WO2017068220A1 - Chimenea fotovoltaica evaporativa para el accionamiento y disipación de calor simultánea de un sistema de climatización - Google Patents

Chimenea fotovoltaica evaporativa para el accionamiento y disipación de calor simultánea de un sistema de climatización Download PDF

Info

Publication number
WO2017068220A1
WO2017068220A1 PCT/ES2016/070740 ES2016070740W WO2017068220A1 WO 2017068220 A1 WO2017068220 A1 WO 2017068220A1 ES 2016070740 W ES2016070740 W ES 2016070740W WO 2017068220 A1 WO2017068220 A1 WO 2017068220A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
evaporative
chimney
photovoltaic
air
Prior art date
Application number
PCT/ES2016/070740
Other languages
English (en)
French (fr)
Inventor
Manuel LUCAS MIRALLES
Pedro Ginés VICENTE QUILES
Javier RUIZ RAMIREZ
Francisco Javier AGUILAR VALERO
Clemente GARCIA CUTILLAS
Antonio SANCHEZ KAISER
Original Assignee
Universidad Miguel Hernandez De Elche
Universidad Politécnica De Cartagena (10%)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Miguel Hernandez De Elche, Universidad Politécnica De Cartagena (10%) filed Critical Universidad Miguel Hernandez De Elche
Publication of WO2017068220A1 publication Critical patent/WO2017068220A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is part of the technical sector of the solar power otovoitalca W and its application in air conditioning systems.
  • the main object of the present invention is a system for photovoltaic solar panels, which allows to increase the performance of the solar panels while maintaining their surface optimum temperature values, at the same time the present invention is used as an electrical actuation and dissipation system. heat of a cooling cycle.
  • REPLACEMENT SHEET (RULE 26) they had more possibilities of integration in the case of large buildings since only thermal, well-based solar systems and absorption or adsorption processes were used. However, the situation has changed with the enormous development of medium-power domestic and commercial air conditioning equipment, as well as the tremendous decrease in the cost of the photovoltaic panels.
  • the second key component in a solar heating system is the cooling equipment itself. Again, working temperatures are the key variables to determine its operation.
  • the variable to be specified is the condensation temperature. This is essentially determined by the medium to which the heat dissipates.
  • Classic commercial solutions are systems condensed by air or water. The main difference between condensation by air or water is that condensing with water leads to minors
  • REPLACEMENT SHEET (RULE 26) temperatures in the condensation, implying greater efficiency and lower consumption of the equipment, E! effect that has reduce the. Condensation temperature leads to the reduction of the power consumed by the compressor of an air conditioning unit.
  • the improvement of the efficiency of water condensed systems is related to the reduction in emissions of C ⁇ 3 ⁇ 4 into the atmosphere.
  • the invention described herein is intended to improve the efficiency of a fofovxjltalco panel by means of the evaporaüvo approach, this combined with the use of a water-condensed air conditioning system leads to the design of an efficient solar air conditioning system.
  • the evaperative photovoltaic chimney is proposed for the simultaneous heating and dissipation of an air conditioning system.
  • a solar chimney is a tiring of iberian-siphonic air in which an ascending air comment is caused by means of thermal flotation, ta.
  • solar energy increases the temperature of the chimney increasing the temperature of the air and decreasing its density so that a current is caused inside, these solar chimneys have been applied in different fields such as ventilation of buildings, drying processes or energy production electric They have also been used in the cooling0 of CM103718310 photovoltaic panels, but not in the manner proposed in this Invention, since the photovoltaic chimney eva oratlva object of this invention also seeks to improve the photovoitasco panel. seeks the cooling of a water flow that comes from a refrigerator cycle, 5 .EXPÜCACféN DE LA ⁇ NVEMC ⁇ N
  • the evaporatlva photovoltaic chimney is divided into two main parts described in the
  • the first section called sona evaporatlva ⁇ 30 ⁇ has a series of nozzles (1) that atomize water in flow0 parallel to the air that enters the system through the inlet section
  • the air that has been in contact with the water has increased its humidity, which may even have reduced its temperature (depending on the operating conditions) begins to rise due to the effect of flotation in the so-called convective zone (40),
  • This second zone It is basically a solar chimney in which the heating of the air causes it to float.
  • the air that rises through the convective section cools e! otovoltaic panel ⁇ ) increasing its performance going out to the outside through the opening (9) in the upper part.
  • Figure 1 Shows a perspective view of the evaporative photo-voltaic chimney object of the invention.
  • Figure 2. Shows a schematic view of the different elements that are part of the evaporative photovoltaic chimney and its connection with a system of air conditioning and condensation by water,
  • both the atomized fluid and the outside air are confined by means of a housing (4) in the form of a drawer attached to the back of the photovoltaic panel : ⁇ - a collection tray 5) located on the bottom i of the panel pragmaticveitaico5 (6), to collect and channel the excess fluid and at a lower temperature than at the entrance from said atomization,
  • FIG. 5 shows schematically the different component elements that fix part of the evaporative fcfovoitaic chimney and its connection with a cooling system object of the invention.
  • fluid flow control valve (10) located in the supply pipe (2) installed to control the flow of fluid to be cooled in the evaporative photovoltaic chimney (20),
  • REPLACEMENT SHEET (RULE 26) that can be incorporated into the fluid path by itself inside the evaporative solar chimney (20) and that could be harmful to the pumping system ⁇ 13 ⁇ and / or the condenser (7) of the refrigerating machine (14)
  • the element in charge of the air conditioning and the design object of the invention is a conventional air conditioning equipment, with the exception that the transfer of heat to the environment must be carried out at a stream of water that is what is dusted in the evaporative photovoltaic chimney.
  • a part or all of the electrical consumption of the air conditioning equipment (14) will come from the production of the photovoltaic pan ⁇ 3 ⁇ 4> ⁇ through the use of a direct current compressor or with the inclusion of a direct current inverter to alternating current (15 ) and an allied current compressor,
  • the air conditioning machine (14) will generate a stream of cold water that will be recirculated to the building to be detected by means of a circulating pump 2 (16) that will send the fhgorifeizido »yes building to be clamped by terminal elements (18).
  • a system that acts as heat dissipation of an air conditioning unit which, in turn, allows to reduce the temperature of the honeycomb (6) that is part of the evaporative photo perennial chimney (20), thus improving its performance.

