WO2017046952A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2017046952A1
WO2017046952A1 PCT/JP2015/076732 JP2015076732W WO2017046952A1 WO 2017046952 A1 WO2017046952 A1 WO 2017046952A1 JP 2015076732 W JP2015076732 W JP 2015076732W WO 2017046952 A1 WO2017046952 A1 WO 2017046952A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
coil
rotor
core
stator core
Prior art date
Application number
PCT/JP2015/076732
Other languages
French (fr)
Japanese (ja)
Inventor
昭仁 豊田
真一郎 向
広一 福村
宏之 前澤
大戸 基道
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2015/076732 priority Critical patent/WO2017046952A1/en
Priority to JP2016052777A priority patent/JP6428684B2/en
Priority to CN201610154199.2A priority patent/CN106549515B/en
Publication of WO2017046952A1 publication Critical patent/WO2017046952A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation

Definitions

  • This disclosure relates to a rotating electrical machine.
  • Patent Document 1 discloses a rotating electrical machine that includes a stator that generates a rotating magnetic field, and a rotor that is arranged on the inner peripheral side of the stator and rotates according to the rotating magnetic field.
  • the rotor has a plurality of permanent magnets arranged in the rotation direction of the rotor, and a rotor core interposed between the permanent magnets.
  • This disclosure aims to provide a rotating electric machine with higher output.
  • a rotating electrical machine includes a stator that generates a rotating magnetic field, and a rotor that is arranged on an inner peripheral side of the stator and rotates according to the rotating magnetic field, and the stator includes a stator core that includes a slot; A coil disposed in the slot, the coil having a molding surface that follows the surface of the stator core, and at least one of the stator core surface and the coil molding surface facing each other from the other of the surface and the molding surface The receding surface which goes away is partially formed.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is sectional drawing in the cross section perpendicular
  • FIG. 3 is a cross-sectional view of the rotor taken along line VIII-VIII in FIG. 2.
  • FIG. 3 is an end view of the rotor taken along line IX-IX in FIG. 2.
  • It is sectional drawing of the rotary electric machine in alignment with a central axis which shows another example of arrangement
  • the motor (rotating electric machine) 1 is, for example, a synchronous motor with a built-in permanent magnet.
  • the motor 1 can be used as a power source of an electric device, for example.
  • the motor 1 includes a motor case 10, a stator 20, and a rotor 30.
  • the motor case 10 houses the stator 20 and the rotor 30.
  • the motor case 10 includes a cylindrical frame 11, and a first bracket 12 and a second bracket 13 that close both ends of the frame 11.
  • the first bracket 12 is attached to a motor mount to be driven.
  • the stator 20 generates a rotating magnetic field.
  • the stator 20 includes, for example, a plurality of coils 21 and a stator core 24.
  • Stator core 24 includes a yoke 24a and a plurality of teeth 24b.
  • the yoke 24a is annular, and is fixed to the inner surface of the frame 11 with its center axis Ax1 being along the center axis of the frame 11.
  • the plurality of teeth 24b are disposed so as to surround the central axis Ax1 of the yoke 24a, and project from the inner peripheral surface of the yoke 24a toward the central axis Ax1.
  • the yoke 24a and the teeth 24b may be a laminate of electromagnetic steel plates or may be a compression-molded soft magnetic composite material (SMC).
  • the stator core 24 may be divided into a plurality of blocks 25 surrounding the central axis Ax1, and the teeth 24b may be provided for each block 25. Each of the teeth 24 b may be located at the center of the block 25 in the circumferential direction of the stator core 24.
  • the plurality of coils 21 are respectively attached to the plurality of teeth 24b.
  • the strands of the coil 21 are accommodated between the adjacent teeth 24b in a state of surrounding the teeth 24b. That is, between the teeth 24b is a slot 26 for accommodating the coil 21, and the coil 21 is wound around the tooth 24b.
  • the stator core 24 includes the slot 26, and the coil 21 is disposed in the slot 26.
  • the coil 21 may be integrated with the stator core 24 by molding using a resin material.
  • Driving power (for example, three-phase AC power) is supplied to the plurality of coils 21 via the connection part 22.
  • the plurality of coils 21 generate a rotating magnetic field around the central axis Ax1 according to the supply of driving power.
  • the connection part 22 is provided between the coil 21 and the 2nd bracket 13, for example.
  • the stator 20 may further include an insulator 27.
  • the insulator 27 has electrical insulation and is interposed between the stator core 24 and the coil 21.
  • the insulator 27 is, for example, a resinous thin member.
  • the insulator 27 includes a cylindrical portion 27a mounted around the teeth 24b, and a flange portion 27b projecting from the end of the cylindrical portion 27a to the outer peripheral side on the yoke 24a side.
  • the shape of the insulator 27 can be appropriately changed according to the shape of the stator core 24. Further, the thickness and material of the insulator 27 can be appropriately set according to the electrical insulation performance to be secured between the coil 21 and the stator core 24.
  • the insulator 27 may be integrated with the coil 21 and the stator core 24 by molding using, for example, a resin material.
  • the coil 21 may have a molding surface 21 a that follows the surface 24 c of the stator core 24. As shown in FIG. 4, the coil 21 may further include a molding surface 21 b that follows the inner surface (the surface on the second bracket 13 side) 12 a of the first bracket 12.
  • the molding surfaces 21a and 21b are formed by press-molding the coil 21, for example.
  • the coil 21 is press-molded by compressing a coil 21 formed by winding an element wire 51 with a molding die (for example, a die) 50 as indicated by an arrow A. It is formed by pressing the inner surface 50 a against the outer surface of the coil 21.
  • the molding surfaces 21a and 21b which respectively follow the said surface 24c and the inner surface 12a are formed by making the inner surface shape of the shaping
  • the gap between the coil 21 and the stator core 24 can be reduced, and the cross-sectional area of the coil 21 can be enlarged within a limited space.
  • the molding surface 21 b on the coil 21 the gap between the coil 21 and the first bracket 12 can be reduced, and the cross-sectional area of the coil 21 can be further enlarged.
  • the wire 51 is thickened without changing the number of turns of the coil 21, and heat generation due to the electric resistance of the wire 51 is suppressed. Temperature rise can be suppressed.
  • the gap between the coil 21 and the stator core 24 and reducing the gap between the coil 21 and the first bracket 12 an improvement in heat dissipation from the coil 21 is also expected. Thereby, the temperature rise of the coil 21 can further be suppressed.
  • the input current to the coil 21 can be increased without increasing the motor 1 and the output of the motor 1 can be improved.
  • At least one of the surface 24c of the stator core 24 and the molding surface 21a of the coil 21 may be partially formed with a receding surface 23 away from the other of the surface 24c and the molding surface 21a.
  • the receding surface 23 may be formed on the molding surface 21a.
  • the receding surface 23 is formed so as to be away from the surface 24 c of the stator core 24.
  • the receding surface 23 of the molding surface 21a can be formed by the press molding described above.
  • the receding surface 23 may be provided on the surface 24 c of the stator core 24.
  • the receding surface 23 is provided so as to be away from the molding surface 21 a of the coil 21.
  • the case where the receding surface 23 is formed in the molding surface 21a is demonstrated in detail.
  • the receding surface 23 may be provided at a position corresponding to the edge of the insulator 27.
  • the receding surface 23 may be provided at a position corresponding to at least a part of the peripheral edge portion 27c at the tip (end on the central axis Ax1 side) of the cylindrical portion 27a.
  • the position corresponding to the peripheral part 27c means the position where the space between the receding surface 23 and the insulator 27 is formed in the peripheral part 27c. The same applies to the following.
  • the receding surface 23 may be provided at a position corresponding to at least a part of the peripheral edge portion 27d of the flange portion 27b.
  • the receding surface 23 may extend along the central axis Ax1.
  • the receding surface 23 may be provided in a portion along the central axis Ax1 in the peripheral portions 27c and 27d. As shown in FIG.3 and FIG.4, the receding surface 23 may be provided over the perimeter of the peripheral parts 27c and 27d.
  • the space S formed between the receding surface 23 and the surface 24c of the stator core 24 may be filled with resin. That is, the stator 20 may further include a resin portion 28 formed between the stator core 24 and the coil 21 at a position corresponding to the receding surface 23. This resin may be the resin for molding described above.
  • the space S may be a cavity that is not filled with resin.
  • the size of the space S between the receding surface 23 and the stator core 24 is preferably sufficiently smaller than the cross-sectional area of the coil 21 in the direction perpendicular to the central axis Ax1.
  • the size of the space S is determined according to the following two conditions, for example.
  • the first condition is that the creepage distance between the coil 21 and the stator core 24 can be secured to a degree sufficient to maintain the electrical insulation between the coil 21 and the stator core 24.
  • the second condition is that the space S can be filled with resin in the molding.
  • FIG. 7 is a perspective view of the rotor 30.
  • the rotor 30 is disposed on the inner peripheral side of the stator 20 and rotates according to a rotating magnetic field generated by the stator 20.
  • the rotor 30 includes a shaft 31 extending along the central axis Ax1, a plurality (ten in this embodiment) of permanent magnets 35, a rotor core 36, and a plate 38.
  • the shaft 31 is disposed along the central axis Ax1 of the stator 20.
  • the shaft 31 is rotatably held around the central axis Ax1 by the first bearing 14 provided on the first bracket 12 and the second bearing 15 provided on the second bracket 13.
  • the rotor 30 is rotatable around the central axis Ax1. That is, the central axis Ax1 is the rotation axis of the rotor 30.
  • the first bearing 14 and the second bearing 15 include a rolling bearing and a sliding bearing.
  • the one end 31 a of the shaft 31 penetrates the first bracket 12.
  • the one end 31 a functions as an output shaft of the motor 1.
  • the other end 31 b of the shaft 31 passes through the second bracket 13.
  • the other end 31b can be used for detecting a rotation angle or the like.
  • the other end 31b may be connected to a rotary shaft of a rotary encoder 41 provided outside the second bracket 13 (on the opposite side of the first bracket 12).
  • the plurality of permanent magnets 35 are arranged on the outer periphery of the shaft 31 so as to be aligned in the rotational direction of the rotor 30. In other words, the plurality of permanent magnets 35 are arranged so as to surround the shaft 31.
  • the permanent magnets 35 each have a flat plate shape extending along the central axis Ax1, and are arranged radially when viewed from the extended line of the central axis Ax1.
  • the permanent magnet 35 is arranged so that its magnetization direction is along the rotation direction of the rotor 30. That is, the N pole and S pole of the permanent magnet 35 are arranged along the rotation direction of the rotor 30. Further, the magnetization directions of the permanent magnets 35 adjacent to each other in the rotation direction of the rotor 30 are opposite to each other. That is, between the adjacent permanent magnets 35, the N poles or the S poles face each other.
  • the rotor core 36 is interposed between the permanent magnets 35.
  • the rotor core 36 is fixed to the shaft 31 and guides the magnetic flux of the permanent magnet 35 to the rotor core 36 side.
  • the rotor core 36 may include a plurality of (10 in this embodiment) core blocks 37 that are alternately arranged with the permanent magnets 35 in the rotation direction of the rotor 30.
  • the plurality of core blocks 37 may be separated from each other, and may be fixed to the outer periphery of the shaft 31.
  • the permanent magnet 35 and the rotor core 36 form a field in which magnetic poles (N poles) that emit magnetic flux to the stator 20 side and magnetic poles (S pole) that receive magnetic flux from the stator 20 side are alternately arranged. .
  • the rotor core 36 is made of a magnetic material such as a soft magnetic material.
  • the rotor core 36 may be a laminated body of electromagnetic steel plates.
  • the rotor core 36 may be configured by stacking electromagnetic steel plates in a direction along the central axis Ax1 and integrating them by caulking in the caulking portion 36a (see FIG. 8).
  • the method for fixing the electromagnetic steel sheets is not limited to caulking.
  • the electromagnetic steel plates may be fixed to each other by passing a pin along the central axis Ax1 through each electromagnetic steel plate.
  • each of the core blocks 37 is configured, for example, by stacking sector-shaped electromagnetic steel plates in a direction along the central axis Ax1.
  • the rotor core 36 is configured not to hang on the outer periphery of the permanent magnet 35 (side surface 35a on the stator 20 side). In other words, the rotor core 36 is configured so as not to overlap the permanent magnet 35 in the radial direction of the rotor 30 on the outer peripheral side of the permanent magnet 35.
  • the rotor core 36 opens toward the stator 20 at an interval equal to or greater than the thickness of the permanent magnet 35 in the rotation direction of the rotor 30. That is, the space between the core blocks 37 is open to the stator 20 side at an interval equal to or greater than the thickness of the permanent magnet 35 in the rotation direction of the rotor 30.
  • the rotor core 36 may be hooked on a part of the side surface 35a of the permanent magnet 35 on the stator 20 side, and only a part of the side surface 35a may be exposed on the stator 20 side.
  • the rotor core 36 may be configured not to be applied to the inner periphery (side surface 35b on the central axis Ax1 side) of the permanent magnet 35.
  • the rotor core 36 may be configured so as not to overlap the permanent magnet 35 in the radial direction of the rotor 30 on the inner peripheral side of the permanent magnet 35.
  • the rotor core 36 opens to the shaft 31 side at equal intervals or more with respect to the thickness of the permanent magnet 35 in the rotation direction of the rotor 30. That is, the space between the core blocks 37 is open toward the shaft 31 at an interval equal to or greater than the thickness of the permanent magnet 35 in the rotation direction of the rotor 30.
  • the rotor core 36 may be hooked on a part of the side surface 35b on the central axis Ax1 side of the permanent magnet 35, and only a part of the side surface 35b may be exposed on the central axis Ax1 side.
  • the rotor core 36 is divided into a plurality of core blocks 37, it is possible to easily configure a state in which the rotor core 36 does not reach both the outer periphery and the inner periphery of the permanent magnet 35.
  • At least a portion 31 c of the shaft 31 fixed to the rotor core 36 may be made of a low magnetic material having a lower magnetic permeability than the magnetic permeability of the rotor core 36.
  • the relative magnetic permeability of the low magnetic material is, for example, 500 or less, preferably 100 or less, and more preferably 50 or less.
  • Examples of the low magnetic material include a nonmagnetic stainless material.
  • the portion 31c is referred to as a “low magnetic portion 31c”.
  • the low magnetic portion 31c may have at least one convex portion 31d fitted into the rotor core 36.
  • the rotor core 36 is provided with a concave portion 36b having a shape corresponding to the convex portion 31d, and the convex portion 31d is fitted into the concave portion 36b.
  • the convex portion 31d extends, for example, along the central axis Ax1.
  • the convex portion 31d may be disposed between the adjacent permanent magnets 35.
  • the convex portion 31d may have a shape that expands toward the outer peripheral side.
  • the low magnetic portion 31 c may have a plurality of convex portions 31 d arranged alternately with the permanent magnet 35 in the rotation direction of the rotor 30.
  • the shaft 31 having the convex portion 31d is synonymous with the shaft 31 having the concave portion 31e.
  • the portions other than the low magnetic portion 31 c of the shaft 31 may be made of the above-described low magnetic material, or may be made of the same soft magnetic material as the rotor core 36.
  • the shaft 31 may be divided into a shaft body 32 and a low magnetic pipe 33 attached to the outer periphery of the shaft body 32.
  • the shaft body 32 and the low magnetic pipe 33 are fixed to each other, for example, by shrink fitting or press fitting.
  • the constituent material of the shaft body 32 can be appropriately selected from the viewpoint of strength and the like.
  • the low magnetic pipe 33 is made of the above-described low magnetic material, and includes the low magnetic portion 31c on the outer periphery thereof. That is, the rotor core 36 is fixed to the outer periphery of the low magnetic pipe 33.
  • the plate 38 is disposed so as to overlap the rotor core 36 along the central axis Ax1. As shown in FIGS. 2, 7, and 9, the plate 38 is configured to be engaged with the outer periphery of the permanent magnet 35 (the side surface 35 a on the stator 20 side). With this configuration, the plate 38 restricts the movement of the permanent magnet 35 in the radial direction around the central axis Ax1, and fixes the permanent magnet 35.
  • the plate 38 may be configured to be applied to the inner periphery (side surface 35b on the side of the central axis Ax1) of the permanent magnet 35.
  • the plate 38 has a circular outer shape concentric with the shaft 31.
  • the plate 38 has a hole 38a at the center thereof, and further includes a plurality of holes 38b surrounding the hole 38a.
  • the shaft 31 is passed through the hole 38a, and the plurality of permanent magnets 35 are passed through the plurality of holes 38b.
  • the outer diameter of the plate 38 may be equal to the outer diameter of the rotor core 36. Accordingly, the outer periphery of the permanent magnet 35 may be positioned closer to the central axis Ax1 than the outer periphery of the rotor core 36.
  • the inner diameter of the plate 38 may be equal to the inner diameter of the rotor core 36. Accordingly, the inner periphery of the permanent magnet 35 may be located closer to the stator 20 than the outer periphery of the rotor core 36. That is, the inner periphery of the permanent magnet 35 may be separated from the outer periphery of the shaft 31.
  • the rotor 30 may have a plurality of plates 38.
  • the plurality of plates 38 may be arranged so as to sandwich the rotor core 36 in the direction in which the central axis Ax1 extends.
  • the plurality of plates 38 may include two plates 38 disposed at both ends of the rotor core 36 in the direction in which the central axis Ax1 extends.
  • the plate 38 may be disposed at a position that does not overlap the teeth 24b in the direction along the central axis Ax1 (see FIG. 2). Note that the rotor 30 does not necessarily have a plurality of plates 38.
  • the plate 38 may be disposed at any position between both ends of the rotor core 36 instead of both ends of the rotor core 36 in the direction in which the central axis Ax1 extends.
  • the number of plates 38 may be one or plural.
  • three plates 38 may be provided at both ends and the center of the rotor core 36 in the direction along the central axis Ax ⁇ b> 1.
  • the material constituting the plate 38 may have a lower magnetic permeability than the material constituting the rotor core 36.
  • the plate 38 may be made of the above-described low magnetic material.
  • the convex portion 31 d may be fitted into the plate 38 in addition to the rotor core 36.
  • the plate 38 is provided with a concave portion 38c having a shape corresponding to the convex portion 31d, and the convex portion 31d is fitted into the concave portion 38c.
  • the core blocks 37 may be integrated via a plate 38.
  • the plurality of core blocks 37 may be grouped together by being attached to the plate 38.
  • the plate 38 may be fixed to the rotor core 36 by performing a caulking process in the caulking portion 38d corresponding to the caulking portion 36a, for example.
  • the plate 38 may be fixed to the rotor core 36 by allowing the pins to penetrate the plate 38.
  • the magnetic flux which passes along the magnetic path R3 which circulates through the inner peripheral side of the permanent magnet 35 without passing through the stator 20 is reduced.
  • the magnetic flux passing through the magnetic path R3 is further reduced.
  • the motor 1 includes a stator 20 that generates a rotating magnetic field, and a rotor 30 that is arranged on the inner peripheral side of the stator 20 and rotates according to the rotating magnetic field.
  • the stator 20 includes a stator core 24 that includes a slot 26, and a slot 26.
  • the coil 21 has molding surfaces 21a and 21b that follow the surface 24c of the stator core 24, and the surface 24c of the stator core 24 and the molding surfaces 21a and 21b of the coil 21 that face each other. At least one of them is partially formed with a receding surface 23 away from the other of the surfaces 24c and 21a, 21b.
  • the coil 21 is brought close to the stator core 24 by providing the molding surfaces 21 a and 21 b, and the coil 21 and the stator core 24 are separated by providing the receding surface 23 in the portion where the insulation should be strengthened.
  • the cross-sectional area of the coil 21 can be increased while maintaining reliability. Therefore, a large current can be passed through the coil 21.
  • the heat dissipation of the coil 21 is improved. Therefore, a large current can be passed through the coil 21 while suppressing the temperature rise of the coil 21. As a result, the output of the motor 1 can be improved.
  • the stator 20 may further include a resin portion 28 formed between the stator core 24 and the coil 21 at a position corresponding to the receding surface 23.
  • electrical insulation between the stator core 24 and the coil 21 can be enhanced by interposing a resin between the coil 21 and the stator core 24 at a position corresponding to the receding surface 23.
  • the receding surface 23 may be formed on the molding surface 21 a of the coil 21. In this case, the receding surface 23 can be easily formed by the molding die 50 for forming the molding surface 21a by pressing.
  • the stator 20 further includes an insulator 27 that is interposed between the stator core 24 and the coil 21 and has electrical insulation, and the receding surface 23 is provided at a position corresponding to the edges (peripheral portions 27 c and 27 d) of the insulator 27. It may be done. In this case, the distance between the coil 21 and the stator core 24 increases at positions corresponding to the peripheral portions 27c and 27d of the coil 21, the stator core 24, and the insulator 27, and therefore the creepage distance between the coil 21 and the stator core 24 is small. The creepage distance can be sufficiently secured even at the position, and the electrical insulation between the coil 21 and the stator core 24 can be enhanced.
  • the receding surface 23 may extend along the central axis Ax1 of the rotor 30.
  • a resin flow path is formed along the direction of the central axis Ax1 of the rotor 30, it is easy to fill the resin between the coil 21 and the stator core 24 at a position corresponding to the receding surface 23. For this reason, the resin portion 28 is easily formed.
  • the coil 21 and the stator core 24 are integrated by molding, it is easy to form the resin portion with a molding resin.
  • This disclosure can be used for rotating electrical machines.
  • SYMBOLS 1 Motor (rotary electric machine), 20 ... Stator, 21a ... Molding surface, 23 ... Retraction surface, 24 ... Stator core, 24c ... Surface, 26 ... Slot, 27 ... Insulator, 27c, 27d ... Peripheral part (edge part), 28 ... resin part, 30 ... rotor, Ax1 ... center axis (rotary axis).

Abstract

A motor 1 is provided with: a stator 20 that generates a rotating magnetic field; and a rotor 30 that is disposed at the inner circumference side of the stator 20 and that rotates according to the rotating magnetic field. The stator 20 has a stator core 24 including slots 26, and coils 21 disposed in the slots 26. The coils 21 each have a shaped surface 21a conforming to the surface 24c of the stator core 24. On at least one of the surface 24c of the stator core and the shaped surface 21a of the coil, which are opposed to each other, a retracted surface 23 that retracts from the other of the surface 24c and the shaped surface 21a, is partially formed.

Description

回転電機Rotating electric machine
 本開示は、回転電機に関する。 This disclosure relates to a rotating electrical machine.
 特許文献1には、回転磁界を発生させるステータと、ステータの内周側に配置され回転磁界に応じて回転するロータと、を備える回転電機が開示されている。ロータは、ロータの回転方向に並ぶ複数の永久磁石と、永久磁石同士の間に介在するロータコアと、を有している。 Patent Document 1 discloses a rotating electrical machine that includes a stator that generates a rotating magnetic field, and a rotor that is arranged on the inner peripheral side of the stator and rotates according to the rotating magnetic field. The rotor has a plurality of permanent magnets arranged in the rotation direction of the rotor, and a rotor core interposed between the permanent magnets.
特開2013-34325号公報JP 2013-34325 A
 本開示は、より出力の高い回転電機を提供することを目的とする。 This disclosure aims to provide a rotating electric machine with higher output.
 本開示の一実施形態に係る回転電機は、回転磁界を発生させるステータと、ステータの内周側に配置され回転磁界に応じて回転するロータと、を備え、ステータは、スロットを含むステータコアと、スロットに配置されるコイルと、を有し、コイルは、ステータコアの表面に倣う成形面を有し、互いに対向するステータコアの表面及びコイルの成形面の少なくとも一方には、表面及び成形面の他方から遠ざかる後退面が部分的に形成されている。 A rotating electrical machine according to an embodiment of the present disclosure includes a stator that generates a rotating magnetic field, and a rotor that is arranged on an inner peripheral side of the stator and rotates according to the rotating magnetic field, and the stator includes a stator core that includes a slot; A coil disposed in the slot, the coil having a molding surface that follows the surface of the stator core, and at least one of the stator core surface and the coil molding surface facing each other from the other of the surface and the molding surface The receding surface which goes away is partially formed.
 本開示によれば、より出力の高い回転電機を提供することができる。 According to the present disclosure, it is possible to provide a rotating electric machine with higher output.
実施形態に係る回転電機の、中心軸線に垂直な断面における断面図である。It is sectional drawing in the cross section perpendicular | vertical to the central axis of the rotary electric machine which concerns on embodiment. 図1のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. ステータコア及びコイルの例を拡大して示す、中心軸線に垂直な断面における断面図である。It is sectional drawing in the cross section perpendicular | vertical to a central axis which shows the example of a stator core and a coil expanding. ステータコア及びコイルの例を拡大して示す、中心軸線に沿う断面図である。It is sectional drawing which follows the center axis line which expands and shows the example of a stator core and a coil. コイルの製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of a coil. ステータコア及びコイルの別の例を拡大して示す、中心軸線に垂直な断面における断面図である。It is sectional drawing in a cross section perpendicular | vertical to a center axis line which expands and shows another example of a stator core and a coil. ロータの斜視図である。It is a perspective view of a rotor. 図2のVIII-VIII線に沿う、ロータの断面図である。FIG. 3 is a cross-sectional view of the rotor taken along line VIII-VIII in FIG. 2. 図2のIX-IX線に沿う、ロータの端面図である。FIG. 3 is an end view of the rotor taken along line IX-IX in FIG. 2. プレートの配置の別の例を示す、中心軸線に沿う回転電機の断面図である。It is sectional drawing of the rotary electric machine in alignment with a central axis which shows another example of arrangement | positioning of a plate. 回転電機における磁束を模式的に示す図である。It is a figure which shows typically the magnetic flux in a rotary electric machine.
 以下、実施形態について、図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the description, the same elements or elements having the same functions are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態に係るモータ(回転電機)1は、例えば永久磁石内蔵型の同期電動機である。モータ1は、例えば電動装置の動力源として利用可能である。 The motor (rotating electric machine) 1 according to the present embodiment is, for example, a synchronous motor with a built-in permanent magnet. The motor 1 can be used as a power source of an electric device, for example.
 図1及び図2に示されるように、モータ1は、モータケース10と、ステータ20と、ロータ30と、を備える。 As shown in FIGS. 1 and 2, the motor 1 includes a motor case 10, a stator 20, and a rotor 30.
〔モータケース〕
 モータケース10は、ステータ20及びロータ30を収容する。例えば、モータケース10は、筒状のフレーム11と、フレーム11の両端部をそれぞれ塞ぐ第一ブラケット12及び第二ブラケット13と、を有する。第一ブラケット12は、駆動対象のモータマウントに取り付けられる。
[Motor case]
The motor case 10 houses the stator 20 and the rotor 30. For example, the motor case 10 includes a cylindrical frame 11, and a first bracket 12 and a second bracket 13 that close both ends of the frame 11. The first bracket 12 is attached to a motor mount to be driven.
〔ステータ〕
 ステータ20は、回転磁界を発生させる。ステータ20は、例えば複数のコイル21と、ステータコア24と、を有する。
[Stator]
The stator 20 generates a rotating magnetic field. The stator 20 includes, for example, a plurality of coils 21 and a stator core 24.
(ステータコア)
 ステータコア24は、ヨーク24aと、複数のティース24bと、を含む。ヨーク24aは、環状であり、その中心軸線Ax1がフレーム11の中心軸線に沿った状態で、フレーム11の内面に固定される。複数のティース24bは、ヨーク24aの中心軸線Ax1を取り囲むように配置され、それぞれヨーク24aの内周面から中心軸線Ax1側に突出している。ヨーク24a及びティース24bは、電磁鋼板を積層したものであってもよいし、軟磁性複合材料(SMC:Soft Magnetic Composites)を圧縮成形したものであってもよい。
(Stator core)
Stator core 24 includes a yoke 24a and a plurality of teeth 24b. The yoke 24a is annular, and is fixed to the inner surface of the frame 11 with its center axis Ax1 being along the center axis of the frame 11. The plurality of teeth 24b are disposed so as to surround the central axis Ax1 of the yoke 24a, and project from the inner peripheral surface of the yoke 24a toward the central axis Ax1. The yoke 24a and the teeth 24b may be a laminate of electromagnetic steel plates or may be a compression-molded soft magnetic composite material (SMC).
 ステータコア24は、中心軸線Ax1を取り囲む複数のブロック25に分かれていてもよく、ティース24bはブロック25ごとに設けられていてもよい。ステータコア24の周方向において、ティース24bのそれぞれはブロック25の中央部に位置していてもよい。 The stator core 24 may be divided into a plurality of blocks 25 surrounding the central axis Ax1, and the teeth 24b may be provided for each block 25. Each of the teeth 24 b may be located at the center of the block 25 in the circumferential direction of the stator core 24.
(コイル)
 複数のコイル21は、複数のティース24bにそれぞれ装着されている。コイル21の素線は、ティース24bを包囲した状態で、隣り合うティース24b同士の間に収容される。即ち、ティース24b同士の間はコイル21を収容するためのスロット26となり、ティース24bにはコイル21が巻回される。このように、ステータコア24は、スロット26を含んでおり、コイル21は、スロット26に配置される。コイル21は、例えば樹脂材料を用いたモールディングにより、ステータコア24と一体化されていてもよい。
(coil)
The plurality of coils 21 are respectively attached to the plurality of teeth 24b. The strands of the coil 21 are accommodated between the adjacent teeth 24b in a state of surrounding the teeth 24b. That is, between the teeth 24b is a slot 26 for accommodating the coil 21, and the coil 21 is wound around the tooth 24b. As described above, the stator core 24 includes the slot 26, and the coil 21 is disposed in the slot 26. For example, the coil 21 may be integrated with the stator core 24 by molding using a resin material.
 複数のコイル21には、結線部22を介して駆動電力(例えば三相交流電力)が供給される。複数のコイル21は、駆動電力の供給に応じて中心軸線Ax1まわりの回転磁界を発生させる。結線部22は、例えばコイル21と第二ブラケット13との間に設けられる。 Driving power (for example, three-phase AC power) is supplied to the plurality of coils 21 via the connection part 22. The plurality of coils 21 generate a rotating magnetic field around the central axis Ax1 according to the supply of driving power. The connection part 22 is provided between the coil 21 and the 2nd bracket 13, for example.
(インシュレータ)
 図3に示されるように、ステータ20は、インシュレータ27を更に有してもよい。インシュレータ27は電気絶縁性を有し、ステータコア24とコイル21との間に介在する。インシュレータ27は、例えば樹脂性の薄肉部材である。例えばインシュレータ27は、ティース24bの周囲に装着される筒状部27aと、ヨーク24a側において筒状部27aの端部から外周側に張り出したフランジ部27bとを含む。インシュレータ27の形状は、ステータコア24の形状に応じて適宜変更可能である。また、インシュレータ27の厚み及び材質は、コイル21とステータコア24と間において確保すべき電気絶縁性能に応じて適宜設定可能である。インシュレータ27は、例えば樹脂材料を用いたモールディングにより、コイル21及びステータコア24と一体化されていてもよい。
(Insulator)
As shown in FIG. 3, the stator 20 may further include an insulator 27. The insulator 27 has electrical insulation and is interposed between the stator core 24 and the coil 21. The insulator 27 is, for example, a resinous thin member. For example, the insulator 27 includes a cylindrical portion 27a mounted around the teeth 24b, and a flange portion 27b projecting from the end of the cylindrical portion 27a to the outer peripheral side on the yoke 24a side. The shape of the insulator 27 can be appropriately changed according to the shape of the stator core 24. Further, the thickness and material of the insulator 27 can be appropriately set according to the electrical insulation performance to be secured between the coil 21 and the stator core 24. The insulator 27 may be integrated with the coil 21 and the stator core 24 by molding using, for example, a resin material.
(コイルの成形面)
 コイル21は、ステータコア24の表面24cに倣う成形面21aを有してもよい。図4に示されるように、コイル21は、第一ブラケット12の内面(第二ブラケット13側の面)12aに倣う成形面21bを更に有してもよい。
(Coil forming surface)
The coil 21 may have a molding surface 21 a that follows the surface 24 c of the stator core 24. As shown in FIG. 4, the coil 21 may further include a molding surface 21 b that follows the inner surface (the surface on the second bracket 13 side) 12 a of the first bracket 12.
