側を取り囲むように配置されている。より具体的には、ガスケット41Aは、シリンダライナ21の外周側端面21pと、シリンダヘッド30Aの外周側対向面31pとの間をシールするように、これら外周側端面21pと外周側対向面31pとに挟み込まれている。ガスケット41Aは、シリンダヘッド30Aとシリンダブロック20とを締結するボルト(図示無し)の軸力によって、フランジ部21fと共に、シリンダヘッド30Aとシリンダブロック20とによって挟み込まれている。これによりガスケット41Aは、僅かに圧縮変形して、高いシール性を発揮している。
 内周側端面21qと内周側対向面31qとの間には、僅かな隙間Sが形成されている。隙間Sは、ガスケット41Aを挟んで組込んだときにシリンダヘッド30Aとシリンダライナ21とが直接突き当たらないような寸法で、且つ、消炎距離である例えば1mm以下の寸法に設定されている。
 エンジン10は、この隙間Sに配置される隙間部材50を備えている。
 隙間部材50は、隙間Sの形状に応じた形状で形成されている。より具体的には、隙間部材50は、シリンダ軸方向から見たときに、シリンダライナ21の内周側端面21qに沿って周方向に連続する円環状に形成されている。さらに、この実施形態における隙間部材50は、隙間Sとほぼ同等の厚さを有した中実の帯状(言い換えればシート状)に形成されている。この実施形態における隙間部材50は、成形する際に隙間Sと同等の厚さで形成されている。しかし、このように形成された隙間部材50は、熱膨張が生じること、及び、ボルトで締め付けることにより、内周側対向面31qと、内周側端面21qとによって僅かに押し潰されるようにして配置されている。
 この隙間部材50は、シリンダヘッド30A、シリンダライナ21、およびガスケット41Aよりも柔軟で、ヤング率が低い材料で形成されている。隙間部材50は、主燃焼室33内における予混合ガスの燃焼による温度上昇に耐えうる耐熱性を有している。ガスケット41Aのヤング率と、隙間部材50のヤング率との比率は、1対0.001から1対0.7の範囲とするものとしても良い。
 隙間部材50の材料は、主燃焼室33内の温度及びシリンダライナ21への力の流れにより選択される。
 主燃焼室33内の温度が300℃以下の場合、ガスケット41Aのヤング率と隙間部材50のヤング率との比率は、1対0.001から1対0.01の範囲とするものとしても良い。主燃焼室33内の温度が300℃以上の場合、ガスケット41Aのヤング率と隙間部材50のヤング率との比率は、1対0.01から1対0.7の範囲とするものとしても良い。主燃焼室33内の温度が300℃以下の場合は、300℃以上の場合に比べ、ヤング率の低い樹脂系材料が選択される。主燃焼室33内の温度が300℃以上の場合は、300℃以下の場合に比べ、ヤング率の高い金属系材料が選択される。これらにより、隙間部材50は予混合ガスの燃焼による温度上昇に耐えうる耐熱性を有し、ガスケット41Aよりも内周側のシリンダヘッド30Aとシリンダライナ21との隙間に燃料が入り込むことを抑制する。さらに、内燃機関における燃料燃焼時に、隙間に入り込んだ燃料が燃焼せずに残ってしまうことや、隙間に潤滑油が入り込んで異常燃焼を誘発することを抑制する。加えて、シリンダ本体20とシリンダヘッド30Aとを締結する締結力を、隙間部材50ではなく、主にガスケット41Aを介して作用させることができる。そのため、上記締結力によりシリンダライナ21にせん断力が作用することを抑制してシリンダライナ21の破損を低減できる。
 例えば、この実施形態において、ガスケット41Aは、冷間圧延鋼板(SPCC)材(ヤング率:205[GPa])である。主燃焼室33内における予混合ガスの燃焼による隙間部材50の温度上昇は、例えば200℃である。
 この場合、隙間部材50としては、例えば、PTFE(ポリテトラフルオロエチレン:4フッ化エチレン樹脂、ヤング率:0.53~0.58[GPa]、最高使用温度260℃)等の樹脂系材料、銅(ヤング率:130[GPa]、最高使用温度1000℃)、錫(ヤング率:50[GPa]、最高使用温度230℃)等の金属系材料で形成することができる。
 これ以外にも、隙間部材50を形成する樹脂系材料としては、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、ヤング率:0.54~0.64[GPa]、最高使用温度260℃)、金属系材料としては、亜鉛(ヤング率:108)、アルミニウム合金(ヤング率:69~76)、鉛(ヤング率:16.1)等を用いることができる。
 上述した第一実施形態のエンジン10、隙間部材50によれば、ガスケット41Aよりも内周側でシリンダヘッド30Aとシリンダライナ21の内周側端面21qとの隙間Sを隙間部材50で埋めることで、この隙間Sに燃料や潤滑油が入り込むことを抑制できる。これによって、主燃焼室33における燃料燃焼の際に、隙間Sに入り込んだ燃料が燃焼せずに残ってしまうことや、隙間Sに入り込んだ潤滑油が燃焼して異常燃焼が生じることを抑制できる。その結果、エンジン10における燃費向上および低エミッション化を図ることができる。
 ここで、エンジン10は、予混合燃焼方式であるため、予め燃料と空気とが混合された混合気が主燃焼室33に供給される。この場合、シリンダヘッド30Aとシリンダライナ21との隙間Sに混合気が特に入りやすい。そのため、隙間Sを隙間部材50で埋めることで、混合気に含まれる燃料が隙間Sに入り込むことを抑制できる。その結果、効率よくエンジン10の燃費向上、および、低エミッション化を図ることができる。
 さらに、隙間部材50は、ガスケット41Aよりもヤング率が低い。これにより、シリンダブロック20とシリンダヘッド30Aとをボルト等で締結することによって押圧力が作用した場合、ガスケット41Aで生じる反発力を、隙間部材50で発生する反発力よりも大きくすることができる。そのため、シリンダブロック20とシリンダヘッド30Aとの締結力は、隙間部材50ではなく、主にガスケット41Aを介してシリンダブロック20に作用させることができる。その結果、上記締結力によってシリンダライナ21のフランジ部21fにせん断力が作用することを抑制してシリンダライナ21の破損を低減できる。
