WO2017047543A1 - Ablation catheter - Google Patents

Ablation catheter Download PDF

Info

Publication number
WO2017047543A1
WO2017047543A1 PCT/JP2016/076779 JP2016076779W WO2017047543A1 WO 2017047543 A1 WO2017047543 A1 WO 2017047543A1 JP 2016076779 W JP2016076779 W JP 2016076779W WO 2017047543 A1 WO2017047543 A1 WO 2017047543A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
heat insulating
cooling
ablation catheter
cooling balloon
Prior art date
Application number
PCT/JP2016/076779
Other languages
French (fr)
Japanese (ja)
Inventor
大久保 到
繁 大森
中川 雄司
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2017047543A1 publication Critical patent/WO2017047543A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to an ablation catheter.
  • catheter ablation is known as a treatment method for arrhythmias such as atrial fibrillation, atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, and premature ventricular contraction.
  • catheter ablation “catheter myocardial cauterization” that prevents abnormal electrical signals from being transmitted to the entire heart by cauterizing myocardial tissue causing arrhythmia and myocardial tissue causing arrhythmia”
  • Catheter myocardial freezing cauterization freezing coagulation ablation
  • Patent Document 1 describes an ablation catheter used for cryocoagulation ablation.
  • the ablation catheter of Patent Document 1 includes a double-structured balloon including an inner balloon and an outer balloon. By forming a hole in the inner balloon by a cutting means, the coolant in the inner balloon is used as the outer balloon. It can be exhausted through. If such an ablation catheter is used, the target region can be obtained by introducing a coolant into the inner balloon while the expanded balloon is in contact with the myocardial tissue (target region) causing arrhythmia. Can be frozen and solidified.
  • An object of the present invention is to provide an ablation catheter excellent in ablation efficiency.
  • Such an object is achieved by the present inventions (1) to (7) below.
  • the heat insulating balloon has a distal end portion located on the distal end side of the shaft, and a proximal end portion located closer to the proximal end side than the distal end portion,
  • the maximum diameter of the distal end portion is the ablation catheter according to (2), which is smaller than the maximum diameter of the proximal end portion.
  • the above-mentioned heat insulation balloon has the 1st heat insulation balloon located in the tip end side of the shaft rather than the cooling balloon, and the 2nd heat insulation balloon located in the base end side of the shaft rather than the cooling balloon.
  • the ablation catheter according to (1) has the 1st heat insulation balloon located in the tip end side of the shaft rather than the cooling balloon, and the 2nd heat insulation balloon located in the base end side of the shaft rather than the cooling balloon.
  • the maximum diameter of the first heat insulation balloon is smaller than the maximum diameter of the cooling balloon, and the maximum diameter of the second heat insulation balloon is larger than the maximum diameter of the cooling balloon (4) Or the ablation catheter in any one of (6).
  • the cooling balloon since at least a part of the cooling balloon is covered by the heat insulating balloon to which the heat insulating agent is supplied, when the myocardial tissue causing arrhythmia is frozen and solidified by the cooling balloon, It becomes difficult for the cooling balloon to come into contact with surrounding blood. Therefore, heat such as blood is easily transmitted to the cooling balloon, and the temperature in the cooling balloon can be efficiently reduced. Therefore, excellent ablation efficiency can be exhibited.
  • FIG. 1 is a plan view showing an ablation catheter according to the first embodiment of the present invention.
  • FIG. 2 is a view showing a state during operation of the ablation catheter shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing an expanded state of the ablation catheter shown in FIG. 4 is a cross-sectional view of a shaft of the ablation catheter shown in FIG.
  • FIG. 5 is a cross-sectional view of the ablation catheter shown in FIG.
  • FIG. 6 is a cross-sectional view of the ablation catheter shown in FIG.
  • FIG. 7 is a cross-sectional view of the ablation catheter shown in FIG.
  • FIG. 8 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. FIG.
  • FIG. 9 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
  • FIG. 10 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
  • FIG. 11 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
  • FIG. 12 is a diagram illustrating a technique for cryocoagulation ablation using the ablation catheter shown in FIG.
  • FIG. 13 is a longitudinal sectional view of an ablation catheter according to the second embodiment of the present invention.
  • FIG. 14 is a view showing a state during the operation of the ablation catheter shown in FIG.
  • FIG. 1 is a plan view showing an ablation catheter according to the first embodiment of the present invention.
  • FIG. 2 is a view showing a state during operation of the ablation catheter shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing an expanded state of the ablation catheter shown in FIG. 4 is a cross-sectional view of a shaft of the ablation catheter shown in FIG. 5 to 7 are cross-sectional views of the ablation catheter shown in FIG.
  • FIG. 8 to FIG. 12 are diagrams for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG.
  • the right side in FIG. 1 is also referred to as “tip”, and the left side is also referred to as “base end”.
  • An ablation catheter system 100 shown in FIG. 1 is a medical device used for “frozen coagulation ablation (catheter myocardial cryoablation)” which is a treatment method for atrial fibrillation which is a kind of arrhythmia.
  • frozen coagulation ablation a frozen cautery line (frostbite) is formed at the junction between the pulmonary vein and the left atrium, and the abnormal signal is confined in the pulmonary vein so that the abnormal signal is not transmitted to the atrium.
  • frostbite frozen cautery line
  • Such freezing and coagulation ablation is said to be effective in that electrical disconnection is possible while maintaining the physical strength of the myocardial tissue.
  • Catheter myocardial cauterization which is another treatment method for atrial fibrillation, it requires less skill of the operator, and the operation time tends to be shorter. It can be said that this is a treatment with less burden.
  • frozen coagulation ablation is not limited to the treatment of atrial fibrillation, but for the treatment of other arrhythmias (atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, ventricular extrasystole, etc.) Can also be applied.
  • arrhythmias atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, ventricular extrasystole, etc.
  • the ablation catheter system 100 includes an ablation catheter 200, a coolant supply device 300, and a heat insulating agent supply device 400, as shown in FIG.
  • the ablation catheter 200 is connected to the coolant supply device 300 and the heat insulating agent supply device 400, whereby the coolant C is supplied from the coolant supply device 300 to the ablation catheter 200 and the heat insulating agent.
  • Thermal insulation I can be supplied from the supply device 400 to the ablation catheter 200.
  • the ablation catheter 200 includes a long shaft 210 having flexibility and a balloon 250 provided at the tip of the shaft 210.
  • the balloon 250 includes a cooling balloon 260, a distal-side heat insulating balloon (first heat-insulating balloon) 270 located on the distal side of the cooling balloon 260, and a proximal-side heat-insulated balloon (first surface) located on the proximal side of the cooling balloon 260. 2 heat insulation balloon) 280. That is, the distal end side heat insulation balloon 270 and the proximal end side heat insulation balloon 280 are arranged with the cooling balloon 260 interposed therebetween. Each of these three balloons 260, 270, 280 is expandable / contractable.
  • a state where the balloon is expanded is also referred to as an “expanded state”
  • a state where the balloon is deflated is also referred to as a “deflated state”.
  • the cooling balloon 260 is in contact with the joint 940 between the left atrium 920 and the pulmonary vein 930 in the expanded state, and the distal side heat insulating balloon 270 is expanded in the pulmonary vein 930.
  • the proximal adiabatic balloon 280 is positioned in the left atrium 920 in an expanded state.
  • the coolant C is supplied to the cooling balloon 260, and the joint 940 can be frozen and solidified by the cooling balloon 260.
  • the heat insulating agent I is supplied to the distal side heat insulating balloon 270 and the proximal side heat insulating balloon 280, and the freezing and coagulation of blood by the cooling balloon 260 can be suppressed by these balloons 270 and 280.
  • the distal side heat insulating balloon 270 is disposed away from the cooling balloon 260 in the contracted state. Therefore, it becomes easy to position the distal side heat insulating balloon 270 in the pulmonary vein 930.
  • the base end side heat insulating balloon 280 is disposed in contact with the cooling balloon 260 in the contracted state.
  • the distal end side portion of the proximal end side heat insulating balloon 280 is formed integrally with the proximal end side portion of the cooling balloon 260. Therefore, the configuration of the balloon 250 is simplified.
  • the distal side heat insulating balloon 270 covers the distal end portion 261 of the cooling balloon 260.
  • the proximal heat insulating balloon 280 covers the proximal end portion 262 of the cooling balloon 260.
  • the central portion (the portion between the distal end portion 261 and the proximal end portion 262) 263 of the cooling balloon 260 is not covered with the distal end side thermal insulation balloon 270 and the proximal end thermal insulation balloon 280, and is exposed to the outside. .
  • the joint portion 940 can be efficiently frozen and solidified. Further, since the distal end portion 261 and the proximal end portion 262 of the cooling balloon 260 are covered with the distal end side heat insulating balloon 270 and the proximal end heat insulating balloon 280, it is difficult for blood to contact the cooling balloon 260. Therefore, the freezing and coagulation of blood by the cooling balloon 260 can be suppressed. On the other hand, since the heat of blood is difficult to be transmitted to the cooling balloon 260, the temperature rise of the cooling balloon 260 can be suppressed. Therefore, the joint part 940 can be efficiently frozen and solidified.
  • the distal side heat insulating balloon 270 is disposed in the pulmonary vein 930 narrower than the joint portion 940. Therefore, in the expanded state, the maximum diameter R2 of the distal side heat insulating balloon 270 is configured to be smaller than the maximum diameter R1 of the cooling balloon 260. In this way, by satisfying the relationship of R2 ⁇ R1, the burden on the pulmonary vein 930 when the distal side heat insulating balloon 270 is expanded can be reduced.
  • the proximal-side heat insulating balloon 280 is disposed in the left atrium 920 wider than the joint portion 940. Therefore, in the expanded state, the maximum diameter R3 of the proximal heat insulating balloon 280 is configured to be larger than the maximum diameter R1 of the cooling balloon 260. Thus, by satisfying the relationship of R3> R1, the base end side heat insulating balloon 280 can cover a wider range of the base end portion 262 of the cooling balloon 260.
  • the constituent materials of the balloons 260, 270, and 280 are not particularly limited.
  • thermoplastic resins such as polyester such as polyolefin and polyethylene terephthalate, polyvinyl chloride, polyurethane, polyurethane elastomer, and nylon elastomer (polyamide elastomer). Silicone rubber, latex rubber (natural rubber) or the like can be used.
  • nylon elastomer is preferable as the constituent material of the distal side heat insulating balloon 270.
  • the distal-side heat insulating balloon 270 is difficult to expand rapidly, and damage to the pulmonary vein 930 can be suppressed.
  • the base end side heat insulating balloon 280 among these, polyurethane elastomer and latex rubber are preferable. By using such a material, it becomes the base end side heat insulating balloon 280 which is flexible and easily stretched.
  • the balloon 250 has been described above.
  • the configuration of the balloon 250 is not limited to the configuration described above as long as the same effect can be exhibited.
  • the proximal heat insulating balloon 280 may be separated from the cooling balloon 260.
  • the distal side heat insulation balloon 270 may be in contact with the cooling balloon 260, and the proximal end side portion of the distal end side thermal insulation balloon 270 may be formed integrally with the distal side portion of the cooling balloon 260.
  • the coolant C supplied to the cooling balloon 260 is not particularly limited.
  • a gas such as nitrous oxide (N 2 O), argon (Ar), or krypton (Kr), liquid nitrogen, or liquefied nitrous oxide. Etc. can be used.
  • the heat insulating agent I supplied to the distal end side heat insulating balloon 270 and the proximal end side heat insulating balloon 280 heat exchange between the cooling balloon 260 and blood is suppressed as compared with the case where the cooling balloon 260 and blood directly touch each other. If it can do, it will not specifically limit, For example, a saline (physiological saline), a carbon dioxide, a silica airgel etc. can be used.
  • the temperature of the heat insulating agent I (the temperature in the balloons 270 and 280) is preferably not less than the blood freezing point and not more than the blood temperature, specifically about 10 ° C. to 30 ° C. Thereby, the freezing and coagulation of blood can be more effectively suppressed.
  • the shaft 210 has a double tube structure having an outer tube 220 and an inner tube 230 disposed inside the outer tube 220.
  • the lumen 231 formed in the inner tube 230 is used to insert a guide wire or an electrode catheter used during the operation.
  • the outer diameter of the inner tube 230 is smaller than the inner diameter of the outer tube 220, and a lumen 240 is formed between the inner tube 230 and the outer tube 220. This lumen 240 is used, for example, as a flow path for a contrast agent used during surgery.
  • the outer tube 220 has eight flow paths 221 to 228 formed independently along the circumferential direction.
  • the flow paths 221, 223, 225, and 227 are connected to the inside of the cooling balloon 260 as shown in FIG. Among these, the flow paths 221 and 225 are coolant supply flow paths for supplying the coolant C to the cooling balloon 260 from the coolant supply apparatus 300, and the flow paths 223 and 227 are the coolant supplied to the cooling balloon 260. This is a coolant recovery flow path for recovering C to the coolant supply device 300.
  • the coolant supply ports 221 a and 225 a of the flow paths 221 and 225 are located on the opposite side across the central axis J of the shaft 210, and the coolant C from the coolant supply ports 221 a and 225 a is in the cooling balloon 260. Supplied to the other side.
  • the coolant supply ports 221a and 225a are located at the center of the cooling balloon 260 in the length direction, and the coolant C is injected from the coolant supply ports 221a and 225a toward the radial direction of the cooling balloon 260. With such a configuration, the coolant C can be supplied into the cooling balloon 260 in a short time without unevenness.
  • the coolant recovery ports 223a and 227a of the flow paths 223 and 227 are located on the opposite side across the central axis J of the shaft 210, and the coolant C is recovered from the coolant recovery ports 223a and 227a.
  • the coolant recovery ports 223a and 227a are located at the center of the cooling balloon 260 in the length direction. That is, the coolant recovery ports 223 a and 227 a are arranged side by side in the circumferential direction of the coolant supply ports 221 a and 225 a and the shaft 210.
  • the number and arrangement of the coolant supply ports are not limited to the present embodiment as long as the coolant C can be supplied into the cooling balloon 260.
  • the number and arrangement of the coolant recovery ports are not limited to the present embodiment as long as the coolant C in the cooling balloon 260 can be recovered.
  • the flow paths 222 and 226 are connected to the inside of the distal side heat insulating balloon 270.
  • the flow path 222 is a heat insulating agent supply flow path for supplying the heat insulating agent I from the heat insulating agent supply device 400 to the front end side heat insulating balloon 270
  • the flow path 226 is the heat insulating agent I supplied to the front end side heat insulating balloon 270.
  • It is a heat insulation agent collection
  • the heat insulating agent supply device 400 collects the heat insulating agent I in the front end side heat insulating balloon 270 from the flow path 226 while supplying the heat insulating agent I from the flow path 222 to the front end side heat insulating balloon 270, and thereby the front end side heat insulating balloon 270.
  • the heat insulating agent I can be circulated inside. Therefore, the heat insulation effect by the front end side heat insulation balloon 270 can be maintained over time.
  • the heat-insulating agent supply port 222a of the flow path 222 and the heat-insulating agent recovery port 226a of the flow path 226 are located on opposite sides of the central axis J of the shaft 210.
  • the heat insulating agent I becomes easy to flow in the front end side heat insulation balloon 270, and the heat insulating agent I can be circulated in the front end side heat insulation balloon 270 uniformly. Therefore, the heat insulation effect by the front end side heat insulation balloon 270 improves.
  • the heat insulating agent supply port 222a and the heat insulating agent recovery port 226a are arranged in the axial direction of the shaft 210.
  • the arrangement is not particularly limited, and for example, the shaft 210 It may be displaced in the axial direction.
  • the heat insulating agent supply port 222a may be disposed on the distal end side of the shaft 210, and the heat insulating agent recovery port 226a may be disposed on the proximal end side.
  • positioning the heat insulating agent I becomes easier to flow in the front end side heat insulating balloon 270.
  • the number of the heat insulating agent supply ports 222a and the heat insulating agent recovery ports 226a is not particularly limited, and two or more of them may be arranged.
  • the flow paths 224 and 228 are connected in the proximal heat insulating balloon 280.
  • the flow path 224 is a heat insulating agent supply flow path for supplying the heat insulating agent I from the heat insulating agent supply device 400 to the base end side heat insulating balloon 280
  • the flow path 228 is the heat insulating material supplied to the base end side heat insulating balloon 280. It is a heat insulating agent recovery flow path for recovering the agent I to the heat insulating agent supply device 400.
  • the heat insulating agent supply device 400 collects the heat insulating agent I in the base end side heat insulating balloon 280 from the flow path 228 while supplying the heat insulating agent I from the flow path 224 to the base end side heat insulating balloon 280, thereby The heat insulating agent I can be circulated in the heat insulating balloon 280. Therefore, the heat insulation effect by the base end side heat insulation balloon 280 can be maintained with time.
  • the heat-insulating agent supply port 224a of the flow channel 224 and the heat-insulating agent recovery port 228a of the flow channel 228 are located on the opposite sides of the central axis J of the shaft 210.
  • the heat insulating agent I becomes easy to flow in the base end side heat insulation balloon 280, and the heat insulating agent I can be circulated in the base end side heat insulation balloon 280 uniformly. Therefore, the heat insulation effect by the base end side heat insulation balloon 280 improves.
  • the heat insulating agent supply port 224a and the heat insulating agent recovery port 228a are arranged in the axial direction of the shaft 210.
  • the arrangement is not particularly limited, and for example, the shaft 210 It may be displaced in the axial direction. By setting it as such arrangement
  • the number of the heat insulating agent supply ports 224a and the heat insulating agent recovery ports 228a is not particularly limited, and two or more of them may be arranged.
  • the shaft 210 has been described in detail above.
  • the distal-side heat insulating balloon 270 and the proximal-side heat insulating balloon 280 supply and recover the heat insulating agent I one by one, whereas the cooling balloon 260 supplies the coolant C.
  • the cooling balloon 260 supplies the coolant C.
  • the constituent material of the shaft 210 is not particularly limited.
  • a fluorine-based resin such as polyamide, polyester, polyurethane, soft polyvinyl chloride, ABS resin, AS resin, or polytetrafluoroethylene.
  • Various thermoplastic materials such as styrene, polyolefin, polyurethane, polyester, polyamide, fluororubber, chlorinated polyethylene, etc., and also a combination of two or more of these (Polymer alloy, polymer blend, laminate, etc.).
  • the shaft 210 has been described above.
  • the configuration of the shaft 210 is not limited to the configuration of the present embodiment as long as the above-described function can be exhibited.
  • the shaft 210 may not have a double-pipe structure having an outer tube and an inner tube, and may have a configuration in which the above-described lumen or flow path is formed in a single solid shaft.
  • a hole is made from the right atrium 910 to the left atrium 920 by puncturing the septum portion of the atrium.
  • the ablation catheter 200 is introduced into the left atrium 920 from the right atrium 910 together with a steerable sheath (not shown) that can be bent.
  • the cooling balloon 260 is expanded, and the cooling balloon 260 (central part 263) is brought into contact with the joint 940 between the left atrium 920 and the pulmonary vein 930.
  • an electrode catheter (cardiac electrophysiology catheter) 800 is placed in the pulmonary vein 930 through the lumen 231 of the ablation catheter 200. Then, the potential of the pulmonary vein 930 is measured by the electrode catheter 800, or electrical stimulation is applied to the pulmonary vein 930 to induce atrial fibrillation, thereby elucidating the mechanism of atrial fibrillation.
  • a contrast agent is introduced into the pulmonary vein 930 through the lumen 240, and it is confirmed that the cooling balloon 260 is in contact with the joint 940.
  • the heat insulating agent I is supplied to the distal end side thermal insulation balloon 270 and the proximal end side thermal insulation balloon 280 to expand them, and the distal side thermal insulation balloon 270 and the proximal end side thermal insulation balloon 280 are expanded. Circulate insulation I.
  • the distal end portion 261 of the cooling balloon 260 (site facing the pulmonary vein 930) is covered with the distal-side heat insulating balloon 270, and the proximal end portion 262 of the cooling balloon 260 (site facing the left atrium 920) is proximally insulated.
  • the state is covered with the balloon 280.
  • the coolant C is supplied to the cooling balloon 260.
  • the coolant C for example, nitrous oxide
  • the coolant C is supplied into the cooling balloon 260 in a compressed state, and the coolant C expands in the cooling balloon 260, so that the temperature in the cooling balloon 260 becomes ⁇ 70 ° C. or higher. It decreases to about -20 ° C. Therefore, the joint 940 in contact with the cooling balloon 260 is frozen and solidified, and a frozen cautery line 941 is formed at the joint 940 as shown in FIG.
  • the joint 940 is in contact with the central portion 263 that is not covered by either the distal-side heat insulation balloon 270 or the proximal-side heat insulation balloon 280 of the cooling balloon 260, so that the joint 940 can be efficiently frozen. Can solidify.
  • the contact between the cooling balloon 260 and the blood or contrast medium in the pulmonary vein 930 is suppressed by the distal-side heat insulating balloon 270, coagulation of the blood or contrast medium in the pulmonary vein 930 can be suppressed.
  • the heat of the blood in the pulmonary vein 930 and the heat of the contrast agent are not easily transmitted to the cooling balloon 260, the temperature rise of the cooling balloon 260 can be suppressed, and the joint portion 940 can be frozen and solidified more effectively.
  • the contact between the cooling balloon 260 and the blood in the left atrium 920 is suppressed by the proximal-side heat insulating balloon 280, blood coagulation in the left atrium 920 can be suppressed.
  • the heat of blood in the left atrium 920 is hardly transmitted to the cooling balloon 260, the temperature rise of the cooling balloon 260 can be suppressed, and the joint 940 can be frozen and solidified more effectively.
  • the electrode catheter 800 and the ablation catheter 200 are removed from the living body. Thereby, freezing solidification ablation is complete
  • the technique for one joint 940 out of the four joints 940 has been described, but the same technique may be performed for the remaining three joints 940.
  • FIG. 13 is a longitudinal sectional view of an ablation catheter according to the second embodiment of the present invention.
  • FIG. 14 is a view showing a state during the operation of the ablation catheter shown in FIG.
  • This embodiment is the same as the first embodiment described above except that the configuration of the balloon is mainly different.
  • the balloon 250 includes a cooling balloon 260 and a heat insulating balloon 290 that is located outside the cooling balloon 260 and covers the cooling balloon 260.
  • the cooling balloon 260 is supplied with the coolant C
  • the heat insulating balloon 290 is supplied with the heat insulating agent I.
  • the heat insulating balloon 290 includes a distal end portion 291 located on the distal end side from the cooling balloon 260, a proximal end portion 292 located on the proximal end side from the cooling balloon 260, and a central portion located so as to overlap the cooling balloon 260. 293.
  • the distal end portion 291 is a portion disposed in the pulmonary vein 930
  • the proximal end portion 292 is a portion disposed in the left atrium 920. Therefore, the maximum diameter of the distal end portion 261 is configured to be smaller than the maximum diameter of the proximal end portion 262 in the expanded state. As a result, the burden on the pulmonary vein 930 can be reduced when the heat insulating balloon 290 is expanded.
  • the central portion 293 of the heat insulating balloon 290 is a portion that contacts the joint portion 940 together with the cooling balloon 260.
  • the cooling balloon 260 and the heat insulating balloon 290 are in close contact with each other, and the heat insulating agent I is not substantially present therebetween. Therefore, the freezing and solidification of the joint 940 by the cooling balloon 260 is not hindered by the heat insulating agent I.
  • the film thickness of the central portion 293 may be made thinner than the film thickness of the distal end portion 291 and the proximal end portion 292.
  • a heat insulating agent supply port and a heat insulating agent I for supplying the heat insulating agent I to each of the front end portion 291 and the base end portion 292 so that the heat insulating agent I can be circulated in each of the front end portion 291 and the base end portion 292.
  • a heat insulating agent recovery port for recovering.
  • the cooling balloon 260 that has been frozen and adhered to the joint 940 (tissue) must be peeled off immediately, but in that case, a warmed (higher temperature than normal use) heat insulating agent Adhesion can be efficiently released by refluxing I at a slightly high pressure (higher pressure than in normal use).
  • the ablation catheter of the present invention has been described based on the illustrated embodiment.
  • the present invention is not limited to this, and the configuration of each part may be replaced with an arbitrary configuration having the same function. Can do.
  • any other component may be added to the present invention. Moreover, you may combine each embodiment suitably.
  • the ablation catheter of the present invention has a long shaft, a cooling balloon provided on the shaft and expandable / shrinkable, and a heat insulating balloon provided on the shaft and covering at least a part of the cooling balloon.
  • a cooling agent is introduced into the cooling balloon, and a heat insulating agent is introduced into the heat insulating balloon.
  • the cooling balloon is used when the myocardial tissue causing arrhythmia is frozen and coagulated with the cooling balloon. Becomes difficult to contact with surrounding blood. Therefore, heat such as blood is easily transmitted to the cooling balloon, and the temperature in the cooling balloon can be efficiently reduced. Therefore, excellent ablation efficiency can be exhibited.
  • the ablation catheter of the present invention has industrial applicability.

Abstract

This ablation catheter 200 comprises: a shaft 210; a cooling balloon 260 provided to the shaft 210; a distal thermal insulation balloon 270 which is positioned to the distal side of the cooling balloon 260 and which covers the distal end of the cooling balloon 260 when expanded; and a proximal thermal insulation balloon 280 which is positioned to the proximal side of the cooling balloon 260, and which covers the proximal end of the cooling balloon 260 when expanded. A coolant C is introduced into the cooling balloon 260, and a thermal insulation agent I is introduced into the thermal insulation balloons 270, 280.

Description

アブレーションカテーテルAblation catheter
 本発明は、アブレーションカテーテルに関するものである。 The present invention relates to an ablation catheter.
 従来から、心房細動、心房粗動、発作性上室性頻拍、心房頻拍、心室頻拍、心室期外収縮等の不整脈の治療法として「カテーテルアブレーション」が知られている。また、カテーテルアブレーションとして、不整脈の原因となっている心筋組織を焼灼することで異常電気信号が心臓全体に伝わらないようにする「カテーテル心筋焼灼術」と、不整脈の原因となっている心筋組織を冷凍凝固することで異常電気信号が心臓全体に伝わらないようにする「カテーテル心筋冷凍焼灼術(冷凍凝固アブレーション)」と、が知られている。 Conventionally, “catheter ablation” is known as a treatment method for arrhythmias such as atrial fibrillation, atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, and premature ventricular contraction. In addition, as catheter ablation, “catheter myocardial cauterization” that prevents abnormal electrical signals from being transmitted to the entire heart by cauterizing myocardial tissue causing arrhythmia and myocardial tissue causing arrhythmia “Catheter myocardial freezing cauterization (freezing coagulation ablation)” that prevents abnormal electrical signals from being transmitted to the entire heart by freezing and coagulation is known.
 特許文献1には、冷凍凝固アブレーションに用いられるアブレーションカテーテルが記載されている。特許文献1のアブレーションカテーテルは、内側バルーンおよび外側バルーンを備えた二重構造のバルーンを備えており、切断手段によって内側バルーンに孔を形成することで、内側バルーン内の冷却剤を、外側バルーンを介して排気することができるようになっている。このようなアブレーションカテーテルを用いれば、拡張させたバルーンを不整脈の原因となっている心筋組織(対象部位)に当接させた状態で、内側バルーン内に冷却剤を導入することで、前記対象部位を冷凍凝固することができる。 Patent Document 1 describes an ablation catheter used for cryocoagulation ablation. The ablation catheter of Patent Document 1 includes a double-structured balloon including an inner balloon and an outer balloon. By forming a hole in the inner balloon by a cutting means, the coolant in the inner balloon is used as the outer balloon. It can be exhausted through. If such an ablation catheter is used, the target region can be obtained by introducing a coolant into the inner balloon while the expanded balloon is in contact with the myocardial tissue (target region) causing arrhythmia. Can be frozen and solidified.
 しかしながら、このようなアブレーションカテーテルでは、バルーンが周囲の血液等と接触するため、バルーンに血液等の熱が伝わり易く、バルーン内の温度を効率的に低下させることができない。そのため、アブレーション効率が低下するという問題がある。 However, in such an ablation catheter, since the balloon comes into contact with surrounding blood or the like, heat of blood or the like is easily transmitted to the balloon, and the temperature inside the balloon cannot be lowered efficiently. Therefore, there is a problem that ablation efficiency is lowered.
特開2010-17570号公報JP 2010-17570 A
 本発明の目的は、アブレーション効率に優れるアブレーションカテーテルを提供することにある。 An object of the present invention is to provide an ablation catheter excellent in ablation efficiency.
 このような目的は、下記(1)~(7)の本発明により達成される。
 (1) 長尺なシャフトと、
 前記シャフトに設けられ、拡張/収縮可能な冷却バルーンと、
 前記シャフトに設けられ、前記冷却バルーンの少なくとも一部を覆う断熱バルーンと、を有し、
 前記冷却バルーン内には冷却剤が導入され、
 前記断熱バルーン内には断熱剤が導入されることを特徴とするアブレーションカテーテル。
Such an object is achieved by the present inventions (1) to (7) below.
(1) a long shaft,
A cooling balloon provided on the shaft and expandable / shrinkable;
A heat insulating balloon provided on the shaft and covering at least a part of the cooling balloon;
A coolant is introduced into the cooling balloon,
An ablation catheter, wherein a heat insulating agent is introduced into the heat insulating balloon.
 (2) 前記断熱バルーンは、前記冷却バルーンの外側に位置し、前記冷却バルーンを覆っている上記(1)に記載のアブレーションカテーテル。 (2) The ablation catheter according to (1), wherein the heat insulating balloon is located outside the cooling balloon and covers the cooling balloon.
 (3) 前記断熱バルーンは、前記シャフトの先端側に位置する先端部と、前記先端部よりも基端側に位置する基端部と、を有し、
 拡張状態において、前記先端部の最大径は、前記基端部の最大径よりも小さい上記(2)に記載のアブレーションカテーテル。
(3) The heat insulating balloon has a distal end portion located on the distal end side of the shaft, and a proximal end portion located closer to the proximal end side than the distal end portion,
In the expanded state, the maximum diameter of the distal end portion is the ablation catheter according to (2), which is smaller than the maximum diameter of the proximal end portion.
 (4) 前記断熱バルーンは、前記冷却バルーンよりも前記シャフトの先端側に位置する第1断熱バルーンと、前記冷却バルーンよりも前記シャフトの基端側に位置する第2断熱バルーンと、を有する上記(1)に記載のアブレーションカテーテル。 (4) The above-mentioned heat insulation balloon has the 1st heat insulation balloon located in the tip end side of the shaft rather than the cooling balloon, and the 2nd heat insulation balloon located in the base end side of the shaft rather than the cooling balloon. The ablation catheter according to (1).
 (5) 拡張状態では、前記第1断熱バルーンが前記冷却バルーンの先端部を覆い、前記第2断熱バルーンが前記冷却バルーンの基端部を覆う上記(4)に記載のアブレーションカテーテル。 (5) The ablation catheter according to (4), wherein in the expanded state, the first heat insulating balloon covers the distal end portion of the cooling balloon, and the second heat insulating balloon covers the proximal end portion of the cooling balloon.
 (6) 前記冷却バルーンの前記先端部と前記基端部との間の中央部は、拡張状態において、前記第1断熱バルーンおよび前記第2断熱バルーンから露出している上記(5)に記載のアブレーションカテーテル。 (6) The center portion between the distal end portion and the proximal end portion of the cooling balloon is exposed from the first heat insulation balloon and the second heat insulation balloon in the expanded state. Ablation catheter.
 (7) 拡張状態において、前記第1断熱バルーンの最大径は、前記冷却バルーンの最大径よりも小さく、前記第2断熱バルーンの最大径は、前記冷却バルーンの最大径よりも大きい上記(4)ないし(6)のいずれかに記載のアブレーションカテーテル。 (7) In the expanded state, the maximum diameter of the first heat insulation balloon is smaller than the maximum diameter of the cooling balloon, and the maximum diameter of the second heat insulation balloon is larger than the maximum diameter of the cooling balloon (4) Or the ablation catheter in any one of (6).
 本発明によれば、内部に断熱剤が供給される断熱バルーンによって、冷却バルーンの少なくとも一部が覆われているため、不整脈の原因となっている心筋組織を冷却バルーンによって冷凍凝固する際に、冷却バルーンが周囲の血液等と接触し難くなる。そのため、冷却バルーンに血液等の熱が伝わり易く、冷却バルーン内の温度を効率的に低下させることができる。したがって、優れたアブレーション効率を発揮することができる。 According to the present invention, since at least a part of the cooling balloon is covered by the heat insulating balloon to which the heat insulating agent is supplied, when the myocardial tissue causing arrhythmia is frozen and solidified by the cooling balloon, It becomes difficult for the cooling balloon to come into contact with surrounding blood. Therefore, heat such as blood is easily transmitted to the cooling balloon, and the temperature in the cooling balloon can be efficiently reduced. Therefore, excellent ablation efficiency can be exhibited.
図1は、本発明の第1実施形態に係るアブレーションカテーテルを示す平面図である。FIG. 1 is a plan view showing an ablation catheter according to the first embodiment of the present invention. 図2は、図1に示すアブレーションカテーテルの術中の状態を示す図である。FIG. 2 is a view showing a state during operation of the ablation catheter shown in FIG. 図3は、図1に示すアブレーションカテーテルの拡張状態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing an expanded state of the ablation catheter shown in FIG. 図4は、図1に示すアブレーションカテーテルが有するシャフトの断面図である。4 is a cross-sectional view of a shaft of the ablation catheter shown in FIG. 図5は、図1に示すアブレーションカテーテルの横縦断面図である。FIG. 5 is a cross-sectional view of the ablation catheter shown in FIG. 図6は、図1に示すアブレーションカテーテルの横縦断面図である。FIG. 6 is a cross-sectional view of the ablation catheter shown in FIG. 図7は、図1に示すアブレーションカテーテルの横縦断面図である。FIG. 7 is a cross-sectional view of the ablation catheter shown in FIG. 図8は、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。FIG. 8 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. 図9は、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。FIG. 9 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. 図10は、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。FIG. 10 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. 図11は、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。FIG. 11 is a diagram for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. 図12は、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。FIG. 12 is a diagram illustrating a technique for cryocoagulation ablation using the ablation catheter shown in FIG. 図13は、本発明の第2実施形態に係るアブレーションカテーテルの縦断面図である。FIG. 13 is a longitudinal sectional view of an ablation catheter according to the second embodiment of the present invention. 図14は、図13に示すアブレーションカテーテルの術中の状態を示す図である。FIG. 14 is a view showing a state during the operation of the ablation catheter shown in FIG.
 以下、本発明のアブレーションカテーテルを添付図面に示す好適な実施形態に基づいて詳細に説明する。 Hereinafter, the ablation catheter of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 <第1実施形態>
 まず、本発明の第1実施形態に係るアブレーションカテーテルを説明する。
<First Embodiment>
First, an ablation catheter according to the first embodiment of the present invention will be described.
 図1は、本発明の第1実施形態に係るアブレーションカテーテルを示す平面図である。図2は、図1に示すアブレーションカテーテルの術中の状態を示す図である。図3は、図1に示すアブレーションカテーテルの拡張状態を示す縦断面図である。図4は、図1に示すアブレーションカテーテルが有するシャフトの断面図である。図5ないし図7は、それぞれ、図1に示すアブレーションカテーテルの横縦断面図である。図8ないし図12は、それぞれ、図1に示すアブレーションカテーテルを用いた冷凍凝固アブレーションの手技を説明する図である。なお、以下では、説明の便宜上、図1中の右側を「先端」、左側を「基端」とも言う。 FIG. 1 is a plan view showing an ablation catheter according to the first embodiment of the present invention. FIG. 2 is a view showing a state during operation of the ablation catheter shown in FIG. FIG. 3 is a longitudinal sectional view showing an expanded state of the ablation catheter shown in FIG. 4 is a cross-sectional view of a shaft of the ablation catheter shown in FIG. 5 to 7 are cross-sectional views of the ablation catheter shown in FIG. FIG. 8 to FIG. 12 are diagrams for explaining a technique of cryocoagulation ablation using the ablation catheter shown in FIG. In the following, for convenience of explanation, the right side in FIG. 1 is also referred to as “tip”, and the left side is also referred to as “base end”.
 ≪アブレーションカテーテルシステム≫
 図1に示すアブレーションカテーテルシステム100は、不整脈の一種である心房細動の治療法である「冷凍凝固アブレーション(カテーテル心筋冷凍焼灼術)」に用いられる医療機器である。ここで、心房細動の引き金となる異常信号の多くが、肺静脈の周囲から発現することが知られている。そのため、冷凍凝固アブレーションでは、肺静脈と左心房の接合部に冷凍焼灼線(凍傷)を形成し、異常信号を肺静脈の中に閉じ込め、異常信号が心房へ伝わらないようにする。詳しい治療法について、後に詳述する。
≪Ablation catheter system≫
An ablation catheter system 100 shown in FIG. 1 is a medical device used for “frozen coagulation ablation (catheter myocardial cryoablation)” which is a treatment method for atrial fibrillation which is a kind of arrhythmia. Here, it is known that many of abnormal signals that trigger atrial fibrillation are expressed around the pulmonary veins. Therefore, in frozen coagulation ablation, a frozen cautery line (frostbite) is formed at the junction between the pulmonary vein and the left atrium, and the abnormal signal is confined in the pulmonary vein so that the abnormal signal is not transmitted to the atrium. Detailed treatment methods will be described in detail later.
 このような冷凍凝固アブレーションは、心筋組織の物理的な強度を保ったままで電気的な断絶が可能となる点で有効であると言われている。また、心房細動の他の治療法である「カテーテル心筋焼灼術」と比較して術者の熟練度を必要とせず、また、手術時間も短く済む傾向にある点で、安全でかつ患者への負担が少ない治療法であるとも言える。 Such freezing and coagulation ablation is said to be effective in that electrical disconnection is possible while maintaining the physical strength of the myocardial tissue. Compared with “catheter myocardial cauterization” which is another treatment method for atrial fibrillation, it requires less skill of the operator, and the operation time tends to be shorter. It can be said that this is a treatment with less burden.
 なお、冷凍凝固アブレーションは、心房細動の治療に限定されず、他の不整脈(心房粗動、発作性上室性頻拍、心房頻拍、心室頻拍、心室期外収縮等)の治療にも適用することができる。 In addition, frozen coagulation ablation is not limited to the treatment of atrial fibrillation, but for the treatment of other arrhythmias (atrial flutter, paroxysmal supraventricular tachycardia, atrial tachycardia, ventricular tachycardia, ventricular extrasystole, etc.) Can also be applied.
 アブレーションカテーテルシステム100は、図1に示すように、アブレーションカテーテル200と、冷却剤供給装置300と、断熱剤供給装置400と、を有する。このようなアブレーションカテーテルシステム100では、アブレーションカテーテル200を冷却剤供給装置300および断熱剤供給装置400に接続することで、冷却剤供給装置300からアブレーションカテーテル200へ冷却剤Cを供給すると共に、断熱剤供給装置400からアブレーションカテーテル200へ断熱剤Iを供給することができる。 The ablation catheter system 100 includes an ablation catheter 200, a coolant supply device 300, and a heat insulating agent supply device 400, as shown in FIG. In such an ablation catheter system 100, the ablation catheter 200 is connected to the coolant supply device 300 and the heat insulating agent supply device 400, whereby the coolant C is supplied from the coolant supply device 300 to the ablation catheter 200 and the heat insulating agent. Thermal insulation I can be supplied from the supply device 400 to the ablation catheter 200.
 アブレーションカテーテル200は、図1に示すように、可撓性を有する長尺なシャフト210と、シャフト210の先端部に設けられたバルーン250と、を有する。 As shown in FIG. 1, the ablation catheter 200 includes a long shaft 210 having flexibility and a balloon 250 provided at the tip of the shaft 210.
 バルーン250は、冷却バルーン260と、冷却バルーン260よりも先端側に位置する先端側断熱バルーン(第1断熱バルーン)270と、冷却バルーン260よりも基端側に位置する基端側断熱バルーン(第2断熱バルーン)280と、を有する。すなわち、冷却バルーン260を挟んで先端側断熱バルーン270と基端側断熱バルーン280とが配置されている。これら3つのバルーン260、270、280は、それぞれ、拡張/収縮自在となっている。なお、以下では、説明の便宜上、バルーンが拡張した状態を「拡張状態」とも言い、収縮した状態を「収縮状態」とも言う。 The balloon 250 includes a cooling balloon 260, a distal-side heat insulating balloon (first heat-insulating balloon) 270 located on the distal side of the cooling balloon 260, and a proximal-side heat-insulated balloon (first surface) located on the proximal side of the cooling balloon 260. 2 heat insulation balloon) 280. That is, the distal end side heat insulation balloon 270 and the proximal end side heat insulation balloon 280 are arranged with the cooling balloon 260 interposed therebetween. Each of these three balloons 260, 270, 280 is expandable / contractable. Hereinafter, for convenience of explanation, a state where the balloon is expanded is also referred to as an “expanded state”, and a state where the balloon is deflated is also referred to as a “deflated state”.
 冷凍凝固アブレーションの術中においては、図2に示すように、冷却バルーン260が拡張状態で左心房920と肺静脈930との接合部940に当接し、先端側断熱バルーン270が拡張状態で肺静脈930に位置し、基端側断熱バルーン280が拡張状態で左心房920に位置する。冷却バルーン260には冷却剤Cが供給され、冷却バルーン260によって接合部940を冷凍凝固することができる。また、先端側断熱バルーン270および基端側断熱バルーン280には断熱剤Iが供給され、これらバルーン270、280によって冷却バルーン260による血液の冷凍凝固を抑制することができる。 During the operation of cryocoagulation ablation, as shown in FIG. 2, the cooling balloon 260 is in contact with the joint 940 between the left atrium 920 and the pulmonary vein 930 in the expanded state, and the distal side heat insulating balloon 270 is expanded in the pulmonary vein 930. The proximal adiabatic balloon 280 is positioned in the left atrium 920 in an expanded state. The coolant C is supplied to the cooling balloon 260, and the joint 940 can be frozen and solidified by the cooling balloon 260. Further, the heat insulating agent I is supplied to the distal side heat insulating balloon 270 and the proximal side heat insulating balloon 280, and the freezing and coagulation of blood by the cooling balloon 260 can be suppressed by these balloons 270 and 280.
 先端側断熱バルーン270は、収縮状態において、冷却バルーン260と離間して配置されている。そのため、先端側断熱バルーン270を肺静脈930内に位置させ易くなる。一方、基端側断熱バルーン280は、収縮状態において、冷却バルーン260と接触して配置されている。特に、本実施形態では、基端側断熱バルーン280の先端側の部分が冷却バルーン260の基端側の部分と一体に形成されている。そのため、バルーン250の構成が簡単となる。 The distal side heat insulating balloon 270 is disposed away from the cooling balloon 260 in the contracted state. Therefore, it becomes easy to position the distal side heat insulating balloon 270 in the pulmonary vein 930. On the other hand, the base end side heat insulating balloon 280 is disposed in contact with the cooling balloon 260 in the contracted state. In particular, in the present embodiment, the distal end side portion of the proximal end side heat insulating balloon 280 is formed integrally with the proximal end side portion of the cooling balloon 260. Therefore, the configuration of the balloon 250 is simplified.
 拡張状態では、図2および図3に示すように、先端側断熱バルーン270は、冷却バルーン260の先端部261を覆っている。一方、基端側断熱バルーン280は、冷却バルーン260の基端部262を覆っている。また、冷却バルーン260の中央部(先端部261と基端部262の間の部分)263は、先端側断熱バルーン270および基端側断熱バルーン280によって覆われておらず、外部に露出している。 In the expanded state, as shown in FIGS. 2 and 3, the distal side heat insulating balloon 270 covers the distal end portion 261 of the cooling balloon 260. On the other hand, the proximal heat insulating balloon 280 covers the proximal end portion 262 of the cooling balloon 260. Further, the central portion (the portion between the distal end portion 261 and the proximal end portion 262) 263 of the cooling balloon 260 is not covered with the distal end side thermal insulation balloon 270 and the proximal end thermal insulation balloon 280, and is exposed to the outside. .
 そのため、冷却バルーン260の中央部263を接合部940に接触させることで、接合部940を効率よく冷凍凝固することができる。また、冷却バルーン260の先端部261および基端部262が先端側断熱バルーン270および基端側断熱バルーン280で覆われているため、冷却バルーン260に血液が接触し難くなる。そのため、冷却バルーン260による血液の冷凍凝固を抑制することができる。反対に、血液の熱が冷却バルーン260に伝わり難いため、冷却バルーン260の昇温を抑制することができる。そのため、接合部940を効率的に冷凍凝固することができる。 Therefore, by bringing the central portion 263 of the cooling balloon 260 into contact with the joint portion 940, the joint portion 940 can be efficiently frozen and solidified. Further, since the distal end portion 261 and the proximal end portion 262 of the cooling balloon 260 are covered with the distal end side heat insulating balloon 270 and the proximal end heat insulating balloon 280, it is difficult for blood to contact the cooling balloon 260. Therefore, the freezing and coagulation of blood by the cooling balloon 260 can be suppressed. On the other hand, since the heat of blood is difficult to be transmitted to the cooling balloon 260, the temperature rise of the cooling balloon 260 can be suppressed. Therefore, the joint part 940 can be efficiently frozen and solidified.
 前述したように、先端側断熱バルーン270は、接合部940よりも狭い肺静脈930内に配置される。そのため、拡張状態において、先端側断熱バルーン270の最大径R2が冷却バルーン260の最大径R1よりも小さくなるように構成される。このように、R2<R1の関係を満足することで、先端側断熱バルーン270の拡張時に肺静脈930にかかる負担を低減することができる。 As described above, the distal side heat insulating balloon 270 is disposed in the pulmonary vein 930 narrower than the joint portion 940. Therefore, in the expanded state, the maximum diameter R2 of the distal side heat insulating balloon 270 is configured to be smaller than the maximum diameter R1 of the cooling balloon 260. In this way, by satisfying the relationship of R2 <R1, the burden on the pulmonary vein 930 when the distal side heat insulating balloon 270 is expanded can be reduced.
 一方、基端側断熱バルーン280は、接合部940よりも広い左心房920内に配置される。そのため、拡張状態において、基端側断熱バルーン280の最大径R3が冷却バルーン260の最大径R1よりも大きくなるように構成される。このように、R3>R1の関係を満足することで、基端側断熱バルーン280によって、冷却バルーン260の基端部262のより広範囲を覆うことができる。 On the other hand, the proximal-side heat insulating balloon 280 is disposed in the left atrium 920 wider than the joint portion 940. Therefore, in the expanded state, the maximum diameter R3 of the proximal heat insulating balloon 280 is configured to be larger than the maximum diameter R1 of the cooling balloon 260. Thus, by satisfying the relationship of R3> R1, the base end side heat insulating balloon 280 can cover a wider range of the base end portion 262 of the cooling balloon 260.
 このようなバルーン260、270、280の構成材料としては、特に限定されないが、例えば、ポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル、ポリウレタン、ポリウレタンエラストマー、ナイロンエラストマー(ポリアミドエラストマー)等の熱可塑性樹脂、シリコーンゴム、ラテッスクゴム(天然ゴム)等を用いることができる。 The constituent materials of the balloons 260, 270, and 280 are not particularly limited. For example, thermoplastic resins such as polyester such as polyolefin and polyethylene terephthalate, polyvinyl chloride, polyurethane, polyurethane elastomer, and nylon elastomer (polyamide elastomer). Silicone rubber, latex rubber (natural rubber) or the like can be used.
 特に、先端側断熱バルーン270の構成材料としては、上記の中でも、ナイロンエラストマーが好ましい。このような材料を用いることで、先端側断熱バルーン270が急激に拡張し難くなり、肺静脈930の損傷を抑制することができる。一方、基端側断熱バルーン280の構成材料としては、上記の中でも、ポリウレタンエラストマー、ラテックスゴムが好ましい。このような材料を用いることで、柔軟で伸び易い基端側断熱バルーン280となる。 Particularly, among the above materials, nylon elastomer is preferable as the constituent material of the distal side heat insulating balloon 270. By using such a material, the distal-side heat insulating balloon 270 is difficult to expand rapidly, and damage to the pulmonary vein 930 can be suppressed. On the other hand, as a constituent material of the base end side heat insulating balloon 280, among these, polyurethane elastomer and latex rubber are preferable. By using such a material, it becomes the base end side heat insulating balloon 280 which is flexible and easily stretched.
 以上、バルーン250について説明した。なお、バルーン250の構成としては、同様の効果を発揮することができる限り、上述した構成に限定されない。例えば、基端側断熱バルーン280は、冷却バルーン260と離間していてもよい。また、先端側断熱バルーン270は、冷却バルーン260と接触しており、先端側断熱バルーン270の基端側の部分が冷却バルーン260の先端側の部分と一体に形成されていてもよい。 The balloon 250 has been described above. The configuration of the balloon 250 is not limited to the configuration described above as long as the same effect can be exhibited. For example, the proximal heat insulating balloon 280 may be separated from the cooling balloon 260. Further, the distal side heat insulation balloon 270 may be in contact with the cooling balloon 260, and the proximal end side portion of the distal end side thermal insulation balloon 270 may be formed integrally with the distal side portion of the cooling balloon 260.
 冷却バルーン260に供給される冷却剤Cとしては、特に限定されないが、例えば、亜酸化窒素(NO)、アルゴン(Ar)、クリプトン(Kr)等の気体や、液体窒素、液化亜酸化窒素等の液体を用いることができる。 The coolant C supplied to the cooling balloon 260 is not particularly limited. For example, a gas such as nitrous oxide (N 2 O), argon (Ar), or krypton (Kr), liquid nitrogen, or liquefied nitrous oxide. Etc. can be used.
 また、先端側断熱バルーン270および基端側断熱バルーン280に供給される断熱剤Iとしては、冷却バルーン260と血液との熱交換を、冷却バルーン260と血液とが直接触れる場合と比較して抑制することができれば、特に限定されず、例えば、生食液(生理食塩水)、二酸化炭素、シリカエアロゲル等を用いることができる。また、断熱剤Iの温度(バルーン270、280内での温度)としては、血液の凝固点以上、血液の温度以下、具体的には10℃~30℃程度であることが好ましい。これにより、血液の冷凍凝固をより効果的に抑制することができる。 Further, as the heat insulating agent I supplied to the distal end side heat insulating balloon 270 and the proximal end side heat insulating balloon 280, heat exchange between the cooling balloon 260 and blood is suppressed as compared with the case where the cooling balloon 260 and blood directly touch each other. If it can do, it will not specifically limit, For example, a saline (physiological saline), a carbon dioxide, a silica airgel etc. can be used. The temperature of the heat insulating agent I (the temperature in the balloons 270 and 280) is preferably not less than the blood freezing point and not more than the blood temperature, specifically about 10 ° C. to 30 ° C. Thereby, the freezing and coagulation of blood can be more effectively suppressed.
 シャフト210は、図4に示すように、外管220と、外管220の内側に配置された内管230と、を有する二重管構造となっている。内管230に形成されたルーメン231は、術中に用いられるガイドワイヤや電極カテーテルを挿入するのに用いられる。また、内管230の外径は、外管220の内径よりも小さく、内管230と外管220との間にルーメン240が形成されている。このルーメン240は、例えば、術中に用いられる造影剤の流路として用いられる。 As shown in FIG. 4, the shaft 210 has a double tube structure having an outer tube 220 and an inner tube 230 disposed inside the outer tube 220. The lumen 231 formed in the inner tube 230 is used to insert a guide wire or an electrode catheter used during the operation. The outer diameter of the inner tube 230 is smaller than the inner diameter of the outer tube 220, and a lumen 240 is formed between the inner tube 230 and the outer tube 220. This lumen 240 is used, for example, as a flow path for a contrast agent used during surgery.
 また、外管220は、周方向に沿って独立して形成された8つの流路221~228を有する。 Also, the outer tube 220 has eight flow paths 221 to 228 formed independently along the circumferential direction.
 流路221、223、225、227は、図5に示すように、冷却バルーン260内に繋がっている。このうち、流路221、225は、冷却剤供給装置300から冷却バルーン260に冷却剤Cを供給する冷却剤供給流路であり、流路223、227は、冷却バルーン260に供給された冷却剤Cを冷却剤供給装置300に回収する冷却剤回収流路である。 The flow paths 221, 223, 225, and 227 are connected to the inside of the cooling balloon 260 as shown in FIG. Among these, the flow paths 221 and 225 are coolant supply flow paths for supplying the coolant C to the cooling balloon 260 from the coolant supply apparatus 300, and the flow paths 223 and 227 are the coolant supplied to the cooling balloon 260. This is a coolant recovery flow path for recovering C to the coolant supply device 300.
 流路221、225の冷却剤供給口221a、225aは、シャフト210の中心軸Jを挟んで反対側に位置しており、冷却剤供給口221a、225aから冷却剤Cが互いに冷却バルーン260内の反対側へ向けて供給される。また、冷却剤供給口221a、225aは、冷却バルーン260の長さ方向の中央部に位置し、冷却剤供給口221a、225aから冷却剤Cが冷却バルーン260の径方向に向けて噴射される。このような構成とすることで、冷却バルーン260内に短時間でムラなく冷却剤Cを供給することができる。 The coolant supply ports 221 a and 225 a of the flow paths 221 and 225 are located on the opposite side across the central axis J of the shaft 210, and the coolant C from the coolant supply ports 221 a and 225 a is in the cooling balloon 260. Supplied to the other side. The coolant supply ports 221a and 225a are located at the center of the cooling balloon 260 in the length direction, and the coolant C is injected from the coolant supply ports 221a and 225a toward the radial direction of the cooling balloon 260. With such a configuration, the coolant C can be supplied into the cooling balloon 260 in a short time without unevenness.
 流路223、227の冷却剤回収口223a、227aは、シャフト210の中心軸Jを挟んで反対側に位置しており、冷却剤回収口223a、227aから冷却剤Cが回収される。また、冷却剤回収口223a、227aは、冷却バルーン260の長さ方向の中央部に位置している。すなわち、冷却剤回収口223a、227aは、冷却剤供給口221a、225aとシャフト210の周方向に並んで配置されている。 The coolant recovery ports 223a and 227a of the flow paths 223 and 227 are located on the opposite side across the central axis J of the shaft 210, and the coolant C is recovered from the coolant recovery ports 223a and 227a. The coolant recovery ports 223a and 227a are located at the center of the cooling balloon 260 in the length direction. That is, the coolant recovery ports 223 a and 227 a are arranged side by side in the circumferential direction of the coolant supply ports 221 a and 225 a and the shaft 210.
 なお、冷却剤供給口の数や配置としては、冷却バルーン260内に冷却剤Cを供給することができれば、本実施形態に限定されない。同様に、冷却剤回収口の数や配置としては、冷却バルーン260内の冷却剤Cを回収することができれば、本実施形態に限定されない。 Note that the number and arrangement of the coolant supply ports are not limited to the present embodiment as long as the coolant C can be supplied into the cooling balloon 260. Similarly, the number and arrangement of the coolant recovery ports are not limited to the present embodiment as long as the coolant C in the cooling balloon 260 can be recovered.
 流路222、226は、図6に示すように、先端側断熱バルーン270内に繋がっている。このうち、流路222は、断熱剤供給装置400から先端側断熱バルーン270に断熱剤Iを供給する断熱剤供給流路であり、流路226は、先端側断熱バルーン270に供給した断熱剤Iを断熱剤供給装置400へ回収する断熱剤回収流路である。断熱剤供給装置400は、流路222から先端側断熱バルーン270に断熱剤Iを供給しつつ、先端側断熱バルーン270内の断熱剤Iを流路226から回収することで、先端側断熱バルーン270内に断熱剤Iを循環させることができる。そのため、先端側断熱バルーン270による断熱効果を経時的に維持することができる。 As shown in FIG. 6, the flow paths 222 and 226 are connected to the inside of the distal side heat insulating balloon 270. Among these, the flow path 222 is a heat insulating agent supply flow path for supplying the heat insulating agent I from the heat insulating agent supply device 400 to the front end side heat insulating balloon 270, and the flow path 226 is the heat insulating agent I supplied to the front end side heat insulating balloon 270. It is a heat insulation agent collection | recovery flow path which collect | recovers to the heat insulation agent supply apparatus 400. The heat insulating agent supply device 400 collects the heat insulating agent I in the front end side heat insulating balloon 270 from the flow path 226 while supplying the heat insulating agent I from the flow path 222 to the front end side heat insulating balloon 270, and thereby the front end side heat insulating balloon 270. The heat insulating agent I can be circulated inside. Therefore, the heat insulation effect by the front end side heat insulation balloon 270 can be maintained over time.
 流路222の断熱剤供給口222aと流路226の断熱剤回収口226aは、シャフト210の中心軸Jを挟んで反対側に位置している。このような構成とすることで、先端側断熱バルーン270内で断熱剤Iが流動し易くなり、先端側断熱バルーン270内に断熱剤Iをムラなく循環させることができる。そのため、先端側断熱バルーン270による断熱効果が向上する。 The heat-insulating agent supply port 222a of the flow path 222 and the heat-insulating agent recovery port 226a of the flow path 226 are located on opposite sides of the central axis J of the shaft 210. By setting it as such a structure, the heat insulating agent I becomes easy to flow in the front end side heat insulation balloon 270, and the heat insulating agent I can be circulated in the front end side heat insulation balloon 270 uniformly. Therefore, the heat insulation effect by the front end side heat insulation balloon 270 improves.
 なお、本実施形態では、断熱剤供給口222aと断熱剤回収口226aとがシャフト210の軸方向に揃って配置されているが、これらの配置としては、特に限定されず、例えば、シャフト210の軸方向にずれて配置されていてもよい。具体的には、例えば、シャフト210の先端側に断熱剤供給口222aが配置され、基端側に断熱剤回収口226aが配置されていてもよい。このような配置とすることで、先端側断熱バルーン270内で断熱剤Iがより流動し易くなる。また、断熱剤供給口222aや断熱剤回収口226aの数としても、特に限定されず、それぞれ、2つ以上配置してもよい。 In this embodiment, the heat insulating agent supply port 222a and the heat insulating agent recovery port 226a are arranged in the axial direction of the shaft 210. However, the arrangement is not particularly limited, and for example, the shaft 210 It may be displaced in the axial direction. Specifically, for example, the heat insulating agent supply port 222a may be disposed on the distal end side of the shaft 210, and the heat insulating agent recovery port 226a may be disposed on the proximal end side. By setting it as such arrangement | positioning, the heat insulating agent I becomes easier to flow in the front end side heat insulating balloon 270. Further, the number of the heat insulating agent supply ports 222a and the heat insulating agent recovery ports 226a is not particularly limited, and two or more of them may be arranged.
 流路224、228は、図7に示すように、基端側断熱バルーン280内に繋がっている。このうち、流路224は、断熱剤供給装置400から基端側断熱バルーン280に断熱剤Iを供給する断熱剤供給流路であり、流路228は、基端側断熱バルーン280に供給した断熱剤Iを断熱剤供給装置400へ回収する断熱剤回収流路である。断熱剤供給装置400は、流路224から基端側断熱バルーン280に断熱剤Iを供給しつつ、基端側断熱バルーン280内の断熱剤Iを流路228から回収することで、基端側断熱バルーン280内に断熱剤Iを循環させることができる。そのため、基端側断熱バルーン280による断熱効果を経時的に維持することができる。 As shown in FIG. 7, the flow paths 224 and 228 are connected in the proximal heat insulating balloon 280. Among these, the flow path 224 is a heat insulating agent supply flow path for supplying the heat insulating agent I from the heat insulating agent supply device 400 to the base end side heat insulating balloon 280, and the flow path 228 is the heat insulating material supplied to the base end side heat insulating balloon 280. It is a heat insulating agent recovery flow path for recovering the agent I to the heat insulating agent supply device 400. The heat insulating agent supply device 400 collects the heat insulating agent I in the base end side heat insulating balloon 280 from the flow path 228 while supplying the heat insulating agent I from the flow path 224 to the base end side heat insulating balloon 280, thereby The heat insulating agent I can be circulated in the heat insulating balloon 280. Therefore, the heat insulation effect by the base end side heat insulation balloon 280 can be maintained with time.
 流路224の断熱剤供給口224aと流路228の断熱剤回収口228aは、シャフト210の中心軸Jを挟んで反対側に位置している。このような構成とすることで、基端側断熱バルーン280内で断熱剤Iが流動し易くなり、基端側断熱バルーン280内に断熱剤Iをムラなく循環させることができる。そのため、基端側断熱バルーン280による断熱効果が向上する。 The heat-insulating agent supply port 224a of the flow channel 224 and the heat-insulating agent recovery port 228a of the flow channel 228 are located on the opposite sides of the central axis J of the shaft 210. By setting it as such a structure, the heat insulating agent I becomes easy to flow in the base end side heat insulation balloon 280, and the heat insulating agent I can be circulated in the base end side heat insulation balloon 280 uniformly. Therefore, the heat insulation effect by the base end side heat insulation balloon 280 improves.
 なお、本実施形態では、断熱剤供給口224aと断熱剤回収口228aとがシャフト210の軸方向に揃って配置されているが、これらの配置としては、特に限定されず、例えば、シャフト210の軸方向にずれて配置されていてもよい。このような配置とすることで、基端側断熱バルーン280内で断熱剤Iがより流動し易くなる。また、断熱剤供給口224aや断熱剤回収口228aの数としても、特に限定されず、それぞれ、2つ以上配置してもよい。 In this embodiment, the heat insulating agent supply port 224a and the heat insulating agent recovery port 228a are arranged in the axial direction of the shaft 210. However, the arrangement is not particularly limited, and for example, the shaft 210 It may be displaced in the axial direction. By setting it as such arrangement | positioning, the heat insulating agent I becomes easier to flow in the proximal end side heat insulating balloon 280. Further, the number of the heat insulating agent supply ports 224a and the heat insulating agent recovery ports 228a is not particularly limited, and two or more of them may be arranged.
 以上、シャフト210について詳細に説明した。上述のように、先端側断熱バルーン270および基端側断熱バルーン280では、断熱剤Iを供給、回収する流路が1本ずつであるのに対して、冷却バルーン260では、冷却剤Cを供給、回収する流路が2本ずつである。そのため、冷却バルーン260への冷却剤Cの供給、回収を効率的に行うことができ、主たる目的である接合部940の冷凍凝固を迅速に行うことができる。 The shaft 210 has been described in detail above. As described above, the distal-side heat insulating balloon 270 and the proximal-side heat insulating balloon 280 supply and recover the heat insulating agent I one by one, whereas the cooling balloon 260 supplies the coolant C. , There are two flow paths to be recovered. Therefore, the supply and recovery of the coolant C to the cooling balloon 260 can be efficiently performed, and the freezing and solidification of the joint portion 940, which is the main purpose, can be quickly performed.
 シャフト210(外管220および内管230)の構成材料としては、特に限定されないが、例えば、ポリアミド、ポリエステル、ポリウレタン、軟質ポリ塩化ビニル、ABS樹脂、AS樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂等の各種樹脂材料や、スチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、さらには、これらのうちの2種以上を組合せたもの(ポリマーアロイ、ポリマーブレンド、積層体等)が挙げられる。 The constituent material of the shaft 210 (the outer tube 220 and the inner tube 230) is not particularly limited. For example, a fluorine-based resin such as polyamide, polyester, polyurethane, soft polyvinyl chloride, ABS resin, AS resin, or polytetrafluoroethylene. Various thermoplastic materials such as styrene, polyolefin, polyurethane, polyester, polyamide, fluororubber, chlorinated polyethylene, etc., and also a combination of two or more of these (Polymer alloy, polymer blend, laminate, etc.).
 以上、シャフト210について説明した。なお、シャフト210の構成としては、上述した機能を発揮することができる限り、本実施形態の構成に限定されない。例えば、シャフト210は、外管と内管とを有する二重管構造でなくてもよく、一本の中実なシャフト内に上述したルーメンや流路が形成された構成でもよい。 The shaft 210 has been described above. The configuration of the shaft 210 is not limited to the configuration of the present embodiment as long as the above-described function can be exhibited. For example, the shaft 210 may not have a double-pipe structure having an outer tube and an inner tube, and may have a configuration in which the above-described lumen or flow path is formed in a single solid shaft.
 ≪冷凍凝固アブレーション≫
 次に、上述したアブレーションカテーテルシステム100を用いた冷凍凝固アブレーションについて説明する。
≪Frozen coagulation ablation≫
Next, cryocoagulation ablation using the ablation catheter system 100 described above will be described.
 まず、図8に示すように、例えば、ブロッケンブロー法(経心房中隔穿刺法)を用いて右心房910から心房の中隔部分を穿刺して左心房920に通じる孔を開け、この孔を介してアブレーションカテーテル200を湾曲操作可能なステアラブルシース(図示せず)と共に右心房910から左心房920へ導入する。 First, as shown in FIG. 8, for example, using the Brocken blow method (transatrial septal puncture method), a hole is made from the right atrium 910 to the left atrium 920 by puncturing the septum portion of the atrium. The ablation catheter 200 is introduced into the left atrium 920 from the right atrium 910 together with a steerable sheath (not shown) that can be bent.
 次に、図9に示すように、冷却バルーン260を拡張し、冷却バルーン260(中央部263)を左心房920と肺静脈930との接合部940に当接させる。 Next, as shown in FIG. 9, the cooling balloon 260 is expanded, and the cooling balloon 260 (central part 263) is brought into contact with the joint 940 between the left atrium 920 and the pulmonary vein 930.
 次に、アブレーションカテーテル200のルーメン231を介して、図10に示すように、肺静脈930内に電極カテーテル(心臓電気生理検査カテーテル)800を配置する。そして、電極カテーテル800によって肺静脈930の電位を測定したり、肺静脈930に電気刺激を与えて心房細動を誘発させたりして、心房細動の機序を解明する。 Next, as shown in FIG. 10, an electrode catheter (cardiac electrophysiology catheter) 800 is placed in the pulmonary vein 930 through the lumen 231 of the ablation catheter 200. Then, the potential of the pulmonary vein 930 is measured by the electrode catheter 800, or electrical stimulation is applied to the pulmonary vein 930 to induce atrial fibrillation, thereby elucidating the mechanism of atrial fibrillation.
 次に、ルーメン240を介して、肺静脈930内に造影剤を導入し、冷却バルーン260が接合部940に当接していることを確認する。 Next, a contrast agent is introduced into the pulmonary vein 930 through the lumen 240, and it is confirmed that the cooling balloon 260 is in contact with the joint 940.
 次に、図11に示すように、先端側断熱バルーン270および基端側断熱バルーン280に断熱剤Iを供給してこれらを拡張させると共に、先端側断熱バルーン270および基端側断熱バルーン280内に断熱剤Iを循環させる。これにより、冷却バルーン260の先端部261(肺静脈930に臨む部位)が先端側断熱バルーン270で覆われると共に、冷却バルーン260の基端部262(左心房920に臨む部位)が基端側断熱バルーン280で覆われた状態となる。 Next, as shown in FIG. 11, the heat insulating agent I is supplied to the distal end side thermal insulation balloon 270 and the proximal end side thermal insulation balloon 280 to expand them, and the distal side thermal insulation balloon 270 and the proximal end side thermal insulation balloon 280 are expanded. Circulate insulation I. As a result, the distal end portion 261 of the cooling balloon 260 (site facing the pulmonary vein 930) is covered with the distal-side heat insulating balloon 270, and the proximal end portion 262 of the cooling balloon 260 (site facing the left atrium 920) is proximally insulated. The state is covered with the balloon 280.
 次に、冷却バルーン260に冷却剤Cを供給する。冷却剤C(例えば、亜酸化窒素)は、圧縮された状態で冷却バルーン260内に供給され、冷却剤Cが冷却バルーン260内で膨張することで、冷却バルーン260内の温度が-70℃~-20℃程度まで低下する。そのため、冷却バルーン260と接触している接合部940が冷凍凝固され、図12に示すように、接合部940に冷凍焼灼線941が形成される。 Next, the coolant C is supplied to the cooling balloon 260. The coolant C (for example, nitrous oxide) is supplied into the cooling balloon 260 in a compressed state, and the coolant C expands in the cooling balloon 260, so that the temperature in the cooling balloon 260 becomes −70 ° C. or higher. It decreases to about -20 ° C. Therefore, the joint 940 in contact with the cooling balloon 260 is frozen and solidified, and a frozen cautery line 941 is formed at the joint 940 as shown in FIG.
 なお、接合部940には、冷却バルーン260の先端側断熱バルーン270および基端側断熱バルーン280のいずれにも覆われていない中央部263が接触しているため、接合部940を効率的に冷凍凝固することができる。 The joint 940 is in contact with the central portion 263 that is not covered by either the distal-side heat insulation balloon 270 or the proximal-side heat insulation balloon 280 of the cooling balloon 260, so that the joint 940 can be efficiently frozen. Can solidify.
 また、先端側断熱バルーン270によって、冷却バルーン260と肺静脈930内の血液や造影剤との接触が抑制されているため、肺静脈930内の血液や造影剤の凝固を抑制することができる。また反対に、肺静脈930内の血液や造影剤の熱が冷却バルーン260に伝わり難いため、冷却バルーン260の昇温を抑制でき、接合部940をより効果的に冷凍凝固することができる。 Further, since the contact between the cooling balloon 260 and the blood or contrast medium in the pulmonary vein 930 is suppressed by the distal-side heat insulating balloon 270, coagulation of the blood or contrast medium in the pulmonary vein 930 can be suppressed. On the other hand, since the heat of the blood in the pulmonary vein 930 and the heat of the contrast agent are not easily transmitted to the cooling balloon 260, the temperature rise of the cooling balloon 260 can be suppressed, and the joint portion 940 can be frozen and solidified more effectively.
 同様に、基端側断熱バルーン280によって、冷却バルーン260と左心房920内の血液との接触が抑制されているため、左心房920内の血液の凝固を抑制することができる。また反対に、左心房920内の血液の熱が冷却バルーン260に伝わり難いため、冷却バルーン260の昇温を抑制でき、接合部940をより効果的に冷凍凝固することができる。 Similarly, since the contact between the cooling balloon 260 and the blood in the left atrium 920 is suppressed by the proximal-side heat insulating balloon 280, blood coagulation in the left atrium 920 can be suppressed. On the other hand, since the heat of blood in the left atrium 920 is hardly transmitted to the cooling balloon 260, the temperature rise of the cooling balloon 260 can be suppressed, and the joint 940 can be frozen and solidified more effectively.
 最後に、異常信号が肺静脈930の中に閉じこめられていることを確認した後、電極カテーテル800およびアブレーションカテーテル200を生体から抜去する。これにより、冷凍凝固アブレーションが終了する。なお、上述では、4つ存在する接合部940のうちの1つの接合部940に対する手技を説明したが、残りの3つの接合部940についても同様の手技を行えばよい。 Finally, after confirming that the abnormal signal is confined in the pulmonary vein 930, the electrode catheter 800 and the ablation catheter 200 are removed from the living body. Thereby, freezing solidification ablation is complete | finished. In the above description, the technique for one joint 940 out of the four joints 940 has been described, but the same technique may be performed for the remaining three joints 940.
 <第2実施形態>
 次に、本発明の第2実施形態に係るアブレーションカテーテルについて説明する。
Second Embodiment
Next, an ablation catheter according to the second embodiment of the present invention will be described.
 図13は、本発明の第2実施形態に係るアブレーションカテーテルの縦断面図である。図14は、図13に示すアブレーションカテーテルの術中の状態を示す図である。 FIG. 13 is a longitudinal sectional view of an ablation catheter according to the second embodiment of the present invention. FIG. 14 is a view showing a state during the operation of the ablation catheter shown in FIG.
 以下、この図を参照して第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the second embodiment will be described with reference to this figure, but the description will focus on differences from the above-described embodiment, and description of similar matters will be omitted.
 本実施形態は、主に、バルーンの構成が異なること以外は、前述した第1実施形態と同様である。 This embodiment is the same as the first embodiment described above except that the configuration of the balloon is mainly different.
 図13に示すように、本実施形態のアブレーションカテーテル200では、バルーン250は、冷却バルーン260と、冷却バルーン260の外側に位置し、冷却バルーン260を覆っている断熱バルーン290と、を有する。そして、冷却バルーン260には冷却剤Cが供給され、断熱バルーン290には断熱剤Iが供給される。 As shown in FIG. 13, in the ablation catheter 200 of the present embodiment, the balloon 250 includes a cooling balloon 260 and a heat insulating balloon 290 that is located outside the cooling balloon 260 and covers the cooling balloon 260. The cooling balloon 260 is supplied with the coolant C, and the heat insulating balloon 290 is supplied with the heat insulating agent I.
 また、断熱バルーン290は、冷却バルーン260よりも先端側に位置する先端部291と、冷却バルーン260よりも基端側に位置する基端部292と、冷却バルーン260と重なるように位置する中央部293と、を有している。 The heat insulating balloon 290 includes a distal end portion 291 located on the distal end side from the cooling balloon 260, a proximal end portion 292 located on the proximal end side from the cooling balloon 260, and a central portion located so as to overlap the cooling balloon 260. 293.
 図14に示すように、先端部291は、肺静脈930に配置される部位であり、基端部292は、左心房920に配置される部位である。そのため、拡張状態において、先端部261の最大径が基端部262の最大径よりも小さくなるよう構成されている。これにより、断熱バルーン290の拡張時に、肺静脈930にかかる負担を低減することができる。 As shown in FIG. 14, the distal end portion 291 is a portion disposed in the pulmonary vein 930, and the proximal end portion 292 is a portion disposed in the left atrium 920. Therefore, the maximum diameter of the distal end portion 261 is configured to be smaller than the maximum diameter of the proximal end portion 262 in the expanded state. As a result, the burden on the pulmonary vein 930 can be reduced when the heat insulating balloon 290 is expanded.
 また、断熱バルーン290の中央部293は、冷却バルーン260と共に接合部940に当接する部分である。冷却バルーン260を接合部940に当接させた状態では、冷却バルーン260と断熱バルーン290とが密着し、その間に断熱剤Iが実質的に存在していない。そのため、冷却バルーン260による接合部940の冷凍凝固が、断熱剤Iによって妨げられることがない。 Further, the central portion 293 of the heat insulating balloon 290 is a portion that contacts the joint portion 940 together with the cooling balloon 260. In a state where the cooling balloon 260 is in contact with the joint portion 940, the cooling balloon 260 and the heat insulating balloon 290 are in close contact with each other, and the heat insulating agent I is not substantially present therebetween. Therefore, the freezing and solidification of the joint 940 by the cooling balloon 260 is not hindered by the heat insulating agent I.
 なお、冷却バルーン260で効率的に接合部940を冷凍凝固するために、例えば、中央部293の膜厚を先端部291および基端部292の膜厚よりも薄くしてもよい。 In order to efficiently freeze and solidify the joint portion 940 with the cooling balloon 260, for example, the film thickness of the central portion 293 may be made thinner than the film thickness of the distal end portion 291 and the proximal end portion 292.
 また、前述したように、冷却バルーン260を接合部940に当接させた状態では、冷却バルーン260と中央部293とが密着するため、先端部291と基端部292とが空間的に分離してしまう。そこで、先端部291および基端部292のそれぞれで断熱剤Iを循環させることができるように、先端部291および基端部292のそれぞれに断熱剤Iを供給する断熱剤供給口と断熱剤Iを回収する断熱剤回収口とを配置している。 Further, as described above, when the cooling balloon 260 is in contact with the joint portion 940, the cooling balloon 260 and the central portion 293 are in close contact with each other, so that the distal end portion 291 and the proximal end portion 292 are spatially separated. End up. Therefore, a heat insulating agent supply port and a heat insulating agent I for supplying the heat insulating agent I to each of the front end portion 291 and the base end portion 292 so that the heat insulating agent I can be circulated in each of the front end portion 291 and the base end portion 292. And a heat insulating agent recovery port for recovering.
 このような第2実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。 Even in the second embodiment, the same effect as that of the first embodiment described above can be exhibited.
 なお、本実施形態では、緊急時は接合部940(組織)に冷凍接着した冷却バルーン260をすぐに剥がさなければならないが、その際は、温めた(通常の使用時よりも高温の)断熱剤Iをやや高圧(通常の使用時よりも高圧)で還流させることで効率的に接着を解除することができる。 In this embodiment, in the event of an emergency, the cooling balloon 260 that has been frozen and adhered to the joint 940 (tissue) must be peeled off immediately, but in that case, a warmed (higher temperature than normal use) heat insulating agent Adhesion can be efficiently released by refluxing I at a slightly high pressure (higher pressure than in normal use).
 以上、本発明のアブレーションカテーテルを図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。また、各実施形態を適宜組み合わせてもよい。 The ablation catheter of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part may be replaced with an arbitrary configuration having the same function. Can do. In addition, any other component may be added to the present invention. Moreover, you may combine each embodiment suitably.
 本発明のアブレーションカテーテルは、長尺なシャフトと、前記シャフトに設けられ、拡張/収縮可能な冷却バルーンと、前記シャフトに設けられ、前記冷却バルーンの少なくとも一部を覆う断熱バルーンと、を有し、前記冷却バルーン内には冷却剤が導入され、前記断熱バルーン内には断熱剤が導入されることを特徴とする。このように、内部に断熱剤が供給される断熱バルーンによって、冷却バルーンの少なくとも一部が覆われているため、不整脈の原因となっている心筋組織を冷却バルーンによって冷凍凝固する際に、冷却バルーンが周囲の血液等と接触し難くなる。そのため、冷却バルーンに血液等の熱が伝わり易く、冷却バルーン内の温度を効率的に低下させることができる。したがって、優れたアブレーション効率を発揮することができる。 The ablation catheter of the present invention has a long shaft, a cooling balloon provided on the shaft and expandable / shrinkable, and a heat insulating balloon provided on the shaft and covering at least a part of the cooling balloon. A cooling agent is introduced into the cooling balloon, and a heat insulating agent is introduced into the heat insulating balloon. Thus, since at least a part of the cooling balloon is covered with the heat insulating balloon to which the heat insulating agent is supplied, the cooling balloon is used when the myocardial tissue causing arrhythmia is frozen and coagulated with the cooling balloon. Becomes difficult to contact with surrounding blood. Therefore, heat such as blood is easily transmitted to the cooling balloon, and the temperature in the cooling balloon can be efficiently reduced. Therefore, excellent ablation efficiency can be exhibited.
 したがって、本発明のアブレーションカテーテルは、産業上の利用可能性を有している。 Therefore, the ablation catheter of the present invention has industrial applicability.
 100  アブレーションカテーテルシステム
 200  アブレーションカテーテル
 210  シャフト
 220  外管
 221  流路
 221a 冷却剤供給口
 222  流路
 222a 断熱剤供給口
 223  流路
 223a 冷却剤回収口
 224  流路
 224a 断熱剤供給口
 225  流路
 225a 冷却剤供給口
 226  流路
 226a 断熱剤回収口
 227  流路
 227a 冷却剤回収口
 228  流路
 228a 断熱剤回収口
 230  内管
 231  ルーメン
 240  ルーメン
 250  バルーン
 260  冷却バルーン
 261  先端部
 262  基端部
 263  中央部
 270  先端側断熱バルーン
 280  基端側断熱バルーン
 290  断熱バルーン
 291  先端部
 292  基端部
 293  中央部
 300  冷却剤供給装置
 400  断熱剤供給装置
 800  電極カテーテル
 910  右心房
 920  左心房
 930  肺静脈
 940  接合部
 941  冷凍焼灼線
 C    冷却剤
 I    断熱剤
 J    中心軸
 R1、R2、R3   最大径
DESCRIPTION OF SYMBOLS 100 Ablation catheter system 200 Ablation catheter 210 Shaft 220 Outer tube 221 Flow path 221a Coolant supply port 222 Flow path 222a Heat insulation agent supply port 223 Flow path 223a Coolant recovery port 224 Flow path 224a Heat insulation agent supply port 225 Flow path 225a Coolant Supply port 226 Flow path 226a Heat insulation agent recovery port 227 Flow path 227a Coolant recovery port 228 Flow path 228a Heat insulation agent recovery port 230 Inner tube 231 Lumen 240 Lumen 250 Balloon 260 Cooling balloon 261 Tip portion 262 Base end portion 263 Central portion 270 Tip Side heat insulation balloon 280 Base end side heat insulation balloon 290 Heat insulation balloon 291 Tip portion 292 Base end portion 293 Central portion 300 Coolant supply device 400 Heat insulation agent supply device 800 Electrode catheter 910 right atrium 920 left atrium 930 pulmonary vein 940 junction 941 frozen ablation line C coolant I adiabatic agent J central axis R1, R2, R3 maximum diameter

Claims (7)

  1.  長尺なシャフトと、
     前記シャフトに設けられ、拡張/収縮可能な冷却バルーンと、
     前記シャフトに設けられ、前記冷却バルーンの少なくとも一部を覆う断熱バルーンと、を有し、
     前記冷却バルーン内には冷却剤が導入され、
     前記断熱バルーン内には断熱剤が導入されることを特徴とするアブレーションカテーテル。
    A long shaft,
    A cooling balloon provided on the shaft and expandable / shrinkable;
    A heat insulating balloon provided on the shaft and covering at least a part of the cooling balloon;
    A coolant is introduced into the cooling balloon,
    An ablation catheter, wherein a heat insulating agent is introduced into the heat insulating balloon.
  2.  前記断熱バルーンは、前記冷却バルーンの外側に位置し、前記冷却バルーンを覆っている請求項1に記載のアブレーションカテーテル。 The ablation catheter according to claim 1, wherein the heat insulating balloon is located outside the cooling balloon and covers the cooling balloon.
  3.  前記断熱バルーンは、前記シャフトの先端側に位置する先端部と、前記先端部よりも基端側に位置する基端部と、を有し、
     拡張状態において、前記先端部の最大径は、前記基端部の最大径よりも小さい請求項2に記載のアブレーションカテーテル。
    The heat insulating balloon has a distal end portion located on the distal end side of the shaft, and a proximal end portion located on the proximal end side with respect to the distal end portion,
    The ablation catheter according to claim 2, wherein a maximum diameter of the distal end portion is smaller than a maximum diameter of the proximal end portion in the expanded state.
  4.  前記断熱バルーンは、前記冷却バルーンよりも前記シャフトの先端側に位置する第1断熱バルーンと、前記冷却バルーンよりも前記シャフトの基端側に位置する第2断熱バルーンと、を有する請求項1に記載のアブレーションカテーテル。 The said heat insulation balloon has a 1st heat insulation balloon located in the front end side of the said shaft rather than the said cooling balloon, and a 2nd heat insulation balloon located in the base end side of the said shaft rather than the said cooling balloon. The ablation catheter described.
  5.  拡張状態では、前記第1断熱バルーンが前記冷却バルーンの先端部を覆い、前記第2断熱バルーンが前記冷却バルーンの基端部を覆う請求項4に記載のアブレーションカテーテル。 The ablation catheter according to claim 4, wherein in the expanded state, the first heat insulating balloon covers a distal end portion of the cooling balloon, and the second heat insulating balloon covers a proximal end portion of the cooling balloon.
  6.  前記冷却バルーンの前記先端部と前記基端部との間の中央部は、拡張状態において、前記第1断熱バルーンおよび前記第2断熱バルーンから露出している請求項5に記載のアブレーションカテーテル。 The ablation catheter according to claim 5, wherein a central portion between the distal end portion and the proximal end portion of the cooling balloon is exposed from the first heat insulation balloon and the second heat insulation balloon in an expanded state.
  7.  拡張状態において、前記第1断熱バルーンの最大径は、前記冷却バルーンの最大径よりも小さく、前記第2断熱バルーンの最大径は、前記冷却バルーンの最大径よりも大きい請求項4ないし6のいずれか1項に記載のアブレーションカテーテル。 7. In the expanded state, the maximum diameter of the first heat insulation balloon is smaller than the maximum diameter of the cooling balloon, and the maximum diameter of the second heat insulation balloon is larger than the maximum diameter of the cooling balloon. The ablation catheter according to claim 1.
PCT/JP2016/076779 2015-09-14 2016-09-12 Ablation catheter WO2017047543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-180701 2015-09-14
JP2015180701 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047543A1 true WO2017047543A1 (en) 2017-03-23

Family

ID=58288685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076779 WO2017047543A1 (en) 2015-09-14 2016-09-12 Ablation catheter

Country Status (1)

Country Link
WO (1) WO2017047543A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108309432A (en) * 2018-04-13 2018-07-24 山前(珠海)医疗科技有限公司 Cryogenic ablation conduit, cryogenic ablation operating device and cryogenic ablation equipment
US10028781B2 (en) 2013-09-30 2018-07-24 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10159538B2 (en) 2014-07-25 2018-12-25 Arrinex, Inc. Apparatus and method for treating rhinitis
US10939965B1 (en) 2016-07-20 2021-03-09 Arrinex, Inc. Devices and methods for treating a nerve of the nasal cavity using image guidance
US11026738B2 (en) 2016-06-15 2021-06-08 Arrinex, Inc. Devices and methods for treating a lateral surface of a nasal cavity
US11253312B2 (en) 2016-10-17 2022-02-22 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
US11278356B2 (en) 2017-04-28 2022-03-22 Arrinex, Inc. Systems and methods for locating blood vessels in the treatment of rhinitis
US11602260B2 (en) 2016-02-11 2023-03-14 Arrinex, Inc. Method and device for image guided post-nasal nerve ablation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007180A1 (en) * 2000-06-23 2002-01-17 Dan Wittenberger Cryotreatment device and method
US20020045893A1 (en) * 1999-08-23 2002-04-18 Miriam Lane Endovascular cryotreatment catheter
US20110190751A1 (en) * 2010-02-01 2011-08-04 Boston Scientific Scimed, Inc. Nested balloon cryotherapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020045893A1 (en) * 1999-08-23 2002-04-18 Miriam Lane Endovascular cryotreatment catheter
US20020007180A1 (en) * 2000-06-23 2002-01-17 Dan Wittenberger Cryotreatment device and method
US20110190751A1 (en) * 2010-02-01 2011-08-04 Boston Scientific Scimed, Inc. Nested balloon cryotherapy

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512498B2 (en) 2013-09-30 2019-12-24 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10028781B2 (en) 2013-09-30 2018-07-24 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10307200B2 (en) 2013-09-30 2019-06-04 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10448985B2 (en) 2013-09-30 2019-10-22 Arrinex, Inc. Apparatus and methods for treating rhinitis
US10159538B2 (en) 2014-07-25 2018-12-25 Arrinex, Inc. Apparatus and method for treating rhinitis
US10470837B2 (en) 2014-07-25 2019-11-12 Arrinex, Inc. Apparatus and method for treating rhinitis
US11602260B2 (en) 2016-02-11 2023-03-14 Arrinex, Inc. Method and device for image guided post-nasal nerve ablation
US11026738B2 (en) 2016-06-15 2021-06-08 Arrinex, Inc. Devices and methods for treating a lateral surface of a nasal cavity
US10939965B1 (en) 2016-07-20 2021-03-09 Arrinex, Inc. Devices and methods for treating a nerve of the nasal cavity using image guidance
US11253312B2 (en) 2016-10-17 2022-02-22 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
US11786292B2 (en) 2016-10-17 2023-10-17 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
US11278356B2 (en) 2017-04-28 2022-03-22 Arrinex, Inc. Systems and methods for locating blood vessels in the treatment of rhinitis
US20210045795A1 (en) * 2018-04-13 2021-02-18 Piedmont Medsystems (Zhuhai) Co., Ltd. Cryoablation catheter, cryoablation operating apparatus and cryoablation equipment
CN108309432A (en) * 2018-04-13 2018-07-24 山前(珠海)医疗科技有限公司 Cryogenic ablation conduit, cryogenic ablation operating device and cryogenic ablation equipment
EP3777737A4 (en) * 2018-04-13 2021-06-09 Piedmont Medsystems (Zhuhai) Co., Ltd. Cryoablation catheter, cryoablation operating apparatus and cryoablation equipment
JP2021520967A (en) * 2018-04-13 2021-08-26 山前(珠海)医療科技有限公司 Cold ablation catheter, cold ablation operating device and cold ablation device
JP7067825B2 (en) 2018-04-13 2022-05-16 山前(珠海)医療科技有限公司 Low temperature ablation catheter, low temperature ablation operating device and low temperature ablation device
WO2019196943A1 (en) * 2018-04-13 2019-10-17 山前(珠海)医疗科技有限公司 Cryoablation catheter, cryoablation operating apparatus and cryoablation equipment
US11925403B2 (en) 2018-04-13 2024-03-12 Piedmont Medsystems (Zhuhai) Co., Ltd. Cryoablation catheter, cryoablation operating apparatus and cryoablation equipment
CN108309432B (en) * 2018-04-13 2024-04-09 山前(珠海)医疗科技有限公司 Cryoablation catheter, cryoablation operating device and cryoablation equipment

Similar Documents

Publication Publication Date Title
WO2017047543A1 (en) Ablation catheter
US9636172B2 (en) Compliant balloon with liquid injection
US9872717B2 (en) Balloon catheter with flexible electrode assemblies
CN106413610B (en) Shape-changing ablation balloon
EP1615573B1 (en) Therapeutic apparatus having insulated region at the insertion area
US9888953B2 (en) Nested balloon cryotherapy
US8475440B2 (en) Wide area ablation of myocardial tissue
WO2017047545A1 (en) Ablation catheter
US8679105B2 (en) Device and method for pulmonary vein isolation
US20060135953A1 (en) Tissue ablation system including guidewire with sensing element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP