WO2017047953A1 - Composite filter - Google Patents

Composite filter Download PDF

Info

Publication number
WO2017047953A1
WO2017047953A1 PCT/KR2016/009727 KR2016009727W WO2017047953A1 WO 2017047953 A1 WO2017047953 A1 WO 2017047953A1 KR 2016009727 W KR2016009727 W KR 2016009727W WO 2017047953 A1 WO2017047953 A1 WO 2017047953A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
filter
ion exchange
exchange resin
raw water
Prior art date
Application number
PCT/KR2016/009727
Other languages
French (fr)
Korean (ko)
Inventor
오병수
최유승
정기택
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017047953A1 publication Critical patent/WO2017047953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/30Filter housing constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents

Definitions

  • the present invention relates to a composite filter adapted to remove hard or scale-inducing substances from raw water.
  • Water hardness means that the amount of calcium ions and magnesium ions in water is quantified in terms of the corresponding amount of calcium carbonate (calcium carbonate, CaCO 3 ) (unit mg / l).
  • the hardness of water is known to affect the taste of water. If the hardness of water is higher than the standard, it is classified as hard water and if it is lower than the standard, it is classified as soft water.
  • the World Health Organization (WHO) guidelines further refine the criteria for hard water and training.
  • the scale (for example, CaCO 3 ) refers to a substance that is formed when the mineral component remaining in the water aggregates after evaporation of water. It is necessary to prevent the generation of scales because scales generated at the outlet of water systems such as refrigerators and water purifiers are recognized by the consumer as a failure or deterioration of the water system.
  • the hard material combines with the negative ions of the detergent, causing deterioration of cleaning power and creating insoluble detergents. It is necessary.
  • One object of the present invention is to propose a composite filter capable of removing the hard or scale-inducing substances present in water, including ion exchange resins and crystallization catalysts.
  • Another object of the present invention is to propose a composite filter which can effectively remove the hardness material or the scale-inducing material by complementing the disadvantages of the ion exchange resin and the disadvantages of the crystal forming catalyst.
  • Still another object of the present invention is to propose a composite filter having a flow path structure capable of improving the hardness or scale-inducing material removal performance of the ion exchange resin and the crystal forming catalyst.
  • Another object of the present invention is to propose a composite filter which can improve the performance of the crystal forming catalyst in consideration of the relationship between the flow rate and the filtration performance.
  • the composite filter according to an embodiment of the present invention promotes the reaction between the hard material or the scale-inducing material and the bicarbonate anion present in the raw water, and the hardness from the raw water through crystallization.
  • a crystal production catalyst filter unit configured to remove a substance or a scale-inducing substance;
  • an ion exchange resin filter part formed downstream of the crystal production catalyst filter part to filter the raw water passing through the crystal production catalyst filter part and configured to remove the hardness material or the scale-inducing material from the raw water through ion exchange.
  • the crystal formation catalyst filter unit includes a plurality of crystal production catalysts, and the crystal production catalysts promote the reaction of calcium cations and bicarbonate anions present in the raw water or present in the raw water. By promoting the reaction of the magnesium cation and bicarbonate anion, it can be made to crystallize the hardness material or the scale-inducing material.
  • the crystal production catalyst filter unit includes a plurality of crystal production catalysts, the crystal production catalysts comprising: a carrier made of a polymer having a negative charge; And a crystal seed present at the crystallization site of the carrier and comprising at least one of calcium and magnesium.
  • the crystal generation catalyst filter unit may have a flow path structure in which raw water rises from the bottom, and the ion exchange resin filter part may have a flow path structure in which raw water falls from the top to the bottom.
  • the composite filter may include a housing formed to receive the crystal generation catalyst filter unit and the ion exchange resin filter unit; And a pre-filter unit disposed to face the inner circumferential surface of the housing and configured to remove at least one of particulate matter, organic matter, and residual chlorine present in the raw water.
  • the crystal-forming catalyst filter unit may pass through the pre-filter unit.
  • a first case formed to introduce raw water and forming a boundary with the pre-filter unit; And a plurality of crystal generation catalysts introduced into the first case, wherein the ion exchange resin filter unit is formed such that raw water passing through the crystal generation catalyst filter unit flows in and borders the crystal generation catalyst filter unit.
  • a second case forming a; And a plurality of ion exchange resins introduced into the second case.
  • a spiral protrusion may be formed on an inner wall surface of the first case.
  • a plurality of protrusions may be formed on an inner wall surface of the first case, and the plurality of protrusions may be disposed to be spaced apart from each other in a direction in which raw water rises in the crystal generating catalyst filter.
  • a lower end of the crystal generation catalyst filter unit may be spaced apart from an inner bottom surface of the housing, and the composite filter may be formed such that raw water passing through the pre-filter unit is filled in the flow path structure of the crystal generation catalyst filter unit.
  • the upper end of the crystal generation catalyst filter unit and the upper end of the ion exchange resin filter unit are spaced apart from the inner top surface of the housing, so that the raw water passing through the crystal generation catalyst filter unit falls into the flow path structure of the ion exchange resin filter unit. It can be formed to be.
  • the composite filter includes a water discharge passage formed between an outer wall surface of the first case and an outer wall surface of the second case, and a lower end of the ion exchange resin filter unit is spaced apart from an inner bottom surface of the housing so that the composite filter is Raw water passing through the ion exchange resin filter may be discharged through the water discharge passage.
  • the composite filter may include a housing formed to receive the crystal generation catalyst filter unit and the ion exchange resin filter unit; And a pre-filter unit disposed to face the inner circumferential surface of the housing and configured to remove at least one of particulate matter, organic matter, and residual chlorine present in raw water, wherein the crystal-forming catalyst filter unit has a plurality of crystal-forming catalysts.
  • the first block may be formed, and the ion exchange resin filter unit may include a second block having a plurality of ion exchange resins.
  • One of the first block and the second block is formed to surround the other, and the flow path structure of the composite filter may be configured such that raw water is sequentially filtered by the first block and the second block.
  • the crystallization catalyst promotes the crystallization of the hard material or scale-inducing material, and the ion exchange resin is made to ion exchange with the hard material or scale-inducing material, the hard material from raw water Alternatively, the scale causing material may be removed. Accordingly, the present invention can lower the hardness of the water.
  • Crystal-forming catalysts have the advantage of significantly longer lifespan than ion exchange resins, but have a disadvantage in that the reaction rate is slower than that of ion exchange resins and the hardness or scale-inducing substances present in water cannot be completely removed.
  • the ion exchange resin of the present invention is disposed on the downstream side of the crystal forming catalyst to remove the hard or scale-inducing material that is not filtered out of the crystal forming catalyst, thereby making up for the disadvantages of the crystal forming catalyst.
  • Ion-exchange resins have the advantage that the reaction rate is faster than that of the crystal formation catalyst, but has the disadvantage of requiring regeneration due to the shorter lifetime than the crystal formation catalyst.
  • the crystal forming catalyst of the present invention is disposed upstream of the ion exchange resin to remove the hard or scale-inducing substance, it can reduce the load applied to the ion exchange resin and compensate for the disadvantage of requiring frequent regeneration. Can be.
  • the composite filter of the present invention having the crystal generating catalyst and the ion exchange resin has a crystal forming catalyst and an ion exchange resin. Only have the advantage of.
  • the present invention proposes a flow path structure capable of maximizing the advantages of the crystal forming catalyst and the ion exchange resin.
  • the present invention has a structure that can be naturally separated from the crystal forming catalyst after the hardness or scale-inducing material is crystallized by the crystal forming catalyst.
  • the natural separation of the crystals allows the crystal-forming catalyst to rejoin other reactions, thus improving the performance of the entire composite filter as well as allowing the crystal-forming catalyst to continuously filter hard or scale-inducing materials without regeneration. have.
  • the present invention has a flow path structure in which the ion exchange resin can stably adsorb the hardness material or the scale-inducing material. Through stable adsorption, the ion exchange resin can remove most of the hard or scale-inducing substances that are not filtered from the crystal forming catalyst.
  • the present invention proposes a configuration in which the crystallization catalyst can have sufficient filtration performance in an appropriate flow rate range of another filter to be connected in series with the complex filter by forming turbulent flow using the protrusion.
  • the other filter and the composite filter of the present invention are proposed as a complementary structure is proposed so that the crystal forming catalyst has sufficient filtration performance in the appropriate flow rate range of other filters. Filtration performance of the entire filtration system including a can be improved.
  • the complementary structure does not escape the tendency of miniaturization and simplification of the filtration system.
  • FIG. 1 is a cross-sectional view of a composite filter showing a first embodiment of the present invention.
  • 2 is a conceptual diagram showing the mechanism of the crystal formation catalyst.
  • Figure 3a is a conceptual diagram showing the mechanism of the ion exchange resin.
  • 3B is a conceptual diagram showing the regeneration of the ion exchange resin.
  • FIG. 5 is a cross-sectional view of a composite filter showing a second embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a two-stage filtration system by connecting the composite filter and the other filter of the present invention in series.
  • FIG. 7 is another conceptual diagram illustrating a two-stage filtration system connected in series with the complex filter and the other filter of the present invention.
  • FIG. 8 is a conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
  • FIG. 9 is another conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
  • FIG. 1 is a cross-sectional view of a composite filter 100 showing a first embodiment of the present invention.
  • the prefilter unit 110 is configured to remove at least one of particulate matter, organic matter, and residual chlorine present in the raw water.
  • the prefilter unit 110 is disposed upstream of the crystal generation catalyst filter unit 120. Upstream and downstream are the concept of relative position relative to the water flow. When water passes through the pre-filter unit 110 first and then through the crystal-generation catalyst filter unit 120, it will be described that the pre-filter unit 110 is formed upstream of the crystal-forming catalyst filter unit 120. Can be. In FIG. 1, the pre-filter unit 110 is formed upstream of the crystal generation catalyst filter unit 120.
  • the prefilter unit 110 may include at least a part selected from the group consisting of a precipitation filter, an electrostatic adsorption filter, and a carbon block filter.
  • the filters may comprise a nonwoven fabric and may be referred to as an available nonwoven filter.
  • the mechanism of the pre-filter unit 110 or the kind of foreign matter filtered by the pre-filter unit 110 may vary.
  • the prefilter unit 110 is formed of a hollow cylinder or a hollow polygonal column.
  • the hollow part of the prefilter unit 110 may be referred to as a hollow portion.
  • the hollow part is a region for accommodating the crystal generating catalyst filter part 120 and the ion exchange resin filter part 130.
  • the prefilter unit 110 has an outer circumferential surface and an inner circumferential surface.
  • the outer circumferential surface refers to a surface facing the inner circumferential surface of the housing 150.
  • the inner circumferential surface refers to a surface facing the crystal generation catalyst filter unit 120 disposed in the hollow portion.
  • the pre-filter unit 110 is configured to filter the raw water flowing in the downward direction from the top. Arrows in FIG. 1 indicate the flow of raw water. Raw water is primarily filtered in the course of passing through the pre-filter unit 110.
  • the crystal generation catalyst filter unit 120 is formed downstream of the prefilter unit 110.
  • FIG. 1 shows a configuration in which the crystal generation catalyst filter 120 is formed downstream of the prefilter 110.
  • the crystal generating catalyst filter unit 120 is configured to promote the reaction between the hard material or the scale-inducing material existing in the raw water and the bicarbonate anion.
  • the crystallization catalyst filter unit 120 is configured to remove the hard material or the scale-inducing material from the raw water through crystallization.
  • the crystal generation catalyst filter unit 120 includes a first case 121, a plurality of crystal generation catalysts 122, and a protrusion 123.
  • the first case 121 is formed so that the raw water passing through the pre-filter unit 110 flows in. Referring to FIG. 1, it can be seen that raw water passing through the pre-filter unit 110 in a downward direction from the bottom of the first case 121 flows into the first case 121.
  • the first case 121 has a hollow portion, the cross section may be formed in an annular shape.
  • An annular cross section of the first case 121 means that the first case 121 has an annular inner space in an area excluding the hollow part.
  • the annular inner space is where a plurality of crystal forming catalysts 122 are charged.
  • the shape of the first case 121 is not necessarily limited thereto.
  • the first case 121 may be disposed to be wrapped by the prefilter unit 110, but this is not necessarily limited thereto.
  • the first case 121 forms a boundary with the pre-filter unit 110.
  • the outer circumferential surface of the first case 121 is disposed to face the inner circumferential surface of the prefilter unit 110.
  • Raw water passes through the pre-filter unit 110 in a top-down direction with reference to FIG. 1, but may partially flow left and right. However, the raw water passing through the pre-filter unit 110 may not flow into the side of the crystal generating catalyst filter unit 120 by the boundary formed by the first case 121. Since the housing 150 is disposed on the outer circumferential surface of the prefilter unit 110, and the first case 121 is disposed on the inner circumferential surface of the prefilter unit 110, raw water passes through the prefilter unit 110. It can flow only in the flow path defined in.
  • raw water filtered by the pre-filter unit 110 may flow down the outer wall of the first case 121. Accordingly, the inner circumferential surface of the housing 150 and the first case 121 are combined with each other to form a flow of raw water flowing from the top to the bottom.
  • a plurality of crystal generating catalysts 122 are charged (or filled).
  • the crystal forming catalyst 122 is made to promote the reaction of the hard or scale-inducing material and bicarbonate anion present in the raw water.
  • the crystal forming catalyst 122 is configured to remove the hard material or the scale causing material from the raw water through crystallization of the hard material or the scale causing material. The mechanism of the crystal formation catalyst 122 will be described later in more detail with reference to FIG. 2.
  • the crystal generation catalyst filter unit 120 has a flow path structure in which raw water rises from the bottom up. Specifically, the lower end of the crystal generation catalyst filter unit 120 is spaced apart from the inner bottom surface of the housing 150 and the raw water passing through the pre-filter unit 110 in the flow path structure of the crystal generation catalyst filter unit 120 It is formed to rise.
  • the crystal forming catalyst 122 is configured to remove the hard material or the scale-inducing material from the raw water charged in the flow path structure.
  • the water In order to improve the hardness or scale-inducing material removal performance of the crystal forming catalyst 122, the water must be filled in the space where the crystal forming catalyst 122 is present, the filtration must be made.
  • the space in which the crystal generating catalyst 122 is present refers to a flow path structure through which raw water passes, and refers to the internal space of the first case 121 in FIG. 1.
  • the flow of water is also called up-flow.
  • a catalyst refers to a substance that serves to promote or inhibit a chemical reaction, and the catalyst is left intact after mixing with the product.
  • the crystal forming catalyst 122 of the present invention also promotes crystal formation of the hard material or scale-inducing material, but remains unchanged after mixing with the product. Crystals produced by promoting crystal formation must be separated from the crystal formation catalyst 122 so that the crystal formation catalyst 122 can participate in other reactions. Therefore, in order to improve the hardness or scale-inducing substance removal performance of the crystal forming catalyst 122, it is necessary to quickly separate the crystal from the crystal forming catalyst 122.
  • the crystal generation catalyst filter unit 120 When the crystal generation catalyst filter unit 120 has a flow path structure in which raw water rises from the bottom, the raw water filling the flow path structure provides buoyancy to the crystal production catalyst 122. Due to this buoyancy, the flow of the crystal forming catalyst 122 becomes active, so that the crystal can be separated from the crystal forming catalyst 122.
  • the crystal generation catalyst filter unit 120 When the crystal generation catalyst filter unit 120 has a flow path structure in which raw water rises from the bottom, the crystal may be naturally separated from the crystal generation catalyst 122 by using buoyancy provided by the raw water without applying an external force. That has the advantage.
  • the crystal generation catalyst filter unit 120 has a flow path structure in which raw water falls from the top to the bottom, unlike the present invention, an effect of separating the crystal from the crystal generation catalyst 122 may be expected only by applying an external force. .
  • This type of flow is called down-flow, which is distinguished from the upward flow.
  • An inner wall surface of the first case 121 surrounds the plurality of crystal generating catalysts 122.
  • the plurality of crystal generation catalysts 122 are filled in the inner space surrounded by the inner wall surface of the crystal generation catalyst filter unit 120.
  • Protrusions 123 are formed on the inner wall surface.
  • the composite filter 100 includes a pre-filter unit 110 and an ion exchange resin filter unit 130, as well as a crystal generation catalyst filter unit 120, and are in series with several additional filters as described with reference to FIGS. 6 to 9. Can be connected to form a filtration system.
  • the performance of the filtration system is determined by the individual filters forming the filtration system.
  • the performance of each filter is affected by the flow rate of the raw water, in order to improve the performance of the filtration system as a whole, the flow rate of the raw water passing through the individual filters must be maintained in an appropriate range.
  • the filtration performance increases as the flow rate increases and then decreases again. This tendency also applies to various filters that may be used in the pre-filter unit 110.
  • the crystal production catalyst filter unit 120 including the crystal production catalyst 122 shows a tendency that the filtration performance decreases and increases as the flow rate increases. This is because the crystal forming catalyst 122 must be separated from the crystal by being affected by the active flow of raw water so that it can participate in the reaction which promotes the crystal formation again. Therefore, the following two approaches can be considered to improve the performance of the filtration system as a whole.
  • the first is to configure the filtration system so that the flow rate is set differently for each filter and supply the proper flow rate for each filter.
  • This method can provide the best filtration performance for each filter, which can dramatically improve the performance of the filtration system.
  • a separate device for controlling the flow rate between the filters is required. This does not fit the tendency of the filtration system to be miniaturized and simplified due to space utilization and hygiene.
  • the second is to set the flow rate of the filtration system to a range of flow rates suitable for a part of the filter, but complement other filters so as to exhibit sufficient filtration performance within the range of the set flow rate.
  • the second approach may be less effective in improving the performance of the filtration system than the first, but it may contribute to the miniaturization and simplification of the filtration system since no separate device is required to control the flow rate between the filter and the filter.
  • the present invention employs a second approach in accordance with the trend toward miniaturization and simplification of the filtration system.
  • the composite filter 100 includes the pre-filter unit 110 and the ion exchange resin filter unit 130 as well as the crystal forming catalyst 122, and further, the composite filter 100 is combined with other filters to form a filtration system. You may. Therefore, if the performance of the pre-filter unit 110 and the other filters should be supplemented according to the proper flow rate of the crystal formation catalyst 122, the complementary structure of each of the other filters except for the crystal formation catalyst 122 should be considered. Therefore, the solution of the problem is complicated.
  • the crystal formation catalyst 122 is supplemented according to the appropriate flow rate of the other filters, the filtration performance of the entire filtration system can be improved only by the supplementation of the crystal formation catalyst 122, thereby simplifying the problem.
  • a protrusion formed on the inner wall surface of the first case 121 (123) was adopted.
  • the crystal forming catalyst 122 has a tendency to decrease after increasing the filtration performance as the flow rate increases. Therefore, considering only the crystal formation catalyst 122, it is preferable to increase the flow rate until the improvement of the filtration performance is saturated.
  • the filter has a tendency to increase and decrease the filtration performance as the flow rate increases, and has a high filtration performance in a flow rate range relatively smaller than the optimum flow rate of the crystal forming catalyst 122.
  • the protrusion 123 formed on the inner wall surface of the first case 121 may be formed to improve the filtration performance of the crystal forming catalyst 122 at a relatively small flow rate.
  • the protrusion 123 collides with particles of raw water to cause turbulence in the flow of raw water.
  • the flow rate through the composite filter 100 is smaller than the optimum flow rate of the crystal forming catalyst 122, separation of the crystal from the crystal forming catalyst 122 may be achieved by turbulence.
  • the crystal forming catalyst 122 separated from the crystal may rejoin another reaction. Therefore, the protrusion 123 formed on the inner wall surface of the first case 121 may improve the filtration performance of the crystal forming catalyst 122 in a relatively small flow rate range through the formation of turbulent flow.
  • the protrusion 123 may be formed spirally along the inner wall surface of the first case 121. When the protrusion 123 is formed in a spiral, turbulence may be formed while the raw water meets the protrusion 123 formed in the spiral.
  • the protrusions 123 may be provided in plural, and the plurality of protrusions 123 may be spaced apart from each other in the direction in which the raw water is filled in the crystal generation catalyst filter 120. The raw water may form turbulence by the protrusions 123 spaced apart from each other.
  • the ion exchange resin filter unit 130 is formed downstream of the crystal forming catalyst filter unit 120 to filter the raw water passing through the crystal forming catalyst filter unit 120.
  • the ion exchange resin filter unit 130 is made to remove the hardness material or the scale causing material from the raw water through ion exchange.
  • the arrangement order of the crystal forming catalyst filter unit 120 and the ion exchange resin filter unit 130 has a very important meaning.
  • the order of placement relates to which filter part the raw water passes first and which filter part then passes.
  • the crystal formation catalyst 122 has a disadvantage that the initial reaction rate is slower than the ion exchange resin 132. A comparison of the reaction rate between the crystal forming catalyst 122 and the ion exchange resin 132 can be seen in FIG. 4.