 さらに、隙間部材50は、シリンダヘッド30Aとシリンダライナ21の内周側端面21qとの隙間Sに応じた形状である円環状の帯状(シート状)に成形されている。このように構成することで、予め成形した隙間部材50をシリンダヘッド30Aとシリンダライナ21との間に挟み込めばよく、エンジン10の組立性を高めることができる。
(第二実施形態)
 次に、この発明に係る隙間部材、内燃機関の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と隙間部材の形状のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 図3は、この発明の第二実施形態に係る内燃機関のシリンダブロックとシリンダヘッドとの接合構造を示す拡大断面図である。
 図3に示すように、この実施形態におけるエンジン10は、シリンダヘッド30Aの内周側対向面31qとシリンダライナ21の内周側端面21qとの間の隙間Sを埋める隙間部材60を備えている。
 この隙間部材60は、シリンダヘッド30Aの内周側対向面31qと、シリンダライナ21の内周側端面21qとの間に挟み込まれる帯状(言い換えればシート状)の円環状部60cと、円環状部60cの外周側に一体に形成された湾曲部60wと、を一体に備えている。湾曲部60wは、内周側端面21qに沿う円環状部60cの外周端部から屈曲して、段差部21rに沿って延びている。この実施形態の隙間部材60も、第一実施形態の隙間部材50と同様に中実となっている。
 このような隙間部材60は、円環状部60cの外周側に湾曲部60wを一体に備えた形状に、予め成形しておくものとしても良い。
 上述した第二実施形態のエンジン10、隙間部材60によれば、段差部21r、および、段差部31rとの間の空間にも隙間部材60が配置されるため、第一実施形態よりも更に燃料が入り込むスペースを低減できる。これによって、主燃焼室33で燃料燃焼の際に、隙間Sに入り込んだ燃料が燃焼せずに残ってしまうことをより一層抑制できる。さらに、湾曲部60wが形成されていることで、隙間Sに対する隙間部材60の位置決めを容易に行うことができる。
 さらに、隙間部材60は、シリンダヘッド30Aとシリンダライナ21の内周側端面21qとの隙間Sに応じた形状に成形されている。このように構成することで、隙間Sを、より確実に埋めることができる。また、予め成形した隙間部材60をシリンダヘッド30Aとシリンダライナ21との間に挟み込めばよく、エンジン10の組立性を高めることができる。
(第一、第二実施形態の変形例)
 第二実施形態では、シリンダヘッド30Aは、内周側対向面31qと外周側対向面31pとの間に段差部31rを有していた。加えて、ガスケット41Aは、段差部31rよりも外周側で、シリンダライナ21の外周側端面21pとシリンダヘッド30Aの外周側対向面31pとの間に挟み込むようにした。しかし、この構成に限られるものではない。
 図4は、上記内燃機関の変形例の構成を示す断面図である。
 図4に示すように、シリンダヘッド30Bは、ルーフ面31の外周側を段差のない平面状部39としてもよい。ガスケット41Bは、シリンダライナ21の外周側端面21pと、このシリンダヘッド30Bの平面状部39との間に挟み込まれている。この場合、ガスケット41Bは、図4に示すように、外周側端面21pよりも更に外周側のシリンダブロック20のヘッド面20fまで延びていても良い。
(その他の変形例)
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、エンジン10の構成は、いかなるものであってもよい。上述した実施形態においては、エンジン10がガスエンジンの場合について説明したが、この発明は、ガス以外の燃料を用いるエンジンにも適用できる。
 さらに、上述した実施形態のガスエンジンは、発電設備などに用いられる定置型のガスエンジンを一例に説明したが、定置型のガスエンジンに限られない。
 さらに、予混合燃焼方式のエンジンを一例に説明したが、拡散燃焼方式のエンジンにもこの発明は適用可能である。この発明を予混合燃焼方式のエンジンに適用した場合には、拡散燃焼方式のエンジンよりも燃費向上や低エミッション化についてより大きな効果が得られる点で有利となる。
 さらに、上述した実施形態においては、シール部としてガスケット41A,41Bを用いる場合について説明した。しかし、押し潰すことでシールできるものであればガスケットに限られない。例えば、シリンダヘッド30A(30B)とシリンダライナ21とを直接接触させてシールするようにしても良い。この場合、この発明のシール部のヤング率は、シリンダヘッド30A(30B)およびシリンダライナ21の各ヤング率よりも低いヤング率とすればよい。
 さらに、上述した実施形態においては、隙間部材50を、シート状の材料から円環状に切り出して形成する場合を例示した。しかし、隙間部材50の成形方法は、隙間部材50によって隙間Sを少しでも埋めることができればよく、上述した成形方法に限られない。
 この発明は、隙間部材及び内燃機関に適用できる。隙間部材及び内燃機関にこの発明を適用することで、内燃機関の更なる燃費向上、および、低エミッション化を図ることが可能であるとともに、シリンダライナの破損を抑制できる。
10 エンジン(内燃機関)
20 シリンダブロック(シリンダ本体)
20f ヘッド面
20h 孔
20m 収容溝
21 シリンダライナ
21f フランジ部
21o 開口部
21p 外周側端面
21q 内周側端面
21r 段差部
22 ピストン
23 コンロッド
24 クランクシャフト
25 ピン
26 ピン
30A,30B シリンダヘッド
31 ルーフ面
31p 外周側対向面
31q 内周側対向面
31r 段差部
33 主燃焼室(燃焼室)
34 吸気ポート
34a 端部
35 排気ポート
35a 端部
36 吸気弁
37 排気弁
39 平面状部
40 副室部材
41A,41B ガスケット
50,60 隙間部材
60c 円環状部
60w 湾曲部

