WO2017063348A1 - 小型烟气助燃节能熔铝炉 - Google Patents

小型烟气助燃节能熔铝炉 Download PDF

Info

Publication number
WO2017063348A1
WO2017063348A1 PCT/CN2016/078916 CN2016078916W WO2017063348A1 WO 2017063348 A1 WO2017063348 A1 WO 2017063348A1 CN 2016078916 W CN2016078916 W CN 2016078916W WO 2017063348 A1 WO2017063348 A1 WO 2017063348A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flue gas
combustion
heat exchange
inlet
Prior art date
Application number
PCT/CN2016/078916
Other languages
English (en)
French (fr)
Inventor
刘效洲
苏晓键
刘文星
栾殿利
刘亚龙
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2017063348A1 publication Critical patent/WO2017063348A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases

Definitions

  • the present invention relates to the field of aluminum melting furnaces, and in particular to a small flue gas combustion-supporting energy-saving melting aluminum furnace with excellent energy saving and emission reducing effects.
  • Aluminum and aluminum alloy melting furnace (referred to as aluminum melting furnace) is the most commonly used equipment in the aluminum processing and casting industry. Its melting process is also the largest production link of energy and material consumption in the aluminum processing industry.
  • the structural design of the aluminum melting furnace is directly related to Energy efficiency and environmental performance. Large-scale aluminum melting furnaces are generally designed with relatively complete environmentally-friendly and energy-saving devices. Small-scale aluminum melting furnaces are not designed with environmental protection and energy-saving devices due to factors such as manufacturing cost and waste heat utilization efficiency. Some of them are designed with small environmental protection and energy-saving devices.
  • the aluminum melting furnace also has the disadvantages of low efficiency and high maintenance cost, which causes the high energy consumption and high pollution of the small aluminum melting furnace.
  • Chinese Patent Application No. CN201410133902.2 discloses a simple aluminum melting furnace comprising a furnace body and a base, the furnace body being provided with a fixing column, the base being disposed under the furnace body, One end of the support rod and the upper end of the fixed column are cooperatively rotated, and the other end is fixed with the connecting plate.
  • the furnace cover is welded to the lower end of the connecting plate, and the adjusting handle is welded on the supporting rod.
  • the lower part of the furnace body is provided with a discharging pipe, and the discharging pipe is disposed.
  • a regulating valve is provided on the upper side.
  • Chinese Patent Application No. CN200410041667.2 discloses a circular environmentally-friendly and energy-saving aluminum melting furnace comprising a furnace body, a burner assembly, a heat exchange device, a dust removing device, and a connecting pipe and a valve.
  • the furnace body comprises a cylindrical furnace wall, a baking furnace top, a furnace bottom, an aluminum solid feeding port, an aluminum liquid outlet and a high temperature flue gas outlet, the burner assembly is connected to the furnace wall, and the aluminum liquid outlet is arranged on the lower side of the furnace wall.
  • the high-temperature flue gas outlet is disposed on the side wall of the aluminum solid feeding port, and communicates with the heat exchange device, and the heat exchange device is connected with the dust removing device, and the aluminum solid material feeding port is disposed in the middle of the baking furnace top 5.
  • this application designs a heat exchange device to utilize the waste heat of the flue gas
  • the multi-tube horizontal tubular heat exchanger device used in the application has a complicated structure, high manufacturing cost and is not conducive to equipment maintenance.
  • the waste heat of the flue gas is not utilized in the above patent application, and the combustion-supporting gas is also not subjected to a low-oxygen treatment to reduce the content of nitrogen oxides in the exhaust gas.
  • the object of the present invention is to overcome the shortcomings of the above-mentioned existing small-sized aluminum melting furnace, and to provide a simple structure, easy to manufacture, use and maintain, and the utilization efficiency of flue gas waste heat is high, and the exhaust gas nitrogen is discharged. Small flue gas combustion-supporting energy-saving aluminum melting furnace with low oxide content.
  • a small flue gas combustion-supporting energy-saving aluminum melting furnace comprising a furnace body, the furnace body is provided with a flue gas discharge pipe and a burner, and the flue gas discharge pipe is arranged a heat exchange device, wherein the heat exchange device is provided with an air inlet and an air outlet, wherein the air outlet is connected to a first inlet in the mixer through an air delivery tube, and the second inlet of the mixer is connected to the flue gas introduction tube One end is connected, and the other end of the flue gas introduction pipe is connected to a flue gas discharge pipe or a furnace; the mixer is connected to the burner for providing combustion air.
  • the heat exchange device includes a tank, a plurality of air introduction tubes and a heat exchange sleeve installed in the tank, the air introduction tube is disposed in the heat exchange sleeve, and an outer side wall of the air introduction tube A heat exchange interlayer is formed between the inner sidewalls of the heat exchange sleeve, and the air introduction tube is provided with a plurality of through holes on the side wall of the inner portion of the heat exchange sleeve.