 成形面21a,21bは、例えばコイル21をプレス成形することにより成形される。コイル21のプレス成形は、例えば図5に示されるように、素線51を巻いて形成したコイル21を矢印Aで示されるように成形型(例えば金型)50により圧縮し、成形型50の内面50aをコイル21の外面に押し付けることで形成される。このため、成形型50の内面形状を上記表面24c及び内面12aに一致させておくことで、上記表面24c及び内面12aにそれぞれ倣う成形面21a,21bが形成される。 The molding surfaces 21a and 21b are formed by press-molding the coil 21, for example. For example, as shown in FIG. 5, the coil 21 is press-molded by compressing a coil 21 formed by winding an element wire 51 with a molding die (for example, a die) 50 as indicated by an arrow A. It is formed by pressing the inner surface 50 a against the outer surface of the coil 21. For this reason, the molding surfaces 21a and 21b which respectively follow the said surface 24c and the inner surface 12a are formed by making the inner surface shape of the shaping | molding die 50 correspond with the said surface 24c and the inner surface 12a.
 コイル21に成形面21aを形成することで、コイル21及びステータコア24の間の隙間を削減し、限られたスペース内でコイル21の断面積を拡大できる。コイル21に成形面21bを形成することで、コイル21及び第一ブラケット12の間の隙間も削減し、コイル21の断面積を更に拡大できる。成形面21a,21bを形成する際のプレス成型により、素線51同士が近接し、コイル21の占積率(コイル21の断面において素線51が占める割合)が向上する。コイル21の断面積の拡大及び占積率の向上により、例えば、コイル21の巻き数を変更することなく素線51を太くし、素線51の電気抵抗に起因する発熱を抑制し、コイル21の温度上昇を抑制できる。コイル21及びステータコア24の間の隙間を削減し、コイル21及び第一ブラケット12の間の隙間を削減することにより、コイル21からの放熱性向上も期待される。これにより、コイル21の温度上昇を更に抑制できる。コイル21の温度上昇を抑制することにより、モータ1を肥大化させることなくコイル21に対する入力電流を増やし、モータ1の出力を向上させることが可能となる。 By forming the molding surface 21a on the coil 21, the gap between the coil 21 and the stator core 24 can be reduced, and the cross-sectional area of the coil 21 can be enlarged within a limited space. By forming the molding surface 21 b on the coil 21, the gap between the coil 21 and the first bracket 12 can be reduced, and the cross-sectional area of the coil 21 can be further enlarged. By press molding when forming the molding surfaces 21a and 21b, the strands 51 come close to each other, and the space factor of the coil 21 (the ratio of the strands 51 in the cross section of the coil 21) is improved. By increasing the cross-sectional area of the coil 21 and improving the space factor, for example, the wire 51 is thickened without changing the number of turns of the coil 21, and heat generation due to the electric resistance of the wire 51 is suppressed. Temperature rise can be suppressed. By reducing the gap between the coil 21 and the stator core 24 and reducing the gap between the coil 21 and the first bracket 12, an improvement in heat dissipation from the coil 21 is also expected. Thereby, the temperature rise of the coil 21 can further be suppressed. By suppressing the temperature rise of the coil 21, the input current to the coil 21 can be increased without increasing the motor 1 and the output of the motor 1 can be improved.
 ステータコア24の表面24c及びコイル21の成形面21aの少なくとも一方には、表面24c及び成形面21aの他方から遠ざかる後退面23が部分的に形成されていてもよい。例えば、後退面23は成形面21aに形成されていてもよい。この場合、後退面23はステータコア24の表面24cから遠ざかるように形成される。成形面21aの後退面23は、上述したプレス成型により形成可能である。 At least one of the surface 24c of the stator core 24 and the molding surface 21a of the coil 21 may be partially formed with a receding surface 23 away from the other of the surface 24c and the molding surface 21a. For example, the receding surface 23 may be formed on the molding surface 21a. In this case, the receding surface 23 is formed so as to be away from the surface 24 c of the stator core 24. The receding surface 23 of the molding surface 21a can be formed by the press molding described above.
 図6に示すように、後退面23は、ステータコア24の表面24cに設けられていてもよい。この場合、後退面23は、コイル21の成形面21aから遠ざかるように設けられる。以下では、後退面23が成形面21aに形成される場合について詳細に説明する。 As shown in FIG. 6, the receding surface 23 may be provided on the surface 24 c of the stator core 24. In this case, the receding surface 23 is provided so as to be away from the molding surface 21 a of the coil 21. Below, the case where the receding surface 23 is formed in the molding surface 21a is demonstrated in detail.
 図3及び図4に示すように、後退面23は、インシュレータ27の縁部に対応する位置に設けられていてもよい。例えば、後退面23は、筒状部27aの先端(中心軸線Ax1側の端)の周縁部27cの少なくとも一部に対応する位置に設けられていてもよい。なお、周縁部27cに対応する位置とは、後退面23及びインシュレータ27の間の空間が周縁部27cに形成される位置を意味する。以下においても同様である。後退面23は、フランジ部27bの周縁部27dの少なくとも一部に対応する位置に設けられていてもよい。 3 and 4, the receding surface 23 may be provided at a position corresponding to the edge of the insulator 27. For example, the receding surface 23 may be provided at a position corresponding to at least a part of the peripheral edge portion 27c at the tip (end on the central axis Ax1 side) of the cylindrical portion 27a. In addition, the position corresponding to the peripheral part 27c means the position where the space between the receding surface 23 and the insulator 27 is formed in the peripheral part 27c. The same applies to the following. The receding surface 23 may be provided at a position corresponding to at least a part of the peripheral edge portion 27d of the flange portion 27b.
 後退面23は、中心軸線Ax1に沿って延びていてもよい。例えば、後退面23は、周縁部27c,27dのうち、中心軸線Ax1に沿う部分に設けられていてもよい。図3及び図4に示すように、後退面23は、周縁部27c,27dの全周に亘って設けられていてもよい。 The receding surface 23 may extend along the central axis Ax1. For example, the receding surface 23 may be provided in a portion along the central axis Ax1 in the peripheral portions 27c and 27d. As shown in FIG.3 and FIG.4, the receding surface 23 may be provided over the perimeter of the peripheral parts 27c and 27d.
 後退面23とステータコア24の表面24cとの間に形成される空間Sには、樹脂が充填されていてもよい。即ち、ステータ20は、後退面23に対応する位置において、ステータコア24及びコイル21の間に形成された樹脂部28を更に有していてもよい。この樹脂は、上述したモールディング用の樹脂であってもよい。なお、空間Sは、樹脂が充填されていない空洞となっていてもよい。 The space S formed between the receding surface 23 and the surface 24c of the stator core 24 may be filled with resin. That is, the stator 20 may further include a resin portion 28 formed between the stator core 24 and the coil 21 at a position corresponding to the receding surface 23. This resin may be the resin for molding described above. The space S may be a cavity that is not filled with resin.
 後退面23とステータコア24の間の空間Sの大きさは、中心軸線Ax1に垂直な方向におけるコイル21の断面積と比較して十分に小さいことが好ましい。この空間Sの大きさは、例えば次の二つの条件に応じて決定される。第一の条件は、コイル21とステータコア24との間の沿面距離が、コイル21とステータコア24との間の電気絶縁性を保つために十分な程度に確保できることである。第二の条件は、上記モールディングにおいて、空間S内に樹脂を充填できることである。 The size of the space S between the receding surface 23 and the stator core 24 is preferably sufficiently smaller than the cross-sectional area of the coil 21 in the direction perpendicular to the central axis Ax1. The size of the space S is determined according to the following two conditions, for example. The first condition is that the creepage distance between the coil 21 and the stator core 24 can be secured to a degree sufficient to maintain the electrical insulation between the coil 21 and the stator core 24. The second condition is that the space S can be filled with resin in the molding.
〔ロータ〕
 図7は、ロータ30の斜視図である。ロータ30は、ステータ20の内周側に配置され、ステータ20により発生する回転磁界に応じて回転する。例えばロータ30は、中心軸線Ax1に沿って延びるシャフト31と、複数(本実施形態では10個)の永久磁石35と、ロータコア36と、プレート38と、を有する。
[Rotor]
FIG. 7 is a perspective view of the rotor 30. The rotor 30 is disposed on the inner peripheral side of the stator 20 and rotates according to a rotating magnetic field generated by the stator 20. For example, the rotor 30 includes a shaft 31 extending along the central axis Ax1, a plurality (ten in this embodiment) of permanent magnets 35, a rotor core 36, and a plate 38.
