WO2017057267A1 - Imaging device and focus detection device - Google Patents

Imaging device and focus detection device Download PDF

Info

Publication number
WO2017057267A1
WO2017057267A1 PCT/JP2016/078255 JP2016078255W WO2017057267A1 WO 2017057267 A1 WO2017057267 A1 WO 2017057267A1 JP 2016078255 W JP2016078255 W JP 2016078255W WO 2017057267 A1 WO2017057267 A1 WO 2017057267A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
signal
unit
region
condition
Prior art date
Application number
PCT/JP2016/078255
Other languages
French (fr)
Japanese (ja)
Inventor
孝 塩野谷
敏之 神原
直樹 關口
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2017543251A priority Critical patent/JPWO2017057267A1/en
Publication of WO2017057267A1 publication Critical patent/WO2017057267A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/091Digital circuits
    • G03B7/093Digital circuits for control of exposure time

Definitions

  • the present invention relates to an imaging device and a focus detection device.
  • Patent Document 1 An imaging apparatus equipped with an imaging element capable of setting different imaging conditions for each screen area is known (see Patent Document 1).
  • the imaging conditions have not been taken into account when processing image data generated in regions with different imaging conditions.
  • the imaging apparatus captures the subject through the lens movable in the optical axis direction of the optical system and outputs the first signal, and captures the subject and outputs the second signal.
  • An imaging device having a second imaging area that outputs a signal; a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area; and the second imaging area
  • a correction unit that performs correction for use in interpolation of the first signal output from the first imaging region with respect to the second signal output from the first imaging region, and the second signal corrected by the correction unit
  • a control unit that controls movement of the lens using a signal obtained by interpolating the first signal.
  • the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens.
  • An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first
  • a correction unit that corrects the second signal output from the two imaging regions for use in interpolation of the first signal output from the first imaging region; and the second signal corrected by the correction unit.
  • a control unit that controls driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with a signal.
  • the imaging apparatus captures the subject through the lens movable in the optical axis direction of the optical system, outputs the first signal, and captures the subject.
  • An imaging device having a second imaging area that outputs a signal; a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area; and the second imaging area
  • a correction unit that performs correction for reducing noise included in the first signal output from the first imaging region with respect to the second signal output from the first imaging region; and the first signal corrected by the correction unit
  • a control unit that controls movement of the lens using a signal in which noise included in the first signal is reduced by two signals.
  • the imaging device images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens.
  • An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first A correction unit that performs correction to reduce noise included in the first signal output from the first imaging region is corrected by the correction unit with respect to the second signal output from two imaging regions.
  • a control unit that controls the driving of the lens according to the in-focus state of the optical system detected using a signal in which noise included in the first signal is reduced by the second signal.
  • the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens.
  • An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first
  • a correction unit that corrects the second signal output from the second imaging region based on an imaging condition of one imaging region or an imaging condition of the second imaging region, and the first signal and the correction unit correct the second signal.
  • a control unit that controls driving of the lens according to a focus state of the optical system detected using the second signal.
  • the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens.
  • An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first A correction unit that corrects the second signal output from the second imaging region based on the imaging condition of one imaging region and the imaging condition of the second imaging region, and is corrected by the first signal and the correction unit.
  • a control unit that controls driving of the lens according to a focused state of the optical system detected using the second signal.
  • the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens.
  • An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first The first signal output from the first imaging area is corrected based on an imaging condition of one imaging area, and the output from the second imaging area is corrected based on a setting value of an imaging condition of the second imaging area.
  • a correction unit that corrects the second signal, and a signal obtained by interpolating the first signal corrected by the correction unit and the pixel that outputs the first signal corrected by the second signal corrected by the correction unit.
  • the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens.
  • An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first Correction for correcting the first signal output from one imaging region and using the second signal output from the second imaging region for interpolation of a pixel that outputs the corrected first signal
  • the lens drive is controlled by the in-focus state of the optical system detected using the correction unit that performs the correction, the first signal corrected by the correction unit, and the second signal corrected by the correction unit.
  • a control unit is controlled by the in-focus state of the optical system detected using the correction unit that performs the correction, the first signal corrected by the correction unit, and the second signal corrected by the correction unit.
  • the focus detection device captures the imaging condition of the first imaging region of the imaging device that captures an image of the subject and outputs the first signal through the lens that is movable in the optical axis direction of the optical system.
  • An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject via the lens and outputs the second signal is set to the second signal output from the second imaging area.
  • a correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, and a signal obtained by interpolating the first signal with the second signal corrected by the correction unit.
  • a control unit for controlling movement of the lens.
  • the focus detection device captures the imaging condition of the first imaging region of the imaging device that images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal.
  • An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject and outputs the second signal via the second imaging area is output to the second signal output from the second imaging area.
  • a correction unit that performs correction for use in interpolation of the first signal output from the first imaging region and a second signal output from the second imaging region are output from the first imaging region.
  • the focus detection device captures the imaging condition of the first imaging region of the imaging element that captures an image of the subject and outputs the first signal through the lens that is movable in the optical axis direction of the optical system.
  • An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject via the lens and outputs the second signal is set to the second signal output from the second imaging area.
  • a correction unit that performs correction to reduce noise included in the first signal output from the first imaging region, and noise included in the first signal by the second signal corrected by the correction unit
  • a control unit for controlling the movement of the lens using a signal with reduced signal.
  • the focus detection apparatus captures the imaging condition of the first imaging region of the imaging element that captures an image of the subject and outputs the first signal via the lens that adjusts the focus position of the optical system.
  • An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject and outputs the second signal via the second imaging area is output to the second signal output from the second imaging area.
  • Detection is performed using a correction unit that performs correction to reduce noise included in the first signal output from the first imaging region, and the first signal and the second signal corrected by the correction unit.
  • a control unit that controls driving of the lens according to a focused state of the optical system.
  • the imaging device captures the light incident through the optical system under a first imaging condition to generate first signal data, and the incident light with the first imaging condition.
  • An imaging unit having a second area that captures an image under a second imaging condition different from the second imaging data and generates second signal data, and the first signal data generated by the imaging unit is based on the second imaging condition.
  • a signal for driving the optical system based on the correction unit corrected by the correction unit, the first signal data corrected based on the correction unit, and the second signal data generated by the imaging unit.
  • the focus detection device receives the first signal data generated by imaging the light incident on the first region of the imaging unit via the optical system under the first imaging condition, and outputs the first signal data of the imaging unit.
  • a correction unit configured to correct based on a second imaging condition different from the first imaging condition for imaging light incident on the second region; the first signal data corrected by the correction unit; and the second region
  • a generation unit configured to generate a signal for driving the optical system based on second signal data generated by imaging incident light.
  • FIG. 7A is a diagram illustrating the vicinity of the boundary of the first region in the live view image
  • FIG. 7B is an enlarged view of the vicinity of the boundary
  • FIG. 7C is an enlarged view of the target pixel and the reference pixel. .
  • FIG. 8A is a diagram illustrating the arrangement of photoelectric conversion signals output from the pixels
  • FIG. 8B is a diagram illustrating interpolation of image data of the G color component
  • FIG. 8C is a diagram illustrating G after interpolation. It is a figure which illustrates the image data of a color component.
  • 9A is a diagram obtained by extracting image data of the R color component from FIG. 8A
  • FIG. 9B is a diagram illustrating interpolation of the color difference component Cr
  • FIG. 9C is an image of the color difference component Cr.
  • 10A is a diagram obtained by extracting B color component image data from FIG. 8A
  • FIG. 10B is a diagram illustrating interpolation of the color difference component Cb
  • FIG. 10C is an image of the color difference component Cb. It is a figure explaining the interpolation of data. It is a figure which illustrates the position of the pixel for focus detection in an imaging surface. It is the figure which expanded the one part area
  • FIG. 14A is a diagram illustrating a template image representing an object to be detected
  • FIG. 14B is a diagram illustrating a live view image and a search range. It is a flowchart explaining the flow of the process which sets an imaging condition for every area and images.
  • FIGS. 16A to 16C are diagrams illustrating the arrangement of the first region and the second region on the imaging surface of the imaging device.
  • FIG. 16A to 16C are diagrams illustrating the arrangement of the first region and the second region on the imaging surface of the imaging device.
  • 20 is a block diagram illustrating a configuration of an imaging system according to Modification 11. It is a figure explaining supply of the program to a mobile device. It is a block diagram which illustrates the composition of the camera by a 2nd embodiment. It is the figure which showed typically the correspondence of each block in 2nd Embodiment, and several correction
  • a digital camera will be described as an example of an electronic device equipped with the image processing apparatus according to the first embodiment.
  • the camera 1 (FIG. 1) is configured to be able to capture images under different conditions for each region of the imaging surface of the image sensor 32a.
  • the image processing unit 33 performs appropriate processing in areas with different imaging conditions. Details of the camera 1 will be described with reference to the drawings.
  • FIG. 1 is a block diagram illustrating the configuration of the camera 1 according to the first embodiment.
  • the camera 1 includes an imaging optical system 31, an imaging unit 32, an image processing unit 33, a control unit 34, a display unit 35, an operation member 36, and a recording unit 37.
  • the imaging optical system 31 guides the light flux from the object scene to the imaging unit 32.
  • the imaging unit 32 includes an imaging element 32a and a driving unit 32b, and photoelectrically converts an object image formed by the imaging optical system 31.
  • the imaging unit 32 can capture images under the same conditions over the entire imaging surface of the imaging device 32a, or can perform imaging under different conditions for each region of the imaging surface of the imaging device 32a. Details of the imaging unit 32 will be described later.
  • the drive unit 32b generates a drive signal necessary for causing the image sensor 32a to perform accumulation control.
  • An imaging instruction such as a charge accumulation time for the imaging unit 32 is transmitted from the control unit 34 to the driving unit 32b.
  • the image processing unit 33 includes an input unit 33a, a correction unit 33b, and a generation unit 33c.
  • Image data acquired by the imaging unit 32 is input to the input unit 33a.
  • the correction unit 33b performs preprocessing for correcting the input image data. Details of the preprocessing will be described later.
  • the generation unit 33c generates an image based on the input image data and the preprocessed image data.
  • the generation unit 33c performs image processing on the image data.
  • Image processing includes, for example, color interpolation processing, pixel defect correction processing, edge enhancement processing, noise reduction processing, white balance adjustment processing, gamma correction processing, display luminance adjustment processing, saturation adjustment processing, and the like.
  • the generation unit 33 c generates an image to be displayed by the display unit 35.
  • the control unit 34 is constituted by a CPU, for example, and controls the overall operation of the camera 1. For example, the control unit 34 performs a predetermined exposure calculation based on the photoelectric conversion signal acquired by the imaging unit 32, the charge accumulation time (exposure time) of the imaging element 32a necessary for proper exposure, and the aperture of the imaging optical system 31.
  • the exposure conditions such as the value and ISO sensitivity are determined and instructed to the drive unit 32b.
  • image processing conditions for adjusting saturation, contrast, sharpness, and the like are determined and instructed to the image processing unit 33 according to the imaging scene mode set in the camera 1 and the type of the detected subject element. The detection of the subject element will be described later.
  • the control unit 34 includes an object detection unit 34a, a setting unit 34b, an imaging control unit 34c, and an AF calculation unit 34d. These are realized as software by the control unit 34 executing a program stored in a nonvolatile memory (not shown). However, these may be configured by an ASIC or the like.
  • the object detection unit 34a performs a known object recognition process, and from the image acquired by the imaging unit 32, a person (person's face), an animal such as a dog or a cat (animal face), a plant, a bicycle, an automobile , Detecting a subject element such as a vehicle such as a train, a building, a stationary object, a landscape such as a mountain or a cloud, or a predetermined specific object.
  • the setting unit 34b divides the imaging screen by the imaging unit 32 into a plurality of regions including the subject element detected as described above.
  • the setting unit 34b further sets imaging conditions for a plurality of areas.
  • Imaging conditions include the exposure conditions (charge accumulation time, gain, ISO sensitivity, frame rate, etc.) and the image processing conditions (for example, white balance adjustment parameters, gamma correction curves, display brightness adjustment parameters, saturation adjustment parameters, etc.) ).
  • the same imaging conditions can be set for all of the plurality of areas, or different imaging conditions can be set for the plurality of areas.
  • the imaging control unit 34c controls the imaging unit 32 (imaging element 32a) and the image processing unit 33 by applying imaging conditions set for each region by the setting unit 34b. Thereby, it is possible to cause the imaging unit 32 to perform imaging under different exposure conditions for each of the plurality of regions, and for the image processing unit 33, images with different image processing conditions for each of the plurality of regions. Processing can be performed. Any number of pixels may be included in the region, for example, 1000 pixels or 1 pixel. Further, the number of pixels may be different between regions.
  • the AF calculation unit 34d controls an automatic focus adjustment (autofocus: AF) operation for focusing on a corresponding subject at a predetermined position (referred to as a focus detection position) on the imaging screen.
  • the AF calculation unit 34d sends a drive signal for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result to the drive unit 32b.
  • the process performed by the AF calculation unit 34d for automatic focus adjustment is also referred to as a focus detection process. Details of the focus detection process will be described later.
  • the display unit 35 reproduces and displays the image generated by the image processing unit 33, the image processed image, the image read by the recording unit 37, and the like.
  • the display unit 35 also displays an operation menu screen, a setting screen for setting imaging conditions, and the like.
  • the operation member 36 is composed of various operation members such as a release button and a menu button.
  • the operation member 36 sends an operation signal corresponding to each operation to the control unit 34.
  • the operation member 36 includes a touch operation member provided on the display surface of the display unit 35.
  • the recording unit 37 records image data or the like on a recording medium including a memory card (not shown) in response to an instruction from the control unit 34.
  • the recording unit 37 reads image data recorded on the recording medium in response to an instruction from the control unit 34.
  • FIG. 2 is a cross-sectional view of the image sensor 100.
  • the imaging element 100 includes an imaging chip 111, a signal processing chip 112, and a memory chip 113.
  • the imaging chip 111 is stacked on the signal processing chip 112.
  • the signal processing chip 112 is stacked on the memory chip 113.
  • the imaging chip 111, the signal processing chip 112, the signal processing chip 112, and the memory chip 113 are electrically connected by a connection unit 109.
  • the connection unit 109 is, for example, a bump or an electrode.
  • the imaging chip 111 captures a light image from a subject and generates image data.
  • the imaging chip 111 outputs image data from the imaging chip 111 to the signal processing chip 112.
  • the signal processing chip 112 performs signal processing on the image data output from the imaging chip 111.
  • the memory chip 113 has a plurality of memories and stores image data.
  • the image sensor 100 may include an image pickup chip and a signal processing chip.
  • a storage unit for storing image data may be provided in the signal processing chip or may be provided separately from the imaging device 100. .
  • the incident light is incident mainly in the positive direction of the Z axis indicated by the white arrow.
  • the left direction of the paper orthogonal to the Z axis is the X axis plus direction
  • the front side of the paper orthogonal to the Z axis and X axis is the Y axis plus direction.
  • the coordinate axes are displayed so that the orientation of each figure can be understood with reference to the coordinate axes in FIG.
  • the imaging chip 111 is, for example, a CMOS image sensor. Specifically, the imaging chip 111 is a backside illumination type CMOS image sensor.
  • the imaging chip 111 includes a microlens layer 101, a color filter layer 102, a passivation layer 103, a semiconductor layer 106, and a wiring layer 108.
  • the imaging chip 111 is arranged in the order of the microlens layer 101, the color filter layer 102, the passivation layer 103, the semiconductor layer 106, and the wiring layer 108 in the positive Z-axis direction.
  • the microlens layer 101 has a plurality of microlenses L.
  • the microlens L condenses incident light on the photoelectric conversion unit 104 described later.
  • the color filter layer 102 includes a plurality of color filters F.
  • the color filter layer 102 has a plurality of types of color filters F having different spectral characteristics.
  • the color filter layer 102 includes a first filter (R) having a spectral characteristic that mainly transmits red component light and a second filter (Gb, Gr) that has a spectral characteristic that mainly transmits green component light. ) And a third filter (B) having a spectral characteristic that mainly transmits blue component light.
  • the passivation layer 103 is made of a nitride film or an oxide film, and protects the semiconductor layer 106.
  • the semiconductor layer 106 includes a photoelectric conversion unit 104 and a readout circuit 105.
  • the semiconductor layer 106 includes a plurality of photoelectric conversion units 104 between a first surface 106a that is a light incident surface and a second surface 106b opposite to the first surface 106a.
  • the semiconductor layer 106 includes a plurality of photoelectric conversion units 104 arranged in the X-axis direction and the Y-axis direction.
  • the photoelectric conversion unit 104 has a photoelectric conversion function of converting light into electric charge. In addition, the photoelectric conversion unit 104 accumulates charges based on the photoelectric conversion signal.
  • the photoelectric conversion unit 104 is, for example, a photodiode.
  • the semiconductor layer 106 includes a readout circuit 105 on the second surface 106b side of the photoelectric conversion unit 104.
  • a plurality of readout circuits 105 are arranged in the X-axis direction and the Y-axis direction.
  • the readout circuit 105 includes a plurality of transistors, reads out image data generated by the electric charges photoelectrically converted by the photoelectric conversion unit 104, and outputs the image data to the wiring layer 108.
  • the wiring layer 108 has a plurality of metal layers.
  • the metal layer is, for example, an Al wiring, a Cu wiring, or the like.
  • the wiring layer 108 outputs the image data read by the reading circuit 105.
  • the image data is output from the wiring layer 108 to the signal processing chip 112 via the connection unit 109.
  • connection unit 109 may be provided for each photoelectric conversion unit 104. Further, the connection unit 109 may be provided for each of the plurality of photoelectric conversion units 104. When the connection unit 109 is provided for each of the plurality of photoelectric conversion units 104, the pitch of the connection units 109 may be larger than the pitch of the photoelectric conversion units 104. In addition, the connection unit 109 may be provided in a peripheral region of the region where the photoelectric conversion unit 104 is disposed.
  • the signal processing chip 112 has a plurality of signal processing circuits.
  • the signal processing circuit performs signal processing on the image data output from the imaging chip 111.
  • the signal processing circuit includes, for example, an amplifier circuit that amplifies the signal value of the image data, a correlated double sampling circuit that performs noise reduction processing of the image data, and analog / digital (A / D) conversion that converts the analog signal into a digital signal. Circuit etc.
  • a signal processing circuit may be provided for each photoelectric conversion unit 104.
  • a signal processing circuit may be provided for each of the plurality of photoelectric conversion units 104.
  • the signal processing chip 112 has a plurality of through electrodes 110.
  • the through electrode 110 is, for example, a silicon through electrode.
  • the through electrode 110 connects circuits provided in the signal processing chip 112 to each other.
  • the through electrode 110 may also be provided in the peripheral region of the imaging chip 111 and the memory chip 113.
  • some elements constituting the signal processing circuit may be provided in the imaging chip 111.
  • a comparator that compares an input voltage with a reference voltage may be provided in the imaging chip 111, and circuits such as a counter circuit and a latch circuit may be provided in the signal processing chip 112.
  • the memory chip 113 has a plurality of storage units.
  • the storage unit stores image data that has been subjected to signal processing by the signal processing chip 112.
  • the storage unit is a volatile memory such as a DRAM, for example.
  • a storage unit may be provided for each photoelectric conversion unit 104.
  • the storage unit may be provided for each of the plurality of photoelectric conversion units 104.
  • the image data stored in the storage unit is output to the subsequent image processing unit.
  • FIG. 3 is a diagram for explaining the pixel array and the unit area 131 of the imaging chip 111.
  • a state where the imaging chip 111 is observed from the back surface (imaging surface) side is shown.
  • 20 million or more pixels are arranged in a matrix in the pixel region.
  • four adjacent pixels of 2 pixels ⁇ 2 pixels form one unit region 131.
  • the grid lines in the figure indicate the concept that adjacent pixels are grouped to form a unit region 131.
  • the number of pixels forming the unit region 131 is not limited to this, and may be about 1000, for example, 32 pixels ⁇ 32 pixels, more or less, or one pixel.
  • the unit area 131 in FIG. 3 includes a so-called Bayer array composed of four pixels of green pixels Gb, Gr, blue pixels B, and red pixels R.
  • the green pixels Gb and Gr are pixels having a green filter as the color filter F, and receive light in the green wavelength band of incident light.
  • the blue pixel B is a pixel having a blue filter as the color filter F and receives light in the blue wavelength band
  • the red pixel R is a pixel having a red filter as the color filter F and having a red wavelength band. Receives light.
  • a plurality of blocks are defined so as to include at least one unit region 131 per block. That is, the minimum unit of one block is one unit area 131. As described above, of the possible values for the number of pixels forming one unit region 131, the smallest number of pixels is one pixel. Therefore, when one block is defined in units of pixels, the minimum number of pixels among the number of pixels that can define one block is one pixel.
  • Each block can control pixels included in each block with different control parameters. In each block, all the unit areas 131 in the block, that is, all the pixels in the block are controlled under the same imaging condition. That is, photoelectric conversion signals having different imaging conditions can be acquired between a pixel group included in a certain block and a pixel group included in another block.
  • control parameters examples include a frame rate, a gain, a thinning rate, the number of addition rows or addition columns to which photoelectric conversion signals are added, a charge accumulation time or accumulation count, a digitization bit number (word length), and the like.
  • the imaging device 100 can freely perform not only thinning in the row direction (X-axis direction of the imaging chip 111) but also thinning in the column direction (Y-axis direction of the imaging chip 111).
  • the control parameter may be a parameter in image processing.
  • FIG. 4 is a diagram for explaining a circuit in the unit region 131.
  • one unit region 131 is formed by four adjacent pixels of 2 pixels ⁇ 2 pixels.
  • the number of pixels included in the unit region 131 is not limited to this, and may be 1000 pixels or more, or may be a minimum of 1 pixel.
  • the two-dimensional position of the unit area 131 is indicated by reference signs A to D.
  • the reset transistor (RST) of the pixel included in the unit region 131 is configured to be turned on and off individually for each pixel.
  • a reset wiring 300 for turning on / off the reset transistor of the pixel A is provided, and a reset wiring 310 for turning on / off the reset transistor of the pixel B is provided separately from the reset wiring 300.
  • a reset line 320 for turning on and off the reset transistor of the pixel C is provided separately from the reset lines 300 and 310.
  • a dedicated reset wiring 330 for turning on and off the reset transistor is also provided for the other pixels D.
  • the pixel transfer transistor (TX) included in the unit region 131 is also configured to be turned on and off individually for each pixel.
  • a transfer wiring 302 for turning on / off the transfer transistor of the pixel A, a transfer wiring 312 for turning on / off the transfer transistor of the pixel B, and a transfer wiring 322 for turning on / off the transfer transistor of the pixel C are separately provided.
  • a dedicated transfer wiring 332 for turning on / off the transfer transistor is provided for the other pixels D.
  • the pixel selection transistor (SEL) included in the unit region 131 is also configured to be turned on and off individually for each pixel.
  • a selection wiring 306 for turning on / off the selection transistor of the pixel A, a selection wiring 316 for turning on / off the selection transistor of the pixel B, and a selection wiring 326 for turning on / off the selection transistor of the pixel C are separately provided.
  • a dedicated selection wiring 336 for turning on and off the selection transistor is provided for the other pixels D.
  • the power supply wiring 304 is commonly connected from the pixel A to the pixel D included in the unit region 131.
  • the output wiring 308 is commonly connected to the pixel D from the pixel A included in the unit region 131.
  • the power supply wiring 304 is commonly connected between a plurality of unit regions, but the output wiring 308 is provided for each unit region 131 individually.
  • the load current source 309 supplies current to the output wiring 308.
  • the load current source 309 may be provided on the imaging chip 111 side or may be provided on the signal processing chip 112 side.
  • the charge accumulation including the charge accumulation start time, the accumulation end time, and the transfer timing is controlled from the pixel A to the pixel D included in the unit region 131. can do.
  • the photoelectric conversion signals of the pixels A to D can be output via the common output wiring 308.
  • a so-called rolling shutter system in which charge accumulation is controlled in a regular order with respect to rows and columns for the pixels A to D included in the unit region 131.
  • photoelectric conversion signals are output in the order of “ABCD” in the example of FIG.
  • the charge accumulation time can be controlled for each unit region 131.
  • the unit area 131 included in another block is rested while the unit area 131 included in a part of the block is charged (imaged), so that a predetermined block of the imaging chip 111 can be used. Only the imaging can be performed, and the photoelectric conversion signal can be output.
  • a block accumulation control target block
  • charge accumulation imaging
  • the output wiring 308 is provided corresponding to each of the unit areas 131. Since the image pickup device 100 includes the image pickup chip 111, the signal processing chip 112, and the memory chip 113, each chip is arranged in the surface direction by using the electrical connection between the chips using the connection portion 109 for the output wiring 308. The wiring can be routed without increasing the size.
  • an imaging condition can be set for each of a plurality of blocks in the imaging device 32a.
  • the control unit 34 associates the plurality of regions with the block and causes the imaging to be performed under an imaging condition set for each region.
  • FIG. 5 is a diagram schematically showing an image of a subject formed on the image sensor 32a of the camera 1.
  • the camera 1 photoelectrically converts the subject image to obtain a live view image before an imaging instruction is given.
  • the live view image refers to a monitor image that is repeatedly imaged at a predetermined frame rate (for example, 60 fps).
  • the control unit 34 sets the same imaging condition over the entire area of the imaging chip 111 (that is, the entire imaging screen) before the setting unit 34b divides the area.
  • the same imaging condition refers to setting a common imaging condition for the entire imaging screen. For example, even if there is a variation in apex value of less than about 0.3, it is regarded as the same.
  • the imaging conditions set to be the same throughout the imaging chip 111 are determined based on the exposure conditions corresponding to the photometric value of the subject luminance or the exposure conditions manually set by the user.
  • an image including a person 61a, an automobile 62a, a bag 63a, a mountain 64a, and clouds 65a and 66a is formed on the imaging surface of the imaging chip 111.
  • the person 61a holds the bag 63a with both hands.
  • the automobile 62a stops at the right rear of the person 61a.
  • the control unit 34 divides the screen of the live view image into a plurality of regions as follows. First, a subject element is detected from the live view image by the object detection unit 34a. The subject element is detected using a known subject recognition technique. In the example of FIG. 5, the object detection unit 34a detects a person 61a, a car 62a, a bag 63a, a mountain 64a, a cloud 65a, and a cloud 66a as subject elements.
  • the setting unit 34b divides the live view image screen into regions including the subject elements.
  • the region including the person 61a is the region 61
  • the region including the car 62a is the region 62
  • the region including the bag 63a is the region 63
  • the region including the mountain 64a is the region 64
  • the cloud 65a is included.
  • the region is described as a region 65
  • the region including the cloud 66a is described as a region 66.
  • the control unit 34 causes the display unit 35 to display a setting screen as illustrated in FIG. In FIG. 6, a live view image 60a is displayed, and an imaging condition setting screen 70 is displayed on the right side of the live view image 60a.
  • the setting screen 70 lists frame rate, shutter speed (TV), and gain (ISO) in order from the top as an example of setting items for imaging conditions.
  • the frame rate is the number of frames of a live view image acquired per second or a moving image recorded by the camera 1.
  • Gain is ISO sensitivity.
  • the setting items for the imaging conditions may be added as appropriate in addition to those illustrated in FIG. When all the setting items do not fit in the setting screen 70, other setting items may be displayed by scrolling the setting items up and down.
  • the control unit 34 sets the region selected by the user among the regions divided by the setting unit 34b as a target for setting (changing) the imaging condition. For example, in the camera 1 capable of touch operation, the user taps the display position of the main subject for which the imaging condition is to be set (changed) on the display surface of the display unit 35 on which the live view image 60a is displayed. For example, when the display position of the person 61 a is tapped, the control unit 34 sets the area 61 including the person 61 a in the live view image 60 a as an imaging condition setting (change) target area and emphasizes the outline of the area 61. To display.
  • an area 61 in which the outline is emphasized and displayed indicates an area for which the imaging condition is to be set (changed).
  • a live view image 60a in which the outline of the region 61 is emphasized is displayed.
  • the region 61 is a target for setting (changing) the imaging condition.
  • the control unit 34 displays the current shutter speed for the highlighted area (area 61).
  • the set value is displayed on the screen (reference numeral 68).
  • the imaging condition may be set (changed) by operating a button or the like constituting the operation member 36.
  • the setting unit 34b increases or decreases the shutter speed display 68 from the current setting value according to the tap operation.
  • An instruction is sent to the imaging unit 32 (FIG. 1) so as to change the imaging condition of the unit area 131 (FIG. 3) of the imaging element 32a corresponding to the displayed area (area 61) in accordance with the tap operation.
  • the decision icon 72 is an operation icon for confirming the set imaging condition.
  • the setting unit 34b performs the setting (change) of the frame rate and gain (ISO) in the same manner as the setting (change) of the shutter speed (TV).
  • the setting unit 34b may set the imaging condition based on the determination of the control unit 34 without being based on a user operation. For example, when the overexposure or underexposure occurs in the area including the subject element having the maximum luminance or the minimum luminance in the image, the setting unit 34b cancels the overexposure or underexposure based on the determination of the control unit 34.
  • the imaging conditions may be set in. For the area that is not highlighted (the area other than the area 61), the set imaging conditions are maintained.
  • the control unit 34 displays the entire target area brightly, increases the contrast of the entire target area, or displays the entire target area. May be displayed blinking.
  • the target area may be surrounded by a frame.
  • the display of the frame surrounding the target area may be a double frame or a single frame, and the display mode such as the line type, color, and brightness of the surrounding frame may be appropriately changed.
  • the control unit 34 may display an indication of an area for which an imaging condition is set, such as an arrow, in the vicinity of the target area.
  • the control unit 34 may darkly display a region other than the target region for which the imaging condition is set (changed), or may display a low contrast other than the target region.
  • the control unit 34 is operated.
  • imaging is performed under the imaging conditions set for each of the divided areas.
  • the image processing unit 33 performs image processing on the image data acquired by the imaging unit 32. As described above, the image processing can be performed under different image processing conditions for each region.
  • the recording unit 37 that receives an instruction from the control unit 34 records the image data after the image processing on a recording medium including a memory card (not shown). Thereby, a series of imaging processes is completed.
  • the imaging condition is set (changed) for the area selected by the user or the area determined by the control unit 34. ) Is configured to be possible.
  • the control unit 34 performs the following correction process as necessary.
  • the image processing unit 33 (correction unit 33b) is in the vicinity of a boundary between regions when image processing on image data obtained by applying different imaging conditions between the divided regions is predetermined image processing. Correction processing is performed on the image data positioned at the position as preprocessing for image processing.
  • the predetermined image processing is processing for calculating image data of a target position to be processed in an image with reference to image data at a plurality of reference positions around the target position. For example, pixel defect correction processing, color interpolation Processing, contour enhancement processing, noise reduction processing, and the like are applicable.
  • the correction process is performed to alleviate discontinuities that occur in the image after image processing due to the difference in imaging conditions between the divided areas.
  • the image data in which the same imaging condition as the image data of the target position is applied to the plurality of reference positions around the target position, and the image of the target position Data and image data to which different imaging conditions are applied may be mixed.
  • the correction processing is performed so as to suppress the difference between the image data due to the difference in the imaging conditions, rather than referencing the image data at the reference position to which the different imaging conditions are applied as it is to calculate the image data at the target position. Based on the idea that it is preferable to calculate the image data of the target position with reference to the image data of the reference position subjected to the correction process, the correction process is performed as follows.
  • FIG. 7A is a diagram illustrating a region 80 near the boundary between the region 61 and the region 64 in the live view image 60a.
  • the first imaging condition is set in an area 61 including at least a person and the second imaging condition is set in an area 64 including a mountain.
  • FIG. 7B is an enlarged view of a region 80 near the boundary of FIG.
  • the image data from the pixels on the image sensor 32a corresponding to the area 61 for which the first imaging condition is set is shown in white, and the image from the pixels on the image sensor 32a corresponding to the area 64 for which the second imaging condition is set. Data is shaded.
  • FIG. 7A is a diagram illustrating a region 80 near the boundary between the region 61 and the region 64 in the live view image 60a.
  • the first imaging condition is set in an area 61 including at least a person
  • the second imaging condition is set in an area 64 including a mountain.
  • FIG. 7B is an enlarged view of a region 80 near the boundary of FIG.
  • the image data from the target pixel P is located on the region 61 and in the vicinity of the boundary 81 between the region 61 and the region 64, that is, the boundary portion. Pixels around the target pixel P (eight pixels in this example) included in a predetermined range 90 (for example, 3 ⁇ 3 pixels) centered on the target pixel P are set as reference pixels.
  • FIG. 7C is an enlarged view of the target pixel P and the reference pixel. The position of the target pixel P is the target position, and the position of the reference pixel surrounding the target pixel P is the reference position.
  • the image processing unit 33 (the generation unit 33c) normally performs image processing by directly referring to the image data of the reference pixel without performing correction processing.
  • the correction unit 33b performs correction processing on the image data of the second imaging condition among the image data of the reference pixels as in the following (Example 1) to (Example 3).
  • the generation unit 33c performs image processing for calculating the image data of the target pixel P with reference to the image data of the reference pixel after the correction processing.
  • the image data output from the pixels indicated by white background is image data under the first imaging condition
  • the image data output from the pixels indicated by diagonal lines is image data under the second imaging condition.
  • the image processing unit 33 differs only in ISO sensitivity between the first imaging condition and the second imaging condition, and the ISO sensitivity in the first imaging condition is 100, and the ISO sensitivity in the second imaging condition. Is 800/100, the correction processing is applied to the image data of the second imaging condition in the image data of the reference pixel. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced. Note that when the amount of incident light on the target pixel P and the amount of incident light on the reference pixel are the same, the difference in image data is reduced, but the amount of incident light on the target pixel P and the amount of incident light on the reference pixel are originally different. In some cases, the difference in image data may not be reduced. The same applies to the examples described later.
  • the image processing unit 33 differs only in the frame rate between the first imaging condition and the second imaging condition (the charge accumulation time is the same), and the frame rate of the first imaging condition is 30 fps.
  • the frame rate of the second imaging condition is 60 fps
  • Employing image data of a close frame image is a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
  • interpolation calculation is performed on the frame image acquired under the first imaging condition (30 fps) and the frame image whose acquisition start timing is close. This may be a correction process.
  • the image processing unit 33 captures an imaging condition (first imaging condition) applied to the pixel of interest P and an imaging condition (first image) applied to all reference pixels around the pixel of interest P. 2), the correction processing is not performed on the image data of the reference pixel. That is, the generation unit 33c performs image processing for calculating the image data of the target pixel P by referring to the image data of the reference pixel as it is. As described above, even if there are some differences in the imaging conditions, the imaging conditions are regarded as the same.
  • the pixel defect correction process is one of image processes performed during imaging.
  • the image pickup element 32a which is a solid-state image pickup element, may produce pixel defects in the manufacturing process or after manufacturing, and output abnormal level image data. Therefore, the image processing unit 33 (the generation unit 33c) corrects the image data output from the pixel in which the pixel defect has occurred, thereby making the image data in the pixel position in which the pixel defect has occurred inconspicuous.
  • the image processing unit 33 sets a pixel at a pixel defect position recorded in advance in a non-illustrated non-volatile memory in an image of one frame as a target pixel P (processing target pixel), and the target pixel P Pixels around the pixel of interest P (eight pixels in this example) included in a predetermined range 90 (for example, 3 ⁇ 3 pixels) centering on the pixel are used as reference pixels.
  • the image processing unit 33 calculates the maximum value and the minimum value of the image data in the reference pixel. When the image data output from the target pixel P exceeds these maximum value or minimum value, the image processing unit 33 (the generation unit 33c) starts from the target pixel P. Max and Min filter processing is performed to replace the output image data with the maximum value or the minimum value. Such a process is performed for all pixel defects whose position information is recorded in a non-volatile memory (not shown).
  • the image processing unit 33 determines whether the reference pixel includes a pixel to which a second imaging condition different from the first imaging condition applied to the target pixel P is included. Correction processing is performed on image data to which two imaging conditions are applied. Thereafter, the image processing unit 33 (generation unit 33c) performs the Max and Min filter processing described above.
  • color interpolation processing is one of image processing performed at the time of imaging. As illustrated in FIG. 3, in the imaging chip 111 of the imaging device 100, green pixels Gb and Gr, a blue pixel B, and a red pixel R are arranged in a Bayer array.
  • the image processing unit 33 (the generation unit 33c) lacks image data having a color component different from the color component of the color filter F arranged at each pixel position. Color interpolation processing for generating component image data is performed.
  • FIG. 8A is a diagram illustrating the arrangement of image data output from the image sensor 32a. Corresponding to each pixel position, it has one of R, G, and B color components according to the rules of the Bayer array.
  • the image processing unit 33 generation unit 33c
  • the image processing unit 33 that performs the G color interpolation refers to the image data of the four G color components at the reference positions around the target position, with the positions of the R color component and the B color component as the target position in order.
  • image data of the G color component at the position of interest is generated. For example, the G color component at the target position indicated by the thick frame in FIG.
  • the image processing unit 33 sets, for example, (aG1 + bG2 + cG3 + dG4) / 4 as G color component image data at the target position (second row, second column).
  • a to d are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
  • the first imaging condition is applied to the left and upper regions with respect to the thick line
  • the second imaging condition is applied to the right and lower regions with respect to the thick line.
  • the first imaging condition and the second imaging condition are different.
  • the G color component image data G1 to G4 in FIG. 8B are reference positions for image processing of the pixel at the target position (second row and second column).
  • the first imaging condition is applied to the target position (second row, second column).
  • the first imaging condition is applied to the image data G1 to G3.
  • the second imaging condition is applied to the image data G4. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the image data G4.
  • the image processing unit 33 (generation unit 33c) calculates the image data of the G color component at the position of interest (second row and second column).
  • the image processing unit 33 (the generation unit 33c) generates image data of the G color component at the position of the B color component and the position of the R color component in FIG. In addition, the image data of the G color component can be obtained at each pixel position.
  • FIG. 9A is a diagram obtained by extracting R color component image data from FIG.
  • the image processing unit 33 (generating unit 33c) performs color difference shown in FIG. 9B based on the G color component image data shown in FIG. 8C and the R color component image data shown in FIG. Image data of the component Cr is calculated.
  • the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cr at the target position indicated by the thick frame (second row and second column) in FIG. 9B, the target position (second row) Reference is made to the image data Cr1 to Cr4 of the four color difference components located in the vicinity of the second column).
  • the image processing unit 33 (generation unit 33c) sets, for example, (eCr1 + fCr2 + gCr3 + hCr4) / 4 as image data of the color difference component Cr at the target position (second row and second column).
  • e to h are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
  • the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cr at the position of interest indicated by the thick frame (second row and third column) of FIG. Reference is made to the image data Cr2, Cr4 to Cr6 of the four color difference components located in the vicinity of the second row and the third column).
  • the image processing unit 33 sets, for example, (qCr2 + rCr4 + sCr5 + tCr6) / 4 as image data of the color difference component Cr at the target position (second row, third column).
  • q to t are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
  • image data of the color difference component Cr is generated for each pixel position.
  • the first imaging condition is applied to the left and upper regions with respect to the thick line
  • the second imaging condition is applied to the right and lower regions with respect to the thick line. It shall be applied.
  • the first imaging condition and the second imaging condition are different.
  • the position indicated by the thick frame is the target position of the color difference component Cr.
  • the color difference component image data Cr1 to Cr4 in FIG. 9B are reference positions for image processing of the pixel at the target position (second row and second column).
  • the first imaging condition is applied to the target position (second row, second column).
  • the first imaging condition is applied to the image data Cr1, Cr3, and Cr4.
  • the second imaging condition is applied to the image data Cr2. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the image data Cr2. Thereafter, the image processing unit 33 (generation unit 33c) calculates the image data of the color difference component Cr at the position of interest (second row and second column).
  • the position indicated by the thick frame (second row, third column) is the target position of the color difference component Cr.
  • the color difference component image data Cr2, Cr4, Cr5, and Cr6 in FIG. 9C are reference positions for image processing of the pixel at the target position (second row and third column). In FIG.
  • the second imaging condition is applied to the target position (second row, third column).
  • the first imaging condition is applied to the image data Cr4 and Cr5.
  • the second imaging condition is applied to the image data Cr2 and Cr6. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the image data Cr4 and Cr5, respectively. Thereafter, the image processing unit 33 (generating unit 33c) calculates image data of the color difference component Cr at the position of interest (second row and third column).
  • the image processing unit 33 (generation unit 33c) obtains the image data of the color difference component Cr at each pixel position, and then adds the image data of the G color component shown in FIG. 8C in correspondence with each pixel position. Thus, R color component image data can be obtained at each pixel position.
  • FIG. 10A is a diagram in which image data of the B color component is extracted from FIG.
  • the image processing unit 33 (generation unit 33c) performs the color difference shown in FIG. 10B based on the G color component image data shown in FIG. 8C and the B color component image data shown in FIG. Image data of the component Cb is calculated.
  • the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cb at the target position indicated by the thick frame (third row, third column) in FIG. Reference is made to the image data Cb1 to Cb4 of the four color difference components located in the vicinity of the third column).
  • the image processing unit 33 (generation unit 33c) sets, for example, (uCb1 + vCb2 + wCb3 + xCb4) / 4 as the image data of the color difference component Cb at the target position (third row, third column).
  • u to x are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
  • the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cb at the target position indicated by, for example, the thick frame (third row and fourth column) in FIG. Reference is made to the image data Cb2, Cb4 to Cb6 of the four color difference components located in the vicinity of the third row and the fourth column).
  • the image processing unit 33 (generation unit 33c) sets, for example, (yCb2 + zCb4 + ⁇ Cb5 + ⁇ Cb6) / 4 as image data of the color difference component Cb at the target position (third row, fourth column).
  • y, z, ⁇ , and ⁇ are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
  • image data of the color difference component Cb is generated for each pixel position.
  • the first imaging condition is applied to the left and upper regions with respect to the thick line
  • the second imaging condition is applied to the right and lower regions with respect to the thick line. It shall be applied.
  • FIGS. 10A to 10C the first imaging condition and the second imaging condition are different.
  • the position indicated by the thick frame is the target position of the color difference component Cb.
  • the color difference component image data Cb1 to Cb4 in FIG. 10B is a reference position for image processing of the pixel at the target position (third row, third column).
  • the second imaging condition is applied to the target position (third row, third column).
  • the first imaging condition is applied to the image data Cb1 and Cb3.
  • the second imaging condition is applied to the image data Cb2 and Cb4. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the data Cb1 and Cb3, respectively. Thereafter, the image processing unit 33 (generation unit 33c) calculates the image data of the color difference component Cb at the target position (third row, third column).
  • the position indicated by the thick frame (third row, fourth column) is the target position of the color difference component Cb. Further, the color difference component image data Cb2 and Cb4 to Cb6 in FIG.
  • 10C are reference positions for image processing of the pixel at the target position (third row, fourth column).
  • the second imaging condition is applied to the position of interest (third row, fourth column). Further, the second imaging condition is applied to the image data Cb2 and Cb4 to Cb6 at all reference positions. Therefore, the image processing unit 33 (generation unit 33c) refers to the image data Cb2 and Cb4 to Cb6 at the reference position that has not been subjected to the correction process by the image processing unit 33 (correction unit 33b), and the target position (three rows). The image data of the color difference component Cb in the (fourth column) is calculated.
  • the image processing unit 33 obtains the image data of the color difference component Cb at each pixel position, and then adds the image data of the G color component shown in FIG. 8C in correspondence with each pixel position.
  • image data of the B color component can be obtained at each pixel position.
  • G color interpolation for example, when generating G color component image data at the target position indicated by the thick frame (second row, second column) in FIG.
  • the four G color component image data G1 to G4 are referred to, but the number of G color component image data to be referred to may be changed depending on the image structure.
  • the image near the target position has similarity in the vertical direction (for example, a vertical stripe pattern)
  • the image data above and below the target position (G1 and G2 in FIG. 8B) are used.
  • Perform interpolation processing for example, when the image near the target position has a similarity in the horizontal direction (for example, a horizontal stripe pattern), only the left and right image data (G3 and G4 in FIG. 8B) of the target position are used.
  • the image data G4 that is corrected by the correction unit 33b may or may not be used.
  • the image processing unit 33 (generation unit 33c) performs, for example, a known linear filter calculation using a kernel of a predetermined size centered on the pixel of interest P (processing target pixel) in one frame image.
  • the kernel size of a sharpening filter that is an example of a linear filter is N ⁇ N pixels
  • the position of the target pixel P is the target position
  • the positions of (N 2 ⁇ 1) reference pixels surrounding the target pixel P are referred to.
  • Position may be N ⁇ M pixels.
  • the image processing unit 33 (generation unit 33c) performs a filter process for replacing the image data in the target pixel P with a linear filter calculation result on each horizontal line, for example, from the upper horizontal line to the lower horizontal line of the frame image. This is done while shifting the pixel of interest from left to right.
  • the image processing unit 33 determines whether the reference pixel includes a pixel to which a second imaging condition different from the first imaging condition applied to the target pixel P is included. Correction processing is performed on image data to which two imaging conditions are applied. Thereafter, the image processing unit 33 (generation unit 33c) performs the linear filter processing described above.
  • the image processing unit 33 (generation unit 33c) performs, for example, a known linear filter calculation using a kernel of a predetermined size centered on the pixel of interest P (processing target pixel) in one frame image.
  • the kernel size of the smoothing filter which is an example of the linear filter is N ⁇ N pixels
  • the position of the target pixel P is the target position
  • the positions of the (N 2 ⁇ 1) reference pixels surrounding the target pixel P are referred to.
  • Position may be N ⁇ M pixels.
  • the image processing unit 33 (generation unit 33c) performs a filter process for replacing the image data in the target pixel P with a linear filter calculation result on each horizontal line, for example, from the upper horizontal line to the lower horizontal line of the frame image. This is done while shifting the pixel of interest from left to right.
  • the image processing unit 33 determines whether the reference pixel includes a pixel to which a second imaging condition different from the first imaging condition applied to the target pixel P is included. Correction processing is performed on image data to which two imaging conditions are applied. Thereafter, the image processing unit 33 (generation unit 33c) performs the linear filter processing described above.
  • the control unit 34 (AF calculation unit 34d) performs focus detection processing using signal data (image data) corresponding to a predetermined position (focus detection position) on the imaging screen.
  • the control unit 34 (AF calculation unit 34d) sets different imaging conditions for the divided areas, and when the focus detection position of the AF operation is located at the boundary portion of the divided areas, the focus of at least one area is set. Correction processing is performed on the signal data for detection as preprocessing for focus detection processing.
  • the correction process is performed in order to suppress a decrease in the accuracy of the focus detection process due to the difference in imaging conditions between areas of the imaging screen divided by the setting unit 34b.
  • the focus detection signal data at the focus detection position for detecting the image shift amount (phase difference) in the image is located near the boundary of the divided areas, different imaging conditions are included in the focus detection signal data.
  • Applied signal data may be mixed.
  • the correction process is performed so as to suppress the difference between the signal data due to the difference in the imaging conditions, rather than detecting the image shift amount (phase difference) using the signal data to which the different imaging conditions are applied as it is. Based on the idea that it is preferable to detect the amount of image shift (phase difference) using the applied signal data, correction processing is performed as follows.
  • AF calculation unit 34 d generation unit
  • the control unit 34 detects image shift amounts (phase differences) of a plurality of subject images due to light beams that have passed through different pupil regions of the imaging optical system 31, whereby the imaging optical system 31.
  • the defocus amount of is calculated.
  • the control unit 34 moves the focus lens of the imaging optical system 31 to a position where the defocus amount is zero (allowable value or less), that is, a focus position.
  • FIG. 11 is a diagram illustrating the position of the focus detection pixel on the imaging surface of the imaging device 32a.
  • focus detection pixels are discretely arranged along the X-axis direction (horizontal direction) of the imaging chip 111.
  • 15 focus detection pixel lines 160 are provided at a predetermined interval.
  • the focus detection pixels constituting the focus detection pixel line 160 output a photoelectric conversion signal for focus detection.
  • normal imaging pixels are provided at pixel positions other than the focus detection pixel line 160.
  • the imaging pixel outputs a live view image or a photoelectric conversion signal for recording.
  • FIG. 12 is an enlarged view of a part of the focus detection pixel line 160 corresponding to the focus detection position 80A shown in FIG.
  • a red pixel R, a green pixel G (Gb, Gr), and a blue pixel B, a focus detection pixel S1, and a focus detection pixel S2 are illustrated.
  • the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B are arranged according to the rules of the Bayer arrangement described above.
  • the square area illustrated for the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B indicates the light receiving area of the imaging pixel.
  • Each imaging pixel receives a light beam passing through the exit pupil of the imaging optical system 31 (FIG. 1). That is, the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B each have a square-shaped mask opening, and light passing through these mask openings reaches the light-receiving portion of the imaging pixel. .
  • the shapes of the light receiving regions (mask openings) of the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B are not limited to a quadrangle, and may be, for example, a circle.
  • the semicircular region exemplified for the focus detection pixel S1 and the focus detection pixel S2 indicates a light receiving region of the focus detection pixel. That is, the focus detection pixel S1 has a semicircular mask opening on the left side of the pixel position in FIG. 12, and the light passing through the mask opening reaches the light receiving portion of the focus detection pixel S1. On the other hand, the focus detection pixel S2 has a semicircular mask opening on the right side of the pixel position in FIG. 12, and the light passing through the mask opening reaches the light receiving portion of the focus detection pixel S2. As described above, the focus detection pixel S1 and the focus detection pixel S2 respectively receive a pair of light beams passing through different areas of the exit pupil of the imaging optical system 31 (FIG. 1).
  • the position of the focus detection pixel line 160 in the imaging chip 111 is not limited to the position illustrated in FIG. Further, the number of focus detection pixel lines 160 is not limited to the example of FIG. Further, the shape of the mask opening in the focus detection pixel S1 and the focus detection pixel S2 is not limited to a semicircular shape. For example, a rectangular light receiving region (mask opening) in the imaging pixel R, the imaging pixel G, and the imaging pixel B is used. Part) may be a rectangular shape divided in the horizontal direction.
  • the focus detection pixel line 160 in the imaging chip 111 may be a line in which focus detection pixels are arranged along the Y-axis direction (vertical direction) of the imaging chip 111.
  • An imaging element in which imaging pixels and focus detection pixels are two-dimensionally arranged as shown in FIG. 12 is known, and detailed illustration and description of these pixels are omitted.
  • the focus detection pixels S1 and S2 each receive one of the pair of focus detection light beams, the so-called 1PD structure.
  • the focus detection pixels may be configured to receive both of a pair of light beams for focus detection, that is, a so-called 2PD structure.
  • the photoelectric conversion signal obtained by the focus detection pixel can be used as a recording photoelectric conversion signal.
  • the control unit 34 passes through different regions of the imaging optical system 31 (FIG. 1) based on the focus detection photoelectric conversion signals output from the focus detection pixel S1 and the focus detection pixel S2. An image shift amount (phase difference) between the pair of images by the pair of light beams is detected. Then, the defocus amount is calculated based on the image shift amount (phase difference).
  • Such defocus amount calculation by the pupil division phase difference method is well known in the field of cameras, and thus detailed description thereof is omitted.
  • FIG. 13 is an enlarged view of the focus detection position 80A.
  • White pixels indicate that the first imaging condition is set, and shaded pixels indicate that the second imaging condition is set.
  • the position surrounded by the frame 170 corresponds to the focus detection pixel line 160 (FIG. 11).
  • the control unit 34 (AF calculation unit 34d) normally performs the focus detection process using the signal data from the focus detection pixels indicated by the frame 170 without performing the correction process.
  • the control unit 34 (AF calculation unit 34d) Correction processing is performed on the signal data of the second imaging condition among the signal data surrounded by 170 as in the following (Example 1) to (Example 3). Then, the control unit 34 (AF calculation unit 34d) performs focus detection processing using the signal data after the correction processing.
  • the control unit 34 differs only in ISO sensitivity between the first imaging condition and the second imaging condition, the ISO sensitivity of the first imaging condition is 100, and the ISO sensitivity of the second imaging condition. Is 800/100, the correction processing is applied to the signal data of the second imaging condition. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced. Note that when the amount of incident light to the pixel to which the first imaging condition is applied and the amount of incident light to the pixel to which the second imaging condition is applied are the same, the difference in the signal data is reduced. When the amount of incident light on the applied pixel is different from the amount of incident light on the pixel to which the second imaging condition is applied, the difference in signal data may not be reduced. The same applies to the examples described later.
  • control unit 34 differs only in the shutter speed between the first imaging condition and the second imaging condition, and the shutter speed of the first imaging condition is 1/1000 second.
  • the shutter speed is 1/100 second
  • 1/1000/1/100 1/10 is applied to the signal data of the second imaging condition as a correction process.
  • the control unit 34 differs only in the frame rate between the first imaging condition and the second imaging condition (the charge accumulation time is the same), and the frame rate of the first imaging condition is 30 fps.
  • the frame rate of the second imaging condition is 60 fps
  • the signal data of the frame image acquired at the first imaging condition (30 fps) and the frame image having the acquisition start timing close to the signal data of the second imaging condition (60 fps) are adopted. This is the correction process. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
  • interpolation calculation is performed on the signal data of the frame image acquired under the first imaging condition (30 fps) and the acquisition start timing is similar. This may be a correction process.
  • control unit 34 does not perform the correction process when the imaging conditions applied in the signal data surrounded by the frame 170 are the same. That is, the control unit 34 (AF calculation unit 34d) performs focus detection processing using the signal data from the focus detection pixels indicated by the frame 170 as they are.
  • the imaging conditions are regarded as the same.
  • the signal data on the first imaging condition in the signal data is described.
  • correction processing may be performed according to the second imaging condition. Whether the control unit 34 (AF calculation unit 34d) performs the correction process on the signal data of the first imaging condition or the signal data of the second imaging condition is determined based on, for example, ISO sensitivity May be determined.
  • the ISO sensitivity differs between the first imaging condition and the second imaging condition, if the signal data obtained under the imaging condition with the higher ISO sensitivity is not saturated, the imaging condition with the lower ISO sensitivity was obtained. It is desirable to perform correction processing on the signal data. That is, when the ISO sensitivity differs between the first imaging condition and the second imaging condition, it is desirable to correct the darker signal data so as to reduce the difference from the brighter signal data.
  • the focus detection process using the pupil division phase difference method is exemplified.
  • the contrast detection method in which the focus lens of the imaging optical system 31 is moved to the in-focus position based on the contrast of the subject image. Can be done in the same way.
  • the control unit 34 moves the focus lens of the imaging optical system 31 and outputs the signal output from the imaging pixel of the imaging element 32a corresponding to the focus detection position at each position of the focus lens. A known focus evaluation value calculation is performed based on the data. Then, the position of the focus lens that maximizes the focus evaluation value is obtained as the focus position.
  • the control unit 34 normally performs focus evaluation value calculation using the signal data output from the imaging pixels corresponding to the focus detection position without performing correction processing. However, when the signal data corresponding to the focus detection position includes signal data to which the first imaging condition is applied and signal data to which the second imaging condition is applied, the control unit 34 corresponds to the focus detection position. Of the signal data to be processed, the correction processing as described above is performed on the signal data of the second imaging condition. And the control part 34 performs a focus evaluation value calculation using the signal data after a correction process.
  • FIG. 14A illustrates a template image representing an object to be detected
  • FIG. 14B illustrates a live view image 60 (a) and a search range 190. It is a figure to do.
  • the control unit 34 object detection unit 34a detects an object (for example, a bag 63a which is one of the subject elements in FIG. 5) from the live view image.
  • the control unit 34 may set the range in which the object is detected as the entire range of the live view image 60a. However, in order to reduce the detection process, a part of the live view image 60a is set as the search range 190. Also good.
  • the control unit 34 (the object detection unit 34a) sets at least different imaging conditions between the divided regions, and when the search range 190 includes a boundary of the divided regions, an image of at least one region in the search range 190 Correction processing is performed on the data as preprocessing of subject detection processing.
  • the correction process is performed in order to suppress a decrease in accuracy of the subject element detection process due to a difference in imaging conditions between areas of the imaging screen divided by the setting unit 34b.
  • image data to which different imaging conditions are applied may be mixed in the image data of the search range 190.
  • image data that has been subjected to correction processing so as to suppress differences between image data due to differences in imaging conditions is used rather than detecting subject elements using image data to which different imaging conditions are applied as they are. Based on the idea that it is preferable to use this method to detect the subject element, correction processing is performed as follows.
  • the control unit 34 sets the search range 190 in the vicinity of the region including the person 61a. In addition, you may set the area
  • the control unit 34 uses the image data constituting the search range 190 as it is without performing correction processing. Perform detection processing. However, if image data in the search range 190 includes image data to which the first imaging condition is applied and image data to which the second imaging condition is applied, the control unit 34 (object detection unit 34a) Then, correction processing is performed as in the above (Example 1) to (Example 3) as the case where the focus detection processing is performed on the image data of the second imaging condition in the image data in the search range 190. Then, the control unit 34 (object detection unit 34a) performs subject detection processing using the image data after the correction processing.
  • the imaging conditions are regarded as the same.
  • the example in which the correction process is performed on the image data on the second imaging condition in the image data based on the first imaging condition is described.
  • correction processing may be performed according to the second imaging condition.
  • the above-described correction processing for the image data in the search range 190 may be applied to a search range used for detecting a specific subject such as a human face or an area used for determination of an imaging scene.
  • the correction processing for the image data of the search range 190 described above is not limited to the search range used in the pattern matching method using the template image, but also in the search range when detecting the feature amount based on the color or edge of the image. You may apply similarly.
  • the control unit 34 when the image data to which the first imaging condition is applied and the image data to which the second imaging condition is applied coexist in the search range set in the frame image acquired later. Then, the correction processing is performed on the image data of the second imaging condition in the image data of the search range as described above (Example 1) to (Example 3). And the control part 34 performs a tracking process using the image data after a correction process.
  • the control unit 34 detects the motion vector. Correction processing is performed as described above (Example 1) to (Example 3) on the image data of the second imaging condition in the image data of the region. And the control part 34 detects a motion vector using the image data after a correction process.
  • control unit 34 (setting unit 34b) divides the area of the imaging screen and sets different imaging conditions between the divided areas, newly performs photometry and determines the exposure conditions Then, correction processing is performed as preprocessing for setting the exposure condition on the image data of at least one region.
  • the correction process is performed in order to suppress a decrease in accuracy of the process for determining the exposure condition due to the difference in the imaging condition between the areas of the imaging screen divided by the setting unit 34b.
  • image data to which different imaging conditions are applied may be mixed in the photometric range image data.
  • image data that has been subjected to correction processing to suppress differences between image data due to differences in imaging conditions is used rather than performing exposure calculation processing using image data to which different imaging conditions are applied as it is. Based on the idea that it is preferable to perform exposure calculation processing, correction processing is performed as follows.
  • the control unit 34 (setting unit 34b) performs exposure calculation processing using the image data constituting the photometric range as it is without performing correction processing. Do. However, if the image data to which the first imaging condition is applied and the image data to which the second imaging condition is applied are mixed in the image data in the photometric range, the control unit 34 (setting unit 34b) Correction processing is performed as in the above-described (Example 1) to (Example 3) as the case where the focus detection process and the subject detection process are performed on the image data of the second imaging condition in the range of image data. Then, the control unit 34 (setting unit 34b) performs an exposure calculation process using the image data after the correction process.
  • the imaging conditions are regarded as the same.
  • the example in which the correction process is performed on the image data on the second imaging condition in the image data based on the first imaging condition is described.
  • correction processing may be performed according to the second imaging condition.
  • the photometric range when performing the exposure calculation process described above but also the photometric (colorimetric) range used when determining the white balance adjustment value and the necessity of emission of the auxiliary photographing light by the light source that emits the auxiliary photographing light are determined. The same applies to the photometric range performed at the time, and further to the photometric range performed at the time of determining the light emission amount of the photographing auxiliary light by the light source.
  • the readout resolution of the photoelectric conversion signal is made different between areas obtained by dividing the imaging screen, the same applies to the area used for determination of the imaging scene performed when determining the readout resolution for each area. it can.
  • FIG. 15 is a flowchart for explaining the flow of processing for setting an imaging condition for each area and imaging.
  • the control unit 34 activates a program that executes the process shown in FIG.
  • step S10 the control unit 34 causes the display unit 35 to start live view display, and proceeds to step S20.
  • the control unit 34 instructs the imaging unit 32 to start acquiring a live view image, and causes the display unit 35 to sequentially display the acquired live view image.
  • the same imaging condition is set for the entire imaging chip 111, that is, the entire screen.
  • the control unit 34 (AF calculation unit 34d) performs focus detection processing to focus the subject element corresponding to the predetermined focus detection position.
  • the AF operation to be adjusted is controlled.
  • the AF calculation unit 34d performs the focus detection process after performing the correction process as necessary. If the setting for performing the AF operation is not performed during live view display, the control unit 34 (AF calculation unit 34d) performs the AF operation when the AF operation is instructed later.
  • step S20 the control unit 34 (object detection unit 34a) detects the subject element from the live view image, and proceeds to step S30.
  • the object detection unit 34a performs the subject detection process after performing the correction process as necessary.
  • step S30 the control unit 34 (setting unit 34b) divides the screen of the live view image into regions including subject elements, and proceeds to step S40.
  • step S ⁇ b> 40 the control unit 34 displays an area on the display unit 35. As illustrated in FIG. 6, the control unit 34 highlights an area that is a target for setting (changing) the imaging condition among the divided areas. In addition, the control unit 34 displays the imaging condition setting screen 70 on the display unit 35 and proceeds to step S50. When the display position of another main subject on the display screen is tapped with the user's finger, the control unit 34 sets an area including the main subject as an area for setting (changing) the imaging condition. Change and highlight.
  • step S50 the control unit 34 determines whether an AF operation is necessary.
  • the control unit 34 for example, when the focus adjustment state changes due to the movement of the subject, when the position of the focus detection position is changed by a user operation, or when execution of an AF operation is instructed by a user operation Then, affirmative determination is made in step S50, and the process proceeds to step S70.
  • the control unit 34 makes a negative determination in step S50 and proceeds to step 60. move on.
  • step S70 the control unit 34 performs the AF operation and returns to step S40.
  • the AF calculation unit 34d performs the focus detection process, which is an AF operation, after performing the correction process as necessary.
  • the control unit 34 that has returned to step S40 repeats the same processing as described above based on the live view image acquired after the AF operation.
  • step S60 the control unit 34 (setting unit 34b) sets an imaging condition for the highlighted area in accordance with a user operation, and proceeds to step S80. Note that the display transition of the display unit 35 and the setting of the imaging conditions according to the user operation in step S60 are as described above.
  • the control unit 34 (setting unit 34b) performs exposure calculation processing after performing the above correction processing as necessary.
  • step S80 the control unit 34 determines whether there is an imaging instruction.
  • a release button (not shown) constituting the operation member 36 or a display icon for instructing imaging is operated, the control unit 34 makes a positive determination in step S80 and proceeds to step S90.
  • the control unit 34 makes a negative determination in step S80 and returns to step S60.
  • step S90 the control unit 34 performs predetermined imaging processing. That is, the imaging control unit 34c controls the imaging element 32a so as to perform imaging under the imaging conditions set for each region, and the process proceeds to step S100.
  • step S100 the control unit 34 (imaging control unit 34c) sends an instruction to the image processing unit 33, performs predetermined image processing on the image data obtained by the imaging, and proceeds to step S110.
  • Image processing includes the pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing.
  • the image processing unit 33 (correction unit 33b) performs image processing after performing correction processing on image data located near the boundary of the region, as necessary.
  • step S110 the control unit 34 sends an instruction to the recording unit 37, records the image data after the image processing on a recording medium (not shown), and proceeds to step S120.
  • step S120 the control unit 34 determines whether an end operation has been performed. When the end operation is performed, the control unit 34 makes a positive determination in step S120 and ends the process illustrated in FIG. When the end operation is not performed, the control unit 34 makes a negative determination in step S120 and returns to step S20. When returning to step S20, the control unit 34 repeats the above-described processing.
  • the multilayer image sensor 100 is illustrated as the image sensor 32a.
  • the imaging condition can be set for each of a plurality of blocks in the image sensor (imaging chip 111)
  • the image sensor 32a is not necessarily configured as a multilayer image sensor. do not have to.
  • the camera 1 including the focus detection device captures the first signal data generated by capturing the subject image incident on the first region of the imaging unit 32 via the imaging optical system 31 under the first imaging condition.
  • An image processing unit 33 (correction unit 33b) that corrects based on a second imaging condition for capturing a subject image incident on the second region of the imaging unit 32, the first signal data corrected by the correction unit 33b, and the second A control unit 34 (AF calculation unit 34d) that detects information (for example, defocus amount) for moving the imaging optical system 31 based on the second signal data generated by imaging under imaging conditions.
  • AF calculation unit 34d that detects information (for example, defocus amount) for moving the imaging optical system 31 based on the second signal data generated by imaging under imaging conditions.
  • the correction unit 33b of the camera 1 corrects the first signal data so that the difference between the value of the first signal data and the value of the second signal data is small. Appropriate processing can be performed.
  • the correction unit 33b of the camera 1 corrects the first signal data based on the difference between the first imaging condition and the second imaging condition, the correction unit 33b can appropriately perform processing in areas where the imaging conditions are different. it can.
  • the correction unit 33b of the camera 1 corrects the second signal data based on the first imaging condition
  • the AF calculation unit 34d uses the first signal data corrected by the correction unit 33b and the correction unit 33b.
  • the defocus amount may be detected based on the corrected second signal data. Even in this case, it is possible to appropriately perform processing in areas where imaging conditions are different.
  • the focus detection process is appropriately performed in regions where the imaging conditions are different. be able to.
  • the focus detection process can be appropriately performed in regions where the imaging conditions are different.
  • the AF calculation unit 34d of the camera 1 detects the defocus amount (or contrast) for a partial region (focus detection position) of the imaging unit 32, and the first region and the second region are at the focus detection position. include. Thereby, it is possible to appropriately perform the focus detection process in regions where the imaging conditions are different.
  • the correction unit 33b of the camera 1 stores the first signal data generated by capturing the light image incident on the first region in the first accumulation time, and the second image light incident on the second region. It correct
  • the correction unit 33b of the camera 1 captures the first signal data generated by capturing the light image incident on the first region with the first imaging sensitivity, and the second image of the light image incident on the second region. It correct
  • control unit 34 may be configured to be able to switch between mode 1 in which the above-described correction processing is performed as preprocessing and mode 2 in which correction processing is not performed as preprocessing.
  • mode 1 the control unit 34 performs processing such as image processing after performing the above-described preprocessing.
  • mode 2 the control unit 34 performs processing such as image processing without performing the above-described preprocessing. For example, when a part of the face detected as the subject element is shaded, the shadowed part of the face is set so that the brightness of the shaded part of the face is comparable to the brightness of the part other than the shadow of the face.
  • unintended color interpolation may be performed on the shaded area due to a difference in imaging conditions. It is possible to avoid unintended color interpolation by configuring the mode 1 and the mode 2 so that the color interpolation process can be performed by using the image data as it is without performing the correction process.
  • FIGS. 16A to 16C are diagrams illustrating the arrangement of the first area and the second area on the imaging surface of the imaging element 32a.
  • the first region is composed of even columns
  • the second region is composed of odd columns. That is, the imaging surface is divided into even columns and odd columns.
  • the first area is composed of odd rows
  • the second area is composed of even rows. That is, the imaging surface is divided into odd rows and even rows.
  • the first area is composed of blocks of even rows in odd columns and blocks of odd rows in even columns.
  • the second region is configured by even-numbered blocks in even columns and odd-numbered blocks in odd columns. That is, the imaging surface is divided into a checkered pattern.
  • the first image based on the photoelectric conversion signal read from the first region and the photoelectric conversion signal read from the image sensor 32a that has picked up an image of one frame, and Second images based on the photoelectric conversion signals read from the second region are respectively generated.
  • the first image and the second image are captured at the same angle of view and include a common subject image.
  • the control unit 34 uses the first image for display and the second image for detection. Specifically, the control unit 34 causes the display unit 35 to display the first image as a live view image. Further, the control unit 34 causes the object detection unit 34a to perform subject detection processing using the second image, causes the AF calculation unit 34 to perform focus detection processing using the second image, and sets the second image using the setting unit 34b. Is used to perform exposure calculation processing.
  • the imaging condition set in the first area for capturing the first image is referred to as the first imaging condition
  • the imaging condition set in the second area for capturing the second image is referred to as the second imaging condition.
  • the control unit 34 may make the first imaging condition different from the second imaging condition.
  • the control unit 34 sets the first imaging condition to a condition suitable for display by the display unit 35.
  • the first imaging condition set for the first area is the same for the entire first area of the imaging screen.
  • the control unit 34 sets the second imaging condition set in the second region to a condition suitable for the focus detection process, the subject detection process, and the exposure calculation process.
  • the second imaging condition is the same for the entire second area of the imaging screen.
  • the second imaging condition of the first frame is a condition suitable for the focus detection process
  • the second imaging condition of the second frame is a condition suitable for the subject detection process
  • the second imaging condition of the third frame is the exposure calculation process.
  • the second imaging condition in each frame is the same in the entire second area of the imaging screen.
  • control unit 34 may vary the first imaging condition set in the first area depending on the area.
  • the control unit 34 (setting unit 34b) sets different first imaging conditions for each region including the subject element divided by the setting unit 34b.
  • the control unit 34 makes the second imaging condition set in the second area the same in the entire second area of the imaging screen.
  • the control unit 34 sets the second imaging condition to a condition suitable for the focus detection process, the subject detection process, and the exposure calculation process. However, the conditions suitable for the focus detection process, the subject detection process, and the exposure calculation process are set. If they are different, the imaging conditions set in the second area may be different for each frame.
  • control unit 34 makes the first imaging condition set for the first area the same for the entire first area of the imaging screen, while setting the second imaging condition for the second area. May be different on the imaging screen.
  • a different second imaging condition is set for each region including the subject element divided by the setting unit 34b. Even in this case, if the conditions suitable for the focus detection process, the subject detection process, and the exposure calculation process are different, the imaging conditions set in the second region may be different for each frame.
  • control unit 34 varies the first imaging condition set in the first area on the imaging screen, and varies the second imaging condition set on the second area on the imaging screen.
  • the setting unit 34b sets different first imaging conditions for each region including the subject element divided, and the setting unit 34b sets different second imaging conditions for each region including the subject element divided.
  • the area ratio between the first region and the second region may be different.
  • the control unit 34 sets the ratio of the first region to be higher than that of the second region based on the operation by the user or the determination of the control unit 34, or sets the ratio of the first region to the second region as shown in FIG. As shown in FIG. 16 (c), they are set equally, or the ratio of the first area is set lower than that of the second area.
  • the first image is made to have a higher definition than the second image, the resolutions of the first image and the second image are made equal, or the second image is Compared to the first image, it can be made higher definition.
  • the correction process includes an imaging condition applied at the position of interest (first imaging condition), an imaging condition applied at a reference position around the position of interest (second imaging condition), and Are different, the image processing unit 33 (correction unit 33b) corrects the image data of the second imaging condition (the image data of the second imaging condition of the image data at the reference position) based on the first imaging condition. . That is, the image discontinuity of the image based on the difference between the first imaging condition and the second imaging condition is reduced by correcting the image data of the second imaging condition at the reference position.
  • the image processing unit 33 performs image data on the first imaging condition (image data on the first imaging condition among the image data on the target position and the image data on the reference position). May be corrected based on the second imaging condition. Also in this case, the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition can be relaxed.
  • the image processing unit 33 may correct both the image data of the first imaging condition and the image data of the second imaging condition. That is, correction is performed for the image data of the target position of the first imaging condition, the image data of the first imaging condition of the image data of the reference position, and the image data of the second imaging condition of the image data of the reference position.
  • the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition may be alleviated.
  • 400/100 is applied as correction processing to the image data of the reference pixel, which is the first imaging condition (ISO sensitivity is 100), and the second imaging condition (ISO sensitivity is 800).
  • the 400/800 is applied to the image data of the reference pixel as a correction process.
  • the difference between the image data due to the difference in the imaging conditions is reduced.
  • the pixel data of the pixel of interest undergoes a correction process that multiplies 100/400 after the color interpolation process.
  • the pixel data of the target pixel after the color interpolation process can be changed to the same value as when the image is captured under the first imaging condition.
  • the degree of the correction process may be changed depending on the distance from the boundary between the first area and the second area. Compared to the case of (Example 1), the rate at which the image data is increased or decreased by the correction process can be reduced, and noise generated by the correction process can be reduced.
  • the corrected image data is obtained by performing the calculation based on the difference between the first imaging condition and the second imaging condition.
  • corrected image data may be obtained by referring to a correction table.
  • the corrected image data is read by inputting the first imaging condition and the second imaging condition as arguments.
  • the correction coefficient may be read out by inputting the first imaging condition and the second imaging condition as arguments.
  • an upper limit and a lower limit of the corrected image data may be set.
  • the upper limit value and the lower limit value may be determined in advance, or may be determined based on an output signal from the photometric sensor when a photometric sensor is provided separately from the image sensor 32a.
  • Modification 5 In the above embodiment, an example has been described in which the control unit 34 (setting unit 34b) detects a subject element based on a live view image and divides the screen of the live view image into regions including the subject element.
  • the control unit 34 when the control unit 34 includes a photometric sensor in addition to the imaging device 32a, the control unit 34 may divide the region based on an output signal from the photometric sensor.
  • the control unit 34 divides the foreground and the background based on the output signal from the photometric sensor.
  • the live view image acquired by the image sensor 32b is a foreground area corresponding to an area determined as a foreground from an output signal from a photometric sensor, and an area determined as a background from an output signal from the photometric sensor. Is divided into background areas corresponding to.
  • the control unit 34 further arranges the first area and the second area as illustrated in FIGS. 16A to 16C with respect to the position corresponding to the foreground area of the imaging surface of the imaging element 32a. . On the other hand, the control unit 34 arranges only the first area on the imaging surface of the imaging element 32a with respect to the position corresponding to the background area of the imaging surface of the imaging element 32a. The control unit 34 uses the first image for display and the second image for detection.
  • the live view image acquired by the image sensor 32b can be divided by using the output signal from the photometric sensor.
  • a first image for display and a second image for detection can be obtained for the foreground area, and only a first image for display can be obtained for the background area.
  • Modification 6 the image processing unit 33 (generation unit 33c) performs contrast adjustment processing as an example of correction processing. That is, the generation unit 33c relaxes the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition by changing the gradation curve (gamma curve).
  • the generation unit 33c compresses the value of the image data of the second imaging condition in the image data at the reference position to 1/8 by laying down the gradation curve.
  • the generation unit 33c may expand the value of the image data of the first imaging condition among the image data of the target position and the image data of the reference position by increasing the gradation curve by 8 times.
  • the modified example 6 as in the above-described embodiment, it is possible to appropriately perform image processing on image data respectively generated in regions with different imaging conditions. For example, discontinuity and discomfort appearing in an image after image processing can be suppressed due to a difference in imaging conditions at the boundary between regions.
  • the image processing unit 33 does not impair the contour of the subject element in the above-described image processing (for example, noise reduction processing).
  • image processing for example, noise reduction processing
  • smoothing filter processing is employed when noise reduction is performed.
  • the boundary of the subject element may be blurred while the noise reduction effect.
  • the image processing unit 33 compensates for the blur of the boundary of the subject element by performing a contrast adjustment process in addition to or in addition to the noise reduction process.
  • the image processing unit 33 (generation unit 33c) sets a curve that draws an S shape as a density conversion (gradation conversion) curve (so-called S-shaped conversion).
  • the image processing unit 33 (generation unit 33c) performs contrast adjustment using S-shaped conversion, thereby extending the gradation portions of the bright data and the dark data to respectively increase the number of gradations of the bright data (and dark data).
  • the number of gradations is reduced by compressing intermediate gradation image data.
  • the number of image data having a medium brightness is reduced, and data classified as either bright / dark is increased.
  • blurring of the boundary of the subject element can be compensated.
  • blurring of the boundary of the subject element can be compensated by clearing the contrast of the image.
  • the image processing unit 33 changes the white balance adjustment gain so as to reduce the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition.
  • the imaging condition applied at the time of imaging at the target position (referred to as the first imaging condition) is different from the imaging condition applied at the time of imaging at the reference position around the target position (referred to as the second imaging condition).
  • the image processing unit 33 (generating unit 33c) brings the white balance of the image data of the second imaging condition out of the image data at the reference position closer to the white balance of the image data acquired under the first imaging condition. Change the white balance adjustment gain.
  • the image processing unit 33 determines the white balance between the image data of the first imaging condition and the image data of the target position in the image data at the reference position, and the white balance of the image data acquired under the second imaging condition.
  • the white balance adjustment gain may be changed so as to approach the white balance.
  • the first imaging condition and the second imaging condition are set.
  • the discontinuity of the image based on the difference from the imaging condition can be reduced.
  • a plurality of image processing units 33 may be provided, and image processing may be performed in parallel. For example, image processing is performed on the image data captured in the region B of the imaging unit 32 while performing image processing on the image data captured in the region A of the imaging unit 32.
  • the plurality of image processing units 33 may perform the same image processing or different image processing. That is, the same parameters are applied to the image data of the region A and the region B, and the same image processing is performed, or the different parameters are applied to the image data of the region A and the region B to perform different image processing. You can do it.
  • image processing is performed by one image processing unit on image data to which the first imaging condition is applied, and other is performed on image data to which the second imaging condition is applied.
  • the image processing unit may perform image processing.
  • the number of image processing units is not limited to the above two, and for example, the same number as the number of imaging conditions that can be set may be provided. That is, each image processing unit takes charge of image processing for each region to which different imaging conditions are applied. According to the modification 9, it is possible to proceed in parallel with imaging under different imaging conditions for each area and image processing for image data of the image obtained for each area.
  • the camera 1 has been described as an example.
  • a high-function mobile phone 250 (FIG. 18) having a camera function like a smartphone or a mobile device such as a tablet terminal may be used.
  • the camera 1 in which the imaging unit 32 and the control unit 34 are configured as a single electronic device has been described as an example.
  • the imaging unit 1 and the control unit 34 may be provided separately, and the imaging system 1B that controls the imaging unit 32 from the control unit 34 via communication may be configured.
  • the imaging device 1001 including the imaging unit 32 is controlled from the display device 1002 including the control unit 34 will be described with reference to FIG.
  • FIG. 17 is a block diagram illustrating the configuration of the imaging system 1B according to the modification 11.
  • the imaging system 1 ⁇ / b> B includes an imaging device 1001 and a display device 1002.
  • the imaging device 1001 includes a first communication unit 1003 in addition to the imaging optical system 31 and the imaging unit 32 described in the above embodiment.
  • the display device 1002 includes a second communication unit 1004 in addition to the image processing unit 33, the control unit 34, the display unit 35, the operation member 36, and the recording unit 37 described in the above embodiment.
  • the first communication unit 1003 and the second communication unit 1004 can perform bidirectional image data communication using, for example, a well-known wireless communication technology or optical communication technology. Note that the imaging device 1001 and the display device 1002 may be connected by a wired cable, and the first communication unit 1003 and the second communication unit 1004 may perform bidirectional image data communication.
  • the control unit 34 controls the imaging unit 32 by performing data communication via the second communication unit 1004 and the first communication unit 1003. For example, by transmitting and receiving predetermined control data between the imaging device 1001 and the display device 1002, the display device 1002 divides the screen into a plurality of regions based on the images as described above, or the divided regions. A different imaging condition is set for each area, or a photoelectric conversion signal photoelectrically converted in each area is read out.
  • the user since the live view image acquired on the imaging device 1001 side and transmitted to the display device 1002 is displayed on the display unit 35 of the display device 1002, the user is at a position away from the imaging device 1001. Remote control can be performed from a certain display device 1002.
  • the display device 1002 can be configured by a high-function mobile phone 250 such as a smartphone, for example.
  • the imaging device 1001 can be configured by an electronic device including the above-described stacked imaging element 100.
  • the object detection part 34a, the setting part 34b, and imaging A part of the control unit 34c and the AF calculation unit 34d may be provided in the imaging apparatus 1001.
  • the program is supplied to the mobile device such as the camera 1, the high-function mobile phone 250, or the tablet terminal as described above by, for example, infrared communication or short-range wireless communication from the personal computer 205 storing the program as illustrated in FIG. 18. Can be sent to mobile devices.
  • the mobile device such as the camera 1, the high-function mobile phone 250, or the tablet terminal as described above by, for example, infrared communication or short-range wireless communication from the personal computer 205 storing the program as illustrated in FIG. 18. Can be sent to mobile devices.
  • the program may be supplied to the personal computer 205 by setting a recording medium 204 such as a CD-ROM storing the program in the personal computer 205 or by a method via the communication line 201 such as a network. You may load. When passing through the communication line 201, the program is stored in the storage device 203 of the server 202 connected to the communication line.
  • the program can be directly transmitted to the mobile device via a wireless LAN access point (not shown) connected to the communication line 201.
  • a recording medium 204B such as a memory card storing the program may be set in the mobile device.
  • the program can be supplied as various forms of computer program products, such as provision via a recording medium or a communication line.
  • the image processing unit 32A instead of providing the image processing unit 33 of the first embodiment, the image processing unit 32A has an image processing unit 32c having the same function as the image processing unit 33 of the first embodiment. Is different from the first embodiment in that
  • FIG. 19 is a block diagram illustrating the configuration of the camera 1C according to the second embodiment.
  • the camera 1 ⁇ / b> C includes an imaging optical system 31, an imaging unit 32 ⁇ / b> A, a control unit 34, a display unit 35, an operation member 36, and a recording unit 37.
  • the imaging unit 32A further includes an image processing unit 32c having the same function as the image processing unit 33 of the first embodiment.
  • the image processing unit 32 c includes an input unit 321, a correction unit 322, and a generation unit 323.
  • Image data from the image sensor 32 a is input to the input unit 321.
  • the correction unit 322 performs preprocessing for correcting the input image data.
  • the preprocessing performed by the correction unit 322 is the same as the preprocessing performed by the correction unit 33b in the first embodiment.
  • the generation unit 323 performs image processing on the input image data and the pre-processed image data to generate an image.
  • the image processing performed by the generation unit 323 is the same as the image processing performed by the generation unit 33c in the first embodiment.
  • FIG. 20 is a diagram schematically showing the correspondence between each block and a plurality of correction units 322 in the present embodiment.
  • one square of the imaging chip 111 represented by a rectangle represents one block 111a.
  • one square of an image processing chip 114 described later represented by a rectangle represents one correction unit 322.
  • the correction unit 322 is provided for each block 111a.
  • the correction unit 322 is provided for each block which is the minimum unit of the area where the imaging condition can be changed on the imaging surface.
  • the hatched block 111a and the hatched correction unit 322 have a correspondence relationship.
  • the hatched correction unit 322 performs preprocessing on image data from pixels included in the hatched block 111a.
  • Each correction unit 322 performs preprocessing on image data from pixels included in the corresponding block 111a.
  • the preprocessing of the image data can be processed in parallel by the plurality of correction units 322, so that the processing burden on the correction unit 322 can be reduced, and an appropriate image can be quickly generated from the image data generated in each of the areas with different imaging conditions. Can be generated.
  • the block 111a may be referred to as a block 111a to which the pixel belongs.
  • the block 111a may be referred to as a unit section, and a plurality of blocks 111a, that is, a plurality of unit sections may be referred to as a composite section.
  • FIG. 21 is a cross-sectional view of the multilayer imaging element 100A.
  • the multilayer imaging element 100A further includes an image processing chip 114 that performs the above-described preprocessing and image processing in addition to the backside illumination imaging chip 111, the signal processing chip 112, and the memory chip 113. That is, the above-described image processing unit 32c is provided in the image processing chip 114.
  • the imaging chip 111, the signal processing chip 112, the memory chip 113, and the image processing chip 114 are stacked, and are electrically connected to each other by a conductive bump 109 such as Cu.
  • a plurality of bumps 109 are arranged on the mutually facing surfaces of the memory chip 113 and the image processing chip 114.
  • the bumps 109 are aligned with each other, and the memory chip 113 and the image processing chip 114 are pressurized, so that the aligned bumps 109 are joined and electrically connected.
  • the region selected by the user or the region determined by the control unit 34 is determined.
  • the imaging conditions can be set (changed).
  • the control unit 34 causes the correction unit 322 to perform the following correction processing as necessary.
  • the imaging condition applied in the target pixel P is set as the first imaging condition
  • the imaging conditions applied to a part of the reference pixels are the first imaging conditions
  • the imaging conditions applied to the remaining reference pixels are the second imaging conditions.
  • the correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs is described below (Example 1) with respect to the image data of the reference pixel to which the second imaging condition is applied.
  • Correction processing is performed as in (Example 3).
  • the generation unit 323 performs image processing for calculating the image data of the target pixel P with reference to the image data of the reference pixel to which the first imaging condition is applied and the image data of the reference pixel after the correction process.
  • the correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs for example, differs only in ISO sensitivity between the first imaging condition and the second imaging condition, and the ISO sensitivity of the first imaging condition.
  • the image data of the reference pixel is subjected to 100/800 as a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
  • the correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs, for example, only the frame rate is different between the first imaging condition and the second imaging condition (the charge accumulation time is the same),
  • the first imaging condition (30 fps) for the image data of the reference pixel that is, the image data of the second imaging condition (60 fps).
  • the correction processing is to adopt image data of a frame image that is close in acquisition start timing to the frame image acquired in step (1). Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
  • interpolation calculation is performed on the frame image acquired under the first imaging condition (30 fps) and the frame image whose acquisition start timing is close. This may be a correction process.
  • the correction unit 322 corresponding to the block 111a to which the reference pixel to which the first imaging condition is applied belongs to the image data of the reference pixel described above (Example 1) to (Example 3).
  • the correction process is performed as follows.
  • the generation unit 323 is based on the reference pixel image data to which the same imaging condition as the imaging condition of the target pixel P is applied and the reference pixel image data corrected by the correction unit 322 in the first embodiment. Similar to the image processing unit 33 (generation unit 33c), image processing such as pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing is performed.
  • FIG. 22 illustrates image data (hereinafter referred to as first image data) from each pixel included in a partial area (hereinafter referred to as first area 141) of the imaging surface to which the first imaging condition is applied,
  • first image data image data
  • second image data image data from each pixel included in a partial area (hereinafter referred to as second area 142) of the imaging surface to which the two imaging conditions are applied is schematically illustrated.
  • the first image data captured under the first imaging condition is output from each pixel included in the first area 141, and the first image data captured under the second imaging condition is output from each pixel included in the second area 142.
  • Two image data are respectively output.
  • the first image data is output to the correction unit 322 corresponding to the block 111 a to which the pixel that generated the first image data belongs, among the correction units 322 provided in the processing chip 114.
  • the plurality of correction units 322 respectively corresponding to the plurality of blocks 111a to which the pixels that generate the respective first image data belong are referred to as first processing units 151.
  • the second image data is output to the correction unit 322 corresponding to the block 111a to which the pixel that generated the second image data belongs among the correction units 322 provided in the processing chip 114.
  • the plurality of correction units 322 respectively corresponding to the plurality of blocks 111a to which the respective pixels that generate the respective second image data belong are referred to as second processing units 152.
  • the second processing unit 152 receives, from the first processing unit 151, for example, information 181 about the first imaging condition necessary to reduce the difference between the image data due to the difference in the imaging condition.
  • the first processing unit 151 performs the above-described correction processing on the first image data from the reference pixels included in the first region 141.
  • the first processing unit 151 receives information on the second imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the second processing unit 152.
  • the first processing unit 151 does not correct the first image data from the reference pixel.
  • the second processing unit 152 does not correct the second image data from the reference pixel.
  • both the image data of the first imaging condition and the image data of the second imaging condition may be corrected by the first processing unit 151 and the second processing unit 152, respectively. That is, correction is performed for the image data of the target position of the first imaging condition, the image data of the first imaging condition of the image data of the reference position, and the image data of the second imaging condition of the image data of the reference position.
  • the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition may be alleviated.
  • 400/100 is applied as correction processing to the image data of the reference pixel, which is the first imaging condition (ISO sensitivity is 100), and the second imaging condition (ISO sensitivity is 800).
  • 400/800 is applied to the image data of the reference pixel as a correction process.
  • the difference between the image data due to the difference in the imaging conditions is reduced.
  • the pixel data of the pixel of interest undergoes a correction process that multiplies 100/400 after the color interpolation process.
  • the pixel data of the target pixel after the color interpolation process can be changed to the same value as when the image is captured under the first imaging condition. Furthermore, in the above (Example 1), the degree of the correction process may be changed depending on the distance from the boundary between the first area and the second area. Compared to the case of (Example 1), the rate at which the image data is increased or decreased by the correction process can be reduced, and noise generated by the correction process can be reduced. Although the above (Example 1) has been described above, the above (Example 2) can be similarly applied.
  • the generation unit 323 performs image processing such as pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing based on the image data from the first processing unit 151 and the second processing unit 152, and performs image processing.
  • image processing such as pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing based on the image data from the first processing unit 151 and the second processing unit 152, and performs image processing.
  • the later image data is output.
  • the first processing unit 151 may correct the first image data from all the pixels included in the first region 141 when the target pixel P is located in the second region 142.
  • the first region Of the pixels included in 141 only the first image data from pixels that may be used for interpolation of the pixel of interest P in the second region 142 may be corrected.
  • the second processing unit 152 may correct the second image data from all the pixels included in the second region 142 when the target pixel P is located in the first region 141. Of the pixels included in the region 142, only the second image data from pixels that may be used for interpolation of the target pixel P in the first region 141 may be corrected.
  • the control unit 34 (AF calculation unit 34d) performs focus using signal data (image data) corresponding to a predetermined position (focus detection position) on the imaging screen. Perform detection processing. Note that when different imaging conditions are set for the divided areas and the focus detection position of the AF operation is located at the boundary portion of the divided areas, that is, the focus detection positions are 2 in the first area and the second area. In the present embodiment, the following 2-2. As will be described below, the control unit 34 (AF calculation unit 34d) causes the correction unit 322 to perform correction processing on signal data for focus detection in at least one region.
  • the correction unit 322 performs correction processing. Instead, the control unit 34 (AF calculation unit 34d) performs the focus detection process using the signal data from the focus detection pixels indicated by the frame 170 as they are.
  • the control unit 34 (AF calculation The unit 34d) corrects the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied among the pixels in the frame 170 as shown in (Example 1) to (Example 3) below. Let the process do. Then, the control unit 34 (AF calculation unit 34d) performs focus detection processing using the pixel signal data to which the first imaging condition is applied and the signal data after the correction processing.
  • the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belongs differs only in the frame rate (the charge accumulation time is the same) between the first imaging condition and the second imaging condition.
  • the frame rate of the first imaging condition is 30 fps and the frame rate of the second imaging condition is 60 fps
  • acquisition of the frame image acquired under the first imaging condition (30 fps) and acquisition of the signal data of the second imaging condition (60 fps) is started.
  • Employing frame image signal data with close timing is referred to as correction processing. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
  • interpolation calculation is performed on the signal data of the frame image acquired under the first imaging condition (30 fps) and the acquisition start timing is similar. This may be a correction process.
  • the imaging conditions are regarded as the same.
  • the example in which the correction process is performed on the signal data of the second imaging condition in the signal data has been described.
  • the correction process is performed on the signal data of the first imaging condition in the signal data. You may go.
  • FIG. 23 is a diagram schematically showing processing of the first signal data and the second signal data related to the focus detection processing.
  • the first signal data imaged under the first imaging condition is output from each pixel included in the first region 141
  • the second signal imaged under the second imaging condition is output from each pixel included in the second region 142.
  • Signal data is output.
  • the first signal data from the first region 141 is output to the first processing unit 151.
  • the second signal data from the second region 142 is output to the second processing unit 152.
  • the second processing unit 152 When the difference between the signal data after the correction process and the signal data of the first imaging condition is reduced by performing the correction process on the signal data of the second imaging condition of the signal data, the second processing unit 152 Process.
  • the second processing unit 152 performs the above-described correction process on the second signal data from the pixels included in the second region 142.
  • the second processing unit 152 receives, for example, information 181 about the first imaging condition necessary for reducing the difference between the signal data due to the difference in the imaging condition from the first processing unit 151.
  • the first processing unit 151 does not correct the first signal data.
  • the first processing unit 151 performs processing.
  • the first processing unit 151 performs the above-described correction process on the first signal data from the pixels included in the first region 141.
  • the first processing unit 151 receives information about the second imaging condition necessary for reducing the difference between the signal data due to the difference in the imaging condition from the second processing unit 152.
  • the second processing unit 152 does not correct the second signal data.
  • the first processing unit 151 and the second processing unit 152 perform processing.
  • the first processing unit 151 performs the above-described correction processing on the first signal data from the pixels included in the first region 141
  • the second processing unit 152 performs the second signal data from the pixels included in the second region 142.
  • the correction process described above is performed.
  • the AF calculation unit 34d performs focus detection processing based on the signal data from the first processing unit 151 and the second processing unit 152, and moves the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result.
  • the drive signal for making it output is output.
  • control unit 34 causes the correction unit 322 to perform correction processing on image data of at least one region in the search range 190.
  • the unit 34 (the object detection unit 34a) performs subject detection processing using the image data constituting the search range 190 as it is.
  • the control unit 34 (object detection unit 34 a) Of the images in the search range 190, the cases of (Example 1) to (Example 3) described above as the case where the focus detection process is performed on the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belong.
  • the correction process is performed as follows.
  • the control unit 34 (object detection unit 34a) performs subject detection processing using the image data of the pixels to which the first condition is applied and the image data after the correction processing.
  • FIG. 24 is a diagram schematically showing processing of the first image data and the second image data related to the subject detection processing.
  • the correction process performed by the first processing unit 151 and / or the second processing unit 152 is the same as the correction process for FIG. 23 described above as the case of performing the focus detection process.
  • the object detection unit 34a performs a process of detecting a subject element based on the image data from the first processing unit 151 and the second processing unit 152, and outputs a detection result.
  • the correction unit 322 does not perform the correction process and the control unit 34 (setting The unit 34b) performs exposure calculation processing using the image data constituting the photometric range as it is.
  • the control unit 34 (setting unit 34b) Among them, the correction processing is performed as in the above (Example 1) to (Example 3) as the case where the focus detection processing is performed on the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belongs. Let it be done. Then, the control unit 34 (setting unit 34b) performs an exposure calculation process using the image data after the correction process.
  • FIG. 25 is a diagram schematically showing processing of the first image data and the second image data related to setting of imaging conditions such as exposure calculation processing.
  • the correction process performed by the first processing unit 151 and / or the second processing unit 152 is the same as the correction process for FIG. 23 described above as the case of performing the focus detection process.
  • the setting unit 34b performs an imaging condition calculation process such as an exposure calculation process based on the image data from the first processing unit 151 and the second processing unit 152, and the imaging screen by the imaging unit 32 is displayed based on the calculation result. Then, the image is divided into a plurality of areas including the detected subject element, and the imaging conditions are reset for the plurality of areas.
  • an imaging condition calculation process such as an exposure calculation process based on the image data from the first processing unit 151 and the second processing unit 152
  • the imaging screen by the imaging unit 32 is displayed based on the calculation result. Then, the image is divided into a plurality of areas including the detected subject element, and the imaging conditions are reset for the plurality of areas.
  • the camera 1C is capable of imaging by changing the imaging condition for each unit section of the imaging surface, and the first image data from the first region composed of at least one unit section captured under the first imaging condition;
  • An image sensor 32a is provided that generates second image data from a second region composed of at least one unit segment imaged under a second imaging condition different from the first imaging condition.
  • the camera 1C is provided for each unit section or for each composite section having a plurality of unit sections, and can correct a plurality of image data from the corresponding unit section or the unit sections in the corresponding composite section.
  • a correction unit 322 is provided.
  • the correction unit 322 corresponding to the unit section or the composite section in the second region corrects the first image data according to the second imaging condition.
  • the imaging element 32a is provided in the backside illumination type imaging chip 111.
  • the plurality of correction units 322 are provided in the image processing chip 114. Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing load on the correction unit 322 can be reduced.
  • the camera 1C includes a generation unit 323 that generates an image based on the first image data corrected by the correction unit 322 and the second image data.
  • the camera 1C is capable of imaging by changing the imaging conditions for each unit section of the imaging surface, and includes at least one unit section that captures an optical image incident through the imaging optical system under the first imaging condition. Generating first image data from the first region and second image data from the second region composed of at least one unit section obtained by imaging an incident light image under a second imaging condition different from the first imaging condition; An image sensor 32a is provided.
  • the camera 1C includes a plurality of correction units 322 that are provided corresponding to each unit section or each composite section having a plurality of unit sections and that can correct image data from the corresponding unit section or the unit section in the corresponding composite section. Prepare.
  • the camera 1C includes an AF calculation unit 34d that detects information for moving the imaging optical system.
  • the correction unit 322 corresponding to the unit section or the composite section in the first area corrects the first image data so that the difference from the second image data is small.
  • the AF calculation unit 34d detects information for moving the imaging optical system based on the first image data corrected by the correction unit 322 and the second image data.
  • the imaging element 32a is provided in the backside illumination type imaging chip 111.
  • the plurality of correction units 322 are provided in the image processing chip 114. Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing burden on the correction unit 322 can be reduced, and the preprocessing by the plurality of correction units 322 is performed in a short time by the parallel processing. The time until the start of the focus detection process in the AF calculation unit 34d can be shortened, which contributes to speeding up of the focus detection process.
  • the camera 1C can capture an image by changing the imaging condition for each unit section of the imaging surface, and the first image from the first region including at least one unit section obtained by capturing the incident subject image under the first imaging condition.
  • An image sensor 32a is provided that generates one image data and second image data from a second region composed of at least one unit segment obtained by imaging an incident subject image under a second imaging condition different from the first imaging condition.
  • the camera 1C includes a plurality of correction units 322 that are provided corresponding to each unit section or each composite section having a plurality of unit sections and that can correct image data from the corresponding unit section or the unit section in the corresponding composite section. Prepare.
  • the camera 1C includes an object detection unit 34a that detects an object from a subject image.
  • the correction unit 322 corresponding to the unit section or the composite section in the first region corrects the first image data so that the difference from the value of the second image data is small.
  • the object detection unit 34a detects an object from the subject image based on the first image data corrected by the correction unit 322 and the second image data.
  • the imaging element 32a is provided in the backside illumination type imaging chip 111.
  • the plurality of correction units 322 are provided in the image processing chip 114. Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing burden on the correction unit 322 can be reduced, and the preprocessing by the plurality of correction units 322 is performed in a short time by the parallel processing. The time until the start of the subject detection process in the object detection unit 34a can be shortened, which contributes to the speedup of the subject detection process.
  • the camera 1 ⁇ / b> C is capable of imaging by changing the imaging condition for each unit section of the imaging surface.
  • An image sensor 32a is provided that generates one image data and second image data from a second region composed of at least one unit segment obtained by imaging an incident light image under a second imaging condition different from the first imaging condition.
  • the camera 1C includes a plurality of correction units 322 that are provided corresponding to each unit section or each composite section having a plurality of unit sections and that can correct image data from the corresponding unit section or the unit section in the corresponding composite section. Prepare.
  • the camera 1C includes a setting unit 34b that sets imaging conditions.
  • the correction unit 322 corresponding to the unit section or the composite section in the first area corrects the first image data so that the difference from the second image data is small.
  • the setting unit 34b sets an imaging condition based on the first image data corrected by the correction unit 322 and the second image data.
  • the imaging element 32a is provided in the backside illumination type imaging chip 111.
  • the plurality of correction units 322 are provided in the image processing chip 114. Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing burden on the correction unit 322 can be reduced, and the preprocessing by the plurality of correction units 322 is performed in a short time by the parallel processing. The time until the start of the imaging condition setting process in the setting unit 34b can be shortened, which contributes to speeding up of the imaging condition setting process.
  • the control unit 34 uses the first image for display and the second image for detection.
  • An imaging condition set in the first area for capturing the first image is referred to as a first imaging condition
  • an imaging condition set in the second area for capturing the second image is referred to as a second imaging condition.
  • the control unit 34 may make the first imaging condition different from the second imaging condition.
  • the first imaging condition set for the first area is the same for the entire first area of the imaging screen
  • the second imaging condition set for the second area is the same for the entire second area of the imaging screen. This case will be described with reference to FIG.
  • FIG. 26 is a diagram schematically illustrating processing of the first image data and the second image data.
  • the first image data captured under the first imaging condition is output from each pixel included in the first area 141
  • the second image captured under the second imaging condition is output from each pixel included in the second area 142.
  • Image data is output.
  • the first image data from the first area 141 is output to the first processing unit 151.
  • the second image data from the second region 142 is output to the second processing unit 152.
  • the first processing unit 151 since the first imaging condition is the same for the entire first area of the imaging screen, the first processing unit 151 does not correct the first image data from the reference pixels included in the first area.
  • the second processing unit 152 since the second imaging condition is the same for the entire second area of the imaging screen, the second processing unit 152 does not correct the second image data used for the focus detection process, the subject detection process, and the exposure calculation process. .
  • the second processing unit 152 performs a correction process for reducing the difference between the image data due to the difference between the first imaging condition and the second imaging condition.
  • the second processing unit 152 outputs the second image data after the correction processing to the first processing unit 151 as indicated by an arrow 182.
  • the second processing unit 152 may output the second image data after the correction processing to the generation unit 323 as indicated by a dashed arrow 183.
  • the second processing unit 152 receives, from the first processing unit 151, for example, information 181 about the first imaging condition necessary to reduce the difference between the image data due to the difference in the imaging condition.
  • the generation unit 323 Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
  • the object detection unit 34a performs processing for detecting a subject element based on the second image data from the second processing unit 152, and outputs a detection result.
  • the setting unit 34b performs an imaging condition calculation process such as an exposure calculation process based on the second image data from the second processing unit 152, and based on the calculation result, the imaging screen by the imaging unit 32 is detected. While dividing into a plurality of regions including elements, imaging conditions are reset for the plurality of regions.
  • the AF calculation unit 34d performs focus detection processing based on the second signal data from the second processing unit 152, and drives for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result. Output a signal
  • FIG. 27 is a diagram schematically illustrating processing of the first image data and the second image data.
  • Each pixel included in the first region 141 outputs first image data captured under a first imaging condition that varies depending on the region of the imaging screen, and each pixel included in the second region 142 outputs the first image data of the imaging screen.
  • Second image data imaged under the same second imaging condition in the entire two areas is output.
  • the first image data from the first area 141 is output to the first processing unit 151.
  • the second image data from the second region 142 is output to the second processing unit 152.
  • the first imaging condition set in the first area differs depending on the area of the imaging screen. That is, the first imaging condition varies depending on the partial area in the first area.
  • the first processing unit 151 performs the above-described processing on the first image data from the reference pixel. 1-2.
  • a correction process similar to the correction process described above is performed.
  • the first processing unit 151 does not perform the correction process on the first image data from the reference pixel.
  • the second processing unit 152 performs focus detection processing, subject detection processing, and exposure calculation processing.
  • the second image data to be used is not corrected.
  • the second processing unit 152 calculates the difference between the image data due to the difference between the imaging condition for the target pixel P included in the first region and the second imaging condition.
  • a correction process for reducing the size is performed.
  • the second processing unit 152 outputs the second image data after the correction process to the first processing unit 151.
  • the second processing unit 152 may output the corrected second image data to the generation unit 323.
  • the second processing unit 152 uses the information 181 about the imaging condition for the pixel of interest P included in the first region necessary for reducing the difference between the image data due to the difference in the imaging condition, for example, the first processing unit 151. Receive from.
  • the generation unit 323 Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
  • the object detection unit 34a performs processing for detecting a subject element based on the second image data from the second processing unit 152, and outputs a detection result.
  • the setting unit 34b performs an imaging condition calculation process such as an exposure calculation process based on the second image data from the second processing unit 152, and based on the calculation result, the imaging screen by the imaging unit 32 is detected. While dividing into a plurality of regions including elements, imaging conditions are reset for the plurality of regions.
  • the AF calculation unit 34d performs focus detection processing based on the second signal data from the second processing unit 152, and drives for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result. Output a signal
  • the first imaging condition set in the first area is the same in the entire first area of the imaging screen, and the second imaging condition set in the second area differs depending on the area of the imaging screen.
  • FIG. 28 is a diagram schematically showing processing of the first image data and the second image data.
  • first image data captured under the same first imaging condition is output in the entire first area of the imaging screen, and from each pixel included in the second area 142.
  • Second image data captured under different second imaging conditions depending on the area of the imaging screen is output.
  • the first image data from the first area 141 is output to the first processing unit 151.
  • the second image data from the second region 142 is output to the second processing unit 152.
  • the first processing unit 151 performs the first image from the reference pixels included in the first area. Do not correct the data.
  • the second processing unit 152 performs the correction process on the second image data as follows. For example, the second processing unit 152 performs the correction process on the second image data imaged under a certain imaging condition in the second image data, and the second image data after the correction process is described above. The difference from the second image data captured under another imaging condition different from the imaging condition is reduced.
  • the second processing unit 152 uses the image data based on the difference between the imaging condition for the target pixel P included in the first region and the second imaging condition. Correction processing is performed to reduce the difference between them.
  • the second processing unit 152 outputs the second image data after the correction process to the first processing unit 151.
  • the second processing unit 152 may output the corrected second image data to the generation unit 323.
  • the second image data after correction processing output to the first processing unit 151 is denoted by reference numeral 182
  • the second image data after correction processing output to the generation unit 323 is denoted by reference numeral 183. It is shown with an attached.
  • the second processing unit 152 uses the information 181 about the imaging condition for the pixel of interest P included in the first region necessary for reducing the difference between the image data due to the difference in the imaging condition, for example, the first processing unit 151. Receive from.
  • the generation unit 323 Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
  • the object detection unit 34a detects the subject element based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition corrected by the second processing unit 152. Process and output the detection result.
  • the setting unit 34b performs exposure calculation processing or the like based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition, which is corrected by the second processing unit 152. An imaging condition calculation process is performed.
  • the setting unit 34b divides the imaging screen by the imaging unit 32 into a plurality of areas including the detected subject element, and resets the imaging conditions for the plurality of areas.
  • the AF calculation unit 34d performs focus detection processing based on the second signal data imaged under a certain imaging condition and the second signal data imaged under another imaging condition corrected by the second processing unit 152.
  • the AF calculation unit 34d that performs the operation outputs a drive signal for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result.
  • FIG. 29 is a diagram schematically illustrating processing of the first image data and the second image data.
  • first image data captured under a first imaging condition that varies depending on the area of the imaging screen is output.
  • second image data imaged under different second imaging conditions is output.
  • the first image data from the first area 141 is output to the first processing unit 151.
  • the second image data from the second region 142 is output to the second processing unit 152.
  • the first imaging condition set in the first area differs depending on the area of the imaging screen. That is, the first imaging condition varies depending on the partial area in the first area.
  • the first processing unit 151 performs the above-described processing on the first image data from the reference pixel. 1-2.
  • a correction process similar to the correction process described above is performed.
  • the first processing unit 151 does not perform the correction process on the first image data from the reference pixel.
  • the second processing unit 152 since the second imaging condition set in the second area differs depending on the area of the imaging screen, the second processing unit 152 performs the above-described 3. processing on the second image data. Correction processing is performed as an example.
  • the generation unit 323 Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
  • the object detection unit 34a detects the subject element based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition corrected by the second processing unit 152. Process and output the detection result.
  • the setting unit 34b performs exposure calculation processing or the like based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition, which is corrected by the second processing unit 152. An imaging condition calculation process is performed.
  • the setting unit 34b divides the imaging screen by the imaging unit 32 into a plurality of areas including the detected subject element, and resets the imaging conditions for the plurality of areas.
  • the AF calculation unit 34d performs focus detection processing based on the second signal data imaged under a certain imaging condition and the second signal data imaged under another imaging condition corrected by the second processing unit 152.
  • the AF calculation unit 34d that performs the operation outputs a drive signal for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result.
  • one of the correction units 322 corresponds to one of the blocks 111a (unit division).
  • one of the correction units 322 may correspond to one of the composite blocks (composite sections) having a plurality of blocks 111a (unit sections).
  • the correction unit 322 sequentially corrects image data from pixels belonging to the plurality of blocks 111a included in the composite block. Even if a plurality of correction units 322 are provided corresponding to each composite block having a plurality of blocks 111a, the correction processing of image data can be performed in parallel by the plurality of correction units 322. An appropriate image can be generated in a short time from the image data generated in the areas with different imaging conditions.
  • the generation unit 323 is provided inside the imaging unit 32A.
  • the generation unit 323 may be provided outside the imaging unit 32A. Even if the generation unit 323 is provided outside the imaging unit 32A, the same operational effects as the above-described operational effects can be obtained.
  • the multilayer imaging element 100A includes image processing that performs the above-described preprocessing and image processing in addition to the backside illumination imaging chip 111, the signal processing chip 112, and the memory chip 113.
  • a chip 114 is further provided.
  • the image processing chip 114 may be provided in the signal processing chip 112 without providing the image processing chip 114 in the multilayer imaging device 100A.
  • the second processing unit 152 receives, from the first processing unit 151, information on the first imaging condition necessary to reduce the difference between the image data due to the difference in the imaging condition. did.
  • the first processing unit 151 receives information about the second imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the second processing unit 152.
  • the second processing unit 152 may receive information about the first imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the driving unit 32b or the control unit 34.
  • the first processing unit 151 may receive information about the second imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the driving unit 32b or the control unit 34.
  • An imaging device including: a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area; and a second signal output from the second imaging area
  • a correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, and a signal obtained by interpolating the first signal with the second signal corrected by the correction unit.
  • a control unit that controls movement of the lens.
  • a first imaging region that captures an image of a subject through a lens that adjusts a focus position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit for setting imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and a first output from the second imaging area
  • a correction unit that corrects two signals for use in interpolation of the first signal output from the first imaging area, and the first signal is interpolated by the second signal corrected by the correction unit.
  • a control unit that controls the driving of the lens according to the in-focus state of the optical system detected using the signal.
  • the correction unit uses the second imaging area as a correction to be used for interpolation of the first signal output from the first imaging area.
  • the output second signal is corrected based on the imaging condition of the first imaging area or the imaging condition of the second imaging area.
  • the correction unit uses the second imaging area as a correction to be used for interpolation of the first signal output from the first imaging area.
  • the output second signal is corrected based on the imaging condition of the first imaging area and the imaging condition of the second imaging area.
  • the correction unit outputs the second output region from the second image pickup region as a correction for use in interpolation of the first signal output from the first image pickup region.
  • the second signal is corrected based on the difference between the imaging condition of the first imaging area and the imaging condition of the second imaging area.
  • the imaging condition of the first imaging area and the imaging condition of the second imaging area are exposure conditions, and the correction unit outputs from the second imaging area.
  • the corrected second signal is corrected based on the difference between the exposure condition of the first imaging region and the exposure condition of the second imaging region.
  • the exposure condition of the first imaging region and the exposure condition of the second imaging region are charge accumulation times of the light receiving unit in the imaging region, and the correction unit is The second signal output from the second imaging area is corrected based on the ratio between the charge accumulation time of the first imaging area and the charge accumulation time of the second imaging area.
  • the exposure condition of the first imaging area and the exposure condition of the second imaging area are imaging sensitivities of the imaging area, and the correction unit includes the second imaging area. The second signal output from the area is corrected based on a logarithmic ratio between the imaging sensitivity of the first imaging area and the imaging sensitivity of the second imaging area.
  • the correction unit corrects the first signal output from the first imaging region and outputs the first signal output from the second imaging region.
  • Two signals are corrected to be used for interpolation of the corrected first signal, and the control unit interpolates the corrected first signal by the second signal corrected by the correction unit.
  • the driving of the lens is controlled by the in-focus state of the optical system detected using the signal.
  • (11) A first imaging region that captures an image of a subject through a lens that adjusts the focusing position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit for setting imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and a first output from the second imaging area
  • a correction unit that performs correction for use in interpolation of a pixel that outputs the first signal in the first imaging region, and the first signal is generated by the second signal corrected by the correction unit.
  • An imaging apparatus comprising: a control unit that controls driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating pixels to be output. (12)
  • the pixel that outputs the first signal in the first imaging region photoelectrically converts light of a first color out of light from the subject and outputs the first signal.
  • the second imaging region photoelectrically converts light of a second color different from the first color out of light from the subject and outputs the second signal.
  • a first imaging area for imaging a subject and outputting a first signal via a lens movable in the optical axis direction of the optical system; and a second imaging area for imaging the subject and outputting a second signal A setting unit that sets the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the second signal output from the second imaging area
  • a correction unit that performs correction to reduce noise included in the first signal output from the first imaging region, and the second signal corrected by the correction unit converts the first signal into the first signal.
  • An image pickup apparatus comprising: a control unit that controls movement of the lens using a signal with reduced noise. (14) a first imaging region that captures an image of a subject through a lens that adjusts a focusing position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the output from the second imaging area
  • a correction unit that performs correction for reducing noise included in the first signal output from the first imaging region with respect to the second signal, and the second signal corrected by the correction unit.
  • An imaging apparatus comprising: a control unit that controls driving of the lens according to a focus state of the optical system detected using a signal in which noise included in one signal is reduced. (15) a first imaging region that captures an image of a subject through a lens that adjusts a focusing position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the imaging conditions of the first imaging area or the above Using a correction unit that corrects the second signal output from the second imaging region based on an imaging condition of the second imaging region, and the first signal and the second signal corrected by the correction unit. And a control unit that controls driving of the lens according to the detected in-focus state of the optical system. (16) a first imaging region that images a subject through a lens that adjusts a focus position of the optical system and outputs a first signal; and a second imaging unit that images the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, imaging conditions of the first imaging area, and the above
  • a correction unit that corrects the second signal output from the second imaging region based on an imaging condition of the second imaging region, and the first signal and the second signal corrected by the correction unit are used.
  • a control unit that controls the driving of the lens according to the in-focus state of the optical system detected in the above.
  • the correction unit outputs the second image pickup area as a correction used for interpolation of the first signal output from the first image pickup area.
  • the second signal is corrected based on the difference between the imaging condition of the first imaging area and the imaging condition of the second imaging area.
  • the imaging condition of the first imaging area and the imaging condition of the second imaging area are exposure conditions, and the correction unit outputs from the second imaging area.
  • the corrected second signal is corrected based on the difference between the exposure condition of the first imaging region and the exposure condition of the second imaging region.
  • the exposure condition of the first imaging region and the exposure condition of the second imaging region are a charge accumulation time of the light receiving unit in the imaging region, and the correction unit is The second signal output from the second imaging area is corrected based on the ratio between the charge accumulation time of the first imaging area and the charge accumulation time of the second imaging area.
  • the exposure condition of the first imaging area and the exposure condition of the second imaging area are imaging sensitivity of the imaging area
  • the correction unit includes the second imaging area.
  • the second signal output from the area is corrected based on a logarithmic ratio between the imaging sensitivity of the first imaging area and the imaging sensitivity of the second imaging area.
  • the optical system incident on the imaging element detected using the first signal and the second signal corrected by the correction unit.
  • the in-focus state of the optical system is detected based on the shift of the plurality of images due to the plurality of lights passing through different portions.
  • the subject imaged by the imaging element detected using the first signal and the second signal corrected by the correction unit.
  • the in-focus state of the optical system is detected based on the contrast of the image.
  • a first imaging region that images a subject through a lens that adjusts a focus position of the optical system and outputs a first signal; and a second imaging unit that images the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the imaging conditions of the first imaging area
  • the correction unit corrects the first signal output from the first imaging area and corrects the second signal output from the second imaging area based on the setting value of the imaging condition of the second imaging area.
  • the optical system detected using a signal obtained by interpolating pixels that output the first signal corrected by the first signal corrected by the correction unit and the second signal corrected by the correction unit.
  • Control the driving of the lens according to the in-focus state Imaging apparatus comprising: a control unit.
  • a first imaging region that images a subject through a lens that adjusts the focusing position of the optical system and outputs a first signal
  • a second imaging region that images the subject through the lens and outputs a second signal.
  • An imaging device having two imaging areas, a setting unit for setting imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the output from the first imaging area
  • a correction unit that corrects the first signal and corrects the second signal output from the second imaging region for use in interpolation of a pixel that outputs the corrected first signal; and the correction
  • a control unit that controls driving of the lens according to a focus state of the optical system detected by using the first signal corrected by the correction unit and the second signal corrected by the correction unit.
  • the pixel that outputs the first signal in the first imaging region photoelectrically converts the first color light out of the light from the subject, and outputs the first signal.
  • the second imaging region photoelectrically converts light of a second color different from the first color out of light from the subject and outputs the second signal.
  • An imaging condition different from the imaging condition of the second imaging area of the imaging element that outputs the second signal is set, and the second signal output from the second imaging area is output from the first imaging area.
  • a control unit that controls the movement of the lens using a correction unit that performs correction for use in interpolation of the first signal, and a signal obtained by interpolating the first signal by the second signal corrected by the correction unit.
  • a focus detection device (27)
  • the imaging condition of the first imaging region of the imaging device that images the subject through a lens that adjusts the focus position of the optical system and outputs the first signal is the same as that obtained by imaging the subject through the lens.
  • the imaging condition that is different from the imaging condition of the second imaging area of the imaging element that outputs two signals is output from the first imaging area with respect to the second signal output from the second imaging area.
  • a correction unit that performs correction for use in interpolation of the first signal and a second signal output from the second imaging region are used for interpolation of the first signal output from the first imaging region.
  • a control unit for controlling the driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with the second signal corrected by the correcting unit.
  • a control unit for controlling the driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with the second signal corrected by the correcting unit.
  • a control unit for controlling the driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with the second signal corrected by the correcting unit.
  • a control unit for controlling the driving of the lens according to a focus state of the optical
  • An imaging condition different from the imaging condition of the second imaging area of the imaging element that outputs the second signal is set, and the second signal output from the second imaging area is output from the first imaging area.
  • a control unit that controls movement of the lens. The imaging condition of the first imaging area of the imaging device that images the subject through a lens that adjusts the focusing position of the optical system and outputs the first signal is set as the imaging condition of the subject through the lens.
  • the imaging condition that is different from the imaging condition of the second imaging area of the imaging element that outputs two signals is output from the first imaging area with respect to the second signal output from the second imaging area.
  • a control unit for controlling the driving of the lens For controlling the driving of the lens.
  • Imaging light incident on the second area of the imaging unit using first signal data generated by imaging light incident on the first area of the imaging unit via the optical system under the first imaging condition A correction unit that corrects based on a second imaging condition that is different from the first imaging condition, the first signal data corrected by the correction unit, and light incident on the second region.
  • a generating unit that generates a signal for driving the optical system based on the second signal data.
  • the above-described embodiments and modifications also include the following imaging device and focus detection device.
  • a second region that images and generates second signal data;
  • a correction unit that corrects the first signal data generated by the imaging unit based on the second imaging condition;
  • a generating unit that generates a signal for driving the optical system based on the first signal data corrected based on the correcting unit and the second signal data generated by the imaging unit; Imaging device.
  • the generation unit generates a signal for driving the focus lens of the optical system as a signal for driving the optical system.
  • the correction unit uses the value of the first signal data and the value of the second signal data as the first signal data generated by the imaging unit. Correct so that the difference from the value is small.
  • the correction unit converts the first signal data generated by the imaging unit into a difference between the first imaging condition and the second imaging condition. Correct based on.
  • the correction unit corrects the second signal data generated by the imaging unit based on the first imaging condition, and the generation unit Generates a signal for driving the optical system based on the first signal data corrected by the correction unit and the second signal data corrected by the correction unit.
  • the correction unit determines the value of the second signal data, the value of the corrected second signal data, and the value of the corrected first signal data.
  • the generation unit drives the optical system based on the first signal data corrected by the correction unit and the second signal data corrected by the correction unit.
  • the generation unit is based on a shift of a plurality of images due to a plurality of lights that have passed through different pupil regions of the optical system incident on the imaging unit.
  • a signal for driving the optical system is generated.
  • the generation unit generates a signal for driving the optical system based on a contrast of an image by light received by the imaging unit.
  • the generation unit generates a signal for driving the optical system for a partial region of the imaging unit, and the first region and the The second area is included in the partial area.
  • the correction unit In the imaging apparatus as described in (1) to (9), the correction unit generates the first light generated by imaging the light incident on the first region by the imaging unit in a first accumulation time. The signal data is corrected based on a second accumulation time that is a charge accumulation time for imaging the light incident on the second region.
  • the correction unit is configured to capture the first signal data generated by imaging the light incident on the first region with the imaging unit in a first accumulation time.
  • Correction is performed such that the difference from the second signal data generated by imaging the light incident on the second region by the imaging unit in the second accumulation time becomes small.
  • the correction unit In the imaging device as in (5) to (11), the correction unit generates the first image generated by imaging the light incident on the first region with the first imaging sensitivity by the imaging unit. The signal data is corrected based on a second imaging sensitivity that is an imaging sensitivity for imaging the light incident on the second region.
  • the correction unit is configured to capture the first signal data generated by imaging the light incident on the first region with the first imaging sensitivity by the imaging unit. Correction is performed so that a difference from the second signal data generated by imaging the light incident on the second region with the second imaging sensitivity is reduced by the imaging unit.
  • Imaging light incident on the second region of the imaging unit using first signal data generated by imaging light incident on the first region of the imaging unit via the optical system under the first imaging condition A correction unit that corrects based on a second imaging condition that is different from the first imaging condition, the first signal data corrected by the correction unit, and light incident on the second region.
  • a generating unit that generates a signal for driving the optical system based on the second signal data.
  • the generation unit In the focus detection device as in (14), the generation unit generates a signal for driving the focus lens of the optical system as a signal for driving the optical system.
  • the correction unit may reduce the difference between the value of the first signal data and the value of the second signal data for the first signal data.
  • the correction unit corrects the first signal data based on a difference between the first imaging condition and the second imaging condition.
  • the correction unit corrects the second signal data based on the first imaging condition, and the generation unit is the correction unit. Based on the corrected first signal data and the second signal data corrected by the correction unit, a signal for driving the optical system is generated.
  • the correction unit sets the value of the second signal data to the value of the corrected second signal data and the corrected first signal data.
  • the generation unit corrects the optical system based on the first signal data corrected by the correction unit and the second signal data corrected by the correction unit. A signal for driving is generated.
  • the generation unit is based on a shift of a plurality of images due to a plurality of lights that have passed through different pupil regions of the optical system incident on the imaging unit. Then, a signal for driving the optical system is generated.
  • the generation unit In the focus detection device as in (14) to (19), the generation unit generates a signal for driving the optical system based on a contrast of an image by light received by the imaging unit.
  • the generation unit In the focus detection device as described in (14) to (21), the generation unit generates a signal for driving the optical system for a partial region of the imaging unit, and the first region and The second area is included in the partial area.
  • the correction unit may use the first signal data generated by imaging the light incident on the first region with a first accumulation time. The correction is made based on the second accumulation time which is the charge accumulation time for imaging the light incident on the second region.
  • the correction unit uses the first signal data generated by imaging the light incident on the first region in a first accumulation time as the second signal data. Correction is made so that the difference from the second signal data generated by imaging the light incident on the region in the second accumulation time becomes small.
  • the correction unit uses the first signal data generated by imaging the light incident on the first region with a first imaging sensitivity.
  • the correction is made based on the second imaging sensitivity, which is the imaging sensitivity for imaging the light incident on the second region.
  • the correction unit converts the first signal data generated by imaging the light incident on the first region with the first imaging sensitivity to the second signal data. Correction is performed so that the difference from the second signal data generated by imaging the light incident on the region with the second imaging sensitivity is reduced.
  • the correction unit corrects the first signal data generated by imaging light incident on the first region under the first imaging condition.
  • a second correction unit that corrects the second signal data generated by imaging the light incident on the second region under the second imaging condition.
  • the correction unit corrects the first signal data based on an imaging condition of the second region, and the generation unit corrects the first signal data corrected by the first correction unit and the second signal data.
  • a signal for driving the optical system is generated based on the signal data.
  • the first correction unit may reduce the difference between the value of the first signal data and the value of the second signal data in the first signal data. To correct.
  • the first correction unit corrects the first signal data based on a difference between the first imaging condition and the second imaging condition. To do.
  • the second correction unit corrects the second signal data based on the imaging condition of the first region
  • the generation unit includes: A signal for driving the optical system is generated based on the first signal data corrected by the first correction unit and the second signal data corrected by the second correction unit.
  • the second correction unit corrects the second signal data with the first signal data
  • the generation unit performs the first correction.
  • a signal for driving the optical system is generated based on the first signal data corrected by the second correction unit and the second signal data corrected by the second correction unit.
  • the imaging unit is provided on a first semiconductor substrate, and the first correction unit and the second correction unit are a second semiconductor substrate. Is provided. (33) In the imaging device as in (32), the first semiconductor substrate and the second semiconductor substrate are stacked.

Abstract

This imaging device is provided with: a first imaging element which has a first imaging region which images a subject through a lens capable of moving in the optical axis direction of the optical system and outputs a first signal, and a second imaging region which images the subject and outputs a second signal; a setting unit which sets the imaging condition of the first imaging region to an imaging condition different from that of the second imaging region; a correction unit which corrects the second signal, outputted from the second imaging region, for use in interpolation of the first signal, outputted from the first imaging region; and a control unit which controls movement of the lens using the signal obtained by interpolation of the first signal by means of the second signal which was corrected by the correction unit.

Description

撮像装置、および焦点検出装置Imaging device and focus detection device
 本発明は、撮像装置、および焦点検出装置に関する。 The present invention relates to an imaging device and a focus detection device.
 画面の領域ごとに異なる撮像条件を設定可能な撮像素子を搭載した撮像装置が知られている(特許文献1参照)。しかしながら、撮像条件が異なる領域でそれぞれ生成された画像データを処理する場合に撮像条件については考慮されていなかった。 An imaging apparatus equipped with an imaging element capable of setting different imaging conditions for each screen area is known (see Patent Document 1). However, the imaging conditions have not been taken into account when processing image data generated in regions with different imaging conditions.
日本国特開2006-197192号公報Japanese Unexamined Patent Publication No. 2006-197192
 第1の態様によると、撮像装置は、光学系の光軸方向に移動可能なレンズを介して、被写体を撮像して第1信号を出力する第1撮像領域と、被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて、前記レンズの移動を制御する制御部と、を備える。
 第2の態様によると、撮像装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第3の態様によると、撮像装置は、光学系の光軸方向に移動可能なレンズを介して、被写体を撮像して第1信号を出力する第1撮像領域と、被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号に含まれるノイズを低減した信号を用いて、前記レンズの移動を制御する制御部と、を備える。
 第4の態様によると、撮像装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号に含まれるノイズを低減した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第5の態様によると、撮像装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第1撮像領域の撮像条件または前記第2撮像領域の撮像条件に基づいて前記第2撮像領域から出力された前記第2信号を補正する補正部と、前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第6の態様によると、撮像装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件とに基づいて前記第2撮像領域から出力された前記第2信号を補正する補正部と、前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第7の態様によると、撮像装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第1撮像領域の撮像条件に基づいて前記第1撮像領域から出力された前記第1信号を補正し、前記第2撮像領域の撮像条件の設定値に基づいて前記第2撮像領域から出力された前記第2信号を補正する補正部と、前記補正部で補正された前記第1信号と前記補正部で補正された前記第2信号により補正された前記第1信号を出力する画素を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第8の態様によると、撮像装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、前記第1撮像領域から出力された前記第1信号を補正し、前記第2撮像領域から出力された前記第2信号に対して、補正された前記第1信号を出力する画素の補間に用いるための補正を行う補正部と、前記補正部で補正された前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第9の態様によると、焦点検出装置は、光学系の光軸方向に移動可能なレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて、前記レンズの移動を制御する制御部と、を備える。
 第10の態様によると、焦点検出装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第11の態様によると、焦点検出装置は、光学系の光軸方向に移動可能なレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、前記補正部で補正された前記第2信号により前記第1信号に含まれるノイズを低減した信号を用いて、前記レンズの移動を制御する制御部と、を備える。
 第12の態様によると、焦点検出装置は、光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、を備える。
 第13の態様によると、撮像装置は、光学系を介して入射した光を第1撮像条件で撮像して第1信号データを生成する第1領域と、前記入射した光を前記第1撮像条件とは異なる第2撮像条件で撮像して第2信号データを生成する第2領域と、を有する撮像部と、前記撮像部で生成された前記第1信号データを、前記第2撮像条件に基づいて補正する補正部と、前記補正部に基づいて補正された前記第1信号データと、前記撮像部で生成された前記第2信号データとに基づいて、前記光学系を駆動するための信号を生成する生成部と、を備える。
 第14の態様によると、焦点検出装置は、光学系を介して撮像部の第1領域に入射した光を第1撮像条件で撮像することにより生成された第1信号データを、前記撮像部の第2領域に入射した光を撮像する前記第1撮像条件とは異なる第2撮像条件に基づいて補正する補正部と、前記補正部で補正された前記第1信号データと、前記第2領域に入射した光を撮像して生成された第2信号データとに基づいて、前記光学系を駆動するための信号を生成する生成部と、を備える。
According to the first aspect, the imaging apparatus captures the subject through the lens movable in the optical axis direction of the optical system and outputs the first signal, and captures the subject and outputs the second signal. An imaging device having a second imaging area that outputs a signal; a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area; and the second imaging area A correction unit that performs correction for use in interpolation of the first signal output from the first imaging region with respect to the second signal output from the first imaging region, and the second signal corrected by the correction unit And a control unit that controls movement of the lens using a signal obtained by interpolating the first signal.
According to the second aspect, the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens. An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first A correction unit that corrects the second signal output from the two imaging regions for use in interpolation of the first signal output from the first imaging region; and the second signal corrected by the correction unit. A control unit that controls driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with a signal.
According to the third aspect, the imaging apparatus captures the subject through the lens movable in the optical axis direction of the optical system, outputs the first signal, and captures the subject. An imaging device having a second imaging area that outputs a signal; a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area; and the second imaging area A correction unit that performs correction for reducing noise included in the first signal output from the first imaging region with respect to the second signal output from the first imaging region; and the first signal corrected by the correction unit A control unit that controls movement of the lens using a signal in which noise included in the first signal is reduced by two signals.
According to the fourth aspect, the imaging device images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens. An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first A correction unit that performs correction to reduce noise included in the first signal output from the first imaging region is corrected by the correction unit with respect to the second signal output from two imaging regions. And a control unit that controls the driving of the lens according to the in-focus state of the optical system detected using a signal in which noise included in the first signal is reduced by the second signal.
According to the fifth aspect, the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens. An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first A correction unit that corrects the second signal output from the second imaging region based on an imaging condition of one imaging region or an imaging condition of the second imaging region, and the first signal and the correction unit correct the second signal. A control unit that controls driving of the lens according to a focus state of the optical system detected using the second signal.
According to the sixth aspect, the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens. An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first A correction unit that corrects the second signal output from the second imaging region based on the imaging condition of one imaging region and the imaging condition of the second imaging region, and is corrected by the first signal and the correction unit. And a control unit that controls driving of the lens according to a focused state of the optical system detected using the second signal.
According to the seventh aspect, the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens. An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first The first signal output from the first imaging area is corrected based on an imaging condition of one imaging area, and the output from the second imaging area is corrected based on a setting value of an imaging condition of the second imaging area. A correction unit that corrects the second signal, and a signal obtained by interpolating the first signal corrected by the correction unit and the pixel that outputs the first signal corrected by the second signal corrected by the correction unit. Depending on the in-focus state of the optical system detected using And a control unit for controlling the driving of the serial lens.
According to the eighth aspect, the imaging apparatus images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal, and images the subject via the lens. An imaging device having a second imaging area that outputs a second signal, a setting unit that sets an imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the first Correction for correcting the first signal output from one imaging region and using the second signal output from the second imaging region for interpolation of a pixel that outputs the corrected first signal The lens drive is controlled by the in-focus state of the optical system detected using the correction unit that performs the correction, the first signal corrected by the correction unit, and the second signal corrected by the correction unit. A control unit.
According to the ninth aspect, the focus detection device captures the imaging condition of the first imaging region of the imaging device that captures an image of the subject and outputs the first signal through the lens that is movable in the optical axis direction of the optical system. An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject via the lens and outputs the second signal is set to the second signal output from the second imaging area. A correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, and a signal obtained by interpolating the first signal with the second signal corrected by the correction unit. And a control unit for controlling movement of the lens.
According to the tenth aspect, the focus detection device captures the imaging condition of the first imaging region of the imaging device that images the subject via the lens that adjusts the focus position of the optical system and outputs the first signal. An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject and outputs the second signal via the second imaging area is output to the second signal output from the second imaging area. A correction unit that performs correction for use in interpolation of the first signal output from the first imaging region and a second signal output from the second imaging region are output from the first imaging region. A correction unit that performs correction for use in interpolation of the first signal, and a focus of the optical system that is detected using a signal obtained by interpolating the first signal with the second signal corrected by the correction unit. Control to control the driving of the lens according to the state And, equipped with a.
According to the eleventh aspect, the focus detection device captures the imaging condition of the first imaging region of the imaging element that captures an image of the subject and outputs the first signal through the lens that is movable in the optical axis direction of the optical system. An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject via the lens and outputs the second signal is set to the second signal output from the second imaging area. , A correction unit that performs correction to reduce noise included in the first signal output from the first imaging region, and noise included in the first signal by the second signal corrected by the correction unit And a control unit for controlling the movement of the lens using a signal with reduced signal.
According to the twelfth aspect, the focus detection apparatus captures the imaging condition of the first imaging region of the imaging element that captures an image of the subject and outputs the first signal via the lens that adjusts the focus position of the optical system. An imaging condition that is different from the imaging condition of the second imaging area of the imaging element that images the subject and outputs the second signal via the second imaging area is output to the second signal output from the second imaging area. Detection is performed using a correction unit that performs correction to reduce noise included in the first signal output from the first imaging region, and the first signal and the second signal corrected by the correction unit. And a control unit that controls driving of the lens according to a focused state of the optical system.
According to the thirteenth aspect, the imaging device captures the light incident through the optical system under a first imaging condition to generate first signal data, and the incident light with the first imaging condition. An imaging unit having a second area that captures an image under a second imaging condition different from the second imaging data and generates second signal data, and the first signal data generated by the imaging unit is based on the second imaging condition. A signal for driving the optical system based on the correction unit corrected by the correction unit, the first signal data corrected based on the correction unit, and the second signal data generated by the imaging unit. A generating unit for generating.
According to the fourteenth aspect, the focus detection device receives the first signal data generated by imaging the light incident on the first region of the imaging unit via the optical system under the first imaging condition, and outputs the first signal data of the imaging unit. A correction unit configured to correct based on a second imaging condition different from the first imaging condition for imaging light incident on the second region; the first signal data corrected by the correction unit; and the second region A generation unit configured to generate a signal for driving the optical system based on second signal data generated by imaging incident light.
第1の実施の形態によるカメラの構成を例示するブロック図である。It is a block diagram which illustrates the composition of the camera by a 1st embodiment. 積層型の撮像素子の断面図である。It is sectional drawing of a laminated type image pick-up element. 撮像チップの画素配列と単位領域を説明する図である。It is a figure explaining the pixel arrangement | sequence and unit area | region of an imaging chip. 単位領域における回路を説明する図である。It is a figure explaining the circuit in a unit area. カメラの撮像素子に結像される被写体の像を模式的に示す図である。It is a figure which shows typically the image of the to-be-photographed object imaged on the image pick-up element of a camera. 撮像条件の設定画面を例示する図である。It is a figure which illustrates the setting screen of imaging conditions. 図7(a)はライブビュー画像における第1領域の境界付近を例示する図、図7(b)は境界付近を拡大した図、図7(c)は注目画素および参照画素の拡大図である。FIG. 7A is a diagram illustrating the vicinity of the boundary of the first region in the live view image, FIG. 7B is an enlarged view of the vicinity of the boundary, and FIG. 7C is an enlarged view of the target pixel and the reference pixel. . 図8(a)は画素から出力された光電変換信号の並びを例示する図、図8(b)はG色成分の画像データの補間を説明する図、図8(c)は補間後のG色成分の画像データを例示する図である。8A is a diagram illustrating the arrangement of photoelectric conversion signals output from the pixels, FIG. 8B is a diagram illustrating interpolation of image data of the G color component, and FIG. 8C is a diagram illustrating G after interpolation. It is a figure which illustrates the image data of a color component. 図9(a)は図8(a)からR色成分の画像データを抽出した図、図9(b)は色差成分Crの補間を説明する図、図9(c)は色差成分Crの画像データの補間を説明する図である。9A is a diagram obtained by extracting image data of the R color component from FIG. 8A, FIG. 9B is a diagram illustrating interpolation of the color difference component Cr, and FIG. 9C is an image of the color difference component Cr. It is a figure explaining the interpolation of data. 図10(a)は図8(a)からB色成分の画像データを抽出した図、図10(b)は色差成分Cbの補間を説明する図、図10(c)は色差成分Cbの画像データの補間を説明する図である。10A is a diagram obtained by extracting B color component image data from FIG. 8A, FIG. 10B is a diagram illustrating interpolation of the color difference component Cb, and FIG. 10C is an image of the color difference component Cb. It is a figure explaining the interpolation of data. 撮像面における焦点検出用画素の位置を例示する図である。It is a figure which illustrates the position of the pixel for focus detection in an imaging surface. 焦点検出画素ラインの一部の領域を拡大した図である。It is the figure which expanded the one part area | region of the focus detection pixel line. 焦点検出位置を拡大した図である。It is the figure which expanded the focus detection position. 図14(a)は、検出しようとする対象物を表すテンプレート画像を例示する図であり、図14(b)は、ライブビュー画像および探索範囲を例示する図である。FIG. 14A is a diagram illustrating a template image representing an object to be detected, and FIG. 14B is a diagram illustrating a live view image and a search range. 領域ごとに撮像条件を設定して撮像する処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the process which sets an imaging condition for every area and images. 図16(a)~図16(c)は、撮像素子の撮像面における第1領域および第2領域の配置を例示する図である。FIGS. 16A to 16C are diagrams illustrating the arrangement of the first region and the second region on the imaging surface of the imaging device. 変形例11による撮像システムの構成を例示するブロック図である。FIG. 20 is a block diagram illustrating a configuration of an imaging system according to Modification 11. モバイル機器へのプログラムの供給を説明する図である。It is a figure explaining supply of the program to a mobile device. 第2の実施の形態によるカメラの構成を例示するブロック図である。It is a block diagram which illustrates the composition of the camera by a 2nd embodiment. 第2の実施の形態における各ブロックと、複数の補正部との対応関係を模式的に示した図である。It is the figure which showed typically the correspondence of each block in 2nd Embodiment, and several correction | amendment parts. 積層型撮像素子の断面図である。It is sectional drawing of a multilayer type image pick-up element. 画像処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process with 1st image data and 2nd image data concerning an image process. 焦点検出処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process of 1st image data and 2nd image data which concerns on a focus detection process. 被写体検出処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process of 1st image data and 2nd image data regarding a to-be-photographed object detection process. 露出演算処理等の撮像条件の設定に係る、第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process of 1st image data and 2nd image data concerning the setting of imaging conditions, such as exposure calculation processing. 変形例13による第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process with the 1st image data by the modification 13, and 2nd image data. 変形例13による第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process with the 1st image data by the modification 13, and 2nd image data. 変形例13による第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process with the 1st image data by the modification 13, and 2nd image data. 変形例13による第1画像データと第2画像データとの処理について模式的に表した図である。It is the figure which represented typically about the process with the 1st image data by the modification 13, and 2nd image data.
---第1の実施の形態---
 第1の実施の形態による画像処理装置を搭載する電子機器の一例として、デジタルカメラを例にあげて説明する。カメラ1(図1)は、撮像素子32aにおける撮像面の領域ごとに異なる条件で撮像を行うことが可能に構成される。画像処理部33は、撮像条件が異なる領域においてそれぞれ適切な処理を行う。このようなカメラ1の詳細について、図面を参照して説明する。
--- First embodiment ---
A digital camera will be described as an example of an electronic device equipped with the image processing apparatus according to the first embodiment. The camera 1 (FIG. 1) is configured to be able to capture images under different conditions for each region of the imaging surface of the image sensor 32a. The image processing unit 33 performs appropriate processing in areas with different imaging conditions. Details of the camera 1 will be described with reference to the drawings.
<カメラの説明>
 図1は、第1の実施の形態によるカメラ1の構成を例示するブロック図である。図1において、カメラ1は、撮像光学系31と、撮像部32と、画像処理部33と、制御部34と、表示部35と、操作部材36と、記録部37とを有する。
<Explanation of camera>
FIG. 1 is a block diagram illustrating the configuration of the camera 1 according to the first embodiment. In FIG. 1, the camera 1 includes an imaging optical system 31, an imaging unit 32, an image processing unit 33, a control unit 34, a display unit 35, an operation member 36, and a recording unit 37.
 撮像光学系31は、被写界からの光束を撮像部32へ導く。撮像部32は、撮像素子32aおよび駆動部32bを含み、撮像光学系31によって結像された被写体の像を光電変換する。撮像部32は、撮像素子32aにおける撮像面の全域において同じ条件で撮像したり、撮像素子32aにおける撮像面の領域ごとに異なる条件で撮像したりすることができる。撮像部32の詳細については後述する。駆動部32bは、撮像素子32aに蓄積制御を行わせるために必要な駆動信号を生成する。撮像部32に対する電荷蓄積時間などの撮像指示は、制御部34から駆動部32bへ送信される。 The imaging optical system 31 guides the light flux from the object scene to the imaging unit 32. The imaging unit 32 includes an imaging element 32a and a driving unit 32b, and photoelectrically converts an object image formed by the imaging optical system 31. The imaging unit 32 can capture images under the same conditions over the entire imaging surface of the imaging device 32a, or can perform imaging under different conditions for each region of the imaging surface of the imaging device 32a. Details of the imaging unit 32 will be described later. The drive unit 32b generates a drive signal necessary for causing the image sensor 32a to perform accumulation control. An imaging instruction such as a charge accumulation time for the imaging unit 32 is transmitted from the control unit 34 to the driving unit 32b.
 画像処理部33は、入力部33aと、補正部33bと、生成部33cとを含む。入力部33aには、撮像部32によって取得された画像データが入力される。補正部33bは、上記入力された画像データに対して補正する前処理を行う。前処理の詳細については後述する。生成部33cは、上記入力された画像データと前処理後の画像データとに基づく画像を生成する。また、生成部33cは、画像データに対する画像処理を行う。画像処理には、例えば、色補間処理、画素欠陥補正処理、輪郭強調処理、ノイズ低減(Noise reduction)処理、ホワイトバランス調整処理、ガンマ補正処理、表示輝度調整処理、彩度調整処理等が含まれる。さらに、生成部33cは、表示部35により表示する画像を生成する。 The image processing unit 33 includes an input unit 33a, a correction unit 33b, and a generation unit 33c. Image data acquired by the imaging unit 32 is input to the input unit 33a. The correction unit 33b performs preprocessing for correcting the input image data. Details of the preprocessing will be described later. The generation unit 33c generates an image based on the input image data and the preprocessed image data. The generation unit 33c performs image processing on the image data. Image processing includes, for example, color interpolation processing, pixel defect correction processing, edge enhancement processing, noise reduction processing, white balance adjustment processing, gamma correction processing, display luminance adjustment processing, saturation adjustment processing, and the like. . Further, the generation unit 33 c generates an image to be displayed by the display unit 35.
 制御部34は、例えばCPUによって構成され、カメラ1による全体の動作を制御する。例えば、制御部34は、撮像部32で取得された光電変換信号に基づいて所定の露出演算を行い、適正露出に必要な撮像素子32aの電荷蓄積時間(露光時間)、撮像光学系31の絞り値、ISO感度等の露出条件を決定して駆動部32bへ指示する。また、カメラ1に設定されている撮像シーンモードや、検出した被写体要素の種類に応じて、彩度、コントラスト、シャープネス等を調整する画像処理条件を決定して画像処理部33へ指示する。被写体要素の検出については後述する。 The control unit 34 is constituted by a CPU, for example, and controls the overall operation of the camera 1. For example, the control unit 34 performs a predetermined exposure calculation based on the photoelectric conversion signal acquired by the imaging unit 32, the charge accumulation time (exposure time) of the imaging element 32a necessary for proper exposure, and the aperture of the imaging optical system 31. The exposure conditions such as the value and ISO sensitivity are determined and instructed to the drive unit 32b. In addition, image processing conditions for adjusting saturation, contrast, sharpness, and the like are determined and instructed to the image processing unit 33 according to the imaging scene mode set in the camera 1 and the type of the detected subject element. The detection of the subject element will be described later.
 制御部34には、物体検出部34aと、設定部34bと、撮像制御部34cと、AF演算部34dとが含まれる。これらは、制御部34が不図示の不揮発性メモリに格納されているプログラムを実行することにより、ソフトウェア的に実現されるが、これらをASIC等により構成しても構わない。 The control unit 34 includes an object detection unit 34a, a setting unit 34b, an imaging control unit 34c, and an AF calculation unit 34d. These are realized as software by the control unit 34 executing a program stored in a nonvolatile memory (not shown). However, these may be configured by an ASIC or the like.
 物体検出部34aは、公知の物体認識処理を行うことにより、撮像部32によって取得された画像から、人物(人物の顔)、犬、猫などの動物(動物の顔)、植物、自転車、自動車、電車などの乗物、建造物、静止物、山、雲などの風景、あらかじめ定められた特定の物体などの、被写体要素を検出する。設定部34bは、撮像部32による撮像画面を、上述のように検出した被写体要素を含む複数の領域に分割する。 The object detection unit 34a performs a known object recognition process, and from the image acquired by the imaging unit 32, a person (person's face), an animal such as a dog or a cat (animal face), a plant, a bicycle, an automobile , Detecting a subject element such as a vehicle such as a train, a building, a stationary object, a landscape such as a mountain or a cloud, or a predetermined specific object. The setting unit 34b divides the imaging screen by the imaging unit 32 into a plurality of regions including the subject element detected as described above.
 設定部34bはさらに、複数の領域に対して撮像条件を設定する。撮像条件は、上記露出条件(電荷蓄積時間、ゲイン、ISO感度、フレームレート等)と、上記画像処理条件(例えば、ホワイトバランス調整用パラメータ、ガンマ補正カーブ、表示輝度調整パラメータ、彩度調整パラメータ等)とを含む。なお、撮像条件は、複数の領域の全てに同じ撮像条件を設定することも、複数の領域間で異なる撮像条件を設定することも可能である。 The setting unit 34b further sets imaging conditions for a plurality of areas. Imaging conditions include the exposure conditions (charge accumulation time, gain, ISO sensitivity, frame rate, etc.) and the image processing conditions (for example, white balance adjustment parameters, gamma correction curves, display brightness adjustment parameters, saturation adjustment parameters, etc.) ). As the imaging conditions, the same imaging conditions can be set for all of the plurality of areas, or different imaging conditions can be set for the plurality of areas.
 撮像制御部34cは、設定部34bによって領域ごとに設定された撮像条件を適用して撮像部32(撮像素子32a)、画像処理部33を制御する。これにより、撮像部32に対しては、複数の領域ごとに異なる露出条件で撮像を行わせることが可能であり、画像処理部33に対しては、複数の領域ごとに異なる画像処理条件で画像処理を行わせることが可能である。領域を構成する画素の数はいくらでもよく、例えば1000画素でもよいし、1画素でもよい。また、領域間で画素の数が異なっていてもよい。 The imaging control unit 34c controls the imaging unit 32 (imaging element 32a) and the image processing unit 33 by applying imaging conditions set for each region by the setting unit 34b. Thereby, it is possible to cause the imaging unit 32 to perform imaging under different exposure conditions for each of the plurality of regions, and for the image processing unit 33, images with different image processing conditions for each of the plurality of regions. Processing can be performed. Any number of pixels may be included in the region, for example, 1000 pixels or 1 pixel. Further, the number of pixels may be different between regions.
 AF演算部34dは、撮像画面の所定の位置(焦点検出位置と呼ぶ)において、対応する被写体に対してフォーカスを合わせる自動焦点調節(オートフォーカス:AF)動作を制御する。AF演算部34dは、演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を駆動部32bに送る。AF演算部34dが自動焦点調節のために行う処理は、焦点検出処理とも呼ばれる。焦点検出処理の詳細については後述する。 The AF calculation unit 34d controls an automatic focus adjustment (autofocus: AF) operation for focusing on a corresponding subject at a predetermined position (referred to as a focus detection position) on the imaging screen. The AF calculation unit 34d sends a drive signal for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result to the drive unit 32b. The process performed by the AF calculation unit 34d for automatic focus adjustment is also referred to as a focus detection process. Details of the focus detection process will be described later.
 表示部35は、画像処理部33によって生成された画像や画像処理された画像、記録部37によって読み出された画像などを再生表示する。表示部35は、操作メニュー画面や、撮像条件を設定するための設定画面等の表示も行う。 The display unit 35 reproduces and displays the image generated by the image processing unit 33, the image processed image, the image read by the recording unit 37, and the like. The display unit 35 also displays an operation menu screen, a setting screen for setting imaging conditions, and the like.
 操作部材36は、レリーズボタンやメニューボタン等の種々の操作部材によって構成される。操作部材36は、各操作に対応する操作信号を制御部34へ送出する。操作部材36には、表示部35の表示面に設けられたタッチ操作部材も含まれる。 The operation member 36 is composed of various operation members such as a release button and a menu button. The operation member 36 sends an operation signal corresponding to each operation to the control unit 34. The operation member 36 includes a touch operation member provided on the display surface of the display unit 35.
 記録部37は、制御部34からの指示に応じて、不図示のメモリカードなどで構成される記録媒体に画像データなどを記録する。また、記録部37は、制御部34からの指示に応じて記録媒体に記録されている画像データを読み出す。 The recording unit 37 records image data or the like on a recording medium including a memory card (not shown) in response to an instruction from the control unit 34. The recording unit 37 reads image data recorded on the recording medium in response to an instruction from the control unit 34.
<積層型の撮像素子の説明>
 上述した撮像素子32aの一例として積層型の撮像素子100について説明する。図2は、撮像素子100の断面図である。撮像素子100は、撮像チップ111と、信号処理チップ112と、メモリチップ113とを備える。撮像チップ111は、信号処理チップ112に積層されている。信号処理チップ112は、メモリチップ113に積層されている。撮像チップ111および信号処理チップ112、信号処理チップ112およびメモリチップ113は、それぞれ接続部109により電気的に接続されている。接続部109は、例えばバンプや電極である。撮像チップ111は、被写体からの光像を撮像して画像データを生成する。撮像チップ111は、画像データを撮像チップ111から信号処理チップ112へ出力する。信号処理チップ112は、撮像チップ111から出力された画像データに対して信号処理を施す。メモリチップ113は、複数のメモリを有し、画像データを記憶する。なお、撮像素子100は、撮像チップおよび信号処理チップで構成されてもよい。撮像素子100が撮像チップおよび信号処理チップで構成されている場合、画像データを記憶するための記憶部は、信号処理チップに設けられてもよいし、撮像素子100とは別に設けていてもよい。
<Description of Laminated Image Sensor>
A laminated image sensor 100 will be described as an example of the image sensor 32a described above. FIG. 2 is a cross-sectional view of the image sensor 100. The imaging element 100 includes an imaging chip 111, a signal processing chip 112, and a memory chip 113. The imaging chip 111 is stacked on the signal processing chip 112. The signal processing chip 112 is stacked on the memory chip 113. The imaging chip 111, the signal processing chip 112, the signal processing chip 112, and the memory chip 113 are electrically connected by a connection unit 109. The connection unit 109 is, for example, a bump or an electrode. The imaging chip 111 captures a light image from a subject and generates image data. The imaging chip 111 outputs image data from the imaging chip 111 to the signal processing chip 112. The signal processing chip 112 performs signal processing on the image data output from the imaging chip 111. The memory chip 113 has a plurality of memories and stores image data. Note that the image sensor 100 may include an image pickup chip and a signal processing chip. When the imaging device 100 is configured by an imaging chip and a signal processing chip, a storage unit for storing image data may be provided in the signal processing chip or may be provided separately from the imaging device 100. .
 図2に示すように、入射光は、主に白抜き矢印で示すZ軸プラス方向へ向かって入射する。また、座標軸に示すように、Z軸に直交する紙面左方向をX軸プラス方向、Z軸およびX軸に直交する紙面手前方向をY軸プラス方向とする。以降のいくつかの図においては、図2の座標軸を基準として、それぞれの図の向きがわかるように座標軸を表示する。 As shown in FIG. 2, the incident light is incident mainly in the positive direction of the Z axis indicated by the white arrow. Further, as shown in the coordinate axes, the left direction of the paper orthogonal to the Z axis is the X axis plus direction, and the front side of the paper orthogonal to the Z axis and X axis is the Y axis plus direction. In the following several figures, the coordinate axes are displayed so that the orientation of each figure can be understood with reference to the coordinate axes in FIG.
 撮像チップ111は、例えば、CMOSイメージセンサである。撮像チップ111は、具体的には、裏面照射型のCMOSイメージセンサである。撮像チップ111は、マイクロレンズ層101、カラーフィルタ層102、パッシベーション層103、半導体層106、および配線層108を有する。撮像チップ111は、Z軸プラス方向に向かってマイクロレンズ層101、カラーフィルタ層102、パッシベーション層103、半導体層106、および配線層108の順に配置されている。 The imaging chip 111 is, for example, a CMOS image sensor. Specifically, the imaging chip 111 is a backside illumination type CMOS image sensor. The imaging chip 111 includes a microlens layer 101, a color filter layer 102, a passivation layer 103, a semiconductor layer 106, and a wiring layer 108. The imaging chip 111 is arranged in the order of the microlens layer 101, the color filter layer 102, the passivation layer 103, the semiconductor layer 106, and the wiring layer 108 in the positive Z-axis direction.
 マイクロレンズ層101は、複数のマイクロレンズLを有する。マイクロレンズLは、入射した光を後述する光電変換部104に集光する。カラーフィルタ層102は、複数のカラーフィルタFを有する。カラーフィルタ層102は、分光特性の異なる複数種類のカラーフィルタFを有する。カラーフィルタ層102は、具体的には、主に赤色成分の光を透過させる分光特性の第1フィルタ(R)と、主に緑色成分の光を透過させる分光特性の第2フィルタ(Gb、Gr)と、主に青色成分の光を透過させる分光特性の第3フィルタ(B)と、を有する。カラーフィルタ層102は、例えば、ベイヤー配列により第1フィルタ、第2フィルタおよび第3フィルタが配置されている。パッシベーション層103は、窒化膜や酸化膜で構成され、半導体層106を保護する。 The microlens layer 101 has a plurality of microlenses L. The microlens L condenses incident light on the photoelectric conversion unit 104 described later. The color filter layer 102 includes a plurality of color filters F. The color filter layer 102 has a plurality of types of color filters F having different spectral characteristics. Specifically, the color filter layer 102 includes a first filter (R) having a spectral characteristic that mainly transmits red component light and a second filter (Gb, Gr) that has a spectral characteristic that mainly transmits green component light. ) And a third filter (B) having a spectral characteristic that mainly transmits blue component light. In the color filter layer 102, for example, a first filter, a second filter, and a third filter are arranged in a Bayer arrangement. The passivation layer 103 is made of a nitride film or an oxide film, and protects the semiconductor layer 106.
 半導体層106は、光電変換部104および読出回路105を有する。半導体層106は、光の入射面である第1面106aと第1面106aの反対側の第2面106bとの間に複数の光電変換部104を有する。半導体層106は、光電変換部104がX軸方向およびY軸方向に複数配列されている。光電変換部104は、光を電荷に変換する光電変換機能を有する。また、光電変換部104は、光電変換信号による電荷を蓄積する。光電変換部104は、例えば、フォトダイオードである。半導体層106は、光電変換部104よりも第2面106b側に読出回路105を有する。半導体層106は、読出回路105がX軸方向およびY軸方向に複数配列されている。読出回路105は、複数のトランジスタにより構成され、光電変換部104によって光電変換された電荷により生成される画像データを読み出して配線層108へ出力する。 The semiconductor layer 106 includes a photoelectric conversion unit 104 and a readout circuit 105. The semiconductor layer 106 includes a plurality of photoelectric conversion units 104 between a first surface 106a that is a light incident surface and a second surface 106b opposite to the first surface 106a. The semiconductor layer 106 includes a plurality of photoelectric conversion units 104 arranged in the X-axis direction and the Y-axis direction. The photoelectric conversion unit 104 has a photoelectric conversion function of converting light into electric charge. In addition, the photoelectric conversion unit 104 accumulates charges based on the photoelectric conversion signal. The photoelectric conversion unit 104 is, for example, a photodiode. The semiconductor layer 106 includes a readout circuit 105 on the second surface 106b side of the photoelectric conversion unit 104. In the semiconductor layer 106, a plurality of readout circuits 105 are arranged in the X-axis direction and the Y-axis direction. The readout circuit 105 includes a plurality of transistors, reads out image data generated by the electric charges photoelectrically converted by the photoelectric conversion unit 104, and outputs the image data to the wiring layer 108.
 配線層108は、複数の金属層を有する。金属層は、例えば、Al配線、Cu配線等である。配線層108は、読出回路105により読み出された画像データが出力される。画像データは、接続部109を介して配線層108から信号処理チップ112へ出力される。 The wiring layer 108 has a plurality of metal layers. The metal layer is, for example, an Al wiring, a Cu wiring, or the like. The wiring layer 108 outputs the image data read by the reading circuit 105. The image data is output from the wiring layer 108 to the signal processing chip 112 via the connection unit 109.
 なお、接続部109は、光電変換部104ごとに設けられていてもよい。また、接続部109は、複数の光電変換部104ごとに設けられていてもよい。接続部109が複数の光電変換部104ごとに設けられている場合、接続部109のピッチは、光電変換部104のピッチよりも大きくてもよい。また、接続部109は、光電変換部104が配置されている領域の周辺領域に設けられていてもよい。 Note that the connection unit 109 may be provided for each photoelectric conversion unit 104. Further, the connection unit 109 may be provided for each of the plurality of photoelectric conversion units 104. When the connection unit 109 is provided for each of the plurality of photoelectric conversion units 104, the pitch of the connection units 109 may be larger than the pitch of the photoelectric conversion units 104. In addition, the connection unit 109 may be provided in a peripheral region of the region where the photoelectric conversion unit 104 is disposed.
 信号処理チップ112は、複数の信号処理回路を有する。信号処理回路は、撮像チップ111から出力された画像データに対して信号処理を行う。信号処理回路は、例えば、画像データの信号値を増幅するアンプ回路、画像データのノイズの低減処理を行う相関二重サンプリング回路およびアナログ信号をデジタル信号に変換するアナログ/デジタル(A/D)変換回路等である。信号処理回路は、光電変換部104ごとに設けられていてもよい。 The signal processing chip 112 has a plurality of signal processing circuits. The signal processing circuit performs signal processing on the image data output from the imaging chip 111. The signal processing circuit includes, for example, an amplifier circuit that amplifies the signal value of the image data, a correlated double sampling circuit that performs noise reduction processing of the image data, and analog / digital (A / D) conversion that converts the analog signal into a digital signal. Circuit etc. A signal processing circuit may be provided for each photoelectric conversion unit 104.
 また、信号処理回路は、複数の光電変換部104ごとに設けられていてもよい。信号処理チップ112は、複数の貫通電極110を有する。貫通電極110は、例えばシリコン貫通電極である。貫通電極110は、信号処理チップ112に設けられた回路を互いに接続する。貫通電極110は、撮像チップ111の周辺領域、メモリチップ113にも設けられてもよい。なお、信号処理回路を構成する一部の素子を撮像チップ111に設けてもよい。例えば、アナログ/デジタル変換回路の場合、入力電圧と基準電圧の比較を行う比較器を撮像チップ111に設け、カウンター回路やラッチ回路等の回路を、信号処理チップ112に設けてもよい。 Further, a signal processing circuit may be provided for each of the plurality of photoelectric conversion units 104. The signal processing chip 112 has a plurality of through electrodes 110. The through electrode 110 is, for example, a silicon through electrode. The through electrode 110 connects circuits provided in the signal processing chip 112 to each other. The through electrode 110 may also be provided in the peripheral region of the imaging chip 111 and the memory chip 113. Note that some elements constituting the signal processing circuit may be provided in the imaging chip 111. For example, in the case of an analog / digital conversion circuit, a comparator that compares an input voltage with a reference voltage may be provided in the imaging chip 111, and circuits such as a counter circuit and a latch circuit may be provided in the signal processing chip 112.
 メモリチップ113は、複数の記憶部を有する。記憶部は、信号処理チップ112で信号処理が施された画像データを記憶する。記憶部は、例えば、DRAM等の揮発性メモリである。記憶部は、光電変換部104ごとに設けられていてもよい。また、記憶部は、複数の光電変換部104ごとに設けられていてもよい。記憶部に記憶された画像データは、後段の画像処理部に出力される。 The memory chip 113 has a plurality of storage units. The storage unit stores image data that has been subjected to signal processing by the signal processing chip 112. The storage unit is a volatile memory such as a DRAM, for example. A storage unit may be provided for each photoelectric conversion unit 104. In addition, the storage unit may be provided for each of the plurality of photoelectric conversion units 104. The image data stored in the storage unit is output to the subsequent image processing unit.
 図3は、撮像チップ111の画素配列と単位領域131を説明する図である。特に、撮像チップ111を裏面(撮像面)側から観察した様子を示す。画素領域には例えば2000万個以上の画素がマトリックス状に配列されている。図3の例では、隣接する2画素×2画素の4画素が一つの単位領域131を形成する。図の格子線は、隣接する画素がグループ化されて単位領域131を形成する概念を示す。単位領域131を形成する画素の数は、これに限られず1000個程度、例えば32画素×32画素でもよいし、それ以上でもそれ以下でもよく、1画素であってもよい。 FIG. 3 is a diagram for explaining the pixel array and the unit area 131 of the imaging chip 111. In particular, a state where the imaging chip 111 is observed from the back surface (imaging surface) side is shown. For example, 20 million or more pixels are arranged in a matrix in the pixel region. In the example of FIG. 3, four adjacent pixels of 2 pixels × 2 pixels form one unit region 131. The grid lines in the figure indicate the concept that adjacent pixels are grouped to form a unit region 131. The number of pixels forming the unit region 131 is not limited to this, and may be about 1000, for example, 32 pixels × 32 pixels, more or less, or one pixel.
 画素領域の部分拡大図に示すように、図3の単位領域131は、緑色画素Gb、Gr、青色画素Bおよび赤色画素Rの4画素から成るいわゆるベイヤー配列を内包する。緑色画素Gb、Grは、カラーフィルタFとして緑色フィルタを有する画素であり、入射光のうち緑色波長帯の光を受光する。同様に、青色画素Bは、カラーフィルタFとして青色フィルタを有する画素であって青色波長帯の光を受光し、赤色画素Rは、カラーフィルタFとして赤色フィルタを有する画素であって赤色波長帯の光を受光する。 As shown in the partially enlarged view of the pixel area, the unit area 131 in FIG. 3 includes a so-called Bayer array composed of four pixels of green pixels Gb, Gr, blue pixels B, and red pixels R. The green pixels Gb and Gr are pixels having a green filter as the color filter F, and receive light in the green wavelength band of incident light. Similarly, the blue pixel B is a pixel having a blue filter as the color filter F and receives light in the blue wavelength band, and the red pixel R is a pixel having a red filter as the color filter F and having a red wavelength band. Receives light.
 本実施の形態において、1ブロックにつき単位領域131を少なくとも1つ含むように複数のブロックが定義される。すなわち、1ブロックの最小単位は1つの単位領域131となる。上述したように、1つの単位領域131を形成する画素の数として取り得る値のうち、最も小さい画素の数は1画素である。したがって、1ブロックを画素単位で定義する場合、1ブロックを定義し得る画素の数のうち最小の画素の数は1画素となる。各ブロックはそれぞれ異なる制御パラメータで各ブロックに含まれる画素を制御できる。各ブロックは、そのブロック内の全ての単位領域131、すなわち、そのブロック内の全ての画素が同一の撮像条件で制御される。つまり、あるブロックに含まれる画素群と、別のブロックに含まれる画素群とで、撮像条件が異なる光電変換信号を取得できる。制御パラメータの例は、フレームレート、ゲイン、間引き率、光電変換信号を加算する加算行数または加算列数、電荷の蓄積時間または蓄積回数、デジタル化のビット数(語長)等である。撮像素子100は、行方向(撮像チップ111のX軸方向)の間引きのみでなく、列方向(撮像チップ111のY軸方向)の間引きも自在に行える。さらに、制御パラメータは、画像処理におけるパラメータであってもよい。 In the present embodiment, a plurality of blocks are defined so as to include at least one unit region 131 per block. That is, the minimum unit of one block is one unit area 131. As described above, of the possible values for the number of pixels forming one unit region 131, the smallest number of pixels is one pixel. Therefore, when one block is defined in units of pixels, the minimum number of pixels among the number of pixels that can define one block is one pixel. Each block can control pixels included in each block with different control parameters. In each block, all the unit areas 131 in the block, that is, all the pixels in the block are controlled under the same imaging condition. That is, photoelectric conversion signals having different imaging conditions can be acquired between a pixel group included in a certain block and a pixel group included in another block. Examples of the control parameters include a frame rate, a gain, a thinning rate, the number of addition rows or addition columns to which photoelectric conversion signals are added, a charge accumulation time or accumulation count, a digitization bit number (word length), and the like. The imaging device 100 can freely perform not only thinning in the row direction (X-axis direction of the imaging chip 111) but also thinning in the column direction (Y-axis direction of the imaging chip 111). Furthermore, the control parameter may be a parameter in image processing.
 図4は、単位領域131における回路を説明する図である。図4の例では、隣接する2画素×2画素の4画素により一つの単位領域131を形成する。なお、上述したように単位領域131に含まれる画素の数はこれに限られず、1000画素以上でもよいし、最小1画素でもよい。単位領域131の二次元的な位置を符号A~Dにより示す。 FIG. 4 is a diagram for explaining a circuit in the unit region 131. In the example of FIG. 4, one unit region 131 is formed by four adjacent pixels of 2 pixels × 2 pixels. As described above, the number of pixels included in the unit region 131 is not limited to this, and may be 1000 pixels or more, or may be a minimum of 1 pixel. The two-dimensional position of the unit area 131 is indicated by reference signs A to D.
 単位領域131に含まれる画素のリセットトランジスタ(RST)は、画素ごとに個別にオンオフ可能に構成される。図4において、画素Aのリセットトランジスタをオンオフするリセット配線300が設けられており、画素Bのリセットトランジスタをオンオフするリセット配線310が、上記リセット配線300とは別個に設けられている。同様に、画素Cのリセットトランジスタをオンオフするリセット配線320が、上記リセット配線300、310とは別個に設けられている。他の画素Dに対しても、リセットトランジスタをオンオフするための専用のリセット配線330が設けられている。 The reset transistor (RST) of the pixel included in the unit region 131 is configured to be turned on and off individually for each pixel. In FIG. 4, a reset wiring 300 for turning on / off the reset transistor of the pixel A is provided, and a reset wiring 310 for turning on / off the reset transistor of the pixel B is provided separately from the reset wiring 300. Similarly, a reset line 320 for turning on and off the reset transistor of the pixel C is provided separately from the reset lines 300 and 310. A dedicated reset wiring 330 for turning on and off the reset transistor is also provided for the other pixels D.
 単位領域131に含まれる画素の転送トランジスタ(TX)についても、画素ごとに個別にオンオフ可能に構成される。図4において、画素Aの転送トランジスタをオンオフする転送配線302、画素Bの転送トランジスタをオンオフする転送配線312、画素Cの転送トランジスタをオンオフする転送配線322が、別個に設けられている。他の画素Dに対しても、転送トランジスタをオンオフするための専用の転送配線332が設けられている。 The pixel transfer transistor (TX) included in the unit region 131 is also configured to be turned on and off individually for each pixel. In FIG. 4, a transfer wiring 302 for turning on / off the transfer transistor of the pixel A, a transfer wiring 312 for turning on / off the transfer transistor of the pixel B, and a transfer wiring 322 for turning on / off the transfer transistor of the pixel C are separately provided. Also for the other pixels D, a dedicated transfer wiring 332 for turning on / off the transfer transistor is provided.
 さらに、単位領域131に含まれる画素の選択トランジスタ(SEL)についても、画素ごとに個別にオンオフ可能に構成される。図4において、画素Aの選択トランジスタをオンオフする選択配線306、画素Bの選択トランジスタをオンオフする選択配線316、画素Cの選択トランジスタをオンオフする選択配線326が、別個に設けられている。他の画素Dに対しても、選択トランジスタをオンオフするための専用の選択配線336が設けられている。 Furthermore, the pixel selection transistor (SEL) included in the unit region 131 is also configured to be turned on and off individually for each pixel. In FIG. 4, a selection wiring 306 for turning on / off the selection transistor of the pixel A, a selection wiring 316 for turning on / off the selection transistor of the pixel B, and a selection wiring 326 for turning on / off the selection transistor of the pixel C are separately provided. Also for the other pixels D, a dedicated selection wiring 336 for turning on and off the selection transistor is provided.
 なお、電源配線304は、単位領域131に含まれる画素Aから画素Dで共通に接続されている。同様に、出力配線308は、単位領域131に含まれる画素Aから画素Dで共通に接続されている。また、電源配線304は複数の単位領域間で共通に接続されるが、出力配線308は単位領域131ごとに個別に設けられる。負荷電流源309は、出力配線308へ電流を供給する。負荷電流源309は、撮像チップ111側に設けられてもよいし、信号処理チップ112側に設けられてもよい。 Note that the power supply wiring 304 is commonly connected from the pixel A to the pixel D included in the unit region 131. Similarly, the output wiring 308 is commonly connected to the pixel D from the pixel A included in the unit region 131. Further, the power supply wiring 304 is commonly connected between a plurality of unit regions, but the output wiring 308 is provided for each unit region 131 individually. The load current source 309 supplies current to the output wiring 308. The load current source 309 may be provided on the imaging chip 111 side or may be provided on the signal processing chip 112 side.
 単位領域131のリセットトランジスタおよび転送トランジスタを個別にオンオフすることにより、単位領域131に含まれる画素Aから画素Dに対して、電荷の蓄積開始時間、蓄積終了時間、転送タイミングを含む電荷蓄積を制御することができる。また、単位領域131の選択トランジスタを個別にオンオフすることにより、各画素Aから画素Dの光電変換信号を共通の出力配線308を介して出力することができる。 By individually turning on and off the reset transistor and the transfer transistor in the unit region 131, the charge accumulation including the charge accumulation start time, the accumulation end time, and the transfer timing is controlled from the pixel A to the pixel D included in the unit region 131. can do. In addition, by individually turning on and off the selection transistors in the unit region 131, the photoelectric conversion signals of the pixels A to D can be output via the common output wiring 308.
 ここで、単位領域131に含まれる画素Aから画素Dについて、行および列に対して規則的な順序で電荷蓄積を制御する、いわゆるローリングシャッタ方式が公知である。ローリングシャッタ方式により行ごとに画素を選択してから列を指定すると、図4の例では「ABCD」の順序で光電変換信号が出力される。 Here, a so-called rolling shutter system is known in which charge accumulation is controlled in a regular order with respect to rows and columns for the pixels A to D included in the unit region 131. When a column is designated after selecting a pixel for each row by the rolling shutter method, photoelectric conversion signals are output in the order of “ABCD” in the example of FIG.
 このように単位領域131を基準として回路を構成することにより、単位領域131ごとに電荷蓄積時間を制御することができる。換言すると、単位領域131間で異なったフレームレートによる光電変換信号をそれぞれ出力させることができる。また、撮像チップ111において一部のブロックに含まれる単位領域131に電荷蓄積(撮像)を行わせる間に他のブロックに含まれる単位領域131を休ませることにより、撮像チップ111の所定のブロックでのみ撮像を行わせて、その光電変換信号を出力させることができる。さらに、フレーム間で電荷蓄積(撮像)を行わせるブロック(蓄積制御の対象ブロック)を切り替えて、撮像チップ111の異なるブロックで逐次撮像を行わせて、光電変換信号を出力させることもできる。 Thus, by configuring the circuit with the unit region 131 as a reference, the charge accumulation time can be controlled for each unit region 131. In other words, it is possible to output photoelectric conversion signals at different frame rates between the unit regions 131. Further, in the imaging chip 111, the unit area 131 included in another block is rested while the unit area 131 included in a part of the block is charged (imaged), so that a predetermined block of the imaging chip 111 can be used. Only the imaging can be performed, and the photoelectric conversion signal can be output. Furthermore, it is also possible to switch a block (accumulation control target block) where charge accumulation (imaging) is performed between frames, sequentially perform imaging with different blocks of the imaging chip 111, and output a photoelectric conversion signal.
 上記の通り、単位領域131のそれぞれに対応して出力配線308が設けられている。撮像素子100は撮像チップ111、信号処理チップ112およびメモリチップ113を積層しているので、これら出力配線308に接続部109を用いたチップ間の電気的接続を用いることにより、各チップを面方向に大きくすることなく配線を引き回すことができる。 As described above, the output wiring 308 is provided corresponding to each of the unit areas 131. Since the image pickup device 100 includes the image pickup chip 111, the signal processing chip 112, and the memory chip 113, each chip is arranged in the surface direction by using the electrical connection between the chips using the connection portion 109 for the output wiring 308. The wiring can be routed without increasing the size.
<撮像素子のブロック制御>
 本実施の形態では、撮像素子32aにおける複数のブロックごとに撮像条件を設定可能に構成される。制御部34(撮像制御部34c)は、上記複数の領域を上記ブロックに対応させて、領域ごとに設定された撮像条件で撮像を行わせる。
<Block control of image sensor>
In the present embodiment, an imaging condition can be set for each of a plurality of blocks in the imaging device 32a. The control unit 34 (imaging control unit 34c) associates the plurality of regions with the block and causes the imaging to be performed under an imaging condition set for each region.
 図5は、カメラ1の撮像素子32aに結像される被写体の像を模式的に示す図である。カメラ1は、撮像指示が行われる前に、被写体像を光電変換してライブビュー画像を取得する。ライブビュー画像は、所定のフレームレート(例えば60fps)で繰り返し撮像するモニタ用画像のことをいう。 FIG. 5 is a diagram schematically showing an image of a subject formed on the image sensor 32a of the camera 1. The camera 1 photoelectrically converts the subject image to obtain a live view image before an imaging instruction is given. The live view image refers to a monitor image that is repeatedly imaged at a predetermined frame rate (for example, 60 fps).
 制御部34は、設定部34bにより領域を分割する前は、撮像チップ111の全域(すなわち撮像画面の全体)に同一の撮像条件を設定する。同一の撮像条件とは、撮像画面の全体に共通の撮像条件を設定することをいい、例えばアペックス値で0.3段程度に満たないばらつきがあるとしても同じとみなす。撮像チップ111の全域で同一に設定する撮像条件は、被写体輝度の測光値に応じた露出条件、またはユーザーによって手動設定された露出条件に基づいて決定する。 The control unit 34 sets the same imaging condition over the entire area of the imaging chip 111 (that is, the entire imaging screen) before the setting unit 34b divides the area. The same imaging condition refers to setting a common imaging condition for the entire imaging screen. For example, even if there is a variation in apex value of less than about 0.3, it is regarded as the same. The imaging conditions set to be the same throughout the imaging chip 111 are determined based on the exposure conditions corresponding to the photometric value of the subject luminance or the exposure conditions manually set by the user.
 図5において、撮像チップ111の撮像面に、人物61aと、自動車62aと、バッグ63aと、山64aと、雲65a、66aとを含む像が結像されている。人物61aは、バッグ63aを両手で抱えている。人物61aの右後方に、自動車62aが止まっている。 5, an image including a person 61a, an automobile 62a, a bag 63a, a mountain 64a, and clouds 65a and 66a is formed on the imaging surface of the imaging chip 111. The person 61a holds the bag 63a with both hands. The automobile 62a stops at the right rear of the person 61a.
<領域の分割>
 制御部34は、ライブビュー画像に基づき、以下のようにライブビュー画像の画面を複数の領域に分割する。先ず、物体検出部34aによってライブビュー画像から被写体要素を検出する。被写体要素の検出は、公知の被写体認識技術を用いる。図5の例では、物体検出部34aが、人物61aと、自動車62aと、バッグ63aと、山64aと、雲65aと、雲66aとを被写体要素として検出する。
<Division of area>
Based on the live view image, the control unit 34 divides the screen of the live view image into a plurality of regions as follows. First, a subject element is detected from the live view image by the object detection unit 34a. The subject element is detected using a known subject recognition technique. In the example of FIG. 5, the object detection unit 34a detects a person 61a, a car 62a, a bag 63a, a mountain 64a, a cloud 65a, and a cloud 66a as subject elements.
 次に、設定部34bによって、ライブビュー画像の画面を、上記被写体要素を含む領域に分割する。本実施の形態では、人物61aを含む領域を領域61とし、自動車62aを含む領域を領域62とし、バッグ63aを含む領域を領域63とし、山64aを含む領域を領域64とし、雲65aを含む領域を領域65とし、雲66aを含む領域を領域66として説明する。 Next, the setting unit 34b divides the live view image screen into regions including the subject elements. In the present embodiment, the region including the person 61a is the region 61, the region including the car 62a is the region 62, the region including the bag 63a is the region 63, the region including the mountain 64a is the region 64, and the cloud 65a is included. The region is described as a region 65, and the region including the cloud 66a is described as a region 66.
<ブロックごとの撮像条件の設定>
 制御部34は、設定部34bによって画面を複数の領域に分割すると、図6に例示するような設定画面を表示部35に表示させる。図6において、ライブビュー画像60aが表示され、ライブビュー画像60aの右側に撮像条件の設定画面70が表示される。
<Setting imaging conditions for each block>
When the setting unit 34b divides the screen into a plurality of areas, the control unit 34 causes the display unit 35 to display a setting screen as illustrated in FIG. In FIG. 6, a live view image 60a is displayed, and an imaging condition setting screen 70 is displayed on the right side of the live view image 60a.
 設定画面70には、撮像条件の設定項目の一例として、上から順にフレームレート、シャッタースピード(TV)、ゲイン(ISO)が挙げられている。フレームレートは、1秒間に取得するライブビュー画像やカメラ1により録画される動画像のフレーム数である。ゲインは、ISO感度である。撮像条件の設定項目は、図6に例示した他にも適宜加えて構わない。全ての設定項目が設定画面70の中に収まらない場合は、設定項目を上下にスクロールさせることによって他の設定項目を表示させるようにしてもよい。 The setting screen 70 lists frame rate, shutter speed (TV), and gain (ISO) in order from the top as an example of setting items for imaging conditions. The frame rate is the number of frames of a live view image acquired per second or a moving image recorded by the camera 1. Gain is ISO sensitivity. The setting items for the imaging conditions may be added as appropriate in addition to those illustrated in FIG. When all the setting items do not fit in the setting screen 70, other setting items may be displayed by scrolling the setting items up and down.
 本実施の形態において、制御部34は、設定部34bによって分割された領域のうち、ユーザーによって選択された領域を撮像条件の設定(変更)の対象にする。例えば、タッチ操作が可能なカメラ1において、ユーザーは、ライブビュー画像60aが表示されている表示部35の表示面上で、撮像条件を設定(変更)したい主要被写体の表示位置をタップ操作する。制御部34は、例えば人物61aの表示位置がタップ操作された場合に、ライブビュー画像60aにおいて人物61aを含む領域61を撮像条件の設定(変更)対象領域にするとともに、領域61の輪郭を強調して表示させる。 In the present embodiment, the control unit 34 sets the region selected by the user among the regions divided by the setting unit 34b as a target for setting (changing) the imaging condition. For example, in the camera 1 capable of touch operation, the user taps the display position of the main subject for which the imaging condition is to be set (changed) on the display surface of the display unit 35 on which the live view image 60a is displayed. For example, when the display position of the person 61 a is tapped, the control unit 34 sets the area 61 including the person 61 a in the live view image 60 a as an imaging condition setting (change) target area and emphasizes the outline of the area 61. To display.
 図6において、輪郭を強調して表示(太く表示、明るく表示、色を変えて表示、破線で表示、点滅表示等)する領域61は、撮像条件の設定(変更)の対象となる領域を示す。図6の例では、領域61の輪郭を強調したライブビュー画像60aが表示されているものとする。この場合は、領域61が、撮像条件の設定(変更)の対象である。例えば、タッチ操作が可能なカメラ1において、ユーザーによってシャッタースピード(TV)の表示71がタップ操作されると、制御部34は、強調して表示されている領域(領域61)に対するシャッタースピードの現設定値を画面内に表示させる(符号68)。
 以降の説明では、タッチ操作を前提としてカメラ1の説明を行うが、操作部材36を構成するボタン等の操作により、撮像条件の設定(変更)を行うようにしてもよい。
In FIG. 6, an area 61 in which the outline is emphasized and displayed (bold display, bright display, display with a different color, display with a broken line, blink display, etc.) indicates an area for which the imaging condition is to be set (changed). . In the example of FIG. 6, it is assumed that a live view image 60a in which the outline of the region 61 is emphasized is displayed. In this case, the region 61 is a target for setting (changing) the imaging condition. For example, in the camera 1 capable of touch operation, when the user taps the shutter speed (TV) display 71, the control unit 34 displays the current shutter speed for the highlighted area (area 61). The set value is displayed on the screen (reference numeral 68).
In the following description, the camera 1 is described on the premise of a touch operation. However, the imaging condition may be set (changed) by operating a button or the like constituting the operation member 36.
 シャッタースピード(TV)の上アイコン71aまたは下アイコン71bがユーザーによってタップ操作されると、設定部34bは、シャッタースピードの表示68を現設定値から上記タップ操作に応じて増減させるとともに、強調して表示されている領域(領域61)に対応する撮像素子32aの単位領域131(図3)の撮像条件を、上記タップ操作に応じて変更するように撮像部32(図1)へ指示を送る。決定アイコン72は、設定された撮像条件を確定させるための操作アイコンである。設定部34bは、フレームレートやゲイン(ISO)の設定(変更)についても、シャッタースピード(TV)の設定(変更)の場合と同様に行う。 When the upper icon 71a or the lower icon 71b of the shutter speed (TV) is tapped by the user, the setting unit 34b increases or decreases the shutter speed display 68 from the current setting value according to the tap operation. An instruction is sent to the imaging unit 32 (FIG. 1) so as to change the imaging condition of the unit area 131 (FIG. 3) of the imaging element 32a corresponding to the displayed area (area 61) in accordance with the tap operation. The decision icon 72 is an operation icon for confirming the set imaging condition. The setting unit 34b performs the setting (change) of the frame rate and gain (ISO) in the same manner as the setting (change) of the shutter speed (TV).
 なお、設定部34bは、ユーザーの操作に基づいて撮像条件を設定するように説明したが、これに限定されない。設定部34bは、ユーザーの操作に基づかずに、制御部34の判断により撮像条件を設定するようにしてもよい。例えば、画像における最大輝度または最小輝度である被写体要素を含む領域において、白とびまたは黒つぶれが生じている場合、設定部34bは、制御部34の判断により、白とびまたは黒つぶれを解消するように撮像条件を設定するようにしてもよい。
 強調表示されていない領域(領域61以外の他の領域)については、設定されている撮像条件が維持される。
Although the setting unit 34b has been described as setting the imaging condition based on the user's operation, the setting unit 34b is not limited to this. The setting unit 34b may set the imaging condition based on the determination of the control unit 34 without being based on a user operation. For example, when the overexposure or underexposure occurs in the area including the subject element having the maximum luminance or the minimum luminance in the image, the setting unit 34b cancels the overexposure or underexposure based on the determination of the control unit 34. The imaging conditions may be set in.
For the area that is not highlighted (the area other than the area 61), the set imaging conditions are maintained.
 制御部34は、撮像条件の設定(変更)の対象となる領域の輪郭を強調表示する代わりに、対象領域全体を明るく表示させたり、対象領域全体のコントラストを高めて表示させたり、対象領域全体を点滅表示させたりしてもよい。また、対象領域を枠で囲ってもよい。対象領域を囲う枠の表示は、二重枠や一重枠でもよく、囲う枠の線種、色や明るさ等の表示態様は、適宜変更して構わない。また、制御部34は、対象領域の近傍に矢印などの撮像条件の設定の対象となる領域を指し示す表示をしてもよい。制御部34は、撮像条件の設定(変更)の対象となる対象領域以外を暗く表示させたり、対象領域以外のコントラストを低く表示させたりしてもよい。 Instead of highlighting the outline of the area for which the imaging condition is set (changed), the control unit 34 displays the entire target area brightly, increases the contrast of the entire target area, or displays the entire target area. May be displayed blinking. Further, the target area may be surrounded by a frame. The display of the frame surrounding the target area may be a double frame or a single frame, and the display mode such as the line type, color, and brightness of the surrounding frame may be appropriately changed. In addition, the control unit 34 may display an indication of an area for which an imaging condition is set, such as an arrow, in the vicinity of the target area. The control unit 34 may darkly display a region other than the target region for which the imaging condition is set (changed), or may display a low contrast other than the target region.
 以上説明したように、領域ごとの撮像条件が設定された後に、操作部材36を構成する不図示のレリーズボタン、または撮像開始を指示する表示(レリーズアイコン)が操作されると、制御部34が撮像部32を制御することにより、上記分割された領域に対してそれぞれ設定されている撮像条件で撮像を行わせる。そして、画像処理部33は、撮像部32によって取得された画像データに対して画像処理を行う。画像処理は、上述したように、領域ごとに異なる画像処理条件で行うことができる。 As described above, when an image capturing condition for each region is set and a release button (not shown) constituting the operation member 36 or a display (release icon) for instructing start of imaging is operated, the control unit 34 is operated. By controlling the imaging unit 32, imaging is performed under the imaging conditions set for each of the divided areas. The image processing unit 33 performs image processing on the image data acquired by the imaging unit 32. As described above, the image processing can be performed under different image processing conditions for each region.
 上記画像処理部33による画像処理の後、制御部34から指示を受けた記録部37が、画像処理後の画像データを不図示のメモリカードなどで構成される記録媒体に記録する。これにより、一連の撮像処理が終了する。 After the image processing by the image processing unit 33, the recording unit 37 that receives an instruction from the control unit 34 records the image data after the image processing on a recording medium including a memory card (not shown). Thereby, a series of imaging processes is completed.
<補正処理>
 上述したように、本実施の形態では、設定部34bにより撮像画面の領域を分割した後は、ユーザーによって選択された領域、または、制御部34が判断した領域に対して撮像条件を設定(変更)することが可能に構成されている。分割した領域において異なる撮像条件を設定した場合、制御部34は、必要に応じて以下の補正処理を行わせる。
<Correction process>
As described above, in this embodiment, after the area of the imaging screen is divided by the setting unit 34b, the imaging condition is set (changed) for the area selected by the user or the area determined by the control unit 34. ) Is configured to be possible. When different imaging conditions are set in the divided areas, the control unit 34 performs the following correction process as necessary.
1.画像処理を行う場合
 画像処理部33(補正部33b)は、分割した領域間で異なる撮像条件を適用して取得された画像データに対する画像処理が所定の画像処理である場合において、領域の境界付近に位置する画像データに対し、画像処理の前処理として補正処理を行う。所定の画像処理は、画像において処理対象とする注目位置の画像データを、注目位置の周囲の複数の参照位置の画像データを参照して算出する処理であり、例えば、画素欠陥補正処理、色補間処理、輪郭強調処理、ノイズ低減処理などが該当する。
1. When Image Processing is Performed The image processing unit 33 (correction unit 33b) is in the vicinity of a boundary between regions when image processing on image data obtained by applying different imaging conditions between the divided regions is predetermined image processing. Correction processing is performed on the image data positioned at the position as preprocessing for image processing. The predetermined image processing is processing for calculating image data of a target position to be processed in an image with reference to image data at a plurality of reference positions around the target position. For example, pixel defect correction processing, color interpolation Processing, contour enhancement processing, noise reduction processing, and the like are applicable.
 補正処理は、分割した領域間で撮像条件が異なることに起因して、画像処理後の画像に生じる不連続性を緩和するために行う。一般に、注目位置が、分割した領域の境界付近に位置する場合、注目位置の周囲の複数の参照位置には、注目位置の画像データと同じ撮像条件が適用された画像データと、注目位置の画像データと異なる撮像条件が適用された画像データとが混在する場合がある。本実施の形態では、異なる撮像条件が適用された参照位置の画像データをそのまま参照して注目位置の画像データを算出するよりも、撮像条件の相違による画像データ間の差異を抑えるように補正処理を施した参照位置の画像データを参照して注目位置の画像データを算出する方が好ましいという考え方に基づき、以下のように補正処理を行う。 The correction process is performed to alleviate discontinuities that occur in the image after image processing due to the difference in imaging conditions between the divided areas. In general, when the target position is located near the boundary of the divided area, the image data in which the same imaging condition as the image data of the target position is applied to the plurality of reference positions around the target position, and the image of the target position Data and image data to which different imaging conditions are applied may be mixed. In the present embodiment, the correction processing is performed so as to suppress the difference between the image data due to the difference in the imaging conditions, rather than referencing the image data at the reference position to which the different imaging conditions are applied as it is to calculate the image data at the target position. Based on the idea that it is preferable to calculate the image data of the target position with reference to the image data of the reference position subjected to the correction process, the correction process is performed as follows.
 図7(a)は、ライブビュー画像60aにおける領域61と領域64との境界付近の領域80を例示する図である。本例では、少なくとも人物を含む領域61に第1撮像条件が設定され、山を含む領域64に第2撮像条件が設定されているものとする。図7(b)は、図7(a)の境界付近の領域80を拡大した図である。第1撮像条件が設定された領域61に対応する撮像素子32a上の画素からの画像データを白地で示し、第2撮像条件が設定された領域64に対応する撮像素子32a上の画素からの画像データを網掛けで示す。図7(b)では、領域61上であって、領域61と領域64との境界81の近傍部分、すなわち境界部に注目画素Pからの画像データが位置する。注目画素Pを中心とする所定範囲90(例えば3×3画素)に含まれる注目画素Pの周囲の画素(本例では8画素)を参照画素とする。図7(c)は、注目画素Pおよび参照画素の拡大図である。注目画素Pの位置が注目位置であり、注目画素Pを囲む参照画素の位置が参照位置である。 FIG. 7A is a diagram illustrating a region 80 near the boundary between the region 61 and the region 64 in the live view image 60a. In this example, it is assumed that the first imaging condition is set in an area 61 including at least a person and the second imaging condition is set in an area 64 including a mountain. FIG. 7B is an enlarged view of a region 80 near the boundary of FIG. The image data from the pixels on the image sensor 32a corresponding to the area 61 for which the first imaging condition is set is shown in white, and the image from the pixels on the image sensor 32a corresponding to the area 64 for which the second imaging condition is set. Data is shaded. In FIG. 7B, the image data from the target pixel P is located on the region 61 and in the vicinity of the boundary 81 between the region 61 and the region 64, that is, the boundary portion. Pixels around the target pixel P (eight pixels in this example) included in a predetermined range 90 (for example, 3 × 3 pixels) centered on the target pixel P are set as reference pixels. FIG. 7C is an enlarged view of the target pixel P and the reference pixel. The position of the target pixel P is the target position, and the position of the reference pixel surrounding the target pixel P is the reference position.
 画像処理部33(生成部33c)は、通常、補正処理を行わずに参照画素の画像データをそのまま参照して画像処理を行う。しかしながら、注目画素Pにおいて適用された撮像条件(第1撮像条件とする)と、注目画素Pの周囲の参照画素において適用された撮像条件(第2撮像条件とする)とが異なる場合には、補正部33bが、参照画素の画像データのうちの第2撮像条件の画像データに対して以下の(例1)~(例3)のように補正処理を行う。そして、生成部33cは、補正処理後の参照画素の画像データを参照して注目画素Pの画像データを算出する画像処理を行う。図7(c)において、白地で示す画素から出力された画像データは第1撮像条件の画像データであり、斜線で示す画素から出力された画像データは第2撮像条件の画像データである。 The image processing unit 33 (the generation unit 33c) normally performs image processing by directly referring to the image data of the reference pixel without performing correction processing. However, when the imaging condition applied to the target pixel P (referred to as the first imaging condition) is different from the imaging condition applied to the reference pixels around the target pixel P (referred to as the second imaging condition), The correction unit 33b performs correction processing on the image data of the second imaging condition among the image data of the reference pixels as in the following (Example 1) to (Example 3). Then, the generation unit 33c performs image processing for calculating the image data of the target pixel P with reference to the image data of the reference pixel after the correction processing. In FIG. 7C, the image data output from the pixels indicated by white background is image data under the first imaging condition, and the image data output from the pixels indicated by diagonal lines is image data under the second imaging condition.
(例1)
 画像処理部33(補正部33b)は、例えば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合、参照画素の画像データのうちの第2撮像条件の画像データに対し、補正処理として100/800をかける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
 なお、注目画素Pへの入射光量と参照画素への入射光量とが同じ場合には画像データの差異が小さくなるが、もともと注目画素Pへの入射光量と参照画素への入射光量とが異なっている場合などには、画像データの差異が小さくならない場合もある。後述する例も同様である。
(Example 1)
For example, the image processing unit 33 (correction unit 33b) differs only in ISO sensitivity between the first imaging condition and the second imaging condition, and the ISO sensitivity in the first imaging condition is 100, and the ISO sensitivity in the second imaging condition. Is 800/100, the correction processing is applied to the image data of the second imaging condition in the image data of the reference pixel. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
Note that when the amount of incident light on the target pixel P and the amount of incident light on the reference pixel are the same, the difference in image data is reduced, but the amount of incident light on the target pixel P and the amount of incident light on the reference pixel are originally different. In some cases, the difference in image data may not be reduced. The same applies to the examples described later.
(例2)
 画像処理部33(補正部33b)は、例えば、第1撮像条件と第2撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第2撮像条件のシャッター速度が1/100秒の場合、参照画素の画像データのうちの第2撮像条件の画像データに対し、補正処理として1/1000/1/100=1/10をかける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
(Example 2)
The image processing unit 33 (correction unit 33b), for example, differs only in shutter speed between the first imaging condition and the second imaging condition, and the shutter speed of the first imaging condition is 1/1000 second, and the second imaging condition When the shutter speed is 1/100 second, 1/1000/1/100 = 1/10 is applied as the correction processing to the image data of the second imaging condition in the image data of the reference pixel. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
(例3)
 画像処理部33(補正部33b)は、例えば、第1撮像条件と第2撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第2撮像条件のフレームレートが60fpsの場合、参照画素の画像データのうちの第2撮像条件(60fps)の画像データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを採用することを補正処理とする。これにより、撮像条件の相違による画像データ間の差異を小さくする。
 なお、第2撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを補間算出することを補正処理としてもよい。
(Example 3)
For example, the image processing unit 33 (correction unit 33b) differs only in the frame rate between the first imaging condition and the second imaging condition (the charge accumulation time is the same), and the frame rate of the first imaging condition is 30 fps. When the frame rate of the second imaging condition is 60 fps, the frame image acquired under the first imaging condition (30 fps) and the acquisition start timing for the image data of the second imaging condition (60 fps) out of the image data of the reference pixels. Employing image data of a close frame image is a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
It should be noted that, based on a plurality of previous and subsequent frame images acquired under the second imaging condition (60 fps), interpolation calculation is performed on the frame image acquired under the first imaging condition (30 fps) and the frame image whose acquisition start timing is close. This may be a correction process.
 一方、画像処理部33(補正部33b)は、注目画素Pにおいて適用された撮像条件(第1撮像条件とする)と、注目画素Pの周囲の全ての参照画素において適用された撮像条件(第2撮像条件とする)とが同一である場合には、参照画素の画像データに対する補正処理を行わない。つまり、生成部33cは、参照画素の画像データをそのまま参照して注目画素Pの画像データを算出する画像処理を行う。
 なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
On the other hand, the image processing unit 33 (correction unit 33b) captures an imaging condition (first imaging condition) applied to the pixel of interest P and an imaging condition (first image) applied to all reference pixels around the pixel of interest P. 2), the correction processing is not performed on the image data of the reference pixel. That is, the generation unit 33c performs image processing for calculating the image data of the target pixel P by referring to the image data of the reference pixel as it is.
As described above, even if there are some differences in the imaging conditions, the imaging conditions are regarded as the same.
<画像処理の例示>
 補正処理を伴う画像処理について例示する。
(1)画素欠陥補正処理
 本実施の形態において、画素欠陥補正処理は、撮像時に行う画像処理の1つである。一般に、固体撮像素子である撮像素子32aは、製造過程や製造後において画素欠陥が生じ、異常なレベルの画像データを出力する場合がある。そこで、画像処理部33(生成部33c)は、画素欠陥が生じた画素から出力された画像データを補正することにより、画素欠陥が生じた画素位置における画像データを目立たないようにする。
<Example of image processing>
An example of image processing with correction processing will be described.
(1) Pixel Defect Correction Process In the present embodiment, the pixel defect correction process is one of image processes performed during imaging. In general, the image pickup element 32a, which is a solid-state image pickup element, may produce pixel defects in the manufacturing process or after manufacturing, and output abnormal level image data. Therefore, the image processing unit 33 (the generation unit 33c) corrects the image data output from the pixel in which the pixel defect has occurred, thereby making the image data in the pixel position in which the pixel defect has occurred inconspicuous.
 画素欠陥補正処理の一例を説明する。画像処理部33(生成部33c)は、例えば、1フレームの画像においてあらかじめ不図示の不揮発性メモリに記録されている画素欠陥の位置の画素を注目画素P(処理対象画素)とし、注目画素Pを中心とする所定範囲90(例えば3×3画素)に含まれる注目画素Pの周囲の画素(本例では8画素)を参照画素とする。 An example of pixel defect correction processing will be described. For example, the image processing unit 33 (the generation unit 33c) sets a pixel at a pixel defect position recorded in advance in a non-illustrated non-volatile memory in an image of one frame as a target pixel P (processing target pixel), and the target pixel P Pixels around the pixel of interest P (eight pixels in this example) included in a predetermined range 90 (for example, 3 × 3 pixels) centering on the pixel are used as reference pixels.
 画像処理部33(生成部33c)は、参照画素における画像データの最大値、最小値を算出し、注目画素Pから出力された画像データがこれら最大値または最小値を超えるときは注目画素Pから出力された画像データを上記最大値または最小値で置き換えるMax,Minフィルタ処理を行う。このような処理を、不図示の不揮発性メモリに位置情報が記録されている全ての画素欠陥に対して行う。 The image processing unit 33 (the generation unit 33c) calculates the maximum value and the minimum value of the image data in the reference pixel. When the image data output from the target pixel P exceeds these maximum value or minimum value, the image processing unit 33 (the generation unit 33c) starts from the target pixel P. Max and Min filter processing is performed to replace the output image data with the maximum value or the minimum value. Such a process is performed for all pixel defects whose position information is recorded in a non-volatile memory (not shown).
 本実施の形態において、画像処理部33(補正部33b)は、注目画素Pに適用された第1撮像条件と異なる第2撮像条件が適用された画素が上記参照画素に含まれる場合に、第2撮像条件が適用された画像データに対して補正処理を行う。その後、画像処理部33(生成部33c)が上述したMax,Minフィルタ処理を行う。 In the present embodiment, the image processing unit 33 (correction unit 33b) determines whether the reference pixel includes a pixel to which a second imaging condition different from the first imaging condition applied to the target pixel P is included. Correction processing is performed on image data to which two imaging conditions are applied. Thereafter, the image processing unit 33 (generation unit 33c) performs the Max and Min filter processing described above.
(2)色補間処理
 本実施の形態において、色補間処理は、撮像時に行う画像処理の1つである。図3に例示したように、撮像素子100の撮像チップ111は、緑色画素Gb、Gr、青色画素Bおよび赤色画素Rがベイヤー配列されている。画像処理部33(生成部33c)は、各画素位置において配置されたカラーフィルタFの色成分と異なる色成分の画像データが不足するので、周辺の画素位置の画像データを参照して不足する色成分の画像データを生成する色補間処理を行う。
(2) Color Interpolation Processing In the present embodiment, color interpolation processing is one of image processing performed at the time of imaging. As illustrated in FIG. 3, in the imaging chip 111 of the imaging device 100, green pixels Gb and Gr, a blue pixel B, and a red pixel R are arranged in a Bayer array. The image processing unit 33 (the generation unit 33c) lacks image data having a color component different from the color component of the color filter F arranged at each pixel position. Color interpolation processing for generating component image data is performed.
 色補間処理の一例を説明する。図8(a)は、撮像素子32aから出力された画像データの並びを例示する図である。各画素位置に対応して、ベイヤー配列の規則にしたがってR、G、Bのいずれかの色成分を有する。
<G色補間>
 まず、一般的なG色補間について説明する。G色補間を行う画像処理部33(生成部33c)は、R色成分およびB色成分の位置を順番に注目位置として、注目位置の周囲の参照位置の4つのG色成分の画像データを参照して注目位置におけるG色成分の画像データを生成する。例えば、図8(b)の太枠(左上位置から数えて2行目2列目。以降も同様に、左上位置から数えて注目位置を表すものとする)で示す注目位置においてG色成分の画像データを生成する場合、注目位置(2行目2列目)の近傍に位置する4つのG色成分の画像データG1~G4を参照する。画像処理部33(生成部33c)は、例えば(aG1+bG2+cG3+dG4)/4を、注目位置(2行目2列目)におけるG色成分の画像データとする。なお、a~dは参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。
An example of color interpolation processing will be described. FIG. 8A is a diagram illustrating the arrangement of image data output from the image sensor 32a. Corresponding to each pixel position, it has one of R, G, and B color components according to the rules of the Bayer array.
<G color interpolation>
First, general G color interpolation will be described. The image processing unit 33 (generation unit 33c) that performs the G color interpolation refers to the image data of the four G color components at the reference positions around the target position, with the positions of the R color component and the B color component as the target position in order. Thus, image data of the G color component at the position of interest is generated. For example, the G color component at the target position indicated by the thick frame in FIG. 8B (second row and second column counted from the upper left position. Similarly, the target position is counted from the upper left position). When generating the image data, the four G color component image data G1 to G4 located in the vicinity of the target position (second row, second column) are referred to. The image processing unit 33 (generation unit 33c) sets, for example, (aG1 + bG2 + cG3 + dG4) / 4 as G color component image data at the target position (second row, second column). Note that a to d are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
 次に、本実施の形態のG色補間について説明する。図8(a)~図8(c)において、太線に対して左および上の領域に第1撮像条件が適用されており、太線に対して右および下の領域に第2撮像条件が適用されているものとする。なお、図8(a)~図8(c)において、第1撮像条件と第2撮像条件は異なる。また、図8(b)中のG色成分の画像データG1~G4が、注目位置(2行目2列目)の画素を画像処理するための参照位置である。図8(b)において、注目位置(2行目2列目)には第1撮像条件が適用されている。参照位置のうち、画像データG1~G3には第1撮像条件が適用されている。また、参照位置のうち、画像データG4には第2撮像条件が適用されている。そのため、画像処理部33(補正部33b)は、画像データG4に対して補正処理を行う。その後、画像処理部33(生成部33c)が注目位置(2行目2列目)におけるG色成分の画像データを算出する。 Next, the G color interpolation of the present embodiment will be described. 8 (a) to 8 (c), the first imaging condition is applied to the left and upper regions with respect to the thick line, and the second imaging condition is applied to the right and lower regions with respect to the thick line. It shall be. In FIGS. 8A to 8C, the first imaging condition and the second imaging condition are different. Also, the G color component image data G1 to G4 in FIG. 8B are reference positions for image processing of the pixel at the target position (second row and second column). In FIG. 8B, the first imaging condition is applied to the target position (second row, second column). Among the reference positions, the first imaging condition is applied to the image data G1 to G3. Of the reference positions, the second imaging condition is applied to the image data G4. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the image data G4. Thereafter, the image processing unit 33 (generation unit 33c) calculates the image data of the G color component at the position of interest (second row and second column).
 画像処理部33(生成部33c)は、図8(a)におけるB色成分の位置およびR色成分の位置においてそれぞれG色成分の画像データを生成することにより、図8(c)に示すように、各画素位置においてG色成分の画像データを得ることができる。 The image processing unit 33 (the generation unit 33c) generates image data of the G color component at the position of the B color component and the position of the R color component in FIG. In addition, the image data of the G color component can be obtained at each pixel position.
<R色補間>
 図9(a)は、図8(a)からR色成分の画像データを抽出した図である。画像処理部33(生成部33c)は、図8(c)に示すG色成分の画像データと図9(a)に示すR色成分の画像データとに基づいて図9(b)に示す色差成分Crの画像データを算出する。
<R color interpolation>
FIG. 9A is a diagram obtained by extracting R color component image data from FIG. The image processing unit 33 (generating unit 33c) performs color difference shown in FIG. 9B based on the G color component image data shown in FIG. 8C and the R color component image data shown in FIG. Image data of the component Cr is calculated.
 まず、一般的な色差成分Crの補間について説明する。画像処理部33(生成部33c)は、例えば図9(b)の太枠(2行目2列目)で示す注目位置において色差成分Crの画像データを生成する場合、注目位置(2行目2列目)の近傍に位置する4つの色差成分の画像データCr1~Cr4を参照する。画像処理部33(生成部33c)は、例えば(eCr1+fCr2+gCr3+hCr4)/4を、注目位置(2行目2列目)における色差成分Crの画像データとする。なお、e~hは参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。 First, general interpolation of the color difference component Cr will be described. For example, when the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cr at the target position indicated by the thick frame (second row and second column) in FIG. 9B, the target position (second row) Reference is made to the image data Cr1 to Cr4 of the four color difference components located in the vicinity of the second column). The image processing unit 33 (generation unit 33c) sets, for example, (eCr1 + fCr2 + gCr3 + hCr4) / 4 as image data of the color difference component Cr at the target position (second row and second column). Note that e to h are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
 同様に、画像処理部33(生成部33c)は、例えば図9(c)の太枠(2行目3列目)で示す注目位置において色差成分Crの画像データを生成する場合、注目位置(2行目3列目)の近傍に位置する4つの色差成分の画像データCr2、Cr4~Cr6を参照する。画像処理部33(生成部33c)は、例えば(qCr2+rCr4+sCr5+tCr6)/4を、注目位置(2行目3列目)における色差成分Crの画像データとする。なお、q~tは、参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。こうして、各画素位置について色差成分Crの画像データが生成される。 Similarly, for example, when the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cr at the position of interest indicated by the thick frame (second row and third column) of FIG. Reference is made to the image data Cr2, Cr4 to Cr6 of the four color difference components located in the vicinity of the second row and the third column). The image processing unit 33 (generation unit 33c) sets, for example, (qCr2 + rCr4 + sCr5 + tCr6) / 4 as image data of the color difference component Cr at the target position (second row, third column). Note that q to t are weighting coefficients provided according to the distance between the reference position and the target position and the image structure. Thus, image data of the color difference component Cr is generated for each pixel position.
 次に、本実施の形態の色差成分Crの補間について説明する。図9(a)~図9(c)において、例えば、太線に対して左および上の領域に第1撮像条件が適用されており、太線に対して右および下の領域に第2撮像条件が適用されているものとする。なお、図9(a)~図9(c)において、第1撮像条件と第2撮像条件は異なる。図9(b)において、太枠(2行目2列目)で示す位置が色差成分Crの注目位置である。また、図9(b)中の色差成分の画像データCr1~Cr4が注目位置(2行目2列目)の画素を画像処理するための参照位置である。図9(b)において、注目位置(2行目2列目)には第1撮像条件が適用されている。参照位置のうち、画像データCr1、Cr3、Cr4には第1撮像条件が適用されている。また、参照位置のうち、画像データCr2には第2撮像条件が適用されている。そのため、画像処理部33(補正部33b)は、画像データCr2に対して補正処理を行う。その後、画像処理部33(生成部33c)が注目位置(2行目2列目)における色差成分Crの画像データを算出する。
 また、図9(c)において、太枠(2行目3列目)で示す位置が色差成分Crの注目位置である。また、図9(c)中の色差成分の画像データCr2、Cr4、Cr5、Cr6が注目位置(2行目3列目)の画素を画像処理するための参照位置である。図9(c)において、注目位置(2行目3列目)には第2撮像条件が適用されている。参照位置のうち、画像データCr4、Cr5には第1撮像条件が適用されている。また、参照位置のうち、画像データCr2、Cr6には第2撮像条件が適用されている。そのため、画像処理部33(補正部33b)は、画像データCr4およびCr5に対してそれぞれ補正処理を行う。その後、画像処理部33(生成部33c)が注目位置(2行目3列目)における色差成分Crの画像データを算出する。
Next, interpolation of the color difference component Cr according to the present embodiment will be described. In FIG. 9A to FIG. 9C, for example, the first imaging condition is applied to the left and upper regions with respect to the thick line, and the second imaging condition is applied to the right and lower regions with respect to the thick line. It shall be applied. 9A to 9C, the first imaging condition and the second imaging condition are different. In FIG. 9B, the position indicated by the thick frame (second row, second column) is the target position of the color difference component Cr. Further, the color difference component image data Cr1 to Cr4 in FIG. 9B are reference positions for image processing of the pixel at the target position (second row and second column). In FIG. 9B, the first imaging condition is applied to the target position (second row, second column). Among the reference positions, the first imaging condition is applied to the image data Cr1, Cr3, and Cr4. Of the reference positions, the second imaging condition is applied to the image data Cr2. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the image data Cr2. Thereafter, the image processing unit 33 (generation unit 33c) calculates the image data of the color difference component Cr at the position of interest (second row and second column).
In FIG. 9C, the position indicated by the thick frame (second row, third column) is the target position of the color difference component Cr. Also, the color difference component image data Cr2, Cr4, Cr5, and Cr6 in FIG. 9C are reference positions for image processing of the pixel at the target position (second row and third column). In FIG. 9C, the second imaging condition is applied to the target position (second row, third column). Among the reference positions, the first imaging condition is applied to the image data Cr4 and Cr5. Of the reference positions, the second imaging condition is applied to the image data Cr2 and Cr6. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the image data Cr4 and Cr5, respectively. Thereafter, the image processing unit 33 (generating unit 33c) calculates image data of the color difference component Cr at the position of interest (second row and third column).
 画像処理部33(生成部33c)は、各画素位置において色差成分Crの画像データを得たのち、各画素位置に対応させて図8(c)に示すG色成分の画像データを加算することにより、各画素位置においてR色成分の画像データを得ることができる。 The image processing unit 33 (generation unit 33c) obtains the image data of the color difference component Cr at each pixel position, and then adds the image data of the G color component shown in FIG. 8C in correspondence with each pixel position. Thus, R color component image data can be obtained at each pixel position.
<B色補間>
 図10(a)は、図8(a)からB色成分の画像データを抽出した図である。画像処理部33(生成部33c)は、図8(c)に示すG色成分の画像データと図10(a)に示すB色成分の画像データとに基づいて図10(b)に示す色差成分Cbの画像データを算出する。
<B color interpolation>
FIG. 10A is a diagram in which image data of the B color component is extracted from FIG. The image processing unit 33 (generation unit 33c) performs the color difference shown in FIG. 10B based on the G color component image data shown in FIG. 8C and the B color component image data shown in FIG. Image data of the component Cb is calculated.
 まず、一般的な色差成分Cbの補間について説明する。画像処理部33(生成部33c)は、例えば図10(b)の太枠(3行目3列目)で示す注目位置において色差成分Cbの画像データを生成する場合、注目位置(3行目3列目)の近傍に位置する4つの色差成分の画像データCb1~Cb4を参照する。画像処理部33(生成部33c)は、例えば(uCb1+vCb2+wCb3+xCb4)/4を、注目位置(3行目3列目)における色差成分Cbの画像データとする。なお、u~xは参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。 First, general interpolation of the color difference component Cb will be described. For example, when the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cb at the target position indicated by the thick frame (third row, third column) in FIG. Reference is made to the image data Cb1 to Cb4 of the four color difference components located in the vicinity of the third column). The image processing unit 33 (generation unit 33c) sets, for example, (uCb1 + vCb2 + wCb3 + xCb4) / 4 as the image data of the color difference component Cb at the target position (third row, third column). Note that u to x are weighting coefficients provided according to the distance between the reference position and the target position and the image structure.
 同様に、画像処理部33(生成部33c)は、例えば図10(c)の太枠(3行目4列目)で示す注目位置において色差成分Cbの画像データを生成する場合、注目位置(3行目4列目)の近傍に位置する4つの色差成分の画像データCb2、Cb4~Cb6を参照する。画像処理部33(生成部33c)は、例えば(yCb2+zCb4+αCb5+βCb6)/4を、注目位置(3行目4列目)における色差成分Cbの画像データとする。なお、y、z、α、βは、参照位置と注目位置との間の距離や画像構造に応じて設けられる重み係数である。こうして、各画素位置について色差成分Cbの画像データが生成される。 Similarly, when the image processing unit 33 (the generation unit 33c) generates image data of the color difference component Cb at the target position indicated by, for example, the thick frame (third row and fourth column) in FIG. Reference is made to the image data Cb2, Cb4 to Cb6 of the four color difference components located in the vicinity of the third row and the fourth column). The image processing unit 33 (generation unit 33c) sets, for example, (yCb2 + zCb4 + αCb5 + βCb6) / 4 as image data of the color difference component Cb at the target position (third row, fourth column). Note that y, z, α, and β are weighting coefficients provided according to the distance between the reference position and the target position and the image structure. Thus, image data of the color difference component Cb is generated for each pixel position.
 次に、本実施の形態の色差成分Cbの補間について説明する。図10(a)~図10(c)において、例えば、太線に対して左および上の領域に第1撮像条件が適用されており、太線に対して右および下の領域に第2撮像条件が適用されているものとする。なお、図10(a)~図10(c)において、第1撮像条件と第2撮像条件は異なる。図10(b)において、太枠(3行目3列目)で示す位置が色差成分Cbの注目位置である。また、図10(b)中の色差成分の画像データCb1~Cb4が注目位置(3行目3列目)の画素を画像処理するための参照位置である。図10(b)において、注目位置(3行目3列目)には第2撮像条件が適用されている。参照位置のうち、画像データCb1、Cb3には第1撮像条件が適用されている。また、参照位置のうち、画像データCb2、Cb4には第2撮像条件が適用されている。そのため、画像処理部33(補正部33b)は、データCb1およびCb3に対してそれぞれ補正処理を行う。その後、画像処理部33(生成部33c)が注目位置(3行目3列目)における色差成分Cbの画像データを算出する。
 また、図10(c)において、太枠(3行目4列目)で示す位置が色差成分Cbの注目位置である。また、図10(c)中の色差成分の画像データCb2、Cb4~Cb6が注目位置(3行目4列目)の画素を画像処理するための参照位置である。図10(c)において、注目位置(3行目4列目)には第2撮像条件が適用されている。また、全ての参照位置の画像データCb2、Cb4~Cb6に第2撮像条件が適用されている。そのため、画像処理部33(生成部33c)は、画像処理部33(補正部33b)によって補正処理が行われていない参照位置の画像データCb2、Cb4~Cb6を参照して、注目位置(3行目4列目)における色差成分Cbの画像データを算出する。
Next, the interpolation of the color difference component Cb according to the present embodiment will be described. 10 (a) to 10 (c), for example, the first imaging condition is applied to the left and upper regions with respect to the thick line, and the second imaging condition is applied to the right and lower regions with respect to the thick line. It shall be applied. In FIGS. 10A to 10C, the first imaging condition and the second imaging condition are different. In FIG. 10B, the position indicated by the thick frame (third row, third column) is the target position of the color difference component Cb. Also, the color difference component image data Cb1 to Cb4 in FIG. 10B is a reference position for image processing of the pixel at the target position (third row, third column). In FIG. 10B, the second imaging condition is applied to the target position (third row, third column). Among the reference positions, the first imaging condition is applied to the image data Cb1 and Cb3. Of the reference positions, the second imaging condition is applied to the image data Cb2 and Cb4. Therefore, the image processing unit 33 (correction unit 33b) performs correction processing on the data Cb1 and Cb3, respectively. Thereafter, the image processing unit 33 (generation unit 33c) calculates the image data of the color difference component Cb at the target position (third row, third column).
In FIG. 10C, the position indicated by the thick frame (third row, fourth column) is the target position of the color difference component Cb. Further, the color difference component image data Cb2 and Cb4 to Cb6 in FIG. 10C are reference positions for image processing of the pixel at the target position (third row, fourth column). In FIG. 10C, the second imaging condition is applied to the position of interest (third row, fourth column). Further, the second imaging condition is applied to the image data Cb2 and Cb4 to Cb6 at all reference positions. Therefore, the image processing unit 33 (generation unit 33c) refers to the image data Cb2 and Cb4 to Cb6 at the reference position that has not been subjected to the correction process by the image processing unit 33 (correction unit 33b), and the target position (three rows). The image data of the color difference component Cb in the (fourth column) is calculated.
 画像処理部33(生成部33c)は、各画素位置において色差成分Cbの画像データを得たのち、各画素位置に対応させて図8(c)に示すG色成分の画像データを加算することにより、各画素位置においてB色成分の画像データを得ることができる。
 なお、上記「G色補間」では、例えば、図8(b)の太枠(2行目2列目)で示す注目位置においてG色成分の画像データを生成する場合、注目位置の近傍に位置する4つのG色成分の画像データG1~G4を参照するとしているが、画像構造によって参照するG色成分の画像データの数を変更してもよい。例えば、注目位置付近の画像が縦方向に類似性を有している(例えば、縦縞のパターン)場合は、注目位置の上下の画像データ(図8(b)のG1とG2)だけを用いて補間処理を行う。また、例えば、注目位置付近の画像が横方向に類似性を有している(例えば、横縞のパターン)場合は、注目位置の左右の画像データ(図8(b)のG3とG4)だけを用いて補間処理を行う。これらの場合、補正部33bにより補正を行う画像データG4を用いる場合と用いない場合がある。
The image processing unit 33 (the generation unit 33c) obtains the image data of the color difference component Cb at each pixel position, and then adds the image data of the G color component shown in FIG. 8C in correspondence with each pixel position. Thus, image data of the B color component can be obtained at each pixel position.
In the “G color interpolation”, for example, when generating G color component image data at the target position indicated by the thick frame (second row, second column) in FIG. The four G color component image data G1 to G4 are referred to, but the number of G color component image data to be referred to may be changed depending on the image structure. For example, when the image near the target position has similarity in the vertical direction (for example, a vertical stripe pattern), only the image data above and below the target position (G1 and G2 in FIG. 8B) are used. Perform interpolation processing. Further, for example, when the image near the target position has a similarity in the horizontal direction (for example, a horizontal stripe pattern), only the left and right image data (G3 and G4 in FIG. 8B) of the target position are used. To perform interpolation processing. In these cases, the image data G4 that is corrected by the correction unit 33b may or may not be used.
(3)輪郭強調処理
 輪郭強調処理の一例を説明する。画像処理部33(生成部33c)は、例えば、1フレームの画像において、注目画素P(処理対象画素)を中心とする所定サイズのカーネルを用いた公知の線形フィルタ(Linear filter)演算を行う。線型フィルタの一例である尖鋭化フィルタのカーネルサイズがN×N画素の場合、注目画素Pの位置が注目位置であり、注目画素Pを囲む(N-1)個の参照画素の位置が参照位置である。
 なお、カーネルサイズはN×M画素であってもよい。
(3) Outline Enhancement Process An example of the outline enhancement process will be described. The image processing unit 33 (generation unit 33c) performs, for example, a known linear filter calculation using a kernel of a predetermined size centered on the pixel of interest P (processing target pixel) in one frame image. When the kernel size of a sharpening filter that is an example of a linear filter is N × N pixels, the position of the target pixel P is the target position, and the positions of (N 2 −1) reference pixels surrounding the target pixel P are referred to. Position.
The kernel size may be N × M pixels.
 画像処理部33(生成部33c)は、注目画素Pにおける画像データを線型フィルタ演算結果で置き換えるフィルタ処理を、例えばフレーム画像の上部の水平ラインから下部の水平ラインへ向けて、各水平ライン上で注目画素を左から右へずらしながら行う。 The image processing unit 33 (generation unit 33c) performs a filter process for replacing the image data in the target pixel P with a linear filter calculation result on each horizontal line, for example, from the upper horizontal line to the lower horizontal line of the frame image. This is done while shifting the pixel of interest from left to right.
 本実施の形態において、画像処理部33(補正部33b)は、注目画素Pに適用された第1撮像条件と異なる第2撮像条件が適用された画素が上記参照画素に含まれる場合に、第2撮像条件が適用された画像データに対して補正処理を行う。その後、画像処理部33(生成部33c)が上述した線型フィルタ処理を行う。 In the present embodiment, the image processing unit 33 (correction unit 33b) determines whether the reference pixel includes a pixel to which a second imaging condition different from the first imaging condition applied to the target pixel P is included. Correction processing is performed on image data to which two imaging conditions are applied. Thereafter, the image processing unit 33 (generation unit 33c) performs the linear filter processing described above.
(4)ノイズ低減処理
 ノイズ低減処理の一例を説明する。画像処理部33(生成部33c)は、例えば、1フレームの画像において、注目画素P(処理対象画素)を中心とする所定サイズのカーネルを用いた公知の線形フィルタ(Linear filter)演算を行う。線型フィルタの一例である平滑化フィルタのカーネルサイズがN×N画素の場合、注目画素Pの位置が注目位置であり、注目画素Pを囲む(N-1)個の参照画素の位置が参照位置である。
 なお、カーネルサイズはN×M画素であってもよい。
(4) Noise reduction processing An example of noise reduction processing will be described. The image processing unit 33 (generation unit 33c) performs, for example, a known linear filter calculation using a kernel of a predetermined size centered on the pixel of interest P (processing target pixel) in one frame image. When the kernel size of the smoothing filter which is an example of the linear filter is N × N pixels, the position of the target pixel P is the target position, and the positions of the (N 2 −1) reference pixels surrounding the target pixel P are referred to. Position.
The kernel size may be N × M pixels.
 画像処理部33(生成部33c)は、注目画素Pにおける画像データを線型フィルタ演算結果で置き換えるフィルタ処理を、例えばフレーム画像の上部の水平ラインから下部の水平ラインへ向けて、各水平ライン上で注目画素を左から右へずらしながら行う。 The image processing unit 33 (generation unit 33c) performs a filter process for replacing the image data in the target pixel P with a linear filter calculation result on each horizontal line, for example, from the upper horizontal line to the lower horizontal line of the frame image. This is done while shifting the pixel of interest from left to right.
 本実施の形態において、画像処理部33(補正部33b)は、注目画素Pに適用された第1撮像条件と異なる第2撮像条件が適用された画素が上記参照画素に含まれる場合に、第2撮像条件が適用された画像データに対して補正処理を行う。その後、画像処理部33(生成部33c)が上述した線型フィルタ処理を行う。 In the present embodiment, the image processing unit 33 (correction unit 33b) determines whether the reference pixel includes a pixel to which a second imaging condition different from the first imaging condition applied to the target pixel P is included. Correction processing is performed on image data to which two imaging conditions are applied. Thereafter, the image processing unit 33 (generation unit 33c) performs the linear filter processing described above.
2.焦点検出処理を行う場合
 制御部34(AF演算部34d)は、撮像画面の所定の位置(焦点検出位置)に対応する信号データ(画像データ)を用いて焦点検出処理を行う。制御部34(AF演算部34d)は、分割した領域間で異なる撮像条件が設定されており、AF動作の焦点検出位置が分割された領域の境界部分に位置する場合、少なくとも1つの領域の焦点検出用の信号データに対し、焦点検出処理の前処理として補正処理を行う。
2. When performing focus detection processing The control unit 34 (AF calculation unit 34d) performs focus detection processing using signal data (image data) corresponding to a predetermined position (focus detection position) on the imaging screen. The control unit 34 (AF calculation unit 34d) sets different imaging conditions for the divided areas, and when the focus detection position of the AF operation is located at the boundary portion of the divided areas, the focus of at least one area is set. Correction processing is performed on the signal data for detection as preprocessing for focus detection processing.
 補正処理は、設定部34bが分割した撮像画面の領域間で撮像条件が異なることに起因して、焦点検出処理の精度が低下することを抑制するために行う。例えば、画像において像ズレ量(位相差)を検出する焦点検出位置の焦点検出用の信号データが、分割した領域の境界付近に位置する場合、焦点検出用の信号データの中に異なる撮像条件が適用された信号データが混在する場合がある。本実施の形態では、異なる撮像条件が適用された信号データをそのまま用いて像ズレ量(位相差)の検出を行うよりも、撮像条件の相違による信号データ間の差異を抑えるように補正処理を施した信号データを用いて像ズレ量(位相差)の検出を行う方が好ましいという考え方に基づき、以下のように補正処理を行う。 The correction process is performed in order to suppress a decrease in the accuracy of the focus detection process due to the difference in imaging conditions between areas of the imaging screen divided by the setting unit 34b. For example, when the focus detection signal data at the focus detection position for detecting the image shift amount (phase difference) in the image is located near the boundary of the divided areas, different imaging conditions are included in the focus detection signal data. Applied signal data may be mixed. In the present embodiment, the correction process is performed so as to suppress the difference between the signal data due to the difference in the imaging conditions, rather than detecting the image shift amount (phase difference) using the signal data to which the different imaging conditions are applied as it is. Based on the idea that it is preferable to detect the amount of image shift (phase difference) using the applied signal data, correction processing is performed as follows.
<焦点検出処理の例示>
 補正処理を伴う焦点検出処理について例示する。本実施の形態のAF動作は、例えば、撮像画面における複数の焦点検出位置の中からユーザーが選んだ焦点検出位置に対応する被写体にフォーカスを合わせる。制御部34(AF演算部34d(生成部))は、撮像光学系31の異なる瞳領域を通過した光束による複数の被写体像の像ズレ量(位相差)を検出することにより、撮像光学系31のデフォーカス量を算出する。制御部34(AF演算部34d)は、デフォーカス量をゼロ(許容値以下)にする位置、すなわち合焦位置へ、撮像光学系31のフォーカスレンズを移動させる。
<Example of focus detection processing>
An example of focus detection processing that involves correction processing will be described. In the AF operation of the present embodiment, for example, the subject corresponding to the focus detection position selected by the user from a plurality of focus detection positions on the imaging screen is focused. The control unit 34 (AF calculation unit 34 d (generation unit)) detects image shift amounts (phase differences) of a plurality of subject images due to light beams that have passed through different pupil regions of the imaging optical system 31, whereby the imaging optical system 31. The defocus amount of is calculated. The control unit 34 (AF calculation unit 34d) moves the focus lens of the imaging optical system 31 to a position where the defocus amount is zero (allowable value or less), that is, a focus position.
 図11は、撮像素子32aの撮像面における焦点検出用画素の位置を例示する図である。本実施の形態では、撮像チップ111のX軸方向(水平方向)に沿って離散的に焦点検出用画素が並べて設けられている。図11の例では、15本の焦点検出画素ライン160が所定の間隔で設けられる。焦点検出画素ライン160を構成する焦点検出用画素は、焦点検出用の光電変換信号を出力する。撮像チップ111において焦点検出画素ライン160以外の画素位置には通常の撮像用画素が設けられている。撮像用画素は、ライブビュー画像や記録用の光電変換信号を出力する。 FIG. 11 is a diagram illustrating the position of the focus detection pixel on the imaging surface of the imaging device 32a. In the present embodiment, focus detection pixels are discretely arranged along the X-axis direction (horizontal direction) of the imaging chip 111. In the example of FIG. 11, 15 focus detection pixel lines 160 are provided at a predetermined interval. The focus detection pixels constituting the focus detection pixel line 160 output a photoelectric conversion signal for focus detection. In the imaging chip 111, normal imaging pixels are provided at pixel positions other than the focus detection pixel line 160. The imaging pixel outputs a live view image or a photoelectric conversion signal for recording.
 図12は、図11に示す焦点検出位置80Aに対応する上記焦点検出画素ライン160の一部の領域を拡大した図である。図12において、赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bと、焦点検出用画素S1、および焦点検出用画素S2とが例示される。赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bは、上述したベイヤー配列の規則にしたがって配される。 FIG. 12 is an enlarged view of a part of the focus detection pixel line 160 corresponding to the focus detection position 80A shown in FIG. In FIG. 12, a red pixel R, a green pixel G (Gb, Gr), and a blue pixel B, a focus detection pixel S1, and a focus detection pixel S2 are illustrated. The red pixel R, the green pixel G (Gb, Gr), and the blue pixel B are arranged according to the rules of the Bayer arrangement described above.
 赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bについて例示した正方形状の領域は、撮像用画素の受光領域を示す。各撮像用画素は、撮像光学系31(図1)の射出瞳を通る光束を受光する。すなわち、赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bはそれぞれ正方形状のマスク開口部を有し、これらのマスク開口部を通った光が撮像用画素の受光部に到達する。 The square area illustrated for the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B indicates the light receiving area of the imaging pixel. Each imaging pixel receives a light beam passing through the exit pupil of the imaging optical system 31 (FIG. 1). That is, the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B each have a square-shaped mask opening, and light passing through these mask openings reaches the light-receiving portion of the imaging pixel. .
 なお、赤色画素R、緑色画素G(Gb、Gr)、および青色画素Bの受光領域(マスク開口部)の形状は四角形に限定されず、例えば円形であってもよい。 The shapes of the light receiving regions (mask openings) of the red pixel R, the green pixel G (Gb, Gr), and the blue pixel B are not limited to a quadrangle, and may be, for example, a circle.
 焦点検出用画素S1、および焦点検出用画素S2について例示した半円形状の領域は、焦点検出用画素の受光領域を示す。すなわち、焦点検出用画素S1は、図12において画素位置の左側に半円形状のマスク開口部を有し、このマスク開口部を通った光が焦点検出用画素S1の受光部に到達する。一方、焦点検出用画素S2は、図12において画素位置の右側に半円形状のマスク開口部を有し、このマスク開口部を通った光が焦点検出用画素S2の受光部に到達する。このように、焦点検出用画素S1および焦点検出用画素S2は、撮像光学系31(図1)の射出瞳の異なる領域を通る一対の光束をそれぞれ受光する。 The semicircular region exemplified for the focus detection pixel S1 and the focus detection pixel S2 indicates a light receiving region of the focus detection pixel. That is, the focus detection pixel S1 has a semicircular mask opening on the left side of the pixel position in FIG. 12, and the light passing through the mask opening reaches the light receiving portion of the focus detection pixel S1. On the other hand, the focus detection pixel S2 has a semicircular mask opening on the right side of the pixel position in FIG. 12, and the light passing through the mask opening reaches the light receiving portion of the focus detection pixel S2. As described above, the focus detection pixel S1 and the focus detection pixel S2 respectively receive a pair of light beams passing through different areas of the exit pupil of the imaging optical system 31 (FIG. 1).
 なお、撮像チップ111における焦点検出画素ライン160の位置は、図11に例示した位置に限定されない。また、焦点検出画素ライン160の数についても、図11の例に限定されるものではない。さらに、焦点検出用画素S1および焦点検出用画素S2におけるマスク開口部の形状は半円形に限定されず、例えば撮像用画素R、撮像用画素G、撮像用画素Bにおける四角形状受光領域(マスク開口部)を横方向に分割した長方形状としてもよい。 Note that the position of the focus detection pixel line 160 in the imaging chip 111 is not limited to the position illustrated in FIG. Further, the number of focus detection pixel lines 160 is not limited to the example of FIG. Further, the shape of the mask opening in the focus detection pixel S1 and the focus detection pixel S2 is not limited to a semicircular shape. For example, a rectangular light receiving region (mask opening) in the imaging pixel R, the imaging pixel G, and the imaging pixel B is used. Part) may be a rectangular shape divided in the horizontal direction.
 また、撮像チップ111における焦点検出画素ライン160は、撮像チップ111のY軸方向(鉛直方向)に沿って焦点検出用画素を並べて設けたものであってもよい。図12のように撮像用画素と焦点検出用画素とを二次元状に配列した撮像素子は公知であり、これらの画素の詳細な図示および説明は省略する。 Further, the focus detection pixel line 160 in the imaging chip 111 may be a line in which focus detection pixels are arranged along the Y-axis direction (vertical direction) of the imaging chip 111. An imaging element in which imaging pixels and focus detection pixels are two-dimensionally arranged as shown in FIG. 12 is known, and detailed illustration and description of these pixels are omitted.
 なお、図12の例では、焦点検出用画素S1、S2がそれぞれ焦点検出用の一対の光束のうちの一方を受光する構成、いわゆる1PD構造を説明した。この代わりに、焦点検出用画素がそれぞれ焦点検出用の一対の光束の双方を受光する構成、いわゆる2PD構造にしてもよい。2PD構造にすることにより、焦点検出用画素で得られた光電変換信号を記録用の光電変換信号として用いることが可能になる。 In the example of FIG. 12, the configuration in which the focus detection pixels S1 and S2 each receive one of the pair of focus detection light beams, the so-called 1PD structure, has been described. Instead of this, the focus detection pixels may be configured to receive both of a pair of light beams for focus detection, that is, a so-called 2PD structure. With the 2PD structure, the photoelectric conversion signal obtained by the focus detection pixel can be used as a recording photoelectric conversion signal.
 制御部34(AF演算部34d)は、焦点検出用画素S1および焦点検出用画素S2から出力される焦点検出用の光電変換信号に基づいて、撮像光学系31(図1)の異なる領域を通る一対の光束による一対の像の像ズレ量(位相差)を検出する。そして、像ズレ量(位相差)に基づいてデフォーカス量を演算する。このような瞳分割位相差方式によるデフォーカス量演算は、カメラの分野において公知であるので詳細な説明は省略する。 The control unit 34 (AF calculation unit 34d) passes through different regions of the imaging optical system 31 (FIG. 1) based on the focus detection photoelectric conversion signals output from the focus detection pixel S1 and the focus detection pixel S2. An image shift amount (phase difference) between the pair of images by the pair of light beams is detected. Then, the defocus amount is calculated based on the image shift amount (phase difference). Such defocus amount calculation by the pupil division phase difference method is well known in the field of cameras, and thus detailed description thereof is omitted.
 焦点検出位置80A(図11)は、図7(a)に例示したライブビュー画像60aにおいて、領域61の境界付近の領域80に対応する位置に、ユーザーによって選ばれているものとする。図13は、焦点検出位置80Aを拡大した図である。白地の画素は第1撮像条件が設定されていることを示し、網掛けの画素は第2撮像条件が設定されていることを示す。図13において枠170で囲む位置は、焦点検出画素ライン160(図11)に対応する。 It is assumed that the focus detection position 80A (FIG. 11) is selected by the user at a position corresponding to the region 80 near the boundary of the region 61 in the live view image 60a illustrated in FIG. FIG. 13 is an enlarged view of the focus detection position 80A. White pixels indicate that the first imaging condition is set, and shaded pixels indicate that the second imaging condition is set. In FIG. 13, the position surrounded by the frame 170 corresponds to the focus detection pixel line 160 (FIG. 11).
 制御部34(AF演算部34d)は、通常、補正処理を行わずに枠170で示す焦点検出用画素による信号データをそのまま用いて焦点検出処理を行う。しかしながら、枠170で囲む信号データに、第1撮像条件が適用された信号データと第2撮像条件が適用された信号データが混在する場合には、制御部34(AF演算部34d)が、枠170で囲む信号データのうちの第2撮像条件の信号データに対して、以下の(例1)~(例3)のように補正処理を行う。そして、制御部34(AF演算部34d)は、補正処理後の信号データを用いて焦点検出処理を行う。 The control unit 34 (AF calculation unit 34d) normally performs the focus detection process using the signal data from the focus detection pixels indicated by the frame 170 without performing the correction process. However, when the signal data surrounded by the frame 170 includes signal data to which the first imaging condition is applied and signal data to which the second imaging condition is applied, the control unit 34 (AF calculation unit 34d) Correction processing is performed on the signal data of the second imaging condition among the signal data surrounded by 170 as in the following (Example 1) to (Example 3). Then, the control unit 34 (AF calculation unit 34d) performs focus detection processing using the signal data after the correction processing.
(例1)
 制御部34(AF演算部34d)は、例えば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合、第2撮像条件の信号データに対し、補正処理として100/800をかける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
 なお、第1撮像条件が適用された画素への入射光量と第2撮像条件が適用された画素への入射光量とが同じ場合には信号データの差異が小さくなるが、もともと第1撮像条件が適用された画素への入射光量と第2撮像条件が適用された画素への入射光量とが異なっている場合などには、信号データの差異が小さくならない場合もある。後述する例も同様である。
(Example 1)
For example, the control unit 34 (AF calculation unit 34d) differs only in ISO sensitivity between the first imaging condition and the second imaging condition, the ISO sensitivity of the first imaging condition is 100, and the ISO sensitivity of the second imaging condition. Is 800/100, the correction processing is applied to the signal data of the second imaging condition. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
Note that when the amount of incident light to the pixel to which the first imaging condition is applied and the amount of incident light to the pixel to which the second imaging condition is applied are the same, the difference in the signal data is reduced. When the amount of incident light on the applied pixel is different from the amount of incident light on the pixel to which the second imaging condition is applied, the difference in signal data may not be reduced. The same applies to the examples described later.
(例2)
 制御部34(AF演算部34d)は、例えば、第1撮像条件と第2撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第2撮像条件のシャッター速度が1/100秒の場合、第2撮像条件の信号データに対し、補正処理として1/1000/1/100=1/10をかける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
(Example 2)
For example, the control unit 34 (AF calculation unit 34d) differs only in the shutter speed between the first imaging condition and the second imaging condition, and the shutter speed of the first imaging condition is 1/1000 second. When the shutter speed is 1/100 second, 1/1000/1/100 = 1/10 is applied to the signal data of the second imaging condition as a correction process. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
(例3)
 制御部34(AF演算部34d)は、例えば、第1撮像条件と第2撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第2撮像条件のフレームレートが60fpsの場合、第2撮像条件(60fps)の信号データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを採用することを補正処理とする。これにより、撮像条件の相違による信号データ間の差異を小さくする。
 なお、第2撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを補間算出することを補正処理としてもよい。
(Example 3)
For example, the control unit 34 (AF calculation unit 34d) differs only in the frame rate between the first imaging condition and the second imaging condition (the charge accumulation time is the same), and the frame rate of the first imaging condition is 30 fps. When the frame rate of the second imaging condition is 60 fps, the signal data of the frame image acquired at the first imaging condition (30 fps) and the frame image having the acquisition start timing close to the signal data of the second imaging condition (60 fps) are adopted. This is the correction process. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
In addition, based on a plurality of previous and subsequent frame images acquired under the second imaging condition (60 fps), interpolation calculation is performed on the signal data of the frame image acquired under the first imaging condition (30 fps) and the acquisition start timing is similar. This may be a correction process.
 一方、制御部34(AF演算部34d)は、枠170で囲む信号データにおいて適用された撮像条件が同一である場合には上記補正処理を行わない。つまり、制御部34(AF演算部34d)は、枠170で示す焦点検出用画素による信号データをそのまま用いて焦点検出処理を行う。 On the other hand, the control unit 34 (AF calculation unit 34d) does not perform the correction process when the imaging conditions applied in the signal data surrounded by the frame 170 are the same. That is, the control unit 34 (AF calculation unit 34d) performs focus detection processing using the signal data from the focus detection pixels indicated by the frame 170 as they are.
 なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
 また、上記の例では、信号データのうちの第2撮像条件の信号データに対して第1撮像条件により補正処理を行う例を説明したが、信号データのうちの第1撮像条件の信号データに対して第2撮像条件により補正処理を行ってもよい。
 制御部34(AF演算部34d)が、第1撮像条件の信号データに対して補正処理を行うか、第2撮像条件の信号データに対して補正処理を行うかを、たとえば、ISO感度に基づいて決定するようにしてもよい。第1撮像条件と第2撮像条件とでISO感度が異なる場合、ISO感度が高い方の撮像条件で得られた信号データが飽和していなければ、ISO感度が低い方の撮像条件で得られた信号データに対して補正処理を行うことが望ましい。すなわち、第1撮像条件と第2撮像条件とでISO感度が異なる場合、明るい方の信号データとの差を小さくするように暗い方の信号データを補正処理することが望ましい。
As described above, even if there are some differences in the imaging conditions, the imaging conditions are regarded as the same.
In the above example, the example in which the correction process is performed on the signal data on the second imaging condition in the signal data based on the first imaging condition. However, the signal data on the first imaging condition in the signal data is described. On the other hand, correction processing may be performed according to the second imaging condition.
Whether the control unit 34 (AF calculation unit 34d) performs the correction process on the signal data of the first imaging condition or the signal data of the second imaging condition is determined based on, for example, ISO sensitivity May be determined. When the ISO sensitivity differs between the first imaging condition and the second imaging condition, if the signal data obtained under the imaging condition with the higher ISO sensitivity is not saturated, the imaging condition with the lower ISO sensitivity was obtained. It is desirable to perform correction processing on the signal data. That is, when the ISO sensitivity differs between the first imaging condition and the second imaging condition, it is desirable to correct the darker signal data so as to reduce the difference from the brighter signal data.
 さらにまた、信号データのうちの第1撮像条件の信号データおよび第2撮像条件の信号データに対してそれぞれ補正処理を行うことにより、補正処理後の双方の信号データ間の差を小さくするようにしてもよい。 Furthermore, by performing correction processing on the signal data of the first imaging condition and the signal data of the second imaging condition in the signal data, the difference between the two signal data after the correction processing is reduced. May be.
 以上の説明では、瞳分割位相差方式を用いた焦点検出処理を例示したが、被写体像のコントラストの大小に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるコントラスト検出方式の場合も同様に行うことができる。 In the above description, the focus detection process using the pupil division phase difference method is exemplified. However, in the case of the contrast detection method in which the focus lens of the imaging optical system 31 is moved to the in-focus position based on the contrast of the subject image. Can be done in the same way.
 コントラスト検出方式を用いる場合、制御部34は、撮像光学系31のフォーカスレンズを移動させながら、フォーカスレンズのそれぞれの位置において、焦点検出位置に対応する撮像素子32aの撮像用画素から出力された信号データに基づいて公知の焦点評価値演算を行う。そして、焦点評価値を最大にするフォーカスレンズの位置を合焦位置として求める。 When the contrast detection method is used, the control unit 34 moves the focus lens of the imaging optical system 31 and outputs the signal output from the imaging pixel of the imaging element 32a corresponding to the focus detection position at each position of the focus lens. A known focus evaluation value calculation is performed based on the data. Then, the position of the focus lens that maximizes the focus evaluation value is obtained as the focus position.
 制御部34は、通常、補正処理を行わずに焦点検出位置に対応する撮像用画素から出力された信号データをそのまま用いて焦点評価値演算を行う。しかしながら、焦点検出位置に対応する信号データに、第1撮像条件が適用された信号データと第2撮像条件が適用された信号データが混在する場合には、制御部34が、焦点検出位置に対応する信号データのうちの第2撮像条件の信号データに対して、上述したような補正処理を行う。そして、制御部34は、補正処理後の信号データを用いて焦点評価値演算を行う。 The control unit 34 normally performs focus evaluation value calculation using the signal data output from the imaging pixels corresponding to the focus detection position without performing correction processing. However, when the signal data corresponding to the focus detection position includes signal data to which the first imaging condition is applied and signal data to which the second imaging condition is applied, the control unit 34 corresponds to the focus detection position. Of the signal data to be processed, the correction processing as described above is performed on the signal data of the second imaging condition. And the control part 34 performs a focus evaluation value calculation using the signal data after a correction process.
3.被写体検出処理を行う場合
 図14(a)は、検出しようとする対象物を表すテンプレート画像を例示する図であり、図14(b)は、ライブビュー画像60(a)および探索範囲190を例示する図である。制御部34(物体検出部34a)は、ライブビュー画像から対象物(例えば、図5の被写体要素の一つであるバッグ63a)を検出する。制御部34(物体検出部34a)は、対象物を検出する範囲をライブビュー画像60aの全範囲としてもよいが、検出処理を軽くするために、ライブビュー画像60aの一部を探索範囲190としてもよい。
3. FIG. 14A illustrates a template image representing an object to be detected, and FIG. 14B illustrates a live view image 60 (a) and a search range 190. It is a figure to do. The control unit 34 (object detection unit 34a) detects an object (for example, a bag 63a which is one of the subject elements in FIG. 5) from the live view image. The control unit 34 (the object detection unit 34a) may set the range in which the object is detected as the entire range of the live view image 60a. However, in order to reduce the detection process, a part of the live view image 60a is set as the search range 190. Also good.
 制御部34(物体検出部34a)は、分割した領域間で異なる撮像条件が設定されており、探索範囲190が分割された領域の境界を含む場合、探索範囲190内の少なくとも1つの領域の画像データに対し、被写体検出処理の前処理として補正処理を行う。 The control unit 34 (the object detection unit 34a) sets at least different imaging conditions between the divided regions, and when the search range 190 includes a boundary of the divided regions, an image of at least one region in the search range 190 Correction processing is performed on the data as preprocessing of subject detection processing.
 補正処理は、設定部34bが分割した撮像画面の領域間で撮像条件が異なることに起因して、被写体要素の検出処理の精度低下を抑制するために行う。一般に、被写体要素の検出に用いる探索範囲190に、分割された領域の境界を含む場合、探索範囲190の画像データの中に異なる撮像条件が適用された画像データが混在する場合がある。本実施の形態では、異なる撮像条件が適用された画像データをそのまま用いて被写体要素の検出を行うよりも、撮像条件の相違による画像データ間の差異を抑えるように補正処理を施した画像データを用いて被写体要素の検出を行う方が好ましいという考え方に基づき、以下のように補正処理を行う。 The correction process is performed in order to suppress a decrease in accuracy of the subject element detection process due to a difference in imaging conditions between areas of the imaging screen divided by the setting unit 34b. In general, when the search range 190 used for detecting the subject element includes a boundary of divided areas, image data to which different imaging conditions are applied may be mixed in the image data of the search range 190. In the present embodiment, image data that has been subjected to correction processing so as to suppress differences between image data due to differences in imaging conditions is used rather than detecting subject elements using image data to which different imaging conditions are applied as they are. Based on the idea that it is preferable to use this method to detect the subject element, correction processing is performed as follows.
 図5に例示したライブビュー画像60aにおいて、人物61aの持ち物であるバッグ63aを検出する場合を説明する。制御部34(物体検出部34a)は、人物61aを含む領域の近傍に探索範囲190を設定する。なお、人物61aを含む領域61を探索範囲に設定してもよい。 A case will be described in which the bag 63a which is the belonging of the person 61a is detected in the live view image 60a illustrated in FIG. The control unit 34 (object detection unit 34a) sets the search range 190 in the vicinity of the region including the person 61a. In addition, you may set the area | region 61 containing the person 61a as a search range.
 制御部34(物体検出部34a)は、探索範囲190が撮像条件の異なる2つの領域によって分断されていない場合には、補正処理を行わずに探索範囲190を構成する画像データをそのまま用いて被写体検出処理を行う。しかしながら、仮に、探索範囲190の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合には、制御部34(物体検出部34a)は、探索範囲190の画像データのうちの第2撮像条件の画像データに対して、焦点検出処理を行う場合として上述した(例1)~(例3)のように補正処理を行う。そして、制御部34(物体検出部34a)は、補正処理後の画像データを用いて被写体検出処理を行う。
 なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
 また、上記の例では、画像データのうちの第2撮像条件の画像データに対して第1撮像条件により補正処理を行う例を説明したが、画像データのうちの第1撮像条件の画像データに対して第2撮像条件により補正処理を行ってもよい。
When the search range 190 is not divided by two regions having different imaging conditions, the control unit 34 (the object detection unit 34a) uses the image data constituting the search range 190 as it is without performing correction processing. Perform detection processing. However, if image data in the search range 190 includes image data to which the first imaging condition is applied and image data to which the second imaging condition is applied, the control unit 34 (object detection unit 34a) Then, correction processing is performed as in the above (Example 1) to (Example 3) as the case where the focus detection processing is performed on the image data of the second imaging condition in the image data in the search range 190. Then, the control unit 34 (object detection unit 34a) performs subject detection processing using the image data after the correction processing.
As described above, even if there are some differences in the imaging conditions, the imaging conditions are regarded as the same.
In the above example, the example in which the correction process is performed on the image data on the second imaging condition in the image data based on the first imaging condition. However, the image data on the first imaging condition in the image data is described. On the other hand, correction processing may be performed according to the second imaging condition.
 上述した探索範囲190の画像データに対する補正処理は、人物の顔のような特定被写体を検出するために用いる探索範囲や、撮像シーンの判定に用いる領域に対して適用してもよい。 The above-described correction processing for the image data in the search range 190 may be applied to a search range used for detecting a specific subject such as a human face or an area used for determination of an imaging scene.
 また、上述した探索範囲190の画像データに対する補正処理は、テンプレート画像を用いたパターンマッチング法に用いる探索範囲に限らず、画像の色やエッジなどに基づく特徴量を検出する際の探索範囲においても同様に適用してよい。 The correction processing for the image data of the search range 190 described above is not limited to the search range used in the pattern matching method using the template image, but also in the search range when detecting the feature amount based on the color or edge of the image. You may apply similarly.
 また、取得時刻が異なる複数フレームの画像データを用いて公知のテンプレートマッチング処理を施すことにより、先に取得されたフレーム画像における追尾対象物と類似する領域を後から取得されたフレーム画像から探索する移動体の追尾処理に適用してもよい。この場合において、制御部34は、後から取得されたフレーム画像に設定する探索範囲において、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合には、探索範囲の画像データのうちの第2撮像条件の画像データに対して、上述した(例1)~(例3)のように補正処理を行う。そして、制御部34は、補正処理後の画像データを用いて追尾処理を行う。 Further, by performing a known template matching process using image data of a plurality of frames having different acquisition times, a region similar to the tracking target in the previously acquired frame image is searched from the frame image acquired later. You may apply to the tracking process of a mobile body. In this case, the control unit 34, when the image data to which the first imaging condition is applied and the image data to which the second imaging condition is applied coexist in the search range set in the frame image acquired later. Then, the correction processing is performed on the image data of the second imaging condition in the image data of the search range as described above (Example 1) to (Example 3). And the control part 34 performs a tracking process using the image data after a correction process.
 さらにまた、取得時刻が異なる複数フレームの画像データを用いて公知の動きベクトルを検出する場合も同様である。制御部34は、動きベクトルの検出に用いる検出領域において、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合には、動きベクトルの検出に用いる検出領域の画像データのうちの第2撮像条件の画像データに対して、上述した(例1)~(例3)のように補正処理を行う。そして、制御部34は、補正処理後の画像データを用いて動きベクトルを検出する。 The same applies to the case where a known motion vector is detected using image data of a plurality of frames having different acquisition times. When the image data to which the first imaging condition is applied and the image data to which the second imaging condition is applied are mixed in the detection area used for detecting the motion vector, the control unit 34 detects the motion vector. Correction processing is performed as described above (Example 1) to (Example 3) on the image data of the second imaging condition in the image data of the region. And the control part 34 detects a motion vector using the image data after a correction process.
4.撮像条件を設定する場合
 制御部34(設定部34b)は、撮像画面の領域を分割し、分割した領域間で異なる撮像条件を設定した状態で、新たに測光し直して露出条件を決定する場合、少なくとも1つの領域の画像データに対し、露出条件を設定する前処理として補正処理を行う。
4). When setting the imaging conditions When the control unit 34 (setting unit 34b) divides the area of the imaging screen and sets different imaging conditions between the divided areas, newly performs photometry and determines the exposure conditions Then, correction processing is performed as preprocessing for setting the exposure condition on the image data of at least one region.
 補正処理は、設定部34bが分割した撮像画面の領域間で撮像条件が異なることに起因して、露出条件を決定する処理の精度低下を抑制するために行う。例えば、撮像画面の中央部に設定された測光範囲に、分割された領域の境界を含む場合、測光範囲の画像データの中に異なる撮像条件が適用された画像データが混在する場合がある。本実施の形態では、異なる撮像条件が適用された画像データをそのまま用いて露出演算処理を行うよりも、撮像条件の相違による画像データ間の差異を抑えるように補正処理を施した画像データを用いて露出演算処理を行う方が好ましいという考え方に基づき、以下のように補正処理を行う。 The correction process is performed in order to suppress a decrease in accuracy of the process for determining the exposure condition due to the difference in the imaging condition between the areas of the imaging screen divided by the setting unit 34b. For example, when the photometric range set in the center of the imaging screen includes the boundary of the divided areas, image data to which different imaging conditions are applied may be mixed in the photometric range image data. In the present embodiment, image data that has been subjected to correction processing to suppress differences between image data due to differences in imaging conditions is used rather than performing exposure calculation processing using image data to which different imaging conditions are applied as it is. Based on the idea that it is preferable to perform exposure calculation processing, correction processing is performed as follows.
 制御部34(設定部34b)は、測光範囲が撮像条件の異なる複数の領域によって分断されていない場合には、補正処理を行わずに測光範囲を構成する画像データをそのまま用いて露出演算処理を行う。しかしながら、仮に、測光範囲の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合には、制御部34(設定部34b)は、測光範囲の画像データのうちの第2撮像条件の画像データに対して、焦点検出処理や被写体検出処理を行う場合として上述した(例1)~(例3)のように補正処理を行う。そして、制御部34(設定部34b)は、補正処理後の画像データを用いて露出演算処理を行う。
 なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
 また、上記の例では、画像データのうちの第2撮像条件の画像データに対して第1撮像条件により補正処理を行う例を説明したが、画像データのうちの第1撮像条件の画像データに対して第2撮像条件により補正処理を行ってもよい。
When the photometric range is not divided by a plurality of regions having different imaging conditions, the control unit 34 (setting unit 34b) performs exposure calculation processing using the image data constituting the photometric range as it is without performing correction processing. Do. However, if the image data to which the first imaging condition is applied and the image data to which the second imaging condition is applied are mixed in the image data in the photometric range, the control unit 34 (setting unit 34b) Correction processing is performed as in the above-described (Example 1) to (Example 3) as the case where the focus detection process and the subject detection process are performed on the image data of the second imaging condition in the range of image data. Then, the control unit 34 (setting unit 34b) performs an exposure calculation process using the image data after the correction process.
As described above, even if there are some differences in the imaging conditions, the imaging conditions are regarded as the same.
In the above example, the example in which the correction process is performed on the image data on the second imaging condition in the image data based on the first imaging condition. However, the image data on the first imaging condition in the image data is described. On the other hand, correction processing may be performed according to the second imaging condition.
 上述した露出演算処理を行う際の測光範囲に限らず、ホワイトバランス調整値を決定する際に行う測光(測色)範囲や、撮影補助光を発する光源による撮影補助光の発光要否を決定する際に行う測光範囲、さらには、上記光源による撮影補助光の発光量を決定する際に行う測光範囲においても同様である。 Not only the photometric range when performing the exposure calculation process described above, but also the photometric (colorimetric) range used when determining the white balance adjustment value and the necessity of emission of the auxiliary photographing light by the light source that emits the auxiliary photographing light are determined. The same applies to the photometric range performed at the time, and further to the photometric range performed at the time of determining the light emission amount of the photographing auxiliary light by the light source.
 また、撮像画面を分割した領域間で、光電変換信号の読み出し解像度を異ならせる場合において、領域ごとの読み出し解像度を決定する際に行う撮像シーンの判定に用いる領域に対しても同様に扱うことができる。 Further, when the readout resolution of the photoelectric conversion signal is made different between areas obtained by dividing the imaging screen, the same applies to the area used for determination of the imaging scene performed when determining the readout resolution for each area. it can.
<フローチャートの説明>
 図15は、領域ごとに撮像条件を設定して撮像する処理の流れを説明するフローチャートである。カメラ1のメインスイッチがオン操作されると、制御部34は、図15に示す処理を実行するプログラムを起動させる。ステップS10において、制御部34は、表示部35にライブビュー表示を開始させて、ステップS20へ進む。
<Description of flowchart>
FIG. 15 is a flowchart for explaining the flow of processing for setting an imaging condition for each area and imaging. When the main switch of the camera 1 is turned on, the control unit 34 activates a program that executes the process shown in FIG. In step S10, the control unit 34 causes the display unit 35 to start live view display, and proceeds to step S20.
 具体的には、制御部34が撮像部32へライブビュー画像の取得開始を指示し、取得されたライブビュー画像を逐次表示部35に表示させる。上述したように、この時点では撮像チップ111の全域、すなわち画面の全体に同一の撮像条件が設定されている。
 なお、ライブビュー表示中にAF動作を行う設定がなされている場合、制御部34(AF演算部34d)は、焦点検出処理を行うことにより、所定の焦点検出位置に対応する被写体要素にフォーカスを合わせるAF動作を制御する。AF演算部34dは、必要に応じて、上記補正処理を行ってから焦点検出処理を行う。
 また、ライブビュー表示中にAF動作を行う設定がなされていない場合、制御部34(AF演算部34d)は、後にAF動作が指示された時点でAF動作を行う。
Specifically, the control unit 34 instructs the imaging unit 32 to start acquiring a live view image, and causes the display unit 35 to sequentially display the acquired live view image. As described above, at this time, the same imaging condition is set for the entire imaging chip 111, that is, the entire screen.
When the setting for performing the AF operation is performed during live view display, the control unit 34 (AF calculation unit 34d) performs focus detection processing to focus the subject element corresponding to the predetermined focus detection position. The AF operation to be adjusted is controlled. The AF calculation unit 34d performs the focus detection process after performing the correction process as necessary.
If the setting for performing the AF operation is not performed during live view display, the control unit 34 (AF calculation unit 34d) performs the AF operation when the AF operation is instructed later.
 ステップS20において、制御部34(物体検出部34a)は、ライブビュー画像から被写体要素を検出してステップS30へ進む。物体検出部34aは、必要に応じて、上記補正処理を行ってから被写体検出処理を行う。ステップS30において、制御部34(設定部34b)は、ライブビュー画像の画面を、被写体要素を含む領域に分割してステップS40へ進む。 In step S20, the control unit 34 (object detection unit 34a) detects the subject element from the live view image, and proceeds to step S30. The object detection unit 34a performs the subject detection process after performing the correction process as necessary. In step S30, the control unit 34 (setting unit 34b) divides the screen of the live view image into regions including subject elements, and proceeds to step S40.
 ステップS40において、制御部34は表示部35に領域の表示を行う。制御部34は、図6に例示したように、分割された領域のうちの撮像条件の設定(変更)の対象となる領域を強調表示させる。また、制御部34は、撮像条件の設定画面70を表示部35に表示させてステップS50へ進む。
 なお、制御部34は、ユーザーの指で表示画面上の他の主要被写体の表示位置がタップ操作された場合は、その主要被写体を含む領域を撮像条件の設定(変更)の対象となる領域に変更して強調表示させる。
In step S <b> 40, the control unit 34 displays an area on the display unit 35. As illustrated in FIG. 6, the control unit 34 highlights an area that is a target for setting (changing) the imaging condition among the divided areas. In addition, the control unit 34 displays the imaging condition setting screen 70 on the display unit 35 and proceeds to step S50.
When the display position of another main subject on the display screen is tapped with the user's finger, the control unit 34 sets an area including the main subject as an area for setting (changing) the imaging condition. Change and highlight.
 ステップS50において、制御部34は、AF動作が必要か否かを判定する。制御部34は、例えば、被写体が動いたことによって焦点調節状態が変化した場合や、ユーザー操作によって焦点検出位置の位置が変更された場合、またはユーザー操作によってAF動作の実行が指示された場合に、ステップS50を肯定判定してステップS70へ進む。制御部34は、焦点調節状態が変化せず、ユーザー操作により焦点検出位置の位置が変更されず、ユーザー操作によってAF動作の実行も指示されない場合には、ステップS50を否定判定してステップ60へ進む。 In step S50, the control unit 34 determines whether an AF operation is necessary. The control unit 34, for example, when the focus adjustment state changes due to the movement of the subject, when the position of the focus detection position is changed by a user operation, or when execution of an AF operation is instructed by a user operation Then, affirmative determination is made in step S50, and the process proceeds to step S70. When the focus adjustment state does not change, the position of the focus detection position is not changed by the user operation, and the execution of the AF operation is not instructed by the user operation, the control unit 34 makes a negative determination in step S50 and proceeds to step 60. move on.
 ステップS70において、制御部34は、AF動作を行わせてステップS40へ戻る。AF演算部34dは、必要に応じて、上記補正処理を行ってからAF動作である焦点検出処理を行う。ステップS40へ戻った制御部34は、AF動作後に取得されるライブビュー画像に基づき、上述した処理と同様の処理を繰り返す。 In step S70, the control unit 34 performs the AF operation and returns to step S40. The AF calculation unit 34d performs the focus detection process, which is an AF operation, after performing the correction process as necessary. The control unit 34 that has returned to step S40 repeats the same processing as described above based on the live view image acquired after the AF operation.
 ステップS60において、制御部34(設定部34b)は、ユーザー操作に応じて、強調して表示されている領域に対する撮像条件を設定してステップS80へ進む。なお、ステップS60におけるユーザー操作に応じた表示部35の表示遷移や撮像条件の設定については、上述したとおりである。制御部34(設定部34b)は、必要に応じて、上記補正処理を行ってから露出演算処理を行う。 In step S60, the control unit 34 (setting unit 34b) sets an imaging condition for the highlighted area in accordance with a user operation, and proceeds to step S80. Note that the display transition of the display unit 35 and the setting of the imaging conditions according to the user operation in step S60 are as described above. The control unit 34 (setting unit 34b) performs exposure calculation processing after performing the above correction processing as necessary.
 ステップS80において、制御部34は、撮像指示の有無を判定する。制御部34は、操作部材36を構成する不図示のレリーズボタン、または撮像を指示する表示アイコンが操作された場合、ステップS80を肯定判定してステップS90へ進む。制御部34は、撮像指示が行われない場合には、ステップS80を否定判定してステップS60へ戻る。 In step S80, the control unit 34 determines whether there is an imaging instruction. When a release button (not shown) constituting the operation member 36 or a display icon for instructing imaging is operated, the control unit 34 makes a positive determination in step S80 and proceeds to step S90. When the imaging instruction is not performed, the control unit 34 makes a negative determination in step S80 and returns to step S60.
 ステップS90において、制御部34は、所定の撮像処理を行う。すなわち、撮像制御部34cが上記領域ごとに設定された撮像条件で撮像するように撮像素子32aを制御してステップS100へ進む。 In step S90, the control unit 34 performs predetermined imaging processing. That is, the imaging control unit 34c controls the imaging element 32a so as to perform imaging under the imaging conditions set for each region, and the process proceeds to step S100.
 ステップS100において、制御部34(撮像制御部34c)は画像処理部33へ指示を送り、上記撮像によって得られた画像データに対して所定の画像処理を行わせてステップS110へ進む。画像処理は、上記画素欠陥補正処理、色補間処理、輪郭強調処理、ノイズ低減処理を含む。
 なお、画像処理部33(補正部33b)は、必要に応じて、領域の境界付近に位置する画像データに対して補正処理を行ってから画像処理を行う。
In step S100, the control unit 34 (imaging control unit 34c) sends an instruction to the image processing unit 33, performs predetermined image processing on the image data obtained by the imaging, and proceeds to step S110. Image processing includes the pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing.
Note that the image processing unit 33 (correction unit 33b) performs image processing after performing correction processing on image data located near the boundary of the region, as necessary.
 ステップS110において、制御部34は記録部37へ指示を送り、画像処理後の画像データを不図示の記録媒体に記録させてステップS120へ進む。 In step S110, the control unit 34 sends an instruction to the recording unit 37, records the image data after the image processing on a recording medium (not shown), and proceeds to step S120.
 ステップS120において、制御部34は、終了操作が行われたか否かを判断する。制御部34は、終了操作が行われた場合にステップS120を肯定判定して図15による処理を終了する。制御部34は、終了操作が行われない場合には、ステップS120を否定判定してステップS20へ戻る。ステップS20へ戻った場合、制御部34は、上述した処理を繰り返す。 In step S120, the control unit 34 determines whether an end operation has been performed. When the end operation is performed, the control unit 34 makes a positive determination in step S120 and ends the process illustrated in FIG. When the end operation is not performed, the control unit 34 makes a negative determination in step S120 and returns to step S20. When returning to step S20, the control unit 34 repeats the above-described processing.
 以上の説明では、撮像素子32aとして積層型の撮像素子100を例示したが、撮像素子(撮像チップ111)における複数のブロックごとに撮像条件を設定可能であれば、必ずしも積層型の撮像素子として構成する必要はない。 In the above description, the multilayer image sensor 100 is illustrated as the image sensor 32a. However, if the imaging condition can be set for each of a plurality of blocks in the image sensor (imaging chip 111), the image sensor 32a is not necessarily configured as a multilayer image sensor. do not have to.
 以上説明した第1の実施の形態によれば、次の作用効果が得られる。
(1)焦点検出装置を備えるカメラ1は、撮像光学系31を介して撮像部32の第1領域に入射した被写体像を第1撮像条件で撮像することにより生成された第1信号データを、撮像部32の第2領域に入射した被写体像を撮像する第2撮像条件に基づいて補正する画像処理部33(補正部33b)と、補正部33bで補正された第1信号データと、第2撮像条件で撮像することにより生成された第2信号データとに基づいて、撮像光学系31を動かすための情報(例えばデフォーカス量)を検出する制御部34(AF演算部34d)とを備える。これにより、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。すなわち、各領域でそれぞれ生成された信号データに基づいて、デフォーカス量を適切に検出することができる。例えば、領域ごとの撮像条件の違いによって、焦点検出精度が低下することを抑制できる。
According to the first embodiment described above, the following operational effects can be obtained.
(1) The camera 1 including the focus detection device captures the first signal data generated by capturing the subject image incident on the first region of the imaging unit 32 via the imaging optical system 31 under the first imaging condition. An image processing unit 33 (correction unit 33b) that corrects based on a second imaging condition for capturing a subject image incident on the second region of the imaging unit 32, the first signal data corrected by the correction unit 33b, and the second A control unit 34 (AF calculation unit 34d) that detects information (for example, defocus amount) for moving the imaging optical system 31 based on the second signal data generated by imaging under imaging conditions. Thereby, it is possible to appropriately perform processing in areas where imaging conditions are different. That is, it is possible to appropriately detect the defocus amount based on the signal data generated in each region. For example, it is possible to suppress a decrease in focus detection accuracy due to a difference in imaging conditions for each region.
(2)カメラ1の補正部33bは、第1信号データを、第1信号データの値と第2信号データの値との差が小さくなるように補正するので、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。 (2) The correction unit 33b of the camera 1 corrects the first signal data so that the difference between the value of the first signal data and the value of the second signal data is small. Appropriate processing can be performed.
(3)カメラ1の補正部33bは、第1信号データを、第1撮像条件および第2撮像条件の相違に基づいて補正するので、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。 (3) Since the correction unit 33b of the camera 1 corrects the first signal data based on the difference between the first imaging condition and the second imaging condition, the correction unit 33b can appropriately perform processing in areas where the imaging conditions are different. it can.
(4)カメラ1の補正部33bは、第2信号データを、第1撮像条件に基づいて補正し、AF演算部34dは、補正部33bで補正された第1信号データと、補正部33bで補正された第2信号データとに基づいてデフォーカス量を検出するようにしてもよい。このようにしても、撮像条件が異なる領域で、それぞれ適切に処理を行うことができる。 (4) The correction unit 33b of the camera 1 corrects the second signal data based on the first imaging condition, and the AF calculation unit 34d uses the first signal data corrected by the correction unit 33b and the correction unit 33b. The defocus amount may be detected based on the corrected second signal data. Even in this case, it is possible to appropriately perform processing in areas where imaging conditions are different.
(5)カメラ1のAF演算部34dは、撮像光学系31の異なる瞳を通過した複数の光像の像ズレ量を検出するので、撮像条件が異なる領域で、それぞれ適切に焦点検出処理を行うことができる。 (5) Since the AF calculation unit 34d of the camera 1 detects image shift amounts of a plurality of light images that have passed through different pupils of the imaging optical system 31, the focus detection process is appropriately performed in regions where the imaging conditions are different. be able to.
(6)カメラ1のAF演算部34dは、被写体像のコントラストを検出するので、撮像条件が異なる領域で、それぞれ適切に焦点検出処理を行うことができる。 (6) Since the AF calculation unit 34d of the camera 1 detects the contrast of the subject image, the focus detection process can be appropriately performed in regions where the imaging conditions are different.
(7)カメラ1のAF演算部34dは、撮像部32の一部の領域(焦点検出位置)についてデフォーカス量(またはコントラスト)を検出し、第1領域および第2領域は、焦点検出位置に含まれている。これにより、撮像条件が異なる領域で、それぞれ適切に焦点検出処理を行うことができる。 (7) The AF calculation unit 34d of the camera 1 detects the defocus amount (or contrast) for a partial region (focus detection position) of the imaging unit 32, and the first region and the second region are at the focus detection position. include. Thereby, it is possible to appropriately perform the focus detection process in regions where the imaging conditions are different.
(8)カメラ1の補正部33bは、第1領域に入射した光像を第1蓄積時間で撮像することにより生成された第1信号データを、第2領域に入射した光像を第2蓄積時間で撮像することにより生成された第2信号データとの差が小さくなるように補正する。これにより、電荷蓄積時間が異なる領域で、それぞれ適切に焦点検出処理を行うことができる。 (8) The correction unit 33b of the camera 1 stores the first signal data generated by capturing the light image incident on the first region in the first accumulation time, and the second image light incident on the second region. It correct | amends so that the difference with the 2nd signal data produced | generated by imaging in time may become small. As a result, it is possible to appropriately perform the focus detection process in regions where the charge accumulation times are different.
(9)カメラ1の補正部33bは、第1領域に入射した光像を第1撮像感度で撮像することにより生成された第1信号データを、第2領域に入射した光像を第2撮像感度で撮像することにより生成された第2信号データとの差が小さくなるように補正する。これにより、電荷蓄積時間が異なる領域で、それぞれ適切に焦点検出処理を行うことができる。 (9) The correction unit 33b of the camera 1 captures the first signal data generated by capturing the light image incident on the first region with the first imaging sensitivity, and the second image of the light image incident on the second region. It correct | amends so that the difference with the 2nd signal data produced | generated by imaging with a sensitivity may become small. As a result, it is possible to appropriately perform the focus detection process in regions where the charge accumulation times are different.
 上述した補正処理を前処理として行うモード1と、補正処理を前処理として行わないモード2とを切り替え可能に構成してもよい。モード1が選択された場合、制御部34は、上述した前処理を行った上で画像処理などの処理を行う。一方、モード2が選択された場合、制御部34は、上述した前処理を行わずに画像処理などの処理を行う。例えば、被写体要素として検出されている顔の一部に陰がある場合において、顔の陰の部分の明るさが顔の陰以外の部分の明るさと同程度となるように、顔の陰の部分を含む領域の撮像条件と顔の陰以外の部分を含む領域の撮像条件とを異なる設定で撮像して生成された画像に対して、補正処理を行ってから色補間処理をすると、設定されている撮像条件の違いにより陰の部分に対して意図しない色補間が行われる場合がある。補正処理をすることなく画像データをそのまま用いて色補間処理を行い得るように、モード1とモード2とを切り替え可能に構成しておくことにより、意図しない色補間を避けることが可能になる。 It may be configured to be able to switch between mode 1 in which the above-described correction processing is performed as preprocessing and mode 2 in which correction processing is not performed as preprocessing. When mode 1 is selected, the control unit 34 performs processing such as image processing after performing the above-described preprocessing. On the other hand, when mode 2 is selected, the control unit 34 performs processing such as image processing without performing the above-described preprocessing. For example, when a part of the face detected as the subject element is shaded, the shadowed part of the face is set so that the brightness of the shaded part of the face is comparable to the brightness of the part other than the shadow of the face. Is set when color interpolation processing is performed after performing correction processing on an image generated by imaging with different settings of the imaging conditions of the region including the image and the imaging conditions of the region including the part other than the shadow of the face. In some cases, unintended color interpolation may be performed on the shaded area due to a difference in imaging conditions. It is possible to avoid unintended color interpolation by configuring the mode 1 and the mode 2 so that the color interpolation process can be performed by using the image data as it is without performing the correction process.
---第1の実施の形態の変形例---
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施の形態と組み合わせることも可能である。
(変形例1)
 図16(a)~図16(c)は、撮像素子32aの撮像面における第1領域および第2領域の配置を例示する図である。図16(a)の例によれば、第1領域は偶数列によって構成され、第2領域は奇数列によって構成される。すなわち、撮像面が偶数列と奇数列とに分割されている。
--- Modification of the first embodiment ---
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(Modification 1)
FIGS. 16A to 16C are diagrams illustrating the arrangement of the first area and the second area on the imaging surface of the imaging element 32a. According to the example of FIG. 16 (a), the first region is composed of even columns, and the second region is composed of odd columns. That is, the imaging surface is divided into even columns and odd columns.
 図16(b)の例によれば、第1領域は奇数行によって構成され、第2領域は偶数行によって構成される。すなわち、撮像面が奇数行と偶数行とに分割されている。 According to the example of FIG. 16 (b), the first area is composed of odd rows, and the second area is composed of even rows. That is, the imaging surface is divided into odd rows and even rows.
 図16(c)の例によれば、第1領域は、奇数列における偶数行のブロックと、偶数列における奇数行のブロックとによって構成される。また、第2領域は、偶数列における偶数行のブロックと、奇数列における奇数行のブロックとによって構成される。すなわち、撮像面が市松模様状に分割されている。 According to the example of FIG. 16 (c), the first area is composed of blocks of even rows in odd columns and blocks of odd rows in even columns. In addition, the second region is configured by even-numbered blocks in even columns and odd-numbered blocks in odd columns. That is, the imaging surface is divided into a checkered pattern.
 図16(a)~図16(c)のいずれの場合も、1フレームの撮像を行った撮像素子32aから読み出した光電変換信号によって、第1領域から読み出した光電変換信号に基づく第1画像および第2領域から読み出した光電変換信号に基づく第2画像がそれぞれ生成される。変形例1によれば、第1画像および第2画像は同じ画角で撮像され、共通の被写体像を含む。 In any case of FIGS. 16A to 16C, the first image based on the photoelectric conversion signal read from the first region and the photoelectric conversion signal read from the image sensor 32a that has picked up an image of one frame, and Second images based on the photoelectric conversion signals read from the second region are respectively generated. According to the first modification, the first image and the second image are captured at the same angle of view and include a common subject image.
 変形例1において、制御部34は、第1画像を表示用として用いるとともに、第2画像を検出用として用いる。具体的には、制御部34は、第1画像をライブビュー画像として表示部35に表示させる。また、制御部34は、物体検出部34aによって第2画像を用いて被写体検出処理を行わせ、AF演算部34によって第2画像を用いて焦点検出処理を行わせ、設定部34bによって第2画像を用いて露出演算処理を行わせる。 In Modification 1, the control unit 34 uses the first image for display and the second image for detection. Specifically, the control unit 34 causes the display unit 35 to display the first image as a live view image. Further, the control unit 34 causes the object detection unit 34a to perform subject detection processing using the second image, causes the AF calculation unit 34 to perform focus detection processing using the second image, and sets the second image using the setting unit 34b. Is used to perform exposure calculation processing.
 変形例1においては、第1画像を撮像する第1領域に設定する撮像条件を第1撮像条件と呼び、第2画像を撮像する第2領域に設定する撮像条件を第2撮像条件と呼ぶこととする。制御部34は、第1撮像条件と、第2撮像条件とを異ならせてもよい。 In the first modification, the imaging condition set in the first area for capturing the first image is referred to as the first imaging condition, and the imaging condition set in the second area for capturing the second image is referred to as the second imaging condition. And The control unit 34 may make the first imaging condition different from the second imaging condition.
1.一例として、制御部34は、第1撮像条件を、表示部35による表示に適した条件に設定する。例えば、第1領域に設定される第1撮像条件を撮像画面の第1領域の全体で同一にする。一方、制御部34は、第2領域に設定される第2撮像条件を、焦点検出処理、被写体検出処理、および露出演算処理に適した条件に設定する。第2撮像条件は、撮像画面の第2領域の全体で同一にする。
 なお、焦点検出処理、被写体検出処理、および露出演算処理に適した条件がそれぞれ異なる場合は、制御部34は、第2領域に設定する第2撮像条件をフレームごとに異ならせてもよい。例えば、1フレーム目の第2撮像条件を焦点検出処理に適した条件とし、2フレーム目の第2撮像条件を被写体検出処理に適した条件とし、3フレーム目の第2撮像条件を露出演算処理に適した条件とする。これらの場合において、各フレームにおける第2撮像条件を撮像画面の第2領域の全体で同一にする。
1. As an example, the control unit 34 sets the first imaging condition to a condition suitable for display by the display unit 35. For example, the first imaging condition set for the first area is the same for the entire first area of the imaging screen. On the other hand, the control unit 34 sets the second imaging condition set in the second region to a condition suitable for the focus detection process, the subject detection process, and the exposure calculation process. The second imaging condition is the same for the entire second area of the imaging screen.
When the conditions suitable for the focus detection process, the subject detection process, and the exposure calculation process are different, the control unit 34 may change the second imaging condition set in the second area for each frame. For example, the second imaging condition of the first frame is a condition suitable for the focus detection process, the second imaging condition of the second frame is a condition suitable for the subject detection process, and the second imaging condition of the third frame is the exposure calculation process. Conditions suitable for In these cases, the second imaging condition in each frame is the same in the entire second area of the imaging screen.
2.他の一例として、制御部34は、第1領域に設定される第1撮像条件を領域により異ならせてもよい。制御部34(設定部34b)は、設定部34bが分割した被写体要素を含む領域ごとに異なる第1撮像条件を設定する。一方、制御部34は、第2領域に設定される第2撮像条件を撮像画面の第2領域の全体で同一にする。制御部34は、第2撮像条件を、焦点検出処理、被写体検出処理、および露出演算処理に適した条件に設定するが、焦点検出処理、被写体検出処理、および露出演算処理に適した条件がそれぞれ異なる場合は、第2領域に設定する撮像条件をフレームごとに異ならせてもよい。 2. As another example, the control unit 34 may vary the first imaging condition set in the first area depending on the area. The control unit 34 (setting unit 34b) sets different first imaging conditions for each region including the subject element divided by the setting unit 34b. On the other hand, the control unit 34 makes the second imaging condition set in the second area the same in the entire second area of the imaging screen. The control unit 34 sets the second imaging condition to a condition suitable for the focus detection process, the subject detection process, and the exposure calculation process. However, the conditions suitable for the focus detection process, the subject detection process, and the exposure calculation process are set. If they are different, the imaging conditions set in the second area may be different for each frame.
3.また、他の一例として、制御部34は、第1領域に設定される第1撮像条件を撮像画面の第1領域の全体で同一とする一方で、第2領域に設定される第2撮像条件を撮像画面において異ならせてもよい。例えば、設定部34bが分割した被写体要素を含む領域ごとに異なる第2撮像条件を設定する。この場合においても、焦点検出処理、被写体検出処理、および露出演算処理に適した条件がそれぞれ異なる場合は、第2領域に設定する撮像条件をフレームごとに異ならせてもよい。 3. As another example, the control unit 34 makes the first imaging condition set for the first area the same for the entire first area of the imaging screen, while setting the second imaging condition for the second area. May be different on the imaging screen. For example, a different second imaging condition is set for each region including the subject element divided by the setting unit 34b. Even in this case, if the conditions suitable for the focus detection process, the subject detection process, and the exposure calculation process are different, the imaging conditions set in the second region may be different for each frame.
4.さらにまた、他の一例として、制御部34は、第1領域に設定される第1撮像条件を撮像画面において異ならせるとともに、第2領域に設定される第2撮像条件を撮像画面において異ならせる。例えば、設定部34bが分割した被写体要素を含む領域ごとに異なる第1撮像条件を設定しつつ、設定部34bが分割した被写体要素を含む領域ごとに異なる第2撮像条件を設定する。 4). Furthermore, as another example, the control unit 34 varies the first imaging condition set in the first area on the imaging screen, and varies the second imaging condition set on the second area on the imaging screen. For example, the setting unit 34b sets different first imaging conditions for each region including the subject element divided, and the setting unit 34b sets different second imaging conditions for each region including the subject element divided.
 図16(a)~図16(c)において、第1領域と第2領域との面積比を異ならせてもよい。制御部34は、例えば、ユーザーによる操作または制御部34の判断に基づき、第1領域の比率を第2領域よりも高く設定したり、第1領域と第2領域の比率を図16(a)~図16(c)に例示したように同等に設定したり、第1領域の比率を第2領域よりも低く設定したりする。第1領域と第2領域とで面積比を異ならせることにより、第1画像を第2画像に比べて高精細にしたり、第1画像および第2画像の解像度を同等にしたり、第2画像を第1画像に比べて高精細にしたりすることができる。 In FIG. 16 (a) to FIG. 16 (c), the area ratio between the first region and the second region may be different. For example, the control unit 34 sets the ratio of the first region to be higher than that of the second region based on the operation by the user or the determination of the control unit 34, or sets the ratio of the first region to the second region as shown in FIG. As shown in FIG. 16 (c), they are set equally, or the ratio of the first area is set lower than that of the second area. By making the area ratios different between the first region and the second region, the first image is made to have a higher definition than the second image, the resolutions of the first image and the second image are made equal, or the second image is Compared to the first image, it can be made higher definition.
(変形例2)
 画像処理を行う場合の補正処理は、注目位置において適用された撮像条件(第1撮像条件とする)と、注目位置の周囲の参照位置において適用された撮像条件(第2撮像条件とする)とが異なる場合において、画像処理部33(補正部33b)が、第2撮像条件の画像データ(参照位置の画像データのうちの第2撮像条件の画像データ)を第1撮像条件に基づいて補正した。すなわち、参照位置の第2撮像条件の画像データを補正処理することによって、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和するようにした。
(Modification 2)
In the case of performing image processing, the correction process includes an imaging condition applied at the position of interest (first imaging condition), an imaging condition applied at a reference position around the position of interest (second imaging condition), and Are different, the image processing unit 33 (correction unit 33b) corrects the image data of the second imaging condition (the image data of the second imaging condition of the image data at the reference position) based on the first imaging condition. . That is, the image discontinuity of the image based on the difference between the first imaging condition and the second imaging condition is reduced by correcting the image data of the second imaging condition at the reference position.
 この代わりに、変形例2では、画像処理部33(補正部33b)が、第1撮像条件の画像データ(注目位置の画像データと参照位置の画像データのうちの第1撮像条件の画像データ)を第2撮像条件に基づいて補正してもよい。この場合にも、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和できる。 Instead, in Modification 2, the image processing unit 33 (correction unit 33b) performs image data on the first imaging condition (image data on the first imaging condition among the image data on the target position and the image data on the reference position). May be corrected based on the second imaging condition. Also in this case, the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition can be relaxed.
 あるいは、画像処理部33(補正部33b)が、第1撮像条件の画像データおよび第2撮像条件の画像データの双方を補正してもよい。すなわち、第1撮像条件の注目位置の画像データ、参照位置の画像データのうちの第1撮像条件の画像データ、および参照位置の画像データのうちの第2撮像条件の画像データに対してそれぞれ補正処理を施すことにより、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和するようにしてもよい。
 例えば、上記(例1)において、第1撮像条件(ISO感度が100)である、参照画素の画像データに、補正処理として400/100をかけ、第2撮像条件(ISO感度が800)である参照画素の画像データに、補正処理として400/800をかける。これにより、撮像条件の相違による画像データ間の差異を小さくする。なお、注目画素の画素データは、色補間処理後に100/400をかける補正処理を行う。この補正処理により色補間処理後の注目画素の画素データを第1撮像条件で撮像した場合と同様の値に変更することができる。さらに、上記(例1)において、第1領域と第2領域との境界からの距離によって補正処理の程度を変えても良い。そして上記(例1)の場合に比べて補正処理により画像データが増加や減少する割合を少なくすることができ、補正処理により生じるノイズを減らすことができる。以上では、上記(例1)について説明したが、上記(例2)にも同様に適用することができる。
Alternatively, the image processing unit 33 (correction unit 33b) may correct both the image data of the first imaging condition and the image data of the second imaging condition. That is, correction is performed for the image data of the target position of the first imaging condition, the image data of the first imaging condition of the image data of the reference position, and the image data of the second imaging condition of the image data of the reference position. By performing the processing, the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition may be alleviated.
For example, in the above (Example 1), 400/100 is applied as correction processing to the image data of the reference pixel, which is the first imaging condition (ISO sensitivity is 100), and the second imaging condition (ISO sensitivity is 800). 400/800 is applied to the image data of the reference pixel as a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced. Note that the pixel data of the pixel of interest undergoes a correction process that multiplies 100/400 after the color interpolation process. With this correction process, the pixel data of the target pixel after the color interpolation process can be changed to the same value as when the image is captured under the first imaging condition. Furthermore, in the above (Example 1), the degree of the correction process may be changed depending on the distance from the boundary between the first area and the second area. Compared to the case of (Example 1), the rate at which the image data is increased or decreased by the correction process can be reduced, and noise generated by the correction process can be reduced. Although the above (Example 1) has been described above, the above (Example 2) can be similarly applied.
 変形例2によれば、上述した実施の形態と同様に、撮像条件が異なる領域のそれぞれ生成された画像データに対し、適切に画像処理を行うことができる。 According to the modified example 2, as in the above-described embodiment, it is possible to appropriately perform image processing on each generated image data of regions having different imaging conditions.
(変形例3)
 上述した説明では、画像データに対して補正処理を行う際に、第1撮像条件と第2撮像条件との差違に基づく演算を行うことにより、補正後の画像データを求めるようにした。演算の代わりに、補正用テーブルを参照することによって補正後の画像データを求めてもよい。例えば、引数として第1撮像条件および第2撮像条件を入力することにより、補正後の画像データを読み出す。あるいは、引数として第1撮像条件および第2撮像条件を入力することにより、補正係数を読み出す構成にしてもよい。
(Modification 3)
In the above description, when the correction process is performed on the image data, the corrected image data is obtained by performing the calculation based on the difference between the first imaging condition and the second imaging condition. Instead of calculation, corrected image data may be obtained by referring to a correction table. For example, the corrected image data is read by inputting the first imaging condition and the second imaging condition as arguments. Alternatively, the correction coefficient may be read out by inputting the first imaging condition and the second imaging condition as arguments.
(変形例4)
 上述した補正処理において、補正後の画像データの上限や下限を定めておいてもよい。上限値、下限値を設けることにより、必要以上の補正をしないように制限することができる。上限値、下限値は、あらかじめ決めておいてもよいし、撮像素子32aと別に測光用センサを備える場合には、測光用センサからの出力信号に基づき決定してもよい。
(Modification 4)
In the correction process described above, an upper limit and a lower limit of the corrected image data may be set. By providing an upper limit value and a lower limit value, it is possible to limit so as not to make unnecessary corrections. The upper limit value and the lower limit value may be determined in advance, or may be determined based on an output signal from the photometric sensor when a photometric sensor is provided separately from the image sensor 32a.
(変形例5)
 上記実施の形態では、制御部34(設定部34b)がライブビュー画像に基づき被写体要素を検出し、ライブビュー画像の画面を、被写体要素を含む領域に分割する例を説明した。変形例5において、制御部34は、撮像素子32aと別に測光用センサを備える場合には、測光用センサからの出力信号に基づき領域を分割してもよい。
(Modification 5)
In the above embodiment, an example has been described in which the control unit 34 (setting unit 34b) detects a subject element based on a live view image and divides the screen of the live view image into regions including the subject element. In the fifth modification, when the control unit 34 includes a photometric sensor in addition to the imaging device 32a, the control unit 34 may divide the region based on an output signal from the photometric sensor.
 制御部34は、測光用センサからの出力信号に基づき、前景と背景とに分割する。具体的には、撮像素子32bによって取得されたライブビュー画像を、測光用センサからの出力信号から前景と判断した領域に対応する前景領域と、測光用センサからの出力信号から背景と判断した領域に対応する背景領域とに分割する。 The control unit 34 divides the foreground and the background based on the output signal from the photometric sensor. Specifically, the live view image acquired by the image sensor 32b is a foreground area corresponding to an area determined as a foreground from an output signal from a photometric sensor, and an area determined as a background from an output signal from the photometric sensor. Is divided into background areas corresponding to.
 制御部34はさらに、撮像素子32aの撮像面の前景領域に対応する位置に対して、図16(a)~図16(c)に例示したように、第1領域および第2領域を配置する。一方、制御部34は、撮像素子32aの撮像面の背景領域に対応する位置に対して、撮像素子32aの撮像面に第1領域のみを配置する。制御部34は、第1画像を表示用として用いるとともに、第2画像を検出用として用いる。 The control unit 34 further arranges the first area and the second area as illustrated in FIGS. 16A to 16C with respect to the position corresponding to the foreground area of the imaging surface of the imaging element 32a. . On the other hand, the control unit 34 arranges only the first area on the imaging surface of the imaging element 32a with respect to the position corresponding to the background area of the imaging surface of the imaging element 32a. The control unit 34 uses the first image for display and the second image for detection.
 変形例5によれば、測光用センサからの出力信号を用いることにより、撮像素子32bによって取得されたライブビュー画像の領域分割を行うことができる。また、前景領域に対しては、表示用の第1画像と検出用の第2画像とを得ることができ、背景領域に対しては、表示用の第1画像のみを得ることができる。 According to the modified example 5, the live view image acquired by the image sensor 32b can be divided by using the output signal from the photometric sensor. In addition, a first image for display and a second image for detection can be obtained for the foreground area, and only a first image for display can be obtained for the background area.
(変形例6)
 変形例6では、画像処理部33(生成部33c)が、補正処理の一例としてコントラスト調整処理を行う。すなわち、生成部33cは、階調カーブ(ガンマカーブ)を異ならせることにより、第1撮像条件と第2撮像条件との間の差異に基づく画像の不連続性を緩和する。
(Modification 6)
In Modification 6, the image processing unit 33 (generation unit 33c) performs contrast adjustment processing as an example of correction processing. That is, the generation unit 33c relaxes the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition by changing the gradation curve (gamma curve).
 例えば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合を想定する。生成部33cは、階調カーブを寝かせることにより、参照位置の画像データのうちの第2撮像条件の画像データの値を1/8に圧縮する。 For example, it is assumed that only the ISO sensitivity is different between the first imaging condition and the second imaging condition, the ISO sensitivity of the first imaging condition is 100, and the ISO sensitivity of the second imaging condition is 800. The generation unit 33c compresses the value of the image data of the second imaging condition in the image data at the reference position to 1/8 by laying down the gradation curve.
 あるいは、生成部33cが、階調カーブを立たせることにより、注目位置の画像データ、および参照位置の画像データのうちの第1撮像条件の画像データの値を8倍に伸張させてもよい。 Alternatively, the generation unit 33c may expand the value of the image data of the first imaging condition among the image data of the target position and the image data of the reference position by increasing the gradation curve by 8 times.
 変形例6によれば、上述した実施の形態と同様に、撮像条件が異なる領域でそれぞれ生成された画像データに対し、適切に画像処理を行うことができる。例えば、領域の境界における撮像条件の違いによって、画像処理後の画像に現れる不連続性や違和感を抑制することができる。 According to the modified example 6, as in the above-described embodiment, it is possible to appropriately perform image processing on image data respectively generated in regions with different imaging conditions. For example, discontinuity and discomfort appearing in an image after image processing can be suppressed due to a difference in imaging conditions at the boundary between regions.
(変形例7)
 変形例7においては、画像処理部33が、上述した画像処理(例えば、ノイズ低減処理)において、被写体要素の輪郭を損なわないようにする。一般に、ノイズ低減を行う場合は平滑化フィルタ処理が採用される。平滑化フィルタを用いる場合、ノイズ低減効果の一方で被写体要素の境界がぼける場合がある。
(Modification 7)
In the modified example 7, the image processing unit 33 does not impair the contour of the subject element in the above-described image processing (for example, noise reduction processing). In general, smoothing filter processing is employed when noise reduction is performed. When the smoothing filter is used, the boundary of the subject element may be blurred while the noise reduction effect.
 そこで、画像処理部33(生成部33c)は、例えば、ノイズ低減処理に加えて、またはノイズ低減処理とともに、コントラスト調整処理を行うことによって上記被写体要素の境界のぼけを補う。変形例7において、画像処理部33(生成部33c)は、濃度変換(階調変換)曲線として、Sの字を描くようなカーブを設定する(いわゆるS字変換)。画像処理部33(生成部33c)は、S字変換を用いたコントラスト調整を行うことにより、明るいデータと暗いデータの階調部分をそれぞれ引き伸ばして明るいデータ(および暗いデータ)の階調数をそれぞれ増やすとともに、中間階調の画像データを圧縮して階調数を減らす。これにより、画像の明るさが中程度の画像データの数が減り、明るい/暗いのいずれかに分類されるデータが増える結果として、被写体要素の境界のぼけを補うことができる。 Therefore, for example, the image processing unit 33 (the generation unit 33c) compensates for the blur of the boundary of the subject element by performing a contrast adjustment process in addition to or in addition to the noise reduction process. In the modified example 7, the image processing unit 33 (generation unit 33c) sets a curve that draws an S shape as a density conversion (gradation conversion) curve (so-called S-shaped conversion). The image processing unit 33 (generation unit 33c) performs contrast adjustment using S-shaped conversion, thereby extending the gradation portions of the bright data and the dark data to respectively increase the number of gradations of the bright data (and dark data). At the same time, the number of gradations is reduced by compressing intermediate gradation image data. As a result, the number of image data having a medium brightness is reduced, and data classified as either bright / dark is increased. As a result, blurring of the boundary of the subject element can be compensated.
 変形例7によれば、画像の明暗をくっきりさせることによって、被写体要素の境界のぼけを補うことができる。 According to the modified example 7, blurring of the boundary of the subject element can be compensated by clearing the contrast of the image.
(変形例8)
 変形例8においては、画像処理部33(生成部33c)が、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和するように、ホワイトバランス調整ゲインを変更する。
(Modification 8)
In the modification 8, the image processing unit 33 (the generation unit 33c) changes the white balance adjustment gain so as to reduce the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition.
 例えば、注目位置において撮像時に適用された撮像条件(第1撮像条件とする)と、注目位置の周囲の参照位置において撮像時に適用された撮像条件(第2撮像条件とする)とが異なる場合において、画像処理部33(生成部33c)が、参照位置の画像データのうちの第2撮像条件の画像データのホワイトバランスを、第1撮像条件で取得された画像データのホワイトバランスに近づけるように、ホワイトバランス調整ゲインを変更する。 For example, when the imaging condition applied at the time of imaging at the target position (referred to as the first imaging condition) is different from the imaging condition applied at the time of imaging at the reference position around the target position (referred to as the second imaging condition). The image processing unit 33 (generating unit 33c) brings the white balance of the image data of the second imaging condition out of the image data at the reference position closer to the white balance of the image data acquired under the first imaging condition. Change the white balance adjustment gain.
 なお、画像処理部33(生成部33c)が、参照位置の画像データのうちの第1撮像条件の画像データと注目位置の画像データのホワイトバランスを、第2撮像条件で取得された画像データのホワイトバランスに近づけるように、ホワイトバランス調整ゲインを変更してもよい。 Note that the image processing unit 33 (the generation unit 33c) determines the white balance between the image data of the first imaging condition and the image data of the target position in the image data at the reference position, and the white balance of the image data acquired under the second imaging condition. The white balance adjustment gain may be changed so as to approach the white balance.
 変形例8によれば、撮像条件が異なる領域でそれぞれ生成された画像データに対し、ホワイトバランス調整ゲインを撮像条件が異なる領域のどちらかの調整ゲインに揃えることによって、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和することができる。 According to the modified example 8, by adjusting the white balance adjustment gain to the adjustment gain of one of the areas with different imaging conditions for the image data generated in the area with different imaging conditions, the first imaging condition and the second imaging condition are set. The discontinuity of the image based on the difference from the imaging condition can be reduced.
(変形例9)
 画像処理部33を複数備え、画像処理を並列処理してもよい。例えば、撮像部32の領域Aで撮像された画像データに対して画像処理をしながら、撮像部32の領域Bで撮像された画像データに対して画像処理を行う。複数の画像処理部33は、同じ画像処理を行ってもよいし、異なる画像処理を行ってもよい。すなわち、領域Aおよび領域Bの画像データに対して同じパラメータ等を適用して同様の画像処理をしたり、領域Aおよび領域Bの画像データに対して異なるパラメータ等を適用して異なる画像処理をしたりすることができる。
(Modification 9)
A plurality of image processing units 33 may be provided, and image processing may be performed in parallel. For example, image processing is performed on the image data captured in the region B of the imaging unit 32 while performing image processing on the image data captured in the region A of the imaging unit 32. The plurality of image processing units 33 may perform the same image processing or different image processing. That is, the same parameters are applied to the image data of the region A and the region B, and the same image processing is performed, or the different parameters are applied to the image data of the region A and the region B to perform different image processing. You can do it.
 画像処理部33の数を複数備える場合において、第1撮像条件が適用された画像データに対して一つの画像処理部によって画像処理を行い、第2撮像条件が適用された画像データに対して他の画像処理部によって画像処理を行ってもよい。画像処理部の数は上記2つに限られず、例えば、設定され得る撮像条件の数と同数を設けるようにしてもよい。すなわち、異なる撮像条件が適用された領域ごとに、それぞれの画像処理部が画像処理を担当する。変形例9によれば、領域ごとの異なる撮像条件による撮像と、上記領域ごとに得られる画像の画像データに対する画像処理とを並行して進行させることができる。 In the case where a plurality of image processing units 33 are provided, image processing is performed by one image processing unit on image data to which the first imaging condition is applied, and other is performed on image data to which the second imaging condition is applied. The image processing unit may perform image processing. The number of image processing units is not limited to the above two, and for example, the same number as the number of imaging conditions that can be set may be provided. That is, each image processing unit takes charge of image processing for each region to which different imaging conditions are applied. According to the modification 9, it is possible to proceed in parallel with imaging under different imaging conditions for each area and image processing for image data of the image obtained for each area.
(変形例10)
 上述した説明では、カメラ1を例に説明したが、スマートフォンのようにカメラ機能を備えた高機能携帯電話機250(図18)や、タブレット端末などのモバイル機器によって構成してもよい。
(Modification 10)
In the above description, the camera 1 has been described as an example. However, a high-function mobile phone 250 (FIG. 18) having a camera function like a smartphone or a mobile device such as a tablet terminal may be used.
(変形例11)
 上述した実施の形態では、撮像部32と制御部34とを単一の電子機器として構成したカメラ1を例に説明した。この代わりに、例えば、撮像部32と制御部34とを分離して設け、制御部34から通信を介して撮像部32を制御する撮像システム1Bを構成してもよい。
 以下、図17を参照して撮像部32を備えた撮像装置1001を、制御部34を備えた表示装置1002から制御する例を説明する。
(Modification 11)
In the above-described embodiment, the camera 1 in which the imaging unit 32 and the control unit 34 are configured as a single electronic device has been described as an example. Instead, for example, the imaging unit 1 and the control unit 34 may be provided separately, and the imaging system 1B that controls the imaging unit 32 from the control unit 34 via communication may be configured.
Hereinafter, an example in which the imaging device 1001 including the imaging unit 32 is controlled from the display device 1002 including the control unit 34 will be described with reference to FIG.
 図17は、変形例11に係る撮像システム1Bの構成を例示するブロック図である。図17において、撮像システム1Bは、撮像装置1001と、表示装置1002とによって構成される。撮像装置1001は、上記実施の形態で説明した撮像光学系31と撮像部32とに加えて、第1通信部1003を備える。また、表示装置1002は、上記実施の形態で説明した画像処理部33、制御部34、表示部35、操作部材36、および記録部37に加えて、第2通信部1004を備える。 FIG. 17 is a block diagram illustrating the configuration of the imaging system 1B according to the modification 11. In FIG. 17, the imaging system 1 </ b> B includes an imaging device 1001 and a display device 1002. The imaging device 1001 includes a first communication unit 1003 in addition to the imaging optical system 31 and the imaging unit 32 described in the above embodiment. The display device 1002 includes a second communication unit 1004 in addition to the image processing unit 33, the control unit 34, the display unit 35, the operation member 36, and the recording unit 37 described in the above embodiment.
 第1通信部1003および第2通信部1004は、例えば周知の無線通信技術や光通信技術等により、双方向の画像データ通信を行うことができる。
 なお、撮像装置1001と表示装置1002とを有線ケーブルにより有線接続し、第1通信部1003および第2通信部1004が双方向の画像データ通信を行う構成にしてもよい。
The first communication unit 1003 and the second communication unit 1004 can perform bidirectional image data communication using, for example, a well-known wireless communication technology or optical communication technology.
Note that the imaging device 1001 and the display device 1002 may be connected by a wired cable, and the first communication unit 1003 and the second communication unit 1004 may perform bidirectional image data communication.
 撮像システム1Bは、制御部34が、第2通信部1004および第1通信部1003を介したデータ通信を行うことにより、撮像部32に対する制御を行う。例えば、撮像装置1001と表示装置1002との間で所定の制御データを送受信することにより、表示装置1002は、上述したように画像に基づいて、画面を複数の領域に分割したり、分割した領域ごとに異なる撮像条件を設定したり、各々の領域で光電変換された光電変換信号を読み出したりする。 In the imaging system 1B, the control unit 34 controls the imaging unit 32 by performing data communication via the second communication unit 1004 and the first communication unit 1003. For example, by transmitting and receiving predetermined control data between the imaging device 1001 and the display device 1002, the display device 1002 divides the screen into a plurality of regions based on the images as described above, or the divided regions. A different imaging condition is set for each area, or a photoelectric conversion signal photoelectrically converted in each area is read out.
 変形例11によれば、撮像装置1001側で取得され、表示装置1002へ送信されたライブビュー画像が表示装置1002の表示部35に表示されるので、ユーザーは、撮像装置1001から離れた位置にある表示装置1002から、遠隔操作を行うことができる。
 表示装置1002は、例えば、スマートフォンのような高機能携帯電話機250によって構成することができる。また、撮像装置1001は、上述した積層型の撮像素子100を備える電子機器によって構成することができる。
 なお、表示装置1002の制御部34に物体検出部34aと、設定部34bと、撮像制御部34cと、AF演算部34dとを設ける例を説明したが、物体検出部34a、設定部34b、撮像制御部34c、およびAF演算部34dの一部について、撮像装置1001に設けるようにしてもよい。
According to the modification 11, since the live view image acquired on the imaging device 1001 side and transmitted to the display device 1002 is displayed on the display unit 35 of the display device 1002, the user is at a position away from the imaging device 1001. Remote control can be performed from a certain display device 1002.
The display device 1002 can be configured by a high-function mobile phone 250 such as a smartphone, for example. In addition, the imaging device 1001 can be configured by an electronic device including the above-described stacked imaging element 100.
In addition, although the example which provides the control part 34 of the display apparatus 1002 with the object detection part 34a, the setting part 34b, the imaging control part 34c, and the AF calculating part 34d was demonstrated, the object detection part 34a, the setting part 34b, and imaging A part of the control unit 34c and the AF calculation unit 34d may be provided in the imaging apparatus 1001.
(変形例12)
 上述したカメラ1、高機能携帯電話機250、またはタブレット端末などのモバイル機器へのプログラムの供給は、例えば図18に例示するように、プログラムを格納したパーソナルコンピュータ205から赤外線通信や近距離無線通信によってモバイル機器へ送信することができる。
(Modification 12)
The program is supplied to the mobile device such as the camera 1, the high-function mobile phone 250, or the tablet terminal as described above by, for example, infrared communication or short-range wireless communication from the personal computer 205 storing the program as illustrated in FIG. 18. Can be sent to mobile devices.
 パーソナルコンピュータ205に対するプログラムの供給は、プログラムを格納したCD-ROMなどの記録媒体204をパーソナルコンピュータ205にセットして行ってもよいし、ネットワークなどの通信回線201を経由する方法でパーソナルコンピュータ205へローディングしてもよい。通信回線201を経由する場合は、当該通信回線に接続されたサーバー202のストレージ装置203などにプログラムを格納しておく。 The program may be supplied to the personal computer 205 by setting a recording medium 204 such as a CD-ROM storing the program in the personal computer 205 or by a method via the communication line 201 such as a network. You may load. When passing through the communication line 201, the program is stored in the storage device 203 of the server 202 connected to the communication line.
 また、通信回線201に接続された無線LANのアクセスポイント(不図示)を経由して、モバイル機器へプログラムを直接送信することもできる。さらに、プログラムを格納したメモリカードなどの記録媒体204Bをモバイル機器にセットしてもよい。このように、プログラムは記録媒体や通信回線を介する提供など、種々の形態のコンピュータプログラム製品として供給できる。 Also, the program can be directly transmitted to the mobile device via a wireless LAN access point (not shown) connected to the communication line 201. Further, a recording medium 204B such as a memory card storing the program may be set in the mobile device. Thus, the program can be supplied as various forms of computer program products, such as provision via a recording medium or a communication line.
---第2の実施の形態---
 図19~25を参照して、第2の実施の形態による画像処理装置を搭載する電子機器の一例として、デジタルカメラを例にあげて説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、第1の実施の形態の画像処理部33を設ける代わりに、撮像部32Aが第1の実施の形態の画像処理部33と同様の機能を有する画像処理部32cをさらに含む点で、第1の実施の形態と異なる。
--- Second Embodiment ---
With reference to FIGS. 19 to 25, a digital camera will be described as an example of an electronic apparatus equipped with the image processing apparatus according to the second embodiment. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. In the present embodiment, instead of providing the image processing unit 33 of the first embodiment, the image processing unit 32A has an image processing unit 32c having the same function as the image processing unit 33 of the first embodiment. Is different from the first embodiment in that
 図19は、第2の実施の形態によるカメラ1Cの構成を例示するブロック図である。図19において、カメラ1Cは、撮像光学系31と、撮像部32Aと、制御部34と、表示部35と、操作部材36と、記録部37とを有する。撮像部32Aは、第1の実施の形態の画像処理部33と同様の機能を有する画像処理部32cをさらに含む。 FIG. 19 is a block diagram illustrating the configuration of the camera 1C according to the second embodiment. In FIG. 19, the camera 1 </ b> C includes an imaging optical system 31, an imaging unit 32 </ b> A, a control unit 34, a display unit 35, an operation member 36, and a recording unit 37. The imaging unit 32A further includes an image processing unit 32c having the same function as the image processing unit 33 of the first embodiment.
 画像処理部32cは、入力部321と、補正部322と、生成部323とを含む。入力部321には、撮像素子32aからの画像データが入力される。補正部322は、上記入力された画像データに対して補正する前処理を行う。補正部322が行う前処理は、第1の実施の形態における補正部33bが行う前処理と同じである。生成部323は、上記入力された画像データと前処理後の画像データとに対して画像処理を行い、画像を生成する。生成部323が行う画像処理は、第1の実施の形態における生成部33cが行う画像処理と同じである。 The image processing unit 32 c includes an input unit 321, a correction unit 322, and a generation unit 323. Image data from the image sensor 32 a is input to the input unit 321. The correction unit 322 performs preprocessing for correcting the input image data. The preprocessing performed by the correction unit 322 is the same as the preprocessing performed by the correction unit 33b in the first embodiment. The generation unit 323 performs image processing on the input image data and the pre-processed image data to generate an image. The image processing performed by the generation unit 323 is the same as the image processing performed by the generation unit 33c in the first embodiment.
 図20は、本実施の形態における各ブロックと、複数の補正部322との対応関係を模式的に示した図である。図20において、矩形で表した撮像チップ111の1つのマスが1つのブロック111aを表している。同様に、矩形で表した後述する画像処理チップ114の1つのマスが1つの補正部322を表している。 FIG. 20 is a diagram schematically showing the correspondence between each block and a plurality of correction units 322 in the present embodiment. In FIG. 20, one square of the imaging chip 111 represented by a rectangle represents one block 111a. Similarly, one square of an image processing chip 114 described later represented by a rectangle represents one correction unit 322.
 本実施の形態では、補正部322は、ブロック111a毎に対応して設けられている。換言すると、補正部322は、撮像面における撮像条件の変更可能な領域の最小単位であるブロック毎にそれぞれ設けられている。たとえば、図20においてハッチングを施したブロック111aと、ハッチングを施した補正部322とは対応関係にある。図20においてハッチングを施した補正部322は、ハッチングを施したブロック111aに含まれる画素からの画像データに前処理を行う。各補正部322は、それぞれ対応するブロック111aに含まれる画素からの画像データに前処理を行う。
 これにより、画像データの前処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減でき、撮像条件が異なる領域でそれぞれ生成された画像データから適切な画像を短時間で生成することができる。
 なお、以下の説明では、あるブロック111aと、当該ブロック111aに含まれる画素との関係について説明する際に、当該ブロック111aのことを、当該画素が属するブロック111aと呼ぶことがある。また、ブロック111aを単位区分と呼ぶことがあり、ブロック111aが複数集まったもの、すなわち単位区分が複数集まったものを複合区分と呼ぶことがある。
In the present embodiment, the correction unit 322 is provided for each block 111a. In other words, the correction unit 322 is provided for each block which is the minimum unit of the area where the imaging condition can be changed on the imaging surface. For example, in FIG. 20, the hatched block 111a and the hatched correction unit 322 have a correspondence relationship. In FIG. 20, the hatched correction unit 322 performs preprocessing on image data from pixels included in the hatched block 111a. Each correction unit 322 performs preprocessing on image data from pixels included in the corresponding block 111a.
As a result, the preprocessing of the image data can be processed in parallel by the plurality of correction units 322, so that the processing burden on the correction unit 322 can be reduced, and an appropriate image can be quickly generated from the image data generated in each of the areas with different imaging conditions. Can be generated.
In the following description, when a relationship between a certain block 111a and a pixel included in the block 111a is described, the block 111a may be referred to as a block 111a to which the pixel belongs. The block 111a may be referred to as a unit section, and a plurality of blocks 111a, that is, a plurality of unit sections may be referred to as a composite section.
 図21は、積層型撮像素子100Aの断面図である。積層型撮像素子100Aは、裏面照射型撮像チップ111と、信号処理チップ112と、メモリチップ113とに加えて、上述した前処理および画像処理を行う画像処理チップ114をさらに備える。すなわち、上述した画像処理部32cは、画像処理チップ114に設けられている。
 これら撮像チップ111、信号処理チップ112、メモリチップ113および画像処理チップ114は積層されており、Cu等の導電性を有するバンプ109により互いに電気的に接続される。
FIG. 21 is a cross-sectional view of the multilayer imaging element 100A. The multilayer imaging element 100A further includes an image processing chip 114 that performs the above-described preprocessing and image processing in addition to the backside illumination imaging chip 111, the signal processing chip 112, and the memory chip 113. That is, the above-described image processing unit 32c is provided in the image processing chip 114.
The imaging chip 111, the signal processing chip 112, the memory chip 113, and the image processing chip 114 are stacked, and are electrically connected to each other by a conductive bump 109 such as Cu.
 メモリチップ113および画像処理チップ114の互いに対向する面には、複数のバンプ109が配される。これらのバンプ109が互いに位置合わせされて、メモリチップ113と画像処理チップ114とが加圧等されることにより、位置合わせされたバンプ109同士が接合されて、電気的に接続される。 A plurality of bumps 109 are arranged on the mutually facing surfaces of the memory chip 113 and the image processing chip 114. The bumps 109 are aligned with each other, and the memory chip 113 and the image processing chip 114 are pressurized, so that the aligned bumps 109 are joined and electrically connected.
<補正処理>
 第1の実施の形態と同様に、第2の実施の形態では、設定部34bにより撮像画面の領域を分割した後は、ユーザーによって選択された領域、または、制御部34が判断した領域に対して撮像条件を設定(変更)することが可能に構成されている。分割した領域において異なる撮像条件を設定した場合、制御部34は、必要に応じて補正部322に以下の補正処理を行わせる。
<Correction process>
Similar to the first embodiment, in the second embodiment, after the region of the imaging screen is divided by the setting unit 34b, the region selected by the user or the region determined by the control unit 34 is determined. The imaging conditions can be set (changed). When different imaging conditions are set in the divided areas, the control unit 34 causes the correction unit 322 to perform the following correction processing as necessary.
1.画像処理を行う場合
1-1.注目画素Pの撮像条件と注目画素Pの周囲の複数の参照画素の撮像条件とが同一である場合
 この場合、画像処理部32cでは、補正部322が補正処理を行わず、生成部323が補正されていない複数の参照画素の画像データを利用して画像処理を行う。
1. When performing image processing 1-1. When the imaging condition of the target pixel P is the same as the imaging conditions of a plurality of reference pixels around the target pixel P In this case, in the image processing unit 32c, the correction unit 322 does not perform correction processing, and the generation unit 323 performs correction. Image processing is performed using image data of a plurality of reference pixels that have not been processed.
1-2.注目画素Pの撮像条件と、注目画素Pの周囲の複数の参照画素のうちの少なくとも1つの参照画素の撮像条件とが異なる場合
 注目画素Pにおいて適用された撮像条件を第1撮像条件とし、複数の参照画素の一部に適用された撮像条件が第1撮像条件であり、残りの参照画素に適用された撮像条件が第2撮像条件であるとする。
 この場合には、第2撮像条件が適用された参照画素が属するブロック111aに対応する補正部322は、当該第2撮像条件が適用された参照画素の画像データに対して以下の(例1)~(例3)のように補正処理を行う。そして、生成部323は、第1撮像条件が適用された参照画素の画像データと、補正処理後の参照画素の画像データとを参照して注目画素Pの画像データを算出する画像処理を行う。
1-2. When the imaging condition of the target pixel P is different from the imaging condition of at least one reference pixel among the plurality of reference pixels around the target pixel P, the imaging condition applied in the target pixel P is set as the first imaging condition, The imaging conditions applied to a part of the reference pixels are the first imaging conditions, and the imaging conditions applied to the remaining reference pixels are the second imaging conditions.
In this case, the correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs is described below (Example 1) with respect to the image data of the reference pixel to which the second imaging condition is applied. Correction processing is performed as in (Example 3). Then, the generation unit 323 performs image processing for calculating the image data of the target pixel P with reference to the image data of the reference pixel to which the first imaging condition is applied and the image data of the reference pixel after the correction process.
(例1)
 第2撮像条件が適用された参照画素が属するブロック111aに対応する補正部322は、例えば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合、当該参照画素の画像データに対し、補正処理として100/800をかける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
(Example 1)
For example, the correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs, for example, differs only in ISO sensitivity between the first imaging condition and the second imaging condition, and the ISO sensitivity of the first imaging condition. Is 100 and the ISO sensitivity of the second imaging condition is 800, the image data of the reference pixel is subjected to 100/800 as a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
(例2)
 第2撮像条件が適用された参照画素が属するブロック111aに対応する補正部322は、例えば、第1撮像条件と第2撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第2撮像条件のシャッター速度が1/100秒の場合、当該参照画素の画像データに対し、補正処理として1/1000/1/100=1/10をかける。これにより、撮像条件の相違による画像データ間の差異を小さくする。
(Example 2)
For example, the correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs, for example, only the shutter speed differs between the first imaging condition and the second imaging condition, and the shutter speed of the first imaging condition. Is 1/1000 second, and the shutter speed of the second imaging condition is 1/100 second, 1/1000/1/100 = 1/10 is applied to the image data of the reference pixel as a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
(例3)
 第2撮像条件が適用された参照画素が属するブロック111aに対応する補正部322は、例えば、第1撮像条件と第2撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第2撮像条件のフレームレートが60fpsの場合、当該参照画素の画像データ、すなわち第2撮像条件(60fps)の画像データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを採用することを補正処理とする。これにより、撮像条件の相違による画像データ間の差異を小さくする。
 なお、第2撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の画像データを補間算出することを補正処理としてもよい。
(Example 3)
The correction unit 322 corresponding to the block 111a to which the reference pixel to which the second imaging condition is applied belongs, for example, only the frame rate is different between the first imaging condition and the second imaging condition (the charge accumulation time is the same), When the frame rate of the first imaging condition is 30 fps and the frame rate of the second imaging condition is 60 fps, the first imaging condition (30 fps) for the image data of the reference pixel, that is, the image data of the second imaging condition (60 fps). The correction processing is to adopt image data of a frame image that is close in acquisition start timing to the frame image acquired in step (1). Thereby, the difference between the image data due to the difference in the imaging conditions is reduced.
It should be noted that, based on a plurality of previous and subsequent frame images acquired under the second imaging condition (60 fps), interpolation calculation is performed on the frame image acquired under the first imaging condition (30 fps) and the frame image whose acquisition start timing is close. This may be a correction process.
 なお、注目画素Pにおいて適用された撮像条件を第2撮像条件とし、注目画素Pの周囲の参照画素において適用された撮像条件を第1撮像条件とした場合も同様である。すなわち、この場合には、第1撮像条件が適用された参照画素が属するブロック111aに対応する補正部322は、当該参照画素の画像データに対して上述した(例1)~(例3)のように補正処理を行う。 The same applies to the case where the imaging condition applied at the target pixel P is the second imaging condition and the imaging condition applied at the reference pixels around the target pixel P is the first imaging condition. In other words, in this case, the correction unit 322 corresponding to the block 111a to which the reference pixel to which the first imaging condition is applied belongs to the image data of the reference pixel described above (Example 1) to (Example 3). The correction process is performed as follows.
 なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件ととみなす。 Note that, as described above, even if there are some differences in imaging conditions, they are regarded as the same imaging conditions.
 生成部323は、注目画素Pの撮像条件と同一の撮像条件が適用された参照画素の画像データと補正部322で補正された参照画素の画像データとに基づいて、第1の実施の形態における画像処理部33(生成部33c)と同様に、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行う。 The generation unit 323 is based on the reference pixel image data to which the same imaging condition as the imaging condition of the target pixel P is applied and the reference pixel image data corrected by the correction unit 322 in the first embodiment. Similar to the image processing unit 33 (generation unit 33c), image processing such as pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing is performed.
 図22は、第1撮像条件が適用された撮像面の一部領域(以下、第1領域141と呼ぶ)に含まれる各画素からの画像データ(以下、第1画像データと呼ぶ)と、第2撮像条件が適用された撮像面の一部領域(以下、第2領域142と呼ぶ)に含まれる各画素からの画像データ(以下、第2画像データと呼ぶ)との処理について、模式的に表した図である。 FIG. 22 illustrates image data (hereinafter referred to as first image data) from each pixel included in a partial area (hereinafter referred to as first area 141) of the imaging surface to which the first imaging condition is applied, The processing with image data (hereinafter referred to as second image data) from each pixel included in a partial area (hereinafter referred to as second area 142) of the imaging surface to which the two imaging conditions are applied is schematically illustrated. FIG.
 第1領域141に含まれる各画素からは、第1撮像条件で撮像された第1画像データがそれぞれ出力され、第2領域142に含まれる各画素からは、第2撮像条件で撮像された第2画像データがそれぞれ出力される。第1画像データは、処理チップ114に設けられた補正部322のうち、第1画像データを生成した画素が属するブロック111aに対応する補正部322に出力される。以下の説明では、それぞれの第1画像データを生成した画素が属する複数のブロック111aにそれぞれ対応する複数の補正部322を第1処理部151と呼ぶ。
 同様に、第2画像データは、処理チップ114に設けられた補正部322のうち、第2画像データを生成した画素が属するブロック111aに対応する補正部322に出力される。以下の説明では、それぞれの第2画像データを生成した各画素が属する複数のブロック111aにそれぞれ対応する複数の補正部322を第2処理部152と呼ぶ。
The first image data captured under the first imaging condition is output from each pixel included in the first area 141, and the first image data captured under the second imaging condition is output from each pixel included in the second area 142. Two image data are respectively output. The first image data is output to the correction unit 322 corresponding to the block 111 a to which the pixel that generated the first image data belongs, among the correction units 322 provided in the processing chip 114. In the following description, the plurality of correction units 322 respectively corresponding to the plurality of blocks 111a to which the pixels that generate the respective first image data belong are referred to as first processing units 151.
Similarly, the second image data is output to the correction unit 322 corresponding to the block 111a to which the pixel that generated the second image data belongs among the correction units 322 provided in the processing chip 114. In the following description, the plurality of correction units 322 respectively corresponding to the plurality of blocks 111a to which the respective pixels that generate the respective second image data belong are referred to as second processing units 152.
 たとえば、注目画素Pが第1領域141に含まれる場合、第2領域142に含まれる参照画素からの第2画像データは、図22に示すように第2処理部152で上述した補正処理が行われる。なお、第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報181を、たとえば、第1処理部151から受信する。
 同様に、たとえば、注目画素Pが第2領域142に含まれる場合、第1領域141に含まれる参照画素からの第1画像データは、第1処理部151で上述した補正処理が行われる。なお、第1処理部151は、撮像条件の相違による画像データ間の差異を小さくするために必要な第2撮像条件についての情報を、第2処理部152から受信する。
For example, when the target pixel P is included in the first region 141, the second image data from the reference pixels included in the second region 142 is subjected to the above-described correction processing by the second processing unit 152 as shown in FIG. Is called. Note that the second processing unit 152 receives, from the first processing unit 151, for example, information 181 about the first imaging condition necessary to reduce the difference between the image data due to the difference in the imaging condition.
Similarly, for example, when the target pixel P is included in the second region 142, the first processing unit 151 performs the above-described correction processing on the first image data from the reference pixels included in the first region 141. The first processing unit 151 receives information on the second imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the second processing unit 152.
 なお、注目画素Pと参照画素とが第1領域141に含まれる場合、第1処理部151は、当該参照画素からの第1画像データを補正しない。同様に、注目画素Pと参照画素とが第2領域142に含まれる場合、第2処理部152は、当該参照画素からの第2画像データを補正しない。
 あるいは、第1処理部151と第2処理部152により、それぞれ第1撮像条件の画像データおよび第2撮像条件の画像データの双方を補正してもよい。すなわち、第1撮像条件の注目位置の画像データ、参照位置の画像データのうちの第1撮像条件の画像データ、および参照位置の画像データのうちの第2撮像条件の画像データに対してそれぞれ補正処理を施すことにより、第1撮像条件と第2撮像条件との差異に基づく画像の不連続性を緩和するようにしてもよい。
 例えば、上記(例1)において、第1撮像条件(ISO感度が100)である、参照画素の画像データに、補正処理として400/100をかけ、第2撮像条件(ISO感度が800)である参照画素の画像データに、補正処理として400/800をかける。これにより、撮像条件の相違による画像データ間の差異を小さくする。なお、注目画素の画素データは、色補間処理後に100/400をかける補正処理を行う。この補正処理により色補間処理後の注目画素の画素データを第1撮像条件で撮像した場合と同様の値に変更することができる。さらに、上記(例1)において、第1領域と第2領域との境界からの距離によって補正処理の程度を変えても良い。そして上記(例1)の場合に比べて補正処理により画像データが増加や減少する割合を少なくすることができ、補正処理により生じるノイズを減らすことができる。以上では、上記(例1)について説明したが、上記(例2)にも同様に適用することができる。
Note that when the target pixel P and the reference pixel are included in the first region 141, the first processing unit 151 does not correct the first image data from the reference pixel. Similarly, when the target pixel P and the reference pixel are included in the second region 142, the second processing unit 152 does not correct the second image data from the reference pixel.
Alternatively, both the image data of the first imaging condition and the image data of the second imaging condition may be corrected by the first processing unit 151 and the second processing unit 152, respectively. That is, correction is performed for the image data of the target position of the first imaging condition, the image data of the first imaging condition of the image data of the reference position, and the image data of the second imaging condition of the image data of the reference position. By performing the processing, the discontinuity of the image based on the difference between the first imaging condition and the second imaging condition may be alleviated.
For example, in the above (Example 1), 400/100 is applied as correction processing to the image data of the reference pixel, which is the first imaging condition (ISO sensitivity is 100), and the second imaging condition (ISO sensitivity is 800). 400/800 is applied to the image data of the reference pixel as a correction process. Thereby, the difference between the image data due to the difference in the imaging conditions is reduced. Note that the pixel data of the pixel of interest undergoes a correction process that multiplies 100/400 after the color interpolation process. With this correction process, the pixel data of the target pixel after the color interpolation process can be changed to the same value as when the image is captured under the first imaging condition. Furthermore, in the above (Example 1), the degree of the correction process may be changed depending on the distance from the boundary between the first area and the second area. Compared to the case of (Example 1), the rate at which the image data is increased or decreased by the correction process can be reduced, and noise generated by the correction process can be reduced. Although the above (Example 1) has been described above, the above (Example 2) can be similarly applied.
 生成部323は、第1処理部151および第2処理部152からの画像データに基づいて、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行い、画像処理後の画像データを出力する。 The generation unit 323 performs image processing such as pixel defect correction processing, color interpolation processing, contour enhancement processing, and noise reduction processing based on the image data from the first processing unit 151 and the second processing unit 152, and performs image processing. The later image data is output.
 なお、第1処理部151は、注目画素Pが第2領域142に位置する場合に、第1領域141に含まれるすべての画素からの第1画像データを補正処理してもよく、第1領域141に含まれる画素のうち、第2領域142の注目画素Pの補間に用いられる可能性がある画素からの第1画像データだけを補正処理してもよい。同様に、第2処理部152は、注目画素Pが第1領域141に位置する場合に、第2領域142に含まれるすべての画素からの第2画像データを補正処理してもよく、第2領域142に含まれる画素のうち、第1領域141の注目画素Pの補間に用いられる可能性がある画素からの第2画像データだけを補正処理してもよい。 The first processing unit 151 may correct the first image data from all the pixels included in the first region 141 when the target pixel P is located in the second region 142. The first region Of the pixels included in 141, only the first image data from pixels that may be used for interpolation of the pixel of interest P in the second region 142 may be corrected. Similarly, the second processing unit 152 may correct the second image data from all the pixels included in the second region 142 when the target pixel P is located in the first region 141. Of the pixels included in the region 142, only the second image data from pixels that may be used for interpolation of the target pixel P in the first region 141 may be corrected.
2.焦点検出処理を行う場合
 第1の実施形態と同様に、制御部34(AF演算部34d)は、撮像画面の所定の位置(焦点検出位置)に対応する信号データ(画像データ)を用いて焦点検出処理を行う。なお、分割した領域間で異なる撮像条件が設定されており、AF動作の焦点検出位置が分割された領域の境界部分に位置する場合、すなわち焦点検出位置が第1領域と第2領域とで2分されている場合、本実施の形態では、以下の2-2.で説明するように、制御部34(AF演算部34d)は、補正部322に対して少なくとも1つの領域の焦点検出用の信号データに対する補正処理を行わせる。
2. When performing focus detection processing As in the first embodiment, the control unit 34 (AF calculation unit 34d) performs focus using signal data (image data) corresponding to a predetermined position (focus detection position) on the imaging screen. Perform detection processing. Note that when different imaging conditions are set for the divided areas and the focus detection position of the AF operation is located at the boundary portion of the divided areas, that is, the focus detection positions are 2 in the first area and the second area. In the present embodiment, the following 2-2. As will be described below, the control unit 34 (AF calculation unit 34d) causes the correction unit 322 to perform correction processing on signal data for focus detection in at least one region.
2-1.図13における枠170内の画素からの信号データに、第1撮像条件が適用された信号データと第2撮像条件が適用された信号データが混在しない場合
 この場合、補正部322は補正処理を行わず、制御部34(AF演算部34d)は枠170で示す焦点検出用画素による信号データをそのまま用いて焦点検出処理を行う。
2-1. When signal data to which the first imaging condition is applied and signal data to which the second imaging condition is applied are not mixed in the signal data from the pixels in the frame 170 in FIG. 13. In this case, the correction unit 322 performs correction processing. Instead, the control unit 34 (AF calculation unit 34d) performs the focus detection process using the signal data from the focus detection pixels indicated by the frame 170 as they are.
2-2.図13における枠170内の画素からの信号データに、第1撮像条件が適用された信号データと第2撮像条件が適用された信号データが混在する場合
 この場合には、制御部34(AF演算部34d)は、枠170内の画素のうち、第2撮像条件が適用された画素が属するブロック111aに対応する補正部322に対して以下の(例1)~(例3)のように補正処理を行わせる。そして、制御部34(AF演算部34d)は、第1撮像条件が適用された画素の信号データと、補正処理後の信号データとを用いて焦点検出処理を行う。
2-2. When signal data to which the first imaging condition is applied and signal data to which the second imaging condition is applied are mixed in the signal data from the pixels in the frame 170 in FIG. 13. In this case, the control unit 34 (AF calculation The unit 34d) corrects the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied among the pixels in the frame 170 as shown in (Example 1) to (Example 3) below. Let the process do. Then, the control unit 34 (AF calculation unit 34d) performs focus detection processing using the pixel signal data to which the first imaging condition is applied and the signal data after the correction processing.
(例1)
 第2撮像条件が適用された画素が属するブロック111aに対応する補正部322は、例えば、第1撮像条件と第2撮像条件との間でISO感度のみが異なり、第1撮像条件のISO感度が100で、第2撮像条件のISO感度が800の場合、第2撮像条件の信号データに対し、補正処理として100/800をかける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
(Example 1)
For example, the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belongs only differs in ISO sensitivity between the first imaging condition and the second imaging condition, and the ISO sensitivity of the first imaging condition is different. If the ISO sensitivity of the second imaging condition is 800 at 100, the signal data of the second imaging condition is multiplied by 100/800 as correction processing. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
(例2)
 第2撮像条件が適用された画素が属するブロック111aに対応する補正部322は、例えば、第1撮像条件と第2撮像条件との間でシャッター速度のみが異なり、第1撮像条件のシャッター速度が1/1000秒で、第2撮像条件のシャッター速度が1/100秒の場合、第2撮像条件の信号データに対し、補正処理として1/1000/1/100=1/10をかける。これにより、撮像条件の相違による信号データ間の差異を小さくする。
(Example 2)
The correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belongs, for example, only the shutter speed is different between the first imaging condition and the second imaging condition, and the shutter speed of the first imaging condition is When the shutter speed of the second imaging condition is 1/100 second at 1/1000 second, 1/1000/1/100 = 1/10 is applied as the correction process to the signal data of the second imaging condition. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
(例3)
 第2撮像条件が適用された画素が属するブロック111aに対応する補正部322は、例えば、第1撮像条件と第2撮像条件との間でフレームレートのみが異なり(電荷蓄積時間は同じ)、第1撮像条件のフレームレートが30fpsで、第2撮像条件のフレームレートが60fpsの場合、第2撮像条件(60fps)の信号データについて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを採用することを補正処理とする。これにより、撮像条件の相違による信号データ間の差異を小さくする。
 なお、第2撮像条件(60fps)で取得した前後する複数のフレーム画像に基づいて、第1撮像条件(30fps)で取得されたフレーム画像と取得開始タイミングが近いフレーム画像の信号データを補間算出することを補正処理としてもよい。
(Example 3)
For example, the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belongs differs only in the frame rate (the charge accumulation time is the same) between the first imaging condition and the second imaging condition. When the frame rate of the first imaging condition is 30 fps and the frame rate of the second imaging condition is 60 fps, acquisition of the frame image acquired under the first imaging condition (30 fps) and acquisition of the signal data of the second imaging condition (60 fps) is started. Employing frame image signal data with close timing is referred to as correction processing. Thereby, the difference between the signal data due to the difference in the imaging conditions is reduced.
In addition, based on a plurality of previous and subsequent frame images acquired under the second imaging condition (60 fps), interpolation calculation is performed on the signal data of the frame image acquired under the first imaging condition (30 fps) and the acquisition start timing is similar. This may be a correction process.
 なお、上述したように、撮像条件に多少の差違があっても同一の撮像条件とみなす。
 また、上記の例では、信号データのうちの第2撮像条件の信号データに対して補正処理を行う例を説明したが、信号データのうちの第1撮像条件の信号データに対して補正処理を行ってもよい。
As described above, even if there are some differences in the imaging conditions, the imaging conditions are regarded as the same.
In the above example, the example in which the correction process is performed on the signal data of the second imaging condition in the signal data has been described. However, the correction process is performed on the signal data of the first imaging condition in the signal data. You may go.
 さらにまた、信号データのうちの第1撮像条件の信号データおよび第2撮像条件のデータに対してそれぞれ補正処理を行うことにより、補正処理後の双方の信号データ間の差を小さくするようにしてもよい。 Furthermore, by performing correction processing on the signal data of the first imaging condition and the data of the second imaging condition in the signal data, the difference between the two signal data after the correction processing is reduced. Also good.
 図23は、焦点検出処理に係る、第1信号データと第2信号データとの処理について模式的に表した図である。 FIG. 23 is a diagram schematically showing processing of the first signal data and the second signal data related to the focus detection processing.
 第1領域141に含まれる各画素からは、第1撮像条件で撮像された第1信号データが出力され、第2領域142に含まれる各画素からは、第2撮像条件で撮像された第2信号データが出力される。第1領域141からの第1信号データは、第1処理部151に出力される。同様に、第2領域142からの第2信号データは、第2処理部152に出力される。 The first signal data imaged under the first imaging condition is output from each pixel included in the first region 141, and the second signal imaged under the second imaging condition is output from each pixel included in the second region 142. Signal data is output. The first signal data from the first region 141 is output to the first processing unit 151. Similarly, the second signal data from the second region 142 is output to the second processing unit 152.
 信号データのうちの第2撮像条件の信号データに対して補正処理を行うことにより、補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第2処理部152が処理を行う。第2領域142に含まれる画素からの第2信号データに、第2処理部152は上述した補正処理を行う。なお、第2処理部152は、撮像条件の相違による信号データ間の差異を小さくするために必要な第1撮像条件についての情報181を、たとえば、第1処理部151から受信する。
 なお、信号データのうちの第2撮像条件の信号データに対して補正処理を行うことにより、補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第1処理部151は、第1信号データを補正しない。
When the difference between the signal data after the correction process and the signal data of the first imaging condition is reduced by performing the correction process on the signal data of the second imaging condition of the signal data, the second processing unit 152 Process. The second processing unit 152 performs the above-described correction process on the second signal data from the pixels included in the second region 142. Note that the second processing unit 152 receives, for example, information 181 about the first imaging condition necessary for reducing the difference between the signal data due to the difference in the imaging condition from the first processing unit 151.
In the case where the difference between the signal data after the correction processing and the signal data of the first imaging condition is reduced by performing correction processing on the signal data of the second imaging condition of the signal data, the first processing unit 151 does not correct the first signal data.
 また、信号データのうちの第1撮像条件の信号データに対して補正処理を行うことにより、補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第1処理部151が処理を行う。第1領域141に含まれる画素からの第1信号データに、第1処理部151は上述した補正処理を行う。なお、第1処理部151は、撮像条件の相違による信号データ間の差異を小さくするために必要な第2撮像条件についての情報を第2処理部152から受信する。
 なお、信号データのうちの第1撮像条件の信号データに対して補正処理を行うことにより、補正処理後の信号データと第1撮像条件の信号データとの差を小さくする場合、第2処理部152は、第2信号データを補正しない。
In the case where the difference between the signal data after the correction processing and the signal data of the first imaging condition is reduced by performing correction processing on the signal data of the first imaging condition of the signal data, the first processing unit 151 performs processing. The first processing unit 151 performs the above-described correction process on the first signal data from the pixels included in the first region 141. Note that the first processing unit 151 receives information about the second imaging condition necessary for reducing the difference between the signal data due to the difference in the imaging condition from the second processing unit 152.
When the difference between the signal data after the correction process and the signal data of the first imaging condition is reduced by performing the correction process on the signal data of the first imaging condition in the signal data, the second processing unit 152 does not correct the second signal data.
 さらにまた、信号データのうちの第1撮像条件の信号データおよび第2撮像条件のデータに対してそれぞれ補正処理を行うことにより、補正処理後の双方の信号データ間の差を小さくする場合、第1処理部151と第2処理部152とが処理を行う。第1処理部151は、第1領域141に含まれる画素からの第1信号データに上述した補正処理を行い、第2処理部152は、第2領域142に含まれる画素からの第2信号データに上述した補正処理を行う。 Furthermore, in the case where the difference between the two signal data after the correction processing is reduced by performing correction processing on the signal data of the first imaging condition and the data of the second imaging condition of the signal data, The first processing unit 151 and the second processing unit 152 perform processing. The first processing unit 151 performs the above-described correction processing on the first signal data from the pixels included in the first region 141, and the second processing unit 152 performs the second signal data from the pixels included in the second region 142. The correction process described above is performed.
 AF演算部34dは、第1処理部151および第2処理部152からの信号データに基づいて焦点検出処理を行い、その演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を出力する。 The AF calculation unit 34d performs focus detection processing based on the signal data from the first processing unit 151 and the second processing unit 152, and moves the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result. The drive signal for making it output is output.
3.被写体検出処理を行う場合
 分割した領域間で異なる撮像条件が設定されており、探索範囲190が分割された領域の境界を含む場合、本実施の形態では、以下の3-2.で説明するように、制御部34(物体検出部34a)は、補正部322に対して探索範囲190内の少なくとも1つの領域の画像データに対する補正処理を行わせる。
3. When subject detection processing is performed When different imaging conditions are set for the divided areas and the search range 190 includes the boundaries of the divided areas, in the present embodiment, the following 3-2. As will be described, the control unit 34 (object detection unit 34a) causes the correction unit 322 to perform correction processing on image data of at least one region in the search range 190.
3-1.図14における探索範囲190の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在しない場合
 この場合、補正部322は補正処理を行わず、制御部34(物体検出部34a)は探索範囲190を構成する画像データをそのまま用いて被写体検出処理を行う。
3-1. In the case where image data to which the first imaging condition is applied and image data to which the second imaging condition is applied are not mixed in the image data in the search range 190 in FIG. The unit 34 (the object detection unit 34a) performs subject detection processing using the image data constituting the search range 190 as it is.
3-2.図14における探索範囲190の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合
 この場合、制御部34(物体検出部34a)は、探索範囲190の画像のうち、第2撮像条件が適用された画素が属するブロック111aに対応する補正部322に対して、焦点検出処理を行う場合として上述した(例1)~(例3)のように補正処理を行わせる。そして、制御部34(物体検出部34a)は、第1条件が適用された画素の画像データと、補正処理後の画像データとを用いて被写体検出処理を行う。
3-2. When image data to which the first imaging condition is applied and image data to which the second imaging condition is applied are mixed in the image data in the search range 190 in FIG. 14. In this case, the control unit 34 (object detection unit 34 a) Of the images in the search range 190, the cases of (Example 1) to (Example 3) described above as the case where the focus detection process is performed on the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belong. The correction process is performed as follows. The control unit 34 (object detection unit 34a) performs subject detection processing using the image data of the pixels to which the first condition is applied and the image data after the correction processing.
 図24は、被写体検出処理に係る、第1画像データと第2画像データとの処理について模式的に表した図である。第1処理部151または/および第2処理部152で行われる補正処理は、焦点検出処理を行う場合として上述した図23についての補正処理と同じである。 FIG. 24 is a diagram schematically showing processing of the first image data and the second image data related to the subject detection processing. The correction process performed by the first processing unit 151 and / or the second processing unit 152 is the same as the correction process for FIG. 23 described above as the case of performing the focus detection process.
 物体検出部34aは、第1処理部151および第2処理部152からの画像データに基づいて被写体要素を検出する処理を行い、検出結果を出力する。 The object detection unit 34a performs a process of detecting a subject element based on the image data from the first processing unit 151 and the second processing unit 152, and outputs a detection result.
4.撮像条件を設定する場合
 撮像画面の領域を分割し、分割した領域間で異なる撮像条件を設定した状態で、新たに測光し直して露出条件を決定する場合について説明する。
4). When Setting Imaging Conditions A case will be described in which the area of the imaging screen is divided, and different exposure conditions are set for the divided areas, the exposure conditions are determined by performing new photometry.
4-1.測光範囲の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在しない場合
 この場合、補正部322は補正処理を行わず、制御部34(設定部34b)は測光範囲を構成する画像データをそのまま用いて露出演算処理を行う。
4-1. When the image data to which the first imaging condition is applied and the image data to which the second imaging condition is applied are not mixed in the image data in the photometric range In this case, the correction unit 322 does not perform the correction process and the control unit 34 (setting The unit 34b) performs exposure calculation processing using the image data constituting the photometric range as it is.
4-2.測光範囲の画像データに、第1撮像条件が適用された画像データと第2撮像条件が適用された画像データが混在する場合
 この場合、制御部34(設定部34b)は、測光範囲の画像データのうち、第2撮像条件が適用された画素が属するブロック111aに対応する補正部322に対して、焦点検出処理を行う場合として上述した(例1)~(例3)のように補正処理を行わせる。そして、制御部34(設定部34b)は、補正処理後の画像データを用いて露出演算処理を行う。
4-2. When image data to which the first imaging condition is applied and image data to which the second imaging condition is applied are mixed in the image data in the photometric range In this case, the control unit 34 (setting unit 34b) Among them, the correction processing is performed as in the above (Example 1) to (Example 3) as the case where the focus detection processing is performed on the correction unit 322 corresponding to the block 111a to which the pixel to which the second imaging condition is applied belongs. Let it be done. Then, the control unit 34 (setting unit 34b) performs an exposure calculation process using the image data after the correction process.
 図25は、露出演算処理等の撮像条件の設定に係る、第1画像データと第2画像データとの処理について模式的に表した図である。第1処理部151または/および第2処理部152で行われる補正処理は、焦点検出処理を行う場合として上述した図23についての補正処理と同じである。 FIG. 25 is a diagram schematically showing processing of the first image data and the second image data related to setting of imaging conditions such as exposure calculation processing. The correction process performed by the first processing unit 151 and / or the second processing unit 152 is the same as the correction process for FIG. 23 described above as the case of performing the focus detection process.
 設定部34bは、第1処理部151および第2処理部152からの画像データに基づいて露出演算処理等の撮像条件の算出処理を行い、その演算結果に基づいて、撮像部32による撮像画面を、検出した被写体要素を含む複数の領域に分割するとともに、複数の領域に対して撮像条件を再設定する。 The setting unit 34b performs an imaging condition calculation process such as an exposure calculation process based on the image data from the first processing unit 151 and the second processing unit 152, and the imaging screen by the imaging unit 32 is displayed based on the calculation result. Then, the image is divided into a plurality of areas including the detected subject element, and the imaging conditions are reset for the plurality of areas.
 以上説明した第2の実施の形態によれば、次の作用効果が得られる。
(1)カメラ1Cは、撮像面の単位区分毎に撮像条件を変更して撮像可能であり、第1撮像条件で撮像した少なくとも一つの単位区分からなる第1領域からの第1画像データと、第1撮像条件とは異なる第2撮像条件で撮像した少なくとも一つの単位区分からなる第2領域からの第2画像データとを生成する撮像素子32aを備える。カメラ1Cは、単位区分毎に、または、単位区分を複数有する複合区分毎に対応して設けられ、対応する単位区分、または対応する複合区分内の単位区分からの画像データを補正可能な複数の補正部322を備える。第2領域内の単位区分または複合区分に対応する補正部322は、第1画像データを、第2撮像条件により補正する。撮像素子32aは、裏面照射型撮像チップ111に設けられている。複数の補正部322は、画像処理チップ114に設けられている。
 これにより、画像データの補正処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減できる。
According to the second embodiment described above, the following operational effects can be obtained.
(1) The camera 1C is capable of imaging by changing the imaging condition for each unit section of the imaging surface, and the first image data from the first region composed of at least one unit section captured under the first imaging condition; An image sensor 32a is provided that generates second image data from a second region composed of at least one unit segment imaged under a second imaging condition different from the first imaging condition. The camera 1C is provided for each unit section or for each composite section having a plurality of unit sections, and can correct a plurality of image data from the corresponding unit section or the unit sections in the corresponding composite section. A correction unit 322 is provided. The correction unit 322 corresponding to the unit section or the composite section in the second region corrects the first image data according to the second imaging condition. The imaging element 32a is provided in the backside illumination type imaging chip 111. The plurality of correction units 322 are provided in the image processing chip 114.
Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing load on the correction unit 322 can be reduced.
(2)裏面照射型撮像チップ111と画像処理チップ114とは積層されている。これにより、撮像素子32aと画像処理部32cとを容易に接続できる。 (2) The backside illumination type imaging chip 111 and the image processing chip 114 are stacked. Thereby, the image pick-up element 32a and the image process part 32c can be connected easily.
(3)カメラ1Cは、補正部322により補正された第1画像データと、第2画像データとに基づいて画像を生成する生成部323を備える。これにより、複数の補正部322による前処理が並列処理によって短時間に行われるので、画像を生成するまでの時間を短縮化できる。 (3) The camera 1C includes a generation unit 323 that generates an image based on the first image data corrected by the correction unit 322 and the second image data. Thereby, since the pre-processing by the plurality of correction units 322 is performed in a short time by parallel processing, the time until an image is generated can be shortened.
(4)カメラ1Cは、撮像面の単位区分毎に撮像条件を変更して撮像可能であり、撮像光学系を介して入射した光像を第1撮像条件で撮像した少なくとも一つの単位区分からなる第1領域からの第1画像データと、入射した光像を第1撮像条件とは異なる第2撮像条件で撮像した少なくとも一つの単位区分からなる第2領域からの第2画像データとを生成する撮像素子32aを備える。カメラ1Cは、単位区分毎または単位区分を複数有する複合区分毎に対応して設けられ、対応する単位区分または対応する複合区分内の単位区分からの画像データを補正可能な複数の補正部322を備える。カメラ1Cは、撮像光学系を動かすための情報を検出するAF演算部34dを備える。第1領域内の単位区分または複合区分に対応する補正部322は、第1画像データを、第2画像データとの差が小さくなるように補正する。AF演算部34dは、補正部322で補正された第1画像データと、第2画像データとに基づいて撮像光学系を動かすための情報を検出する。撮像素子32aは、裏面照射型撮像チップ111に設けられている。複数の補正部322は、画像処理チップ114に設けられている。
 これにより、画像データの補正処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減できるとともに、複数の補正部322による前処理が並列処理によって短時間に行われるので、AF演算部34dでの焦点検出処理の開始までの時間を短縮化でき、焦点検出処理の高速化に資する。
(4) The camera 1C is capable of imaging by changing the imaging conditions for each unit section of the imaging surface, and includes at least one unit section that captures an optical image incident through the imaging optical system under the first imaging condition. Generating first image data from the first region and second image data from the second region composed of at least one unit section obtained by imaging an incident light image under a second imaging condition different from the first imaging condition; An image sensor 32a is provided. The camera 1C includes a plurality of correction units 322 that are provided corresponding to each unit section or each composite section having a plurality of unit sections and that can correct image data from the corresponding unit section or the unit section in the corresponding composite section. Prepare. The camera 1C includes an AF calculation unit 34d that detects information for moving the imaging optical system. The correction unit 322 corresponding to the unit section or the composite section in the first area corrects the first image data so that the difference from the second image data is small. The AF calculation unit 34d detects information for moving the imaging optical system based on the first image data corrected by the correction unit 322 and the second image data. The imaging element 32a is provided in the backside illumination type imaging chip 111. The plurality of correction units 322 are provided in the image processing chip 114.
Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing burden on the correction unit 322 can be reduced, and the preprocessing by the plurality of correction units 322 is performed in a short time by the parallel processing. The time until the start of the focus detection process in the AF calculation unit 34d can be shortened, which contributes to speeding up of the focus detection process.
(5)カメラ1Cは、撮像面の単位区分毎に撮像条件を変更して撮像可能であり、入射した被写体像を第1撮像条件で撮像した少なくとも一つの単位区分からなる第1領域からの第1画像データと、入射した被写体像を第1撮像条件とは異なる第2撮像条件で撮像した少なくとも一つの単位区分からなる第2領域からの第2画像データとを生成する撮像素子32aを備える。カメラ1Cは、単位区分毎または単位区分を複数有する複合区分毎に対応して設けられ、対応する単位区分または対応する複合区分内の単位区分からの画像データを補正可能な複数の補正部322を備える。カメラ1Cは、被写体像から対象物を検出する物体検出部34aを備える。第1領域内の単位区分または複合区分に対応する補正部322は、第1画像データを、第2画像データの値との差が小さくなるように補正する。物体検出部34aは、補正部322で補正された第1画像データと、第2画像データとに基づいて被写体像から対象物を検出する。撮像素子32aは、裏面照射型撮像チップ111に設けられている。複数の補正部322は、画像処理チップ114に設けられている。
 これにより、画像データの補正処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減できるとともに、複数の補正部322による前処理が並列処理によって短時間に行われるので、物体検出部34aでの被写体検出処理の開始までの時間を短縮化でき、被写体検出処理の高速化に資する。
(5) The camera 1C can capture an image by changing the imaging condition for each unit section of the imaging surface, and the first image from the first region including at least one unit section obtained by capturing the incident subject image under the first imaging condition. An image sensor 32a is provided that generates one image data and second image data from a second region composed of at least one unit segment obtained by imaging an incident subject image under a second imaging condition different from the first imaging condition. The camera 1C includes a plurality of correction units 322 that are provided corresponding to each unit section or each composite section having a plurality of unit sections and that can correct image data from the corresponding unit section or the unit section in the corresponding composite section. Prepare. The camera 1C includes an object detection unit 34a that detects an object from a subject image. The correction unit 322 corresponding to the unit section or the composite section in the first region corrects the first image data so that the difference from the value of the second image data is small. The object detection unit 34a detects an object from the subject image based on the first image data corrected by the correction unit 322 and the second image data. The imaging element 32a is provided in the backside illumination type imaging chip 111. The plurality of correction units 322 are provided in the image processing chip 114.
Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing burden on the correction unit 322 can be reduced, and the preprocessing by the plurality of correction units 322 is performed in a short time by the parallel processing. The time until the start of the subject detection process in the object detection unit 34a can be shortened, which contributes to the speedup of the subject detection process.
(6)カメラ1Cは、撮像面の単位区分毎に撮像条件を変更して撮像可能であり、入射した光像を第1撮像条件で撮像した少なくとも一つの単位区分からなる第1領域からの第1画像データと、入射した光像を第1撮像条件とは異なる第2撮像条件で撮像した少なくとも一つの単位区分からなる第2領域からの第2画像データとを生成する撮像素子32aを備える。カメラ1Cは、単位区分毎または単位区分を複数有する複合区分毎に対応して設けられ、対応する単位区分または対応する複合区分内の単位区分からの画像データを補正可能な複数の補正部322を備える。カメラ1Cは、撮像条件を設定する設定部34bを備える。第1領域内の単位区分または複合区分に対応する補正部322は、第1画像データを、第2画像データとの差が小さくなるように補正する。設定部34bは、補正部322で補正された第1画像データと、第2画像データとに基づいて撮像条件を設定する。撮像素子32aは、裏面照射型撮像チップ111に設けられている。複数の補正部322は、画像処理チップ114に設けられている。
 これにより、画像データの補正処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減できるとともに、複数の補正部322による前処理が並列処理によって短時間に行われるので、設定部34bでの撮像条件の設定処理の開始までの時間を短縮化でき、撮像条件の設定処理の高速化に資する。
(6) The camera 1 </ b> C is capable of imaging by changing the imaging condition for each unit section of the imaging surface. An image sensor 32a is provided that generates one image data and second image data from a second region composed of at least one unit segment obtained by imaging an incident light image under a second imaging condition different from the first imaging condition. The camera 1C includes a plurality of correction units 322 that are provided corresponding to each unit section or each composite section having a plurality of unit sections and that can correct image data from the corresponding unit section or the unit section in the corresponding composite section. Prepare. The camera 1C includes a setting unit 34b that sets imaging conditions. The correction unit 322 corresponding to the unit section or the composite section in the first area corrects the first image data so that the difference from the second image data is small. The setting unit 34b sets an imaging condition based on the first image data corrected by the correction unit 322 and the second image data. The imaging element 32a is provided in the backside illumination type imaging chip 111. The plurality of correction units 322 are provided in the image processing chip 114.
Thereby, since the correction process of image data can be performed in parallel by the plurality of correction units 322, the processing burden on the correction unit 322 can be reduced, and the preprocessing by the plurality of correction units 322 is performed in a short time by the parallel processing. The time until the start of the imaging condition setting process in the setting unit 34b can be shortened, which contributes to speeding up of the imaging condition setting process.
---第2の実施の形態の変形例---
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施の形態と組み合わせることも可能である。
(変形例13)
 第1の実施の形態の変形例1における図16(a)~図16(c)に示すように、撮像素子32aの撮像面において第1領域および第2領域を配置した場合の第1画像データと第2画像データとの処理について説明する。
 本変形例においても、変形例1と同様に、図16(a)~図16(c)のいずれの場合も、1フレームの撮像を行った撮像素子32aから読み出した画素信号によって、第1領域から読み出した画像信号に基づく第1画像および第2領域から読み出した画像信号に基づく第2画像がそれぞれ生成される。本変形例においても、変形例1と同様に、制御部34は、第1画像を表示用として用いるとともに、第2画像を検出用として用いる。
 第1画像を撮像する第1領域に設定する撮像条件を第1撮像条件と呼び、第2画像を撮像する第2領域に設定する撮像条件を第2撮像条件と呼ぶこととする。制御部34は、第1撮像条件と、第2撮像条件とを異ならせてもよい。
--- Modification of the second embodiment ---
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(Modification 13)
As shown in FIGS. 16A to 16C in the first modification of the first embodiment, the first image data when the first area and the second area are arranged on the imaging surface of the imaging element 32a. And processing of the second image data will be described.
Also in this modified example, as in the modified example 1, in any of the cases shown in FIGS. 16A to 16C, the first region is determined by the pixel signal read from the imaging element 32a that has captured one frame. A first image based on the image signal read from the second image and a second image based on the image signal read from the second region are respectively generated. Also in the present modification, as in Modification 1, the control unit 34 uses the first image for display and the second image for detection.
An imaging condition set in the first area for capturing the first image is referred to as a first imaging condition, and an imaging condition set in the second area for capturing the second image is referred to as a second imaging condition. The control unit 34 may make the first imaging condition different from the second imaging condition.
1.一例として、第1領域に設定される第1撮像条件が撮像画面の第1領域の全体で同一であり、第2領域に設定される第2撮像条件が撮像画面の第2領域の全体で同一である場合について、図26を参照して説明する。図26は、第1画像データと第2画像データとの処理について模式的に表した図である。 1. As an example, the first imaging condition set for the first area is the same for the entire first area of the imaging screen, and the second imaging condition set for the second area is the same for the entire second area of the imaging screen. This case will be described with reference to FIG. FIG. 26 is a diagram schematically illustrating processing of the first image data and the second image data.
 第1領域141に含まれる各画素からは、第1撮像条件で撮像された第1画像データが出力され、第2領域142に含まれる各画素からは、第2撮像条件で撮像された第2画像データが出力される。第1領域141からの第1画像データは、第1処理部151に出力される。同様に、第2領域142からの第2画像データは、第2処理部152に出力される。 The first image data captured under the first imaging condition is output from each pixel included in the first area 141, and the second image captured under the second imaging condition is output from each pixel included in the second area 142. Image data is output. The first image data from the first area 141 is output to the first processing unit 151. Similarly, the second image data from the second region 142 is output to the second processing unit 152.
 本例では、第1撮像条件が撮像画面の第1領域の全体で同一であるので、第1処理部151は、第1領域に含まれる参照画素からの第1画像データを補正しない。また、第2撮像条件が撮像画面の第2領域の全体で同一であるので、第2処理部152は、焦点検出処理、被写体検出処理、および露出演算処理に用いる第2画像データについては補正しない。しかし、第2処理部152は、第1画像データの補間に用いる第2画像データについては、第1撮像条件と第2撮像条件との相違による画像データ間の差異を小さくする補正処理を行う。第2処理部152は、補正処理後の第2画像データを矢印182で示すように第1処理部151に出力する。なお、第2処理部152は、補正処理後の第2画像データを破線の矢印183で示すように生成部323に出力してもよい。
 第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報181を、たとえば、第1処理部151から受信する。
In this example, since the first imaging condition is the same for the entire first area of the imaging screen, the first processing unit 151 does not correct the first image data from the reference pixels included in the first area. In addition, since the second imaging condition is the same for the entire second area of the imaging screen, the second processing unit 152 does not correct the second image data used for the focus detection process, the subject detection process, and the exposure calculation process. . However, for the second image data used for the interpolation of the first image data, the second processing unit 152 performs a correction process for reducing the difference between the image data due to the difference between the first imaging condition and the second imaging condition. The second processing unit 152 outputs the second image data after the correction processing to the first processing unit 151 as indicated by an arrow 182. Note that the second processing unit 152 may output the second image data after the correction processing to the generation unit 323 as indicated by a dashed arrow 183.
The second processing unit 152 receives, from the first processing unit 151, for example, information 181 about the first imaging condition necessary to reduce the difference between the image data due to the difference in the imaging condition.
 生成部323は、第1処理部151からの第1画像データ、および第2処理部152で補正処理された第2画像データに基づいて、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行い、画像処理後の画像データを出力する。
 物体検出部34aは、第2処理部152からの第2画像データに基づいて被写体要素を検出する処理を行い、検出結果を出力する。
 設定部34bは、第2処理部152からの第2画像データに基づいて露出演算処理等の撮像条件の算出処理を行い、その演算結果に基づいて、撮像部32による撮像画面を、検出した被写体要素を含む複数の領域に分割するとともに、複数の領域に対して撮像条件を再設定する。
 AF演算部34dは、第2処理部152からの第2信号データに基づいて焦点検出処理を行い、その演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を出力する。
Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
The object detection unit 34a performs processing for detecting a subject element based on the second image data from the second processing unit 152, and outputs a detection result.
The setting unit 34b performs an imaging condition calculation process such as an exposure calculation process based on the second image data from the second processing unit 152, and based on the calculation result, the imaging screen by the imaging unit 32 is detected. While dividing into a plurality of regions including elements, imaging conditions are reset for the plurality of regions.
The AF calculation unit 34d performs focus detection processing based on the second signal data from the second processing unit 152, and drives for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result. Output a signal.
2.他の一例として、第1領域に設定される第1撮像条件が撮像画面の領域によって異なり、第2領域に設定される第2撮像条件が撮像画面の第2領域の全体で同一である場合について、図27を参照して説明する。図27は、第1画像データと第2画像データとの処理について模式的に表した図である。 2. As another example, the first imaging condition set in the first area differs depending on the area of the imaging screen, and the second imaging condition set in the second area is the same in the entire second area of the imaging screen. This will be described with reference to FIG. FIG. 27 is a diagram schematically illustrating processing of the first image data and the second image data.
 第1領域141に含まれる各画素からは、撮像画面の領域によって異なる第1撮像条件で撮像された第1画像データが出力され、第2領域142に含まれる各画素からは、撮像画面の第2領域の全体で同一の第2撮像条件で撮像された第2画像データが出力される。第1領域141からの第1画像データは、第1処理部151に出力される。同様に、第2領域142からの第2画像データは、第2処理部152に出力される。 Each pixel included in the first region 141 outputs first image data captured under a first imaging condition that varies depending on the region of the imaging screen, and each pixel included in the second region 142 outputs the first image data of the imaging screen. Second image data imaged under the same second imaging condition in the entire two areas is output. The first image data from the first area 141 is output to the first processing unit 151. Similarly, the second image data from the second region 142 is output to the second processing unit 152.
 上述したように本例では、第1領域に設定される第1撮像条件が撮像画面の領域によって異なる。すなわち、第1撮像条件が第1領域内の部分領域によって異なる。第1領域内にともに位置する注目画素Pと参照画素とで異なる第1撮像条件が設定されている場合、第1処理部151は、当該参照画素からの第1画像データに対して、上述した1-2.で述べた補正処理と同様の補正処理を行う。なお、注目画素Pと参照画素とで同じ第1撮像条件が設定されている場合、第1処理部151は、当該参照画素からの第1画像データに対して補正処理を行わない。 As described above, in this example, the first imaging condition set in the first area differs depending on the area of the imaging screen. That is, the first imaging condition varies depending on the partial area in the first area. When different first imaging conditions are set for the target pixel P and the reference pixel located together in the first region, the first processing unit 151 performs the above-described processing on the first image data from the reference pixel. 1-2. A correction process similar to the correction process described above is performed. When the same first imaging condition is set for the target pixel P and the reference pixel, the first processing unit 151 does not perform the correction process on the first image data from the reference pixel.
 本例では、第2領域に設定される第2撮像条件が撮像画面の第2領域の全体で同一であるので、第2処理部152は、焦点検出処理、被写体検出処理、および露出演算処理に用いる第2画像データについては補正しない。第1画像データの補間に用いる第2画像データについては、第2処理部152は、第1領域に含まれる注目画素Pについての撮像条件と第2撮像条件との相違による画像データ間の差異を小さくする補正処理を行う。第2処理部152は、補正処理後の第2画像データを第1処理部151に出力する。なお、第2処理部152は、補正処理後の第2画像データを生成部323に出力してもよい。
 第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1領域に含まれる注目画素Pについての撮像条件についての情報181を、たとえば、第1処理部151から受信する。
In this example, since the second imaging condition set for the second area is the same for the entire second area of the imaging screen, the second processing unit 152 performs focus detection processing, subject detection processing, and exposure calculation processing. The second image data to be used is not corrected. For the second image data used for interpolation of the first image data, the second processing unit 152 calculates the difference between the image data due to the difference between the imaging condition for the target pixel P included in the first region and the second imaging condition. A correction process for reducing the size is performed. The second processing unit 152 outputs the second image data after the correction process to the first processing unit 151. Note that the second processing unit 152 may output the corrected second image data to the generation unit 323.
The second processing unit 152 uses the information 181 about the imaging condition for the pixel of interest P included in the first region necessary for reducing the difference between the image data due to the difference in the imaging condition, for example, the first processing unit 151. Receive from.
 生成部323は、第1処理部151からの第1画像データ、および第2処理部152で補正処理された第2画像データに基づいて、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行い、画像処理後の画像データを出力する。
 物体検出部34aは、第2処理部152からの第2画像データに基づいて被写体要素を検出する処理を行い、検出結果を出力する。
 設定部34bは、第2処理部152からの第2画像データに基づいて露出演算処理等の撮像条件の算出処理を行い、その演算結果に基づいて、撮像部32による撮像画面を、検出した被写体要素を含む複数の領域に分割するとともに、複数の領域に対して撮像条件を再設定する。
 AF演算部34dは、第2処理部152からの第2信号データに基づいて焦点検出処理を行い、その演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を出力する。
Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
The object detection unit 34a performs processing for detecting a subject element based on the second image data from the second processing unit 152, and outputs a detection result.
The setting unit 34b performs an imaging condition calculation process such as an exposure calculation process based on the second image data from the second processing unit 152, and based on the calculation result, the imaging screen by the imaging unit 32 is detected. While dividing into a plurality of regions including elements, imaging conditions are reset for the plurality of regions.
The AF calculation unit 34d performs focus detection processing based on the second signal data from the second processing unit 152, and drives for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result. Output a signal.
3.また、他の一例として、第1領域に設定される第1撮像条件が撮像画面の第1領域の全体で同一であり、第2領域に設定される第2撮像条件が撮像画面の領域によって異なる場合について、図28を参照して説明する。図28は、第1画像データと第2画像データとの処理について模式的に表した図である。 3. As another example, the first imaging condition set in the first area is the same in the entire first area of the imaging screen, and the second imaging condition set in the second area differs depending on the area of the imaging screen. The case will be described with reference to FIG. FIG. 28 is a diagram schematically showing processing of the first image data and the second image data.
 第1領域141に含まれる各画素からは、撮像画面の第1領域の全体で同一の第1撮像条件で撮像された第1画像データが出力され、第2領域142に含まれる各画素からは、撮像画面の領域によって異なる第2撮像条件で撮像された第2画像データが出力される。第1領域141からの第1画像データは、第1処理部151に出力される。同様に、第2領域142からの第2画像データは、第2処理部152に出力される。 From each pixel included in the first area 141, first image data captured under the same first imaging condition is output in the entire first area of the imaging screen, and from each pixel included in the second area 142. Second image data captured under different second imaging conditions depending on the area of the imaging screen is output. The first image data from the first area 141 is output to the first processing unit 151. Similarly, the second image data from the second region 142 is output to the second processing unit 152.
 本例では、第1領域に設定される第1撮像条件が撮像画面の第1領域の全体で同一であるので、第1処理部151は、第1領域に含まれる参照画素からの第1画像データを補正しない。 In this example, since the first imaging condition set in the first area is the same in the entire first area of the imaging screen, the first processing unit 151 performs the first image from the reference pixels included in the first area. Do not correct the data.
 また、本例では、第2領域に設定される第2撮像条件が撮像画面の領域によって異なるので、第2処理部152は、第2画像データに対して次のように補正処理を行う。第2処理部152は、たとえば、第2画像データのうちのある撮像条件で撮像された第2画像データに対して補正処理を行うことにより、補正処理後の第2画像データと、上述したある撮像条件とは異なる他の撮像条件で撮像された第2画像データとの差を小さくする。 Further, in this example, since the second imaging condition set in the second area differs depending on the area of the imaging screen, the second processing unit 152 performs the correction process on the second image data as follows. For example, the second processing unit 152 performs the correction process on the second image data imaged under a certain imaging condition in the second image data, and the second image data after the correction process is described above. The difference from the second image data captured under another imaging condition different from the imaging condition is reduced.
 本例では、第1画像データの補間に用いる第2画像データについては、第2処理部152は、第1領域に含まれる注目画素Pについての撮像条件と第2撮像条件との相違による画像データ間の差異を小さくする補正処理を行う。第2処理部152は、補正処理後の第2画像データを第1処理部151に出力する。なお、第2処理部152は、補正処理後の第2画像データを生成部323に出力してもよい。なお、図26では、第1処理部151に出力される補正処理後の第2画像データに符号182を付して表し、生成部323に出力される補正処理後の第2画像データに符号183を付して表している。
 第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1領域に含まれる注目画素Pについての撮像条件についての情報181を、たとえば、第1処理部151から受信する。
In this example, for the second image data used for the interpolation of the first image data, the second processing unit 152 uses the image data based on the difference between the imaging condition for the target pixel P included in the first region and the second imaging condition. Correction processing is performed to reduce the difference between them. The second processing unit 152 outputs the second image data after the correction process to the first processing unit 151. Note that the second processing unit 152 may output the corrected second image data to the generation unit 323. In FIG. 26, the second image data after correction processing output to the first processing unit 151 is denoted by reference numeral 182, and the second image data after correction processing output to the generation unit 323 is denoted by reference numeral 183. It is shown with an attached.
The second processing unit 152 uses the information 181 about the imaging condition for the pixel of interest P included in the first region necessary for reducing the difference between the image data due to the difference in the imaging condition, for example, the first processing unit 151. Receive from.
 生成部323は、第1処理部151からの第1画像データ、および第2処理部152で補正処理された第2画像データに基づいて、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行い、画像処理後の画像データを出力する。
 物体検出部34aは、第2処理部152で補正処理された、ある撮像条件で撮像された第2画像データと、他の撮像条件で撮像された第2画像データとに基づいて被写体要素を検出する処理を行い、検出結果を出力する。
 設定部34bは、第2処理部152で補正処理された、ある撮像条件で撮像された第2画像データと、他の撮像条件で撮像された第2画像データとに基づいて露出演算処理等の撮像条件の算出処理を行う。設定部34bは、その演算結果に基づいて、撮像部32による撮像画面を、検出した被写体要素を含む複数の領域に分割するとともに、複数の領域に対して撮像条件を再設定する。
 AF演算部34dは、第2処理部152で補正処理された、ある撮像条件で撮像された第2信号データと、他の撮像条件で撮像された第2信号データとに基づいて焦点検出処理を行う、AF演算部34dは、その演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を出力する。
Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
The object detection unit 34a detects the subject element based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition corrected by the second processing unit 152. Process and output the detection result.
The setting unit 34b performs exposure calculation processing or the like based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition, which is corrected by the second processing unit 152. An imaging condition calculation process is performed. Based on the calculation result, the setting unit 34b divides the imaging screen by the imaging unit 32 into a plurality of areas including the detected subject element, and resets the imaging conditions for the plurality of areas.
The AF calculation unit 34d performs focus detection processing based on the second signal data imaged under a certain imaging condition and the second signal data imaged under another imaging condition corrected by the second processing unit 152. The AF calculation unit 34d that performs the operation outputs a drive signal for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result.
4.さらにまた、他の一例として、第1領域に設定される第1撮像条件が撮像画面の領域によって異なり、第2領域に設定される第2撮像条件が撮像画面の領域によって異なる場合について、図29を参照して説明する。図29は、第1画像データと第2画像データとの処理について模式的に表した図である。 4). Furthermore, as another example, a case where the first imaging condition set in the first area differs depending on the area of the imaging screen, and the second imaging condition set in the second area differs depending on the area of the imaging screen, as shown in FIG. Will be described with reference to FIG. FIG. 29 is a diagram schematically illustrating processing of the first image data and the second image data.
 第1領域141に含まれる各画素からは、撮像画面の領域によって異なる第1撮像条件で撮像された第1画像データが出力され、第2領域142に含まれる各画素からは、撮像画面の領域によって異なる第2撮像条件で撮像された第2画像データが出力される。第1領域141からの第1画像データは、第1処理部151に出力される。同様に、第2領域142からの第2画像データは、第2処理部152に出力される。 From each pixel included in the first area 141, first image data captured under a first imaging condition that varies depending on the area of the imaging screen is output. From each pixel included in the second area 142, an area on the imaging screen is output. The second image data imaged under different second imaging conditions is output. The first image data from the first area 141 is output to the first processing unit 151. Similarly, the second image data from the second region 142 is output to the second processing unit 152.
 上述したように本例では、第1領域に設定される第1撮像条件が撮像画面の領域によって異なる。すなわち、第1撮像条件が第1領域内の部分領域によって異なる。第1領域内にともに位置する注目画素Pと参照画素とで異なる第1撮像条件が設定されている場合、第1処理部151は、当該参照画素からの第1画像データに対して、上述した1-2.で述べた補正処理と同様の補正処理を行う。なお、注目画素Pと参照画素とで同じ第1撮像条件が設定されている場合、第1処理部151は、当該参照画素からの第1画像データに対して補正処理を行わない。 As described above, in this example, the first imaging condition set in the first area differs depending on the area of the imaging screen. That is, the first imaging condition varies depending on the partial area in the first area. When different first imaging conditions are set for the target pixel P and the reference pixel located together in the first region, the first processing unit 151 performs the above-described processing on the first image data from the reference pixel. 1-2. A correction process similar to the correction process described above is performed. When the same first imaging condition is set for the target pixel P and the reference pixel, the first processing unit 151 does not perform the correction process on the first image data from the reference pixel.
 また、本例では、第2領域に設定される第2撮像条件が撮像画面の領域によって異なるので、第2処理部152は、第2画像データに対して上述した3.の一例のように補正処理を行う。 Further, in this example, since the second imaging condition set in the second area differs depending on the area of the imaging screen, the second processing unit 152 performs the above-described 3. processing on the second image data. Correction processing is performed as an example.
 生成部323は、第1処理部151からの第1画像データ、および第2処理部152で補正処理された第2画像データに基づいて、画素欠陥補正処理、色補間処理、輪郭強調処理、およびノイズ低減処理等の画像処理を行い、画像処理後の画像データを出力する。
 物体検出部34aは、第2処理部152で補正処理された、ある撮像条件で撮像された第2画像データと、他の撮像条件で撮像された第2画像データとに基づいて被写体要素を検出する処理を行い、検出結果を出力する。
 設定部34bは、第2処理部152で補正処理された、ある撮像条件で撮像された第2画像データと、他の撮像条件で撮像された第2画像データとに基づいて露出演算処理等の撮像条件の算出処理を行う。設定部34bは、その演算結果に基づいて、撮像部32による撮像画面を、検出した被写体要素を含む複数の領域に分割するとともに、複数の領域に対して撮像条件を再設定する。
 AF演算部34dは、第2処理部152で補正処理された、ある撮像条件で撮像された第2信号データと、他の撮像条件で撮像された第2信号データとに基づいて焦点検出処理を行う、AF演算部34dは、その演算結果に基づいて、撮像光学系31のフォーカスレンズを合焦位置へ移動させるための駆動信号を出力する。
Based on the first image data from the first processing unit 151 and the second image data corrected by the second processing unit 152, the generation unit 323 performs pixel defect correction processing, color interpolation processing, contour enhancement processing, and Image processing such as noise reduction processing is performed, and image data after image processing is output.
The object detection unit 34a detects the subject element based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition corrected by the second processing unit 152. Process and output the detection result.
The setting unit 34b performs exposure calculation processing or the like based on the second image data captured under a certain imaging condition and the second image data captured under another imaging condition, which is corrected by the second processing unit 152. An imaging condition calculation process is performed. Based on the calculation result, the setting unit 34b divides the imaging screen by the imaging unit 32 into a plurality of areas including the detected subject element, and resets the imaging conditions for the plurality of areas.
The AF calculation unit 34d performs focus detection processing based on the second signal data imaged under a certain imaging condition and the second signal data imaged under another imaging condition corrected by the second processing unit 152. The AF calculation unit 34d that performs the operation outputs a drive signal for moving the focus lens of the imaging optical system 31 to the in-focus position based on the calculation result.
(変形例14)
 上述した第2の実施の形態では、補正部322の1つとブロック111a(単位区分)の1つとが対応している。しかし、補正部322の1つと、複数のブロック111a(単位区分)を有する複合ブロック(複合区分)の1つとが対応するようにしてもよい。この場合、補正部322は、当該複合ブロックに含まれる複数のブロック111aに属する画素からの画像データを順次補正する。複数の補正部322が、複数のブロック111aを有する複合ブロック毎に対応して設けられていても、画像データの補正処理を複数の補正部322で並列処理できるので、補正部322における処理負担を軽減でき、撮像条件が異なる領域でそれぞれ生成された画像データから適切な画像を短時間で生成することができる。
(Modification 14)
In the second embodiment described above, one of the correction units 322 corresponds to one of the blocks 111a (unit division). However, one of the correction units 322 may correspond to one of the composite blocks (composite sections) having a plurality of blocks 111a (unit sections). In this case, the correction unit 322 sequentially corrects image data from pixels belonging to the plurality of blocks 111a included in the composite block. Even if a plurality of correction units 322 are provided corresponding to each composite block having a plurality of blocks 111a, the correction processing of image data can be performed in parallel by the plurality of correction units 322. An appropriate image can be generated in a short time from the image data generated in the areas with different imaging conditions.
(変形例15)
 上述した第2の実施の形態では、生成部323は撮像部32Aの内部に設けられている。しかし、生成部323を撮像部32Aの外部に設けてもよい。生成部323を撮像部32Aの外部に設けても上述した作用効果と同様の作用効果を奏する。
(Modification 15)
In the second embodiment described above, the generation unit 323 is provided inside the imaging unit 32A. However, the generation unit 323 may be provided outside the imaging unit 32A. Even if the generation unit 323 is provided outside the imaging unit 32A, the same operational effects as the above-described operational effects can be obtained.
(変形例16)
 上述した第2の実施の形態では、積層型撮像素子100Aは、裏面照射型撮像チップ111と、信号処理チップ112と、メモリチップ113とに加えて、上述した前処理および画像処理を行う画像処理チップ114をさらに備える。しかし、積層型撮像素子100Aに画像処理チップ114を設けず、信号処理チップ112に画像処理部32cが設けられていてもよい。
(Modification 16)
In the second embodiment described above, the multilayer imaging element 100A includes image processing that performs the above-described preprocessing and image processing in addition to the backside illumination imaging chip 111, the signal processing chip 112, and the memory chip 113. A chip 114 is further provided. However, the image processing chip 114 may be provided in the signal processing chip 112 without providing the image processing chip 114 in the multilayer imaging device 100A.
(変形例17)
 上述した第2の実施の形態では、第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報を、第1処理部151から受信した。また、第1処理部151は、撮像条件の相違による画像データ間の差異を小さくするために必要な第2撮像条件についての情報を、第2処理部152から受信した。しかし、第2処理部152は、撮像条件の相違による画像データ間の差異を小さくするために必要な第1撮像条件についての情報を、駆動部32bや制御部34から受信してもよい。同様に、第1処理部151は、撮像条件の相違による画像データ間の差異を小さくするために必要な第2撮像条件についての情報を、駆動部32bや制御部34から受信してもよい。
 なお、上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
(Modification 17)
In the second embodiment described above, the second processing unit 152 receives, from the first processing unit 151, information on the first imaging condition necessary to reduce the difference between the image data due to the difference in the imaging condition. did. In addition, the first processing unit 151 receives information about the second imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the second processing unit 152. However, the second processing unit 152 may receive information about the first imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the driving unit 32b or the control unit 34. Similarly, the first processing unit 151 may receive information about the second imaging condition necessary for reducing the difference between the image data due to the difference in the imaging condition from the driving unit 32b or the control unit 34.
In addition, you may combine each embodiment and modification which were mentioned above, respectively.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 上述した実施の形態および変形例は、以下のような撮像装置および焦点検出装置も含む。
(1)光学系の光軸方向に移動可能なレンズを介して、被写体を撮像して第1信号を出力する第1撮像領域と、被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号を補間した信号を用いて、上記レンズの移動を制御する制御部と、を備える撮像装置。
(2)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号を補間した信号を用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(3)(2)にのような撮像装置において、上記補正部で補正された上記第2信号により上記第1信号を補間した信号により、上記第1撮像領域で撮像された被写体の像のコントラストに基づいて上記光学系の合焦状態が検出される。
(4)(2)または(3)のような撮像装置において、上記補正部は、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正として、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の撮像条件または上記第2撮像領域の撮像条件に基づいて補正を行う。
(5)(2)または(3)のような撮像装置において、上記補正部は、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正として、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の撮像条件と上記第2撮像領域の撮像条件とに基づいて補正を行う。
(6)(5)のような撮像装置において、上記補正部は、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正として、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の撮像条件と上記第2撮像領域の撮像条件との相違に基づいて補正を行う。
(7)(6)のような撮像装置において、上記第1撮像領域の撮像条件と上記第2撮像領域の撮像条件とは、露出条件であり、上記補正部は、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の露出条件と上記第2撮像領域の露出条件との相違に基づいて補正を行う。
(8)(7)のような撮像装置において、上記第1撮像領域の露出条件と上記第2撮像領域の露出条件とは、撮像領域の受光部の電荷蓄積時間であり、上記補正部は、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の電荷蓄積時間と上記第2撮像領域の電荷蓄積時間との比に基づいて補正を行う。
(9)(7)のような撮像装置において、上記第1撮像領域の露出条件と上記第2撮像領域の露出条件とは、撮像領域の撮像感度であり、上記補正部は、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の撮像感度と上記第2撮像領域の撮像感度との対数比に基づいて補正を行う。
(10)(2)または(3)のような撮像装置において、上記補正部は、上記第1撮像領域から出力された上記第1信号を補正し、上記第2撮像領域から出力された上記第2信号に対して、上記補正された第1信号の補間に用いるための補正を行い、上記制御部は、上記補正部で補正された上記第2信号により上記補正された第1信号を補間した信号を用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する。
(11)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域の上記第1信号を出力する画素の補間に用いるための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号を出力する画素を補間した信号を用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(12)(11)のような撮像装置において、上記第1撮像領域の上記第1信号を出力する画素は、被写体からの光のうち第1の色の光を光電変換して上記第1信号を出力し、上記第2撮像領域は、被写体からの光のうち上記第1の色と異なる第2の色の光を光電変換して上記第2信号を出力する。
(13)光学系の光軸方向に移動可能なレンズを介して、被写体を撮像して第1信号を出力する第1撮像領域と、被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域から出力された上記第1信号に含まれるノイズを低減するための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号に含まれるノイズを低減した信号を用いて、上記レンズの移動を制御する制御部と、を備える撮像装置。
(14)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域から出力された上記第1信号に含まれるノイズを低減するための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号に含まれるノイズを低減した信号を用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(15)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第1撮像領域の撮像条件または上記第2撮像領域の撮像条件に基づいて上記第2撮像領域から出力された上記第2信号を補正する補正部と、上記第1信号と上記補正部で補正された上記第2信号とを用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(16)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第1撮像領域の撮像条件と上記第2撮像領域の撮像条件とに基づいて上記第2撮像領域から出力された上記第2信号を補正する補正部と、上記第1信号と上記補正部で補正された上記第2信号とを用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(17)(16)のような撮像装置において、上記補正部は、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正として、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の撮像条件と上記第2撮像領域の撮像条件との相違に基づいて補正を行う。
(18)(17)のような撮像装置において、上記第1撮像領域の撮像条件と上記第2撮像領域の撮像条件とは、露出条件であり、上記補正部は、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の露出条件と上記第2撮像領域の露出条件との相違に基づいて補正を行う。
(19)(18)のような撮像装置において、上記第1撮像領域の露出条件と上記第2撮像領域の露出条件とは、撮像領域の受光部の電荷蓄積時間であり、上記補正部は、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の電荷蓄積時間と上記第2撮像領域の電荷蓄積時間との比に基づいて補正を行う。
(20)(18)のような撮像装置において、上記第1撮像領域の露出条件と上記第2撮像領域の露出条件とは、撮像領域の撮像感度であり、上記補正部は、上記第2撮像領域から出力された上記第2信号に対して、上記第1撮像領域の撮像感度と上記第2撮像領域の撮像感度との対数比に基づいて補正を行う。
(21)(16)から(20)のような撮像装置において、上記第1信号と上記補正部で補正された上記第2信号とを用いて検出された、上記撮像素子に入射した上記光学系の異なる部分を通過した複数の光による複数の像のずれに基づいて上記光学系の合焦状態が検出される。
(22)(16)から(20)のような撮像装置において、上記第1信号と上記補正部で補正された上記第2信号とを用いて検出された、上記撮像素子で撮像された被写体の像のコントラストに基づいて上記光学系の合焦状態が検出される。
(23)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第1撮像領域の撮像条件に基づいて上記第1撮像領域から出力された上記第1信号を補正し、上記第2撮像領域の撮像条件の設定値に基づいて上記第2撮像領域から出力された上記第2信号を補正する補正部と、上記補正部で補正された上記第1信号と上記補正部で補正された上記第2信号により補正された上記第1信号を出力する画素を補間した信号を用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(24)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、上記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、上記第1撮像領域の撮像条件を、上記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、上記第1撮像領域から出力された上記第1信号を補正し、上記第2撮像領域から出力された上記第2信号に対して、補正された上記第1信号を出力する画素の補間に用いるための補正を行う補正部と、上記補正部で補正された上記第1信号と上記補正部で補正された上記第2信号とを用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える撮像装置。
(25)(24)のような撮像装置において、上記第1撮像領域の上記第1信号を出力する画素は、被写体からの光のうち第1の色の光を光電変換して上記第1信号を出力し、上記第2撮像領域は、被写体からの光のうち上記第1の色と異なる第2の色の光を光電変換して上記第2信号を出力する。
(26)光学系の光軸方向に移動可能なレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、上記レンズを介して被写体を撮像して第2信号を出力する上記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号を補間した信号を用いて、上記レンズの移動を制御する制御部と、を備える焦点検出装置。
(27)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、上記レンズを介して被写体を撮像して第2信号を出力する上記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正を行う補正部と、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号の補間に用いるための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号を補間した信号を用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える焦点検出装置。
(28)光学系の光軸方向に移動可能なレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、上記レンズを介して被写体を撮像して第2信号を出力する上記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号に含まれるノイズを低減するための補正を行う補正部と、上記補正部で補正された上記第2信号により上記第1信号に含まれるノイズを低減した信号を用いて、上記レンズの移動を制御する制御部と、を備える焦点検出装置。
(29)光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、上記レンズを介して被写体を撮像して第2信号を出力する上記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、上記第2撮像領域から出力された第2信号に対して、上記第1撮像領域から出力された上記第1信号に含まれるノイズを低減するための補正を行う補正部と、上記第1信号と上記補正部で補正された上記第2信号とを用いて検出された上記光学系の合焦状態により上記レンズの駆動を制御する制御部と、を備える焦点検出装置。
(30)光学系を介して入射した光を第1撮像条件で撮像して第1信号データを生成する第1領域と、上記入射した光を上記第1撮像条件とは異なる第2撮像条件で撮像して第2信号データを生成する第2領域と、を有する撮像部と、上記撮像部で生成された上記第1信号データを、上記第2撮像条件に基づいて補正する補正部と、上記補正部に基づいて補正された上記第1信号データと、上記撮像部で生成された上記第2信号データとに基づいて、上記光学系を駆動するための信号を生成する生成部と、を備える撮像装置。
(31)光学系を介して撮像部の第1領域に入射した光を第1撮像条件で撮像することにより生成された第1信号データを、上記撮像部の第2領域に入射した光を撮像する上記第1撮像条件とは異なる第2撮像条件に基づいて補正する補正部と、上記補正部で補正された上記第1信号データと、上記第2領域に入射した光を撮像して生成された第2信号データとに基づいて、上記光学系を駆動するための信号を生成する生成部と、を備える焦点検出装置。
Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
The above-described embodiments and modifications also include the following imaging device and focus detection device.
(1) A first imaging region for imaging a subject and outputting a first signal via a lens movable in the optical axis direction of the optical system, and a second imaging region for imaging the subject and outputting a second signal An imaging device including: a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area; and a second signal output from the second imaging area On the other hand, a correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, and a signal obtained by interpolating the first signal with the second signal corrected by the correction unit. And a control unit that controls movement of the lens.
(2) a first imaging region that captures an image of a subject through a lens that adjusts a focus position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit for setting imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and a first output from the second imaging area A correction unit that corrects two signals for use in interpolation of the first signal output from the first imaging area, and the first signal is interpolated by the second signal corrected by the correction unit. And a control unit that controls the driving of the lens according to the in-focus state of the optical system detected using the signal.
(3) In the imaging device as in (2), the contrast of the image of the subject imaged in the first imaging region by a signal obtained by interpolating the first signal with the second signal corrected by the correction unit. Based on this, the in-focus state of the optical system is detected.
(4) In the imaging apparatus as in (2) or (3), the correction unit uses the second imaging area as a correction to be used for interpolation of the first signal output from the first imaging area. The output second signal is corrected based on the imaging condition of the first imaging area or the imaging condition of the second imaging area.
(5) In the imaging apparatus as described in (2) or (3), the correction unit uses the second imaging area as a correction to be used for interpolation of the first signal output from the first imaging area. The output second signal is corrected based on the imaging condition of the first imaging area and the imaging condition of the second imaging area.
(6) In the imaging apparatus as in (5), the correction unit outputs the second output region from the second image pickup region as a correction for use in interpolation of the first signal output from the first image pickup region. The second signal is corrected based on the difference between the imaging condition of the first imaging area and the imaging condition of the second imaging area.
(7) In the imaging device as in (6), the imaging condition of the first imaging area and the imaging condition of the second imaging area are exposure conditions, and the correction unit outputs from the second imaging area. The corrected second signal is corrected based on the difference between the exposure condition of the first imaging region and the exposure condition of the second imaging region.
(8) In the imaging device as in (7), the exposure condition of the first imaging region and the exposure condition of the second imaging region are charge accumulation times of the light receiving unit in the imaging region, and the correction unit is The second signal output from the second imaging area is corrected based on the ratio between the charge accumulation time of the first imaging area and the charge accumulation time of the second imaging area.
(9) In the imaging apparatus as in (7), the exposure condition of the first imaging area and the exposure condition of the second imaging area are imaging sensitivities of the imaging area, and the correction unit includes the second imaging area. The second signal output from the area is corrected based on a logarithmic ratio between the imaging sensitivity of the first imaging area and the imaging sensitivity of the second imaging area.
(10) In the imaging device as in (2) or (3), the correction unit corrects the first signal output from the first imaging region and outputs the first signal output from the second imaging region. Two signals are corrected to be used for interpolation of the corrected first signal, and the control unit interpolates the corrected first signal by the second signal corrected by the correction unit. The driving of the lens is controlled by the in-focus state of the optical system detected using the signal.
(11) A first imaging region that captures an image of a subject through a lens that adjusts the focusing position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit for setting imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and a first output from the second imaging area For the two signals, a correction unit that performs correction for use in interpolation of a pixel that outputs the first signal in the first imaging region, and the first signal is generated by the second signal corrected by the correction unit. An imaging apparatus comprising: a control unit that controls driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating pixels to be output.
(12) In the imaging device as in (11), the pixel that outputs the first signal in the first imaging region photoelectrically converts light of a first color out of light from the subject and outputs the first signal. The second imaging region photoelectrically converts light of a second color different from the first color out of light from the subject and outputs the second signal.
(13) A first imaging area for imaging a subject and outputting a first signal via a lens movable in the optical axis direction of the optical system; and a second imaging area for imaging the subject and outputting a second signal A setting unit that sets the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area, and the second signal output from the second imaging area On the other hand, a correction unit that performs correction to reduce noise included in the first signal output from the first imaging region, and the second signal corrected by the correction unit converts the first signal into the first signal. An image pickup apparatus comprising: a control unit that controls movement of the lens using a signal with reduced noise.
(14) a first imaging region that captures an image of a subject through a lens that adjusts a focusing position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the output from the second imaging area A correction unit that performs correction for reducing noise included in the first signal output from the first imaging region with respect to the second signal, and the second signal corrected by the correction unit. An imaging apparatus comprising: a control unit that controls driving of the lens according to a focus state of the optical system detected using a signal in which noise included in one signal is reduced.
(15) a first imaging region that captures an image of a subject through a lens that adjusts a focusing position of the optical system and outputs a first signal; and a second image that captures an image of the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the imaging conditions of the first imaging area or the above Using a correction unit that corrects the second signal output from the second imaging region based on an imaging condition of the second imaging region, and the first signal and the second signal corrected by the correction unit. And a control unit that controls driving of the lens according to the detected in-focus state of the optical system.
(16) a first imaging region that images a subject through a lens that adjusts a focus position of the optical system and outputs a first signal; and a second imaging unit that images the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, imaging conditions of the first imaging area, and the above A correction unit that corrects the second signal output from the second imaging region based on an imaging condition of the second imaging region, and the first signal and the second signal corrected by the correction unit are used. And a control unit that controls the driving of the lens according to the in-focus state of the optical system detected in the above.
(17) In the imaging apparatus as in (16), the correction unit outputs the second image pickup area as a correction used for interpolation of the first signal output from the first image pickup area. The second signal is corrected based on the difference between the imaging condition of the first imaging area and the imaging condition of the second imaging area.
(18) In the imaging device as in (17), the imaging condition of the first imaging area and the imaging condition of the second imaging area are exposure conditions, and the correction unit outputs from the second imaging area. The corrected second signal is corrected based on the difference between the exposure condition of the first imaging region and the exposure condition of the second imaging region.
(19) In the imaging device as in (18), the exposure condition of the first imaging region and the exposure condition of the second imaging region are a charge accumulation time of the light receiving unit in the imaging region, and the correction unit is The second signal output from the second imaging area is corrected based on the ratio between the charge accumulation time of the first imaging area and the charge accumulation time of the second imaging area.
(20) In the imaging device as in (18), the exposure condition of the first imaging area and the exposure condition of the second imaging area are imaging sensitivity of the imaging area, and the correction unit includes the second imaging area. The second signal output from the area is corrected based on a logarithmic ratio between the imaging sensitivity of the first imaging area and the imaging sensitivity of the second imaging area.
(21) In the imaging apparatus as described in (16) to (20), the optical system incident on the imaging element, detected using the first signal and the second signal corrected by the correction unit. The in-focus state of the optical system is detected based on the shift of the plurality of images due to the plurality of lights passing through different portions.
(22) In the imaging apparatus as described in (16) to (20), the subject imaged by the imaging element detected using the first signal and the second signal corrected by the correction unit. The in-focus state of the optical system is detected based on the contrast of the image.
(23) a first imaging region that images a subject through a lens that adjusts a focus position of the optical system and outputs a first signal; and a second imaging unit that images the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit that sets imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the imaging conditions of the first imaging area The correction unit corrects the first signal output from the first imaging area and corrects the second signal output from the second imaging area based on the setting value of the imaging condition of the second imaging area. And the optical system detected using a signal obtained by interpolating pixels that output the first signal corrected by the first signal corrected by the correction unit and the second signal corrected by the correction unit. Control the driving of the lens according to the in-focus state Imaging apparatus comprising: a control unit.
(24) a first imaging region that images a subject through a lens that adjusts the focusing position of the optical system and outputs a first signal; and a second imaging region that images the subject through the lens and outputs a second signal. An imaging device having two imaging areas, a setting unit for setting imaging conditions of the first imaging area to imaging conditions different from the imaging conditions of the second imaging area, and the output from the first imaging area A correction unit that corrects the first signal and corrects the second signal output from the second imaging region for use in interpolation of a pixel that outputs the corrected first signal; and the correction A control unit that controls driving of the lens according to a focus state of the optical system detected by using the first signal corrected by the correction unit and the second signal corrected by the correction unit. apparatus.
(25) In the imaging device as in (24), the pixel that outputs the first signal in the first imaging region photoelectrically converts the first color light out of the light from the subject, and outputs the first signal. The second imaging region photoelectrically converts light of a second color different from the first color out of light from the subject and outputs the second signal.
(26) Image the subject through the lens movable in the optical axis direction of the optical system and output the first signal. An imaging condition different from the imaging condition of the second imaging area of the imaging element that outputs the second signal is set, and the second signal output from the second imaging area is output from the first imaging area. And a control unit that controls the movement of the lens using a correction unit that performs correction for use in interpolation of the first signal, and a signal obtained by interpolating the first signal by the second signal corrected by the correction unit. A focus detection device.
(27) The imaging condition of the first imaging region of the imaging device that images the subject through a lens that adjusts the focus position of the optical system and outputs the first signal is the same as that obtained by imaging the subject through the lens. The imaging condition that is different from the imaging condition of the second imaging area of the imaging element that outputs two signals is output from the first imaging area with respect to the second signal output from the second imaging area. A correction unit that performs correction for use in interpolation of the first signal and a second signal output from the second imaging region are used for interpolation of the first signal output from the first imaging region. And a driving unit for controlling the driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with the second signal corrected by the correcting unit. And a control unit.
(28) The imaging condition of the first imaging region of the imaging device that images the subject through a lens movable in the optical axis direction of the optical system and outputs the first signal, and the subject is imaged through the lens. An imaging condition different from the imaging condition of the second imaging area of the imaging element that outputs the second signal is set, and the second signal output from the second imaging area is output from the first imaging area. A correction unit that performs correction to reduce noise included in the first signal, and a signal in which noise included in the first signal is reduced by the second signal corrected by the correction unit. And a control unit that controls movement of the lens.
(29) The imaging condition of the first imaging area of the imaging device that images the subject through a lens that adjusts the focusing position of the optical system and outputs the first signal is set as the imaging condition of the subject through the lens. The imaging condition that is different from the imaging condition of the second imaging area of the imaging element that outputs two signals is output from the first imaging area with respect to the second signal output from the second imaging area. In-focus state of the optical system detected using a correction unit that performs correction to reduce noise included in the first signal, and the first signal and the second signal corrected by the correction unit And a control unit for controlling the driving of the lens.
(30) A first region in which light incident through the optical system is imaged under a first imaging condition to generate first signal data, and the incident light is subjected to a second imaging condition different from the first imaging condition. A second region that images and generates second signal data; a correction unit that corrects the first signal data generated by the imaging unit based on the second imaging condition; A generating unit that generates a signal for driving the optical system based on the first signal data corrected based on the correcting unit and the second signal data generated by the imaging unit; Imaging device.
(31) Imaging light incident on the second area of the imaging unit using first signal data generated by imaging light incident on the first area of the imaging unit via the optical system under the first imaging condition A correction unit that corrects based on a second imaging condition that is different from the first imaging condition, the first signal data corrected by the correction unit, and light incident on the second region. And a generating unit that generates a signal for driving the optical system based on the second signal data.
 また、上述した実施の形態および変形例は、以下のような撮像装置および焦点検出装置も含む。
(1)光学系を介して入射した光を第1撮像条件で撮像して第1信号データを生成する第1領域と、上記入射した光を上記第1撮像条件とは異なる第2撮像条件で撮像して第2信号データを生成する第2領域と、を有する撮像部と、上記撮像部で生成された上記第1信号データを、上記第2撮像条件に基づいて補正する補正部と、上記補正部に基づいて補正された上記第1信号データと、上記撮像部で生成された上記第2信号データとに基づいて、上記光学系を駆動するための信号を生成する生成部と、を備える撮像装置。
(2)(1)のような撮像装置において、上記生成部は、上記光学系を駆動するための信号として上記光学系のフォーカスレンズを駆動するための信号を生成する。
(3)(1)または(2)のような撮像装置において、上記補正部は、上記撮像部で生成された上記第1信号データを、上記第1信号データの値と上記第2信号データの値との差が小さくなるように補正する。
(4)(1)から(3)のような撮像装置において、上記補正部は、上記撮像部で生成された上記第1信号データを、上記第1撮像条件および上記第2撮像条件の相違に基づいて補正する。
(5)(1)から(4)のような撮像装置において、上記補正部は、上記撮像部で生成された上記第2信号データを、上記第1撮像条件に基づいて補正し、上記生成部は、上記補正部で補正された上記第1信号データと、上記補正部で補正された上記第2信号データとに基づいて上記光学系を駆動するための信号を生成する。
(6)(1)から(5)のような撮像装置において、上記補正部は、上記第2信号データの値を、補正後の第2信号データの値と上記補正された第1信号データの値との差が小さくなるように補正し、上記生成部は、上記補正部で補正された第1信号データ、および、上記補正部で補正された第2信号データに基づいて上記光学系を駆動するための信号を生成する。
(7)(1)から(6)のような撮像装置において、上記生成部は、上記撮像部に入射した上記光学系の異なる瞳領域を通過した複数の光による複数の像のずれに基づいて上記光学系を駆動するための信号を生成する。
(8)(1)から(5)のような撮像装置において、上記生成部は、上記撮像部で受光した光による像のコントラストに基づいて上記光学系を駆動するための信号を生成する。
(9)(1)から(8)のような撮像装置において、上記生成部は、上記撮像部の一部の領域について上記光学系を駆動するための信号を生成し、上記第1領域および上記第2領域は、上記一部の領域に含まれている。
(10)(1)から(9)のような撮像装置において、上記補正部は、上記撮像部で上記第1領域に入射した光を第1蓄積時間で撮像することにより生成された上記第1信号データを、上記第2領域に入射した光を撮像する電荷蓄積時間である第2蓄積時間に基づいて補正する。
(11)(10)のような撮像装置において、上記補正部は、上記撮像部で上記第1領域に入射した光を第1蓄積時間で撮像することにより生成された上記第1信号データを、上記撮像部で上記第2領域に入射した光を第2蓄積時間で撮像することにより生成された上記第2信号データとの差が小さくなるように補正する。
(12)(5)から(11)のような撮像装置において、上記補正部は、上記撮像部で上記第1領域に入射した光を第1撮像感度で撮像することにより生成された上記第1信号データを、上記第2領域に入射した光を撮像する撮像感度である第2撮像感度に基づいて補正する。
(13)(12)のような撮像装置において、上記補正部は、上記撮像部で上記第1領域に入射した光を第1撮像感度で撮像することにより生成された上記第1信号データを、上記撮像部で上記第2領域に入射した光を第2撮像感度で撮像することにより生成された上記第2信号データとの差が小さくなるように補正する。
(14)光学系を介して撮像部の第1領域に入射した光を第1撮像条件で撮像することにより生成された第1信号データを、上記撮像部の第2領域に入射した光を撮像する上記第1撮像条件とは異なる第2撮像条件に基づいて補正する補正部と、上記補正部で補正された上記第1信号データと、上記第2領域に入射した光を撮像して生成された第2信号データとに基づいて、上記光学系を駆動するための信号を生成する生成部と、を備える焦点検出装置。
(15)(14)のような焦点検出装置において、上記生成部は、上記光学系を駆動するための信号として上記光学系のフォーカスレンズを駆動するための信号を生成する。
(16)(14)または(15)のような焦点検出装置において、上記補正部は、上記第1信号データを、上記第1信号データの値と上記第2信号データの値との差が小さくなるように補正する。
(17)(14)から(16)のような焦点検出装置において、上記補正部は、上記第1信号データを、上記第1撮像条件および上記第2撮像条件の相違に基づいて補正する。
(18)(14)から(17)のような焦点検出装置において、上記補正部は、上記第2信号データを、上記第1撮像条件に基づいて補正し、上記生成部は、上記補正部で補正された上記第1信号データと、上記補正部で補正された上記第2信号データとに基づいて上記光学系を駆動するための信号を生成する。
(19)(14)から(18)のような焦点検出装置において、上記補正部は、上記第2信号データの値を、補正後の第2信号データの値と上記補正された第1信号データの値との差が小さくなるように補正し、上記生成部は、上記補正部で補正された第1信号データ、および、上記補正部で補正された第2信号データに基づいて上記光学系を駆動するための信号を生成する。
(20)(14)から(19)のような焦点検出装置において、上記生成部は、上記撮像部に入射した上記光学系の異なる瞳領域を通過した複数の光による複数の像のずれに基づいて上記光学系を駆動するための信号を生成する。
(21)(14)から(19)のような焦点検出装置において、上記生成部は、上記撮像部で受光した光による像のコントラストに基づいて上記光学系を駆動するための信号を生成する。
(22)(14)から(21)のような焦点検出装置において、上記生成部は、上記撮像部の一部の領域について上記光学系を駆動するための信号を生成し、上記第1領域および上記第2領域は、上記一部の領域に含まれている。
(23)(14)から(22)のような焦点検出装置において、上記補正部は、上記第1領域に入射した光を第1蓄積時間で撮像することにより生成された上記第1信号データを、上記第2領域に入射した光を撮像する電荷蓄積時間である第2蓄積時間に基づいて補正する。
(24)(23)のような焦点検出装置において、上記補正部は、上記第1領域に入射した光を第1蓄積時間で撮像することにより生成された上記第1信号データを、上記第2領域に入射した光を第2蓄積時間で撮像することにより生成された上記第2信号データとの差が小さくなるように補正する。
(25)(14)から(24)のような焦点検出装置において、上記補正部は、上記第1領域に入射した光を第1撮像感度で撮像することにより生成された上記第1信号データを、上記第2領域に入射した光を撮像する撮像感度である第2撮像感度に基づいて補正する。
(26)(25)のような焦点検出装置において、上記補正部は、上記第1領域に入射した光を第1撮像感度で撮像することにより生成された上記第1信号データを、上記第2領域に入射した光を第2撮像感度で撮像することにより生成された上記第2信号データとの差が小さくなるように補正する。
(27)(1)から(13)のような撮像装置において、上記補正部は、上記第1領域に入射した光を上記第1撮像条件で撮像して生成された上記第1信号データを補正する第1の補正部と、上記第2領域に入射した光を上記第2撮像条件で撮像して生成された上記第2信号データを補正する第2の補正部とを有し、上記第1の補正部は、上記第1信号データを、上記第2領域の撮像条件に基づいて補正し、上記生成部は、上記第1の補正部で補正された上記第1信号データと、上記第2信号データとに基づいて上記光学系を駆動するための信号を生成する。
(28)(27)のような撮像装置において、上記第1の補正部は、上記第1信号データを、上記第1信号データの値と上記第2信号データの値との差が小さくなるように補正する。
(29)(27)または(28)のような撮像装置において、上記第1の補正部は、上記第1信号データを、上記第1撮像条件と上記第2撮像条件との相違に基づいて補正する。
(30)(27)から(29)のような撮像装置において、上記第2の補正部は、上記第2信号データを、上記第1領域の撮像条件に基づいて補正し、上記生成部は、上記第1の補正部で補正された上記第1信号データと、上記第2の補正部で補正された上記第2信号データとに基づいて上記光学系を駆動するための信号を生成する。
(31)(27)から(30)のような撮像装置において、上記第2の補正部は、上記第1信号データにより上記第2信号データを補正し、上記生成部は、上記第1の補正部で補正された上記第1信号データと、上記第2の補正部で補正された上記第2信号データとに基づいて上記光学系を駆動するための信号を生成する。
(32)(27)から(31)のような撮像装置において、上記撮像部は、第1半導体基板に設けられ、上記第1の補正部と上記第2の補正部とは、第2半導体基板に設けられている。
(33)(32)のような撮像装置において、上記第1半導体基板と上記第2半導体基板とは積層されている。
Further, the above-described embodiments and modifications also include the following imaging device and focus detection device.
(1) A first region for imaging light incident through an optical system under a first imaging condition to generate first signal data; and a second imaging condition for the incident light different from the first imaging condition. A second region that images and generates second signal data; a correction unit that corrects the first signal data generated by the imaging unit based on the second imaging condition; A generating unit that generates a signal for driving the optical system based on the first signal data corrected based on the correcting unit and the second signal data generated by the imaging unit; Imaging device.
(2) In the imaging apparatus as in (1), the generation unit generates a signal for driving the focus lens of the optical system as a signal for driving the optical system.
(3) In the imaging device as in (1) or (2), the correction unit uses the value of the first signal data and the value of the second signal data as the first signal data generated by the imaging unit. Correct so that the difference from the value is small.
(4) In the imaging device as in (1) to (3), the correction unit converts the first signal data generated by the imaging unit into a difference between the first imaging condition and the second imaging condition. Correct based on.
(5) In the imaging device according to (1) to (4), the correction unit corrects the second signal data generated by the imaging unit based on the first imaging condition, and the generation unit Generates a signal for driving the optical system based on the first signal data corrected by the correction unit and the second signal data corrected by the correction unit.
(6) In the imaging apparatus as described in (1) to (5), the correction unit determines the value of the second signal data, the value of the corrected second signal data, and the value of the corrected first signal data. The generation unit drives the optical system based on the first signal data corrected by the correction unit and the second signal data corrected by the correction unit. To generate a signal for
(7) In the imaging device as described in (1) to (6), the generation unit is based on a shift of a plurality of images due to a plurality of lights that have passed through different pupil regions of the optical system incident on the imaging unit. A signal for driving the optical system is generated.
(8) In the imaging apparatus as described in (1) to (5), the generation unit generates a signal for driving the optical system based on a contrast of an image by light received by the imaging unit.
(9) In the imaging device as in (1) to (8), the generation unit generates a signal for driving the optical system for a partial region of the imaging unit, and the first region and the The second area is included in the partial area.
(10) In the imaging apparatus as described in (1) to (9), the correction unit generates the first light generated by imaging the light incident on the first region by the imaging unit in a first accumulation time. The signal data is corrected based on a second accumulation time that is a charge accumulation time for imaging the light incident on the second region.
(11) In the imaging apparatus as in (10), the correction unit is configured to capture the first signal data generated by imaging the light incident on the first region with the imaging unit in a first accumulation time. Correction is performed such that the difference from the second signal data generated by imaging the light incident on the second region by the imaging unit in the second accumulation time becomes small.
(12) In the imaging device as in (5) to (11), the correction unit generates the first image generated by imaging the light incident on the first region with the first imaging sensitivity by the imaging unit. The signal data is corrected based on a second imaging sensitivity that is an imaging sensitivity for imaging the light incident on the second region.
(13) In the imaging apparatus as in (12), the correction unit is configured to capture the first signal data generated by imaging the light incident on the first region with the first imaging sensitivity by the imaging unit. Correction is performed so that a difference from the second signal data generated by imaging the light incident on the second region with the second imaging sensitivity is reduced by the imaging unit.
(14) Imaging light incident on the second region of the imaging unit using first signal data generated by imaging light incident on the first region of the imaging unit via the optical system under the first imaging condition A correction unit that corrects based on a second imaging condition that is different from the first imaging condition, the first signal data corrected by the correction unit, and light incident on the second region. And a generating unit that generates a signal for driving the optical system based on the second signal data.
(15) In the focus detection device as in (14), the generation unit generates a signal for driving the focus lens of the optical system as a signal for driving the optical system.
(16) In the focus detection device as in (14) or (15), the correction unit may reduce the difference between the value of the first signal data and the value of the second signal data for the first signal data. Correct so that
(17) In the focus detection device as in (14) to (16), the correction unit corrects the first signal data based on a difference between the first imaging condition and the second imaging condition.
(18) In the focus detection device as in (14) to (17), the correction unit corrects the second signal data based on the first imaging condition, and the generation unit is the correction unit. Based on the corrected first signal data and the second signal data corrected by the correction unit, a signal for driving the optical system is generated.
(19) In the focus detection device as described in (14) to (18), the correction unit sets the value of the second signal data to the value of the corrected second signal data and the corrected first signal data. The generation unit corrects the optical system based on the first signal data corrected by the correction unit and the second signal data corrected by the correction unit. A signal for driving is generated.
(20) In the focus detection device as described in (14) to (19), the generation unit is based on a shift of a plurality of images due to a plurality of lights that have passed through different pupil regions of the optical system incident on the imaging unit. Then, a signal for driving the optical system is generated.
(21) In the focus detection device as in (14) to (19), the generation unit generates a signal for driving the optical system based on a contrast of an image by light received by the imaging unit.
(22) In the focus detection device as described in (14) to (21), the generation unit generates a signal for driving the optical system for a partial region of the imaging unit, and the first region and The second area is included in the partial area.
(23) In the focus detection device as described in (14) to (22), the correction unit may use the first signal data generated by imaging the light incident on the first region with a first accumulation time. The correction is made based on the second accumulation time which is the charge accumulation time for imaging the light incident on the second region.
(24) In the focus detection apparatus as described in (23), the correction unit uses the first signal data generated by imaging the light incident on the first region in a first accumulation time as the second signal data. Correction is made so that the difference from the second signal data generated by imaging the light incident on the region in the second accumulation time becomes small.
(25) In the focus detection device as described in (14) to (24), the correction unit uses the first signal data generated by imaging the light incident on the first region with a first imaging sensitivity. The correction is made based on the second imaging sensitivity, which is the imaging sensitivity for imaging the light incident on the second region.
(26) In the focus detection device as described in (25), the correction unit converts the first signal data generated by imaging the light incident on the first region with the first imaging sensitivity to the second signal data. Correction is performed so that the difference from the second signal data generated by imaging the light incident on the region with the second imaging sensitivity is reduced.
(27) In the imaging device as in (1) to (13), the correction unit corrects the first signal data generated by imaging light incident on the first region under the first imaging condition. And a second correction unit that corrects the second signal data generated by imaging the light incident on the second region under the second imaging condition. The correction unit corrects the first signal data based on an imaging condition of the second region, and the generation unit corrects the first signal data corrected by the first correction unit and the second signal data. A signal for driving the optical system is generated based on the signal data.
(28) In the imaging apparatus as in (27), the first correction unit may reduce the difference between the value of the first signal data and the value of the second signal data in the first signal data. To correct.
(29) In the imaging device as in (27) or (28), the first correction unit corrects the first signal data based on a difference between the first imaging condition and the second imaging condition. To do.
(30) In the imaging apparatus as in (27) to (29), the second correction unit corrects the second signal data based on the imaging condition of the first region, and the generation unit includes: A signal for driving the optical system is generated based on the first signal data corrected by the first correction unit and the second signal data corrected by the second correction unit.
(31) In the imaging device as described in (27) to (30), the second correction unit corrects the second signal data with the first signal data, and the generation unit performs the first correction. A signal for driving the optical system is generated based on the first signal data corrected by the second correction unit and the second signal data corrected by the second correction unit.
(32) In the imaging device as described in (27) to (31), the imaging unit is provided on a first semiconductor substrate, and the first correction unit and the second correction unit are a second semiconductor substrate. Is provided.
(33) In the imaging device as in (32), the first semiconductor substrate and the second semiconductor substrate are stacked.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2015年第194614号(2015年9月30日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2015-194614 (filed on Sep. 30, 2015)
1,1C…カメラ
1B…撮像システム
32…撮像部
32a、100…撮像素子
33…画像処理部
33a,321…入力部
33b,322…補正部
33c,323…生成部
34…制御部
34a…物体検出部
34b…設定部
34c…撮像制御部
34d…AF演算部
35…表示部
90…所定範囲
1001…撮像装置
1002…表示装置
P…注目画素
DESCRIPTION OF SYMBOLS 1,1C ... Camera 1B ... Imaging system 32 ... Imaging part 32a, 100 ... Imaging element 33 ... Image processing part 33a, 321 ... Input part 33b, 322 ... Correction part 33c, 323 ... Generation part 34 ... Control part 34a ... Object detection Unit 34b ... Setting unit 34c ... Imaging control unit 34d ... AF calculation unit 35 ... Display unit 90 ... Predetermined range 1001 ... Imaging device 1002 ... Display device P ... Pixel of interest

Claims (31)

  1.  光学系の光軸方向に移動可能なレンズを介して、被写体を撮像して第1信号を出力する第1撮像領域と、被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて、前記レンズの移動を制御する制御部と、
    を備える撮像装置。
    A first imaging region for imaging a subject and outputting a first signal via a lens movable in the optical axis direction of the optical system, and a second imaging region for imaging the subject and outputting a second signal An image sensor;
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, with respect to the second signal output from the second imaging region;
    A control unit for controlling movement of the lens using a signal obtained by interpolating the first signal with the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  2.  光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, with respect to the second signal output from the second imaging region;
    A control unit for controlling driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  3.  前記補正部で補正された前記第2信号により前記第1信号を補間した信号により、前記第1撮像領域で撮像された被写体の像のコントラストに基づいて前記光学系の合焦状態が検出される請求項2に記載の撮像装置。 Based on a signal obtained by interpolating the first signal with the second signal corrected by the correction unit, the in-focus state of the optical system is detected based on the contrast of the image of the subject imaged in the first imaging area. The imaging device according to claim 2.
  4.  前記補正部は、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正として、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の撮像条件または前記第2撮像領域の撮像条件に基づいて補正を行う請求項2または3記載の撮像装置。 The correction unit is configured to correct the first signal output from the first imaging region with respect to the second signal output from the second imaging region as a correction to be used for interpolation of the first signal output from the first imaging region. The imaging apparatus according to claim 2 or 3, wherein the correction is performed based on an imaging condition or an imaging condition of the second imaging area.
  5.  前記補正部は、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正として、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件とに基づいて補正を行う請求項2または3記載の撮像装置。 The correction unit is configured to correct the first signal output from the first imaging region with respect to the second signal output from the second imaging region as a correction to be used for interpolation of the first signal output from the first imaging region. The imaging apparatus according to claim 2 or 3, wherein correction is performed based on an imaging condition and an imaging condition of the second imaging area.
  6.  前記補正部は、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正として、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件との相違に基づいて補正を行う請求項5記載の撮像装置。 The correction unit is configured to correct the first signal output from the first imaging region with respect to the second signal output from the second imaging region as a correction to be used for interpolation of the first signal output from the first imaging region. The imaging apparatus according to claim 5, wherein correction is performed based on a difference between an imaging condition and an imaging condition of the second imaging region.
  7.  前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件とは、露出条件であり、
    前記補正部は、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の露出条件と前記第2撮像領域の露出条件との相違に基づいて補正を行う請求項6記載の撮像装置。
    The imaging conditions of the first imaging area and the imaging conditions of the second imaging area are exposure conditions,
    The correction unit corrects the second signal output from the second imaging region based on a difference between an exposure condition of the first imaging region and an exposure condition of the second imaging region. 6. The imaging device according to 6.
  8.  前記第1撮像領域の露出条件と前記第2撮像領域の露出条件とは、撮像領域の受光部の電荷蓄積時間であり、
    前記補正部は、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の電荷蓄積時間と前記第2撮像領域の電荷蓄積時間との比に基づいて補正を行う請求項7記載の撮像装置。
    The exposure condition of the first imaging region and the exposure condition of the second imaging region are the charge accumulation time of the light receiving unit in the imaging region,
    The correction unit corrects the second signal output from the second imaging area based on a ratio between a charge accumulation time of the first imaging area and a charge accumulation time of the second imaging area. The imaging device according to claim 7.
  9.  前記第1撮像領域の露出条件と前記第2撮像領域の露出条件とは、撮像領域の撮像感度であり、
    前記補正部は、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の撮像感度と前記第2撮像領域の撮像感度との対数比に基づいて補正を行う請求項7記載の撮像装置。
    The exposure condition of the first imaging area and the exposure condition of the second imaging area are imaging sensitivity of the imaging area,
    The correction unit corrects the second signal output from the second imaging region based on a logarithmic ratio between the imaging sensitivity of the first imaging region and the imaging sensitivity of the second imaging region. Item 8. The imaging device according to Item 7.
  10.  前記補正部は、前記第1撮像領域から出力された前記第1信号を補正し、前記第2撮像領域から出力された前記第2信号に対して、前記補正された第1信号の補間に用いるための補正を行い、
    前記制御部は、前記補正部で補正された前記第2信号により前記補正された第1信号を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する
    請求項2または3記載の撮像装置。
    The correction unit corrects the first signal output from the first imaging area, and uses the first signal for interpolation of the corrected first signal with respect to the second signal output from the second imaging area. Make corrections for
    The said control part controls the drive of the said lens by the focusing state of the said optical system detected using the signal which interpolated the said 1st signal correct | amended by the said 2nd signal correct | amended by the said correction | amendment part. Item 4. The imaging device according to Item 2 or 3.
  11.  光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域の前記第1信号を出力する画素の補間に用いるための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号を出力する画素を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that performs correction for use in interpolation of a pixel that outputs the first signal in the first imaging region, with respect to the second signal output from the second imaging region;
    A control unit that controls driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating a pixel that outputs the first signal based on the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  12.  前記第1撮像領域の前記第1信号を出力する画素は、被写体からの光のうち第1の色の光を光電変換して前記第1信号を出力し、
    前記第2撮像領域は、被写体からの光のうち前記第1の色と異なる第2の色の光を光電変換して前記第2信号を出力する請求項11記載の撮像装置。
    The pixel that outputs the first signal in the first imaging region photoelectrically converts light of a first color out of light from a subject and outputs the first signal.
    The imaging device according to claim 11, wherein the second imaging region photoelectrically converts light of a second color different from the first color from light from a subject and outputs the second signal.
  13.  光学系の光軸方向に移動可能なレンズを介して、被写体を撮像して第1信号を出力する第1撮像領域と、被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号に含まれるノイズを低減した信号を用いて、前記レンズの移動を制御する制御部と、
    を備える撮像装置。
    A first imaging region for imaging a subject and outputting a first signal via a lens movable in the optical axis direction of the optical system, and a second imaging region for imaging the subject and outputting a second signal An image sensor;
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that performs correction for reducing noise included in the first signal output from the first imaging region, with respect to the second signal output from the second imaging region;
    A control unit for controlling movement of the lens using a signal obtained by reducing noise included in the first signal by the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  14.  光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
    前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号に含まれるノイズを低減した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that performs correction for reducing noise included in the first signal output from the first imaging region, with respect to the second signal output from the second imaging region;
    A control unit that controls driving of the lens according to a focus state of the optical system detected using a signal obtained by reducing noise included in the first signal by the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  15. 光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第1撮像領域の撮像条件または前記第2撮像領域の撮像条件に基づいて前記第2撮像領域から出力された前記第2信号を補正する補正部と、
     前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that corrects the second signal output from the second imaging area based on the imaging condition of the first imaging area or the imaging condition of the second imaging area;
    A control unit that controls driving of the lens according to a focus state of the optical system detected using the first signal and the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  16. 光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件とに基づいて前記第2撮像領域から出力された前記第2信号を補正する補正部と、
     前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    A correction unit that corrects the second signal output from the second imaging area based on the imaging condition of the first imaging area and the imaging condition of the second imaging area;
    A control unit that controls driving of the lens according to a focus state of the optical system detected using the first signal and the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  17.  前記補正部は、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正として、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件との相違に基づいて補正を行う請求項16記載の撮像装置。 The correction unit is configured to correct the first signal output from the first imaging region with respect to the second signal output from the second imaging region as a correction to be used for interpolation of the first signal output from the first imaging region. The imaging apparatus according to claim 16, wherein correction is performed based on a difference between an imaging condition and an imaging condition of the second imaging area.
  18.  前記第1撮像領域の撮像条件と前記第2撮像領域の撮像条件とは、露出条件であり、
    前記補正部は、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の露出条件と前記第2撮像領域の露出条件との相違に基づいて補正を行う請求項17記載の撮像装置。
    The imaging conditions of the first imaging area and the imaging conditions of the second imaging area are exposure conditions,
    The correction unit corrects the second signal output from the second imaging region based on a difference between an exposure condition of the first imaging region and an exposure condition of the second imaging region. 17. The imaging device according to 17.
  19.  前記第1撮像領域の露出条件と前記第2撮像領域の露出条件とは、撮像領域の受光部の電荷蓄積時間であり、
    前記補正部は、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の電荷蓄積時間と前記第2撮像領域の電荷蓄積時間との比に基づいて補正を行う請求項18記載の撮像装置。
    The exposure condition of the first imaging region and the exposure condition of the second imaging region are the charge accumulation time of the light receiving unit in the imaging region,
    The correction unit corrects the second signal output from the second imaging area based on a ratio between a charge accumulation time of the first imaging area and a charge accumulation time of the second imaging area. The imaging device according to claim 18.
  20.  前記第1撮像領域の露出条件と前記第2撮像領域の露出条件とは、撮像領域の撮像感度であり、
    前記補正部は、前記第2撮像領域から出力された前記第2信号に対して、前記第1撮像領域の撮像感度と前記第2撮像領域の撮像感度との対数比に基づいて補正を行う請求項18記載の撮像装置。
    The exposure condition of the first imaging area and the exposure condition of the second imaging area are imaging sensitivity of the imaging area,
    The correction unit corrects the second signal output from the second imaging region based on a logarithmic ratio between the imaging sensitivity of the first imaging region and the imaging sensitivity of the second imaging region. Item 19. The imaging device according to Item 18.
  21.  前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された、前記撮像素子に入射した前記光学系の異なる部分を通過した複数の光による複数の像のずれに基づいて前記光学系の合焦状態が検出される
    請求項16から20のいずれか一項に記載の撮像装置。
    Based on displacement of a plurality of images due to a plurality of lights detected using the first signal and the second signal corrected by the correction unit and having passed through different portions of the optical system incident on the image sensor. The imaging device according to any one of claims 16 to 20, wherein an in-focus state of the optical system is detected.
  22.  前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された、前記撮像素子で撮像された被写体の像のコントラストに基づいて前記光学系の合焦状態が検出される
    請求項16から20のいずれか一項に記載の撮像装置。
    The in-focus state of the optical system is detected based on the contrast of the image of the subject imaged by the imaging element detected using the first signal and the second signal corrected by the correction unit. The imaging device according to any one of claims 16 to 20.
  23. 光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第1撮像領域の撮像条件に基づいて前記第1撮像領域から出力された前記第1信号を補正し、前記第2撮像領域の撮像条件の設定値に基づいて前記第2撮像領域から出力された前記第2信号を補正する補正部と、
     前記補正部で補正された前記第1信号と前記補正部で補正された前記第2信号により補正された前記第1信号を出力する画素を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    The first signal output from the first imaging area is corrected based on the imaging condition of the first imaging area, and is output from the second imaging area based on the setting value of the imaging condition of the second imaging area. A correction unit for correcting the second signal;
    A combination of the optical system detected using a signal obtained by interpolating pixels that output the first signal corrected by the first signal corrected by the correction unit and the second signal corrected by the correction unit. A control unit for controlling the driving of the lens according to a focus state;
    An imaging apparatus comprising:
  24. 光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する第1撮像領域と、前記レンズを介して被写体を撮像して第2信号を出力する第2撮像領域とを有する撮像素子と、
     前記第1撮像領域の撮像条件を、前記第2撮像領域の撮像条件とは異なる撮像条件に設定する設定部と、
     前記第1撮像領域から出力された前記第1信号を補正し、前記第2撮像領域から出力された前記第2信号に対して、補正された前記第1信号を出力する画素の補間に用いるための補正を行う補正部と、
     前記補正部で補正された前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える撮像装置。
    A first imaging region that images a subject through a lens that adjusts the focus position of the optical system and outputs a first signal, and a second imaging region that images a subject through the lens and outputs a second signal An image sensor comprising:
    A setting unit for setting the imaging condition of the first imaging area to an imaging condition different from the imaging condition of the second imaging area;
    In order to correct the first signal output from the first imaging region and use it for interpolation of a pixel that outputs the corrected first signal with respect to the second signal output from the second imaging region A correction unit for correcting
    A control unit for controlling driving of the lens according to a focus state of the optical system detected using the first signal corrected by the correction unit and the second signal corrected by the correction unit;
    An imaging apparatus comprising:
  25.  前記第1撮像領域の前記第1信号を出力する画素は、被写体からの光のうち第1の色の光を光電変換して前記第1信号を出力し、
    前記第2撮像領域は、被写体からの光のうち前記第1の色と異なる第2の色の光を光電変換して前記第2信号を出力する請求項24記載の撮像装置。
    The pixel that outputs the first signal in the first imaging region photoelectrically converts light of a first color out of light from a subject and outputs the first signal.
    25. The imaging apparatus according to claim 24, wherein the second imaging region photoelectrically converts light of a second color different from the first color from light from a subject and outputs the second signal.
  26.  光学系の光軸方向に移動可能なレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて、前記レンズの移動を制御する制御部と、
    を備える焦点検出装置。
    An imaging condition of a first imaging region of an imaging device that images a subject through a lens that can move in the optical axis direction of the optical system and outputs a first signal, and a second signal by imaging the subject through the lens. Is set to an imaging condition different from the imaging condition of the second imaging area of the imaging element, and the second signal output from the second imaging area is output from the first imaging area. A correction unit for performing correction for use in interpolation of one signal;
    A control unit for controlling movement of the lens using a signal obtained by interpolating the first signal with the second signal corrected by the correction unit;
    A focus detection apparatus.
  27.  光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、
     前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号の補間に用いるための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号を補間した信号を用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える焦点検出装置。
    The imaging condition of the first imaging region of the imaging device that images the subject through a lens that adjusts the focus position of the optical system and outputs the first signal, and the second signal by imaging the subject through the lens The first imaging signal output from the first imaging region is set to an imaging condition different from the imaging condition of the second imaging region of the imaging element to be output and the second signal output from the second imaging region is output. A correction unit for performing correction for use in signal interpolation;
    A correction unit that performs correction for use in interpolation of the first signal output from the first imaging region, with respect to the second signal output from the second imaging region;
    A control unit for controlling driving of the lens according to a focus state of the optical system detected using a signal obtained by interpolating the first signal with the second signal corrected by the correction unit;
    A focus detection apparatus.
  28.  光学系の光軸方向に移動可能なレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、
     前記補正部で補正された前記第2信号により前記第1信号に含まれるノイズを低減した信号を用いて、前記レンズの移動を制御する制御部と、
    を備える焦点検出装置。
    An imaging condition of a first imaging region of an imaging device that images a subject through a lens that can move in the optical axis direction of the optical system and outputs a first signal, and a second signal by imaging the subject through the lens. Is set to an imaging condition different from the imaging condition of the second imaging area of the imaging element, and the second signal output from the second imaging area is output from the first imaging area. A correction unit that performs correction to reduce noise included in one signal;
    A control unit for controlling movement of the lens using a signal obtained by reducing noise included in the first signal by the second signal corrected by the correction unit;
    A focus detection apparatus.
  29.  光学系の合焦位置を調整するレンズを介して被写体を撮像して第1信号を出力する撮像素子の第1撮像領域の撮像条件を、前記レンズを介して被写体を撮像して第2信号を出力する前記撮像素子の第2撮像領域の撮像条件とは異なる撮像条件に設定され、前記第2撮像領域から出力された第2信号に対して、前記第1撮像領域から出力された前記第1信号に含まれるノイズを低減するための補正を行う補正部と、
     前記第1信号と前記補正部で補正された前記第2信号とを用いて検出された前記光学系の合焦状態により前記レンズの駆動を制御する制御部と、
    を備える焦点検出装置。
    The imaging condition of the first imaging region of the imaging device that images the subject through a lens that adjusts the focus position of the optical system and outputs the first signal, and the second signal by imaging the subject through the lens The first imaging signal output from the first imaging region is set to an imaging condition different from the imaging condition of the second imaging region of the imaging element to be output and the second signal output from the second imaging region is output. A correction unit that performs correction to reduce noise included in the signal;
    A control unit that controls driving of the lens according to a focus state of the optical system detected using the first signal and the second signal corrected by the correction unit;
    A focus detection apparatus.
  30.  光学系を介して入射した光を第1撮像条件で撮像して第1信号データを生成する第1領域と、前記入射した光を前記第1撮像条件とは異なる第2撮像条件で撮像して第2信号データを生成する第2領域と、を有する撮像部と、
     前記撮像部で生成された前記第1信号データを、前記第2撮像条件に基づいて補正する補正部と、
     前記補正部に基づいて補正された前記第1信号データと、前記撮像部で生成された前記第2信号データとに基づいて、前記光学系を駆動するための信号を生成する生成部と、を備える撮像装置。
    A first region for imaging light incident through an optical system under a first imaging condition to generate first signal data; and imaging the incident light under a second imaging condition different from the first imaging condition. An imaging unit having a second region for generating second signal data;
    A correction unit that corrects the first signal data generated by the imaging unit based on the second imaging condition;
    A generation unit that generates a signal for driving the optical system based on the first signal data corrected based on the correction unit and the second signal data generated by the imaging unit; An imaging apparatus provided.
  31.  光学系を介して撮像部の第1領域に入射した光を第1撮像条件で撮像することにより生成された第1信号データを、前記撮像部の第2領域に入射した光を撮像する前記第1撮像条件とは異なる第2撮像条件に基づいて補正する補正部と、
     前記補正部で補正された前記第1信号データと、前記第2領域に入射した光を撮像して生成された第2信号データとに基づいて、前記光学系を駆動するための信号を生成する生成部と、を備える焦点検出装置。
    The first signal data generated by imaging the light incident on the first region of the imaging unit via the optical system under the first imaging condition is used to image the light incident on the second region of the imaging unit. A correction unit configured to correct based on a second imaging condition different from the first imaging condition;
    A signal for driving the optical system is generated based on the first signal data corrected by the correction unit and second signal data generated by imaging light incident on the second region. A focus detection device.
PCT/JP2016/078255 2015-09-30 2016-09-26 Imaging device and focus detection device WO2017057267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543251A JPWO2017057267A1 (en) 2015-09-30 2016-09-26 Imaging device and focus detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194614 2015-09-30
JP2015-194614 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057267A1 true WO2017057267A1 (en) 2017-04-06

Family

ID=58427750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078255 WO2017057267A1 (en) 2015-09-30 2016-09-26 Imaging device and focus detection device

Country Status (2)

Country Link
JP (1) JPWO2017057267A1 (en)
WO (1) WO2017057267A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288685A (en) * 1995-03-27 1995-10-31 Olympus Optical Co Ltd Image processing unit
JP2008292541A (en) * 2007-05-22 2008-12-04 Nec Electronics Corp Automatic focus adjustment device and automatic focus adjustment method
JP2009008928A (en) * 2007-06-28 2009-01-15 Olympus Corp Imaging device and image signal processing program
JP2015092660A (en) * 2013-10-01 2015-05-14 株式会社ニコン Imaging apparatus, imaging apparatus control method, electronic apparatus, electronic apparatus control method, and control program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288685A (en) * 1995-03-27 1995-10-31 Olympus Optical Co Ltd Image processing unit
JP2008292541A (en) * 2007-05-22 2008-12-04 Nec Electronics Corp Automatic focus adjustment device and automatic focus adjustment method
JP2009008928A (en) * 2007-06-28 2009-01-15 Olympus Corp Imaging device and image signal processing program
JP2015092660A (en) * 2013-10-01 2015-05-14 株式会社ニコン Imaging apparatus, imaging apparatus control method, electronic apparatus, electronic apparatus control method, and control program

Also Published As

Publication number Publication date
JPWO2017057267A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP7052850B2 (en) Imaging device
WO2017057279A1 (en) Imaging device, image processing device and display device
WO2017170723A1 (en) Image pickup device, image processing device, and electronic apparatus
WO2017170716A1 (en) Image pickup device, image processing device, and electronic apparatus
WO2017170717A1 (en) Image pickup device, focusing device, and electronic apparatus
JP2018160830A (en) Imaging apparatus
WO2017170726A1 (en) Image pickup device and electronic apparatus
JP6589988B2 (en) Imaging device
JP6604385B2 (en) Imaging device
JP6589989B2 (en) Imaging device
WO2017057267A1 (en) Imaging device and focus detection device
JP6521085B2 (en) Imaging device and control device
WO2017057280A1 (en) Imaging device and subject detection device
WO2017170719A1 (en) Image pickup device and electronic apparatus
WO2017170718A1 (en) Image pickup device, subject detection device, and electronic apparatus
WO2017170725A1 (en) Imaging device, imaging subject detection apparatus, and electronic device
WO2017170724A1 (en) Image pickup device, lens adjusting device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851438

Country of ref document: EP

Kind code of ref document: A1