  • the crystal formation catalyst 122 has a disadvantage in that it is difficult to remove 100% of the hardness material or the scale-inducing material present in the raw water.
  • the crystal forming catalyst 122 may participate in another crystallization reaction after participating in the crystallization reaction. This is due to the nature of the catalyst. Thus, the crystal forming catalyst 122 has a very long life compared to the ion exchange resin 132.
  • the ion exchange resin 132 removes the hard material or the scale causing material by ion exchange alone. Therefore, the ion exchange resin 132 has the advantage that the initial reaction rate is very fast. In addition, the ion exchange resin 132 has an advantage of being able to remove nearly 100% of the hardness material or scale-inducing material present in the raw water.
  • the ion exchange resin 132 has a disadvantage of requiring a short life and regeneration due to the consumption of ions to be exchanged. Unless regeneration is performed, the ion exchange resin 132 can no longer remove the hard or scale-inducing substance at any moment. In addition, the ion exchange resin 132 has a disadvantage that the regeneration efficiency is gradually reduced as the regeneration is repeated.
  • the crystal forming catalyst filter 120 is disposed upstream of the ion exchange resin filter 130, the ion exchange resin
  • the filter unit 130 is disposed downstream of the crystal generation catalyst filter unit 120.
  • the crystal forming catalyst 122 When the crystal forming catalyst filter unit 120 is disposed upstream of the ion exchange resin filter unit 130, the crystal forming catalyst 122 first deposits the hard material or the scale-inducing material from the raw water before the ion exchange resin 132. Can be removed Accordingly, the load on the ion exchange resin 132 is reduced.
  • the load herein refers to the amount of hard material or scale-inducing material that the ion exchange resin 132 should remove. Since the ion exchange resin 132 removes the hard or scale-inducing substance through a mechanism called ion exchange, the load on the ion exchange resin 132 is reduced. When the load on the ion exchange resin 132 is reduced, the lifespan and regeneration period of the ion exchange resin 132 may be extended. Accordingly, when the crystal generation catalyst filter unit 120 is disposed upstream of the ion exchange resin filter unit 130, the crystal generation catalyst 122 may compensate for the disadvantages of the ion exchange resin 132.
  • the ion exchange resin filter 130 is disposed upstream of the crystal generation catalyst filter 120, the load applied to the ion exchange resin 132 is not reduced at all. Therefore, the effect of extending the lifespan and regeneration period of the ion exchange resin 132 cannot be expected.
  • the ion exchange resin 132 converts the hardness material or the scale-inducing material that is not removed by the crystal generation catalyst 122. You can even remove it. Since the crystallization catalyst 122 does not remove 100% of the hardness material or the scale-inducing material, the crystallization catalyst 122 alone has a limitation in decreasing the hardness of water. However, if the ion exchange resin 132 even removes the hard material or scale-inducing material not removed by the crystal forming catalyst 122, the hard material or scale-inducing material may be removed from the raw water to almost 100%. Therefore, when the ion exchange resin filter unit 130 is disposed downstream of the crystal generation catalyst filter unit 120, the ion exchange resin 132 may compensate for the disadvantage of the crystal generation catalyst 122.
  • the crystal forming catalyst filter unit 120 is disposed downstream of the ion exchange resin filter unit 130, the hard material or the raw material may be removed from the raw water until a point where regeneration of the ion exchange resin 132 is required.
  • the scale causing material may be removed close to 100%.
  • the crystal forming catalyst 122 may not remove the hard material or the scale-inducing material close to 100%.
  • the ion exchange resin filter unit 130 includes a second case 131 and a plurality of ion exchange resins 132.
  • the second case 131 is formed so that the raw water passing through the crystal generation catalyst filter unit 120 flows in.
  • the second case 131 forms a boundary with the crystal generation catalyst filter unit 120.
  • the second case 131 may be formed in a substantially hollow cylindrical or polygonal shape.
  • a plurality of ion exchange resins 132 are introduced into the second case 131. The mechanism of the ion exchange resin 132 will be described later with reference to FIGS. 3A and 3B.
  • the flow path structure includes the pre-filter unit 110, the crystal-forming catalyst filter unit 120, and the ion-exchange resin filter unit 130, and the crystal-forming catalyst 122 and the ion-exchange resin 132 mutually If disposed in the divided area, the structure and arrangement of the first case 121 and the second case 131 is not necessarily limited to that shown in FIG.
  • the ion exchange resin filter unit 130 has a flow path structure different from that of the crystal generation catalyst filter unit 120. In order to maintain a stable adsorption section of the ion exchange resin filter 130, it is preferable to suppress the flow of the ion exchange resin 132 as much as possible. If the ion exchange resin filter unit 130 has an upward flow path structure similarly to the crystal generation catalyst filter unit 120, it is difficult to suppress the flow of the ion exchange resin 132 due to the buoyancy provided by the raw water. Therefore, the ion exchange resin filter 130 of the present invention has a flow path structure formed so that the raw water falls from the top to the bottom. The flow of raw water from top to bottom corresponds to down-flow.
  • an upper end of the crystal generation catalyst filter unit 120 and an upper end of the ion exchange resin filter unit 130 are spaced apart from an inner upper end surface of the housing. Accordingly, the raw water passing through the crystal generation catalyst filter unit 120 may fall into the flow path structure of the ion exchange resin filter unit 130. If the ion exchange resin filter 130 has such a flow path structure, the flow of the ion exchange resin 132 filled in the second case 131 can be suppressed, so that the ion exchange resin filter 130 Can maintain a stable adsorption section.
  • the outer wall surface of the first case 121 and the outer wall surface of the second case 131 may be spaced apart from each other.
  • a water discharge passage 160 is formed between the outer wall surface of the first case 121 and the outer wall surface of the second case 131.
  • the water discharge passage 160 is connected to the water outlet 152 of the housing 150.
  • the lower end of the ion exchange resin filter unit 130 is spaced apart from the inner bottom surface of the housing 150. Accordingly, the composite filter 100 is configured such that the raw water passing through the ion exchange resin filter unit 130 is discharged through the water discharge passage 160.
  • the composite filter 100 includes a housing 150 configured to receive the pre-filter unit 110, the crystal generation catalyst filter unit 120, and the ion exchange resin filter unit 130.
  • a housing 150 configured to receive the pre-filter unit 110, the crystal generation catalyst filter unit 120, and the ion exchange resin filter unit 130.
  • an inlet 151 and an outlet 152 may be formed in the housing 150.
  • the inlet 151 is formed to supply water to the pre-filter unit 110.
  • the water extraction unit 152 is configured to pass water sequentially passed through the pre-filter unit 110, the crystal generation catalyst filter unit 120, the ion exchange resin filter unit 130, and the water discharge passage 160 to the outside of the composite filter 100. It is formed to discharge into.
  • the crystal forming catalyst 122 and the ion exchange resin 132 may be introduced into the remaining space after the pre-filter unit 110 is disposed inside the housing 150.
  • the crystal generation catalyst filter unit 120 and the ion exchange resin filter unit 130 are not formed of blocks, but a plurality of crystal generation catalysts 122 and a plurality of ion exchange resins 132 are formed. Therefore, when the crystal forming catalyst 122 and the ion exchange resin 132 are introduced into the remaining space of the housing 150, a single filter may be formed with the pre-filter unit 110 and the size of the composite filter 100 may be reduced. Can be.
  • the crystal generation catalyst 122 and the ion exchange resin 132 should be put in a space separated from each other, and in order of the pre-filter unit 110, the crystal generation catalyst filter unit 120, the ion exchange resin filter unit 130 It should be arranged to have a flow path structure.
  • the composite filter 100 includes a water extraction nonwoven filter 140.
  • the water extraction nonwoven filter 140 is disposed in the water extraction passage 160 of the ion exchange resin filter 130.
  • the water extracting nonwoven fabric filter 140 may be formed to surround the second case 131 of the ion exchange resin filter 130, and may remove residual foreign matter from the raw water discharged through the water outlet passage 160. Crystals produced by the crystal formation catalyst 122 may also be filtered by the water extraction nonwoven filter 140.
  • the prefilter unit 110, the crystal generation catalyst filter unit 120, and the ion exchange resin filter unit 130 may be formed in unit modules so as to be easily combined or separated from each other.
  • the crystal generation catalyst filter unit 120 of the unit module is inserted into the hollow portion of the pre filter unit 110 which is another unit module, and the crystal generation catalyst filter unit 120 is another unit module of the ion exchange resin filter unit 130. Inserted into, the combination of the pre-filter unit 110, the crystal forming catalyst filter unit 120 and the ion exchange resin filter unit 130 may be made.
  • FIG. 2 is a conceptual diagram illustrating a mechanism of the crystal generating catalyst 122.
  • the crystal generating catalyst 122 includes a carrier 122a (catalyst support, carrier, or supporting material) and a crystal seed 122c.
  • the carrier 122a is made of a polymer having a negative charge. Hard materials or scale-inducing materials such as calcium cations 10 and magnesium cations 20 are positively charged. Therefore, if the carrier 122a is made of a negatively charged polymer, the carrier 122a may attract the hard material or the scale-inducing material by the electrostatic attraction. Negatively charged polymers include, for example, polyacrylates.
  • Crystallization site 122b indicates the space where crystallization of the hard or scale-inducing material takes place.
  • the crystal seed 122c is present at the crystallization site 122b.
  • Crystal seed 122c is an inorganic material that makes the hard material or scale-inducing material into a crystal.
  • Crystal seed 122c includes at least one of calcium and magnesium.
  • the crystal seed 122c may include at least one of a calcium carbonate (calcium carbonate, CaCO 3 ) crystal and a magnesium carbonate (magnesium carbonate, MgCO 3 ) crystal.
  • Hard materials or scale-inducing substances present in raw water are brought to the crystallization site 122b of the carrier 122a by electrostatic attraction when approaching the crystal forming catalyst 122. Gather.
  • the crystal seed 122c is present at the crystallization site 122b, and the hardened material or the scale-inducing material is crystallized by the crystal seed 122c.
  • the crystallization scheme of the hardness material or the scale-inducing material may be represented by Formula 1 and Formula 2. MEDIA points to the crystal formation catalyst 122.
  • Determining generation catalyst (122) is a calcium cation (Ca 2 +) and bicarbonate anion (HCO 3 -) present in the raw water as shown in the formula (1) to facilitate the reaction.
  • the crystal forming catalyst 122 promotes the reaction between the magnesium cation (Mg 2 + ) and the bicarbonate anion (HCO 3 ⁇ ) present in the raw water, as shown in Formula 2.
  • the crystal forming catalyst 122 contributes to the crystallization of the hard material or the scale-inducing material through the promotion of the chemical formula 1 reaction and the chemical formula 2 reaction.
  • crystal 30 can be separated at crystallization site 122b.
  • the crystal 30 separated from the crystal formation catalyst 122 may be mechanically filtered by the water extraction nonwoven filter 140 described with reference to FIG. 1.
  • 3A is a conceptual diagram illustrating a mechanism of the ion exchange resin 132.
  • the ion exchange resin 132 has a sodium cation (Na +) and a functional group (SO 3 ⁇ ). There is a difference in selectivity (or affinity) between the sodium cation bound to the functional group (SO 3 ⁇ ) of the ion exchange resin 132 and the hard or scale-inducing substance (calcium cation or magnesium cation) present in the raw water. As such, chemical ion exchange may occur. Since the affinity of the calcium cations for the functional groups is greater than the sodium cations in the functional groups, the sodium cations in the functional groups are separated from the functional groups and instead the calcium cations bind to the functional groups. Magnesium cations also bind to functional groups on the same principle as calcium cations. By such an ion exchange process, the hardness material or the scale causing material may be removed from the raw water, and the hardness of the raw water may be lowered.
  • the ion exchange resin 132 removes the hard material or the scale-inducing material by chemical ion exchange, the initial reaction rate is very fast. As long as the sodium cation and the functional group are present in the ion exchange resin 132, the hardness material or the scale causing material present in the raw water may be continuously removed.
  • the amount of sodium cations and functional groups present in the ion exchange resin 132 is limited. Therefore, as the ion exchange resin 132 repeats the chemical ion exchange action, the ion exchange performance gradually decreases, and regeneration is required to restore the performance of the ion exchange resin 132.
  • 3B is a conceptual diagram illustrating regeneration of the ion exchange resin 132.
  • the ion exchange resin 132 In order to regenerate the ion exchange resin 132, the ion exchange resin 132 is exposed to salt water (liquid containing salt). Since there is an excess of sodium cations in the brine, there is a difference in concentration between the sodium cation and the calcium cation, and there is a difference in concentration between the sodium cation and the magnesium cation. When excess sodium cations present in the brine meet the ion exchange resin 132 to be recycled, the calcium cation or magnesium cation bound to the functional group is desorbed from the functional group by the concentration difference, and the sodium cation is bound to the functional group.
  • the ion exchange resin 132 may restore the removal performance of the hard material or the scale-inducing material by regeneration. However, as the regeneration is repeated, the regeneration efficiency gradually decreases. As a result, the regeneration cycle of the ion exchange resin 132 is shortened, and the recovery effect of the ion exchange performance is also lowered.
  • the present invention has already described that the disadvantage of the ion exchange resin 132 is supplemented by the crystal forming catalyst 122 (see FIGS. 2 and 2).
  • Hardness reduction rate refers to the filtration ability to remove hardness and scale-causing substances from raw water.
  • the ion exchange resin 132 shows a rapid high filtration performance from the beginning. Since the hardness of the raw water exposed to the ion exchange resin 132 is lowered within a short time, it can be seen that the ion exchange resin 132 has a very fast initial reaction rate. In addition, since the hardness reduction rate of the ion exchange resin 132 is nearly 100%, it can be confirmed that the ion exchange resin 132 has a very good filtration performance.
  • the lifetime of the ion exchange resin 132 ends before the operation time reaches about 200 minutes.
  • the lifetime of the ion exchange resin 132 may vary depending on the experimental conditions, the lifetime of the ion exchange resin 132 is shorter than the lifetime of the crystal forming catalyst 122 even if the experimental conditions are changed. Therefore, in order to continue using the ion exchange resin 132, it must go through a process called regeneration.
  • the crystal forming catalyst 122 is increased slowly compared to the ion exchange resin 132. This means that the crystal forming catalyst 122 has a slower reaction rate than the ion exchange resin 132. However, unlike the ion exchange resin 132, the filtration performance of the crystal forming catalyst 122 continues to slowly increase with time. This means that the lifetime of the crystal forming catalyst 122 is much longer than that of the ion exchange resin 132, and unlike the ion exchange resin 132, it does not require frequent regeneration.
  • the crystal forming catalyst 122 has a much longer life than the ion exchange resin 132 results from a difference in mechanism. Since the ion exchange resin 132 removes the hard or scale-inducing substance from the raw water through the exchange between ions, the number of exchangeable ions decreases over time. In contrast, the crystal formation catalyst 122 may have a much longer life than the ion exchange resin 132 since the generated crystal is separated from the crystal formation catalyst, and thus may participate in another reaction to generate the crystal.
  • the composite filter of the present invention compensates for the shortcomings of the ion exchange resin 132 that requires regeneration using the crystal formation catalyst 122, and the crystal formation catalyst having a slow initial reaction rate using the ion exchange resin 132 ( 122) to compensate for the shortcomings.
  • the present invention has an advantage of solving problems such as waste of water due to regeneration, environmental pollution, and reduction of regeneration efficiency.
  • FIG 5 is a cross-sectional view of a composite filter 200 showing a second embodiment of the present invention.
  • An inlet 251 is formed at one side of the housing 250, and the pre-filter unit 110 receives raw water from the inlet 251.
  • the prefilter unit 110 is configured to remove at least one of particulate matter, organic matter, and residual chlorine present in the raw water.
  • the prefilter unit 110 may remove at least one of particulate matter, organic matter, and residual chlorine from raw water flowing from the outer circumferential surface toward the inner circumferential surface.
  • the prefilter unit 110 has a hollow portion.
  • the crystal generation catalyst filter 220 may be disposed in the hollow portion of the pre-filter unit 110.
  • the crystal generation catalyst filter 220 may include a block 220 having a plurality of crystal generation catalysts 122 (see FIG. 2).
  • the block 200 having the crystal forming catalyst may be referred to as the first block 220 to distinguish it from the block of the ion exchange resin filter 230. Since the first block 220 and the crystal generation catalyst filter 220 are substantially the same, reference numerals of the first block 220 are denoted by the same reference numerals as the crystal generation catalyst filter 220.
  • the first block 220 is configured to remove the hard material or the scale-inducing material from the raw water flowing in the direction of the inner circumferential surface from the outer circumferential surface. Since the first block 220 has a plurality of crystal generation catalysts, the mechanism of the first block 220 is the same as that of the crystal generation catalyst described above. The crystal can be separated from the crystal forming catalyst by raw water passing through the crystal forming catalyst in the shear direction.
  • the first block 220 has a hollow part.
  • An ion exchange resin filter 230 may be disposed in the hollow portion of the first block 220.
  • the ion exchange resin filter unit 230 may include a block 230 having a plurality of ion exchange resins 132 (see FIGS. 3A and 3B). This block 230 may be referred to as a second block 230 to distinguish it from the first block 220. Since the second block 230 and the ion exchange resin filter unit 230 are substantially the same, the reference numerals of the first block 230 are denoted by the same reference numerals as the crystal generation catalyst filter unit 230.
  • the second block 230 is configured to remove the hard material or the scale causing material from the raw water flowing in the direction from the outer circumferential surface to the inner circumferential surface. Since the second block 230 has a plurality of ion exchange resins 132, the mechanism of the second block 230 is the same as that of the ion exchange resin 132 described above.
  • the material density of the composite filter 200 may be improved. have.
  • the ion exchange resin 132 needs to be regenerated, only the second block 230 may be separated and regenerated, and then inserted into the hollow part of the first block 220 again. Therefore, the block structure can improve the convenience of reproduction.
  • the second block 230 has a hollow part.
  • a water outlet passage 260 may be disposed in the hollow portion of the second block 230, and the outlet passage 260 receives raw water from the second block 230.
  • the water outlet flow path 260 forms a flow path connected to the water outlet 252. The raw water filtered while sequentially passing through the first block 220 and the second block 230 may be discharged to the outside of the housing 250 through the water discharge passage 260 and the water outlet 252.
  • the block structure for improving the material integration degree is not necessarily limited to the structure of FIG. 5.
  • One of the first block 220 and the second block 230 may be formed to surround the other one according to the positions of the inlet 251 and the outlet 252.
  • the second block 230 may be formed to surround the first block 220.
  • the flow path structure of the composite filter should be made so that the raw water is sequentially filtered by the first block 220 and the second block 230.
  • the filtration system is constructed by connecting the composite filter 100 or 200 of the present invention in series with other filters. If the composite filter 100 or 200 consists of a single filter, the filtration system is formed of a set of several filters.
  • FIG. 6 is a conceptual diagram illustrating a two-stage filtration system by connecting the composite filter and the other filter of the present invention in series.
  • the filtration system is formed by connecting two filters in two stages.
  • the composite filter 100 or 200 of the present invention is disposed on the upstream side, and the UF filter 300 (Ultrafiltration) is disposed on the downstream side.
  • the UF filter 300 filters the water by the pressure difference, and separates a specific substance from the water by the size difference between the pores and the solutes.
  • the composite filter 100 or 200 and the UF filter 300 are connected in series.
  • At least one of particulate matter, organic matter, and residual chlorine is removed from the prefilter unit 110 or 210 of the composite filter 100 or 200 (see FIGS. 1 and 5).
  • the hard material or the scale-inducing material is removed by a mechanism called crystallization.
  • the hardness material or the scale-inducing material are removed by the ion exchange resin filter unit 130 or 230 (see FIGS. 1 and 5) of the composite filter 100 or 200 and an ion exchange mechanism.
  • the UF filter 300 may remove the solutes, colloids, proteins, microbiological contaminants and large organic molecules from the water filtered by the composite filter 100 or 200.
  • FIG. 7 is another conceptual diagram illustrating a two-stage filtration system connected in series with the complex filter and the other filter of the present invention.
  • the filtration system is formed by connecting two filters in two stages.
  • the composite filter 100 or 200 of the present invention On the upstream side, the composite filter 100 or 200 of the present invention is disposed, and on the downstream side, the composite filter 300, 400 having the UF filter unit 300 and the post carbon block filter unit 400 is disposed.
  • the upstream composite filter 100 or 200 may be referred to as a first composite filter 100 or 200.
  • the downstream composite filters 300 and 400 may be referred to as second composite filters 300 and 400.
  • the second composite filters 300 and 400 include the UF filter unit 300 and the post carbon block filter unit 400 in one housing (not shown).
  • the post carbon block filter unit 400 of the second composite filter 300 or 400 filters out bacteria, which can be propagated in the filtration system, one last time. The description of the remaining filter or filter unit is replaced with the above description.
  • FIG. 8 is a conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
  • the filtration system is formed by connecting three filters in three stages.
  • the composite filter 100 or 200 of the present invention is disposed on the upstream side, the UF filter 300 is disposed on the midstream side, and the carbon block filter 400 is disposed on the downstream side.
  • the composite filter 100 or 200, the UF filter 300 and the carbon block filter 400 are connected in series.
  • the filtration system of FIG. Unlike the second composite filter 300 or 400 described in FIG. 7 having the UF filter unit 300 and the post carbon block filter unit 400 in one housing (not shown), the filtration system of FIG. There is a difference in that the filter 300 and the carbon block filter 400 are provided in different housings (not shown).
  • FIG. 9 is another conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
  • a carbon block filter is disposed on the upstream side, an UF filter is disposed on the middle side, and a composite filter 100 or 200 is disposed on the downstream side.
  • the filtration system of FIG. 9 differs only in the arrangement order of the filtration system and the filter of FIG. The order of the filters forming the filtration system can be changed in design as needed.
  • the complex filter described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made.
  • the present invention can be used in industrial fields related to filters that filter raw water to produce purified water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

