WO2017049310A1 - Micro-moment analysis - Google Patents

Micro-moment analysis Download PDF

Info

Publication number
WO2017049310A1
WO2017049310A1 PCT/US2016/052536 US2016052536W WO2017049310A1 WO 2017049310 A1 WO2017049310 A1 WO 2017049310A1 US 2016052536 W US2016052536 W US 2016052536W WO 2017049310 A1 WO2017049310 A1 WO 2017049310A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
customer
value
click
index
Prior art date
Application number
PCT/US2016/052536
Other languages
French (fr)
Inventor
Samih FADLI
Original Assignee
Mms Usa Holdings Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mms Usa Holdings Inc. filed Critical Mms Usa Holdings Inc.
Priority to CN201680066970.9A priority Critical patent/CN108369433A/en
Priority to EP16847562.2A priority patent/EP3350664A4/en
Publication of WO2017049310A1 publication Critical patent/WO2017049310A1/en
Priority to HK19100894.6A priority patent/HK1258539A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • G06Q30/0246Traffic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4014Identity check for transactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0613Third-party assisted

Definitions

  • the present disclosure relates to the analysis of data using machine learning and other artificial intelligence algorithms and delivering that data to end users who are identified by the algorithms.
  • a Machine Intelligence Platform provides a way forward from data paralysis and takes full advantage of technology breakthroughs in machine learning algorithms, deep learning networks and Artificial Intelligence (Al).
  • the Machine Intelligence Platform may shift from data-driven marketing to intelligent marketing, where everyday decisions are informed by potentially billions of data points, rather than guesses and assumptions.
  • the platform may ingest, analyze and compare the data.
  • Machine- learning algorithms can provide statistical evidence that something might be wrong or right based on how many past occurrences of similar patterns exist.
  • micro-moments strategy to data analysis may provide further insight.
  • customers consume content interact with each other and engage in multiple, simultaneous conversations, marketers have the challenge of determining the optimal moment to engage.
  • these optimal opportunities known as micro-moments, the buyer may decide to either continue or abandon a relationship with the brand.
  • micro-moments are real-time, intent-driven events that are a critical opportunity for brands to shape customer decisions and preferences.
  • the Machine Intelligence Platform may map the entire customer journey across devices and channels to predict how the consumer wants to interact with the brand and personalize each moment for the consumer. As the volume of data grows, intelligence extracted using a Micro-Moments Value Algorithm can ingest and activate data from multiple sources to provide insights that allow us to tap into micro-moments in the consumer's journey.
  • Real-time cognitive commerce may enable marketers to customize the shopping experience by supporting individually tuned merchandising, product recommendations, personalized search and guided navigation.
  • Machine learning capabilities may support delivery of targeted and dynamic pricing and promotion.
  • Algorithms may learn shopping behavior in real time to update the relevance of the customer experience as it occurs.
  • Machine learning may unlock the power of data and deliver highly customized experiences.
  • the Machine Intelligence Platform may determine the best available assets, the right creative, message, offer, and call-to-action at the right moment using real-time customer insights and customer-level attribution.
  • Data- driven audience segments may be dynamically created and activated across the marketer's Commerce, Media and Customer Engagement channels.
  • a High-Frequency Intelligence Hub may process millions of signals and personalized streams of data to customize and activate targeted communication across channels, letting marketers engage with customers when they are shown to be most receptive to a message. This enables marketers and brands to use Intelligence-as-a-Service to inform Media, Commerce, CRM and Customer Experience simultaneously while providing insight and intelligence.
  • a universal identification graph algorithm may help marketers connect identities across devices and channels to one customer.
  • the universal identification may allow marketers to seamlessly and securely engage customers with relevant brand experience as they move between devices and across all digital touch-points.
  • the disclosure describes a computer-implemented method for determining a micro-moment value.
  • the method may include receiving, via a network, customer data associated with behavior of a plurality of customers.
  • the method may also include determining, via one or more processors, a signal of a click rate through domains based on the customer data.
  • the method may also include determining, via the one or more processors, a radian rate per channel based on the customer data, and determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains.
  • the method may also include determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.
  • the disclosure described a digital marketing platform comprising at least one processor and at least one memory storing computer
  • the method may include receiving, via a network, customer data associated with behavior of a plurality of customers.
  • the method may also include determining, via one or more processors, a signal of a click rate through domains based on the customer data.
  • the method may also include determining, via the one or more processors, a radian rate per channel based on the customer data, and determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains.
  • the method may also include determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.
  • FIG. 1 illustrates a system for linking dynamic information to a digital marketing platform as described herein;
  • FIG. 2 illustrates an embodiment of an artificial neural network model as described herein;
  • FIG. 3 illustrates an example customer journey use case as described herein;
  • Fig. 4 illustrates a graph of example micro-moment values plotted over time
  • FIG. 5 illustrates an exemplary process flow for determining a micro-moment value for use with the system for linking dynamic information to a digital marketing platform as described herein;
  • FIG. 6 illustrates an exemplary computing device used within the system for linking dynamic information to a digital marketing platform and to implement the various process flows or methods described herein;
  • Fig. 7 illustrates an exemplary structure for the system for determining a micro-market value across multiple computer network devices and channels as described herein.
  • Fig. 1 generally illustrates one embodiment of a system 100 for creating and using a digital marketing platform as described herein.
  • the system 100 may include front end components 102 ⁇ e.g., a merchant digital content system 104, customer digital content browser 106, etc.) and backend components 1 10 (e.g., a digital marketing platoform 1 12).
  • the front end components 102 and backend components 1 10 may be in communication with each other via a communication link 1 1 1 (e.g., computer network, internet connection, etc.).
  • the system 100 may include various software or computer-executable instructions and specialized hardware components or modules that employ the software and instructions to provide a digital marketing platform with dynamic data records as described herein.
  • the various modules may be implemented as computer-readable storage memories containing computer-readable instructions ⁇ i.e., software) for execution by a processor of the computer system 100 within a specialized or unique computing device.
  • the modules may perform the various tasks associated with creating and using a digital marketing platform as described herein.
  • the system 100 may also include both hardware and software applications, as well as various data communications channels for communicating data between the various specialized or unique front end 102 and back end 1 10 hardware and software
  • the digital marketing platform 1 12 and other backend components 1 10 may receive and store various types of consumer data gathered from one or more customer digital content browsers 106 via a network 1 1 1 or otherwise.
  • data on groups of consumers or on particular consumers may be received via the merchant digital content system 104 of one or more merchants (only one merchant digital content system shown in Fig. 1 for purposes illustration, but more merchants are contemplated in some embodiments).
  • the digital marketing platform 1 12 may, in some embodiments, analyze the data in ways that are useful to predicting consumer behavior, such as making online purchases, so as to engage with the customer at a time that may influence those purchase or other decisions.
  • the gathered data may be used to determine a micro-moment value using a micro-moment algorithm.
  • the micro- moment value may then be used to predict consumer behavior and to engage the consumer based on that predicted behavior.
  • a merchant may receive the results of data analyses from the digital marketing platform 1 12 in order to aide in engaging customers to the merchant's online marketplace(s).
  • the digital marketing platform 1 12 may include one or more instruction modules including a control module 1 14 that, generally, may include instructions to cause a processor 1 16 of a data processing server 1 18 to functionally communicate with a plurality of other computer-executable steps or modules 1 14A and 1 14B. These modules 1 14, 1 14A-B may include instructions that, upon loading into the server memory 120 and execution by one or more computer processors 1 16, provide the digital marketing platform with a dynamic data record of customer behavior.
  • a first data repository 122 may include digital marketing data profiles 122A that each include various pieces of data to describe a profile of a consumer or customer and potential beneficiary of the digital marketing platform 1 1 2.
  • a second data repository 123 may include a plurality of dynamic data records, for example, a first dynamic data record 123A, a second dynamic data record 123B, etc., corresponding to each digital marketing data profile 122A.
  • the records 123A may each include various pieces of data to describe transactions or other behaviors of a consumer or potential customer benefiting from the digital marketing platform 1 12.
  • the records 123A and or B may include a time, an amount, a location, a purchase category, photo data, a medium, content data, and other data as described herein.
  • the customer digital content browser may include any components that are used by a consumer to complete online transactions, participate in social media, use mobile applications, browse the internet, or otherwise participate in behavior
  • the customer digital content browser 106 may include a terminal 140 that is used by one or more computing devices 138 to gather customer behavioral data.
  • the terminal 140 may include both a memory 142 and processor 144 to execute instructions to send the customer information and other behavioral data to the digital marketing platform 1 12.
  • the computing devices may send data directly to the digital marketing platform without including a terminal.
  • a customer engagement module 124 of the digital marketing platform 1 12 may include various instructions that, upon execution by the processor 1 16, facilitate execution of customer engagement.
  • the module 124 may include instructions that, upon loading into the server memory 120 and execution by one or more computer processors 1 16, allow the digital marketing platform to draw upon data profiles 122A to execute a marketing, promotional communication, offer, or other consumer engagement using, for example, data from the data profile as described herein and also coordinate with the control module 1 14 and a dynamic transaction records module 130 to permit interaction with a dynamic data record 123A.
  • the control module 1 14 may also include instructions to coordinate execution of other instructions to link photos, reviews, social media capabilities, and behavioral data to a data record 123A.
  • a link module 1 14A may include instructions to cause a dynamic records module 130 stored in a memory 132 on a merchant computing device 128 to display a plurality of interfaces ⁇ e.g., 130A-E, 131 A-D) within a display of the user computing device 128.
  • the display may include a browser or other application stored in the memory 132 and executed on a processor 134 of the computing device 128 to display an output of the dynamic data records module 130.
  • the dynamic data records module 130 may include several elements including a dynamic consumer controls module 130A, a reviews module 130B, a loyalty platform module 130C, an a transaction record module 130D, and an alerts module 130E which may include several sub-modules to implement particular functions with a single data record 123A or to collectively display information related to a plurality of data records 123A and 123B, etc.
  • the transaction record module 130D may include several sub-modules including a payment module 131 A, a social media module 131 B, a micro transactions module 131 C, and a transaction gallery module 131 D.
  • any of the interfaces or modules stored in the memory 132 may be used to configure the user computing device 128 to facilitate both creating dynamic transaction report records 123A and completing the actions described herein that may be performed with the records 123A.
  • one or more of the interfaces and modules i.e., 130, 130A, 130B, 130C, 130D, 130E, 131 A, 131 B, 131 C, 131 D
  • dynamic transaction record 123A is described as including various different types of data, those skilled in the art will recognize that the record 123A may include other types of data that could be related to consumer behavior such as physical distance from other transactions, number of transactions in the area, similar product information, discounts or coupon information for items related to the transaction, etc.
  • the system 100 described above with reference to Fig. 1 may be implemented to determine substantially favorable moments in which to effectively engage a customer. These "micro-moments" may be times in which a consumer may be found to be demonstrating its intent clearly based on gathered data.
  • the system 100 may use a wide variety of consumer behavioral data to implement a micro-moment value algorithm (MMVA) to predict the optimal moment to engage a customer with a message or other communication relevant to the customer's micro-moment intent.
  • MMVA micro-moment value algorithm
  • These intentions could be, for example, intention to purchase a product online, book a flight or hotel, make dinner reservations, or any other online activity.
  • the MMVA may use a variety of machine learning algorithms in developing its results. For example, the MMVA may use
  • control module 1 14 may perform calculations related to the MMVA.
  • the MMVA can be expressed mathematically as Equation 1 , below:
  • the MMV notations in Eq. 1 may represent the following as listed in Table 1 , below:
  • the Customer Index may be the number of profiles or personas
  • the Click Index may be a statistical measure of changes of individual Data Points in the click rate
  • the Conversion Index may be a statistical measure of changes of individual Data Points in the conversion rate.
  • the Channel or devices may be different vectors for customer interfacing; for example, mobile phones, smart phones, desktop or laptop computers, internet-capable television, etc.
  • the Real-time Customer Journey Value may represent click through Domains; for example, the number of signals gathered from consumer behavior based on clicking behavior while browsing or using a mobile app.
  • Contextual Signals Value may be synaptic signals through a graph of neurons; for example, as attained through an artificial neural network (ANN).
  • the Synaptic Weight may be a number applied for weighting purposes.
  • the Journey in some embodiments, may be expressed in radians and may be the value of the synaptic signals.
  • the micro-moment value (MMV) equation may be broken down into three components: the conversion rate, the signal of the click rate through domains, and the radian rate per channel. In some embodiments, the expression:
  • the artificial neural network model may be represented by the diagram 200 illustrated in Fig. 2.
  • the inputs 202 e.g., x x n
  • Weights 204 e.g., Wij-Wnj
  • the result may be combined into a transfer function 206, the result of which may be a net input 208 (e.g., net j ) fed into an activation function 210.
  • the activation junction 210 may output a threshold 214 (e.g., ⁇ ,) and an activation 212 (e.g., q ).
  • the output of the artificial neural network may, in some embodiments, be represented by a perceptron equation, as shown in Equation 2, below:
  • Eq. 2 Output Wi ⁇ i: c,,—1 otherwise
  • ii/ may be determined from a Hebb Synapse simulated learning equation, an embodiment of which is shown in Equations 3 and 4, below:
  • Fig. 3 illustrates one embodiment of an example customer journey use case 300 that may result in signals used as inputs for the MMVA.
  • the customer journey 302 is represented by an arrow moving and may represent passage of time. Points along the arrow may be single points in time where a customer performs an action 301 , represented by hash marks along the journey arrow, that results in a signal.
  • This particular embodiment includes 14 actions and, therefore, 14 signals, but any number of signals may be gathered and used.