Claims (4)

  1.  内部でピストンが往復動する筒状のシリンダライナと、前記シリンダライナが取り付けられたシリンダ本体と、前記シリンダ本体と対向して設けられ、前記シリンダライナの開口部を閉塞するシリンダヘッドと、前記開口部の外周側を取り囲むように設けられ、前記シリンダ本体および前記シリンダライナの少なくとも一方と前記シリンダヘッドとの間をシールするシール部と、を備える内燃機関に用いられる隙間部材であって、
     前記シール部よりも内周側で前記シリンダヘッドと前記シリンダライナとの隙間に配置されて、前記シール部よりもヤング率が低い材料で形成されている隙間部材。
  2.  前記内燃機関は、前記シリンダライナと前記シリンダヘッドと前記ピストンとで囲まれることで画成される燃焼室に、燃料と空気とが混合された混合気が供給される請求項1に記載の隙間部材。
  3.  前記シリンダヘッドと前記シリンダライナとの隙間に応じた形状に成形されている請求項1又は2に記載の隙間部材。
  4.  内部でピストンが往復動するシリンダライナと、
     前記シリンダライナが取り付けられたシリンダ本体と、
     前記シリンダ本体と対向して設けられ、前記シリンダライナの開口部を閉塞するシリンダヘッドと、
     前記開口部の外周側を取り囲むように設けられ、前記シリンダ本体および前記シリンダライナの少なくとも一方と前記シリンダヘッドとの間をシールするシール部と、を備え、
     前記シール部よりも内周側で前記シリンダヘッドと前記シリンダライナとの隙間に、請求項1から3の何れか一項に記載の隙間部材が配置された内燃機関。
PCT/JP2016/081111 2015-10-22 2016-10-20 隙間部材、内燃機関 WO2017069198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/769,152 US10619557B2 (en) 2015-10-22 2016-10-20 Gap member and internal combustion engine
CN201680060825.XA CN108431393B (zh) 2015-10-22 2016-10-20 间隙部件、内燃机
EP16857511.6A EP3351784B1 (en) 2015-10-22 2016-10-20 Gap member and internal combustion engine
KR1020187011048A KR20180065020A (ko) 2015-10-22 2016-10-20 간극 부재, 내연 기관

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-207874 2015-10-22
JP2015207874A JP6655348B2 (ja) 2015-10-22 2015-10-22 内燃機関

Publications (1)

Publication Number Publication Date
WO2017069198A1 true WO2017069198A1 (ja) 2017-04-27

Family

ID=58557076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081111 WO2017069198A1 (ja) 2015-10-22 2016-10-20 隙間部材、内燃機関

Country Status (6)

Country Link
US (1) US10619557B2 (ja)
EP (1) EP3351784B1 (ja)
JP (1) JP6655348B2 (ja)
KR (1) KR20180065020A (ja)
CN (1) CN108431393B (ja)
WO (1) WO2017069198A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500195A (zh) * 2018-05-18 2019-11-26 卡特彼勒公司 具有直径可变式凸缘的气缸套

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575257B (en) * 2018-07-02 2020-11-04 Caterpillar Energy Solutions Gmbh Apparatus for positioning a connecting rod relative to components underlying a cylinder of an engine block
KR20230088345A (ko) * 2020-10-15 2023-06-19 교라꾸 가부시끼가이샤 패널
CN112610348B (zh) * 2020-12-15 2022-11-22 重庆隆鑫通航发动机制造有限公司 气缸总成及发动机
US11719182B1 (en) * 2022-08-17 2023-08-08 Deltahawk Engines, Inc. Engine cylinder with liner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54167204U (ja) * 1978-05-16 1979-11-24
JPS56113145U (ja) * 1980-02-01 1981-09-01
JPS6067751A (ja) * 1983-09-19 1985-04-18 ミンスキイ モトルニイ ザボツド 内燃エンジン
JPS62152056U (ja) * 1986-03-20 1987-09-26
JPS6371456U (ja) * 1986-10-30 1988-05-13
JP2001193560A (ja) * 1999-12-28 2001-07-17 Yanmar Diesel Engine Co Ltd 内燃機関のシリンダヘッドガスケット構造

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939753A (en) * 1957-10-15 1960-06-07 Daimler Benz Ag Cylinder head gasket arrangement
FR1360266A (fr) 1963-03-26 1964-05-08 Cefilac Joint pour moteur thermique
DE1297405B (de) 1966-01-11 1969-06-12 Maschf Augsburg Nuernberg Ag Zylinderdeckeldichtung
DE1650006A1 (de) 1966-12-14 1970-08-13 Felt Products Mfg Co Dichtung
SE338198B (ja) 1968-12-13 1971-08-30 Crouzet Sa
DE2227042C3 (de) 1972-06-02 1980-09-18 Integral Hydraulik & Co, 4000 Duesseldorf Dichtungsanordnung
US3853099A (en) * 1972-12-21 1974-12-10 Caterpillar Tractor Co Elastomeric sealing ring for cylinder liners
US4305348A (en) * 1978-10-23 1981-12-15 Ramsey Corporation Seal for an internal combustion engine
US4300273A (en) * 1978-10-26 1981-11-17 Caterpillar Tractor Co. Method for making laminated spacer plate for engines
SE443838B (sv) * 1983-09-09 1986-03-10 Mi Motornyj Z Cylinderlockstetning
JPH0826812B2 (ja) 1986-11-13 1996-03-21 日本ラインツ株式会社 シリンダライナを設けたエンジン用スペ−サ
JP2671407B2 (ja) 1988-07-21 1997-10-29 いすゞ自動車株式会社 断熱エンジンの構造
JP2532397Y2 (ja) 1991-03-26 1997-04-16 いすゞ自動車株式会社 シリンダライナ
JP2000130586A (ja) * 1998-10-29 2000-05-12 Taiho Kogyo Co Ltd シリンダヘッドガスケット
JP2001280504A (ja) * 2000-03-31 2001-10-10 Nichias Corp ゴムガスケット構造およびその製造方法
JP4529321B2 (ja) 2000-10-13 2010-08-25 Nok株式会社 インジェクター用燃焼ガスシール
US7100925B2 (en) * 2003-07-31 2006-09-05 Perkin Elmer, Inc. Pressure energized metallic seal
JP5167108B2 (ja) 2008-12-24 2013-03-21 三菱重工業株式会社 点火プラグを備えたガスエンジン
JP5123254B2 (ja) * 2009-05-27 2013-01-23 株式会社日阪製作所 バルブ装置
US8601995B2 (en) * 2011-08-03 2013-12-10 Cummins Intellectual Property, Inc. Cylinder liner seal arrangement and method of providing the same
DE102012013379A1 (de) 2012-07-04 2014-01-09 Mtu Friedrichshafen Gmbh Einlage und Verbrennungsmotor mit Einlage
CN103293005A (zh) * 2013-05-31 2013-09-11 中国兵器工业集团第七0研究所 一种点火状态下气缸套与活塞摩擦力测试用浮动缸套机构
US20170226958A1 (en) * 2016-02-10 2017-08-10 Caterpillar Inc. Spring Energized Cylinder Liner Seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54167204U (ja) * 1978-05-16 1979-11-24
JPS56113145U (ja) * 1980-02-01 1981-09-01
JPS6067751A (ja) * 1983-09-19 1985-04-18 ミンスキイ モトルニイ ザボツド 内燃エンジン
JPS62152056U (ja) * 1986-03-20 1987-09-26
JPS6371456U (ja) * 1986-10-30 1988-05-13
JP2001193560A (ja) * 1999-12-28 2001-07-17 Yanmar Diesel Engine Co Ltd 内燃機関のシリンダヘッドガスケット構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351784A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500195A (zh) * 2018-05-18 2019-11-26 卡特彼勒公司 具有直径可变式凸缘的气缸套

Also Published As

Publication number Publication date
EP3351784A1 (en) 2018-07-25
JP6655348B2 (ja) 2020-02-26
US20180306099A1 (en) 2018-10-25
KR20180065020A (ko) 2018-06-15
US10619557B2 (en) 2020-04-14
JP2017078392A (ja) 2017-04-27
EP3351784A4 (en) 2018-09-05
EP3351784B1 (en) 2021-04-14
CN108431393B (zh) 2022-01-11
CN108431393A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017069198A1 (ja) 隙間部材、内燃機関
EP3012431B1 (en) Pre-combustion chamber assembly for internal combustion engines
CN109546533B (zh) 用于内燃机的火花塞
JP2013530340A (ja) 燃焼機関における装置
JP2015117582A (ja) ガスエンジン、およびガスエンジンの組立方法
JP2011112034A (ja) 燃焼可視化エンジン及びその組立方法
RU2282739C1 (ru) Поршневое уплотнение для двигателя внутреннего сгорания
JP6078630B2 (ja) シリンダヘッド及びエンジン
CN212615055U (zh) 小型可视内燃机
US9964068B2 (en) Head gasket for an internal combustion engine
JP2019035381A (ja) 内燃機関
US10323580B2 (en) Isobaric piston assembly
US20090289421A1 (en) Durable piston and a ring unit for the durable piston
JP2014077365A (ja) ガスケット
KR101914325B1 (ko) 엔진
JP5182950B2 (ja) ピストン用リング・ユニット
JP6654917B2 (ja) ピストン
US10087878B2 (en) Cylinder head cover with integral sleeve
CN111878248A (zh) 小型可视内燃机
KR101291686B1 (ko) 내연기관용 피스톤 모듈
KR200159872Y1 (ko) 피스톤 데드볼륨의 저감구조
JP2021134720A (ja) 内燃機関
JPH0435562Y2 (ja)
KR100212881B1 (ko) 밸브 가이드와 밸브 스템 시일의 결합 구조
JP2005090263A (ja) シリンダのシール構造及び内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15769152

Country of ref document: US

Ref document number: 2016857511

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187011048

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE