WO2017047377A1 - Boot band - Google Patents

Boot band Download PDF

Info

Publication number
WO2017047377A1
WO2017047377A1 PCT/JP2016/075363 JP2016075363W WO2017047377A1 WO 2017047377 A1 WO2017047377 A1 WO 2017047377A1 JP 2016075363 W JP2016075363 W JP 2016075363W WO 2017047377 A1 WO2017047377 A1 WO 2017047377A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
lever
boot
normal direction
band body
Prior art date
Application number
PCT/JP2016/075363
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 吉永
石島 実
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015251981A external-priority patent/JP6576822B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201680046251.0A priority Critical patent/CN107850096B/en
Priority to EP16846248.9A priority patent/EP3351808B1/en
Priority to US15/752,026 priority patent/US10731681B2/en
Publication of WO2017047377A1 publication Critical patent/WO2017047377A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/06Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
    • F16B2/08Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using bands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/18Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening using cams, levers, eccentrics, or toggles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor

Definitions

  • the present invention is a boot band which is attached to a fixed type and a sliding type constant velocity universal joint incorporated in automobiles and various industrial machines, and which tightens a boot for preventing foreign matter intrusion from outside the joint and leakage of lubricant from inside the joint. About.
  • constant velocity universal joints that are used as means for transmitting rotational force from an automobile engine to wheels at a constant speed: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.
  • a drive shaft that transmits power from an automobile engine to a drive wheel needs to cope with angular displacement and axial displacement caused by a change in the relative positional relationship between the engine and the wheel. Therefore, the drive shaft is generally equipped with a sliding constant velocity universal joint on the engine side (inboard side) and a fixed constant velocity universal joint on the drive wheel side (outboard side). It has a structure in which fast universal joints are connected by a shaft.
  • the outer joint member of the constant velocity universal joint is used to prevent leakage of the lubricant enclosed inside the joint and to prevent foreign matter from entering from the outside of the joint.
  • Boots are mounted between the shaft.
  • This type of boot has a sealing property secured by tightening with a metal boot band (for example, see Patent Document 1) and fixing it to the outer joint member and the shaft.
  • the boot band disclosed in Patent Document 1 is called a one-touch type, and is attached to a band body formed into a ring shape by joining both end portions of a band plate-like member, and a joint portion of the band body. And a lever obtained by forming a strip-like member into an arc shape.
  • this boot band is as follows. First, prior to assembling the boot band, the end of the boot is attached to the outer joint member or shaft of the constant velocity universal joint. At this time, a boot band is disposed outside the end of the boot.
  • the base end of the lever is folded back as a fulcrum, and the band main body is reduced in diameter by overlapping the lever on the band main body.
  • the end of the boot is fastened and fixed to the outer joint member or shaft of the constant velocity universal joint by the boot band whose diameter is reduced.
  • the boot band disclosed in Patent Document 1 has a fulcrum side portion at the base end portion of the lever. The edge is removed, and the fulcrum side portion is formed in a curved surface shape.
  • the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to relieve local stress concentration, reduce metal fatigue due to repeated lever folding, and break the band body.
  • An object of the present invention is to provide a boot band capable of preventing costs and reducing costs by simple means.
  • the present invention provides a band body in which a band plate member is formed into a ring shape by joining the inner peripheral surfaces of both end portions of the band plate member so as to overlap each other. And a lever attached to the joint of the band main body, and a strip-shaped member formed into an arc shape.
  • the band main body is reduced in diameter by folding the lever end on the fulcrum and overlapping the lever on the band main body.
  • the boot band of the present invention by providing a plurality of chamfered portions along the lever plate thickness direction at the fulcrum side portion of the end of the lever, when the end of the lever is folded back as a fulcrum, the end of the lever The band body is bent along the plurality of chamfered portions formed.
  • the radius of curvature of the band main body in contact with the chamfered portion By increasing the radius of curvature of the band main body in contact with the chamfered portion, local stress concentration generated in the contact portion of the band main body can be reduced.
  • the strength of the band body can be ensured, and the band body can be prevented from breaking near the fulcrum side portion of the end of the lever. Further, since the plurality of chamfered portions can be formed by simple means, the cost of the boot band can be reduced as compared with barrel processing or the like.
  • the multi-step chamfered portion is a two-step chamfered portion in which the chamfer angle of the second step is larger than the chamfer angle of the first step from the end of the lever with respect to the normal direction of the band body.
  • the chamfer angle of the second step is larger than the normal direction of the band body than the chamfer angle of the first step from the end of the band
  • the chamfer angle of the third step is larger than the chamfer angle of the second step. It is desirable to have a three-stage chamfered portion that is larger than the normal direction.
  • the local stress concentration generated at the contact portion of the band main body can be surely alleviated, and the breaking strength of the band main body can be secured.
  • the processing can be simplified, and the cost can be greatly reduced as compared with barrel processing.
  • the two-step chamfered portion has a first-step chamfering angle of 10 to 45 ° with respect to the normal direction of the band body, and a second-step chamfering angle of 45 to the normal direction of the band body.
  • a configuration in which the angle is 80 ° is desirable.
  • the first step chamfer angle is 10 to 45 ° with respect to the normal direction of the band body
  • the second step chamfer angle is 30 to 60 with respect to the normal direction of the band body. It is desirable that the third stage chamfer angle is 50 to 80 ° with respect to the normal direction of the band body.
  • the chamfered portion of two or three steps can be set at an optimum angle, and it becomes easy to ensure the breaking strength of the band body. As a result, even if the lever is repeatedly folded, it is possible to more reliably prevent the band body from breaking near the fulcrum side portion of the end of the lever.
  • the present invention it is possible to alleviate local stress concentration generated at the contact portion of the band body when the lever is folded back. By relaxing the local stress concentration, it is possible to ensure the breaking strength of the band body even when the lever is repeatedly folded, and to prevent the band body from breaking near the fulcrum side part at the end of the lever. In the evaluation test of the constant velocity universal joint, the band can be reused. In addition, since a plurality of chamfered portions can be formed by simple means, the cost of the boot band can be reduced compared to barrel processing or the like. As a result, it is possible to provide a boot band that is highly reliable, has a long life, and is inexpensive.
  • FIG. 3 is a perspective view showing a fulcrum side portion of the end portion of the lever in the embodiment product 1 of the present invention. It is principal part expanded sectional drawing which shows the state which turned back the lever of the boot band in the implementation goods 1 of this invention.
  • FIG. 6 is a perspective view showing a fulcrum side portion of the end of the lever in the embodiment product 2 of the present invention.
  • FIG. 6 is an enlarged cross-sectional view of a main part showing a state in which the lever of the boot band is folded back in the embodiment product 2 of the present invention.
  • a constant velocity universal joint to which the boot band in the following embodiments is applied, it is incorporated in a drive shaft of an automobile and connects two shafts of a drive side and a driven side, and the two shafts take a working angle and rotate at a constant speed.
  • An undercut-free type constant velocity universal joint which is one of fixed type constant velocity universal joints having a structure for transmitting
  • the present invention can also be applied to other fixed type constant velocity universal joints such as a Rzeppa type constant velocity universal joint, a double offset type constant velocity universal joint, a cross groove type constant velocity universal joint, a tripod type, and the like.
  • the present invention can also be applied to a sliding type constant velocity universal joint such as a speed universal joint.
  • FIG. 7 shows an undercut-free constant velocity universal joint constituting a part of the drive shaft, a shaft, and a boot mounted between the constant velocity universal joint and the shaft.
  • FIG. 8 is a cross-sectional view of FIG.
  • the constant velocity universal joint includes an outer joint member 11, an inner joint member 12, a ball 13, and a cage 14.
  • arc-shaped track grooves 15 extending in the axial direction are formed at a plurality of locations on the spherical inner peripheral surface 16 at equal intervals in the circumferential direction.
  • the inner joint member 12 is paired with the track groove 15 of the outer joint member 11, and arc-shaped track grooves 17 are formed at a plurality of locations on the spherical outer peripheral surface 18 at equal intervals in the circumferential direction.
  • the ball 13 is interposed between the track groove 15 of the outer joint member 11 and the track groove 17 of the inner joint member 12.
  • the cage 14 is disposed between the spherical inner peripheral surface 16 of the outer joint member 11 and the spherical outer peripheral surface 18 of the inner joint member 12 to hold the ball 13.
  • the opening side portion of the track groove 15 of the outer joint member 11 and the back side portion of the track groove 17 of the inner joint member 12 are formed in a straight shape parallel to the joint axial direction to increase the operating angle.
  • One end of a shaft 19 is connected to the inner joint member 12 by spline fitting.
  • An inner joint member of a sliding type constant velocity universal joint (not shown) is connected to the other end of the shaft 19 by spline fitting.
  • This constant velocity universal joint has a bellows shape made of rubber or resin between the outer joint member 11 and the shaft 19 in order to prevent leakage of the lubricant sealed inside the joint and prevent foreign matter from entering from the outside of the joint.
  • the boot 20 is provided with a structure. By encapsulating a lubricant in the inner space of the outer joint member 11 and the boot 20, lubricity is ensured during the operation in which the shaft 19 rotates with an operating angle with respect to the outer joint member 11.
  • the boot 20 includes a large-diameter end portion 21 fastened and fixed to the outer peripheral surface of the outer joint member 11 by a boot band 31, a small-diameter end portion 22 fastened and fixed to the outer peripheral surface of the shaft 19 by the boot band 31, and a large-diameter end
  • the portion 21 and the small-diameter end portion 22 are connected to each other, and an elastic bellows portion 23 having a diameter reduced from the large-diameter end portion 21 toward the small-diameter end portion 22 is formed.
  • the large-diameter end 21 and the small-diameter end 22 of the boot 20 are fastened and fixed by the boot band 31 so as to ensure sealing performance.
  • the boot 20 is made of rubber or resin having a telescopic bellows shape to ensure flexibility to follow its behavior. Is used.
  • the rubber material chloroprene rubber or silicon rubber having a surface hardness of Hs 45 to 75 is suitable.
  • the resin material a thermoplastic polyester elastomer having a surface hardness of HD 38 to 55 or a composition containing a thermoplastic polyester elastomer is suitable.
  • FIG. 1 shows a state before the boot 20 (see FIG. 7) is fastened and fixed
  • FIG. 2 shows a state after the boot 20 (see FIG. 7) is fastened and fixed.
  • the boot band 31 of this embodiment is called a one-touch type.
  • a band formed into a ring shape by joining both end portions 33 and 34 of a metal band plate member 32.
  • a main part is composed of a main body 35 and a lever 38 which is attached to a joint portion 36 of the band main body 35 and is formed by forming a metal strip member 37 into an arc shape.
  • the band main body 35 is provided with a stopper 39 for fixing the lever 38 after being folded back.
  • the band body 35 has a joint portion 36 formed by abutting the inner peripheral surface of the one end portion 33 of the band plate member 32 and the inner peripheral surface of the other end portion 34 and fixing them by welding or the like.
  • the lever 38 is attached to the band main body 35 by fixing its base end portion to the outer peripheral surface of the joint portion 36 of the band main body 35 by welding or the like.
  • the stopper portion 39 is composed of a pair of tongue pieces 40 provided so as to stand up radially outward on both sides in the width direction of the band main body 35. Since the lever 38 requires a folding operation, the lever 38 is thicker than the band main body 35 in order to ensure its strength.
  • the assembly of the boot band 31 having the above configuration is performed in the following manner.
  • the large-diameter end portion 21 of the boot 20 is fitted on the outer peripheral surface of the outer joint member 11 of the constant velocity universal joint, and the small-diameter end portion 22 of the boot 20 is mounted on the outer peripheral surface of the shaft 19. Fit outside.
  • the boot band 31 is disposed outside the large-diameter end 21 and the small-diameter end 22 of the boot 20.
  • the lever 38 is folded back with the base end portion of the lever 38 of the boot band 31 as a fulcrum, so that the concave curved inner peripheral surface of the lever 38 is superimposed on the convex curved outer peripheral surface of the band main body 35.
  • the band main body 35 is reduced in diameter by overlapping the lever 38 on the band main body 35.
  • the boot 20 is tightened and fixed to the outer peripheral surface of the outer joint member 11 and the outer peripheral surface of the shaft 19 by the boot band 31 whose band main body 35 has a reduced diameter.
  • the distal end of the lever 38 is pressed by the tongue piece 40 and fixed to the band body 35 by crimping the tongue piece 40 of the stopper 39 of the band body 35 inwardly.
  • a plurality of, for example, two-step chamfered portions 42 and 43 along the lever plate thickness direction are provided in the fulcrum side portion 41 of the base end portion of the lever 38.
  • the number of steps of the chamfered portions 42 and 43 is two, but can be three or more.
  • three steps of chamfered portions 44 to 46 along the lever plate thickness direction are provided in the fulcrum side portion 41 of the base end portion of the lever 38.
  • the chamfered portion may have four or more steps, and the number of steps is arbitrary.
  • the base end portion of the lever 38 is folded back as a fulcrum.
  • the band main body 35 is bent along the two-step chamfered portions 42 and 43 or the three-step chamfered portions 44 to 46 formed at the base end portion of the lever 38. become.
  • the two-step chamfered portions 42, 43 or the three-step chamfered portions 44-46 are used.
  • the local stress concentration generated at the contact portion of the band main body 35 can be alleviated.
  • the breaking strength of the band main body 35 can be secured even if the lever 38 is repeatedly folded, and the base end of the lever 38 can be secured. It is possible to prevent the band main body 35 from being broken near the fulcrum side portion 41 of the portion. Further, the two-step chamfered portions 42 and 43 or the three-step chamfered portions 44 to 46 can be formed at a low cost by a simple means such as cutting or pressing.
  • the two-step chamfered portions 42 and 43 have a second-step chamfering angle ⁇ with respect to the normal direction of the band main body 35 rather than the first-step chamfering angle ⁇ from the end of the lever 38. It is getting bigger. That is, the first-stage chamfering angle ⁇ is 10 to 45 °, preferably 20 to 40 ° with respect to the normal direction of the band body 35, and the second-stage chamfering angle ⁇ is set to the normal direction of the band body 35. The angle is 45 to 80 °, preferably 50 to 70 °.
  • the first-stage chamfering angle ⁇ is 30 ° with respect to the normal direction of the band main body 35
  • the second-stage chamfering angle ⁇ is 60 ° with respect to the normal direction of the band main body 35.
  • the three-stage chamfered portions 44 to 46 have a second-stage chamfering angle ⁇ from the end of the lever 38 with respect to the normal direction of the band body 35 rather than the first-stage chamfered angle ⁇ .
  • the third chamfer angle ⁇ is larger than the second chamfer angle ⁇ with respect to the normal direction of the band main body 35. That is, the first step chamfering angle ⁇ is 10 to 45 °, preferably 20 to 30 ° with respect to the normal direction of the band main body 35, and the second step chamfering angle ⁇ is set to the normal direction of the band main body 35.
  • the chamfering angle ⁇ at the third step is 50 to 80 °, preferably 65 to 75 ° with respect to the normal direction of the band main body 35, with respect to 30 to 60 °, preferably 40 to 50 °.
  • the first step chamfering angle ⁇ is 30 ° with respect to the normal direction of the band main body 35
  • the second step chamfering angle ⁇ is 50 ° with respect to the normal direction of the band main body 35.
  • the chamfer angle ⁇ of the step is set to 70 ° with respect to the normal direction of the band main body 35.
  • the two-step chamfering portions 42, 43 or the three-step chamfering portions 44 to 46 are optimal angles. It becomes easy to secure the breaking strength of the band main body 35. As a result, the band main body 35 can be more reliably prevented from breaking in the vicinity of the fulcrum side portion 41 of the base end portion of the lever 38, so that the band can be reused in the evaluation test of the constant velocity universal joint. It becomes.
  • the chamfering effect is obtained. It becomes difficult to exhibit the chamfering and mold the chamfer. Further, if the upper and lower limit boundary values (45 °) between the first-stage chamfer angle ⁇ and the second-stage chamfer angle ⁇ are shifted, it is difficult to obtain a uniform dispersion effect at the two-stage chamfers 42 and 43. It becomes.
  • the chamfering effect is obtained. It becomes difficult to exhibit the chamfering and mold the chamfer.
  • the upper and lower boundary values (45 °, 30 °) between the first step chamfer angle ⁇ and the second step chamfer angle ⁇ , and the second step chamfer angle ⁇ and the third step chamfer angle ⁇ If the lower limit boundary values (60 °, 50 °) are deviated, it is difficult to obtain a uniform dispersion effect in the three-stage chamfered portions 44 to 46.
  • the applicant of the present invention has a boot band 31 (implemented product 1 of the present invention) in which two steps of chamfered portions 42 and 43 are provided at a fulcrum side portion 41 at the base end of the lever 38.
  • a boot band 31 (a product 2 according to the present invention) in which three steps of chamfered portions 44 to 46 are provided in the fulcrum side portion 41 of the base end portion of the lever 38, and
  • FIG. 5B a test was performed to compare with a boot band 131 (comparative product) in which an edge portion 144 is provided without chamfering at a fulcrum side portion 141 of the base end portion of the lever 138.
  • the band main bodies 35 and 135 were broken in the vicinity of the fulcrum side portions 41 and 141 of the base end portions of the levers 38 and 138 by folding the levers 38 and 138 for the products 1 and 2 and the comparative products. The number of iterations was verified. In addition, this verification test was done about four implementation products 1 and 2 and four comparison products.
  • the radius of curvature at the contact portion of the main body 35 is larger than the radius of curvature at the contact portion of the band main body 135 that contacts the edge portion 144 in the comparative product (see FIG. 4B).
  • the working products 1 and 2 that can alleviate the local stress concentration generated in the contact portion of the band main body 35 can be folded back twice as much as the comparative product.
  • the band main body 35 can be prevented from being broken in the vicinity of the fulcrum side portion 41 of the base end portion of the lever 38 when the lever 38 is folded back.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Clamps And Clips (AREA)

Abstract

A boot band 31 is provided with: a band body 35 obtained by forming a band plate-like member 32 in a ring shape by joining in an overlapping manner the inner peripheral surfaces of the opposite ends 33, 34 of the band plate-like member 32; and a lever 38 attached to the joint 36 of the band body 35 and obtained by forming a strip-like member 37 in a circular arc shape. When the lever 38 is folded back at an end of the lever 38 and overlapped on the band body 35, the band body 35 is reduced in diameter and tightened around a boot for a constant velocity universal joint, the boot being disposed inside the band body 35, the end of the lever 38 serving as the fulcrum at which the lever 38 is folded back. Two-stage chamfered sections 42, 43 arranged in the direction of the lever plate thickness are provided at the fulcrum-side portion 41 of the end of the lever 38.

Description

ブーツバンドBoots band
 本発明は、自動車や各種産業機械に組み込まれる固定式および摺動式等速自在継手に取り付けられ、継手外部からの異物侵入や継手内部からの潤滑剤漏洩を防止するためのブーツを締め付けるブーツバンドに関する。 The present invention is a boot band which is attached to a fixed type and a sliding type constant velocity universal joint incorporated in automobiles and various industrial machines, and which tightens a boot for preventing foreign matter intrusion from outside the joint and leakage of lubricant from inside the joint. About.
 例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。 For example, there are two types of constant velocity universal joints that are used as means for transmitting rotational force from an automobile engine to wheels at a constant speed: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.
 自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、駆動車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。 A drive shaft that transmits power from an automobile engine to a drive wheel needs to cope with angular displacement and axial displacement caused by a change in the relative positional relationship between the engine and the wheel. Therefore, the drive shaft is generally equipped with a sliding constant velocity universal joint on the engine side (inboard side) and a fixed constant velocity universal joint on the drive wheel side (outboard side). It has a structure in which fast universal joints are connected by a shaft.
 これら摺動式等速自在継手あるいは固定式等速自在継手では、継手内部に封入された潤滑剤の漏洩を防ぐと共に継手外部からの異物侵入を防止するため、等速自在継手の外側継手部材とシャフトとの間にブーツを装着している。この種のブーツは、金属製のブーツバンド(例えば、特許文献1参照)で締め付けて外側継手部材およびシャフトに固定することによりシール性が確保されている。 In these sliding type constant velocity universal joints or fixed type constant velocity universal joints, the outer joint member of the constant velocity universal joint is used to prevent leakage of the lubricant enclosed inside the joint and to prevent foreign matter from entering from the outside of the joint. Boots are mounted between the shaft. This type of boot has a sealing property secured by tightening with a metal boot band (for example, see Patent Document 1) and fixing it to the outer joint member and the shaft.
 この特許文献1に開示されたブーツバンドは、ワンタッチ式と称されるもので、帯板状部材の両端部を接合することによりリング状に成形したバンド本体と、そのバンド本体の接合部に付設され、短冊状部材を円弧状に成形したレバーとを備えている。 The boot band disclosed in Patent Document 1 is called a one-touch type, and is attached to a band body formed into a ring shape by joining both end portions of a band plate-like member, and a joint portion of the band body. And a lever obtained by forming a strip-like member into an arc shape.
 このブーツバンドの組み付けは、以下のとおりである。まず、ブーツバンドの組み付けに先立って、等速自在継手の外側継手部材あるいはシャフトにブーツの端部を装着する。この時、ブーツの端部の外側にブーツバンドを配置する。 The assembly of this boot band is as follows. First, prior to assembling the boot band, the end of the boot is attached to the outer joint member or shaft of the constant velocity universal joint. At this time, a boot band is disposed outside the end of the boot.
 この状態で、ブーツバンドにおいて、レバーの基端部を支点として折り返し、そのレバーをバンド本体に重ね合わせることによりバンド本体を縮径させる。このバンド本体が縮径したブーツバンドにより、ブーツの端部を等速自在継手の外側継手部材あるいはシャフトに締め付け固定する。 In this state, in the boot band, the base end of the lever is folded back as a fulcrum, and the band main body is reduced in diameter by overlapping the lever on the band main body. The end of the boot is fastened and fixed to the outer joint member or shaft of the constant velocity universal joint by the boot band whose diameter is reduced.
特開平10-26108号公報JP-A-10-26108
 ところで、一般的に、ワンタッチ式のブーツバンドでは、レバーの基端部を支点として折り返すと、レバーの基端部に沿ってバンド本体の当接部分が折り曲げられる。この時、レバーの基端部の支点側部位にエッジが形成されていると、エッジに当接するバンド本体の当接部分での曲率半径が小さくなることで、バンド本体の当接部分に応力集中が局部的に発生する。 By the way, in general, in a one-touch type boot band, when the base end portion of the lever is folded back as a fulcrum, the contact portion of the band main body is bent along the base end portion of the lever. At this time, if an edge is formed at the fulcrum side part of the base end portion of the lever, the radius of curvature at the abutting portion of the band body that abuts against the edge is reduced, so that stress concentration is concentrated on the abutting portion of the band body. Occurs locally.
 このような局部的な応力集中が発生すると、等速自在継手の評価テストを行う上でブーツバンドを再利用するに際して、レバーの折り返しを繰り返した場合、金属疲労によりレバーの基端部の支点側部位近傍でバンド本体が破断するおそれがある。 When this local stress concentration occurs, when the boot band is reused in the evaluation test of the constant velocity universal joint, if the lever is repeatedly folded, the fulcrum side of the base end portion of the lever is caused by metal fatigue. There is a risk of the band body breaking near the site.
 前述のような局部的な応力集中を緩和して、レバーの折り返しの繰り返しによるバンド本体の破断を防止するため、特許文献1で開示されたブーツバンドでは、レバーの基端部の支点側部位においてエッジを除去し、その支点側部位を曲面形状に形成している。 In order to relieve the local stress concentration as described above and prevent the band body from being broken due to repeated folding of the lever, the boot band disclosed in Patent Document 1 has a fulcrum side portion at the base end portion of the lever. The edge is removed, and the fulcrum side portion is formed in a curved surface shape.
 しかしながら、特許文献1で開示されたブーツバンドでは、レバーの基端部の支点側部位においてエッジを除去し、その支点側部位を曲面形状にするため、バレル加工またはショットブラスト加工などのエッジ処理が必要となる。その結果、ブーツバンドがコスト高となる。 However, in the boot band disclosed in Patent Document 1, an edge process such as barrel processing or shot blasting is performed in order to remove the edge at the fulcrum side portion of the base end portion of the lever and make the fulcrum side portion into a curved surface shape. Necessary. As a result, the boot band is expensive.
 そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、局部的な応力集中を緩和し、レバーの折り返しの繰り返しによる金属疲労を低減してバンド本体の破断を防止すると同時に、簡便な手段によりコスト低減を図り得るブーツバンドを提供することにある。 Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to relieve local stress concentration, reduce metal fatigue due to repeated lever folding, and break the band body. An object of the present invention is to provide a boot band capable of preventing costs and reducing costs by simple means.
 前述の目的を達成するための技術的手段として、本発明は、帯板状部材の両端部の内周面同士を重ね合わせるように接合することにより帯板状部材をリング状に成形したバンド本体と、バンド本体の接合部に付設され、短冊状部材を円弧状に成形したレバーとを備え、レバーの端部を支点にして折り返してレバーをバンド本体に重ね合わせることによりバンド本体を縮径させ、バンド本体の内側に配置された等速自在継手用ブーツを締め付けるブーツバンドであって、レバーの端部の支点側部位に、レバー板厚方向に沿う複数段の面取り部を設けたことを特徴とする。 As technical means for achieving the above-mentioned object, the present invention provides a band body in which a band plate member is formed into a ring shape by joining the inner peripheral surfaces of both end portions of the band plate member so as to overlap each other. And a lever attached to the joint of the band main body, and a strip-shaped member formed into an arc shape. The band main body is reduced in diameter by folding the lever end on the fulcrum and overlapping the lever on the band main body. A boot band for fastening a constant velocity universal joint boot arranged inside the band body, wherein a plurality of chamfered portions along the lever plate thickness direction are provided at a fulcrum side portion of the end portion of the lever. And
 本発明のブーツバンドでは、レバーの端部の支点側部位に、レバー板厚方向に沿う複数段の面取り部を設けたことにより、レバーの端部を支点として折り返した場合、レバーの端部に形成された複数段の面取り部に沿ってバンド本体が折り曲げられることになる。この面取り部に当接するバンド本体の曲率半径が大きくなることで、バンド本体の当接部分に発生する局部的な応力集中を緩和することができる。 In the boot band of the present invention, by providing a plurality of chamfered portions along the lever plate thickness direction at the fulcrum side portion of the end of the lever, when the end of the lever is folded back as a fulcrum, the end of the lever The band body is bent along the plurality of chamfered portions formed. By increasing the radius of curvature of the band main body in contact with the chamfered portion, local stress concentration generated in the contact portion of the band main body can be reduced.
 その結果、レバーの折り返しを繰り返しても、バンド本体の破断強度を確保することができ、レバーの端部の支点側部位近傍でバンド本体が破断することを防止できる。また、複数段の面取り部は、簡便な手段で形成することができるので、バレル加工などに比べてブーツバンドのコスト低減が図れる。 As a result, even if the lever is repeatedly folded back, the strength of the band body can be ensured, and the band body can be prevented from breaking near the fulcrum side portion of the end of the lever. Further, since the plurality of chamfered portions can be formed by simple means, the cost of the boot band can be reduced as compared with barrel processing or the like.
 本発明において、複数段の面取り部は、レバーの端部から1段目の面取り角度よりも2段目の面取り角度をバンド本体の法線方向に対して大きくした2段の面取り部、あるいはレバーの端部から1段目の面取り角度よりも2段目の面取り角度をバンド本体の法線方向に対して大きくし、かつ、2段目の面取り角度よりも3段目の面取り角度をバンド本体の法線方向に対して大きくした3段の面取り部とした構成が望ましい。 In the present invention, the multi-step chamfered portion is a two-step chamfered portion in which the chamfer angle of the second step is larger than the chamfer angle of the first step from the end of the lever with respect to the normal direction of the band body. The chamfer angle of the second step is larger than the normal direction of the band body than the chamfer angle of the first step from the end of the band, and the chamfer angle of the third step is larger than the chamfer angle of the second step. It is desirable to have a three-stage chamfered portion that is larger than the normal direction.
 このような構成を採用すれば、バンド本体の当接部分に発生する局部的な応力集中を確実に緩和することができ、バンド本体の破断強度を確保することができる。その結果、レバーの端部の支点側部位近傍でバンド本体が破断することが確実に防止できる。また、2段あるいは3段の面取り部の場合、加工の簡略化が図れて、バレル加工などに比べて大幅なコスト低減が図れる。 If such a configuration is adopted, the local stress concentration generated at the contact portion of the band main body can be surely alleviated, and the breaking strength of the band main body can be secured. As a result, it is possible to reliably prevent the band body from being broken near the fulcrum side portion of the end of the lever. Further, in the case of a two-step or three-step chamfered portion, the processing can be simplified, and the cost can be greatly reduced as compared with barrel processing.
 本発明において、2段の面取り部は、1段目の面取り角度がバンド本体の法線方向に対して10~45°とし、2段目の面取り角度がバンド本体の法線方向に対して45~80°とした構成が望ましい。また、3段の面取り部は、1段目の面取り角度がバンド本体の法線方向に対して10~45°とし、2段目の面取り角度がバンド本体の法線方向に対して30~60°とし、3段目の面取り角度がバンド本体の法線方向に対して50~80°とした構成が望ましい。 In the present invention, the two-step chamfered portion has a first-step chamfering angle of 10 to 45 ° with respect to the normal direction of the band body, and a second-step chamfering angle of 45 to the normal direction of the band body. A configuration in which the angle is 80 ° is desirable. Further, in the third step chamfered portion, the first step chamfer angle is 10 to 45 ° with respect to the normal direction of the band body, and the second step chamfer angle is 30 to 60 with respect to the normal direction of the band body. It is desirable that the third stage chamfer angle is 50 to 80 ° with respect to the normal direction of the band body.
 このような構成を採用すれば、2段あるいは3段の面取り部を最適な角度に設定することができ、バンド本体の破断強度を確保することが容易となる。その結果、レバーの折り返しを繰り返しても、レバーの端部の支点側部位近傍でバンド本体が破断することをより一層確実に防止できる。 If such a configuration is adopted, the chamfered portion of two or three steps can be set at an optimum angle, and it becomes easy to ensure the breaking strength of the band body. As a result, even if the lever is repeatedly folded, it is possible to more reliably prevent the band body from breaking near the fulcrum side portion of the end of the lever.
 本発明によれば、レバーの折り返し時、バンド本体の当接部分に発生する局部的な応力集中を緩和することができる。この局部的な応力集中の緩和により、レバーの折り返しを繰り返しても、バンド本体の破断強度を確保することができ、レバーの端部の支点側部位近傍でバンド本体が破断することを防止できるので、等速自在継手の評価テストを行う上で、バンドの再利用が可能となる。また、複数段の面取り部を簡便な手段で形成することができるので、バレル加工などに比べてブーツバンドのコスト低減が図れる。その結果、信頼性が高く長寿命で安価なブーツバンドを提供することができる。 According to the present invention, it is possible to alleviate local stress concentration generated at the contact portion of the band body when the lever is folded back. By relaxing the local stress concentration, it is possible to ensure the breaking strength of the band body even when the lever is repeatedly folded, and to prevent the band body from breaking near the fulcrum side part at the end of the lever. In the evaluation test of the constant velocity universal joint, the band can be reused. In addition, since a plurality of chamfered portions can be formed by simple means, the cost of the boot band can be reduced compared to barrel processing or the like. As a result, it is possible to provide a boot band that is highly reliable, has a long life, and is inexpensive.
本発明の実施形態で、ブーツバンドのレバーを折り返す前の状態を示す正面図である。In embodiment of this invention, it is a front view which shows the state before turning back the lever of a boot band. ブーツバンドのレバーを折り返した後の状態を示す正面図である。It is a front view which shows the state after folding the lever of a boot band. 本発明の実施品1で、レバーの端部の支点側部位を示す斜視図である。FIG. 3 is a perspective view showing a fulcrum side portion of the end portion of the lever in the embodiment product 1 of the present invention. 本発明の実施品1で、ブーツバンドのレバーを折り返した状態を示す要部拡大断面図である。It is principal part expanded sectional drawing which shows the state which turned back the lever of the boot band in the implementation goods 1 of this invention. 本発明の実施品2で、レバーの端部の支点側部位を示す斜視図である。FIG. 6 is a perspective view showing a fulcrum side portion of the end of the lever in the embodiment product 2 of the present invention. 本発明の実施品2で、ブーツバンドのレバーを折り返した状態を示す要部拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a main part showing a state in which the lever of the boot band is folded back in the embodiment product 2 of the present invention. 本発明の実施品と比較するための比較品で、レバーの端部の支点側部位を示す斜視図である。It is a comparison product for comparing with the implementation product of the present invention, and is a perspective view showing a fulcrum side portion of the end of the lever. 本発明の実施品と比較するための比較品で、ブーツバンドのレバーを折り返した状態を示す要部拡大断面図である。It is a comparison product for comparing with the implementation product of the present invention, and is a principal part enlarged sectional view showing a state where the lever of the boot band is folded back. 本発明の実施品1,2と比較品について、バンド本体が破断するまでのレバーの折り返し回数を示すグラフである。It is a graph which shows the frequency | count of folding | turning of a lever until the band main body fractures | ruptures about the implementation products 1 and 2 of this invention, and a comparison product. 等速自在継手の外側継手部材とシャフトにブーツの端部をブーツバンドで締め付け固定した状態を示す正面図である。It is a front view which shows the state which clamp | tightened and fixed the edge part of the boot to the outer joint member and shaft of the constant velocity universal joint with the boot band. 図7の断面図である。It is sectional drawing of FIG.
 本発明に係るブーツバンドの実施形態を図面に基づいて以下に詳述する。 Embodiments of a boot band according to the present invention will be described in detail below with reference to the drawings.
 以下の実施形態におけるブーツバンドを適用する等速自在継手としては、自動車のドライブシャフトに組み込まれ、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達する構造を備えた固定式等速自在継手の一つであるアンダーカットフリー型等速自在継手を例示する。 As a constant velocity universal joint to which the boot band in the following embodiments is applied, it is incorporated in a drive shaft of an automobile and connects two shafts of a drive side and a driven side, and the two shafts take a working angle and rotate at a constant speed. An undercut-free type constant velocity universal joint which is one of fixed type constant velocity universal joints having a structure for transmitting
 なお、本発明は、ツェッパ型等速自在継手などの他の固定式等速自在継手にも適用可能であり、また、ダブルオフセット型等速自在継手、クロスグルーブ型等速自在継手やトリポード型等速自在継手などの摺動式等速自在継手にも適用可能である。 The present invention can also be applied to other fixed type constant velocity universal joints such as a Rzeppa type constant velocity universal joint, a double offset type constant velocity universal joint, a cross groove type constant velocity universal joint, a tripod type, and the like. The present invention can also be applied to a sliding type constant velocity universal joint such as a speed universal joint.
 図7は、ドライブシャフトの一部を構成するアンダーカットフリー型等速自在継手、シャフト、および等速自在継手とシャフトとの間に装着されたブーツを示す。図8は、図7の断面図である。 FIG. 7 shows an undercut-free constant velocity universal joint constituting a part of the drive shaft, a shaft, and a boot mounted between the constant velocity universal joint and the shaft. FIG. 8 is a cross-sectional view of FIG.
 等速自在継手は、図7および図8に示すように、外側継手部材11、内側継手部材12、ボール13およびケージ14で主要部が構成されている。 As shown in FIGS. 7 and 8, the constant velocity universal joint includes an outer joint member 11, an inner joint member 12, a ball 13, and a cage 14.
 外側継手部材11は、軸方向に延びる円弧状トラック溝15が球面状内周面16の複数箇所に円周方向等間隔で形成されている。内側継手部材12は、外側継手部材11のトラック溝15と対をなして円弧状トラック溝17が球面状外周面18の複数箇所に円周方向等間隔で形成されている。ボール13は、外側継手部材11のトラック溝15と内側継手部材12のトラック溝17との間に介在している。ケージ14は、外側継手部材11の球面状内周面16と内側継手部材12の球面状外周面18との間に配されてボール13を保持する。 In the outer joint member 11, arc-shaped track grooves 15 extending in the axial direction are formed at a plurality of locations on the spherical inner peripheral surface 16 at equal intervals in the circumferential direction. The inner joint member 12 is paired with the track groove 15 of the outer joint member 11, and arc-shaped track grooves 17 are formed at a plurality of locations on the spherical outer peripheral surface 18 at equal intervals in the circumferential direction. The ball 13 is interposed between the track groove 15 of the outer joint member 11 and the track groove 17 of the inner joint member 12. The cage 14 is disposed between the spherical inner peripheral surface 16 of the outer joint member 11 and the spherical outer peripheral surface 18 of the inner joint member 12 to hold the ball 13.
 外側継手部材11のトラック溝15の開口側部分と内側継手部材12のトラック溝17の奥側部分は、継手軸方向に平行なストレート形状とすることにより、作動角の高角化を図っている。内側継手部材12にはシャフト19の一端がスプライン嵌合により連結されている。このシャフト19の他端には、摺動式等速自在継手(図示せず)の内側継手部材がスプライン嵌合により連結されている。 The opening side portion of the track groove 15 of the outer joint member 11 and the back side portion of the track groove 17 of the inner joint member 12 are formed in a straight shape parallel to the joint axial direction to increase the operating angle. One end of a shaft 19 is connected to the inner joint member 12 by spline fitting. An inner joint member of a sliding type constant velocity universal joint (not shown) is connected to the other end of the shaft 19 by spline fitting.
 この等速自在継手は、継手内部に封入された潤滑剤の漏洩を防ぐと共に継手外部からの異物侵入を防止するため、外側継手部材11とシャフト19との間にゴム製または樹脂製の蛇腹状ブーツ20を装着した構造を具備する。外側継手部材11およびブーツ20の内部空間に潤滑剤を封入することにより、外側継手部材11に対してシャフト19が作動角をとりながら回転する動作時において潤滑性を確保するようにしている。 This constant velocity universal joint has a bellows shape made of rubber or resin between the outer joint member 11 and the shaft 19 in order to prevent leakage of the lubricant sealed inside the joint and prevent foreign matter from entering from the outside of the joint. The boot 20 is provided with a structure. By encapsulating a lubricant in the inner space of the outer joint member 11 and the boot 20, lubricity is ensured during the operation in which the shaft 19 rotates with an operating angle with respect to the outer joint member 11.
 ブーツ20は、外側継手部材11の外周面にブーツバンド31により締め付け固定された大径端部21と、シャフト19の外周面にブーツバンド31により締め付け固定された小径端部22と、大径端部21と小径端部22とを繋ぎ、大径端部21から小径端部22へ向けて縮径した伸縮自在な蛇腹部23とで構成されている。ブーツバンド31によりブーツ20の大径端部21および小径端部22を締め付け固定することでシール性を確保するようにしている。 The boot 20 includes a large-diameter end portion 21 fastened and fixed to the outer peripheral surface of the outer joint member 11 by a boot band 31, a small-diameter end portion 22 fastened and fixed to the outer peripheral surface of the shaft 19 by the boot band 31, and a large-diameter end The portion 21 and the small-diameter end portion 22 are connected to each other, and an elastic bellows portion 23 having a diameter reduced from the large-diameter end portion 21 toward the small-diameter end portion 22 is formed. The large-diameter end 21 and the small-diameter end 22 of the boot 20 are fastened and fixed by the boot band 31 so as to ensure sealing performance.
 ブーツ20は、等速自在継手が作動角をとりながら回転する機能を備えていることから、その挙動に追従できる柔軟性を確保するために伸縮自在な蛇腹形状をなすゴム製または樹脂製のものが使用される。ゴム素材としては、表面硬さがHs45~75であるクロロプレンゴムあるいはシリコンゴム等が好適である。また、樹脂素材としては、表面硬さがHD38~55である熱可塑性ポリエステル系エラストマ-または熱可塑性ポリエステル系エラストマ-を含む組成物等が好適である。 Since the constant velocity universal joint has a function of rotating while taking an operating angle, the boot 20 is made of rubber or resin having a telescopic bellows shape to ensure flexibility to follow its behavior. Is used. As the rubber material, chloroprene rubber or silicon rubber having a surface hardness of Hs 45 to 75 is suitable. As the resin material, a thermoplastic polyester elastomer having a surface hardness of HD 38 to 55 or a composition containing a thermoplastic polyester elastomer is suitable.
 前述したブーツ20を外側継手部材11およびシャフト19に締め付け固定する金属製のブーツバンド31は、以下の構造を具備する。図1は、ブーツ20(図7参照)を締め付け固定する前の状態、図2は、ブーツ20(図7参照)を締め付け固定した後の状態を示す。 The metal boot band 31 that fastens and fixes the above-described boot 20 to the outer joint member 11 and the shaft 19 has the following structure. FIG. 1 shows a state before the boot 20 (see FIG. 7) is fastened and fixed, and FIG. 2 shows a state after the boot 20 (see FIG. 7) is fastened and fixed.
 この実施形態のブーツバンド31は、ワンタッチ式と称されるもので、図1に示すように、金属製の帯板状部材32の両端部33,34を接合することによりリング状に成形したバンド本体35と、そのバンド本体35の接合部36に付設され、金属製の短冊状部材37を円弧状に成形したレバー38とで主要部が構成されている。このバンド本体35には、折り返し後のレバー38を固定するための止め部39が設けられている。 The boot band 31 of this embodiment is called a one-touch type. As shown in FIG. 1, a band formed into a ring shape by joining both end portions 33 and 34 of a metal band plate member 32. A main part is composed of a main body 35 and a lever 38 which is attached to a joint portion 36 of the band main body 35 and is formed by forming a metal strip member 37 into an arc shape. The band main body 35 is provided with a stopper 39 for fixing the lever 38 after being folded back.
 バンド本体35は、帯板状部材32の一端部33の内周面と他端部34の内周面とを衝合させて溶接などで固定することにより形成された接合部36を有する。レバー38は、その基端部をバンド本体35の接合部36の外周面に溶接などで固定することによりバンド本体35に取り付けられている。止め部39は、バンド本体35の幅方向両側に径方向外側へ起立するように設けられた一対の舌片40からなる。なお、レバー38は、折り返し動作を必要とすることから、その強度を確保するため、バンド本体35よりも厚板となっている。 The band body 35 has a joint portion 36 formed by abutting the inner peripheral surface of the one end portion 33 of the band plate member 32 and the inner peripheral surface of the other end portion 34 and fixing them by welding or the like. The lever 38 is attached to the band main body 35 by fixing its base end portion to the outer peripheral surface of the joint portion 36 of the band main body 35 by welding or the like. The stopper portion 39 is composed of a pair of tongue pieces 40 provided so as to stand up radially outward on both sides in the width direction of the band main body 35. Since the lever 38 requires a folding operation, the lever 38 is thicker than the band main body 35 in order to ensure its strength.
 以上の構成からなるブーツバンド31の組み付けは、以下の要領でもって行われる。このブーツバンド31の組み付けに先立って、等速自在継手の外側継手部材11の外周面にブーツ20の大径端部21を外嵌すると共に、シャフト19の外周面にブーツ20の小径端部22を外嵌する。この時、ブーツ20の大径端部21および小径端部22の外側にブーツバンド31を配置する。 The assembly of the boot band 31 having the above configuration is performed in the following manner. Prior to the assembly of the boot band 31, the large-diameter end portion 21 of the boot 20 is fitted on the outer peripheral surface of the outer joint member 11 of the constant velocity universal joint, and the small-diameter end portion 22 of the boot 20 is mounted on the outer peripheral surface of the shaft 19. Fit outside. At this time, the boot band 31 is disposed outside the large-diameter end 21 and the small-diameter end 22 of the boot 20.
 この状態で、ブーツバンド31のレバー38の基端部を支点としてレバー38を折り返すことにより、そのレバー38の凹曲面状内周面をバンド本体35の凸曲面状外周面に重ね合わせる。このレバー38のバンド本体35への重ね合わせによりバンド本体35が縮径する。このバンド本体35が縮径したブーツバンド31により、ブーツ20を外側継手部材11の外周面およびシャフト19の外周面に締め付け固定する。 In this state, the lever 38 is folded back with the base end portion of the lever 38 of the boot band 31 as a fulcrum, so that the concave curved inner peripheral surface of the lever 38 is superimposed on the convex curved outer peripheral surface of the band main body 35. The band main body 35 is reduced in diameter by overlapping the lever 38 on the band main body 35. The boot 20 is tightened and fixed to the outer peripheral surface of the outer joint member 11 and the outer peripheral surface of the shaft 19 by the boot band 31 whose band main body 35 has a reduced diameter.
 レバー38の先端部は、バンド本体35の止め部39の舌片40を内側へ折り曲げるように加締めることにより、舌片40で押さえ込まれてバンド本体35に固定される。 The distal end of the lever 38 is pressed by the tongue piece 40 and fixed to the band body 35 by crimping the tongue piece 40 of the stopper 39 of the band body 35 inwardly.
 図3Aに示す実施形態のブーツバンド31では、レバー38の基端部の支点側部位41に、レバー板厚方向に沿う複数段、例えば2段の面取り部42,43を設けている。この実施形態では、面取り部42,43の段数を2段としているが、3段以上とすることも可能である。図4Aに示す実施形態のブーツバンド31では、レバー38の基端部の支点側部位41に、レバー板厚方向に沿う3段の面取り部44~46を設けている。なお、面取り部は、4段以上であってもよく、その段数は任意である。 In the boot band 31 of the embodiment shown in FIG. 3A, a plurality of, for example, two-step chamfered portions 42 and 43 along the lever plate thickness direction are provided in the fulcrum side portion 41 of the base end portion of the lever 38. In this embodiment, the number of steps of the chamfered portions 42 and 43 is two, but can be three or more. In the boot band 31 of the embodiment shown in FIG. 4A, three steps of chamfered portions 44 to 46 along the lever plate thickness direction are provided in the fulcrum side portion 41 of the base end portion of the lever 38. The chamfered portion may have four or more steps, and the number of steps is arbitrary.
 このように、レバー38の基端部の支点側部位41に2段の面取り部42,43あるいは3段の面取り部44~46を設けたことにより、レバー38の基端部を支点として折り返した際に、図3Bあるいは図4Bに示すように、レバー38の基端部に形成された2段の面取り部42,43あるいは3段の面取り部44~46に沿ってバンド本体35が折り曲げられることになる。 Thus, by providing the two-step chamfered portions 42 and 43 or the three-step chamfered portions 44 to 46 at the fulcrum side portion 41 of the base end portion of the lever 38, the base end portion of the lever 38 is folded back as a fulcrum. At this time, as shown in FIG. 3B or 4B, the band main body 35 is bent along the two-step chamfered portions 42 and 43 or the three-step chamfered portions 44 to 46 formed at the base end portion of the lever 38. become.
 この面取り部42,43あるいは面取り部44~46に当接するバンド本体35の当接部分での曲率半径が大きくなることで、2段の面取り部42,43あるいは3段の面取り部44~46により、バンド本体35の当接部分に発生する局部的な応力集中を緩和することができる。 By increasing the radius of curvature at the contact portion of the band main body 35 contacting the chamfered portions 42, 43 or the chamfered portions 44-46, the two-step chamfered portions 42, 43 or the three-step chamfered portions 44-46 are used. The local stress concentration generated at the contact portion of the band main body 35 can be alleviated.
 その結果、等速自在継手の評価テストを行う上でブーツバンド31を再利用する場合、レバー38の折り返しを繰り返しても、バンド本体35の破断強度を確保することができ、レバー38の基端部の支点側部位41近傍でバンド本体35が破断することを防止できる。また、2段の面取り部42,43あるいは3段の面取り部44~46は、切削加工やプレス加工などの簡便な手段によって低コストで形成することができる。 As a result, when the boot band 31 is reused in the evaluation test of the constant velocity universal joint, the breaking strength of the band main body 35 can be secured even if the lever 38 is repeatedly folded, and the base end of the lever 38 can be secured. It is possible to prevent the band main body 35 from being broken near the fulcrum side portion 41 of the portion. Further, the two-step chamfered portions 42 and 43 or the three-step chamfered portions 44 to 46 can be formed at a low cost by a simple means such as cutting or pressing.
 2段の面取り部42,43は、図3Aに示すように、レバー38の端部から1段目の面取り角度αよりも2段目の面取り角度βをバンド本体35の法線方向に対して大きくしている。つまり、1段目の面取り角度αをバンド本体35の法線方向に対して10~45°、好ましくは、20~40°とし、2段目の面取り角度βをバンド本体35の法線方向に対して45~80°、好ましくは、50~70°とする。 As shown in FIG. 3A, the two-step chamfered portions 42 and 43 have a second-step chamfering angle β with respect to the normal direction of the band main body 35 rather than the first-step chamfering angle α from the end of the lever 38. It is getting bigger. That is, the first-stage chamfering angle α is 10 to 45 °, preferably 20 to 40 ° with respect to the normal direction of the band body 35, and the second-stage chamfering angle β is set to the normal direction of the band body 35. The angle is 45 to 80 °, preferably 50 to 70 °.
 この実施形態では、1段目の面取り角度αをバンド本体35の法線方向に対して30°とし、2段目の面取り角度βをバンド本体35の法線方向に対して60°としている。 In this embodiment, the first-stage chamfering angle α is 30 ° with respect to the normal direction of the band main body 35, and the second-stage chamfering angle β is 60 ° with respect to the normal direction of the band main body 35.
 3段の面取り部44~46は、図4Aに示すように、レバー38の端部から1段目の面取り角度αよりも2段目の面取り角度βをバンド本体35の法線方向に対して大きくし、かつ、2段目の面取り角度βよりも3段目の面取り角度γをバンド本体35の法線方向に対して大きくしている。つまり、1段目の面取り角度αをバンド本体35の法線方向に対して10~45°、好ましくは、20~30°とし、2段目の面取り角度βをバンド本体35の法線方向に対して30~60°、好ましくは、40~50°とし、3段目の面取り角度γをバンド本体35の法線方向に対して50~80°、好ましくは、65~75°とする。 As shown in FIG. 4A, the three-stage chamfered portions 44 to 46 have a second-stage chamfering angle β from the end of the lever 38 with respect to the normal direction of the band body 35 rather than the first-stage chamfered angle α. The third chamfer angle γ is larger than the second chamfer angle β with respect to the normal direction of the band main body 35. That is, the first step chamfering angle α is 10 to 45 °, preferably 20 to 30 ° with respect to the normal direction of the band main body 35, and the second step chamfering angle β is set to the normal direction of the band main body 35. The chamfering angle γ at the third step is 50 to 80 °, preferably 65 to 75 ° with respect to the normal direction of the band main body 35, with respect to 30 to 60 °, preferably 40 to 50 °.
 この実施形態では、1段目の面取り角度αをバンド本体35の法線方向に対して30°とし、2段目の面取り角度βをバンド本体35の法線方向に対して50°とし、3段目の面取り角度γをバンド本体35の法線方向に対して70°としている。 In this embodiment, the first step chamfering angle α is 30 ° with respect to the normal direction of the band main body 35, and the second step chamfering angle β is 50 ° with respect to the normal direction of the band main body 35. The chamfer angle γ of the step is set to 70 ° with respect to the normal direction of the band main body 35.
 2段の面取り角度α,βあるいは3段の面取り角度α,β,γを前述の範囲に規定することにより、2段の面取り部42,43あるいは3段の面取り部44~46を最適な角度に設定することができ、バンド本体35の破断強度を確保することが容易となる。その結果、レバー38の基端部の支点側部位41近傍でバンド本体35が破断することをより一層確実に防止できるので、等速自在継手の評価テストを行う上で、バンドの再利用が可能となる。 By setting the two-step chamfering angles α, β or the three-step chamfering angles α, β, γ within the above-mentioned range, the two- step chamfering portions 42, 43 or the three-step chamfering portions 44 to 46 are optimal angles. It becomes easy to secure the breaking strength of the band main body 35. As a result, the band main body 35 can be more reliably prevented from breaking in the vicinity of the fulcrum side portion 41 of the base end portion of the lever 38, so that the band can be reused in the evaluation test of the constant velocity universal joint. It becomes.
 なお、2段の面取り角度α,βあるいは3段の面取り角度α,β,γが前述の範囲を逸脱する場合は、バンド本体35の破断強度を確保することが困難となる。 If the two-step chamfering angles α, β or the three-step chamfering angles α, β, γ deviate from the above range, it is difficult to ensure the breaking strength of the band main body 35.
 2段の面取り部42,43の場合、1段目の面取り角度αが下限値(10°)より小さかったり、2段目の面取り角度βが上限値(80°)より大きかったりすると、面取り効果を発揮させることや面取りを成形することが困難となる。また、1段目の面取り角度αと2段目の面取り角度βとの上下限境界値(45°)がずれると、2段の面取り部42,43での分散効果を均等に得ることが困難となる。 In the case of the two-stage chamfered portions 42 and 43, if the first-stage chamfer angle α is smaller than the lower limit value (10 °) or the second-stage chamfer angle β is larger than the upper limit value (80 °), the chamfering effect is obtained. It becomes difficult to exhibit the chamfering and mold the chamfer. Further, if the upper and lower limit boundary values (45 °) between the first-stage chamfer angle α and the second-stage chamfer angle β are shifted, it is difficult to obtain a uniform dispersion effect at the two- stage chamfers 42 and 43. It becomes.
 3段の面取り部44~46の場合、1段目の面取り角度αが下限値(10°)より小さかったり、3段目の面取り角度γが上限値(80°)より大きかったりすると、面取り効果を発揮させることや面取りを成形することが困難となる。また、1段目の面取り角度αと2段目の面取り角度βとの上下限境界値(45°,30°)、および2段目の面取り角度βと3段目の面取り角度γとの上下限境界値(60°,50°)がずれると、3段の面取り部44~46での分散効果を均等に得ることが困難となる。 In the case of the three-stage chamfered portions 44 to 46, if the first-stage chamfer angle α is smaller than the lower limit value (10 °) or the third-stage chamfer angle γ is larger than the upper limit value (80 °), the chamfering effect is obtained. It becomes difficult to exhibit the chamfering and mold the chamfer. Also, the upper and lower boundary values (45 °, 30 °) between the first step chamfer angle α and the second step chamfer angle β, and the second step chamfer angle β and the third step chamfer angle γ If the lower limit boundary values (60 °, 50 °) are deviated, it is difficult to obtain a uniform dispersion effect in the three-stage chamfered portions 44 to 46.
 本出願人は、図3Aおよび図3Bに示すように、レバー38の基端部の支点側部位41に2段の面取り部42,43を設けたブーツバンド31(本発明の実施品1)と、図4Aおよび図4Bに示すように、レバー38の基端部の支点側部位41に3段の面取り部44~46を設けたブーツバンド31(本発明の実施品2)と、図5Aおよび図5Bに示すように、レバー138の基端部の支点側部位141に面取りなしでエッジ部144を設けたブーツバンド131(比較品)とを比較する試験を行った。 As shown in FIGS. 3A and 3B, the applicant of the present invention has a boot band 31 (implemented product 1 of the present invention) in which two steps of chamfered portions 42 and 43 are provided at a fulcrum side portion 41 at the base end of the lever 38. 4A and 4B, a boot band 31 (a product 2 according to the present invention) in which three steps of chamfered portions 44 to 46 are provided in the fulcrum side portion 41 of the base end portion of the lever 38, and FIG. As shown in FIG. 5B, a test was performed to compare with a boot band 131 (comparative product) in which an edge portion 144 is provided without chamfering at a fulcrum side portion 141 of the base end portion of the lever 138.
 その試験では、実施品1,2と比較品とについて、レバー38,138の折り返しにより、レバー38,138の基端部の支点側部位41,141近傍でバンド本体35,135が破断するまでの繰り返し回数を検証した。なお、この検証試験は、4個の実施品1,2と4個の比較品について行った。 In the test, the band main bodies 35 and 135 were broken in the vicinity of the fulcrum side portions 41 and 141 of the base end portions of the levers 38 and 138 by folding the levers 38 and 138 for the products 1 and 2 and the comparative products. The number of iterations was verified. In addition, this verification test was done about four implementation products 1 and 2 and four comparison products.
 その結果、図6に示すように、4個の比較品では、バンド本体135が破断するまでの繰り返し回数が3~4回であった。これに対して、4個の実施品1,2では、バンド本体35が破断するまでの繰り返し回数が6~7回であった。 As a result, as shown in FIG. 6, in the four comparative products, the number of repetitions until the band main body 135 broke was 3 to 4 times. On the other hand, in the four working products 1 and 2, the number of repetitions until the band body 35 broke was 6 to 7 times.
 実施品1,2(図3Bおよび図4B参照)では、レバー38の基端部を支点として折り返した際に、2段の面取り部42,43あるいは3段の面取り部44~46に当接するバンド本体35の当接部分での曲率半径が、比較品(図4B参照)においてエッジ部144に当接するバンド本体135の当接部分での曲率半径よりも大きくなる。このことから、実施品1,2では、バンド本体35の当接部分に発生する局部的な応力集中を緩和することができる。 In the working products 1 and 2 (see FIG. 3B and FIG. 4B), the band that contacts the two-step chamfered portions 42 and 43 or the three-step chamfered portions 44 to 46 when the base end portion of the lever 38 is folded back as a fulcrum. The radius of curvature at the contact portion of the main body 35 is larger than the radius of curvature at the contact portion of the band main body 135 that contacts the edge portion 144 in the comparative product (see FIG. 4B). Thus, in the products 1 and 2, local stress concentration generated at the contact portion of the band main body 35 can be reduced.
 このように、バンド本体35の当接部分に発生する局部的な応力集中を緩和することができる実施品1,2では、比較品の2倍程度のレバー折り返しが可能である。これにより、実施品1,2では、レバー38の折り返し時、レバー38の基端部の支点側部位41近傍でバンド本体35が破断することを防止できることが明らかとなった。 As described above, the working products 1 and 2 that can alleviate the local stress concentration generated in the contact portion of the band main body 35 can be folded back twice as much as the comparative product. As a result, it has been clarified that in the products 1 and 2, the band main body 35 can be prevented from being broken in the vicinity of the fulcrum side portion 41 of the base end portion of the lever 38 when the lever 38 is folded back.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. The equivalent meanings recited in the claims, and all modifications within the scope.

Claims (5)

  1.  帯板状部材の両端部の内周面同士を重ね合わせるように接合することにより前記帯板状部材をリング状に成形したバンド本体と、前記バンド本体の接合部に付設され、短冊状部材を円弧状に成形したレバーとを備え、前記レバーの端部を支点にして折り返してレバーを前記バンド本体に重ね合わせることによりバンド本体を縮径させ、前記バンド本体の内側に配置された等速自在継手用ブーツを締め付けるブーツバンドであって、
     前記レバーの端部の支点側部位に、レバー板厚方向に沿う複数段の面取り部を設けたことを特徴とするブーツバンド。
    A band body formed by forming the band plate-shaped member into a ring shape by joining the inner peripheral surfaces of both end portions of the band plate-shaped member, and a strip-shaped member attached to the joint portion of the band body. A lever formed in a circular arc shape, the band main body is reduced in diameter by folding the lever with the end of the lever as a fulcrum, and overlapping the lever on the band main body. A boot band for tightening a joint boot,
    A boot band comprising a plurality of chamfered portions along a lever plate thickness direction at a fulcrum side portion of an end portion of the lever.
  2.  前記複数段の面取り部は、前記レバーの端部から1段目の面取り角度よりも2段目の面取り角度をバンド本体の法線方向に対して大きくした2段の面取り部とした請求項1に記載のブーツバンド。 The multi-step chamfered portion is a two-step chamfered portion in which the chamfer angle at the second step is larger than the chamfer angle at the first step from the end of the lever with respect to the normal direction of the band body. The boot band as described in.
  3.  前記2段の面取り部は、1段目の面取り角度がバンド本体の法線方向に対して10~45°とし、2段目の面取り角度がバンド本体の法線方向に対して45~80°とした請求項2に記載のブーツバンド。 The two-step chamfered portion has a first-step chamfering angle of 10 to 45 ° with respect to the normal direction of the band body, and a second-step chamfering angle of 45 to 80 ° with respect to the normal direction of the band body. The boot band according to claim 2.
  4.  前記複数段の面取り部は、前記レバーの端部から1段目の面取り角度よりも2段目の面取り角度をバンド本体の法線方向に対して大きくし、かつ、2段目の面取り角度よりも3段目の面取り角度をバンド本体の法線方向に対して大きくした3段の面取り部とした請求項1に記載のブーツバンド。 The plurality of chamfered portions have a second chamfer angle larger than the first chamfer angle from the end of the lever with respect to the normal direction of the band body, and the second chamfer angle The boot band according to claim 1, wherein the chamfered portion is a three-stage chamfered portion in which the chamfer angle of the third stage is larger than the normal direction of the band body.
  5.  前記3段の面取り部は、1段目の面取り角度がバンド本体の法線方向に対して10~45°とし、2段目の面取り角度がバンド本体の法線方向に対して30~60°とし、3段目の面取り角度がバンド本体の法線方向に対して50~80°とした請求項4に記載のブーツバンド。 The three-step chamfered portion has a first-step chamfering angle of 10 to 45 ° with respect to the normal direction of the band body, and a second-step chamfering angle of 30 to 60 ° with respect to the normal direction of the band body. The boot band according to claim 4, wherein the chamfer angle at the third stage is 50 to 80 ° with respect to the normal direction of the band body.
PCT/JP2016/075363 2015-09-18 2016-08-30 Boot band WO2017047377A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680046251.0A CN107850096B (en) 2015-09-18 2016-08-30 Protective cover belt
EP16846248.9A EP3351808B1 (en) 2015-09-18 2016-08-30 Boot band
US15/752,026 US10731681B2 (en) 2015-09-18 2016-08-30 Boot band

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015185036 2015-09-18
JP2015-185036 2015-09-18
JP2015251981A JP6576822B2 (en) 2015-09-18 2015-12-24 Boots band
JP2015-251981 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017047377A1 true WO2017047377A1 (en) 2017-03-23

Family

ID=58288862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075363 WO2017047377A1 (en) 2015-09-18 2016-08-30 Boot band

Country Status (1)

Country Link
WO (1) WO2017047377A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026108A (en) * 1996-07-12 1998-01-27 Mihama Seisakusho:Kk Fastening band
JP2011252594A (en) * 2010-06-04 2011-12-15 Ntn Corp Boot band
US20120285001A1 (en) * 2011-05-09 2012-11-15 Swan Christopher A Modular clamping system
JP2013518221A (en) * 2010-01-21 2013-05-20 ノーマ・ユー・エス・ホールディング・リミテッド・ライアビリティ・カンパニー Pipe clamp with gasket
JP2016031116A (en) * 2014-07-29 2016-03-07 株式会社パイオラックス Binding band

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026108A (en) * 1996-07-12 1998-01-27 Mihama Seisakusho:Kk Fastening band
JP2013518221A (en) * 2010-01-21 2013-05-20 ノーマ・ユー・エス・ホールディング・リミテッド・ライアビリティ・カンパニー Pipe clamp with gasket
JP2011252594A (en) * 2010-06-04 2011-12-15 Ntn Corp Boot band
US20120285001A1 (en) * 2011-05-09 2012-11-15 Swan Christopher A Modular clamping system
JP2016031116A (en) * 2014-07-29 2016-03-07 株式会社パイオラックス Binding band

Similar Documents

Publication Publication Date Title
JP5328677B2 (en) Diaphragm coupling
EP2172666B1 (en) Joint for steering
JP2009068510A (en) Constant velocity universal joint
US10422388B2 (en) Propeller shaft
JP6576822B2 (en) Boots band
WO2017047377A1 (en) Boot band
US11761492B2 (en) Boot for constant velocity universal joint
JP2012237333A (en) Boot band
JP2009228727A (en) Dust preventing device for joint
JP4652098B2 (en) Drive shaft
JP2020041661A (en) Boot band
WO2010122893A1 (en) Tripod constant-velocity universal joint and method for producing the same
JP4339144B2 (en) Fixed type constant velocity universal joint
JP2001208215A (en) Constant velocity universal joint
JP2018084306A (en) Seal structure of constant velocity universal joint
JP2013234733A (en) Constant velocity universal joint
US11073179B2 (en) Sliding-type constant velocity universal joint and method for manufacturing same
JP6901241B2 (en) Constant velocity universal joint
JP6253933B2 (en) Constant velocity universal joint
JP2008045696A (en) Boots fixing structure
JP2017082911A (en) Constant velocity universal joint
JP2014137069A (en) Boot band
JP2021008918A (en) Boot band and boot fitting structure
JP2019138463A (en) Boot band
JP2010261532A (en) Constant velocity universal coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15752026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846248

Country of ref document: EP