  • the tank is provided with a flue gas inlet and a flue gas outlet for introducing hot flue gas, and the heat exchange sleeve is placed in the flue gas passage in the tank.
  • An air distribution chamber is disposed on the box, and the air distribution chamber is connected to one end of the air introduction tube to distribute air into each air introduction tube.
  • the mixer comprising a mixing chamber, a combustion air inlet and a flue gas inlet, the combustion air inlet extends into the mixing chamber, the flue gas inlet is connected to the mixing chamber; and is fixed in the mixing chamber There is a uniform air block, the mixing chamber is divided into a lead-in area and a discharge area, and a plurality of air outlet holes are arranged on the uniform air block, and the high-temperature flue gas and the preheated air are mixed in the lead-in area of the mixing chamber and output to the air outlet through the air outlet hole. Discharged in the discharge zone, mixing more evenly.
  • the mixer includes a mixing chamber, a combustion air inlet, and a flue gas inlet, wherein the uniform air block is fixed in the mixing chamber, and the air block is provided with air for connecting to the combustion air inlet Export and evenly distributed An air outlet hole on the air block; the combustion air inlet extends into the mixing chamber and is connected to the air outlet, and the flue gas inlet is connected to the mixing chamber; the air block divides the mixing chamber into the lead-in area and In the discharge zone, the high-temperature flue gas is mixed in the introduction zone of the mixing chamber, and then outputted to the discharge zone through the outlet hole to be mixed with the preheated air, and then input into the burner through the burner input port for combustion.
  • the narrowing nozzle is arranged in the input port of the burner to increase the pressure of the combustion air, and the combustion gas is uniformly mixed through the porous annular baffle and then enters the furnace of the aluminum melting furnace through the narrowed nozzle.
  • the porous annular baffle allows for a more even mixing of the gas and combustion-supporting gas and a higher combustion efficiency.
  • the flue gas inlet is perpendicular to the combustion air inlet, which makes the air more uniform.
  • the uniform air block may be an annular baffle having 6 to 15 air outlet holes and a hole diameter of 80 to 100 mm.
  • the structure can be that the gas and the combustion-supporting gas are more uniformly mixed, and the combustion efficiency is higher.
  • the hot air accounts for 12-45% of the total amount of mixed combustion air composed of the flue gas and the hot air.
  • the beneficial effects of the present invention are:
  • the high-temperature and low-oxygen combustion-supporting gas fully utilizes the waste heat of the flue gas, and does not require an additional heat source to heat it, and has a specific good energy-saving effect;
  • the high-temperature and low-oxygen characteristics of the combustion-supporting gas can effectively reduce the content of nitrogen oxides in the flue gas after combustion in the process of combustion, and the environmental protection performance is better.
  • the structure is simple, and the waste heat of the flue gas can be utilized efficiently, which has good energy saving. Environmental protection effect.
  • FIG. 1 is a schematic view showing the overall structure of a small flue gas combustion-supporting energy-saving aluminum melting furnace of the present invention
  • FIG. 2 is a schematic view showing a connection structure between a mixer and a burner in a small flue gas combustion-supporting energy-saving aluminum melting furnace of the present invention
  • FIG. 3 is a schematic structural view of a mixer in a small flue gas combustion-supporting energy-saving aluminum melting furnace of the present invention
  • FIG. 4 is a schematic structural view of a heat exchange device in a small flue gas combustion-supporting energy-saving aluminum melting furnace according to the present invention
  • FIG. 5 is a schematic structural view of a uniform air block in a small flue gas combustion-supporting energy-saving aluminum melting furnace of the present invention.
  • the small flue gas combustion-supporting energy-saving aluminum melting furnace as shown in FIG. 1 , comprises a furnace body 1 on which a flue gas discharge pipe and a burner 2 are mounted, and the flue gas discharge pipe 27 is provided with heat exchange Device 3, the heat exchange device 3 is provided with an air inlet 7 and an air outlet 28, the air outlet 28 is connected to a first inlet in the mixer 4 through an air delivery pipe, and the second inlet in the mixer 4 is One end of the flue gas introduction pipe 5 is connected, and the flue gas is introduced The other end of the tube 5 is connected to a flue gas discharge pipe 27 or a furnace; the mixer 4 is connected to the burner 2 for supplying combustion air.
  • the fuel is burned in the furnace body 1, and the aluminum material in the furnace body 1 is heated to a molten state, and the flue gas is discharged from the flue gas discharge pipe 27, and most of the high-temperature flue gas is discharged through the flue gas.
  • the tube 27 enters the heat exchange device 3 and is discharged by the flue gas outlet 9, and the normal temperature air enters the heat exchange device 3 through the air inlet 7, and exchanges heat with the high temperature flue gas in the heat exchange device 3, using the high temperature flue gas.