The present invention provides a composite filter comprising: a crystal generation catalyst filter part formed so as to promote the reaction of hardness materials or scale-causing materials, which are present in feed water, with bicarbonate anions and to remove the hardness materials or the scale-causing materials from the feed water by means of crystallization; and an ion exchange resin filter part formed at a downstream side of the crystal generation catalyst filter part so as to filter the feed water, which has passed through the crystal generation catalyst filter part, and to remove the hardness materials or the scale-causing materials from the feed water by means of ion exchange.

Description

복합 필터Composite filter
본 발명은 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어지는 복합 필터에 관한 것이다.The present invention relates to a composite filter adapted to remove hard or scale-inducing substances from raw water.
물의 경도(water hardness)란 물에 들어있는 칼슘 이온과 마그네슘 이온의 양을 이들에 대응하는 탄산칼슘(칼슘 카보네이트, CaCO3)의 양(단위 mg/l)으로 환산하여 수치화한 것을 의미한다. 물의 경도는 물의 맛에 영향을 미치는 것으로 알려져 있다. 일정한 수치를 기준으로 물의 경도가 기준보다 높으면 경수, 기준보다 낮으면 연수로 분류된다. 세계보건기구(WHO)의 가이드라인에서는 경수와 연수의 기준을 더욱 세분화하여 분류한다.Water hardness means that the amount of calcium ions and magnesium ions in water is quantified in terms of the corresponding amount of calcium carbonate (calcium carbonate, CaCO 3 ) (unit mg / l). The hardness of water is known to affect the taste of water. If the hardness of water is higher than the standard, it is classified as hard water and if it is lower than the standard, it is classified as soft water. The World Health Organization (WHO) guidelines further refine the criteria for hard water and training.
경도성 물질은 상온보다 높거나 낮은 온도에서 반응하여 스케일을 형성하게 된다. 스케일(예를 들어 CaCO3)이란 물에 잔류하는 미네랄 성분이 수분의 증발 후 뭉치면서 생기는 물질을 가리킨다. 냉장고나 정수기와 같은 워터 시스템의 출구에 생성된 스케일은 소비자에게 워터 시스템의 고장 또는 성능 저하로 인식되기 때문에 스케일의 생성을 방지하는 것이 필요하다.Hard materials will react at temperatures above or below room temperature to form scale. The scale (for example, CaCO 3 ) refers to a substance that is formed when the mineral component remaining in the water aggregates after evaporation of water. It is necessary to prevent the generation of scales because scales generated at the outlet of water systems such as refrigerators and water purifiers are recognized by the consumer as a failure or deterioration of the water system.
또한 세탁기나 식기세척기와 같은 워터 클리닝 시스템에서 경도성 물질은 세제의 음이온과 결합하여 세척력의 저하를 유발하고 비용해성 세제 때를 생성하기 때문에 고경도의 물에서 경도성 물질을 제거하여 물의 경도를 낮추는 것이 필요하다.In addition, in water cleaning systems such as washing machines and dishwashers, the hard material combines with the negative ions of the detergent, causing deterioration of cleaning power and creating insoluble detergents. It is necessary.
본 발명의 일 목적은 이온교환수지와 결정생성촉매를 포함하여 물에 존재하는 경도성 물질 또는 스케일 유발 물질을 제거할 수 있는 복합 필터를 제안하기 위한 것이다.One object of the present invention is to propose a composite filter capable of removing the hard or scale-inducing substances present in water, including ion exchange resins and crystallization catalysts.
본 발명의 다른 일 목적은 이온교환수지의 단점과 결정생성촉매의 단점을 상호 보완하여 효과적으로 경도성 물질 또는 스케일 유발 물질을 제거할 수 있는 복합 필터를 제안하기 위한 것이다.Another object of the present invention is to propose a composite filter which can effectively remove the hardness material or the scale-inducing material by complementing the disadvantages of the ion exchange resin and the disadvantages of the crystal forming catalyst.
본 발명의 또 다른 일 목적은 이온교환수지와 결정생성촉매의 경도성 물질 또는 스케일 유발 물질 제거 성능을 향상시킬 수 있는 유로 구조를 갖는 복합 필터를 제안하기 위한 것이다.Still another object of the present invention is to propose a composite filter having a flow path structure capable of improving the hardness or scale-inducing material removal performance of the ion exchange resin and the crystal forming catalyst.
본 발명의 또 다른 일 목적은 유량과 여과 성능과의 관계를 고려하여 결정생성촉매의 성능을 향상시킬 수 있는 복합 필터를 제안하기 위한 것이다.Another object of the present invention is to propose a composite filter which can improve the performance of the crystal forming catalyst in consideration of the relationship between the flow rate and the filtration performance.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명의 일 실시예에 따르는 복합 필터는, 원수에 존재하는 경도성 물질 또는 스케일 유발 물질과 중탄산 음이온의 반응을 촉진하고, 결정화를 통해 상기 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어지는 결정생성촉매 필터부; 및 상기 결정생성촉매 필터부를 통과한 원수를 여과하도록 상기 결정생성촉매 필터부의 하류측에 형성되고, 이온 교환을 통해 상기 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어지는 이온교환수지 필터부를 포함한다.In order to achieve the object of the present invention, the composite filter according to an embodiment of the present invention promotes the reaction between the hard material or the scale-inducing material and the bicarbonate anion present in the raw water, and the hardness from the raw water through crystallization. A crystal production catalyst filter unit configured to remove a substance or a scale-inducing substance; And an ion exchange resin filter part formed downstream of the crystal production catalyst filter part to filter the raw water passing through the crystal production catalyst filter part and configured to remove the hardness material or the scale-inducing material from the raw water through ion exchange. .
본 발명과 관련한 일 예에 따르면, 상기 결정생성촉매 필터부는 다수의 결정생성촉매를 포함하고, 상기 결정생성촉매는, 상기 원수에 존재하는 칼슘 양이온과 중탄산 음이온의 반응을 촉진하거나 상기 원수에 존재하는 마그네슘 양이온과 중탄산 음이온의 반응을 촉진하여, 상기 경도성 물질 또는 상기 스케일 유발 물질을 결정화시키도록 이루어질 수 있다.According to an example related to the present invention, the crystal formation catalyst filter unit includes a plurality of crystal production catalysts, and the crystal production catalysts promote the reaction of calcium cations and bicarbonate anions present in the raw water or present in the raw water. By promoting the reaction of the magnesium cation and bicarbonate anion, it can be made to crystallize the hardness material or the scale-inducing material.
본 발명과 관련한 다른 일 예에 따르면, 상기 결정생성촉매 필터부는 다수의 결정생성촉매를 포함하고, 상기 결정생성촉매는, 음전하를 띄는 고분자로 이루어지는 담체; 및 상기 담체의 결정화 사이트에 존재하며, 칼슘과 마그네슘 중 적어도 하나를 포함하는 결정 시드를 포함할 수 있다.According to another embodiment related to the present invention, the crystal production catalyst filter unit includes a plurality of crystal production catalysts, the crystal production catalysts comprising: a carrier made of a polymer having a negative charge; And a crystal seed present at the crystallization site of the carrier and comprising at least one of calcium and magnesium.
본 발명과 관련한 다른 일 예에 따르면, 상기 결정생성촉매 필터부는 아래에서부터 위로 원수가 차오르는 형태의 유로 구조를 갖고, 상기 이온교환수지 필터부는 위에서 아래로 원수가 떨어지는 형태의 유로 구조를 가질 수 있다.According to another embodiment related to the present invention, the crystal generation catalyst filter unit may have a flow path structure in which raw water rises from the bottom, and the ion exchange resin filter part may have a flow path structure in which raw water falls from the top to the bottom.
본 발명과 관련한 다른 일 예에 따르면, 상기 복합 필터는, 상기 결정생성촉매 필터부와 상기 이온교환수지 필터부를 수용하도록 형성되는 하우징; 및 상기 하우징의 내주면을 마주보도록 배치되고, 원수에 존재하는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거하도록 이루어지는 프리 필터부를 포함하고, 상기 결정생성촉매 필터부는, 상기 프리 필터부를 통과한 원수가 유입되도록 형성되고, 상기 프리 필터부와의 경계를 형성하는 제1케이스; 및 상기 제1케이스의 내부에 투입되는 다수의 결정생성촉매를 포함하며, 상기 이온교환수지 필터부는, 상기 결정생성촉매 필터부를 통과한 원수가 유입되도록 형성되고, 상기 결정생성촉매 필터부와의 경계를 형성하는 제2케이스; 및 상기 제2케이스의 내부에 투입되는 다수의 이온교환수지를 포함할 수 있다.According to another embodiment related to the present invention, the composite filter may include a housing formed to receive the crystal generation catalyst filter unit and the ion exchange resin filter unit; And a pre-filter unit disposed to face the inner circumferential surface of the housing and configured to remove at least one of particulate matter, organic matter, and residual chlorine present in the raw water. The crystal-forming catalyst filter unit may pass through the pre-filter unit. A first case formed to introduce raw water and forming a boundary with the pre-filter unit; And a plurality of crystal generation catalysts introduced into the first case, wherein the ion exchange resin filter unit is formed such that raw water passing through the crystal generation catalyst filter unit flows in and borders the crystal generation catalyst filter unit. A second case forming a; And a plurality of ion exchange resins introduced into the second case.
상기 제1케이스의 내벽면에는 나선형의 돌출부가 형성될 수 있다.A spiral protrusion may be formed on an inner wall surface of the first case.
상기 제1케이스의 내벽면에는 복수의 돌출부가 형성되고, 상기 복수의 돌출부는 상기 결정생성촉매 필터부에 원수가 차오르는 방향을 따라 서로 이격되게 배치될 수 있다.A plurality of protrusions may be formed on an inner wall surface of the first case, and the plurality of protrusions may be disposed to be spaced apart from each other in a direction in which raw water rises in the crystal generating catalyst filter.
상기 결정생성촉매 필터부의 하단은 상기 하우징의 내측 바닥면으로부터 이격되어, 상기 복합 필터는 상기 프리 필터부를 통과한 원수가 상기 결정생성촉매 필터부의 유로 구조로 차오르도록 형성될 수 있다.A lower end of the crystal generation catalyst filter unit may be spaced apart from an inner bottom surface of the housing, and the composite filter may be formed such that raw water passing through the pre-filter unit is filled in the flow path structure of the crystal generation catalyst filter unit.
상기 결정생성촉매 필터부의 상단과 상기 이온교환수지 필터부의 상단은 상기 하우징의 내측 상단면으로부터 이격되어, 상기 복합 필터는 상기 결정생성촉매 필터부를 통과한 원수가 상기 이온교환수지 필터부의 유로 구조로 떨어지도록 형성될 수 있다.The upper end of the crystal generation catalyst filter unit and the upper end of the ion exchange resin filter unit are spaced apart from the inner top surface of the housing, so that the raw water passing through the crystal generation catalyst filter unit falls into the flow path structure of the ion exchange resin filter unit. It can be formed to be.
상기 복합 필터는 상기 제1케이스의 외벽면과 상기 제2케이스의 외벽면 사이에 형성되는 출수 유로를 포함하고, 상기 이온교환수지 필터부의 하단은 상기 하우징의 내측 바닥면으로부터 이격되어 상기 복합 필터는 상기 이온교환수지 필터부를 통과한 원수가 상기 출수 유로를 통해 배출되도록 이루어질 수 있다.The composite filter includes a water discharge passage formed between an outer wall surface of the first case and an outer wall surface of the second case, and a lower end of the ion exchange resin filter unit is spaced apart from an inner bottom surface of the housing so that the composite filter is Raw water passing through the ion exchange resin filter may be discharged through the water discharge passage.
본 발명과 관련한 다른 일 예에 따르면, 상기 복합 필터는, 상기 결정생성촉매 필터부와 상기 이온교환수지 필터부를 수용하도록 형성되는 하우징; 및 상기 하우징의 내주면을 마주보도록 배치되고, 원수에 존재하는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거하도록 이루어지는 프리 필터부를 포함하고, 상기 결정생성촉매 필터부는 다수의 결정생성촉매를 갖는 제1블럭으로 이루어지고, 상기 이온교환수지 필터부는 다수의 이온교환수지를 갖는 제2블럭으로 이루어질 수 있다.According to another embodiment related to the present invention, the composite filter may include a housing formed to receive the crystal generation catalyst filter unit and the ion exchange resin filter unit; And a pre-filter unit disposed to face the inner circumferential surface of the housing and configured to remove at least one of particulate matter, organic matter, and residual chlorine present in raw water, wherein the crystal-forming catalyst filter unit has a plurality of crystal-forming catalysts. The first block may be formed, and the ion exchange resin filter unit may include a second block having a plurality of ion exchange resins.
상기 제1블럭과 상기 제2블럭 중 어느 하나는 다른 하나를 감싸도록 형성되고, 상기 복합 필터의 유로 구조는, 원수가 상기 제1블럭과 상기 제2블럭에 의해 순차적으로 여과되도록 이루어질 수 있다.One of the first block and the second block is formed to surround the other, and the flow path structure of the composite filter may be configured such that raw water is sequentially filtered by the first block and the second block.
상기와 같은 구성의 본 발명에 의하면, 결정생성촉매가 경도성 물질 또는 스케일 유발 물질의 결정화를 촉진하고, 이온교환수지가 경도성 물질 또는 스케일 유발과 이온 교환을 하도록 이루어지므로, 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거할 수 있다. 이에 따라 본 발명은 물의 경도를 낮출 수 있다.According to the present invention having the above-described configuration, since the crystallization catalyst promotes the crystallization of the hard material or scale-inducing material, and the ion exchange resin is made to ion exchange with the hard material or scale-inducing material, the hard material from raw water Alternatively, the scale causing material may be removed. Accordingly, the present invention can lower the hardness of the water.
결정생성촉매는 이온교환수지에 비해 월등히 수명이 길다는 장점을 갖지만, 이온교환수지에 비해 반응 속도가 느리고 물에 존재하는 경도성 물질 또는 스케일 유발 물질을 완전히 제거할 수 없다는 단점을 갖는다. 그러나 본 발명의 이온교환수지는 결정생성촉매의 하류측에 배치되어 결정생성촉매에서 미처 여과되지 않는 경도성 물질 또는 스케일 유발 물질을 제거하므로, 결정생성촉매의 단점을 보완할 수 있다.Crystal-forming catalysts have the advantage of significantly longer lifespan than ion exchange resins, but have a disadvantage in that the reaction rate is slower than that of ion exchange resins and the hardness or scale-inducing substances present in water cannot be completely removed. However, the ion exchange resin of the present invention is disposed on the downstream side of the crystal forming catalyst to remove the hard or scale-inducing material that is not filtered out of the crystal forming catalyst, thereby making up for the disadvantages of the crystal forming catalyst.
이온교환수지는 결정생성촉매에 비해 반응 속도가 빠르다는 장점을 갖지만, 결정생성촉매에 비해 짧은 수명으로 인해 재생을 필요로 한다는 단점을 갖는다. 그러나 본 발명의 결정생성촉매는 이온교환수지의 상류측에 배치되어 경도성 물질 또는 스케일 유발 물질을 제거하므로, 이온교환수지에 인가되는 부하를 저하시킬 수 있으며 빈번한 재생을 필요로 한다는 단점을 보완할 수 있다.Ion-exchange resins have the advantage that the reaction rate is faster than that of the crystal formation catalyst, but has the disadvantage of requiring regeneration due to the shorter lifetime than the crystal formation catalyst. However, since the crystal forming catalyst of the present invention is disposed upstream of the ion exchange resin to remove the hard or scale-inducing substance, it can reduce the load applied to the ion exchange resin and compensate for the disadvantage of requiring frequent regeneration. Can be.
결정생성촉매는 이온교환수지의 단점을 보완하고, 이온교환수지는 결정생성촉매의 단점을 보완하므로, 상기 결정생성촉매와 상기 이온교환수지를 갖는 본 발명의 복합 필터는 결정생성촉매와 이온교환수지의 장점만을 가질 수 있다.Since the crystal forming catalyst compensates for the disadvantages of the ion exchange resin and the ion exchange resin compensates for the disadvantages of the crystal forming catalyst, the composite filter of the present invention having the crystal generating catalyst and the ion exchange resin has a crystal forming catalyst and an ion exchange resin. Only have the advantage of.
또한 본 발명은, 결정생성촉매와 이온교환수지의 장점을 극대화할 수 있는 유로 구조를 제안하였다.In addition, the present invention proposes a flow path structure capable of maximizing the advantages of the crystal forming catalyst and the ion exchange resin.
본 발명은 경도성 물질 또는 스케일 유발 물질이 결정생성촉매에 의해 결정화되고 난 후, 상기 결정생성촉매로부터 자연적으로 분리될 수 있는 구조를 갖는다. 결정이 자연적으로 분리되는 구조에 의해 결정생성촉매는 다른 반응에 다시 참여할 수 있게 되므로, 복합 필터 전체의 성능이 향상됨을 물론 결정생성촉매는 재생 없이 계속해서 경도성 물질 또는 스케일 유발 물질을 여과할 수 있다.The present invention has a structure that can be naturally separated from the crystal forming catalyst after the hardness or scale-inducing material is crystallized by the crystal forming catalyst. The natural separation of the crystals allows the crystal-forming catalyst to rejoin other reactions, thus improving the performance of the entire composite filter as well as allowing the crystal-forming catalyst to continuously filter hard or scale-inducing materials without regeneration. have.
본 발명은 이온교환수지가 안정적으로 경도성 물질 또는 스케일 유발 물질을 흡착할 수 있는 유로 구조를 갖는다. 안정적인 흡착을 통해 이온교환수지는 결정생성촉매에서 여과되지 못한 경도성 물질 또는 스케일 유발 물질을 대부분 제거할 수 있다.The present invention has a flow path structure in which the ion exchange resin can stably adsorb the hardness material or the scale-inducing material. Through stable adsorption, the ion exchange resin can remove most of the hard or scale-inducing substances that are not filtered from the crystal forming catalyst.
또한 본 발명은, 돌출부를 이용하여 난류를 형성함으로써 복합 필터와 직렬로 연결될 다른 필터의 적정 유량 범위에서 결정생성촉매도 충분한 여과 성능을 가질 수 있는 구성을 제안하였다. 결정생성촉매가 최적 성능을 발휘하는 적정 유량은 상기 다른 필터와 다르지만, 다른 필터의 적정 유량 범위에서 결정생성촉매가 충분한 여과 성능을 가지도록 보완 구조를 제안함에 따라 상기 다른 필터와 본 발명의 복합 필터를 포함하는 여과 시스템 전체의 여과 성능이 향상될 수 있다. 또한 상기 보완 구조는 여과 시스템의 소형화 및 단순화 경향을 벗어나지 않는다.In addition, the present invention proposes a configuration in which the crystallization catalyst can have sufficient filtration performance in an appropriate flow rate range of another filter to be connected in series with the complex filter by forming turbulent flow using the protrusion. Although the proper flow rate at which the crystal forming catalyst exhibits optimum performance is different from that of the other filters, the other filter and the composite filter of the present invention are proposed as a complementary structure is proposed so that the crystal forming catalyst has sufficient filtration performance in the appropriate flow rate range of other filters. Filtration performance of the entire filtration system including a can be improved. In addition, the complementary structure does not escape the tendency of miniaturization and simplification of the filtration system.
도 1은 본 발명의 제1실시예를 보인 복합 필터의 단면도다.1 is a cross-sectional view of a composite filter showing a first embodiment of the present invention.
도 2는 결정생성촉매의 매커니즘을 보인 개념도다.2 is a conceptual diagram showing the mechanism of the crystal formation catalyst.
도 3a는 이온교환수지의 매커니즘을 보인 개념도다.Figure 3a is a conceptual diagram showing the mechanism of the ion exchange resin.
도 3b는 이온교환수지의 재생을 보인 개념도다.3B is a conceptual diagram showing the regeneration of the ion exchange resin.
도 4는 결정생성촉매와 이온교환수지를 실험적으로 비교한 그래프다.4 is a graph comparing experimentally the crystal forming catalyst and the ion exchange resin.
도 5는 본 발명의 제2실시예를 보인 복합 필터의 단면도다.5 is a cross-sectional view of a composite filter showing a second embodiment of the present invention.
도 6은 본 발명의 복합 필터와 기타 필터를 직렬로 연결하여 2단의 여과 시스템을 구성한 개념도다.6 is a conceptual diagram illustrating a two-stage filtration system by connecting the composite filter and the other filter of the present invention in series.
도 7은 본 발명의 복합 필터와 기타 필터를 직렬로 연결하여 2단의 여과 시스템을 구성한 다른 개념도다.FIG. 7 is another conceptual diagram illustrating a two-stage filtration system connected in series with the complex filter and the other filter of the present invention.
도 8은 본 발명의 복합 필터와 기타 필터들을 직렬로 연결하여 3단의 여과 시스템을 구성한 개념도다.8 is a conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
도 9는 본 발명의 복합 필터와 기타 필터들을 직렬로 연결하여 3단의 여과 시스템을 구성한 다른 개념도다.9 is another conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
이하, 본 발명에 관련된 복합 필터에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일, 유사한 구성에 대해서는 동일, 유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.EMBODIMENT OF THE INVENTION Hereinafter, the composite filter which concerns on this invention is demonstrated in detail with reference to drawings. In the present specification, different embodiments are given the same or similar reference numerals for the same or similar components, and description thereof is replaced with the first description. As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
도 1은 본 발명의 제1실시예를 보인 복합 필터(100)의 단면도다.1 is a cross-sectional view of a composite filter 100 showing a first embodiment of the present invention.
프리 필터부(110)는 원수에 존재하는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거하도록 이루어진다. 프리 필터부(110)는 결정생성촉매 필터부(120)의 상류측에 배치된다. 상류측과 하류측이라는 것은 물의 흐름을 기준으로 하는 상대적인 위치의 개념이다. 물이 프리 필터부(110)를 먼저 통과하고 이어서 결정생성촉매 필터부(120)를 통과하는 경우에는, 프리 필터부(110)가 결정생성촉매 필터부(120)의 상류측에 형성된다고 설명할 수 있다. 도 1에서는 프리 필터부(110)가 결정생성촉매 필터부(120)의 상류측에 형성되는 것을 보이고 있다.The prefilter unit 110 is configured to remove at least one of particulate matter, organic matter, and residual chlorine present in the raw water. The prefilter unit 110 is disposed upstream of the crystal generation catalyst filter unit 120. Upstream and downstream are the concept of relative position relative to the water flow. When water passes through the pre-filter unit 110 first and then through the crystal-generation catalyst filter unit 120, it will be described that the pre-filter unit 110 is formed upstream of the crystal-forming catalyst filter unit 120. Can be. In FIG. 1, the pre-filter unit 110 is formed upstream of the crystal generation catalyst filter unit 120.
프리 필터부(110)는 침전필터, 정전흡착필터 및 카본 블럭 필터로 이루어진 군으로부터 선택된 적어도 일부를 포함할 수 있다. 상기 필터들은 부직포를 포함할 수 있으며, 입수 부직포 필터로 명명될 수 있다. 프리 필터부(110)가 어떤 필터를 포함하느냐에 따라 프리 필터부(110)의 매커니즘이나 프리 필터부(110)에서 여과되는 이물질의 종류가 달라질 수 있다.The prefilter unit 110 may include at least a part selected from the group consisting of a precipitation filter, an electrostatic adsorption filter, and a carbon block filter. The filters may comprise a nonwoven fabric and may be referred to as an available nonwoven filter. Depending on which filter the pre-filter unit 110 includes, the mechanism of the pre-filter unit 110 or the kind of foreign matter filtered by the pre-filter unit 110 may vary.