  • Each signal may be interpreted by the digital marketing platform 1 12 as data forming the customer profile.
  • two channels (browser 304 and mobile app 306) are used by the customer, though it should be understood that fewer or more than two channels.
  • the journey 302 includes multiple browser actions 308 conducted by the customer using an internet browser channel, such as on a desktop or laptop computer.
  • each of the browser signals are performed in the same domain.
  • Some types of actions resulting in signals may include visiting social media sites, such as Facebook®.com, clicking on advertisements while on the social media site, viewing a product, adding a product to a shopping cart, and exiting the website.
  • the browser signals 308 may also include a sequence of signals 312.
  • the sequence of signals 312 is four consecutive signals grouped together after a customer has clicked on an advertisement. These signals may be 1 ) redirecting to the advertiser's site, 2) firing a cookie, 3) an impression, and 4) clicking on a promotion.
  • the journey 302 also includes mobile signals 314 taken by a customer on a mobile app 306 accessed on a mobile device, such as a smartphone or tablet.
  • each of the mobile signals 314 is performed in the same domain as one another.
  • Some types of actions resulting in mobile signals 314 may include searching for similar products on a search engine, such as Google, being redirected to the product website from the search engine, landing on the product description page, adding the product to the shopping cart, and checking out to purchase the product.
  • the mobile signals 314 may include a sequence of mobile signals 316 that, in this case, are three consecutive signals grouped together.
  • the result of the browser signals 308 and the mobile signals 314 is a total of fourteen signals on the journey 302. These fourteen signals may be used in as the RCV in the MMV Eq. 1 , as shown in the example below.
  • the MMVA may then be expressed as:
  • Fig. 4 illustrates an example graph 400 of the micro-moment predictions 402 over time, indicated on the horizontal axis as days of the week 401 .
  • the results of the MMVA shown in Fig. 4 are plotted as the micro-moment predictions 402 expressed in the example culminating in Equation 5, above.
  • the graph 400 in Fig. 4 additionally shows the actual customer journey 404 and audience trends 406.
  • One goal of the micro-moments predictions 402 calculated using the MMVA is to replicate the actual customer journey 404. This allows the digital marketing platform 1 12 to most accurately predict the micro-moment for engagement with the customer.
  • these "key" micro-moments may be at the peaks of the MMVA plot. For example, in Fig.
  • the micro-moment predictions 402 may have a first predicted key moment 408 at a peak in the micro-moment predictions plot.
  • the micro-moment predictions plot 402 may have a second predicted key moment 410 at another peak in the micro-moment predictions plot.
  • these peaks may correspond with peaks in the customer journey 404 plot or the audience trends 406 plot.
  • Fig. 5 illustrates an embodiment of a method 500 for predicting a micro- moment using the MMVA through the digital marketing platform 1 12.
  • the method may be performed on a server or other computing device including instructions that, when executed by a processor, perform the action or block described herein.
  • the method may include receiving the real-time consumer journey data via the digital marketing platform 1 12.
  • the method may include receiving contextual signals value data, and at block 506 may include determining a click index value.
  • the method may include determining a customer experience type value.
  • the method may include calculating a signal of click rate through domains using the real-time consumer journey data, the contextual signals value data, the click index value, and the customer experience type value.
  • the method may include receiving radian data through the digital marketing platform 1 12.
  • the method may include receiving channel data.
  • the method may include calculating a radian rate per channel using the radian data and the channel data.
  • the method may include receiving customer index data via the digital marketing platform 1 12.
  • the method may include receiving conversion index data.
  • the method may include calculating a conversion rate using the customer index, the conversion index, and the signal of the click rate through domains.
  • the method may include calculating a micro-moment value using the conversion rate and the radian rate per channel.
  • the method may include engaging a customer based on the calculated micro-moment value.
  • engaging the customer may include, but is not limited to, sending a promotional offer, sending an electronic coupon, or sending a targeted advertisement, etc.
  • the system 100 may include a module to determine a value for each customer. For example, an algorithm may determine whether a customer is going to be profitable or not and for how long. Too, an algorithm may predict the monetary value associated with a customer relationship. Equation 6 illustrates one example of a customer lifetime value (“CLV”) algorithm:
  • the CLV algorithm of Equation 6 may allow observation of various individual-level buying patterns from the past and find the various customer stories in the data set. It may also allow understanding of which patterns correspond with valuable customers and which patterns correspond with customers who are opting out. As new customers join a system implementing the CLV algorithm of Equation 6, the system (e.g., system 100) may match the new customer to patterns that are recognized by the CLV algorithm.
  • the system 100 may also include a module to determine which impressions will best meet the advertising performance metrics.
  • an algorithm may optimize timing for real-time bidding ("RTB") on customer impressions within a website for a merchant.
  • RTB real-time bidding
  • advertising campaign budget constraints may be given as impression delivery goals ⁇ 3 ⁇ 4 .
  • An impression group / ' may be defined as a ⁇ placement, user) tuple, at which level both click-through-rate (“CTR”) prediction /3 ⁇ 4 ⁇ and inventory control represented by Equation 7 may be performed:
  • Equation 8 Equation 8
  • the timing for RTB may also be optimized by the following pseudo code:
  • the system 100 may also include a module to evaluate each customer impression based on its predicted probability to achieve a goal of the advertising campaign.
  • the module may evaluate Equations 10 and 1 1 , below. Eq. 1 1
  • C pan ic a number of impressions won during a panic
  • C exp ioit a number of impressions won during exploitation
  • C e x P i 0 re a number of impressions won during exploration.
  • Costs per thousand may also be analyzed by the following pseudocode:
  • Fig. 7 is a high-level block diagram of the various components of the system 100.
  • Fig. 6 is a high-level block diagram of an example computing environment 600, for example, for linking the digital marketing platform to front end components that may run the customer digital content browser and/or the merchant digital content system.
  • the computing device 601 may include a server (e.g., the data processing server 1 18), a mobile computing device (e.g., computing device 128, a cellular phone, a tablet computer, a Wi-Fi-enabled device or other personal computing device capable of wireless or wired communication), a thin client, or other known type of computing device.
  • a server e.g., the data processing server 1 18
  • a mobile computing device e.g., computing device 128, a cellular phone, a tablet computer, a Wi-Fi-enabled device or other personal computing device capable of wireless or wired communication
  • a thin client or other known type of computing device.
  • other types of computing devices can be used that have different architectures.
  • Processor systems similar or identical to the example systems and methods for linking dynamic information, such as customer data, to a data record may be used to implement and execute the example systems of Fig. 1 .
  • the example system 600 is described below as including a plurality of peripherals, interfaces, chips, memories, etc., one or more of those elements may be omitted from other example processor systems used to implement and execute the example system for linking dynamic information to a digital marketing platform. Also, other components may be added.
  • the computing device 601 includes a processor 602 that is coupled to an interconnection bus.
  • the processor 602 includes a register set or register space 604, which is depicted in Fig. 6 as being entirely on-chip, but which could alternatively be located entirely or partially off-chip and directly coupled to the processor 602 via dedicated electrical connections and/or via the interconnection bus.
  • the processor 602 may be any suitable processor, processing unit or microprocessor.
  • the computing device 601 may be a multi-processor device and, thus, may include one or more additional processors that are identical or similar to the processor 602 and that are communicatively coupled to the
  • the processor 602 of Fig. 6 is coupled to a chipset 606, which includes a memory controller 608 and a peripheral input/output (I/O) controller 610.
  • a chipset typically provides I/O and memory management functions as well as a plurality of general purpose and/or special purpose registers, timers, etc. that are accessible or used by one or more processors coupled to the chipset 606.
  • the memory controller 608 performs functions that enable the processor 602 (or processors if there are multiple processors) to access a system memory 612 and a mass storage memory 614, that may include either or both of an in-memory cache (e.g., a cache within the memory 612) or an on-disk cache (e.g., a cache within the mass storage memory 614).
  • a mass storage memory 614 may include either or both of an in-memory cache (e.g., a cache within the memory 612) or an on-disk cache (e.g., a cache within the mass storage memory 614).
  • the system memory 612 may include any desired type of volatile and/or nonvolatile memory such as, for example, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, read-only memory (ROM), etc.
  • the mass storage memory 614 may include any desired type of mass storage device. For example, if the computing device 601 is used to implement a module 616 (e.g., the various modules link dynamic information, such as photographs, to a payment device transaction record and to create the dynamic transaction record and other modules as herein described).
  • the mass storage memory 614 may include a hard disk drive, an optical drive, a tape storage device, a solid-state memory (e.g., a flash memory, a RAM memory, etc.), a magnetic memory (e.g., a hard drive), or any other memory suitable for mass storage.
  • a hard disk drive an optical drive
  • a tape storage device e.g., a tape storage device
  • solid-state memory e.g., a flash memory, a RAM memory, etc.
  • a magnetic memory e.g., a hard drive
  • the terms module, block, function, operation, procedure, routine, step, and method refer to tangible computer program logic or tangible computer executable instructions that provide the specified functionality to the computing device 601 and the system 100.
  • a module, block, function, operation, procedure, routine, step, and method can be implemented in hardware, firmware, and/or software.
  • program modules and routines are stored in mass storage memory 614, loaded into system memory 612, and executed by a processor 602 or can be provided from computer program products that are stored in tangible computer-readable storage mediums (e.g. RAM, hard disk, optical/magnetic media, etc.).
  • the peripheral I/O controller 610 performs functions that enable the processor 602 to communicate with a peripheral input/output (I/O) device 624, a network interface 626, a local network transceiver 628, (via the network interface 626) via a peripheral I/O bus.
  • I/O peripheral input/output
  • the I/O device 624 may be any desired type of I/O device such as, for example, a keyboard, a display (e.g., a liquid crystal display (LCD), a cathode ray tube (CRT) display, etc.), a navigation device (e.g., a mouse, a trackball, a capacitive touch pad, a joystick, etc.), etc.
  • a keyboard e.g., a keyboard
  • a display e.g., a liquid crystal display (LCD), a cathode ray tube (CRT) display, etc.
  • a navigation device e.g., a mouse, a trackball, a capacitive touch pad, a joystick, etc.
  • the I/O device 624 may be used with the module 616, etc., to receive data from the transceiver 628, send the data to the backend components of the system 100, and perform any operations related to the methods as described herein.
  • the local network transceiver 628 may include support for a Wi-Fi network, Bluetooth, Infrared, cellular, or other wireless data transmission protocols.
  • one element may simultaneously support each of the various wireless protocols employed by the computing device 601 .
  • a software-defined radio may be able to support multiple protocols via downloadable instructions.
  • the computing device 601 may be able to periodically poll for visible wireless network transmitters (both cellular and local network) on a periodic basis. Such polling may be possible even while normal wireless traffic is being supported on the computing device 601 .
  • the network interface 626 may be, for example, an Ethernet device, an
  • ATM asynchronous transfer mode
  • 802.1 1 wireless interface device a DSL modem, a cable modem, a cellular modem, etc.
  • DSL modem asynchronous transfer mode (ATM) device
  • 802.1 1 wireless interface device a DSL modem
  • cable modem a cable modem
  • cellular modem a cellular modem
  • the computing environment 600 may also implement the module 616 on a remote computing device 630.
  • the remote computing device 630 may communicate with the computing device 601 over an Ethernet link 632.
  • the module 616 may be retrieved by the computing device 601 from a cloud computing server 634 via the Internet 636. When using the cloud computing server 634, the retrieved module 616 may be
  • the module 616 may be a collection of various software platforms including artificial intelligence software and document creation software or may also be a Java® applet executing within a Java® Virtual Machine (JVM) environment resident in the computing device 601 or the remote computing device 630.
  • the modeling module 620 and the execution module 622 may also be "plug-ins" adapted to execute in a web-browser located on the computing devices 601 and 630.
  • the module 616 may communicate with back end components 638 such as the backend components 1 10 of Fig. 1 via the Internet 636.
  • the system 600 may include but is not limited to any combination of a LAN, a MAN, a WAN, a mobile, a wired or wireless network, a private network, or a virtual private network.
  • a remote computing device 630 is illustrated in Fig. 6 to simplify and clarify the description, it is understood that any number of client computers are supported and can be in communication within the system 100.
  • Modules may constitute either software modules (e.g., code or instructions embodied on a machine-readable medium or in a transmission signal, wherein the code is executed by a processor) or hardware modules.
  • a hardware module is tangible unit capable of performing certain operations and may be configured or arranged in a certain manner.
  • one or more computer systems e.g., a standalone, client or server computer system
  • one or more hardware modules of a computer system e.g., a processor or a group of processors
  • software e.g., an application or application portion
  • a hardware module may be implemented
  • a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations.
  • a hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general- purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • the term "hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein.
  • “hardware- implemented module” refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
  • Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
  • a resource e.g., a collection of information
  • processors may constitute processor-implemented modules that operate to perform one or more operations or functions.
  • the modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
  • the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
  • the one or more processors may also operate to support performance of the relevant operations in a "cloud computing" environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., application program interfaces (APIs).)
  • SaaS software as a service
  • the performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines.
  • the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
  • any reference to “some embodiments” or “an embodiment” or “teaching” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrase “in some embodiments” or “teachings” in various places in the specification are not necessarily all referring to the same embodiment.
  • Some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. For example, some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A computer-implemented method for determining a micro-moment value. The method includes receiving, via a network, customer data associated with behavior of a plurality of customers. The method includes determining, via one or more processors, a signal of a click rate through domains based on the customer data, and determining, via the one or more processors, a radian rate per channel based on the customer data. The method also includes determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains. The method also includes determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.