  • the combustion air at normal temperature is preheated to a temperature of 260 ° C, and the preheated air enters the mixer 4 through the air outlet 28 through the pipe.
  • the high-temperature and low-oxygen flue gas of the partial furnace body 1 enters the mixer 4 through the flue gas introduction pipe 5 and is thoroughly mixed with the preheated air, and then sent to the burner 2 for combustion and combustion.
  • a first valve 10 is arranged between the mixer 4 and the burner 2 for regulating the amount of air entering the burner 2.
  • a second valve 8 is provided on the air delivery tube for regulating the amount of hot air entering the mixer 4.
  • a third valve 6 is provided on the flue gas introduction pipe for regulating the amount of flue gas entering the mixer 4.
  • the hot air accounts for 12-45% of the total amount of mixed combustion air composed of flue gas and hot air.
  • the hot air accounts for 21% of the total amount of mixed combustion air composed of the flue gas and the hot air, so that the oxygen deficiency and high temperature combustion can be achieved, the nitrogen oxide emission is minimized, and the combustion efficiency is high, and the pollution is discharged. Low.
  • the heat exchange device 3 includes a casing 31, a plurality of air introduction pipes 21 and a heat exchange sleeve 22 installed in the casing 31, and the air introduction pipe 21 is placed as shown in FIG.
  • a heat exchange interlayer is formed between the outer side wall of the air introduction tube 21 and the inner side wall of the heat exchange sleeve 22 , and the air introduction tube 21 is on the side of the inner portion of the heat exchange sleeve 22.
  • a plurality of through holes 211 are provided in the wall. The air can form eddy currents in the heat exchange interlayer, which greatly improves the heat exchange efficiency, and the structure is simple and easy to maintain.
  • the tank 31 is provided with a flue gas inlet 25 and a flue gas outlet 26 for introducing hot flue gas, and the heat exchange sleeve 22 is placed in the flue gas passage in the tank 31.
  • the casing 31 is provided with an air distribution chamber 23, which is connected to one end of the air introduction pipe 21, and distributes air into the respective air introduction pipes 21.
  • An air collection and output chamber 24 is disposed at a lower end of the air distribution chamber 23, and the air collection and output chamber 24 is in communication with an outlet connection of the heat exchange sleeve 22, and the air collection and output chamber 24 is heated in a heat exchange interlayer The air then outputs.
  • the mixer as shown in FIG. 3 and FIG. 5, includes a mixing chamber 13, a combustion air inlet 15 and a flue gas inlet port 16, and the combustion air inlet 15 extends into the mixing chamber 13, the flue gas
  • the inlet 16 is connected to the mixing chamber 13; a uniform air block 18 is fixed in the mixing chamber 13, and the mixing chamber 13 is divided into a lead-in area 17 and a discharge area 1 9.
  • a plurality of air outlets 12 are disposed on the uniform air block 18. The high temperature flue gas and the preheated air are mixed in the lead-in area 17 of the mixing chamber, and then outputted through the air outlet 12 to the discharge area 19 for more uniform mixing.
  • the mixer as shown in FIG. 2, includes a mixing chamber 13, a combustion air inlet 15 and a flue gas inlet port 16, and the uniform air block 18 is fixed in the mixing chamber 13, the uniform air block An air outlet for connecting to the combustion air inlet and an air outlet 12 uniformly disposed on the uniform air block are disposed on the first air inlet 15; the combustion air inlet 15 extends into the mixing chamber 13 and is connected to the air outlet, and the smoke inlet 16
  • the mixing chamber 13 is connected to the mixing chamber 13; the uniform air block 18 divides the mixing chamber into a lead-in area 17 and a discharge area 19, and the high-temperature flue gas is mixed in the lead-in area 17 of the mixing chamber and then output to the discharge area 19 through the air outlet 12 and The preheated air is mixed and then fed into the burner 2 through the burner input port 13 for combustion.
  • a narrowing nozzle is arranged in the burner inlet port 14 to increase the pressure of the combustion air.
  • the combustion-supporting gas passes through the porous annular baffle 18 and is uniformly mixed and then burned into the furnace body 1 of the aluminum melting furnace through the narrowed nozzle.
  • the porous annular baffle allows for a more even mixing of the gas and combustion-supporting gas and a higher combustion efficiency.
  • the invention is specifically designed for the design and transformation of a molten aluminum furnace of less than 5 tons, and the high-temperature flue gas discharged from the molten aluminum furnace up to 1200 ° C - 1500 ° C enters the tank of the heat exchange device 3 through the pipeline, at normal temperature
  • the air is heated through the through hole of the air introduction pipe 21 into the interlayer between the air introduction pipe 21 and the heat exchange sleeve 22, and the air is heated on the wall surface of the heat exchange sleeve 22 and the high temperature flue gas in the tank.
  • Heat exchange using high temperature flue gas to preheat the normal temperature combustion air to 260 ° C, the preheated air enters the mixer 4 through the pipeline and directly mixes with the high temperature flue gas to form a mixed combustion air input at a temperature of 600-900 ° C
  • the burner is then mixed with high temperature anoxic combustion.

Abstract

一种小型烟气助燃节能熔铝炉,包括炉体(1),炉体(1)上安装烟气排放管(27)和燃烧器(2),烟气排放管(27)上设置换热装置(3),换热装置(3)上设置空气入口(7)和空气出口(28),空气出口(28)通过空气输送管与混合器(4)中的第一入口连接,混合器(4)中的第二入口与烟气导入管(5)的一端连接,烟气导入管(5)的另一端与烟气排放管(27)或者炉膛连接;混合器(4)与燃烧器(2)连接,高温低氧的助燃气体充分利用了烟气的余热,再助燃的过程中能有效降低燃烧后烟气中氮氧化物的含量。

Description

说明书 发明名称:小型烟气助燃节能熔铝炉
[0001] 【技术领域】
[0002] 本发明涉及熔铝炉领域, 尤其是一种具有优良节能减排效果的小型烟气助燃节 能熔铝炉。
[0003] 【背景技术】
[0004] 铝及铝合金熔炼炉 (简称熔铝炉) 是铝加工熔铸行业最常用的设备, 其熔炼过 程也是铝加工行业能源及材料消耗最大的生产环节, 熔铝炉的结构设计直接关 系到能源的利用效率和环保性能。 大型的熔铝炉一般都设计了较完备的环保节 能装置, 而小型的熔铝炉由于受制于制造成本、 余热利用效率等因素大部分都 没有设计环保节能装置, 部分设计了环保节能装置的小型熔铝炉也存在装置效 率低、 维护成本高的弊端, 造成了小型熔铝炉普遍的高能耗和高污染的问题。
[0005] 申请号为 CN201410133902.2的中国发明专利申请公幵了一种简易熔铝炉, 其包 括炉体和底座, 所述炉体上设置有固定柱, 所述底座设置在炉体下面, 支撑杆 一端和固定柱上端间隙配合转动, 另一端和连接板固定, 炉盖焊接在连接板下 端, 调节把焊接在支撑杆上, 所述炉体下部设置有出料管, 所述出料管上设置 有调节阀。 虽然该申请简化了幵盖和关盖的过程, 可以一定程度的减少熔铝炉 内的热量散失, 但是节能减排效果其实是微乎其微, 并不具有太高的实际意义
[0006] 申请号为 CN200410041667.2的中国发明专利申请公幵了一种圆形环保节能熔铝 炉, 其包括炉体、 燃烧器组件、 换热装置、 除尘装置以及连接管路、 阀, 所述 的炉体包括圆柱型炉壁、 烘型炉顶、 炉底、 铝固体加料口、 铝液出口和高温烟 气出口, 燃烧器组件连接于炉壁上, 铝液出口设置于炉壁下侧, 高温烟气出口 设置于铝固体加料口侧壁上, 与换热装置相连通, 换热装置与除尘装置相连通 , 其特点是铝固体加料口设置于烘型炉顶 5中间。 此申请虽然设计了换热装置对 烟气的余热进行利用, 但其使用的多管程卧式列管式换热装置结构较复杂, 制 造成本高且不利于设备的维护。 [0007] 另外, 上述专利申请中未对烟气余热进行利用, 其助燃气体也未经过低氧处理 以降低排放废气中氮氧化物的含量。
[0008] 【发明内容】
[0009] 本发明的目的在于克服上述现有小型熔铝炉存在的不足, 提出一种结构较简单 , 易于制造、 使用和维护, 同吋对烟气余热的利用效率高, 排放的废气的氮氧 化物含量低的小型烟气助燃节能熔铝炉。
[0010] 为了实现上述目的, 本发明是这样实现的: 小型烟气助燃节能熔铝炉, 包括炉 体, 所述炉体上安装烟气排放管和燃烧器, 所述烟气排放管上设置换热装置, 所述换热装置上设置空气入口和空气出口, 所述空气出口通过空气输送管与混 合器中的第一入口连接, 所述混合器中的第二入口与烟气导入管的一端连接, 所述烟气导入管的另一端与烟气排放管或者炉膛连接; 所述混合器与燃烧器连 接, 用于提供助燃空气。
[0011] 所述换热装置包括箱体, 安装在所述箱体内的若干空气导入管和热交换套管, 所述空气导入管置于所述换热套管内, 空气导入管外侧壁与所述换热套管内侧 壁之间形成换热夹层, 所述空气导入管在所述换热套管内部分的侧壁上设置若 干通孔。
[0012] 所述箱体设置烟气入口和烟气出口, 用于导入热烟气, 所述换热套管置于所述 箱体内的烟气通道中。 所述箱体上设置有空气分布腔, 所述空气分布腔与空气 导入管的一端连接, 将空气分布到各个空气导入管内。 在所述空气分布腔下端 设置空气收集输出腔, 所述空气收集输出腔与所述换热套管的出口连接相通, 所述空气收集输出腔将在换热夹层内被加热的空气, 然后输出。
[0013] 所述混合器, , 包括混合腔、 助燃空气入口和烟气导入口, 所述助燃空气入口 伸入混合腔内, 所述烟气导入口与混合腔连接相通; 在混合腔内固定有均风块 , 将所述混合腔分为导入区和排出区, 在所述均风块上设置若干出气孔, 高温 烟气和预热空气在混合腔的导入区混合后通过出气孔输出到排出区中排出, 混 合更为均匀。
[0014] 所述混合器, 所包括混合腔、 助燃空气入口和烟气导入口, 在混合腔内固定有 所述均风块, 所述均风块上设置用于与助燃空气入口连接的空气出口和均布在 均风块上的出气孔; 所述助燃空气入口伸入混合腔内与空气出口连接, 所述烟 气导入口与混合腔连接相通; 所述均风块将所述混合腔分为导入区和排出区, 高温烟气在混合腔的导入区混合后通过出气孔输出到排出区与预热空气混合, 然后通过燃烧器输入口输入燃烧器内进行燃烧。
[0015] 所述燃烧器输入口内设置收窄喷嘴, 提高助燃空气压强, 助燃气体通过多孔的 环形挡板后混合均匀后通过收窄的喷嘴进入熔铝炉的炉体内燃烧。 多孔的环形 挡板能使燃气和助燃气体混合得更加均匀, 燃烧效率更高。
[0016] 所述烟气导入口垂直于所述助燃空气入口, 这样可以使空气更加均匀。
[0017] 所述均风块可以为环形隔板, 其上的出气孔为 6~15个, 孔径为 80~100mm。 该 结构能是燃气和助燃气体混合得更加均匀, 燃烧的效率更高。
[0018] 热空气占烟气与热空气组成的混合助燃空气总量的 12-45%。
[0019] 与现有技术相比, 本发明的有益效果是: 高温低氧的助燃气体充分利用了烟气 的余热, 不需要额外的热源对其进行加热, 具体良好的节能效果; 同吋由于助 燃气体高温低氧的特性, 在助燃的过程中能有效降低燃烧后烟气中氮氧化物的 含量, 环保性能更加优良; 另外结构简单, 能对烟气余热的进行高效利用, 具 有良好的节能环保效果。
[0020] 【附图说明】
[0021] 图 1为本发明小型烟气助燃节能熔铝炉的整体结构示意图;
[0022] 图 2为本发明小型烟气助燃节能熔铝炉中的混合器与燃烧器连接结构示意图;
[0023] 图 3为本发明小型烟气助燃节能熔铝炉中的混合器的结构示意图;
[0024] 图 4为本发明小型烟气助燃节能熔铝炉中的换热装置的结构示意图;
[0025] 图 5为本发明小型烟气助燃节能熔铝炉中的均风块的结构示意图。
[0026] 【具体实施方式】
[0027] 以下结合附图和具体实施例对本发明进行详细的描述说明。
[0028] 小型烟气助燃节能熔铝炉, 如图 1所示, 包括炉体 1, 所述炉体 1上安装烟气排 放管和燃烧器 2, 所述烟气排放管 27上设置换热装置 3, 所述换热装置 3上设置空 气入口 7和空气出口 28, 所述空气出口 28通过空气输送管与混合器 4中的第一入 口连接, 所述混合器 4中的第二入口与烟气导入管 5的一端连接, 所述烟气导入 管 5的另一端与烟气排放管 27或者炉膛连接; 所述混合器 4与燃烧器 2连接, 用于 提供助燃空气。 熔铝炉工作的吋候, 燃料在炉体 1内燃烧, 并将炉体 1内的铝材 加热到熔融状态, 烟气从烟气排放管 27排出, 其中大部分高温烟气通过烟气排 放管 27进入换热装置 3并由烟气出口 9排出, 常温的的空气则通过空气入口 7进入 换热装置 3, 在换热装置 3内与高温烟气进行热交换, 利用高温的烟气来预热常 温的助燃空气, 使其温度达到 260°C, 经预热的空气通过空气出口 28经管道进入 混合器 4。 部分炉体 1的高温低氧的烟气通过烟气导入管 5进入混合器 4与经预热 的空气充分混合后送至燃烧器 2中参与助燃及燃烧。 其中, 所述混合器 4与燃烧 器 2之间设置第一阀门 10, 用于调节进入燃烧器 2内的空气含量。 所述空气输送 管上设置第二阀门 8, 用于调节进入混合器 4中热空气的量。 所述烟气导入管上 设置第三阀门 6, 用于调节进入混合器 4中烟气的量。 通过调节第二阀门 8和第三 阀门 6, 可以调节进入混合器中热空气及烟气的比例。 优选的, 热空气占烟气与 热空气组成的混合助燃空气总量的 12-45%。 优选的, 所述热空气占烟气与热空 气组成的混合助燃空气总量的 21%, 这样可以做到缺氧高温燃烧, 最大程度上减 少氮氧化物的排放, 且燃烧效率高, 排放污染物低。
[0029] 所述换热装置 3如图 4所示, 包括箱体 31, 安装在所述箱体 31内的若干空气导入 管 21和热交换套管 22, 所述空气导入管 21置于所述换热套管 22内, 空气导入管 2 1外侧壁与所述换热套管 22内侧壁之间形成换热夹层, 所述空气导入管 21在所述 换热套管 22内部分的侧壁上设置若干通孔 211。 空气在换热夹层内可以形成涡流 , 大大提高了换热效率, 其结构简单易于维护。 所述箱体 31设置烟气入口 25和 烟气出口 26, 用于导入热烟气, 所述换热套管 22置于所述箱体 31内的烟气通道 中。 所述箱体 31上设置有空气分布腔 23, 所述空气分布腔 23与空气导入管 21的 一端连接, 将空气分布到各个空气导入管 21内。 在所述空气分布腔 23下端设置 空气收集输出腔 24, 所述空气收集输出腔 24与所述换热套管 22的出口连接相通 , 所述空气收集输出腔 24将在换热夹层内被加热的空气, 然后输出。
[0030] 所述混合器, 如图 3和图 5所示, 包括混合腔 13、 助燃空气入口 15和烟气导入口 16, 所述助燃空气入口 15伸入混合腔 13内, 所述烟气导入口 16与混合腔 13连接 相通; 在混合腔 13内固定有均风块 18, 将所述混合腔 13分为导入区 17和排出区 1 9, 在所述均风块 18上设置若干出气孔 12, 高温烟气和预热空气在混合腔的导入 区 17混合后通过出气孔 12输出到排出区 19中排出, 混合更为均匀。
[0031] 所述混合器, 如图 2所示, 所包括混合腔 13、 助燃空气入口 15和烟气导入口 16 , 在混合腔 13内固定有所述均风块 18, 所述均风块 18上设置用于与助燃空气入 口连接的空气出口和均布在均风块上的出气孔 12; 所述助燃空气入口 15伸入混 合腔 13内与空气出口连接, 所述烟气导入口 16与混合腔 13连接相通; 所述均风 块 18将所述混合腔分为导入区 17和排出区 19, 高温烟气在混合腔的导入区 17混 合后通过出气孔 12输出到排出区 19与预热空气混合, 然后通过燃烧器输入口 13 输入燃烧器 2内进行燃烧。 所述燃烧器输入口 14内设置收窄喷嘴, 提高助燃空气 压强, 助燃气体通过多孔的环形挡板 18后混合均匀后通过收窄的喷嘴进入熔铝 炉的炉体 1内燃烧。 多孔的环形挡板能使燃气和助燃气体混合得更加均匀, 燃烧 效率更高。
[0032] 本发明专门针对的是 5吨以下的熔铝炉进行设计改造, 熔铝炉排出的高达 1200 °C-1500°C的高温烟气通过管道进入换热装置 3的箱体, 常温的空气则通过空气导 入管 21的通孔进入空气导入管 21与所述换热套管 22之间的夹层被加热, 空气在 所述换热套管 22的壁面与箱体中的高温烟气进行热交换, 利用高温的烟气来预 热常温的助燃空气到 260°C, 经预热的空气通过管道进入混合器 4与高温烟气直接 混合, 形成温度为 600-900°C混合助燃空气输入燃烧器与然后混合进行高温缺氧 燃烧。 具体良好的节能效果; 同吋由于助燃气体高温低氧的特性, 在助燃的过 程中能有效降低燃烧后烟气中氮氧化物的含量, 环保性能更加优良; 另外结构 简单, 能对烟气余热的进行高效利用, 具有良好的节能环保效果。
[0033] 以上详细描述了本发明的较佳具体实施例, 应当理解, 本领域的普通技术无需 创造性劳动就可以根据本发明的构思做出诸多修改和变化。 因此, 凡本技术领 域中技术人员依本发明构思在现有技术基础上通过逻辑分析、 推理或者根据有 限的实验可以得到的技术方案, 均应该在由本权利要求书所确定的保护范围之 中。 技术问题
问题的解决方案 发明的有益效果

Claims

权利要求书
[权利要求 1] 小型烟气助燃节能熔铝炉, 包括炉体, 其特征在于, 所述炉体上安装 烟气排放管和燃烧器, 所述烟气排放管上设置换热装置, 所述换热装 置上设置空气入口和空气出口, 所述空气出口通过空气输送管与混合 器中的第一入口连接, 所述混合器中的第二入口与烟气导入管的一端 连接, 所述烟气导入管的另一端与烟气排放管或者炉膛连接; 所述混 合器与燃烧器连接。
[权利要求 2] 按照权利要求 1所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述 换热装置包括箱体, 安装在所述箱体内的若干空气导入管和热交换套 管, 所述空气导入管置于所述换热套管内, 空气导入管外侧壁与所述 换热套管内侧壁之间形成换热夹层, 所述空气导入管在所述换热套管 内部分的侧壁上设置若干通孔。
[权利要求 3] 按照权利要求 2所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述 箱体设置烟气入口和烟气出口, 所述换热套管置于所述箱体内的烟气 通道中; 所述箱体上设置有空气分布腔, 所述空气分布腔与空气导入 管的一端连接; 在所述空气分布腔下端设置空气收集输出腔, 所述空 气收集输出腔与所述换热套管的出口连接相通。
[权利要求 4] 按照权利要求 1所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述 混合器, 包括混合腔、 助燃空气入口和烟气导入口, 所述助燃空气入 口伸入混合腔内, 所述烟气导入口与混合腔连接相通; 在混合腔内固 定有均风块, 将所述混合腔分为导入区和排出区, 在所述均风块上设 置若干出气孔, 高温烟气和预热空气在混合腔的导入区混合后通过出 气孔输出到排出区中排出。
[权利要求 5] 按照权利要求 1所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述 混合器, 所包括混合腔、 助燃空气入口和烟气导入口, 在混合腔内固 定有所述均风块, 所述均风块上设置用于与助燃空气入口连接的空气 出口和均布在均风块上的出气孔; 所述助燃空气入口伸入混合腔内与 空气出口连接, 所述烟气导入口与混合腔连接相通; 所述均风块将所 述混合腔分为导入区和排出区, 高温烟气在混合腔的导入区混合后通 过出气孔输出到排出区与预热空气混合, 然后通过燃烧器输入口输入 燃烧器内进行燃烧。
[权利要求 6] 按照权利要求 4或者 5所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述燃烧器输入口内设置收窄喷嘴, 助燃气体通过多孔的环形挡板后 混合均匀后通过收窄的喷嘴进入熔铝炉的炉体内燃烧。
[权利要求 7] 按照权利要求 6所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述 烟气导入口垂直于所述助燃空气入口。
[权利要求 8] 按照权利要求 6所述的小型烟气助燃节能熔铝炉, 其特征在于, 所述 均风块为环形隔板, 其上的出气孔为 6~15个, 孔径为 80~100mm。
[权利要求 9] 按照权利要求 1所述的小型烟气助燃节能熔铝炉, 其特征在于, 热空
PCT/CN2016/078916 2015-10-12 2016-04-09 小型烟气助燃节能熔铝炉 WO2017063348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510662371.0A CN105222585A (zh) 2015-10-12 2015-10-12 小型烟气助燃节能熔铝炉
CN201510662371.0 2015-10-12

Publications (1)

Publication Number Publication Date
WO2017063348A1 true WO2017063348A1 (zh) 2017-04-20

Family

ID=54991686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078916 WO2017063348A1 (zh) 2015-10-12 2016-04-09 小型烟气助燃节能熔铝炉

Country Status (2)

Country Link
CN (1) CN105222585A (zh)
WO (1) WO2017063348A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222585A (zh) * 2015-10-12 2016-01-06 广东工业大学 小型烟气助燃节能熔铝炉
CN105423753A (zh) 2015-11-19 2016-03-23 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN107504810B (zh) * 2017-09-12 2024-01-02 江阴市炜仁铝业有限公司 一种环保熔铝方法及环保熔铝炉
CN107677137B (zh) * 2017-09-18 2024-04-02 广东工业大学 烟气助燃型工业炉节能环保燃烧系统
CN108050854A (zh) * 2018-01-18 2018-05-18 宁波东成群利机械有限公司 燃烧器气体供应装置及熔解保温炉
CN112484487B (zh) * 2020-10-19 2022-07-22 峡江县安盛镍业有限公司 一种熔池炉熔炼系统及方法
CN112503538B (zh) * 2020-11-30 2023-07-28 重庆商勤禹水环境科技有限公司 顶部喷气式废盐熔融炉
CN114216335A (zh) * 2021-12-15 2022-03-22 广州能源检测研究院 一种熔铝炉专用生物质气化燃烧系统及工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257951A (ja) * 1993-03-05 1994-09-16 Toyota Motor Corp アルミ溶解保持炉
CN102252340A (zh) * 2011-05-31 2011-11-23 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN202074556U (zh) * 2011-05-31 2011-12-14 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN103398591A (zh) * 2013-08-18 2013-11-20 佛山市广旭节能自动化科技有限公司 熔铝炉余热利用系统
CN104315866A (zh) * 2014-09-29 2015-01-28 广东工业大学 高效蓄热式熔铝炉
CN105222585A (zh) * 2015-10-12 2016-01-06 广东工业大学 小型烟气助燃节能熔铝炉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201636850U (zh) * 2010-04-02 2010-11-17 廖伟祥 烟道式利用废气余热转换热能的熔铝炉燃烧设备
CN203454747U (zh) * 2013-06-21 2014-02-26 成都赛德立热能科技有限公司 坩埚熔铝炉
CN203949519U (zh) * 2014-06-19 2014-11-19 广东正鹏生物质能源科技有限公司 一种带烟气余热回用的生物质燃气工业窑炉燃烧系统
CN104677125B (zh) * 2015-02-12 2018-04-13 中山市迦南节能环保科技有限公司 热煤气熔铝炉节能燃烧系统
CN204648216U (zh) * 2015-02-13 2015-09-16 广东碳中和能源开发有限公司 一种带余热利用的生物质燃气燃烧装置
CN205448679U (zh) * 2015-10-12 2016-08-10 广东工业大学 小型余热回收节能熔铝炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257951A (ja) * 1993-03-05 1994-09-16 Toyota Motor Corp アルミ溶解保持炉
CN102252340A (zh) * 2011-05-31 2011-11-23 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN202074556U (zh) * 2011-05-31 2011-12-14 杭州美宝炉窑工程有限公司 换热管进出口同温差喷流与插入件组合式空气预热器
CN103398591A (zh) * 2013-08-18 2013-11-20 佛山市广旭节能自动化科技有限公司 熔铝炉余热利用系统
CN104315866A (zh) * 2014-09-29 2015-01-28 广东工业大学 高效蓄热式熔铝炉
CN105222585A (zh) * 2015-10-12 2016-01-06 广东工业大学 小型烟气助燃节能熔铝炉

Also Published As

Publication number Publication date
CN105222585A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017063348A1 (zh) 小型烟气助燃节能熔铝炉
CN201582821U (zh) 辐射管间接加热装置
CN205448679U (zh) 小型余热回收节能熔铝炉
CN202532702U (zh) 高、低温烟气混合双预热的顶燃式热风炉
CN102278758B (zh) 一种辐射管加热装置
CN206377678U (zh) 一种氯苯尾气处理装置
CN203628653U (zh) 富氧烧嘴
CN204690029U (zh) 一种煤气与空气缝隙气膜冲击混合预热燃烧的热风炉
CN209877358U (zh) 一种大容量移动热源
CN105020703B (zh) 一种燃烧装置
CN217541088U (zh) 一种可调节回流的节能燃气热风炉
CN204006085U (zh) 烟气余热回收灶具
CN102721276A (zh) 陶瓷窑炉节能改造系统
CN202158565U (zh) 一种辐射管加热装置
CN213932023U (zh) 一种铝棒加热炉加热及热风循环利用系统
CN202018040U (zh) 加热炉用多喷嘴双排燃烧器
CN204830450U (zh) 燃烧生物质的采暖洗浴锅炉
CN204550645U (zh) 一种煤气预混气流回旋燃烧的均温均流的热风炉
CN204401072U (zh) 连续式板坯加热炉
CN202109483U (zh) 一种辐射管加热装置
CN208431758U (zh) 工业燃气自加温节能燃烧器
CN209069020U (zh) 一种具有余热回收功能的台车炉
CN202066016U (zh) 一种均热坑用燃烧器
CN202885494U (zh) 一种珍珠岩预热膨胀设备
CN206073757U (zh) 一种低温空气排放气升温装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854737

Country of ref document: EP

Kind code of ref document: A1