Abstract

CHIMENEA FOTOVOLTAICA EVAPORATIVA PARA EL ACCIONAMIENTO Y DISIPACIÓN DE CALOR SIMULTANEA DE UN SISTEMA DE CLIMATIZACIÓN Chimeneafotovoltaica evaporativa pararefrigerar el panel fotovoltaico mediante una corrientede aire en su parte posterior y disipar el calor de un ciclo de refrigeración.La chimenea se divide en dos partes principales. La primera sección denominada zona evaporativa tiene una serie de boquillas que atomizan agua en flujo paralelo con el aire ambiente quedesciende. A medida que el agua cae una pequeña parte se evapora enfriándose el resto. Esta sección trabaja como una torre de refrigeración a pequeña escala. El aire que ha estado en contacto con el agua asciendepor efecto de la flotación en la denominada zona convectiva. Esta segunda zona es básicamente una chimenea solar en la que el calentamiento del aire provoca la flotación del mismo. A su vez el aire que asciende por la sección convectiva refrigera el panel fotovoltaico incrementando su rendimiento. Figura

Description

ES C R I O
CHIMENEA f*OTOVOtTAt$A ..EVAPOBATjy .PARA EL A O MiENTO Y DISIM^i N Pi CALOR SIMULTÁNEA PE UN SISTEMA DE OiMATiZACiÓN
5
SECTOR DE .LA TÉCNICA
La presante invencón se encuadra e ai sector técnico de la energía solar íotovoitalca W y su aplicación en sistemas de acondicionamiento de aire.
El objeto principal de la presente invención es un sistema para paneles solares fotovoltaicos, que permite aumentar el rendimiento de los paneles solares manteniendo su superficie unos valores óptimos de temperatura, ai mismo tiempo la presente 15 invención se emplea como sistem de accionamiento eléctrico y disipación de calor de un cicio de refrigeración.
ANTECEDENTES DE LA INVENCIÓ
20 Actualmente la imatísaclón de edificios signific un porcentaje muy importante de la energía final demandada por nuestra sociedad. Siendo previsible un Incremento en los próximos años afnbuifole al aumento de la temperatura ambiente, a las mayores exigencias de confort, la percepción de que la climatización contribuye a la productividad y ai incremento de la carga interna de los edificios debido el uso de equipos electrónicos, $ Este incremento en el consumo de energía de los equipos d climatización estará asociado con mayores emisiones de COa la atmósfera a menos que se planteen soluciones alternativas a la actuales.
Una posibilidad es usar la misma energía que provoca la demanda de climatización 0 como energía de generación, en este caso emplear ía energía solar, ta climatización solar es una idea atractiva por la coincidencia cronológica entre la radiación disponible y fa necesidad de refrigeración. Diferentes soluciones técnicas que combinan la energí soiar y el aire acondicionado han sido estudiadas en el pasado y siguen siendo analizadas hoy día. Sin embargo, estas tecnologías o no han sido competitivas o están 6 en una fase preliminar d desarrollo. Parecía que los sistemas solares de climatización
1
HOJA DE REEMPLAZO (REGLA 26) tenían más posibilidades de integración n el caso de grandes edificios dado que únicamente se empleaban sistemas solares térmicos, bien basados e procesos de absorción o adsorción. Sin embargo, la situación ha cambiado con ai enorme desarrollo de los equipos de climatización domésticos y comerciales de media potencia, así como el tremendo descenso del coste de ios paneles fotovoltaiccs.
Uno de io principales problemas que está limitando el desarrollo de los sistemas de climatización solares es la conversión efeiente de la radiación solar. La eficiencia de un panel íofovol aieo depende fundamentalmente de la radiación disponible y de la temperatura de trabajo. El calentamiento de un panel reduce drásticamente su rendimiento. Un incremento de temperá ora reduce la tensión de circuito abierto del panel del orden de 0,46% aC, mientras que la corriente de cortocircuito puede aumentar sobre Q,09% °0. Asi que ambos efectos combinados llevan a que la potencia máxima disponible en el panel s reduce del orden de -0,3 a ~0;.§%/eC,
En l literatura científica y en ias bases de datos de patentes se pueden encontrar diferentes estrategias para reducir la temperatura de los paneles íotovoitaicos. Algunos trabajos hacen pasar una corriente dé aire o agua por la cara posterior del panel a través de canales o conductos empleando bien convección natural o forzada mediante ventiladores o bombas: EP21 ÜS20 o £8-2303458. La temperatura del panel fotovoltaico está claramente condicionada por la capacidad de ventilación del canal. Otros trabajos refrigeran el panel fotovoltaico atomizando agua por la parte superior. ES23S140Q. Otro método de reducción de la temperatura: del panel es inoorporando un disipador de calor en la parte posterior del mismo, EP1075992. Si bien han sido muchos ios trabajos revisados, ninguno de ellos combina la disipación del calor de un equipo d aire acondicionado con la mejora de la eficiencia de un panel fotovoltaico.