Description

MICRO-MOMENT ANALYSIS
Cross-Reference to Related Applications
[0001] This application claims priority from U.S. Provisional Application No.
62/220,727, filed September 18, 2015, and to U.S. Provisional Application No.
62/288,763, filed January 29, 2016. This application is also related to and filed concurrently with Patent Cooperation Treaty Application No. , filed September
19, 2016 entitled "Universal Identification" (Atty. Docket No. 216964-40002). The disclosures of the three applications referenced above are incorporated by reference herein in their entirety.
Field of Technology
[0002] The present disclosure relates to the analysis of data using machine learning and other artificial intelligence algorithms and delivering that data to end users who are identified by the algorithms.
Background
[0003] The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
[0004] We are in the age of customer empowerment, where customers expect brands to be connected and relevant and to meet their needs at every interaction. To do so, leading marketers are taking a customer-obsessed approach to transforming their business by investing in the data, talents, tools and strategies needed to respond to the needs of the connected customer.
[0005] Today, many brands struggle to keep pace with the volume, velocity and variety of data in order to meet customer expectations. According to Gartner research,
90% of the world's data has been created during the past two years. This growth and availability of data has led to an expectation of data usage to enable relevant, personalized experiences. It is not enough to collect and structure the data, it must be acted upon. Consumers expect timely, relevant and seamless brand experiences.
Therefore, brands must anticipate and predict their customers' needs, habit, trends and preferences to engage their customers in 1 :1 conversation at the right moment of decision making.
[0006] As the connected economy marches forward at an accelerating pace, data is proving to be marketing's most valuable currency. Oceans of data generated from the Internet of Things (loT) will magnify both the problem and the opportunity. But additional data lacks value if it can't be reduced to useful insight that informs a unique,
differentiated brand experience.
[0007] A phenomenon described as "data paralysis" keeps much of the data unused. While the opportunities are vast, as the volume, variety and velocity of data generated from a connected economy explodes, digital marketing becomes increasingly difficult. By some measures, the amount of stored information grows four times faster than the world economy, while the processing power of computers grows nine times faster. It's little wonder marketers struggle with information overload that ironically reduces them to data paralysis where the benefits from data are never fully realized. In part, this scenario stems from a lack of the right mix of algorithms and technology for translating big data to actionable intelligence.
Summary
[0008] Features and advantages described in this summary and the following detailed description are not all-inclusive. Many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims hereof. Additionally, other embodiments may omit one or more (or all) of the features and advantages described in this summary.
[0009] A Machine Intelligence Platform provides a way forward from data paralysis and takes full advantage of technology breakthroughs in machine learning algorithms, deep learning networks and Artificial Intelligence (Al). The Machine Intelligence Platform may shift from data-driven marketing to intelligent marketing, where everyday decisions are informed by potentially billions of data points, rather than guesses and assumptions. Working with huge sources of structured, semi-structured and
unstructured data, the platform may ingest, analyze and compare the data. Machine- learning algorithms can provide statistical evidence that something might be wrong or right based on how many past occurrences of similar patterns exist.
[0010] A "micro-moments" strategy to data analysis may provide further insight. As customers consume content, interact with each other and engage in multiple, simultaneous conversations, marketers have the challenge of determining the optimal moment to engage. During these optimal opportunities, known as micro-moments, the buyer may decide to either continue or abandon a relationship with the brand. Such micro-moments are real-time, intent-driven events that are a critical opportunity for brands to shape customer decisions and preferences.
[0011] The Machine Intelligence Platform may map the entire customer journey across devices and channels to predict how the consumer wants to interact with the brand and personalize each moment for the consumer. As the volume of data grows, intelligence extracted using a Micro-Moments Value Algorithm can ingest and activate data from multiple sources to provide insights that allow us to tap into micro-moments in the consumer's journey.
[0012] Real-time cognitive commerce may enable marketers to customize the shopping experience by supporting individually tuned merchandising, product recommendations, personalized search and guided navigation. Machine learning capabilities may support delivery of targeted and dynamic pricing and promotion.
Algorithms may learn shopping behavior in real time to update the relevance of the customer experience as it occurs.
[0013] Machine learning may unlock the power of data and deliver highly customized experiences. In some embodiments, the Machine Intelligence Platform may determine the best available assets, the right creative, message, offer, and call-to-action at the right moment using real-time customer insights and customer-level attribution. Data- driven audience segments may be dynamically created and activated across the marketer's Commerce, Media and Customer Engagement channels.
[0014] Within the Machine Intelligence Platform, a High-Frequency Intelligence Hub may process millions of signals and personalized streams of data to customize and activate targeted communication across channels, letting marketers engage with customers when they are shown to be most receptive to a message. This enables marketers and brands to use Intelligence-as-a-Service to inform Media, Commerce, CRM and Customer Experience simultaneously while providing insight and intelligence.
[0015] Further, a universal identification graph algorithm may help marketers connect identities across devices and channels to one customer. The universal identification may allow marketers to seamlessly and securely engage customers with relevant brand experience as they move between devices and across all digital touch-points.
[0016] In one embodiment, the disclosure describes a computer-implemented method for determining a micro-moment value. The method may include receiving, via a network, customer data associated with behavior of a plurality of customers. The method may also include determining, via one or more processors, a signal of a click rate through domains based on the customer data. The method may also include determining, via the one or more processors, a radian rate per channel based on the customer data, and determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains. The method may also include determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.
[0017] In further embodiments, the disclosure described a digital marketing platform comprising at least one processor and at least one memory storing computer
executable instructions that, when executed by the at least one processor, cause the apparatus at least to perform a method. The method may include receiving, via a network, customer data associated with behavior of a plurality of customers. The method may also include determining, via one or more processors, a signal of a click rate through domains based on the customer data. The method may also include determining, via the one or more processors, a radian rate per channel based on the customer data, and determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains. The method may also include determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.
Brief Description of the Drawings
[0018] Fig. 1 illustrates a system for linking dynamic information to a digital marketing platform as described herein;
[0019] Fig. 2 illustrates an embodiment of an artificial neural network model as described herein;
[0020] Fig. 3 illustrates an example customer journey use case as described herein;
[0021] Fig. 4 illustrates a graph of example micro-moment values plotted over time;
[0022] Fig. 5 illustrates an exemplary process flow for determining a micro-moment value for use with the system for linking dynamic information to a digital marketing platform as described herein;
[0023] Fig. 6 illustrates an exemplary computing device used within the system for linking dynamic information to a digital marketing platform and to implement the various process flows or methods described herein; and
[0024] Fig. 7 illustrates an exemplary structure for the system for determining a micro-market value across multiple computer network devices and channels as described herein.
[0025] The figures depict a preferred embodiment for purposes of illustration only. One skilled in the art may readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.
Detailed Description
[0026] Fig. 1 generally illustrates one embodiment of a system 100 for creating and using a digital marketing platform as described herein. The system 100 may include front end components 102 {e.g., a merchant digital content system 104, customer digital content browser 106, etc.) and backend components 1 10 (e.g., a digital marketing platoform 1 12). The front end components 102 and backend components 1 10 may be in communication with each other via a communication link 1 1 1 (e.g., computer network, internet connection, etc.). The system 100 may include various software or computer-executable instructions and specialized hardware components or modules that employ the software and instructions to provide a digital marketing platform with dynamic data records as described herein. The various modules may be implemented as computer-readable storage memories containing computer-readable instructions {i.e., software) for execution by a processor of the computer system 100 within a specialized or unique computing device. The modules may perform the various tasks associated with creating and using a digital marketing platform as described herein. The system 100 may also include both hardware and software applications, as well as various data communications channels for communicating data between the various specialized or unique front end 102 and back end 1 10 hardware and software
components.
[0027] Generally, in some embodiments, the digital marketing platform 1 12 and other backend components 1 10 may receive and store various types of consumer data gathered from one or more customer digital content browsers 106 via a network 1 1 1 or otherwise. In some embodiments, data on groups of consumers or on particular consumers may be received via the merchant digital content system 104 of one or more merchants (only one merchant digital content system shown in Fig. 1 for purposes illustration, but more merchants are contemplated in some embodiments). The digital marketing platform 1 12 may, in some embodiments, analyze the data in ways that are useful to predicting consumer behavior, such as making online purchases, so as to engage with the customer at a time that may influence those purchase or other decisions. In some embodiments, and as described herein, the gathered data may be used to determine a micro-moment value using a micro-moment algorithm. The micro- moment value may then be used to predict consumer behavior and to engage the consumer based on that predicted behavior. In some embodiments, a merchant may receive the results of data analyses from the digital marketing platform 1 12 in order to aide in engaging customers to the merchant's online marketplace(s).
[0028] The digital marketing platform 1 12 may include one or more instruction modules including a control module 1 14 that, generally, may include instructions to cause a processor 1 16 of a data processing server 1 18 to functionally communicate with a plurality of other computer-executable steps or modules 1 14A and 1 14B. These modules 1 14, 1 14A-B may include instructions that, upon loading into the server memory 120 and execution by one or more computer processors 1 16, provide the digital marketing platform with a dynamic data record of customer behavior. A first data repository 122 may include digital marketing data profiles 122A that each include various pieces of data to describe a profile of a consumer or customer and potential beneficiary of the digital marketing platform 1 1 2. A second data repository 123 may include a plurality of dynamic data records, for example, a first dynamic data record 123A, a second dynamic data record 123B, etc., corresponding to each digital marketing data profile 122A. The records 123A may each include various pieces of data to describe transactions or other behaviors of a consumer or potential customer benefiting from the digital marketing platform 1 12. In some embodiments, the records 123A and or B may include a time, an amount, a location, a purchase category, photo data, a medium, content data, and other data as described herein.
[0029] The customer digital content browser may include any components that are used by a consumer to complete online transactions, participate in social media, use mobile applications, browse the internet, or otherwise participate in behavior
contributing to data gathered by the digital marketing platform 1 12. For example, the customer digital content browser 106 may include a terminal 140 that is used by one or more computing devices 138 to gather customer behavioral data. The terminal 140 may include both a memory 142 and processor 144 to execute instructions to send the customer information and other behavioral data to the digital marketing platform 1 12. In some embodiments, the computing devices may send data directly to the digital marketing platform without including a terminal. [0030] A customer engagement module 124 of the digital marketing platform 1 12 may include various instructions that, upon execution by the processor 1 16, facilitate execution of customer engagement. The module 124 may include instructions that, upon loading into the server memory 120 and execution by one or more computer processors 1 16, allow the digital marketing platform to draw upon data profiles 122A to execute a marketing, promotional communication, offer, or other consumer engagement using, for example, data from the data profile as described herein and also coordinate with the control module 1 14 and a dynamic transaction records module 130 to permit interaction with a dynamic data record 123A.
[0031] The control module 1 14 may also include instructions to coordinate execution of other instructions to link photos, reviews, social media capabilities, and behavioral data to a data record 123A. For example, a link module 1 14A may include instructions to cause a dynamic records module 130 stored in a memory 132 on a merchant computing device 128 to display a plurality of interfaces {e.g., 130A-E, 131 A-D) within a display of the user computing device 128. In some embodiments, the display may include a browser or other application stored in the memory 132 and executed on a processor 134 of the computing device 128 to display an output of the dynamic data records module 130.
[0032] The dynamic data records module 130 may include several elements including a dynamic consumer controls module 130A, a reviews module 130B, a loyalty platform module 130C, an a transaction record module 130D, and an alerts module 130E which may include several sub-modules to implement particular functions with a single data record 123A or to collectively display information related to a plurality of data records 123A and 123B, etc. For example, the transaction record module 130D may include several sub-modules including a payment module 131 A, a social media module 131 B, a micro transactions module 131 C, and a transaction gallery module 131 D. Any of the interfaces or modules stored in the memory 132 may be used to configure the user computing device 128 to facilitate both creating dynamic transaction report records 123A and completing the actions described herein that may be performed with the records 123A. In other embodiments, one or more of the interfaces and modules (i.e., 130, 130A, 130B, 130C, 130D, 130E, 131 A, 131 B, 131 C, 131 D) may be stored in a memory of the payment processing system 1 12 or multiple computing devices in a cloud-based model of execution and served to the computing device 128 via the network 1 1 1 when requested.
[0033] While the dynamic transaction record 123A is described as including various different types of data, those skilled in the art will recognize that the record 123A may include other types of data that could be related to consumer behavior such as physical distance from other transactions, number of transactions in the area, similar product information, discounts or coupon information for items related to the transaction, etc.
[0034] In some embodiments, the system 100 described above with reference to Fig. 1 may be implemented to determine substantially favorable moments in which to effectively engage a customer. These "micro-moments" may be times in which a consumer may be found to be demonstrating its intent clearly based on gathered data. In some embodiments, the system 100 may use a wide variety of consumer behavioral data to implement a micro-moment value algorithm (MMVA) to predict the optimal moment to engage a customer with a message or other communication relevant to the customer's micro-moment intent. These intentions could be, for example, intention to purchase a product online, book a flight or hotel, make dinner reservations, or any other online activity. In some embodiments, the MMVA may use a variety of machine learning algorithms in developing its results. For example, the MMVA may use
Bayesian Network graphical models, artificial neural networks, support vector machines, etc. In some embodiments, the control module 1 14 may perform calculations related to the MMVA.
[0035] In some embodiments, the MMVA can be expressed mathematically as Equation 1 , below:
Figure imgf000010_0001
The MMV notations in Eq. 1 may represent the following as listed in Table 1 , below:
Figure imgf000011_0001
In some embodiment, the Customer Index may be the number of profiles or personas, the Click Index may be a statistical measure of changes of individual Data Points in the click rate, and the Conversion Index may be a statistical measure of changes of individual Data Points in the conversion rate. In some embodiments, the Customer Experience Type may be a measure of whether the customer experience is complete, where e=1 , or an incomplete experience, where e=0. The Channel or devices may be different vectors for customer interfacing; for example, mobile phones, smart phones, desktop or laptop computers, internet-capable television, etc. In some embodiments, the Real-time Customer Journey Value may represent click through Domains; for example, the number of signals gathered from consumer behavior based on clicking behavior while browsing or using a mobile app. Contextual Signals Value may be synaptic signals through a graph of neurons; for example, as attained through an artificial neural network (ANN). In some embodiments, the Synaptic Weight may be a number applied for weighting purposes. The Journey, in some embodiments, may be expressed in radians and may be the value of the synaptic signals. [0036] The micro-moment value (MMV) equation may be broken down into three components: the conversion rate, the signal of the click rate through domains, and the radian rate per channel. In some embodiments, the expression:
Figure imgf000012_0001
may represent the signal of the click rate through domains. In some embodiments, the expression:
Figure imgf000012_0002
may represent the conversion rate, particularly when applied to the signal of the click rate through domains. In some embodiments, the expression:
Jjradians
may represent the click rate across channels or click rate per channel.
[0037] In some embodiments, the artificial neural network model may be represented by the diagram 200 illustrated in Fig. 2. In such embodiments, the inputs 202 (e.g., x xn) may be any data points gathered from consumer behavior, as described in further detail with reference to Fig. 3. Weights 204 (e.g., Wij-Wnj) may be applied to the inputs depending on the particular design of the artificial neural network. The result may be combined into a transfer function 206, the result of which may be a net input 208 (e.g., netj) fed into an activation function 210. The activation junction 210 may output a threshold 214 (e.g., Θ,) and an activation 212 (e.g., q ). The output of the artificial neural network may, in some embodiments, be represented by a perceptron equation, as shown in Equation 2, below:
Eq. 2 Output = Wi ^i: c,,—1 otherwise In Eq. 2, ii/ may be determined from a Hebb Synapse simulated learning equation, an embodiment of which is shown in Equations 3 and 4, below:
Eq. 3 W *1 = w* + Aw«
Eq. 4 Awj = * (t— o) - i where: t = Target
o = Output of the neural network
a = Learning rate constants, between 0 and 1
i = Input of the weight
[0038] Fig. 3 illustrates one embodiment of an example customer journey use case 300 that may result in signals used as inputs for the MMVA. In this embodiment, the customer journey 302 is represented by an arrow moving and may represent passage of time. Points along the arrow may be single points in time where a customer performs an action 301 , represented by hash marks along the journey arrow, that results in a signal. This particular embodiment includes 14 actions and, therefore, 14 signals, but any number of signals may be gathered and used. Each signal may be interpreted by the digital marketing platform 1 12 as data forming the customer profile. In this example, two channels (browser 304 and mobile app 306) are used by the customer, though it should be understood that fewer or more than two channels. The journey 302 includes multiple browser actions 308 conducted by the customer using an internet browser channel, such as on a desktop or laptop computer. In this embodiment, each of the browser signals are performed in the same domain. Some types of actions resulting in signals may include visiting social media sites, such as Facebook®.com, clicking on advertisements while on the social media site, viewing a product, adding a product to a shopping cart, and exiting the website. The browser signals 308 may also include a sequence of signals 312. In this embodiment, the sequence of signals 312 is four consecutive signals grouped together after a customer has clicked on an advertisement. These signals may be 1 ) redirecting to the advertiser's site, 2) firing a cookie, 3) an impression, and 4) clicking on a promotion. [0039] The journey 302 also includes mobile signals 314 taken by a customer on a mobile app 306 accessed on a mobile device, such as a smartphone or tablet. In this embodiment, each of the mobile signals 314 is performed in the same domain as one another. Some types of actions resulting in mobile signals 314 may include searching for similar products on a search engine, such as Google, being redirected to the product website from the search engine, landing on the product description page, adding the product to the shopping cart, and checking out to purchase the product. The mobile signals 314 may include a sequence of mobile signals 316 that, in this case, are three consecutive signals grouped together. In the example illustrated in Fig. 3, the result of the browser signals 308 and the mobile signals 314 is a total of fourteen signals on the journey 302. These fourteen signals may be used in as the RCV in the MMV Eq. 1 , as shown in the example below.
[0040] The following is an example of a calculation made using the micro-moment value algorithm using example inputs that, in practice, would be the result of data gathering through system 100 of Fig. 1 for use in the digital marketing platform 1 12. It should be understood that the input values used herein are for the sake of example only, and do not in any way limit the values available for use in the MMVA that can be gathered and used by the digital marketing platform 1 12. In this example embodiment, the data values for the MMVA are as follows in Table 2:
Table 2
Variable Example Value
P 3000
y 10
c 1
e 1 or i
ch5 1
RCV 14
Y 10
t Synaptic Weight
Radians 360° or 2π
[0041] Using p=3000 and y=10, the conversion rate and the signal of the click rate through domains becomes:
Figure imgf000015_0001
which can be expressed as:
Figure imgf000015_0002
Further, adding the click rate per channel, the MMVA may then be expressed as:
Figure imgf000015_0003
[0042] Fig. 4 illustrates an example graph 400 of the micro-moment predictions 402 over time, indicated on the horizontal axis as days of the week 401 . The results of the MMVA shown in Fig. 4 are plotted as the micro-moment predictions 402 expressed in the example culminating in Equation 5, above. The graph 400 in Fig. 4 additionally shows the actual customer journey 404 and audience trends 406. One goal of the micro-moments predictions 402 calculated using the MMVA is to replicate the actual customer journey 404. This allows the digital marketing platform 1 12 to most accurately predict the micro-moment for engagement with the customer. In some embodiments, these "key" micro-moments may be at the peaks of the MMVA plot. For example, in Fig. 4, the micro-moment predictions 402 may have a first predicted key moment 408 at a peak in the micro-moment predictions plot. The micro-moment predictions plot 402 may have a second predicted key moment 410 at another peak in the micro-moment predictions plot. In the illustrated embodiment, these peaks may correspond with peaks in the customer journey 404 plot or the audience trends 406 plot.
[0043] Fig. 5 illustrates an embodiment of a method 500 for predicting a micro- moment using the MMVA through the digital marketing platform 1 12. Each step of the method may be performed on a server or other computing device including instructions that, when executed by a processor, perform the action or block described herein. At block 502, the method may include receiving the real-time consumer journey data via the digital marketing platform 1 12. At block 504, the method may include receiving contextual signals value data, and at block 506 may include determining a click index value. At block 508, the method may include determining a customer experience type value. At block 510, the method may include calculating a signal of click rate through domains using the real-time consumer journey data, the contextual signals value data, the click index value, and the customer experience type value. At block 512, the method may include receiving radian data through the digital marketing platform 1 12. At block 514, the method may include receiving channel data. At block 516, the method may include calculating a radian rate per channel using the radian data and the channel data. At block 518, the method may include receiving customer index data via the digital marketing platform 1 12. At block 520, the method may include receiving conversion index data. At block 522, the method may include calculating a conversion rate using the customer index, the conversion index, and the signal of the click rate through domains. At block 524, the method may include calculating a micro-moment value using the conversion rate and the radian rate per channel. In some embodiments, at block 526, the method may include engaging a customer based on the calculated micro-moment value. In some embodiments, engaging the customer may include, but is not limited to, sending a promotional offer, sending an electronic coupon, or sending a targeted advertisement, etc.
[0044] In some embodiments, the system 100 may include a module to determine a value for each customer. For example, an algorithm may determine whether a customer is going to be profitable or not and for how long. Too, an algorithm may predict the monetary value associated with a customer relationship. Equation 6 illustrates one example of a customer lifetime value ("CLV") algorithm:
_ -* /Future Contribution M rains'\ /Cost of Acquisition^
Eq. 6 CLV = > — ; — - -—
J ^Historical Lifetime Value * p f \ CL*** J
[0045] In Equation 6, m = the micro-moment index; c = Customer Index; p = total number of purchases in a period of time; t = number of time period the CLV is being calculated; and CL = the Customer Loyalty Index. The CLV algorithm of Equation 6 may allow observation of various individual-level buying patterns from the past and find the various customer stories in the data set. It may also allow understanding of which patterns correspond with valuable customers and which patterns correspond with customers who are opting out. As new customers join a system implementing the CLV algorithm of Equation 6, the system (e.g., system 100) may match the new customer to patterns that are recognized by the CLV algorithm.
[0046] In some embodiments, the system 100 may also include a module to determine which impressions will best meet the advertising performance metrics. For example, an algorithm may optimize timing for real-time bidding ("RTB") on customer impressions within a website for a merchant. For example, advertising campaign budget constraints may be given as impression delivery goals <¾ . An impression group /' may be defined as a {placement, user) tuple, at which level both click-through-rate ("CTR") prediction /¾ and inventory control represented by Equation 7 may be performed:
Figure imgf000018_0001
[0047] Given the above, the cost term w, will be zero since impressions are from the inventory. Thus, the revenue lift and the CTR lift may be represented by Equations 8 and 9, below:
Eq. 8 Reve ue lift
Figure imgf000018_0002
CTRf ∑ t, i xl, (t)p ^/∑ t, £,j *\',- <
Eq. 9 CTR lift =
CTR ∑t, i c{,(t)q ∑t, t x{, (t)
[0048] The timing for RTB may also be optimized by the following pseudo code:
O tit put ; Oi-ij t βί , Vi ,; j re t
Figure imgf000018_0003
[0049] In some embodiments, the system 100 may also include a module to evaluate each customer impression based on its predicted probability to achieve a goal of the advertising campaign. For example the module may evaluate Equations 10 and 1 1 , below.
Figure imgf000019_0001
Eq. 1 1
[0050] Where Cpanic = a number of impressions won during a panic; Cexpioit = a number of impressions won during exploitation; and CexPi0re = a number of impressions won during exploration. Costs per thousand ("CPM") may also be analyzed by the following pseudocode:
50: If qr*mmn 1 0 or j > n then Terminate.
51: Bfinal -
52
53 if Pi* (n - j) > grem in lii! Xj- grcmiiin > ud. then
ine g% to be the fcth snu ■ p in o Qk
Figure imgf000019_0002
59: k* *- m xims, fep),
-¾naJ ' ·
62; .4 «- 63: end if
64: while More rounds and grew«m > 0 do
65: Bid ¾,iai with probability A 0 otherwise
66: If Bid WOri then gram n *- grema m ~ l- 67: end while where optimized daily or other periodic budget updates may be calculated and posted, as needed, to meet each campaign goal.
[0051] Fig. 7 is a high-level block diagram of the various components of the system 100.
[0052] Fig. 6 is a high-level block diagram of an example computing environment 600, for example, for linking the digital marketing platform to front end components that may run the customer digital content browser and/or the merchant digital content system. The computing device 601 may include a server (e.g., the data processing server 1 18), a mobile computing device (e.g., computing device 128, a cellular phone, a tablet computer, a Wi-Fi-enabled device or other personal computing device capable of wireless or wired communication), a thin client, or other known type of computing device. As will be recognized by one skilled in the art, in light of the disclosure and teachings herein, other types of computing devices can be used that have different architectures. Processor systems similar or identical to the example systems and methods for linking dynamic information, such as customer data, to a data record may be used to implement and execute the example systems of Fig. 1 . Although the example system 600 is described below as including a plurality of peripherals, interfaces, chips, memories, etc., one or more of those elements may be omitted from other example processor systems used to implement and execute the example system for linking dynamic information to a digital marketing platform. Also, other components may be added.
[0053] As shown in Fig. 6, the computing device 601 includes a processor 602 that is coupled to an interconnection bus. The processor 602 includes a register set or register space 604, which is depicted in Fig. 6 as being entirely on-chip, but which could alternatively be located entirely or partially off-chip and directly coupled to the processor 602 via dedicated electrical connections and/or via the interconnection bus. The processor 602 may be any suitable processor, processing unit or microprocessor.
Although not shown in Fig. 6, the computing device 601 may be a multi-processor device and, thus, may include one or more additional processors that are identical or similar to the processor 602 and that are communicatively coupled to the
interconnection bus.
[0054] The processor 602 of Fig. 6 is coupled to a chipset 606, which includes a memory controller 608 and a peripheral input/output (I/O) controller 610. As is well known, a chipset typically provides I/O and memory management functions as well as a plurality of general purpose and/or special purpose registers, timers, etc. that are accessible or used by one or more processors coupled to the chipset 606. The memory controller 608 performs functions that enable the processor 602 (or processors if there are multiple processors) to access a system memory 612 and a mass storage memory 614, that may include either or both of an in-memory cache (e.g., a cache within the memory 612) or an on-disk cache (e.g., a cache within the mass storage memory 614).
[0055] The system memory 612 may include any desired type of volatile and/or nonvolatile memory such as, for example, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, read-only memory (ROM), etc. The mass storage memory 614 may include any desired type of mass storage device. For example, if the computing device 601 is used to implement a module 616 (e.g., the various modules link dynamic information, such as photographs, to a payment device transaction record and to create the dynamic transaction record and other modules as herein described). The mass storage memory 614 may include a hard disk drive, an optical drive, a tape storage device, a solid-state memory (e.g., a flash memory, a RAM memory, etc.), a magnetic memory (e.g., a hard drive), or any other memory suitable for mass storage. As used herein, the terms module, block, function, operation, procedure, routine, step, and method refer to tangible computer program logic or tangible computer executable instructions that provide the specified functionality to the computing device 601 and the system 100. Thus, a module, block, function, operation, procedure, routine, step, and method can be implemented in hardware, firmware, and/or software. In one embodiment, program modules and routines are stored in mass storage memory 614, loaded into system memory 612, and executed by a processor 602 or can be provided from computer program products that are stored in tangible computer-readable storage mediums (e.g. RAM, hard disk, optical/magnetic media, etc.). [0056] The peripheral I/O controller 610 performs functions that enable the processor 602 to communicate with a peripheral input/output (I/O) device 624, a network interface 626, a local network transceiver 628, (via the network interface 626) via a peripheral I/O bus. The I/O device 624 may be any desired type of I/O device such as, for example, a keyboard, a display (e.g., a liquid crystal display (LCD), a cathode ray tube (CRT) display, etc.), a navigation device (e.g., a mouse, a trackball, a capacitive touch pad, a joystick, etc.), etc. The I/O device 624 may be used with the module 616, etc., to receive data from the transceiver 628, send the data to the backend components of the system 100, and perform any operations related to the methods as described herein. The local network transceiver 628 may include support for a Wi-Fi network, Bluetooth, Infrared, cellular, or other wireless data transmission protocols. In other embodiments, one element may simultaneously support each of the various wireless protocols employed by the computing device 601 . For example, a software-defined radio may be able to support multiple protocols via downloadable instructions. In operation, the computing device 601 may be able to periodically poll for visible wireless network transmitters (both cellular and local network) on a periodic basis. Such polling may be possible even while normal wireless traffic is being supported on the computing device 601 . The network interface 626 may be, for example, an Ethernet device, an
asynchronous transfer mode (ATM) device, an 802.1 1 wireless interface device, a DSL modem, a cable modem, a cellular modem, etc., that enables the system 100 to communicate with another computer system having at least the elements described in relation to the system 100.
[0057] While the memory controller 608 and the I/O controller 610 are depicted in Fig. 6 as separate functional blocks within the chipset 606, the functions performed by these blocks may be integrated within a single integrated circuit or may be implemented using two or more separate integrated circuits. The computing environment 600 may also implement the module 616 on a remote computing device 630. The remote computing device 630 may communicate with the computing device 601 over an Ethernet link 632. In some embodiments, the module 616 may be retrieved by the computing device 601 from a cloud computing server 634 via the Internet 636. When using the cloud computing server 634, the retrieved module 616 may be
programmatically linked with the computing device 601 . The module 616 may be a collection of various software platforms including artificial intelligence software and document creation software or may also be a Java® applet executing within a Java® Virtual Machine (JVM) environment resident in the computing device 601 or the remote computing device 630. The modeling module 620 and the execution module 622 may also be "plug-ins" adapted to execute in a web-browser located on the computing devices 601 and 630. In some embodiments, the module 616 may communicate with back end components 638 such as the backend components 1 10 of Fig. 1 via the Internet 636.
[0058] The system 600 may include but is not limited to any combination of a LAN, a MAN, a WAN, a mobile, a wired or wireless network, a private network, or a virtual private network. Moreover, while only one remote computing device 630 is illustrated in Fig. 6 to simplify and clarify the description, it is understood that any number of client computers are supported and can be in communication within the system 100.
[0059] Additionally, certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code or instructions embodied on a machine-readable medium or in a transmission signal, wherein the code is executed by a processor) or hardware modules. A hardware module is tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
[0060] In various embodiments, a hardware module may be implemented
mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general- purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
[0061] Accordingly, the term "hardware module" should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. As used herein, "hardware- implemented module" refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
[0062] Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
[0063] The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
[0064] Similarly, the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
[0065] The one or more processors may also operate to support performance of the relevant operations in a "cloud computing" environment or as a "software as a service" (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., application program interfaces (APIs).)
[0066] The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
[0067] Some portions of this specification are presented in terms of algorithms or symbolic representations of operations on data stored as bits or binary digital signals within a machine memory (e.g., a computer memory). These algorithms or symbolic representations are examples of techniques used by those of ordinary skill in the data processing arts to convey the substance of their work to others skilled in the art. As used herein, an "algorithm" is a self-consistent sequence of operations or similar processing leading to a desired result. In this context, algorithms and operations involve physical manipulation of physical quantities. Typically, but not necessarily, such quantities may take the form of electrical, magnetic, or optical signals capable of being stored, accessed, transferred, combined, compared, or otherwise manipulated by a machine. It is convenient at times, principally for reasons of common usage, to refer to such signals using words such as "data," "content," "bits," "values," "elements,"
"symbols," "characters," "terms," "numbers," "numerals," or the like. These words, however, are merely convenient labels and are to be associated with appropriate physical quantities.
[0068] Unless specifically stated otherwise, discussions herein using words such as "processing," "computing," "calculating," "determining," "presenting," "displaying," or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.
[0069] As used herein any reference to "some embodiments" or "an embodiment" or "teaching" means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase "in some embodiments" or "teachings" in various places in the specification are not necessarily all referring to the same embodiment. [0070] Some embodiments may be described using the expression "coupled" and "connected" along with their derivatives. For example, some embodiments may be described using the term "coupled" to indicate that two or more elements are in direct physical or electrical contact. The term "coupled," however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context.
[0071] Further, the figures depict preferred embodiments for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein
[0072] Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs for the systems and methods described herein through the disclosed principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the systems and methods disclosed herein without departing from the spirit and scope defined in any appended claims.

Claims

1 . A computer-implemented method for determining a micro-moment value, the method comprising:
receiving, via a network, customer data associated with behavior of a plurality of customers;
determining, via one or more processors, a signal of a click rate through domains based on the customer data;
determining, via the one or more processors, a radian rate per channel based on the customer data;
determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains; and
determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.
2. The method of claim 1 , further comprising engaging a customer based on the micro-moment value.
3. The method of claim 2, wherein engaging the customer includes at least one of: sending a promotional offer, sending an electronic coupon, or sending a targeted advertisement.
4. The method of claim 1 , wherein the received customer data includes realtime consumer journey data, contextual signals value data, a click index value, and a customer experience type value, and wherein the signal of click rate through domains is determined based on the real-time consumer journey data, the contextual signals value data, the click index value, and the customer experience type value.
5. The method of claim 4, wherein the received customer data further includes customer index data and conversion index data, and wherein the conversion rate is determined based on the customer index data, the conversion index data, and the signal of the click rate through domains.
6. The method of claim 5, wherein the received customer data further includes radian data and channel data, and wherein the radian rate per channel is determined based on the radian data and the channel data.
7. The method of claim 6, wherein the radian rate per channel is determined based on the algorithm:
J radians.
ch.5
where: radians = the radian data; and
ch5 = the channel data.
8. The method of claim 4, wherein the signal of click rate through domains is based on the algorithm:
Figure imgf000029_0001
where: RCV= the real-time customer journey value;
Y= the contextual signals value;
y = the click index value; and
e = the customer experience type value.
9. The method of claim 5, wherein the conversion rate is determined based on the algorithm:
Figure imgf000029_0002
where: p = the customer index data;
c = the conversion index data; RCV= the real-time customer journey value;
Y= the contextual signals value;
y = the click index value; and
e = the customer experience type value.
10. The method of claim 6, wherein the micro-moment value is determined based on the algorithm:
Figure imgf000030_0001
where: MMV1 = the micro-moment value;
radians = the radian data;
ch5 = the channel data;
p = the customer index data;
c = the conversion index data;
RCV= the real-time customer journey value;
Y= the contextual signals value;
y = the click index value; and
e = the customer experience type value.
1 1 . A digital marketing platform comprising:
at least one processor, and
at least one memory storing computer executable instructions that, when executed by the at least one processor, cause the apparatus at least to perform the steps of:
receiving, via a network, customer data associated with behavior of a plurality of customers; determining, via one or more processors, a signal of a click rate through domains based on the customer data;
determining, via the one or more processors, a radian rate per channel based on the customer data;
determining, via the one or more processors, a conversion rate based on the signal of the click rate through domains; and
determining, via the one or more processors, a micro-moment value based on the radian rate per channel and the conversion rate.
12. The method of claim 1 1 , further comprising engaging a customer based on the micro-moment value.
13. The method of claim 12, wherein engaging the customer includes at least one of: sending a promotional offer, sending an electronic coupon, or sending a targeted advertisement.
14. The method of claim 1 1 , wherein the received customer data includes real-time consumer journey data, contextual signals value data, a click index value, and a customer experience type value, and wherein the signal of click rate through domains is determined based on the real-time consumer journey data, the contextual signals value data, the click index value, and the customer experience type value.
15. The method of claim 14, wherein the received customer data further includes customer index data and conversion index data, and wherein the conversion rate is determined based on the customer index data, the conversion index data, and the signal of the click rate through domains.
16. The method of claim 15, wherein the received customer data further includes radian data and channel data, and wherein the radian rate per channel is determined based on the radian data and the channel data.
17. The method of claim 16, wherein the radian rate per channel is determined based on the algorithm:
Tl radians
<— : }
chS where: radians = the radian data; and
ch5 = the channel data.
18. The method of claim 14, wherein the signal of click rate through domains is based on the algorithm:
Figure imgf000032_0001
RCV= the real-time customer journey value;
Y= the contextual signals value;
y = the click index value; and
e = the customer experience type value.
19. The method of claim 15, wherein the conversion rate is determined based on the algorithm:
Figure imgf000032_0002
where: p = the customer index data;
c = the conversion index data;
RCV= the real-time customer journey value;
Y= the contextual signals value;
y = the click index value; and
e = the customer experience type value.
20. The method of claim 16, wherein the micro-moment value is determined based on the algorithm:
Figure imgf000033_0001
where: MMV1 = the micro-moment value;
radians = the radian data;
ch5 = the channel data;
p = the customer index data;
c = the conversion index data;
RCV= the real-time customer journey value;
Y= the contextual signals value;
y = the click index value; and
e = the customer experience type value.
PCT/US2016/052536 2015-09-18 2016-09-19 Micro-moment analysis WO2017049310A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680066970.9A CN108369433A (en) 2015-09-18 2016-09-19 Micro- moment analysis
EP16847562.2A EP3350664A4 (en) 2015-09-18 2016-09-19 Micro-moment analysis
HK19100894.6A HK1258539A1 (en) 2015-09-18 2019-01-18 Micro-moment analysis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562220727P 2015-09-18 2015-09-18
US62/220,727 2015-09-18
US201662288763P 2016-01-29 2016-01-29
US62/288,763 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017049310A1 true WO2017049310A1 (en) 2017-03-23

Family

ID=58282653

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2016/052536 WO2017049310A1 (en) 2015-09-18 2016-09-19 Micro-moment analysis
PCT/US2016/052509 WO2017049298A1 (en) 2015-09-18 2016-09-19 Universal identification

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2016/052509 WO2017049298A1 (en) 2015-09-18 2016-09-19 Universal identification

Country Status (6)

Country Link
US (2) US10789612B2 (en)
EP (2) EP3350664A4 (en)
CN (2) CN108293046A (en)
HK (2) HK1258510A1 (en)
MA (2) MA42847A (en)
WO (2) WO2017049310A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA42847A (en) 2015-09-18 2018-07-25 Mms Usa Holdings Inc MICRO-MOMENT ANALYSIS
US20190279236A1 (en) * 2015-09-18 2019-09-12 Mms Usa Holdings Inc. Micro-moment analysis
US10783535B2 (en) 2016-05-16 2020-09-22 Cerebri AI Inc. Business artificial intelligence management engine
US11868916B1 (en) * 2016-08-12 2024-01-09 Snap Inc. Social graph refinement
US10402723B1 (en) 2018-09-11 2019-09-03 Cerebri AI Inc. Multi-stage machine-learning models to control path-dependent processes
US10762563B2 (en) 2017-03-10 2020-09-01 Cerebri AI Inc. Monitoring and controlling continuous stochastic processes based on events in time series data
US10581980B2 (en) * 2017-06-01 2020-03-03 Xandr Inc. Device identification techniques using shared device graph
US10963819B1 (en) * 2017-09-27 2021-03-30 Amazon Technologies, Inc. Goal-oriented dialog systems and methods
US10657229B2 (en) 2017-11-21 2020-05-19 Fair Isaac Corporation Building resilient models to address dynamic customer data use rights
CN108390883B (en) * 2018-02-28 2020-08-04 武汉斗鱼网络科技有限公司 Identification method and device for people-refreshing user and terminal equipment
CN108421216B (en) * 2018-03-30 2023-08-22 广东工业大学 System for determining movement speed and movement direction of user and displacement movement device capable of realizing universal direction and using system
CN108596370A (en) * 2018-03-30 2018-09-28 校宝在线(杭州)科技股份有限公司 A method of the metric analysis prediction registration success rate based on Reference Environment
US11074635B2 (en) 2018-05-25 2021-07-27 Target Brands, Inc. Real-time recommendation monitoring dashboard
US11132733B2 (en) * 2018-05-25 2021-09-28 Target Brands, Inc. Personalized recommendations for unidentified users based on web browsing context
US11068942B2 (en) 2018-10-19 2021-07-20 Cerebri AI Inc. Customer journey management engine
EP3899757A4 (en) * 2018-12-21 2022-07-06 Odaia Intelligence Inc. Accurate and transparent path prediction using process mining
US11334680B1 (en) 2019-05-01 2022-05-17 Meta Platforms, Inc. Systems and methods for securely sharing and processing data between parties
US11593510B1 (en) * 2019-05-01 2023-02-28 Meta Platforms, Inc. Systems and methods for securely sharing and processing data between parties
US11403649B2 (en) 2019-09-11 2022-08-02 Toast, Inc. Multichannel system for patron identification and dynamic ordering experience enhancement
CN111091409B (en) * 2019-10-31 2022-08-09 支付宝(杭州)信息技术有限公司 Client tag determination method and device and server
US11418488B2 (en) * 2019-12-13 2022-08-16 Vmware, Inc. Dynamic variance mechanism for securing enterprise resources using a virtual private network
WO2022040150A1 (en) 2020-08-18 2022-02-24 Edera L3C Change management system and method
US20220198491A1 (en) * 2020-12-23 2022-06-23 Lucas GC Limited Deep Learning Model on Customer Lifetime Value (CLV) for Customer Classifications and Multi-Entity Matching
US12045819B2 (en) * 2021-03-22 2024-07-23 Finicity Corporation Consented identity as a service
US11829418B2 (en) 2021-08-12 2023-11-28 Liveramp, Inc. Identity graph data structure with entity-level opt-ins
US12112343B2 (en) * 2022-02-24 2024-10-08 Klaviyo, Inc. Detecting changes in customer (user) behavior using a normalization value
US20230306448A1 (en) * 2022-03-28 2023-09-28 Verizon Patent And Licensing Inc. System and method for persona generation
CN114862472A (en) * 2022-05-19 2022-08-05 上海钧正网络科技有限公司 File generation and delivery method, file generation and delivery device, electronic equipment and medium
CN118520595B (en) * 2024-07-23 2024-09-17 中国空气动力研究与发展中心计算空气动力研究所 Dynamic derivative prediction method based on steady-state wall pressure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030028451A1 (en) * 2001-08-03 2003-02-06 Ananian John Allen Personalized interactive digital catalog profiling
US6714975B1 (en) * 1997-03-31 2004-03-30 International Business Machines Corporation Method for targeted advertising on the web based on accumulated self-learning data, clustering users and semantic node graph techniques
US20130080362A1 (en) * 2011-09-23 2013-03-28 Andrew Chang Customer journey prediction and resolution
US20150163311A1 (en) * 2013-11-26 2015-06-11 Martin Charles Heath Systems and methods for capturing, managing, and triggering user journeys associated with trackable digital objects

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517410B2 (en) 1989-05-15 1996-07-24 三菱電機株式会社 Integrated circuit device with learning function
US5172204A (en) 1991-03-27 1992-12-15 International Business Machines Corp. Artificial ionic synapse
KR0170505B1 (en) 1995-09-15 1999-03-30 양승택 Learning method of multi-layer perceptrons with n-bit data precision
GB2363650A (en) 1999-01-15 2002-01-02 Cybuy Llc System and method for transaction enabled advertising
KR100306848B1 (en) 1999-06-19 2001-09-24 윤덕용 A selective attention method using neural networks
US7822636B1 (en) 1999-11-08 2010-10-26 Aol Advertising, Inc. Optimal internet ad placement
EP1305741A4 (en) 2000-05-24 2005-04-27 Overture Services Inc Online media exchange
US6904408B1 (en) 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US7233933B2 (en) * 2001-06-28 2007-06-19 Microsoft Corporation Methods and architecture for cross-device activity monitoring, reasoning, and visualization for providing status and forecasts of a users' presence and availability
US8095589B2 (en) 2002-03-07 2012-01-10 Compete, Inc. Clickstream analysis methods and systems
US20110071900A1 (en) 2009-09-18 2011-03-24 Efficient Frontier Advertisee-history-based bid generation system and method for multi-channel advertising
US8706551B2 (en) 2003-09-04 2014-04-22 Google Inc. Systems and methods for determining user actions
US20050144069A1 (en) * 2003-12-23 2005-06-30 Wiseman Leora R. Method and system for providing targeted graphical advertisements
US8768766B2 (en) 2005-03-07 2014-07-01 Turn Inc. Enhanced online advertising system
US20070033098A1 (en) 2005-08-05 2007-02-08 International Business Machines Corporation Method, system and storage medium for creating sales recommendations
US20080126108A1 (en) 2005-10-11 2008-05-29 Hodgin C Reed System and method for implementing a meteorological network for improved atmospheric modeling
EP1949313A4 (en) 2005-11-15 2010-03-31 Bernadette Garner Method for training neural networks
US20150154632A1 (en) 2007-04-30 2015-06-04 Deepak Jindal Determining a number of view-through conversions for an online advertising campaign
US7948400B2 (en) 2007-06-29 2011-05-24 Microsoft Corporation Predictive models of road reliability for traffic sensor configuration and routing
US20090106734A1 (en) * 2007-10-23 2009-04-23 Riesen Michael J Bayesian belief network query tool
US8744917B2 (en) 2007-11-02 2014-06-03 Buysafe, Inc. Method, system and components for obtaining, evaluating and/or utilizing seller, buyer and transaction data
US20090198579A1 (en) 2008-02-01 2009-08-06 Lewis Robert C Keyword tracking for microtargeting of mobile advertising
US20100042496A1 (en) 2008-08-13 2010-02-18 Disney Enterprises, Inc. Advertising inventory management system and method
US20150220951A1 (en) * 2009-01-21 2015-08-06 Truaxis, Inc. Method and system for inferring an individual cardholder's demographic data from shopping behavior and external survey data using a bayesian network
US8655821B2 (en) * 2009-02-04 2014-02-18 Konstantinos (Constantin) F. Aliferis Local causal and Markov blanket induction method for causal discovery and feature selection from data
US20110040636A1 (en) 2009-08-14 2011-02-17 Simmons Willard L Learning system for the use of competing valuation models for real-time advertisement bidding
US8689136B2 (en) 2010-02-03 2014-04-01 Yahoo! Inc. System and method for backend advertisement conversion
CA2794040A1 (en) 2010-03-23 2011-09-29 Google Inc. Conversion path performance measures and reports
US20110320395A1 (en) 2010-06-29 2011-12-29 Uzair Dada Optimization of Multi-channel Commerce
US11042897B2 (en) 2010-08-30 2021-06-22 Adap.Tv, Inc. System and method for determining effects of multi-channel media sources on multi-channel conversion events
US20120078708A1 (en) 2010-09-23 2012-03-29 Kate Taylor System and Method for Recording and Analyzing Internet Browser Traffic Independent of Individual or Specific Digital Platforms or Websites
US8396822B2 (en) 2010-12-23 2013-03-12 Yahoo! Inc. Clustering cookies for identifying unique mobile devices
US20120260185A1 (en) 2011-04-11 2012-10-11 Google Inc. Path length selector
US20120259854A1 (en) 2011-04-11 2012-10-11 Google Inc. Conversion Path Based Segmentation
US20120259851A1 (en) 2011-04-11 2012-10-11 Google Inc. Aggregation of conversion paths utilizing user interaction grouping
US8620933B2 (en) 2011-04-11 2013-12-31 Google Inc. Illustrating cross channel conversion paths
US8510326B2 (en) 2011-04-11 2013-08-13 Google Inc. Priority dimensional data conversion path reporting
US8788339B2 (en) 2011-05-27 2014-07-22 Google Inc. Multiple attribution models with return on ad spend
US8655907B2 (en) 2011-07-18 2014-02-18 Google Inc. Multi-channel conversion path position reporting
US20160027041A1 (en) 2011-08-01 2016-01-28 Google Inc. System, method and computer program product for fractional attribution using online advertising information
US20180308123A1 (en) 2011-08-01 2018-10-25 Google Inc. System and method for fractional attribution utilizing aggregated advertising information
US20130041748A1 (en) 2011-08-09 2013-02-14 Google Inc. Conversion type to conversion type funneling
US8959450B2 (en) 2011-08-22 2015-02-17 Google Inc. Path explorer visualization
US20130124299A1 (en) 2011-09-06 2013-05-16 Epic Media Group, INC. Optimizing Communication of Content Through Networked Media
US10127564B2 (en) 2011-09-15 2018-11-13 Stephan HEATH System and method for using impressions tracking and analysis, location information, 2D and 3D mapping, mobile mapping, social media, and user behavior and information for generating mobile and internet posted promotions or offers for, and/or sales of, products and/or services
CN102346899A (en) * 2011-10-08 2012-02-08 亿赞普(北京)科技有限公司 Method and device for predicting advertisement click rate based on user behaviors
US8737599B2 (en) 2011-11-23 2014-05-27 24/7 Customer, Inc. Interaction management
US20130173382A1 (en) 2012-01-03 2013-07-04 Tal Hasson Conversion attribution for earned media
US9547832B2 (en) 2012-01-10 2017-01-17 Oracle International Corporation Identifying individual intentions and determining responses to individual intentions
US20130253969A1 (en) 2012-03-20 2013-09-26 International Business Machines Corporation Broadcast Messaging of Incentives Based on Value
US10616782B2 (en) 2012-03-29 2020-04-07 Mgage, Llc Cross-channel user tracking systems, methods and devices
CN102663519A (en) * 2012-04-01 2012-09-12 浙江盘石信息技术有限公司 Optimization system of media selection in network advertisement delivery and method thereof
CN103368921B (en) * 2012-04-06 2016-08-10 三星电子(中国)研发中心 Distributed user modeling and method for smart machine
US9275342B2 (en) 2012-04-09 2016-03-01 24/7 Customer, Inc. Method and apparatus for intent modeling and prediction
US10204343B2 (en) * 2012-05-18 2019-02-12 [24]7.ai, Inc. Multi-channel customer identification
US20130317993A1 (en) * 2012-05-25 2013-11-28 24/7 Customer, Inc. Method and apparatus for linking user sessions and establishing identity across channels
US9208432B2 (en) 2012-06-01 2015-12-08 Brain Corporation Neural network learning and collaboration apparatus and methods
US9652797B2 (en) 2013-01-18 2017-05-16 24/7 Customer, Inc. Intent prediction based recommendation system using data combined from multiple channels
US20160034948A1 (en) 2013-02-28 2016-02-04 Google Inc. System and method for fractional attribution utilizing user-level data and aggregate level data
US10574766B2 (en) 2013-06-21 2020-02-25 Comscore, Inc. Clickstream analysis methods and systems related to determining actionable insights relating to a path to purchase
CN103345512A (en) * 2013-07-06 2013-10-09 北京品友互动信息技术有限公司 Online advertising click-through rate forecasting method and device based on user attribute
WO2015069959A1 (en) 2013-11-06 2015-05-14 Yume, Inc. Systems and methods for electronically monitoring audience attentiveness and receptiveness
CN104636940A (en) * 2013-11-07 2015-05-20 深圳市腾讯计算机系统有限公司 Advertisement delivery method, advertisement delivery system, advertisement screening method, advertisement screening device, and server
US9858587B2 (en) 2013-12-05 2018-01-02 Google Llc Methods and systems for creating a data-driven attribution model for assigning attribution credit to a plurality of events
WO2015126954A1 (en) * 2014-02-18 2015-08-27 24/7 Customer, Inc. Method and apparatus for improving customer interaction experiences
US20150262217A1 (en) 2014-03-17 2015-09-17 Google Inc. User path abandonment analysis
CN104199836B (en) * 2014-08-04 2017-07-14 浙江工商大学 A kind of mark user model constructing method divided based on sub- interest
US10706432B2 (en) 2014-09-17 2020-07-07 [24]7.ai, Inc. Method, apparatus and non-transitory medium for customizing speed of interaction and servicing on one or more interactions channels based on intention classifiers
US20160098735A1 (en) 2014-10-07 2016-04-07 Adobe Systems Incorporated Marketing channel attribution
CN107111821A (en) 2014-10-27 2017-08-29 弗拉明戈企业私人有限公司 Customer experience personal management platform
US20160210656A1 (en) 2014-12-31 2016-07-21 Anto Chittilappilly System for marketing touchpoint attribution bias correction
US9336483B1 (en) 2015-04-03 2016-05-10 Pearson Education, Inc. Dynamically updated neural network structures for content distribution networks
US20160342911A1 (en) 2015-05-19 2016-11-24 24/7 Customer, Inc. Method and system for effecting customer value based customer interaction management
US10311443B2 (en) 2015-06-19 2019-06-04 [24]7.ai, Inc. Method and apparatus for managing customer interactions on multiple interaction channels
WO2017013494A2 (en) 2015-07-22 2017-01-26 Wisdo Ltd. Methods and systems for dynamically generating real-time recommendations
US20170046732A1 (en) 2015-08-14 2017-02-16 International Business Machines Corporation Training a machine to dynamically determine and communicate customized, product-dependent promotions with no or limited historical data over a network
CN105069666A (en) * 2015-09-14 2015-11-18 浙江工商大学 E-commerce personalized recommendation method integrated with user implicit information
US9842365B2 (en) 2015-09-15 2017-12-12 Google Inc. Guided purchasing via smartphone
MA42847A (en) 2015-09-18 2018-07-25 Mms Usa Holdings Inc MICRO-MOMENT ANALYSIS
US20190279236A1 (en) 2015-09-18 2019-09-12 Mms Usa Holdings Inc. Micro-moment analysis
US9674362B2 (en) 2015-09-29 2017-06-06 Nice Ltd. Customer journey management
US10785371B2 (en) 2015-12-21 2020-09-22 Avaya, Inc. Optimal resource and channel selection
US10692099B2 (en) 2016-04-11 2020-06-23 International Business Machines Corporation Feature learning on customer journey using categorical sequence data
US10546313B2 (en) 2016-08-09 2020-01-28 International Business Machines Corporation Determining sensor placement and a reward sharing mechanism based on shared energy forecasting information
US20180053199A1 (en) 2016-08-22 2018-02-22 Adobe Systems Incorporated Auto-segmentation
US9866695B1 (en) 2016-08-30 2018-01-09 Genesys Telecommunications Laboratories, Inc. System and method for predictive routing based on a customer journey patience
US10558985B2 (en) 2016-11-23 2020-02-11 Impact Radius, Inc. Pathing and attribution in marketing analytics
US20180300748A1 (en) 2017-04-14 2018-10-18 Vladyslav Flaks Technologies for granular attribution of value to conversion events in multistage conversion processes
US20190266622A1 (en) 2018-02-27 2019-08-29 Thinkcx Technologies, Inc. System and method for measuring and predicting user behavior indicating satisfaction and churn probability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714975B1 (en) * 1997-03-31 2004-03-30 International Business Machines Corporation Method for targeted advertising on the web based on accumulated self-learning data, clustering users and semantic node graph techniques
US20030028451A1 (en) * 2001-08-03 2003-02-06 Ananian John Allen Personalized interactive digital catalog profiling
US20130080362A1 (en) * 2011-09-23 2013-03-28 Andrew Chang Customer journey prediction and resolution
US20150163311A1 (en) * 2013-11-26 2015-06-11 Martin Charles Heath Systems and methods for capturing, managing, and triggering user journeys associated with trackable digital objects

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHENG, J. ET AL.: "Marketo Data Tells Us: What Is the Top Conversion Rate by Channel?", 3 August 2015 (2015-08-03), XP055374535, Retrieved from the Internet <URL:http://blog.marketo.com/2015/08/marketo-data-tells-us-what-is-the-top-conversion-rate-by-channel.html> [retrieved on 20161114] *
JEZIORSKI, P. ET AL.: "Brand effects in search advertising.", 11 September 2014 (2014-09-11), XP055374538, Retrieved from the Internet <URL:http://www.isid.ac.in/~epu/acegd2014/papers/SridharMoorthy.pdf> [retrieved on 20161114] *
JEZIORSKI, P. ET AL.: "What Makes Them Click: Empirical Analysis of Consumer Demand for Search Advertising.", 11 July 2014 (2014-07-11), XP055374539, Retrieved from the Internet <URL:http://faculty.haas.berkeley.edu/przemekj/ads_paper.pdf> [retrieved on 20161115] *
See also references of EP3350664A4 *

Also Published As

Publication number Publication date
CN108369433A (en) 2018-08-03
WO2017049298A1 (en) 2017-03-23
EP3350664A4 (en) 2019-04-17
EP3350975A1 (en) 2018-07-25
MA42846A (en) 2018-07-25
US20170083916A1 (en) 2017-03-23
CN108293046A (en) 2018-07-17
US10789612B2 (en) 2020-09-29
HK1258539A1 (en) 2019-11-15
US20170083937A1 (en) 2017-03-23
MA42847A (en) 2018-07-25
EP3350664A1 (en) 2018-07-25
HK1258510A1 (en) 2019-11-15
EP3350975A4 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
WO2017049310A1 (en) Micro-moment analysis
US10528959B2 (en) Micro-moment analysis
US11587143B2 (en) Neural contextual bandit based computational recommendation method and apparatus
US10366400B2 (en) Reducing un-subscription rates for electronic marketing communications
RU2637431C2 (en) Method and system of determining optimal value of auction parameter for digital object
US20190236680A1 (en) Systems and Methods for Providing Personalized Online Content
US11188950B2 (en) Audience expansion for online social network content
US20160171539A1 (en) Inference-Based Behavioral Personalization and Targeting
US20150006286A1 (en) Targeting users based on categorical content interactions
US20150006295A1 (en) Targeting users based on previous advertising campaigns
US20120221387A1 (en) System for providing incentives for referring advertisements and deals
US20160189207A1 (en) Enhanced online content delivery system using action rate lift
US20230230183A1 (en) Intelligent Prediction of An Expected Value of User Conversion
EP3167421A1 (en) Recommendation system based on lifestyle
US10885537B2 (en) System and method for determining real-time optimal item pricing
US11907961B2 (en) Optimizing registration fields with user engagement score
WO2019148199A2 (en) Systems and methods for providing personalized online content
CN107463580A (en) Train clicking rate prediction model method and apparatus, clicking rate predictor method and device
US20180189829A1 (en) Cross-currency campaign delivery system
US8972525B1 (en) Selecting an interactive content item based on device age
US20210319478A1 (en) Automatic Cloud, Hybrid, and Quantum-Based Optimization Techniques for Communication Channels
EP3637350A1 (en) System and method for predicting future purchases based on payment instruments used
US20160148271A1 (en) Personalized Marketing Based on Sequence Mining
US20150019334A1 (en) Systems and methods for providing targeted messaging when targeting terms are unavailable
CN110796520A (en) Commodity recommendation method and device, computing equipment and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016847562

Country of ref document: EP