프리 필터부(110)는 속이 빈 원통 또는 속이 빈 다각 기둥으로 형성된다. 프리 필터부(110)의 속이 비어있는 부분을 중공부로 명명할 수 있다. 중공부는 결정생성촉매 필터부(120)와 이온교환수지 필터부(130)를 수용하는 영역이다.The prefilter unit 110 is formed of a hollow cylinder or a hollow polygonal column. The hollow part of the prefilter unit 110 may be referred to as a hollow portion. The hollow part is a region for accommodating the crystal generating catalyst filter part 120 and the ion exchange resin filter part 130.
프리 필터부(110)는 외주면과 내주면을 갖는다. 외주면은 하우징(150)을 내주면을 마주보는 면을 가리킨다. 내주면은 중공부에 배치되는 결정생성촉매 필터부(120)를 마주보는 면을 가리킨다. 프리 필터부(110)는 위에서 아래 방향으로 유동하는 원수를 여과하도록 이루어진다. 도 1의 화살표는 원수의 흐름을 표시한 것이다. 원수는 프리 필터부(110)를 통과하는 과정에서 1차적으로 여과된다.The prefilter unit 110 has an outer circumferential surface and an inner circumferential surface. The outer circumferential surface refers to a surface facing the inner circumferential surface of the housing 150. The inner circumferential surface refers to a surface facing the crystal generation catalyst filter unit 120 disposed in the hollow portion. The pre-filter unit 110 is configured to filter the raw water flowing in the downward direction from the top. Arrows in FIG. 1 indicate the flow of raw water. Raw water is primarily filtered in the course of passing through the pre-filter unit 110.
결정생성촉매 필터부(120)는 프리 필터부(110)의 하류측에 형성된다. 도 1은 결정생성촉매 필터부(120)가 프리 필터부(110)의 하류측에 형성되는 구성을 보이고 있다.The crystal generation catalyst filter unit 120 is formed downstream of the prefilter unit 110. FIG. 1 shows a configuration in which the crystal generation catalyst filter 120 is formed downstream of the prefilter 110.
결정생성촉매 필터부(120)는 원수에 존재하는 경도성 물질 또는 스케일 유발 물질과 중탄산 음이온의 반응을 촉진하도록 이루어진다. 결정생성촉매 필터부(120)는 결정화를 통해 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어진다.The crystal generating catalyst filter unit 120 is configured to promote the reaction between the hard material or the scale-inducing material existing in the raw water and the bicarbonate anion. The crystallization catalyst filter unit 120 is configured to remove the hard material or the scale-inducing material from the raw water through crystallization.
결정생성촉매 필터부(120)는 제1케이스(121), 다수의 결정생성촉매(122) 및 돌출부(123)를 포함한다.The crystal generation catalyst filter unit 120 includes a first case 121, a plurality of crystal generation catalysts 122, and a protrusion 123.
제1케이스(121)는 프리 필터부(110)를 통과한 원수가 유입되도록 형성된다. 도 1을 참조하면 위에서 아래 방향으로 프리 필터부(110)를 통과한 원수가 제1케이스(121)의 아래에서부터 상기 제1케이스(121)의 내부로 유입되는 것을 확인할 수 있다.The first case 121 is formed so that the raw water passing through the pre-filter unit 110 flows in. Referring to FIG. 1, it can be seen that raw water passing through the pre-filter unit 110 in a downward direction from the bottom of the first case 121 flows into the first case 121.
제1케이스(121)는 중공부를 구비하며, 횡단면은 환형으로 형성될 수 있다. 제1케이스(121)의 횡단면이 환형이라는 것은, 제1케이스(121)가 중공부를 제외한 영역에 환형의 내부 공간을 갖는다는 것을 의미한다. 환형의 내부 공간은 다수의 결정생성촉매(122)가 충전되는 곳이다. 다만 제1케이스(121)의 형상이 반드시 이에 한정되어야만 하는 것은 아니다. 제1케이스(121)는 프리 필터부(110)에 의해 감싸이도록 배치될 수 있으나, 이 또한 반드시 이에 한정되는 것은 아니다.The first case 121 has a hollow portion, the cross section may be formed in an annular shape. An annular cross section of the first case 121 means that the first case 121 has an annular inner space in an area excluding the hollow part. The annular inner space is where a plurality of crystal forming catalysts 122 are charged. However, the shape of the first case 121 is not necessarily limited thereto. The first case 121 may be disposed to be wrapped by the prefilter unit 110, but this is not necessarily limited thereto.
제1케이스(121)는 프리 필터부(110)와의 경계를 형성한다. 제1케이스(121)의 외주면은 프리 필터부(110)의 내주면을 마주보도록 배치된다. 원수는 도 1을 기준으로 위에서 아래 방향으로 프리 필터부(110)를 통과하지만, 부분적으로 좌우로 유동할 수 있다. 그러나 제1케이스(121)에 의해 형성되는 경계에 의해 프리 필터부(110)를 통과하는 원수가 결정생성촉매 필터부(120)의 측면으로 유입되지는 않는다. 프리 필터부(110)의 외주면에는 하우징(150)이 배치되어 있고, 프리 필터부(110)의 내주면에는 제1케이스(121)가 배치되어 있으므로, 원수는 프리 필터부(110)를 통과하는 과정에서 정해진 유로로만 유동될 수 있다. 예를 들어 프리 필터부(110)에서 여과된 원수는 제1케이스(121)의 외벽면을 타고 흘러내릴 수 있다. 따라서 하우징(150)의 내주면과 제1케이스(121)의 서로 조합되어 전체적으로 위에서 아래 방향으로 흐르는 원수의 흐름을 형성하도록 이루어진다.The first case 121 forms a boundary with the pre-filter unit 110. The outer circumferential surface of the first case 121 is disposed to face the inner circumferential surface of the prefilter unit 110. Raw water passes through the pre-filter unit 110 in a top-down direction with reference to FIG. 1, but may partially flow left and right. However, the raw water passing through the pre-filter unit 110 may not flow into the side of the crystal generating catalyst filter unit 120 by the boundary formed by the first case 121. Since the housing 150 is disposed on the outer circumferential surface of the prefilter unit 110, and the first case 121 is disposed on the inner circumferential surface of the prefilter unit 110, raw water passes through the prefilter unit 110. It can flow only in the flow path defined in. For example, raw water filtered by the pre-filter unit 110 may flow down the outer wall of the first case 121. Accordingly, the inner circumferential surface of the housing 150 and the first case 121 are combined with each other to form a flow of raw water flowing from the top to the bottom.
제1케이스(121)의 내부에는 다수의 결정생성촉매(122)가 투입(또는 충전)된다. 결정생성촉매(122)는 원수에 존재하는 경도성 물질 또는 스케일 유발 물질과 중탄산 음이온의 반응을 촉진하도록 이루어진다. 그리고 결정생성촉매(122)는 경도성 물질 또는 스케일 유발 물질의 결정화를 통해 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어진다. 결정생성촉매(122)의 매커니즘은 도 2를 참조하여 더욱 상세하게 후술한다.In the first case 121, a plurality of crystal generating catalysts 122 are charged (or filled). The crystal forming catalyst 122 is made to promote the reaction of the hard or scale-inducing material and bicarbonate anion present in the raw water. In addition, the crystal forming catalyst 122 is configured to remove the hard material or the scale causing material from the raw water through crystallization of the hard material or the scale causing material. The mechanism of the crystal formation catalyst 122 will be described later in more detail with reference to FIG. 2.
결정생성촉매 필터부(120)는 아래에서부터 위로 원수가 차오르는 형태의 유로 구조를 갖는다. 구체적으로 결정생성촉매 필터부(120)의 하단은 하우징(150)의 내측 바닥면으로부터 이격되어 상기 프리 필터부(110)를 통과한 원수가 상기 결정생성촉매 필터부(120)의 유로 구조로 차오르도록 형성된다. 결정생성촉매(122)는 상기 유로 구조에 차오르는 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어진다.The crystal generation catalyst filter unit 120 has a flow path structure in which raw water rises from the bottom up. Specifically, the lower end of the crystal generation catalyst filter unit 120 is spaced apart from the inner bottom surface of the housing 150 and the raw water passing through the pre-filter unit 110 in the flow path structure of the crystal generation catalyst filter unit 120 It is formed to rise. The crystal forming catalyst 122 is configured to remove the hard material or the scale-inducing material from the raw water charged in the flow path structure.
결정생성촉매(122)의 경도성 물질 또는 스케일 유발 물질 제거 성능을 향상시키기 위해서는, 결정생성촉매(122)가 존재하는 공간에 물이 차오르면서 여과가 이루어져야 한다. 결정생성촉매(122)가 존재하는 공간이란 원수가 통과하는 유로 구조를 가리키며, 도 1에서 제1케이스(121)의 내부 공간을 의미한다. 또한 물이 차오르는 유동을 상향유동(up-flow)라고 한다.In order to improve the hardness or scale-inducing material removal performance of the crystal forming catalyst 122, the water must be filled in the space where the crystal forming catalyst 122 is present, the filtration must be made. The space in which the crystal generating catalyst 122 is present refers to a flow path structure through which raw water passes, and refers to the internal space of the first case 121 in FIG. 1. The flow of water is also called up-flow.
촉매란 화학반응을 촉진하거나 억제하는 역할을 하는 물질을 가리키며, 촉매는 반응 후에 생성물에 혼합되지 않고 원래대로 남게 된다. 본 발명의 결정생성촉매(122)도 경도성 물질 또는 스케일 유발 물질의 결정 생성을 촉진하나, 반응 후에 생성물에 혼합되지 않고 원래대로 남게 된다. 결정 생성 촉진에 의해 생성된 결정이 결정생성촉매(122)로부터 분리되어야, 결정생성촉매(122)가 다른 반응에 관여할 수 있게 된다. 따라서 결정생성촉매(122)의 경도성 물질 또는 스케일 유발 물질 제거 성능을 향상시키기 위해서는, 결정생성촉매(122)로부터 신속하게 결정을 분리시키는 것이 필요하다.A catalyst refers to a substance that serves to promote or inhibit a chemical reaction, and the catalyst is left intact after mixing with the product. The crystal forming catalyst 122 of the present invention also promotes crystal formation of the hard material or scale-inducing material, but remains unchanged after mixing with the product. Crystals produced by promoting crystal formation must be separated from the crystal formation catalyst 122 so that the crystal formation catalyst 122 can participate in other reactions. Therefore, in order to improve the hardness or scale-inducing substance removal performance of the crystal forming catalyst 122, it is necessary to quickly separate the crystal from the crystal forming catalyst 122.
결정생성촉매 필터부(120)가 아래에서부터 위로 원수가 차오르는 형태의 유로 구조를 가지면, 상기 유로 구조에 차오르는 원수가 결정생성촉매(122)에 부력을 제공하게 된다. 이 부력에 의해 결정생성촉매(122)의 유동은 활발해지게 되고, 이에 따라 결정생성촉매(122)로부터 결정이 분리될 수 있다. 결정생성촉매 필터부(120)가 아래에서부터 위로 원수가 차오르는 형태의 유로 구조를 가지면, 별도의 외력을 가하지 않고도 원수에 의해 제공되는 부력을 이용하여 자연스럽게 결정생성촉매(122)로부터 결정이 분리될 수 있다는 장점을 갖는다.When the crystal generation catalyst filter unit 120 has a flow path structure in which raw water rises from the bottom, the raw water filling the flow path structure provides buoyancy to the crystal production catalyst 122. Due to this buoyancy, the flow of the crystal forming catalyst 122 becomes active, so that the crystal can be separated from the crystal forming catalyst 122. When the crystal generation catalyst filter unit 120 has a flow path structure in which raw water rises from the bottom, the crystal may be naturally separated from the crystal generation catalyst 122 by using buoyancy provided by the raw water without applying an external force. That has the advantage.
만약 본 발명과 달리 결정생성촉매 필터부(120)가 위에서 아래로 원수가 떨어지는 형태의 유로 구조를 갖는다면, 별도의 외력을 가해야만 결정생성촉매(122)로부터 결정을 분리하는 효과를 기대할 수 있다. 이러한 형태의 유동을 상기 상향유동과 구분하여 하향유동(down-flow)이라 한다.If the crystal generation catalyst filter unit 120 has a flow path structure in which raw water falls from the top to the bottom, unlike the present invention, an effect of separating the crystal from the crystal generation catalyst 122 may be expected only by applying an external force. . This type of flow is called down-flow, which is distinguished from the upward flow.
제1케이스(121)의 내벽면은 다수의 결정생성촉매(122)를 감싼다. 다수의 결정생성촉매(122)는 결정생성촉매 필터부(120)의 내벽면으로 둘러싸인 내부 공간에 충전된다. 내벽면에는 돌출부(123)가 형성된다.An inner wall surface of the first case 121 surrounds the plurality of crystal generating catalysts 122. The plurality of crystal generation catalysts 122 are filled in the inner space surrounded by the inner wall surface of the crystal generation catalyst filter unit 120. Protrusions 123 are formed on the inner wall surface.
복합 필터(100)는 결정생성촉매 필터부(120)뿐만 아니라 프리 필터부(110)와 이온교환수지 필터부(130)를 포함하며, 도 6 내지 도 9에서 설명할 바와 같이 여러 추가적인 필터와 직렬로 연결되어 여과 시스템을 형성할 수 있다. 여과 시스템의 성능은 상기 여과 시스템을 형성하는 개개의 필터에 의해 결정된다. 그리고 개개의 필터의 성능은 원수의 유량에 의해 영향을 받으므로, 여과 시스템의 성능을 전체적으로 향상시키기 위해서는 개개의 필터를 통과하는 원수의 유량을 적정 범위로 유지해야 한다.The composite filter 100 includes a pre-filter unit 110 and an ion exchange resin filter unit 130, as well as a crystal generation catalyst filter unit 120, and are in series with several additional filters as described with reference to FIGS. 6 to 9. Can be connected to form a filtration system. The performance of the filtration system is determined by the individual filters forming the filtration system. In addition, since the performance of each filter is affected by the flow rate of the raw water, in order to improve the performance of the filtration system as a whole, the flow rate of the raw water passing through the individual filters must be maintained in an appropriate range.
결정생성촉매 필터부(120)를 제외한 일반적인 필터는 유량이 증가할수록 여과 성능도 증가하다가 다시 감소하는 경향을 보인다. 이러한 경향은 프리 필터부(110)에 사용될 수 있는 각종 필터들도 마찬가지이다. 그러나 결정생성촉매(122)를 포함하는 결정생성촉매 필터부(120)는 일반적인 필터와 달리 유량이 증가할수록 여과 성능이 감소하다가 증가하는 경향을 보인다. 이것은 결정생성촉매(122)가 원수의 활발한 유동에 영향을 받아 결정과 분리되어야만 다시 결정 생성을 촉진하는 반응에 참여할 수 있기 때문이다. 따라서 여과 시스템의 성능을 전체적으로 향상시키기 위해서는 다음과 같은 두 가지 방안을 고려해 볼 수 있다.In general filters excluding the crystal forming catalyst filter unit 120, the filtration performance increases as the flow rate increases and then decreases again. This tendency also applies to various filters that may be used in the pre-filter unit 110. However, unlike the general filter, the crystal production catalyst filter unit 120 including the crystal production catalyst 122 shows a tendency that the filtration performance decreases and increases as the flow rate increases. This is because the crystal forming catalyst 122 must be separated from the crystal by being affected by the active flow of raw water so that it can participate in the reaction which promotes the crystal formation again. Therefore, the following two approaches can be considered to improve the performance of the filtration system as a whole.
(1) 첫 번째는 각 필터별로 유량이 달리 설정되도록 여과 시스템을 구성하여 개개의 필터마다 적정 유량을 공급하는 방안이다. 이 방안은 개개의 필터마다 최상의 여과 성능을 발휘하게 할 수 있으므로, 여과 시스템의 성능을 비약적으로 향상시킬 수 있다. 그러나 각 필터별로 유량을 달리 설정하기 위해서는 필터와 필터 사이에 유량을 조절하는 별도의 장치가 필요하다. 이것은 공간 활용 및 위생 등을 이유로 여과 시스템이 소형화 및 단순화되는 경향에 맞지 않는다.(1) The first is to configure the filtration system so that the flow rate is set differently for each filter and supply the proper flow rate for each filter. This method can provide the best filtration performance for each filter, which can dramatically improve the performance of the filtration system. However, in order to set a different flow rate for each filter, a separate device for controlling the flow rate between the filters is required. This does not fit the tendency of the filtration system to be miniaturized and simplified due to space utilization and hygiene.
(2) 두 번째는 여과 시스템의 유량을 어느 일부에 필터에 적합한 유량의 범위로 설정하되, 다른 필터도 상기 설정된 유량의 범위 내에서 충분한 여과 성능을 발휘할 수 있도록 보완하는 것이다. 두 번째 방안은 첫 번째 방법에 비해 여과 시스템의 성능을 향상시키는 효과는 떨어질 수 있으나, 필터와 필터 사이에 유량을 조절하는 별도의 장치가 필요하지 않으므로, 여과 시스템의 소형화 및 단순화에 기여할 수 있다.(2) The second is to set the flow rate of the filtration system to a range of flow rates suitable for a part of the filter, but complement other filters so as to exhibit sufficient filtration performance within the range of the set flow rate. The second approach may be less effective in improving the performance of the filtration system than the first, but it may contribute to the miniaturization and simplification of the filtration system since no separate device is required to control the flow rate between the filter and the filter.
본 발명에서는 여과 시스템의 소형화 및 단순화 경향에 따라 두 번째 방안을 채택하였다. 복합 필터(100)는 결정생성촉매(122)뿐만 아니라 프리 필터부(110)와 이온교환수지 필터부(130)도 포함하고, 나아가 복합 필터(100)는 다른 필터들과 결합되어 여과 시스템을 형성할 수도 있다. 따라서 만약 상기 프리 필터부(110)와 상기 다른 필터들의 성능을 상기 결정생성촉매(122)의 적정 유량에 맞춰 보완해야 한다면, 결정생성촉매(122)를 제외한 다른 필터들 각각에 대하여 보완 구조를 고려해야 하므로 과제의 해결이 복잡해진다.The present invention employs a second approach in accordance with the trend toward miniaturization and simplification of the filtration system. The composite filter 100 includes the pre-filter unit 110 and the ion exchange resin filter unit 130 as well as the crystal forming catalyst 122, and further, the composite filter 100 is combined with other filters to form a filtration system. You may. Therefore, if the performance of the pre-filter unit 110 and the other filters should be supplemented according to the proper flow rate of the crystal formation catalyst 122, the complementary structure of each of the other filters except for the crystal formation catalyst 122 should be considered. Therefore, the solution of the problem is complicated.
반대로 결정생성촉매(122)를 다른 필터들의 적정 유량에 맞춰 보완한다면, 결정생성촉매(122)의 보완만으로 여과 시스템 전체의 여과 성능을 향상시킬 수 있으므로 과제의 해결이 더욱 단순해진다. 단순한 방법으로 과제를 해결하기 위해 본 발명에서는 프리 필터부(110)의 적정 유량 범위에서 결정생성촉매(122)의 여과 성능을 보완하는 방안으로, 제1케이스(121)의 내벽면에 형성되는 돌출부(123)를 채택하였다.On the contrary, if the crystal formation catalyst 122 is supplemented according to the appropriate flow rate of the other filters, the filtration performance of the entire filtration system can be improved only by the supplementation of the crystal formation catalyst 122, thereby simplifying the problem. In order to solve the problem by a simple method in the present invention to complement the filtration performance of the crystal forming catalyst 122 in the appropriate flow rate range of the pre-filter unit 110, a protrusion formed on the inner wall surface of the first case 121 (123) was adopted.
앞서 설명한 바와 같이 결정생성촉매(122)는 유량이 증가할수록 여과 성능이 감소하다가 증가하는 경향을 갖는다. 따라서, 결정생성촉매(122)만을 고려한다면 여과 성능의 향상이 포화될 때까지 유량을 증가시키는 것이 바람직하다. 그러나 일반적이 필터는 유량이 증가할수록 여과 성능이 증가하다가 감소하는 경향을 가지며, 결정생성촉매(122)의 최적 유량보다 상대적으로 작은 유량 범위에서 높은 여과 성능을 갖는다.As described above, the crystal forming catalyst 122 has a tendency to decrease after increasing the filtration performance as the flow rate increases. Therefore, considering only the crystal formation catalyst 122, it is preferable to increase the flow rate until the improvement of the filtration performance is saturated. However, in general, the filter has a tendency to increase and decrease the filtration performance as the flow rate increases, and has a high filtration performance in a flow rate range relatively smaller than the optimum flow rate of the crystal forming catalyst 122.
제1케이스(121)의 내벽면에 형성되는 돌출부(123)는 상대적으로 작은 범위의 유량에서 결정생성촉매(122)의 여과 성능을 향상시킬 수 있도록 이루어진다. 돌출부(123)는 원수의 입자와 충돌하여 원수의 흐름에 난류를 일으킨다. 복합 필터(100)를 통과하는 유량은 비록 결정생성촉매(122)의 최적 유량보다 작을지라도, 난류에 의해 결정생성촉매(122)로부터 결정의 분리가 이루어질 수 있다. 그리고 결정과 분리된 결정생성촉매(122)는 다른 반응에 다시 참여할 수 있게 된다. 따라서 제1케이스(121)의 내벽면에 형성되는 돌출부(123)는 난류의 형성을 통해 상대적으로 작은 유량 범위에서도 결정생성촉매(122)의 여과 성능을 향상시킬 수 있다.The protrusion 123 formed on the inner wall surface of the first case 121 may be formed to improve the filtration performance of the crystal forming catalyst 122 at a relatively small flow rate. The protrusion 123 collides with particles of raw water to cause turbulence in the flow of raw water. Although the flow rate through the composite filter 100 is smaller than the optimum flow rate of the crystal forming catalyst 122, separation of the crystal from the crystal forming catalyst 122 may be achieved by turbulence. In addition, the crystal forming catalyst 122 separated from the crystal may rejoin another reaction. Therefore, the protrusion 123 formed on the inner wall surface of the first case 121 may improve the filtration performance of the crystal forming catalyst 122 in a relatively small flow rate range through the formation of turbulent flow.
돌출부(123)는 제1케이스(121)의 내벽면을 따라 나선형으로 형성될 수 있다. 돌출부(123)가 나선형으로 형성되면, 원수가 나선형으로 형성된 돌출부(123)를 만나면서 난류를 형성할 수 있다.The protrusion 123 may be formed spirally along the inner wall surface of the first case 121. When the protrusion 123 is formed in a spiral, turbulence may be formed while the raw water meets the protrusion 123 formed in the spiral.
또한 돌출부(123)는 복수로 구비될 수 있으며, 복수의 돌출부(123)는 결정생성촉매 필터부(120)에 원수가 차오르는 방향을 따라 서로 이격되게 배치될 수 있다. 그리고 서로 이격되게 배치된 돌출부(123)에 의해 원수는 난류를 형성할 수 있다.In addition, the protrusions 123 may be provided in plural, and the plurality of protrusions 123 may be spaced apart from each other in the direction in which the raw water is filled in the crystal generation catalyst filter 120. The raw water may form turbulence by the protrusions 123 spaced apart from each other.
이온교환수지 필터부(130)는 결정생성촉매 필터부(120)를 통과한 원수를 여과하도록 상기 결정생성촉매 필터부(120)의 하류측에 형성된다. 이온교환수지 필터부(130)는 이온 교환을 통해 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어진다.The ion exchange resin filter unit 130 is formed downstream of the crystal forming catalyst filter unit 120 to filter the raw water passing through the crystal forming catalyst filter unit 120. The ion exchange resin filter unit 130 is made to remove the hardness material or the scale causing material from the raw water through ion exchange.
본 발명에서 결정생성촉매 필터부(120)와 이온교환수지 필터부(130)의 배치 순서는 매우 중요한 의미를 갖는다. 배치 순서란 원수가 어떤 필터부를 먼저 통과하고 어떤 필터부를 그 다음에 통과하느냐와 관련된다.In the present invention, the arrangement order of the crystal forming catalyst filter unit 120 and the ion exchange resin filter unit 130 has a very important meaning. The order of placement relates to which filter part the raw water passes first and which filter part then passes.
결정생성촉매(122)의 결정화 과정에는 충분한 시간이 필요하다. 따라서 결정생성촉매(122)는 초기 반응 속도가 이온교환수지(132)에 비해 느리다는 단점을 갖는다. 결정생성촉매(122)와 이온교환수지(132)의 반응 속도 비교는 도 4에서 확인할 수 있다. 그리고 결정생성촉매(122)는 원수에 존재하는 경도성 물질 또는 스케일 유발 물질을 100% 제거하기 어렵다는 단점을 갖는다.Sufficient time is required for the crystallization process of the crystal formation catalyst 122. Therefore, the crystal formation catalyst 122 has a disadvantage that the initial reaction rate is slower than the ion exchange resin 132. A comparison of the reaction rate between the crystal forming catalyst 122 and the ion exchange resin 132 can be seen in FIG. 4. In addition, the crystal formation catalyst 122 has a disadvantage in that it is difficult to remove 100% of the hardness material or the scale-inducing material present in the raw water.
반면 결정생성촉매(122)는 결정화 반응에 참여하고 난 후 다시 다른 결정화 반응에 참여할 수 있다. 이것은 촉매의 특성으로부터 기인한다. 따라서 결정생성촉매(122)는 이온교환수지(132)에 비해 매우 긴 수명을 갖는다.On the other hand, the crystal forming catalyst 122 may participate in another crystallization reaction after participating in the crystallization reaction. This is due to the nature of the catalyst. Thus, the crystal forming catalyst 122 has a very long life compared to the ion exchange resin 132.
반대로 이온교환수지(132)는 이온 교환만으로 경도성 물질 또는 스케일 유발 물질을 제거한다. 따라서 이온교환수지(132)는 초기 반응 속도가 매우 빠르다는 장점을 갖는다. 또한 이온교환수지(132)는 원수에 존재하는 경도성 물질 또는 스케일 유발 물질을 100%에 가깝게 제거할 수 있다는 장점을 갖는다.On the contrary, the ion exchange resin 132 removes the hard material or the scale causing material by ion exchange alone. Therefore, the ion exchange resin 132 has the advantage that the initial reaction rate is very fast. In addition, the ion exchange resin 132 has an advantage of being able to remove nearly 100% of the hardness material or scale-inducing material present in the raw water.
반면 이온교환수지(132)는 교환되어야 할 이온의 소모로 인해 짧은 수명과 재생을 필요로 한다는 단점을 갖는다. 재생을 하지 않는 한 이온교환수지(132)는 어느 순간 더 이상 경도성 물질 또는 스케일 유발 물질을 제거할 수 없게 된다. 그리고 이온교환수지(132)는 재생이 반복됨에 따라 점차 재생 효율이 저하된다는 단점도 갖는다.On the other hand, the ion exchange resin 132 has a disadvantage of requiring a short life and regeneration due to the consumption of ions to be exchanged. Unless regeneration is performed, the ion exchange resin 132 can no longer remove the hard or scale-inducing substance at any moment. In addition, the ion exchange resin 132 has a disadvantage that the regeneration efficiency is gradually reduced as the regeneration is repeated.
본 발명에서는 이러한 결정생성촉매(122)와 이온교환수지(132)의 장단점을 고려하여, 결정생성촉매 필터부(120)가 이온교환수지 필터부(130)의 상류측에 배치되고, 이온교환수지 필터부(130)가 결정생성촉매 필터부(120)의 하류측에 배치된다.In the present invention, in consideration of the advantages and disadvantages of the crystal forming catalyst 122 and the ion exchange resin 132, the crystal forming catalyst filter 120 is disposed upstream of the ion exchange resin filter 130, the ion exchange resin The filter unit 130 is disposed downstream of the crystal generation catalyst filter unit 120.
결정생성촉매 필터부(120)가 이온교환수지 필터부(130)의 상류측에 배치되면, 결정생성촉매(122)가 이온교환수지(132)에 앞서 원수로부터 경도성 물질 또는 스케일 유발 물질을 먼저 제거할 수 있다. 이에 따라 이온교환수지(132)에 가해지는 부하가 줄어들게 된다. 여기서 말하는 부하란, 이온교환수지(132)가 제거해야할 경도성 물질 또는 스케일 유발 물질의 양을 의미한다. 이온교환수지(132)는 이온 교환이라는 매커니즘을 통해 경도성 물질 또는 스케일 유발 물질을 제거하므로, 이온교환수지(132)에 가해지는 부하가 줄어들게 된다. 이온교환수지(132)에 가해지는 부하가 줄어들게 되면 이온교환수지(132)의 수명과 재생주기가 연장될 수 있다. 따라서 결정생성촉매 필터부(120)가 이온교환수지 필터부(130)의 상류측에 배치되면, 결정생성촉매(122)가 이온교환수지(132)의 단점을 보완할 수 있다.When the crystal forming catalyst filter unit 120 is disposed upstream of the ion exchange resin filter unit 130, the crystal forming catalyst 122 first deposits the hard material or the scale-inducing material from the raw water before the ion exchange resin 132. Can be removed Accordingly, the load on the ion exchange resin 132 is reduced. The load herein refers to the amount of hard material or scale-inducing material that the ion exchange resin 132 should remove. Since the ion exchange resin 132 removes the hard or scale-inducing substance through a mechanism called ion exchange, the load on the ion exchange resin 132 is reduced. When the load on the ion exchange resin 132 is reduced, the lifespan and regeneration period of the ion exchange resin 132 may be extended. Accordingly, when the crystal generation catalyst filter unit 120 is disposed upstream of the ion exchange resin filter unit 130, the crystal generation catalyst 122 may compensate for the disadvantages of the ion exchange resin 132.
만약 본 발명과 달리, 이온교환수지 필터부(130)가 결정생성촉매 필터부(120)의 상류측에 배치되면, 이온교환수지(132)에 가해지는 부하가 전혀 줄어들지 않게 된다. 따라서 이온교환수지(132)의 수명 및 재생 주기의 연장 효과도 기대할 수 없다.Unlike the present invention, if the ion exchange resin filter 130 is disposed upstream of the crystal generation catalyst filter 120, the load applied to the ion exchange resin 132 is not reduced at all. Therefore, the effect of extending the lifespan and regeneration period of the ion exchange resin 132 cannot be expected.
이온교환수지 필터부(130)가 결정생성촉매 필터부(120)의 하류측에 배치되면, 결정생성촉매(122)에 의해 미처 제거되지 못한 경도성 물질 또는 스케일 유발 물질을 이온교환수지(132)가 마저 제거할 수 있다. 결정생성촉매(122)는 경도성 물질 또는 스케일 유발 물질를 100% 제거하지는 못하기 때문에 결정생성촉매(122)만으로는 물의 경도를 낮추는데 한계가 있다. 그러나 결정생성촉매(122)에 의해 제거되지 못한 경도성 물질 또는 스케일 유발 물질을 이온교환수지(132)가 마저 제거한다면, 원수로부터 경도성 물질 또는 스케일 유발 물질이 100%에 가깝게 제거될 수 있다. 따라서 이온교환수지 필터부(130)가 결정생성촉매 필터부(120)의 하류측에 배치되면, 이온교환수지(132)가 결정생성촉매(122)의 단점을 보완할 수 있다.When the ion exchange resin filter unit 130 is disposed downstream of the crystal generation catalyst filter unit 120, the ion exchange resin 132 converts the hardness material or the scale-inducing material that is not removed by the crystal generation catalyst 122. You can even remove it. Since the crystallization catalyst 122 does not remove 100% of the hardness material or the scale-inducing material, the crystallization catalyst 122 alone has a limitation in decreasing the hardness of water. However, if the ion exchange resin 132 even removes the hard material or scale-inducing material not removed by the crystal forming catalyst 122, the hard material or scale-inducing material may be removed from the raw water to almost 100%. Therefore, when the ion exchange resin filter unit 130 is disposed downstream of the crystal generation catalyst filter unit 120, the ion exchange resin 132 may compensate for the disadvantage of the crystal generation catalyst 122.
만약 본 발명과 달리 결정생성촉매 필터부(120)가 이온교환수지 필터부(130)의 하류측에 배치되면, 이온교환수지(132)의 재생을 필요로 하는 시점 전까지는 원수로부터 경도성 물질 또는 스케일 유발 물질이 100%에 가깝게 제거될 수 있을 것이다. 그러나 이온교환수지(132)의 재생을 필요로 하는 시점 이후로는 결정생성촉매(122)가 경도성 물질 또는 스케일 유발 물질을 100%에 가깝게 제거할 수 없게 된다.Unlike the present invention, if the crystal forming catalyst filter unit 120 is disposed downstream of the ion exchange resin filter unit 130, the hard material or the raw material may be removed from the raw water until a point where regeneration of the ion exchange resin 132 is required. The scale causing material may be removed close to 100%. However, after the point where the ion exchange resin 132 needs to be regenerated, the crystal forming catalyst 122 may not remove the hard material or the scale-inducing material close to 100%.
이온교환수지 필터부(130)는 제2케이스(131) 및 다수의 이온교환수지(132)를 포함한다.The ion exchange resin filter unit 130 includes a second case 131 and a plurality of ion exchange resins 132.
제2케이스(131)는 결정생성촉매 필터부(120)를 통과한 원수가 유입되도록 형성된다. 제2케이스(131)는 결정생성촉매 필터부(120)와의 경계를 형성한다. 제2케이스(131)는 실질적으로 속이 빈 원기둥 또는 다각기둥 형태로 형성될 수 있다. 제2케이스(131)의 내부에는 다수의 이온교환수지(132)가 투입된다. 이온교환수지(132)의 매커니즘에 대하여는 도 3a와 도 3b를 참조하여 후술한다.The second case 131 is formed so that the raw water passing through the crystal generation catalyst filter unit 120 flows in. The second case 131 forms a boundary with the crystal generation catalyst filter unit 120. The second case 131 may be formed in a substantially hollow cylindrical or polygonal shape. A plurality of ion exchange resins 132 are introduced into the second case 131. The mechanism of the ion exchange resin 132 will be described later with reference to FIGS. 3A and 3B.
제2케이스(131)의 제1케이스(121)의 중공부에 배치될 수 있다. 다만, 유로 구조의 순서만 프리 필터부(110), 결정생성촉매 필터부(120), 이온교환수지 필터부(130)로 구성되고, 결정생성촉매(122)와 이온교환수지(132)가 서로 구분되는 영역에 배치된다면, 제1케이스(121)와 제2케이스(131)의 구조와 배치는 반드시 도 1에 도시된 것에 한정되지 않는다.It may be disposed in the hollow portion of the first case 121 of the second case 131. However, only the flow path structure includes the pre-filter unit 110, the crystal-forming catalyst filter unit 120, and the ion-exchange resin filter unit 130, and the crystal-forming catalyst 122 and the ion-exchange resin 132 mutually If disposed in the divided area, the structure and arrangement of the first case 121 and the second case 131 is not necessarily limited to that shown in FIG.
이온교환수지 필터부(130)는 결정생성촉매 필터부(120)와 다른 유로 구조를 갖는다. 이온교환수지 필터부(130)의 안정적인 흡착 구간을 유지하기 위해서 이온교환수지(132)의 유동을 가급적 억제하는 것이 바람직하다. 만약 이온교환수지 필터부(130)가 결정생성촉매 필터부(120)와 마찬가지로 상향유동의 유로 구조를 갖는다면, 원수에 의해 제공되는 부력에 의해 이온교환수지(132)의 유동을 억제하기 어렵다. 따라서 본 발명의 이온교환수지 필터부(130)는 위에서 아래로 원수가 떨어지도록 형성되는 유로 구조를 갖는다. 위에서 아래로 원수가 떨어지는 유동은 하향유동(down-flow)에 해당한다.The ion exchange resin filter unit 130 has a flow path structure different from that of the crystal generation catalyst filter unit 120. In order to maintain a stable adsorption section of the ion exchange resin filter 130, it is preferable to suppress the flow of the ion exchange resin 132 as much as possible. If the ion exchange resin filter unit 130 has an upward flow path structure similarly to the crystal generation catalyst filter unit 120, it is difficult to suppress the flow of the ion exchange resin 132 due to the buoyancy provided by the raw water. Therefore, the ion exchange resin filter 130 of the present invention has a flow path structure formed so that the raw water falls from the top to the bottom. The flow of raw water from top to bottom corresponds to down-flow.
도 1을 참조하면 결정생성촉매 필터부(120)의 상단과 이온교환수지 필터부(130)의 상단은 하우징의 내측 상단면으로부터 이격되어 있다. 이에 따라 결정생성촉매 필터부(120)를 통과한 원수는 이온교환수지 필터부(130)의 유로 구조로 떨어질 수 있다. 이온교환수지 필터부(130)가 이러한 유로 구조를 갖는다면, 제2케이스(131)의 내부에 충전되어 있는 이온교환수지(132)의 유동을 억제할 수 있으므로, 이온교환수지 필터부(130)는 안정적인 흡착 구간을 유지할 수 있다.Referring to FIG. 1, an upper end of the crystal generation catalyst filter unit 120 and an upper end of the ion exchange resin filter unit 130 are spaced apart from an inner upper end surface of the housing. Accordingly, the raw water passing through the crystal generation catalyst filter unit 120 may fall into the flow path structure of the ion exchange resin filter unit 130. If the ion exchange resin filter 130 has such a flow path structure, the flow of the ion exchange resin 132 filled in the second case 131 can be suppressed, so that the ion exchange resin filter 130 Can maintain a stable adsorption section.
제1케이스(121)의 외벽면과 제2케이스(131)의 외벽면은 서로 이격되어 있을 수 있다. 제1케이스(121)의 외벽면과 제2케이스(131)의 외벽면 사이에 출수 유로(160)가 형성된다. 출수 유로(160)는 하우징(150)의 출수부(152)로 연결된다.The outer wall surface of the first case 121 and the outer wall surface of the second case 131 may be spaced apart from each other. A water discharge passage 160 is formed between the outer wall surface of the first case 121 and the outer wall surface of the second case 131. The water discharge passage 160 is connected to the water outlet 152 of the housing 150.
도 1을 참조하면, 이온교환수지 필터부(130)의 하단은 하우징(150)의 내측 바닥면으로부터 이격된다. 이에 따라 복합 필터(100)는 이온교환수지 필터부(130)를 통과한 원수가 출수 유로(160)를 통해 배출되도록 이루어진다.Referring to FIG. 1, the lower end of the ion exchange resin filter unit 130 is spaced apart from the inner bottom surface of the housing 150. Accordingly, the composite filter 100 is configured such that the raw water passing through the ion exchange resin filter unit 130 is discharged through the water discharge passage 160.
복합 필터(100)는 프리 필터부(110), 결정생성촉매 필터부(120) 및 이온교환수지 필터부(130)를 수용하도록 이루어지는 하우징(150)을 포함한다. 하우징(150)에는 입수부(151)와 출수부(152)가 형성될 수 있다. 입수부(151)는 프리 필터부(110)로 물을 공급하도록 형성된다. 출수부(152)는 프리 필터부(110), 결정생성촉매 필터부(120), 이온교환수지 필터부(130) 및 출수 유로(160)를 순차적으로 통과한 물을 복합 필터(100)의 외부로 배출하도록 형성된다.The composite filter 100 includes a housing 150 configured to receive the pre-filter unit 110, the crystal generation catalyst filter unit 120, and the ion exchange resin filter unit 130. In the housing 150, an inlet 151 and an outlet 152 may be formed. The inlet 151 is formed to supply water to the pre-filter unit 110. The water extraction unit 152 is configured to pass water sequentially passed through the pre-filter unit 110, the crystal generation catalyst filter unit 120, the ion exchange resin filter unit 130, and the water discharge passage 160 to the outside of the composite filter 100. It is formed to discharge into.
프리 필터부(110)가 하우징(150)의 내부에 배치되고 남은 공간에 결정생성촉매(122)와 이온교환수지(132)가 각각 투입될 수 있다. 결정생성촉매 필터부(120)와 이온교환수지 필터부(130)는 블럭으로 이루어지는 것이 아니라 각각 다수의 결정생성촉매(122)와 다수의 이온교환수지(132)가 집합되어 형성된다. 따라서 하우징(150)의 남은 공간에 결정생성촉매(122)와 이온교환수지(132)가 투입되면 프리 필터부(110)와 단일 필터를 형성할 수 있고, 복합 필터(100)의 크기를 소형화할 수 있다. 다만 결정생성촉매(122)와 이온교환수지(132)는 서로 구분되는 공간에 투입되어야 하고, 프리 필터부(110), 결정생성촉매 필터부(120), 이온교환수지 필터부(130) 순의 유로 구조를 갖도록 배치되어야 한다.The crystal forming catalyst 122 and the ion exchange resin 132 may be introduced into the remaining space after the pre-filter unit 110 is disposed inside the housing 150. The crystal generation catalyst filter unit 120 and the ion exchange resin filter unit 130 are not formed of blocks, but a plurality of crystal generation catalysts 122 and a plurality of ion exchange resins 132 are formed. Therefore, when the crystal forming catalyst 122 and the ion exchange resin 132 are introduced into the remaining space of the housing 150, a single filter may be formed with the pre-filter unit 110 and the size of the composite filter 100 may be reduced. Can be. However, the crystal generation catalyst 122 and the ion exchange resin 132 should be put in a space separated from each other, and in order of the pre-filter unit 110, the crystal generation catalyst filter unit 120, the ion exchange resin filter unit 130 It should be arranged to have a flow path structure.
복합 필터(100)는 출수 부직포 필터(140)를 포함한다. 출수 부직포 필터(140)는 이온교환수지 필터부(130)의 출수 유로(160)에 배치된다. 출수 부직포 필터(140)는 이온교환수지 필터부(130)의 제2케이스(131)를 감싸도록 형성될 수 있으며, 출수 유로(160)를 통해 배출되는 원수로부터 잔여 이물질을 제거할 수 있다. 결정생성촉매(122)에 의해 생성된 결정들도 출수 부직포 필터(140)에 의해 여과될 수 있다.The composite filter 100 includes a water extraction nonwoven filter 140. The water extraction nonwoven filter 140 is disposed in the water extraction passage 160 of the ion exchange resin filter 130. The water extracting nonwoven fabric filter 140 may be formed to surround the second case 131 of the ion exchange resin filter 130, and may remove residual foreign matter from the raw water discharged through the water outlet passage 160. Crystals produced by the crystal formation catalyst 122 may also be filtered by the water extraction nonwoven filter 140.
프리 필터부(110), 결정생성촉매 필터부(120) 및 이온교환수지 필터부(130)는 서로 손쉽게 결합 또는 분리되도록 각각 단위 모듈로 형성될 수 있다. 단위 모듈의 결정생성촉매 필터부(120)는 다른 단위 모듈인 프리 필터부(110)의 중공부에 삽입되고 결정생성촉매 필터부(120)는 또 다른 단위 모듈인 이온교환수지 필터부(130)에 삽입되어, 프리 필터부(110), 결정생성촉매 필터부(120) 및 이온교환수지 필터부(130)의 결합이 이루어질 수 있다.The prefilter unit 110, the crystal generation catalyst filter unit 120, and the ion exchange resin filter unit 130 may be formed in unit modules so as to be easily combined or separated from each other. The crystal generation catalyst filter unit 120 of the unit module is inserted into the hollow portion of the pre filter unit 110 which is another unit module, and the crystal generation catalyst filter unit 120 is another unit module of the ion exchange resin filter unit 130. Inserted into, the combination of the pre-filter unit 110, the crystal forming catalyst filter unit 120 and the ion exchange resin filter unit 130 may be made.
이하에서는 결정생성촉매(122)가 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하는 매커니즘에 대하여 설명한다.Hereinafter, a mechanism in which the crystal forming catalyst 122 removes the hard material or the scale causing material from the raw water will be described.
도 2는 결정생성촉매(122)의 매커니즘을 보인 개념도다.2 is a conceptual diagram illustrating a mechanism of the crystal generating catalyst 122.
결정생성촉매(122)는 담체(122a)(catalyst support, carrier, 또는 supporting material)와 결정 시드(122c)를 포함한다.The crystal generating catalyst 122 includes a carrier 122a (catalyst support, carrier, or supporting material) and a crystal seed 122c.
담체(122a)는 음전하를 띄는 고분자로 이루어진다. 칼슘 양이온(10), 마그네슘 양이온(20)과 같은 경도성 물질 또는 스케일 유발 물질은 양전하를 띈다. 따라서 담체(122a)가 음전하를 띄는 고분자로 이루어진다면 정전기적 인력에 의해 담체(122a)가 경도성 물질 또는 스케일 유발 물질을 끌어당길 수 있다. 음전하는 띄는 고분자는 예를 들어 폴리아크릴레이트(polyacrylate)를 포함한다.The carrier 122a is made of a polymer having a negative charge. Hard materials or scale-inducing materials such as calcium cations 10 and magnesium cations 20 are positively charged. Therefore, if the carrier 122a is made of a negatively charged polymer, the carrier 122a may attract the hard material or the scale-inducing material by the electrostatic attraction. Negatively charged polymers include, for example, polyacrylates.
담체(122a)의 표면에는 여러 결정화 사이트(122b)가 형성된다. 결정화 사이트(122b)는 경도성 물질 또는 스케일 유발 물질의 결정화가 이루어지는 공간을 가리킨다. 결정화 사이트(122b)에는 결정 시드(122c)가 존재한다. Several crystallization sites 122b are formed on the surface of the carrier 122a. Crystallization site 122b indicates the space where crystallization of the hard or scale-inducing material takes place. The crystal seed 122c is present at the crystallization site 122b.
결정 시드(122c)는 경도성 물질 또는 스케일 유발 물질을 결정으로 만드는 무기 소재다. 결정 시드(122c)는 칼슘과 마그네슘 중 적어도 하나를 포함한다. 예를 들어 결정 시드(122c)는 탄산칼슘(칼슘 카보네이트, CaCO3) 결정과 탄산마그네슘(마그네슘 카보네이트, MgCO3) 결정 중 적어도 하나를 포함할 수 있다. Crystal seed 122c is an inorganic material that makes the hard material or scale-inducing material into a crystal. Crystal seed 122c includes at least one of calcium and magnesium. For example, the crystal seed 122c may include at least one of a calcium carbonate (calcium carbonate, CaCO 3 ) crystal and a magnesium carbonate (magnesium carbonate, MgCO 3 ) crystal.
칼슘 양이온(10)이나 마그네슘 양이온(20)과 같이 원수에 존재하는 경도성 물질 또는 스케일 유발 물질은 결정생성촉매(122)에 접근하면 정전기적 인력에 의해 담체(122a)의 결정화 사이트(122b)에 모인다. 결정화 사이트(122b)에는 결정 시드(122c)가 존재하며, 결정 시드(122c)에 의해 경도성 물질 또는 스케일 유발 물질은 결정화된다. 경도성 물질 또는 스케일 유발 물질의 결정화 반응식은 화학식 1과 화학식 2로 나타내어질 수 있다. MEDIA는 결정생성촉매(122)를 가리킨다.Hard materials or scale-inducing substances present in raw water, such as calcium cations 10 and magnesium cations 20, are brought to the crystallization site 122b of the carrier 122a by electrostatic attraction when approaching the crystal forming catalyst 122. Gather. The crystal seed 122c is present at the crystallization site 122b, and the hardened material or the scale-inducing material is crystallized by the crystal seed 122c. The crystallization scheme of the hardness material or the scale-inducing material may be represented by Formula 1 and Formula 2. MEDIA points to the crystal formation catalyst 122.
[화학식 1][Formula 1]
Ca2+ + HCO3 - + MEDIA -> CaCO3(결정) + CO2 + H2O + MEDIA Ca 2+ + HCO 3 - + MEDIA -> CaCO 3 ( crystal) + CO 2 + H 2 O + MEDIA
[화학식 2][Formula 2]
Mg2+ + HCO3 - + MEDIA -> MgCO3(결정)+ CO2 + H2O + MEDIA Mg 2+ + HCO 3 - + MEDIA -> MgCO 3 ( crystal) + CO 2 + H 2 O + MEDIA
결정생성촉매(122)는 화학식 1과 같이 원수에 존재하는 칼슘 양이온(Ca2 +)과 중탄산 음이온(HCO3 -)의 반응을 촉진한다. 또한 결정생성촉매(122)는 화학식 2와 같이 원수에 존재하는 마그네슘 양이온(Mg2 +)과 중탄산 음이온(HCO3 -)의 반응을 촉진한다. 결정생성촉매(122)는 화학식 1 반응과 화학식 2 반응의 촉진을 통해 경도성 물질 또는 스케일 유발 물질의 결정화에 기여한다.Determining generation catalyst (122) is a calcium cation (Ca 2 +) and bicarbonate anion (HCO 3 -) present in the raw water as shown in the formula (1) to facilitate the reaction. In addition, the crystal forming catalyst 122 promotes the reaction between the magnesium cation (Mg 2 + ) and the bicarbonate anion (HCO 3 ) present in the raw water, as shown in Formula 2. The crystal forming catalyst 122 contributes to the crystallization of the hard material or the scale-inducing material through the promotion of the chemical formula 1 reaction and the chemical formula 2 reaction.
원수의 활발한 유동에 의해 결정(30)은 결정화 사이트(122b)에서 분리될 수 있다. 결정생성촉매(122)로부터 분리된 결정(30)은 도 1에서 설명하였던 출수 부직포 필터(140)에 의해 기계적으로 여과될 수 있다.Due to the vigorous flow of raw water, crystal 30 can be separated at crystallization site 122b. The crystal 30 separated from the crystal formation catalyst 122 may be mechanically filtered by the water extraction nonwoven filter 140 described with reference to FIG. 1.
이하에서는 이온교환수지(132)의 매커니즘과 재생에 관하여 설명한다.Hereinafter, the mechanism and regeneration of the ion exchange resin 132 will be described.
도 3a는 이온교환수지(132)의 매커니즘을 보인 개념도다.3A is a conceptual diagram illustrating a mechanism of the ion exchange resin 132.
이온교환수지(132)는 나트륨 양이온(Na+)과 작용기(SO3 -)를 갖는다. 이온교환수지(132)의 작용기(SO3 -)에 결합되어 있는 나트륨 양이온과 원수에 존재하는 경도성 물질 또는 스케일 유발 물질(칼슘 양이온 또는 마그네슘 양이온) 사이에는 선택도(또는 친화도) 차이가 존재하므로, 화학적 이온 교환이 발생할 수 있다. 작용기에 대한 칼슘 양이온의 친화도는 작용기에 있는 나트륨 양이온보다 크기 때문에, 작용기에 있는 나트륨 양이온은 작용기로부터 분리되고, 대신 칼슘 양이온이 작용기와 결합하게 된다. 마그네슘 양이온도 칼슘 양이온과 동일한 원리로 작용기와 결합하게 된다. 이러한 이온 교환 과정에 의해 원수로부터 경도성 물질 또는 스케일 유발 물질이 제거될 수 있으며, 원수의 경도는 낮아질 수 있다.The ion exchange resin 132 has a sodium cation (Na +) and a functional group (SO 3 ). There is a difference in selectivity (or affinity) between the sodium cation bound to the functional group (SO 3 ) of the ion exchange resin 132 and the hard or scale-inducing substance (calcium cation or magnesium cation) present in the raw water. As such, chemical ion exchange may occur. Since the affinity of the calcium cations for the functional groups is greater than the sodium cations in the functional groups, the sodium cations in the functional groups are separated from the functional groups and instead the calcium cations bind to the functional groups. Magnesium cations also bind to functional groups on the same principle as calcium cations. By such an ion exchange process, the hardness material or the scale causing material may be removed from the raw water, and the hardness of the raw water may be lowered.
이온교환수지(132)는 화학적 이온 교환에 의해 경도성 물질 또는 스케일 유발 물질을 제거하므로, 초기 반응 속도가 매우 빠르다는 장점을 갖는다. 그리고 이온교환수지(132)에 나트륨 양이온과 작용기가 존재하는 한 원수에 존재하는 경도성 물질 또는 스케일 유발 물질은 계속해서 제거될 수 있다.Since the ion exchange resin 132 removes the hard material or the scale-inducing material by chemical ion exchange, the initial reaction rate is very fast. As long as the sodium cation and the functional group are present in the ion exchange resin 132, the hardness material or the scale causing material present in the raw water may be continuously removed.
그러나 이온교환수지(132)에 존재하는 나트륨 양이온과 작용기의 양은 한정적이다. 따라서 이온교환수지(132)가 화학적 이온 교환 작용을 반복할수록 이온 교환 성능은 점차 떨어지게 되고, 이온교환수지(132)의 성능을 회복하기 위해서는 재생을 하여야 한다.However, the amount of sodium cations and functional groups present in the ion exchange resin 132 is limited. Therefore, as the ion exchange resin 132 repeats the chemical ion exchange action, the ion exchange performance gradually decreases, and regeneration is required to restore the performance of the ion exchange resin 132.
도 3b는 이온교환수지(132)의 재생을 보인 개념도다.3B is a conceptual diagram illustrating regeneration of the ion exchange resin 132.
이온교환수지(132)를 재생하기 위해서는, 소금물(염을 포함하는 액체)에 이온교환수지(132)를 노출시킨다. 소금물에는 과량의 나트륨 양이온이 존재하기 때문에 나트륨 양이온과 칼슘 양이온 사이에는 농도 차이가 존재하고, 나트륨 양이온과 마그네슘 양이온 사이에도 농도 차이가 존재한다. 소금물에 존재하는 과량의 나트륨 양이온들이 재생 대상 이온교환수지(132)를 만나게 되면, 농도 차이에 의해 작용기에 결합된 칼슘 양이온 또는 마그네슘 양이온을 작용기로부터 탈착시키고 나트륨 양이온이 작용기에 결합된다.In order to regenerate the ion exchange resin 132, the ion exchange resin 132 is exposed to salt water (liquid containing salt). Since there is an excess of sodium cations in the brine, there is a difference in concentration between the sodium cation and the calcium cation, and there is a difference in concentration between the sodium cation and the magnesium cation. When excess sodium cations present in the brine meet the ion exchange resin 132 to be recycled, the calcium cation or magnesium cation bound to the functional group is desorbed from the functional group by the concentration difference, and the sodium cation is bound to the functional group.
이온교환수지(132)는 재생에 의해 경도성 물질 또는 스케일 유발 물질의 제거 성능을 회복할 수 있다. 다만, 재생의 반복에 따라 재생의 효율은 점차 감소한다. 그로 인해 이온교환수지(132)의 재생 주기가 짧아지게 되고, 이온 교환 성능의 회복 효과도 낮아지게 된다.The ion exchange resin 132 may restore the removal performance of the hard material or the scale-inducing material by regeneration. However, as the regeneration is repeated, the regeneration efficiency gradually decreases. As a result, the regeneration cycle of the ion exchange resin 132 is shortened, and the recovery effect of the ion exchange performance is also lowered.
그러나 본 발명은 이러한 이온교환수지(132)의 단점을 결정생성촉매(122, 도 2 및 도 2 참조)로 보완하였음을 이미 설명하였다. However, the present invention has already described that the disadvantage of the ion exchange resin 132 is supplemented by the crystal forming catalyst 122 (see FIGS. 2 and 2).
도 4는 결정생성촉매(122)와 이온교환수지(132)를 실험적으로 비교한 그래프다.4 is an experimental comparison of the crystal forming catalyst 122 and the ion exchange resin 132.
그래프의 가로축은 시간(분)이고, 세로축은 경도 저하율(water hardness reduction, %)을 가리킨다. 경도 저하율은 곧 원수로부터 경도성 물질과 스케일 유발 물질을 제거하는 여과 성능을 의미한다.The horizontal axis of the graph represents time (minutes), and the vertical axis represents water hardness reduction (%). Hardness reduction rate refers to the filtration ability to remove hardness and scale-causing substances from raw water.
먼저 이온교환수지(132)의 그래프를 참조하면, 이온교환수지(132)는 초기부터 급격한 높은 여과 성능을 보인다. 이온교환수지(132)에 노출된 원수의 경도는 짧은 시간 내에 낮아지기 때문에, 이온교환수지(132)는 매우 빠른 초기 반응 속도를 가짐을 알 수 있다. 또한 이온교환수지(132)의 경도 저하율은 거의 100%에 육박하기 때문에, 이온교환수지(132)가 매우 우수한 여과 성능을 갖는다는 것을 확인할 수 있다.Referring first to the graph of the ion exchange resin 132, the ion exchange resin 132 shows a rapid high filtration performance from the beginning. Since the hardness of the raw water exposed to the ion exchange resin 132 is lowered within a short time, it can be seen that the ion exchange resin 132 has a very fast initial reaction rate. In addition, since the hardness reduction rate of the ion exchange resin 132 is nearly 100%, it can be confirmed that the ion exchange resin 132 has a very good filtration performance.
그러나, 실험 결과를 살펴보면 이온교환수지(132)의 수명은 작동시간이 약 200분에 이르기 전에 끝난다. 이온교환수지(132)의 수명은 실험 조건에 따라 달라질 수 있으나, 실험 조건이 변경되더라도 이온교환수지(132)의 수명이 결정생성촉매(122)의 수명보다 짧다는 것은 변함이 없다. 따라서 이온교환수지(132)를 계속 사용하기 위해서는 반드시 재생이라는 과정을 거쳐야 한다.However, looking at the experimental results, the lifetime of the ion exchange resin 132 ends before the operation time reaches about 200 minutes. Although the lifetime of the ion exchange resin 132 may vary depending on the experimental conditions, the lifetime of the ion exchange resin 132 is shorter than the lifetime of the crystal forming catalyst 122 even if the experimental conditions are changed. Therefore, in order to continue using the ion exchange resin 132, it must go through a process called regeneration.
이에 반해 결정생성촉매(122)의 그래프를 참조하면, 결정생성촉매(122)는 여과 성능은 이온교환수지(132)에 비해 느리게 증가한다. 이것은 결정생성촉매(122)가 이온교환수지(132)에 비해 느린 반응 속도를 가진다는 것을 의미한다. 그러나 결정생성촉매(122)의 여과 성능은 이온교환수지(132)와 달리 시간이 증가할수록 계속해서 완만하게 증가한다. 이것은 결정생성촉매(122)의 수명이 이온교환수지(132)에 비해 매우 길다는 것을 의미하며, 이온교환수지(132)와 달리 빈번한 재생을 필요로 하지 않는다는 것을 의미한다.On the other hand, referring to the graph of the crystal forming catalyst 122, the crystal forming catalyst 122 is increased slowly compared to the ion exchange resin 132. This means that the crystal forming catalyst 122 has a slower reaction rate than the ion exchange resin 132. However, unlike the ion exchange resin 132, the filtration performance of the crystal forming catalyst 122 continues to slowly increase with time. This means that the lifetime of the crystal forming catalyst 122 is much longer than that of the ion exchange resin 132, and unlike the ion exchange resin 132, it does not require frequent regeneration.
결정생성촉매(122)가 이온교환수지(132)에 비해 월등히 긴 수명을 갖는 것은 매커니즘의 차이로부터 비롯된다. 이온교환수지(132)가 이온 간의 교환을 통해 원수로부터 경도성 물질이나 스케일 유발 물질을 제거하기 때문에, 시간이 지날수록 교환 가능한 이온의 수는 감소한다. 이에 반해 결정생성촉매(122)는 생성된 결정이 결정생성촉매로부터 분리되고 나면, 다시 결정을 생성하는 다른 반응에 참여할 수 있기 때문에 이온교환수지(132)보다 월등하게 긴 수명을 가질 수 있는 것이다.The fact that the crystal forming catalyst 122 has a much longer life than the ion exchange resin 132 results from a difference in mechanism. Since the ion exchange resin 132 removes the hard or scale-inducing substance from the raw water through the exchange between ions, the number of exchangeable ions decreases over time. In contrast, the crystal formation catalyst 122 may have a much longer life than the ion exchange resin 132 since the generated crystal is separated from the crystal formation catalyst, and thus may participate in another reaction to generate the crystal.
본 발명의 복합 필터는 결정생성촉매(122)를 이용하여 재생을 필요로 하는 이온교환수지(132)의 단점을 보완하고, 이온교환수지(132)를 이용하여 초기 반응 속도가 느린 결정생성촉매(122)의 단점을 보완한다. 특히 이온교환수지(132)의 재생 주기가 길어짐에 따라 본 발명은 재생으로 인한 물 낭비나 환경 오염, 재생 효율의 감소 등의 문제를 해결할 수 있는 장점을 갖는다.The composite filter of the present invention compensates for the shortcomings of the ion exchange resin 132 that requires regeneration using the crystal formation catalyst 122, and the crystal formation catalyst having a slow initial reaction rate using the ion exchange resin 132 ( 122) to compensate for the shortcomings. In particular, as the regeneration cycle of the ion exchange resin 132 is longer, the present invention has an advantage of solving problems such as waste of water due to regeneration, environmental pollution, and reduction of regeneration efficiency.
이하에서는 본 발명의 다른 실시예에 대하여 설명한다.Hereinafter, another embodiment of the present invention will be described.
도 5는 본 발명의 제2실시예를 보인 복합 필터(200)의 단면도다.5 is a cross-sectional view of a composite filter 200 showing a second embodiment of the present invention.
하우징(250)의 일측에 입수부(251)가 형성되고, 프리 필터부(110)는 입수부(251)로부터 원수를 공급받는다. 프리 필터부(110)는 원수에 존재하는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거하도록 이루어진다. 프리 필터부(110)는 외주면에서 내주면 방향으로 유동하는 원수로부터 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거할 수 있다.An inlet 251 is formed at one side of the housing 250, and the pre-filter unit 110 receives raw water from the inlet 251. The prefilter unit 110 is configured to remove at least one of particulate matter, organic matter, and residual chlorine present in the raw water. The prefilter unit 110 may remove at least one of particulate matter, organic matter, and residual chlorine from raw water flowing from the outer circumferential surface toward the inner circumferential surface.
프리 필터부(110)는 중공부를 구비한다. 프리 필터부(110)의 중공부에는 결정생성촉매 필터부(220)가 배치될 수 있다. 결정생성촉매 필터부(220)는 다수의 결정생성촉매(122, 도 2 참조)를 갖는 블럭(220)으로 이루어질 수 있다. 결정생성촉매를 갖는 블럭(200)은 이온교환수지 필터부(230)의 블럭과 구분하기 위해 제1블럭(220)으로 명명될 수 있다. 제1블럭(220)과 결정생성촉매 필터부(220)는 실질적으로 동일한 것이므로 제1블럭(220)의 도면부호는 결정생성촉매 필터부(220)의 도면부호와 동일하게 220을 부여하였다.The prefilter unit 110 has a hollow portion. The crystal generation catalyst filter 220 may be disposed in the hollow portion of the pre-filter unit 110. The crystal generation catalyst filter 220 may include a block 220 having a plurality of crystal generation catalysts 122 (see FIG. 2). The block 200 having the crystal forming catalyst may be referred to as the first block 220 to distinguish it from the block of the ion exchange resin filter 230. Since the first block 220 and the crystal generation catalyst filter 220 are substantially the same, reference numerals of the first block 220 are denoted by the same reference numerals as the crystal generation catalyst filter 220.
제1블럭(220)은 외주면에서 내주면 방향으로 유동하는 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어진다. 제1블럭(220)은 다수의 결정생성촉매를 가지므로 제1블럭(220)의 매커니즘은 앞서 설명한 결정생성촉매의 매커니즘과 동일하다. 결정은 결정생성촉매를 전단 방향(shear direction)으로 통과하는 원수에 의해 결정생성촉매로부터 분리될 수 있다.The first block 220 is configured to remove the hard material or the scale-inducing material from the raw water flowing in the direction of the inner circumferential surface from the outer circumferential surface. Since the first block 220 has a plurality of crystal generation catalysts, the mechanism of the first block 220 is the same as that of the crystal generation catalyst described above. The crystal can be separated from the crystal forming catalyst by raw water passing through the crystal forming catalyst in the shear direction.
제1블럭(220)은 중공부를 구비한다. 제1블럭(220)의 중공부에는 이온교환수지 필터부(230)가 배치될 수 있다. 이온교환수지 필터부(230)는 다수의 이온교환수지(132, 도 3a 및 도 3b 참조)를 갖는 블럭(230)으로 이루어질 수 있다. 이 블럭(230)은 제1블럭(220)과 구분하기 위해 제2블럭(230)으로 명명될 수 있다. 제2블럭(230)과 이온교환수지 필터부(230)는 실질적으로 동일한 것이므로 제1블럭(230)의 도면부호는 결정생성촉매 필터부(230)의 도면부호와 동일하게 230을 부여하였다.The first block 220 has a hollow part. An ion exchange resin filter 230 may be disposed in the hollow portion of the first block 220. The ion exchange resin filter unit 230 may include a block 230 having a plurality of ion exchange resins 132 (see FIGS. 3A and 3B). This block 230 may be referred to as a second block 230 to distinguish it from the first block 220. Since the second block 230 and the ion exchange resin filter unit 230 are substantially the same, the reference numerals of the first block 230 are denoted by the same reference numerals as the crystal generation catalyst filter unit 230.
제2블럭(230)은 외주면에서 내주면 방향으로 유동하는 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어진다. 제2블럭(230)은 다수의 이온교환수지(132)를 가지므로 제2블럭(230)의 매커니즘은 앞서 설명한 이온교환수지(132)의 매커니즘과 동일하다.The second block 230 is configured to remove the hard material or the scale causing material from the raw water flowing in the direction from the outer circumferential surface to the inner circumferential surface. Since the second block 230 has a plurality of ion exchange resins 132, the mechanism of the second block 230 is the same as that of the ion exchange resin 132 described above.
결정생성촉매 필터부(220)가 제1블럭(220)으로 이루어지고, 이온교환수지 필터부(230)가 제2블럭(230)으로 이루어짐에 따라 복합 필터(200)의 소재 집적도가 향상될 수 있다. 또한 이온교환수지(132)의 재생이 필요한 경우에는 제2블럭(230)만을 분리하여 재생한 후 다시 제1블럭(220)의 중공부에 삽입하면 된다. 따라서 블럭 구조는 재생의 편의성을 향상시킬 수 있다.As the crystal forming catalyst filter 220 is formed of the first block 220 and the ion exchange resin filter 230 is formed of the second block 230, the material density of the composite filter 200 may be improved. have. In addition, when the ion exchange resin 132 needs to be regenerated, only the second block 230 may be separated and regenerated, and then inserted into the hollow part of the first block 220 again. Therefore, the block structure can improve the convenience of reproduction.
제2블럭(230)은 중공부를 구비한다. 제2블럭(230)의 중공부에는 출수 유로(260)가 배치될 수 있으며 출수 유로(260)는 제2블럭(230)으로부터 원수를 공급받는다. 그리고 출수 유로(260)는 출수부(252)에 연결되는 유로를 형성한다. 제1블럭(220)과 제2블럭(230)을 순차적으로 통과하면서 여과된 원수는 출수 유로(260)와 출수부(252)를 통해 하우징(250)의 외부로 배출될 수 있다.The second block 230 has a hollow part. A water outlet passage 260 may be disposed in the hollow portion of the second block 230, and the outlet passage 260 receives raw water from the second block 230. And the water outlet flow path 260 forms a flow path connected to the water outlet 252. The raw water filtered while sequentially passing through the first block 220 and the second block 230 may be discharged to the outside of the housing 250 through the water discharge passage 260 and the water outlet 252.
다만, 소재 집적도를 향상시키기 위한 블럭 구조가 반드시 도 5의 구조에 한정되는 것은 아니다. 입수부(251)와 출수부(252)의 위치에 따라 제1블럭(220)과 제2블럭(230) 중 어느 하나가 다른 하나를 감싸도록 형성될 수 있다. 예를 들어 도 5와 달리 제2블럭(230)이 제1블럭(220)을 감싸도록 형성되는 구조도 가능하다. 다만 복합 필터의 유로 구조는, 원수가 상기 제1블럭(220)과 상기 제2블럭(230)에 의해 순차적으로 여과되도록 이루어져야 한다.However, the block structure for improving the material integration degree is not necessarily limited to the structure of FIG. 5. One of the first block 220 and the second block 230 may be formed to surround the other one according to the positions of the inlet 251 and the outlet 252. For example, unlike FIG. 5, the second block 230 may be formed to surround the first block 220. However, the flow path structure of the composite filter should be made so that the raw water is sequentially filtered by the first block 220 and the second block 230.
이하에서는 본 발명의 복합 필터(100 또는 200)를 다른 필터와 직렬로 연결하여 여과 시스템을 구성한 여러 변형례에 대하여 설명한다. 복합 필터(100 또는 200)가 단일의 필터로 이루어진다면, 여과 시스템은 여러 개의 필터들의 집합으로 형성된다.Hereinafter, various modified examples in which the filtration system is constructed by connecting the composite filter 100 or 200 of the present invention in series with other filters will be described. If the composite filter 100 or 200 consists of a single filter, the filtration system is formed of a set of several filters.
도 6은 본 발명의 복합 필터와 기타 필터를 직렬로 연결하여 2단의 여과 시스템을 구성한 개념도다.6 is a conceptual diagram illustrating a two-stage filtration system by connecting the composite filter and the other filter of the present invention in series.
여과 시스템은 두 필터를 2단으로 연결하여 형성된다. 상류측에는 본 발명의 복합 필터(100 또는 200)가 배치되고, 하류측에는 UF필터(300)(Ultrafiltration)가 배치된다. UF필터(300)는 압력차를 추진력으로 물을 여과하며, 기공과 용질의 크기 차이에 의해 물로부터 특정 물질을 분리한다. 복합 필터(100 또는 200)와 UF필터(300)는 직렬로 연결된다.The filtration system is formed by connecting two filters in two stages. The composite filter 100 or 200 of the present invention is disposed on the upstream side, and the UF filter 300 (Ultrafiltration) is disposed on the downstream side. The UF filter 300 filters the water by the pressure difference, and separates a specific substance from the water by the size difference between the pores and the solutes. The composite filter 100 or 200 and the UF filter 300 are connected in series.
복합 필터(100 또는 200)의 프리 필터부(110 또는 210, 도 1 및 도 5 참조)에서는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나가 제거된다. 복합 필터(100 또는 200)의 결정생성촉매 필터부(120 또는 220, 도 1 및 도 5 참조)에서는 결정화라는 매커니즘에 의해 경도성 물질 또는 스케일 유발 물질이 제거된다. 복합 필터(100 또는 200)의 이온교환수지 필터부(130 또는 230, 도 1 및 도 5 참조)와 이온 교환이라는 매커니즘에 의해 경도성 물질 또는 스케일 유발 물질이 제거된다. UF필터(300)는 복합 필터(100 또는 200)에서 여과된 물로부터 탁질, 콜로이드, 단백질, 미생물학적 오염균과 거대 유기분자를 제거할 수 있다.At least one of particulate matter, organic matter, and residual chlorine is removed from the prefilter unit 110 or 210 of the composite filter 100 or 200 (see FIGS. 1 and 5). In the crystal generation catalyst filter unit 120 or 220 of the composite filter 100 or 200 (see FIGS. 1 and 5), the hard material or the scale-inducing material is removed by a mechanism called crystallization. The hardness material or the scale-inducing material are removed by the ion exchange resin filter unit 130 or 230 (see FIGS. 1 and 5) of the composite filter 100 or 200 and an ion exchange mechanism. The UF filter 300 may remove the solutes, colloids, proteins, microbiological contaminants and large organic molecules from the water filtered by the composite filter 100 or 200.
도 7은 본 발명의 복합 필터와 기타 필터를 직렬로 연결하여 2단의 여과 시스템을 구성한 다른 개념도다.FIG. 7 is another conceptual diagram illustrating a two-stage filtration system connected in series with the complex filter and the other filter of the present invention.
여과 시스템은 두 개의 필터를 2단으로 연결하여 형성된다. 상류측에는 본 발명의 복합 필터(100 또는 200)가 배치되고, 하류측에서는 UF필터부(300)와 포스트 카본 블럭 필터부(400)를 갖는 복합 필터(300, 400)가 배치된다. 상류측의 복합 필터(100 또는 200)와 하류측의 복합 필터(300, 400)를 서로 구분하기 위해, 상류측의 복합 필터(100 또는 200)를 제1 복합 필터(100 또는 200)로 명명하고 하류측의 복합 필터(300, 400)를 제2 복합 필터(300, 400)로 명명할 수 있다.The filtration system is formed by connecting two filters in two stages. On the upstream side, the composite filter 100 or 200 of the present invention is disposed, and on the downstream side, the composite filter 300, 400 having the UF filter unit 300 and the post carbon block filter unit 400 is disposed. In order to distinguish the upstream composite filter 100 or 200 and the downstream composite filter 300, 400 from each other, the upstream composite filter 100 or 200 may be referred to as a first composite filter 100 or 200. The downstream composite filters 300 and 400 may be referred to as second composite filters 300 and 400.
제2 복합 필터(300, 400)는 UF필터부(300)와 포스트 카본 블럭 필터부(400)를 하나의 하우징(미도시) 내에 구비한다. 제2 복합 필터(300, 400)의 포스트 카본 블럭 필터부(400)는 여과 시스템에서 번식할 수 있는 박테리아 등을 마지막으로 한번 더 걸러준다. 나머지 필터 또는 필터부에 대한 설명은 앞서 설명한 것으로 갈음한다.The second composite filters 300 and 400 include the UF filter unit 300 and the post carbon block filter unit 400 in one housing (not shown). The post carbon block filter unit 400 of the second composite filter 300 or 400 filters out bacteria, which can be propagated in the filtration system, one last time. The description of the remaining filter or filter unit is replaced with the above description.
도 8은 본 발명의 복합 필터와 기타 필터들을 직렬로 연결하여 3단의 여과 시스템을 구성한 개념도다.8 is a conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
여과 시스템은 세 개의 필터를 3단으로 연결하여 형성된다. 상류측에는 본 발명의 복합 필터(100 또는 200)가 배치되고, 중류측에는 UF필터(300)가 배치되며, 하류측에는 카본 블럭 필터(400)가 배치된다. 복합 필터(100 또는 200), UF필터(300) 및 카본 블럭 필터(400)는 직렬로 연결된다.The filtration system is formed by connecting three filters in three stages. The composite filter 100 or 200 of the present invention is disposed on the upstream side, the UF filter 300 is disposed on the midstream side, and the carbon block filter 400 is disposed on the downstream side. The composite filter 100 or 200, the UF filter 300 and the carbon block filter 400 are connected in series.
도 7에서 설명하였던 제2 복합 필터(300 또는 400)가 하나의 하우징(미도시) 내에 UF필터부(300)와 포스트 카본 블럭 필터부(400)를 갖는 것과 달리, 도 8의 여과 시스템은 UF필터(300)와 카본 블럭 필터(400)를 각각 다른 하우징(미도시) 내에 구비한다는 점에서 차이가 있다.Unlike the second composite filter 300 or 400 described in FIG. 7 having the UF filter unit 300 and the post carbon block filter unit 400 in one housing (not shown), the filtration system of FIG. There is a difference in that the filter 300 and the carbon block filter 400 are provided in different housings (not shown).
도 9는 본 발명의 복합 필터와 기타 필터들을 직렬로 연결하여 3단의 여과 시스템을 구성한 다른 개념도다.9 is another conceptual diagram illustrating a three-stage filtration system by connecting the composite filter and other filters of the present invention in series.
상류측에는 카본 블럭 필터, 중류측에는 UF 필터가 배치되며, 하류측에는 복합 필터(100 또는 200)가 배치된다. 도 9의 여과 시스템은 도 8의 여과 시스템과 필터의 배치 순서만 다를 뿐 나머지 구성은 동일하다. 여과 시스템을 형성하는 필터들의 순서는 필요에 따라 설계 변경될 수 있다.A carbon block filter is disposed on the upstream side, an UF filter is disposed on the middle side, and a composite filter 100 or 200 is disposed on the downstream side. The filtration system of FIG. 9 differs only in the arrangement order of the filtration system and the filter of FIG. The order of the filters forming the filtration system can be changed in design as needed.
이상에서 설명된 복합 필터는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The complex filter described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made.
본 발명은 원수를 여과하여 정수를 생성하는 필터와 관련된 산업 분야에 이용될 수 있다.The present invention can be used in industrial fields related to filters that filter raw water to produce purified water.

Claims (12)

  1. 원수에 존재하는 경도성 물질 또는 스케일 유발 물질과 중탄산 음이온의 반응을 촉진하고, 결정화를 통해 상기 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어지는 결정생성촉매 필터부; 및A crystal production catalyst filter configured to promote a reaction between the hard material or scale-inducing material present in the raw water and the bicarbonate anion, and to remove the hard material or scale-inducing material from the raw water through crystallization; And
    상기 결정생성촉매 필터부를 통과한 원수를 여과하도록 상기 결정생성촉매 필터부의 하류측에 형성되고, 이온 교환을 통해 상기 원수로부터 경도성 물질 또는 스케일 유발 물질을 제거하도록 이루어지는 이온교환수지 필터부를 포함하는 복합 필터.A composite comprising an ion exchange resin filter portion formed downstream of the crystal formation catalyst filter portion to filter the raw water passing through the crystal generation catalyst filter portion, and to remove the hardness material or the scale-inducing substance from the raw water through ion exchange. filter.
  2. 제1항에 있어서,The method of claim 1,
    상기 결정생성촉매 필터부는 다수의 결정생성촉매를 포함하고,The crystal production catalyst filter unit includes a plurality of crystal production catalysts,
    상기 결정생성촉매는, 상기 원수에 존재하는 칼슘 양이온과 중탄산 음이온의 반응을 촉진하거나 상기 원수에 존재하는 마그네슘 양이온과 중탄산 음이온의 반응을 촉진하여, 상기 경도성 물질 또는 상기 스케일 유발 물질을 결정화시키도록 이루어지는 것을 특징으로 하는 복합 필터.The crystal forming catalyst promotes the reaction of calcium cations and bicarbonate anions in the raw water or the reaction of magnesium cations and bicarbonate anions in the raw water to crystallize the hardness material or the scale-inducing material. A composite filter, characterized in that made.
  3. 제1항에 있어서,The method of claim 1,
    상기 결정생성촉매 필터부는 다수의 결정생성촉매를 포함하고,The crystal production catalyst filter unit includes a plurality of crystal production catalysts,
    상기 결정생성촉매는,The crystal forming catalyst,
    음전하를 띄는 고분자로 이루어지는 담체; 및A carrier made of a polymer having a negative charge; And
    상기 담체의 결정화 사이트에 존재하며, 칼슘과 마그네슘 중 적어도 하나를 포함하는 결정 시드를 포함하는 것을 특징으로 하는 복합 필터.And a crystal seed present at the crystallization site of said carrier, said crystal seed comprising at least one of calcium and magnesium.
  4. 제1항에 있어서,The method of claim 1,
    상기 결정생성촉매 필터부는 아래에서부터 위로 원수가 차오르는 형태의 유로 구조를 갖고,The crystal generation catalyst filter unit has a flow path structure in which the raw water is filled from the bottom up,
    상기 이온교환수지 필터부는 위에서 아래로 원수가 떨어지는 형태의 유로 구조를 갖는 것을 특징으로 하는 복합 필터.And the ion exchange resin filter part has a flow path structure in which raw water falls from top to bottom.
  5. 제1항에 있어서,The method of claim 1,
    상기 복합 필터는,The composite filter,
    상기 결정생성촉매 필터부와 상기 이온교환수지 필터부를 수용하도록 형성되는 하우징; 및A housing formed to receive the crystal generation catalyst filter and the ion exchange resin filter; And
    상기 하우징의 내주면을 마주보도록 배치되고, 원수에 존재하는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거하도록 이루어지는 프리 필터부를 포함하고,A pre-filter unit disposed to face the inner circumferential surface of the housing and configured to remove at least one of particulate matter, organic matter, and residual chlorine present in raw water;
    상기 결정생성촉매 필터부는,The crystal generation catalyst filter unit,
    상기 프리 필터부를 통과한 원수가 유입되도록 형성되고, 상기 프리 필터부와의 경계를 형성하는 제1케이스; 및A first case formed to introduce raw water passing through the prefilter unit and forming a boundary with the prefilter unit; And
    상기 제1케이스의 내부에 투입되는 다수의 결정생성촉매를 포함하며,It includes a plurality of crystal generating catalyst is put into the first case,
    상기 이온교환수지 필터부는,The ion exchange resin filter unit,
    상기 결정생성촉매 필터부를 통과한 원수가 유입되도록 형성되고, 상기 결정생성촉매 필터부와의 경계를 형성하는 제2케이스; 및A second case formed to introduce raw water passing through the crystal generation catalyst filter and forming a boundary with the crystal generation catalyst filter; And
    상기 제2케이스의 내부에 투입되는 다수의 이온교환수지를 포함하는 것을 특징으로 하는 복합 필터.And a plurality of ion exchange resins introduced into the second case.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1케이스의 내벽면에는 나선형의 돌출부가 형성되는 것을 특징으로 하는 복합 필터.Composite filter, characterized in that the spiral protrusion is formed on the inner wall surface of the first case.
  7. 제5항에 있어서,The method of claim 5,
    상기 제1케이스의 내벽면에는 복수의 돌출부가 형성되고,A plurality of protrusions are formed on the inner wall surface of the first case,
    상기 복수의 돌출부는 상기 결정생성촉매 필터부에 원수가 차오르는 방향을 따라 서로 이격되게 배치되는 것을 특징으로 하는 복합 필터.And the plurality of protrusions are disposed to be spaced apart from each other along the direction in which the raw water fills the crystal generation catalyst filter.
  8. 제5항에 있어서,The method of claim 5,
    상기 결정생성촉매 필터부의 하단은 상기 하우징의 내측 바닥면으로부터 이격되어 상기 프리 필터부를 통과한 원수가 상기 결정생성촉매 필터부의 유로 구조로 차오르도록 형성되는 것을 특징으로 하는 복합 필터.And a lower end of the crystal generation catalyst filter part is formed such that raw water passing from the inner bottom surface of the housing and passing through the pre-filter part is filled with a flow path structure of the crystal generation catalyst filter part.
  9. 제5항에 있어서,The method of claim 5,
    상기 결정생성촉매 필터부의 상단과 상기 이온교환수지 필터부의 상단은 상기 하우징의 내측 상단면으로부터 이격되어, 상기 결정생성촉매 필터부를 통과한 원수가 상기 이온교환수지 필터부의 유로 구조로 떨어지도록 형성되는 것을 특징으로 하는 복합 필터.An upper end of the crystal generation catalyst filter unit and an upper end of the ion exchange resin filter unit may be spaced apart from the inner top surface of the housing so that raw water passing through the crystal generation catalyst filter unit may fall into the flow path structure of the ion exchange resin filter unit. A composite filter characterized by the above.
  10. 제5항에 있어서,The method of claim 5,
    상기 복합 필터는 상기 제1케이스의 외벽면과 상기 제2케이스의 외벽면 사이에 형성되는 출수 유로를 포함하고,The composite filter includes a water discharge passage formed between the outer wall surface of the first case and the outer wall surface of the second case,
    상기 이온교환수지 필터부의 하단은 상기 하우징의 내측 바닥면으로부터 이격되어 상기 이온교환수지 필터부를 통과한 원수가 상기 출수 유로를 통해 배출되도록 이루어지는 것을 특징으로 하는 복합 필터.The lower end of the ion exchange resin filter unit is separated from the inner bottom surface of the housing complex filter, characterized in that the raw water passing through the ion exchange resin filter unit is discharged through the water discharge passage.
  11. 제1항에 있어서,The method of claim 1,
    상기 복합 필터는,The composite filter,
    상기 결정생성촉매 필터부와 상기 이온교환수지 필터부를 수용하도록 형성되는 하우징; 및A housing formed to receive the crystal generation catalyst filter and the ion exchange resin filter; And
    상기 하우징의 내주면을 마주보도록 배치되고, 원수에 존재하는 입자성 물질, 유기물질 및 잔류염소 중 적어도 하나를 제거하도록 이루어지는 프리 필터부를 포함하고,A pre-filter unit disposed to face the inner circumferential surface of the housing and configured to remove at least one of particulate matter, organic matter, and residual chlorine present in raw water;
    상기 결정생성촉매 필터부는 다수의 결정생성촉매를 갖는 제1블럭으로 이루어지고,The crystal generation catalyst filter unit is composed of a first block having a plurality of crystal production catalysts,
    상기 이온교환수지 필터부는 다수의 이온교환수지를 갖는 제2블럭으로 이루어지는 것을 특징으로 하는 복합 필터.And the ion exchange resin filter unit comprises a second block having a plurality of ion exchange resins.
  12. 제11항에 있어서,The method of claim 11,
    상기 제1블럭과 상기 제2블럭 중 어느 하나는 다른 하나를 감싸도록 형성되고,One of the first block and the second block is formed to surround the other one,
    상기 복합 필터의 유로 구조는, 원수가 상기 제1블럭과 상기 제2블럭에 의해 순차적으로 여과되도록 이루어지는 것을 특징으로 하는 복합 필터.The composite filter flow path structure, the composite filter, characterized in that the raw water is sequentially filtered by the first block and the second block.
PCT/KR2016/009727 2015-09-17 2016-08-31 Composite filter WO2017047953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0131809 2015-09-17
KR1020150131809A KR101744615B1 (en) 2015-09-17 2015-09-17 Complex filter

Publications (1)

Publication Number Publication Date
WO2017047953A1 true WO2017047953A1 (en) 2017-03-23

Family

ID=58289229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009727 WO2017047953A1 (en) 2015-09-17 2016-08-31 Composite filter

Country Status (2)

Country Link
KR (1) KR101744615B1 (en)
WO (1) WO2017047953A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018204380B2 (en) * 2017-06-19 2019-11-07 Lg Electronics Inc. Hardness reduction filter
CN111495107A (en) * 2020-04-18 2020-08-07 张宏 Waste gas adsorption device based on saturated and automatic replacement of filter material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102231895B1 (en) * 2019-05-03 2021-03-26 주식회사 마이크로필터 Filter Assembly having Variable Flux Bypass Passages Capable of Controling Elimination for Dissolved Solid
KR20230120268A (en) * 2022-02-09 2023-08-17 주식회사 마이크로필터 Filter assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200218769Y1 (en) * 2000-11-10 2001-04-02 권진철 Clean water filter
KR200328073Y1 (en) * 2003-07-02 2003-09-26 유진열 soft water maker
KR20120002855A (en) * 2010-07-01 2012-01-09 웅진코웨이주식회사 Integrated filter
KR20120004703U (en) * 2010-12-21 2012-06-29 오교선 Cartrige Structure Of Washimg Machine
JP2012524653A (en) * 2009-04-21 2012-10-18 イーコラブ ユーエスエー インコーポレイティド Catalytic water treatment method and apparatus
KR20130133469A (en) * 2012-05-29 2013-12-09 박병권 Standing water apparatus adopting standing water member for inducing eddy
KR101477600B1 (en) * 2013-10-24 2014-12-30 주식회사 마이크로필터 Filter Apparatus Having Filter Assembly Having Partition Wall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200218769Y1 (en) * 2000-11-10 2001-04-02 권진철 Clean water filter
KR200328073Y1 (en) * 2003-07-02 2003-09-26 유진열 soft water maker
JP2012524653A (en) * 2009-04-21 2012-10-18 イーコラブ ユーエスエー インコーポレイティド Catalytic water treatment method and apparatus
KR20120002855A (en) * 2010-07-01 2012-01-09 웅진코웨이주식회사 Integrated filter
KR20120004703U (en) * 2010-12-21 2012-06-29 오교선 Cartrige Structure Of Washimg Machine
KR20130133469A (en) * 2012-05-29 2013-12-09 박병권 Standing water apparatus adopting standing water member for inducing eddy
KR101477600B1 (en) * 2013-10-24 2014-12-30 주식회사 마이크로필터 Filter Apparatus Having Filter Assembly Having Partition Wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018204380B2 (en) * 2017-06-19 2019-11-07 Lg Electronics Inc. Hardness reduction filter
US10836664B2 (en) 2017-06-19 2020-11-17 Lg Electronics Inc. Hardness reduction filter
CN111495107A (en) * 2020-04-18 2020-08-07 张宏 Waste gas adsorption device based on saturated and automatic replacement of filter material

Also Published As

Publication number Publication date
KR101744615B1 (en) 2017-06-08
KR20170033704A (en) 2017-03-27

Similar Documents

Publication Publication Date Title
WO2017047953A1 (en) Composite filter
ATE365066T1 (en) DEVICE FOR THE CLEAN SEPARATION OF CRYSTALS FROM THEIR SUSPENSION IN CONTAMINATED CRYSTAL MELTS
CA2585543A1 (en) Concentrate recycle loop with filtration module
WO2017043803A1 (en) Composite filter
KR102031911B1 (en) filter for reducing water hardness
KR20010062380A (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
JP3818467B2 (en) Method for operating electric desalting apparatus and electric desalting apparatus used for carrying out the method
WO2018212519A2 (en) Ion-exchange resin column device and operation method therefor
WO2013129823A1 (en) Backwash air supply structure using conducting drain of filter bed
KR100236542B1 (en) Apparatus for the purification of sewage and waste water using electrolytic units
HUE026233T2 (en) Method for separating off tryptophan
CN214714778U (en) Full-automatic filter
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
WO2007108719A1 (en) Filtering unit operating method and a filtering unit
WO2017047954A1 (en) Water system
KR200386806Y1 (en) The cleaning apparatus ionizing purifier
JPH0655008A (en) Backwashing method for filter
KR100610251B1 (en) System and method for treating water
CN214050653U (en) Water circulation purification device
KR200361794Y1 (en) The chamber that include filter
JPH11165168A (en) Pure water producing apparatus
WO2024075500A1 (en) Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture
KR100966593B1 (en) reusable apparatus of active carbon fitter tank
RU1834677C (en) Filter for cleaning water
KR100999066B1 (en) Water purifier using an ion exchane resin menbrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846774

Country of ref document: EP

Kind code of ref document: A1