El segundo componente clave en una instalación de climafeaoión solar es el propio equipo de refrigeración, De nuevo las temperaturas de trabajo son las variables clave para determinar su funcionamiento. Para una aplicación dada de climatización, donde la temperat ra dé evaporación del ciclo de vapor est definida, la variable que qu&éa por especificar es la temperatura de condensación. Ésta queda determinada esencialmente por el medio al que se disipa el calor, La soluciones comerciales clásicas son sistemas condensados por aire o por agua. La principal diferencia entre la condensación por aire o por agua radica en que condensar con agua lleva a menores
HOJA DE REEMPLAZO (REGLA 26) temperaturas en la condensación, implicando una mayor eficiencia y -menor consumo el equipo, E! efecto que tiene reducir la. temperatura de condensación conduce a la reducción de la potencia consumida por el compresor de un equipo de climatización. La mejora de la eficiencia de os sistemas condensados por agua se relaciona con la 5 reducción e las emisiones de C<¾ a la atmósfera. ta invención aquí descrit trata de mejorar la eficiencia de u panel fofovxjltalco por medio del enfoámíento evaporaüvo, esto combinado co el empleo de un sistema de climatización condesado por agua lleva al diseño de un sistema ele climatización solar eficiente.
Para conseguir est objetivo se propone la chimenea fotovollaica evaperativa para el accionamiento y disipación 40 calor simultánea de un sistema de climatización. Una chimenea solar es un cansí de aire íermo-sifónicc- en el cual se provoca una comenteS de aire ascendente por medio de t flotación térmica, ta. energía solar incrementa la temperatura de la chimenea aumentando la temperatura del aire y disminuyendo su densidad de manera que se provoca una corriente en su interior, tas chimeneas solares se han aplicado en diferentes campos come ta ventilación de edificios, procesos de secado o producció de energía eléctrica. También se han empleado en la refrigeración0 de paneles fotovoftaicos CM103718310, pero no de la forma ue se propone en esta Invención, ya la chimenea fotovoltaica eva oratlva objeto de esta invención además de busca la mejora del panel fotovoitasco. busca la refrigeración de un flujo de agua que proviene de un cicle de frigorífico, 5 .EXPÜCACféN DE LA ÍNVEMCÍÓN
La chimenea fotovoltaica evaporatlva se divide en dos partes principales descritas en la
Figura 1 , Siguiendo el recorrido del aire en su Interior, la primera sección denominada sona evaporatlva {30} tiene una serie de boquillas (1) q e atomizan agua en flujo0 paralelo con el aire que accede al sistema por la sección de entrada |3) y que desciende por el canal formado por la parte posterior de la carcasa (4 y el elemento separador (8),
A medida que el agua cae una pequeña parís se evapora enfriándose el resto. Esta sección trabaja como una torre d refrigeración a pequeña escala, B agua refrigerad se recoge en un depósito (5) situado en la parte inferior de la secció evaperativa y se§ envia mediante un sistema de bombeo {13} al condensador de una máquina de
3
HOJA DE REEMPLAZO (REGLA 26) refrigeración (14) actua io como elemento disipación de calor d Ja misma, ver Figura 2.
El aire que ha estado en contacto con el agu ha incrementado su humedad, que puede incluso haber reducido sis temperatura (dependiendo de las condiciones de operación) empieza a ascender por efecto de la flotación en la denominada zona convectiva (40), Esta segunda zona es básicamente una chimenea solar en la que el calentam ento del aire provoca la flotación del mismo. A su z el aire que asciende por la secció convectiva refrigera e! panel íotovoltaico { ) incrementando su rendimiento saliendo ai exterior por la abertura (9) existente en ta parte superior.
Como se deduce dé la descripción del funcionamiento de la presente Invención el propósito del mismo es doble. Por un lado busca refrigerar el panel foíovoltalce (8) medíante una corriente dé aire en su parte posterior, y por otro lado se emplea co o sistema « disipación de calor de un ciclo de refrigeración.
BREVE DESCRI CIÓN DE LOS DIBUJOS
Para complementar l descripción que se está realizando co objeto de ayudar a una mejor comprensión de las características de la Invención, de acuerdo con un ejemplo prefererrte de realización práctica de la misma, se acompaña como parte integrante de dicha daserípeióm un Juego de dibujos donde con carácter ilustrativo y no limitativo., se ha representado lo siguiente: Figura 1,- Muestra una vista en perspectiva de la chimenea foto-voltaica evaporativa objeto de la invención.
Figura 2.- Muestra un vista esquemática de los diferentes elementos que forman parte d la chimenea fotovoltaica evaporativa y su conexionado co un sistem de aire acondicionado eondensatíc por agua,
REALIZACIÓN PRE ERENTE DE LA t m m
Se describ a continuación u ejemplo d realización preferente haciendo mención a las figuras arriba citadas, sin que ello limite o reduzca el ámbito de protección de la
4
HOJA DE REEMPLAZO (REGLA 26) presente invención.
En la figura 1 se pueden apreciar de forma esquemática los diferentes elementos que componen la chimenea foto voltaica evaporativa o jeto de la invención, el cual S comprende:
- - unos rociadores de fluido (i), que pueden se difusores de aspersión de cono lleno, cono hueco, micro aspersión, por goteo, lámin o similares, ubicados en una tubería de alimentación (2) dispuesta en la parte interior de la sección de0 entrada del aire (3) a la sección evaporativa y que permiten el suministro del fluido atomizado en flu|o paralelo ai aire que entr ái sistema,
- tanto el fluido que se atomiza, como el aire exterior se confinan mediante una carcasa (4) en f orma de cajón acoplado a la parte posterior del panel fotovoltaieo: ~ - una bandeja de recogida 5) situada en el i de inferior del panel fotoveitaico5 (6), para recoger y canalizar el fluido sobrante y a menor temperatura que a la entrada procedente de dicha atomización,
- ~ una tubería de evacuación (7), vinculada por uno de sus extremos a la bandeja de recogida CS}? par la extracción del fluido alojado en dicha bandeja,
- elemento separador (8) de ia sección evaporativa (30), donde tanto el agua como0 el aire desciend n: de ia sección convectiva (40) donde únicamente es el aire el que asciende refrigerando el panel fotovoltaico (8) por su parte traser
- El aire finalmente sale al exterior por la sección de salida {&} ubicad en la parte superior d la sección convectiva. 5 En la figura 2 se pueden apreciar de forma esquemátic los diferentes elemento componentes que fi man parte de la chimenea fcfovoitaic evaporativa y de su conexionado con un sistema de refrigeración objeto de ia invención. válvula de regulación del caudal de fluido (10) ubicada en la tubería de alimentación (2) instalada para controlar el caudal de fluido a enfriar en la chimenea fotovóltaica evaporativa (20),
» válvula de evacuación {11} conectada a la bandeja de recogida (5) situada en el borde inferior del panel fotovoltaico (8). para recoger y canalizar el fluido hacia el condensado (i?) de la máquina de refrigeración (14)
ó ~ filtro (12) sistem de filtración que se encarga de eliminar suciedad o impurezas
S
HOJA DE REEMPLAZO (REGLA 26) que pueden incorporarse en el recorrido del fluido por si interior de la chimenea solar evaporativa (20) y que podrían e perniciosos para el sistema ele bombeo {13} y/o el condensador ( 7) de la máquina frigorífica (14)
- bomba recírculadora 1 (13), la reclrculacion del fluido entre l chimenea fotovoltalca evaporativa (20) y la má ui a frigorífica (14) se realiz mediant una bomba centrifuga con alimentación de la red eléctrica y/o mediante la energía foto voltaica producida.
* Eí po de climatización convencional condensad© por agua (14). El elemento encargado de la climatización e e diseño objeto da ía invención es un equipo convencional de climatización, con la salvedad que t cesión de calor al ambienta debe realizarse a una corriente de agua que es la qué se polvoriza en la chimenea fotovoltalca evaporativa.
- Una part o todo el consumo eléctrico del equipo de climatización (14) provendrá de la producción del panol fotovoííaíco {¾>} mediant el empleo de un compresor de corriente continua o con la inclusión de un inversor de corriente continua a corriente alterna (15) y un compresor de corriente alíame,
~ La máquina de aire acondicionado (14) generará una corriente de agua fría que se recircuiará ai edificio a oíimatízar medíante una bomba circuíadora 2 (16) que enviará el luido fhgorife» sí edificio a clímatízar medíante elementos terminales (18).
Po tanto mediante la presente invención se proporciona un sistema que actúa como disipación de calor de un equipo de climatización qué su vez permite reducir la temperatura del panal fetovoiiaíeo (6) que forma parte de la chimenea fotovaitaica evaporativa (20) mejorando de este modo su rendimiento.
6
HOJA DE REEMPLAZO (REGLA 26)

Claims

. Chimenea fótovoítaioa evaporatlva caracterizada por q e comprende:
- unos rociadores de fluida (1 ) ubicados en un tubería de alimentación (2) dispuesta en la parle interior de la sección de entrada del aire (3) a la sección evaporstiva y que permiten el suministro del fluido atomizado en flujo paralelo al aire que entr al sistema,
una carcasa (4) en forma de cajón acoplado a a parte posterior del panel foiovoüaico que confína tanto el aire, como el fluido atomizado,
- una bandeja de recogida (5) situada en él borde inferio del panel fotovoltaico (8), que recoge y canaliza el fluido sobrante y a menor temperatura que a la entrada procedente d dicha atomi ció ,
- una tunerí de evacuación {?}. vinculada por uno de sus extremos a la bandeja de recogida (5). que extrae el fluido alojado en dicha bandeja,
~ un elemento separador (8) de la sección evaporativa (30), de la sección convectiva (40),
~ una abertura d salid del aire al exterior (0) ubicada en la parle superior de la sección convectiva (40 .
2, Chimenea fotovoltaica evaporatsva (20) d acuerdo con la reivindicación 1, Garactérkasio por que comprende adicionaiment una válvula de regulación del caudal de fluido (10) ubicada en la tubería de alimentación (2) que controla el caudal de fluido a enfriar en la chimenea fotovoltaica evaporatíva.
3. Chimenea fotovoltaica evaporatíva (20) de acuerdo co la reivindicación i y 2: caracterizado por que comprende adic onalmente una válvula de evacuaci n {11} conectada a la bandeja de recogida (5) situada en él borde inferior del panel fotovoltaico (8), q recoge canaliza el fluido hacia el condensador de la máquina de refrigeración,
4, Chimenea fotovoltaic evaporati a (20) de acuerdo con la reivindicación 1 a 3, caracterizado por que comprende adicionaimenfe un sistema de filtración (12) que elimina las impurezas que pueden incorporarse en ©I recorrido del fluido por el inferior de la chimenea solar evaperafíva (20). y que podrían ser perniciosos para el sistema de boraóeo (13) yfa el condensador de la máquina frigorífica (14).
7
HOJA DE REEMPLAZO (REGLA 26) δ, Chimenea fotovoltaiea evaporativa {20} ele acuerdo con la reivindicación 1 a 4, caracterizado por que comprende adicionalmente una bomba reclrouladora 1 {13}, que recircula el fluido entre le chimenea fotovolíaica evaporaíiva {20% ia máquina frigorífica (14}; esta emba puede alimentarse tanto de la red electrice como por la energía producida por el panel fotcvoltaico (ó),
8. Chimenea fetovoitaica evaporaíiva (20) de acuerdo con la reivindicación 1 a 5, caracterizado por que comprende adieionaimenía un inversor de comente continua a corriente alterna (15} ue suministra total o parcialment el consumo eléctrico de un equipo de climatización convencional condensad© por agua (14) y o de las bombas recircoladoras (13) y/o (18).
?. C imenea fotovoffaioa evaporaíiva (2Ü de acuerdo con la reivindicación 1 a §. caracterizado por qué los rociadores de fluido (1) son difusores de aspersión de cono lleno, cono hueco, micro aspersión, por goteo, lámina, o similares.
H Procedimiento de refrigeración para paneles solares fotovoltaicos que forman parte de la chimenea evaporativa caracteriEado por que comprende las siguientes etapas:
- salida de fluido por unos rociadores de fluido (1), ubicados en una tubería de alimentación (2) dispuesta en la parte interior de la sección de entrada del aire (3) a ia sección evaporativa y qu permiten ei suministro del fluido atomizado en flujo paralelo al aif® que entra al sistem :
~ canalización del aire humectado en ia parte inferior de la zona evaporativa
(30) per la cara posterior del panel fotovoliaiec (6) para su refrigeración atravesando ia zona convectiva (40),
~ recolección y canalización del fluido enfriado en une bandeja de recogida (5)
Situada en al borde inferior del panel fotovoltaico (8).. procedente de dicha atomización,
- extracción de! fluido recogido mediante una tubería de evacuación (?), vinculada por uno de sus externo a ia bandeja de recogida (5}s
- eliminación de Impurezas del fluido mediante sistema de filtración (12),
- reciroulacidn del fluido mediante bomba (1.3) entre la chimenea fotovol aica evaporativa (S) y la maquina frigorífica (14) cerrando el circuito accediendo el fluido a la tubería de alimentación (2),
8
HOJA DE REEMPLAZO (REGLA 26)
PCT/ES2016/070740 2015-10-20 2016-10-19 Chimenea fotovoltaica evaporativa para el accionamiento y disipación de calor simultánea de un sistema de climatización WO2017068220A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201500757A ES2609827B2 (es) 2015-10-20 2015-10-20 Chimenea fotovoltaica evaporativa para el accionamiento y disipación de calor simultánea de un sistema de climatización
ES201500757 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017068220A1 true WO2017068220A1 (es) 2017-04-27

Family

ID=58546315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070740 WO2017068220A1 (es) 2015-10-20 2016-10-19 Chimenea fotovoltaica evaporativa para el accionamiento y disipación de calor simultánea de un sistema de climatización

Country Status (2)

Country Link
ES (1) ES2609827B2 (es)
WO (1) WO2017068220A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093808A2 (en) * 2008-02-20 2009-08-26 Alfonso Di Donato Multiple cooling systems of photovoltaic panels
CN102867876A (zh) * 2012-10-15 2013-01-09 上海电力学院 一种通用于聚光高温热点的自然循环式相变散热装置
JP2013187403A (ja) * 2012-03-08 2013-09-19 Takasago Thermal Eng Co Ltd 太陽電池パネルの冷却装置
KR20140011452A (ko) * 2012-07-17 2014-01-28 박찬희 스폰지와 물의 증발열을 이용하여 태양전지 열을 감소시키는 장치
GB2504802A (en) * 2012-06-22 2014-02-12 Multinat Educational Ct Of Birmingham Cooling Photovoltaic Systems Using Capillary Fibres
CN203968058U (zh) * 2014-07-18 2014-11-26 钱杨生 一种水冷却太阳能板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093808A2 (en) * 2008-02-20 2009-08-26 Alfonso Di Donato Multiple cooling systems of photovoltaic panels
JP2013187403A (ja) * 2012-03-08 2013-09-19 Takasago Thermal Eng Co Ltd 太陽電池パネルの冷却装置
GB2504802A (en) * 2012-06-22 2014-02-12 Multinat Educational Ct Of Birmingham Cooling Photovoltaic Systems Using Capillary Fibres
KR20140011452A (ko) * 2012-07-17 2014-01-28 박찬희 스폰지와 물의 증발열을 이용하여 태양전지 열을 감소시키는 장치
CN102867876A (zh) * 2012-10-15 2013-01-09 上海电力学院 一种通用于聚光高温热点的自然循环式相变散热装置
CN203968058U (zh) * 2014-07-18 2014-11-26 钱杨生 一种水冷却太阳能板

Also Published As

Publication number Publication date
ES2609827A1 (es) 2017-04-24
ES2609827B2 (es) 2017-09-11

Similar Documents

Publication Publication Date Title
JP6091861B2 (ja) スポットエアコン
KR102055644B1 (ko) 자동 항온 제습 장치
KR102166764B1 (ko) 컨트롤박스 및 이를 포함하는 공기조화기의 실외기
JP6491119B2 (ja) 一体型空調装置
TWI664377B (zh) Dehumidifier
CN104487774A (zh) 空气调节装置及空气调节装置的运转方法
US11287166B2 (en) Evaporative cooling system for an HVAC system
US11530827B2 (en) Heat source unit and air conditioner having the heat source unit
KR100797893B1 (ko) 수냉식응축기를 이용한 일체식 공기조화기
KR20150069873A (ko) 열전소자를 이용한 제습기
KR101265114B1 (ko) 공기열원 열펌프 제상용 루프히트파이프
US11131466B2 (en) Heat source unit and air conditioner having the heat source unit
JP2012102470A (ja) 建物の空調システム
CN207990944U (zh) 一种移动除湿烘干冷暖空调机
WO2017068220A1 (es) Chimenea fotovoltaica evaporativa para el accionamiento y disipación de calor simultánea de un sistema de climatización
US6935132B1 (en) Air conditioning apparatus
CN214949408U (zh) 吊顶空调器
KR20150121829A (ko) 백연 발생 방지 냉각탑 시스템 및 이를 이용한 백연 발생 방지 방법
JP2014105988A (ja) ヒートパイプを用いた住宅の空調装置
KR20130022445A (ko) 냉풍기
JP5314118B2 (ja) ワンスパン用床設置空調機
EP3361168B1 (en) Heat source unit and air conditioner having the heat source unit
US11761674B2 (en) Condensate pan for a heat exchanger
CN220541247U (zh) 除湿机
US11255572B2 (en) Drain pan with overflow features

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856975

Country of ref document: EP

Kind code of ref document: A1