(シャフト)
 シャフト31は、ステータ20の中心軸線Ax1に沿うように配置されている。シャフト31は、第一ブラケット12に設けられた第一軸受14と、第二ブラケット13に設けられた第二軸受15とにより、中心軸線Ax1まわりに回転自在に保持されている。これにより、ロータ30は、中心軸線Ax1まわりに回転自在となっている。すなわち、中心軸線Ax1がロータ30の回転軸となっている。第一軸受14及び第二軸受15としては、転がり軸受及び滑り軸受等が挙げられる。
(shaft)
The shaft 31 is disposed along the central axis Ax1 of the stator 20. The shaft 31 is rotatably held around the central axis Ax1 by the first bearing 14 provided on the first bracket 12 and the second bearing 15 provided on the second bracket 13. Thereby, the rotor 30 is rotatable around the central axis Ax1. That is, the central axis Ax1 is the rotation axis of the rotor 30. Examples of the first bearing 14 and the second bearing 15 include a rolling bearing and a sliding bearing.
 シャフト31の一端部31aは、第一ブラケット12を貫通している。一端部31aは、モータ1の出力軸として機能する。シャフト31の他端部31bは、第二ブラケット13を貫通している。他端部31bは、回転角度等の検出に利用可能である。具体例として、他端部31bは、第二ブラケット13の外側(第一ブラケット12の逆側)に設けられたロータリーエンコーダ41の回転軸に接続されていてもよい。 The one end 31 a of the shaft 31 penetrates the first bracket 12. The one end 31 a functions as an output shaft of the motor 1. The other end 31 b of the shaft 31 passes through the second bracket 13. The other end 31b can be used for detecting a rotation angle or the like. As a specific example, the other end 31b may be connected to a rotary shaft of a rotary encoder 41 provided outside the second bracket 13 (on the opposite side of the first bracket 12).
(永久磁石及びロータコア)
 複数の永久磁石35は、シャフト31の外周においてロータ30の回転方向に並ぶように配置されている。換言すると、複数の永久磁石35は、シャフト31を取り囲むように配置されている。永久磁石35は、それぞれ中心軸線Ax1に沿って延びた平板形状を有し、中心軸線Ax1の延長線上から見て放射状に配置されている。
(Permanent magnet and rotor core)
The plurality of permanent magnets 35 are arranged on the outer periphery of the shaft 31 so as to be aligned in the rotational direction of the rotor 30. In other words, the plurality of permanent magnets 35 are arranged so as to surround the shaft 31. The permanent magnets 35 each have a flat plate shape extending along the central axis Ax1, and are arranged radially when viewed from the extended line of the central axis Ax1.
 永久磁石35は、その磁化方向がロータ30の回転方向に沿うように配置されている。即ち、永久磁石35のN極及びS極は、ロータ30の回転方向に沿って並んでいる。また、ロータ30の回転方向において隣り合う永久磁石35同士の磁化方向は、互いに逆向きである。即ち、隣り合う永久磁石35同士の間では、N極同士又はS極同士が対向している。 The permanent magnet 35 is arranged so that its magnetization direction is along the rotation direction of the rotor 30. That is, the N pole and S pole of the permanent magnet 35 are arranged along the rotation direction of the rotor 30. Further, the magnetization directions of the permanent magnets 35 adjacent to each other in the rotation direction of the rotor 30 are opposite to each other. That is, between the adjacent permanent magnets 35, the N poles or the S poles face each other.
 ロータコア36は、永久磁石35同士の間に介在する。ロータコア36は、シャフト31に固定され、永久磁石35の磁束をロータコア36側に導く。一例として、ロータコア36は、ロータ30の回転方向において永久磁石35と交互に並ぶ複数(本実施形態では10個)のコアブロック37を有してもよい。複数のコアブロック37は互いに分かれていてもよく、それぞれシャフト31の外周に固定されていてもよい。 The rotor core 36 is interposed between the permanent magnets 35. The rotor core 36 is fixed to the shaft 31 and guides the magnetic flux of the permanent magnet 35 to the rotor core 36 side. As an example, the rotor core 36 may include a plurality of (10 in this embodiment) core blocks 37 that are alternately arranged with the permanent magnets 35 in the rotation direction of the rotor 30. The plurality of core blocks 37 may be separated from each other, and may be fixed to the outer periphery of the shaft 31.
 このような構成により、永久磁石35及びロータコア36は、磁束をステータ20側に出す磁極(N極)と、磁束をステータ20側から受け入れる磁極(S極)とが交互に並ぶ界磁を形成する。 With such a configuration, the permanent magnet 35 and the rotor core 36 form a field in which magnetic poles (N poles) that emit magnetic flux to the stator 20 side and magnetic poles (S pole) that receive magnetic flux from the stator 20 side are alternately arranged. .
 ロータコア36は、例えば軟磁性材料等の磁性材料により構成される。ロータコア36は、電磁鋼板の積層体であってもよい。例えばロータコア36は、電磁鋼板を中心軸線Ax1に沿う方向に積層し、カシメ部36a(図8参照)におけるカシメ加工により一体化することで構成されていてもよい。電磁鋼板同士の固定方法は、カシメ加工に限られない。例えば、中心軸線Ax1に沿うピンを各電磁鋼板に貫通させることで、電磁鋼板同士を固定してもよい。ロータコア36が複数のコアブロック37に分かれている場合、各コアブロック37は、例えば扇形の電磁鋼板を中心軸線Ax1に沿う方向に積層することで構成される。 The rotor core 36 is made of a magnetic material such as a soft magnetic material. The rotor core 36 may be a laminated body of electromagnetic steel plates. For example, the rotor core 36 may be configured by stacking electromagnetic steel plates in a direction along the central axis Ax1 and integrating them by caulking in the caulking portion 36a (see FIG. 8). The method for fixing the electromagnetic steel sheets is not limited to caulking. For example, the electromagnetic steel plates may be fixed to each other by passing a pin along the central axis Ax1 through each electromagnetic steel plate. When the rotor core 36 is divided into a plurality of core blocks 37, each of the core blocks 37 is configured, for example, by stacking sector-shaped electromagnetic steel plates in a direction along the central axis Ax1.
 ロータコア36は、永久磁石35の外周(ステータ20側の側面35a)に掛からないように構成されている。換言すれば、ロータコア36は、永久磁石35の外周側では、ロータ30の径方向において永久磁石35と重ならないように構成されている。例えば、図8に示されるように、ロータコア36は、ロータ30の回転方向における永久磁石35の厚さに対して同等以上の間隔でステータ20側に開口している。すなわち、コアブロック37同士の間は、ロータ30の回転方向における永久磁石35の厚さに対して同等以上の間隔でステータ20側に開口している。これにより、永久磁石35の外周は、ロータコア36により覆われることなくステータ20側に露出している。なお、ロータコア36が永久磁石35のステータ20側の側面35aの一部に掛かり、側面35aの一部のみがステータ20側に露出していてもよい。 The rotor core 36 is configured not to hang on the outer periphery of the permanent magnet 35 (side surface 35a on the stator 20 side). In other words, the rotor core 36 is configured so as not to overlap the permanent magnet 35 in the radial direction of the rotor 30 on the outer peripheral side of the permanent magnet 35. For example, as shown in FIG. 8, the rotor core 36 opens toward the stator 20 at an interval equal to or greater than the thickness of the permanent magnet 35 in the rotation direction of the rotor 30. That is, the space between the core blocks 37 is open to the stator 20 side at an interval equal to or greater than the thickness of the permanent magnet 35 in the rotation direction of the rotor 30. Thereby, the outer periphery of the permanent magnet 35 is exposed to the stator 20 side without being covered by the rotor core 36. The rotor core 36 may be hooked on a part of the side surface 35a of the permanent magnet 35 on the stator 20 side, and only a part of the side surface 35a may be exposed on the stator 20 side.
 ロータコア36は、永久磁石35の内周(中心軸線Ax1側の側面35b)にも掛からないように構成されていてもよい。換言すれば、ロータコア36は、永久磁石35の内周側では、ロータ30の径方向において永久磁石35と重ならないように構成されていてもよい。例えば、ロータコア36は、ロータ30の回転方向における永久磁石35の厚さに対して同等以上の間隔でシャフト31側に開口している。すなわち、コアブロック37同士の間は、ロータ30の回転方向における永久磁石35の厚さに対して同等以上の間隔でシャフト31側に開口している。これにより、永久磁石35の内周は、ロータコア36により覆われることなくシャフト31側に露出している。なお、ロータコア36が永久磁石35の中心軸線Ax1側の側面35bの一部に掛かり、側面35bの一部のみが中心軸線Ax1側に露出していてもよい。 The rotor core 36 may be configured not to be applied to the inner periphery (side surface 35b on the central axis Ax1 side) of the permanent magnet 35. In other words, the rotor core 36 may be configured so as not to overlap the permanent magnet 35 in the radial direction of the rotor 30 on the inner peripheral side of the permanent magnet 35. For example, the rotor core 36 opens to the shaft 31 side at equal intervals or more with respect to the thickness of the permanent magnet 35 in the rotation direction of the rotor 30. That is, the space between the core blocks 37 is open toward the shaft 31 at an interval equal to or greater than the thickness of the permanent magnet 35 in the rotation direction of the rotor 30. Thereby, the inner periphery of the permanent magnet 35 is exposed to the shaft 31 side without being covered by the rotor core 36. The rotor core 36 may be hooked on a part of the side surface 35b on the central axis Ax1 side of the permanent magnet 35, and only a part of the side surface 35b may be exposed on the central axis Ax1 side.
 なお、ロータコア36が複数のコアブロック37に分かれている場合、ロータコア36が永久磁石35の外周及び内周の両方に掛からない状態を容易に構成可能である。 In addition, when the rotor core 36 is divided into a plurality of core blocks 37, it is possible to easily configure a state in which the rotor core 36 does not reach both the outer periphery and the inner periphery of the permanent magnet 35.
(低磁性部分)
 シャフト31のうち少なくともロータコア36に固定される部分31cは、ロータコア36の透磁率に比べ透磁率の低い低磁性材料により構成されていてもよい。低磁性材料の比透磁率は、例えば500以下、好ましくは100以下、さらに好ましくは50以下である。低磁性材料としては、例えば非磁性のステンレス材料が挙げられる。以下、部分31cを「低磁性部分31c」という。
(Low magnetic part)
At least a portion 31 c of the shaft 31 fixed to the rotor core 36 may be made of a low magnetic material having a lower magnetic permeability than the magnetic permeability of the rotor core 36. The relative magnetic permeability of the low magnetic material is, for example, 500 or less, preferably 100 or less, and more preferably 50 or less. Examples of the low magnetic material include a nonmagnetic stainless material. Hereinafter, the portion 31c is referred to as a “low magnetic portion 31c”.
 低磁性部分31cは、ロータコア36に嵌め込まれる少なくとも一箇所の凸部31dを有していてもよい。この場合、ロータコア36には、凸部31dに対応する形状の凹部36bが設けられ、この凹部36bに凸部31dが嵌合する。凸部31dは、例えば中心軸線Ax1に沿って延びている。凸部31dは、隣り合う永久磁石35同士の間に配置されていてもよい。凸部31dは、外周側に向かうにつれて広がる形状を有していてもよい。低磁性部分31cは、ロータ30の回転方向において永久磁石35と交互に並ぶ複数箇所の凸部31dを有してもよい。なお、凸部31dの頂部を基準とした場合、凸部31d同士の間が凹部31eとなる。すなわち、シャフト31が凸部31dを有することは、シャフト31が凹部31eを有することと同義である。 The low magnetic portion 31c may have at least one convex portion 31d fitted into the rotor core 36. In this case, the rotor core 36 is provided with a concave portion 36b having a shape corresponding to the convex portion 31d, and the convex portion 31d is fitted into the concave portion 36b. The convex portion 31d extends, for example, along the central axis Ax1. The convex portion 31d may be disposed between the adjacent permanent magnets 35. The convex portion 31d may have a shape that expands toward the outer peripheral side. The low magnetic portion 31 c may have a plurality of convex portions 31 d arranged alternately with the permanent magnet 35 in the rotation direction of the rotor 30. In addition, when the top part of the convex part 31d is made into the reference | standard, between the convex parts 31d becomes the recessed part 31e. That is, the shaft 31 having the convex portion 31d is synonymous with the shaft 31 having the concave portion 31e.
 シャフト31のうち低磁性部分31c以外の部分は、上述の低磁性材料により構成されていてもよいし、ロータコア36と同様の軟磁性材料により構成されていてもよい。 The portions other than the low magnetic portion 31 c of the shaft 31 may be made of the above-described low magnetic material, or may be made of the same soft magnetic material as the rotor core 36.
 シャフト31は、シャフト本体32と、シャフト本体32の外周に装着された低磁性パイプ33とに分かれていてもよい。シャフト本体32及び低磁性パイプ33は、例えば焼嵌め又は圧入により互いに固定される。シャフト本体32の構成材料は、強度等の観点により適宜選択可能である。低磁性パイプ33は、上述した低磁性材料により構成され、その外周に上記低磁性部分31cを含む。すなわち、ロータコア36は低磁性パイプ33の外周に固定される。 The shaft 31 may be divided into a shaft body 32 and a low magnetic pipe 33 attached to the outer periphery of the shaft body 32. The shaft body 32 and the low magnetic pipe 33 are fixed to each other, for example, by shrink fitting or press fitting. The constituent material of the shaft body 32 can be appropriately selected from the viewpoint of strength and the like. The low magnetic pipe 33 is made of the above-described low magnetic material, and includes the low magnetic portion 31c on the outer periphery thereof. That is, the rotor core 36 is fixed to the outer periphery of the low magnetic pipe 33.
(プレート)
 プレート38は、中心軸線Ax1に沿ってロータコア36に重なるように配置されている。図2、図7及び図9に示されるように、プレート38は、永久磁石35の外周(ステータ20側の側面35a)に掛かるように構成されている。この構成により、プレート38は、永久磁石35の中心軸線Ax1まわりの径方向への移動を規制し、永久磁石35を固定する。プレート38は、永久磁石35の内周(中心軸線Ax1側の側面35b)にも掛かるように構成されていてもよい。
(plate)
The plate 38 is disposed so as to overlap the rotor core 36 along the central axis Ax1. As shown in FIGS. 2, 7, and 9, the plate 38 is configured to be engaged with the outer periphery of the permanent magnet 35 (the side surface 35 a on the stator 20 side). With this configuration, the plate 38 restricts the movement of the permanent magnet 35 in the radial direction around the central axis Ax1, and fixes the permanent magnet 35. The plate 38 may be configured to be applied to the inner periphery (side surface 35b on the side of the central axis Ax1) of the permanent magnet 35.
 例えば、プレート38は、シャフト31と同心の円形の外形を有する。プレート38は、その中心部に孔38aを有し、孔38aを取り囲む複数の孔38bを更に有する。孔38aにはシャフト31が通され、複数の孔38bには複数の永久磁石35がそれぞれ通される。この構成により、孔38bに対してステータ20側に隣接する部分が永久磁石35の外周に掛かり、孔38bに対して中心軸線Ax1側に隣接する部分が永久磁石35の内周に掛かる。 For example, the plate 38 has a circular outer shape concentric with the shaft 31. The plate 38 has a hole 38a at the center thereof, and further includes a plurality of holes 38b surrounding the hole 38a. The shaft 31 is passed through the hole 38a, and the plurality of permanent magnets 35 are passed through the plurality of holes 38b. With this configuration, a portion adjacent to the stator 20 side with respect to the hole 38b is hooked on the outer periphery of the permanent magnet 35, and a portion adjacent to the center axis Ax1 side with respect to the hole 38b is hooked on the inner periphery of the permanent magnet 35.
 プレート38の外径は、ロータコア36の外径と同等であってもよい。これに応じ、永久磁石35の外周は、ロータコア36の外周に比べ中心軸線Ax1側に位置していてもよい。プレート38の内径は、ロータコア36の内径と同等であってもよい。これに応じ、永久磁石35の内周は、ロータコア36の外周に比べステータ20側に位置していてもよい。すなわち、永久磁石35の内周は、シャフト31の外周面から離れていてもよい。 The outer diameter of the plate 38 may be equal to the outer diameter of the rotor core 36. Accordingly, the outer periphery of the permanent magnet 35 may be positioned closer to the central axis Ax1 than the outer periphery of the rotor core 36. The inner diameter of the plate 38 may be equal to the inner diameter of the rotor core 36. Accordingly, the inner periphery of the permanent magnet 35 may be located closer to the stator 20 than the outer periphery of the rotor core 36. That is, the inner periphery of the permanent magnet 35 may be separated from the outer periphery of the shaft 31.
 ロータ30は、複数のプレート38を有していてもよい。この場合、複数のプレート38は、中心軸線Ax1の延びる方向においてロータコア36を挟むように配置されていてもよい。複数のプレート38は、中心軸線Ax1の延びる方向におけるロータコア36の両端に配置された2枚のプレート38を含んでいてもよい。プレート38は、中心軸線Ax1に沿う方向においてティース24bと重ならない位置に配置されていてもよい(図2参照)。なお、ロータ30は必ずしも複数のプレート38を有していなくてもよい。また、プレート38は、中心軸線Ax1の延びる方向におけるロータコア36の両端に代えて、ロータコア36の両端間のいずれの位置に配置されていてもよい。プレート38の枚数は、1枚であってもよく、複数枚であってもよい。図2に示した例の変形例として、図10に示すように、3枚のプレート38が、中心軸線Ax1に沿う方向においてロータコア36の両端、中央部に設けられていてもよい。 The rotor 30 may have a plurality of plates 38. In this case, the plurality of plates 38 may be arranged so as to sandwich the rotor core 36 in the direction in which the central axis Ax1 extends. The plurality of plates 38 may include two plates 38 disposed at both ends of the rotor core 36 in the direction in which the central axis Ax1 extends. The plate 38 may be disposed at a position that does not overlap the teeth 24b in the direction along the central axis Ax1 (see FIG. 2). Note that the rotor 30 does not necessarily have a plurality of plates 38. Further, the plate 38 may be disposed at any position between both ends of the rotor core 36 instead of both ends of the rotor core 36 in the direction in which the central axis Ax1 extends. The number of plates 38 may be one or plural. As a modification of the example shown in FIG. 2, as shown in FIG. 10, three plates 38 may be provided at both ends and the center of the rotor core 36 in the direction along the central axis Ax <b> 1.
 プレート38を構成する材料は、ロータコア36を構成する材料よりも低い透磁率を有していてもよい。例えば、プレート38は、上述の低磁性材料により構成されていてもよい。 The material constituting the plate 38 may have a lower magnetic permeability than the material constituting the rotor core 36. For example, the plate 38 may be made of the above-described low magnetic material.
 図9に示されるように、凸部31dは、ロータコア36に加えてプレート38にも嵌め込まれていてもよい。この場合、プレート38には、凸部31dに対応する形状の凹部38cが設けられ、この凹部38cに凸部31dが嵌合する。 As shown in FIG. 9, the convex portion 31 d may be fitted into the plate 38 in addition to the rotor core 36. In this case, the plate 38 is provided with a concave portion 38c having a shape corresponding to the convex portion 31d, and the convex portion 31d is fitted into the concave portion 38c.
 ロータコア36が複数のコアブロック37に分かれている場合、コアブロック37同士は、プレート38を介して一体化されていてもよい。換言すれば、複数のコアブロック37は、プレート38に取り付けられることにより、ひとまとめとされていてもよい。 When the rotor core 36 is divided into a plurality of core blocks 37, the core blocks 37 may be integrated via a plate 38. In other words, the plurality of core blocks 37 may be grouped together by being attached to the plate 38.
 プレート38は、例えば上記カシメ部36aに対応するカシメ部38dにおいてカシメ加工を施すことで、ロータコア36に固定されていてもよい。ロータコア36を構成する電磁鋼板同士がピンにより固定されている場合、プレート38は、当該ピンをプレート38にも貫通させることでロータコア36に固定されていてもよい。 The plate 38 may be fixed to the rotor core 36 by performing a caulking process in the caulking portion 38d corresponding to the caulking portion 36a, for example. When the electromagnetic steel plates constituting the rotor core 36 are fixed by pins, the plate 38 may be fixed to the rotor core 36 by allowing the pins to penetrate the plate 38.
(ロータコアにより形成される磁路)
 このように構成されたロータ30においては、図11に示されるように、永久磁石35からの磁束は、ロータコア36によってステータ20側に向かう磁路R1に導かれ、コイル21に鎖交する。これにより、この磁束と、コイル21により発生する回転磁界とが相互作用し、中心軸線Ax1まわりの回転トルクが発生し、ロータ30が回転する。上述したように、ロータコア36が永久磁石35の外周に掛からないように構成されている場合、ステータ20を経ずに永久磁石35の外周側を循環する磁路R2を通る磁束が削減される。また、シャフト31の外周に低磁性部分31cが形成されている場合、ステータ20を経ずに永久磁石35の内周側を循環する磁路R3を通る磁束が削減される。更に、ロータコア36が永久磁石35の内周に掛からないように構成されている場合、磁路R3を通る磁束が更に削減される。これらのことは、ステータ20側に向かう磁路R1への磁束集中に寄与する。磁路R1への磁束集中により、モータ1の出力を更に向上させることが可能となる。
(Magnetic path formed by the rotor core)
In the rotor 30 configured as described above, as shown in FIG. 11, the magnetic flux from the permanent magnet 35 is guided to the magnetic path R <b> 1 toward the stator 20 by the rotor core 36 and is linked to the coil 21. As a result, this magnetic flux interacts with the rotating magnetic field generated by the coil 21 to generate a rotational torque around the central axis Ax1, and the rotor 30 rotates. As described above, when the rotor core 36 is configured not to hang on the outer periphery of the permanent magnet 35, the magnetic flux passing through the magnetic path R <b> 2 that circulates on the outer periphery side of the permanent magnet 35 without passing through the stator 20 is reduced. Moreover, when the low magnetic part 31c is formed in the outer periphery of the shaft 31, the magnetic flux which passes along the magnetic path R3 which circulates through the inner peripheral side of the permanent magnet 35 without passing through the stator 20 is reduced. Further, when the rotor core 36 is configured not to be applied to the inner periphery of the permanent magnet 35, the magnetic flux passing through the magnetic path R3 is further reduced. These contribute to the magnetic flux concentration on the magnetic path R1 toward the stator 20 side. Due to the magnetic flux concentration on the magnetic path R1, the output of the motor 1 can be further improved.
〔本実施形態の効果〕
 実施形態に係るモータ1が奏する作用及び効果について説明する。モータ1は、回転磁界を発生させるステータ20と、ステータ20の内周側に配置され回転磁界に応じて回転するロータ30と、を備え、ステータ20は、スロット26を含むステータコア24と、スロット26に配置されるコイル21と、を有し、コイル21は、ステータコア24の表面24cに倣う成形面21a,21bを有し、互いに対向するステータコア24の表面24c及びコイル21の成形面21a,21bの少なくとも一方には、表面24c及び21a,21bの他方から遠ざかる後退面23が部分的に形成されている。このモータ1によれば、成形面21a,21bを設けることでコイル21をステータコア24に近接させつつ、絶縁性を強化すべき部分においては後退面23を設けることでコイル21とステータコア24とを離すことで、信頼性を保ちながらコイル21の断面積を大きくすることができる。したがって、コイル21に大きな電流を流すことができる。また、コイル21とステータコア24とが近接することで、コイル21の放熱性が向上する。したがって、コイル21の温度上昇を抑制しつつコイル21に大きな電流を流すことができる。これらにより、モータ1の出力を向上させることができる。
[Effect of this embodiment]
The operation and effect of the motor 1 according to the embodiment will be described. The motor 1 includes a stator 20 that generates a rotating magnetic field, and a rotor 30 that is arranged on the inner peripheral side of the stator 20 and rotates according to the rotating magnetic field. The stator 20 includes a stator core 24 that includes a slot 26, and a slot 26. The coil 21 has molding surfaces 21a and 21b that follow the surface 24c of the stator core 24, and the surface 24c of the stator core 24 and the molding surfaces 21a and 21b of the coil 21 that face each other. At least one of them is partially formed with a receding surface 23 away from the other of the surfaces 24c and 21a, 21b. According to this motor 1, the coil 21 is brought close to the stator core 24 by providing the molding surfaces 21 a and 21 b, and the coil 21 and the stator core 24 are separated by providing the receding surface 23 in the portion where the insulation should be strengthened. Thus, the cross-sectional area of the coil 21 can be increased while maintaining reliability. Therefore, a large current can be passed through the coil 21. Moreover, when the coil 21 and the stator core 24 are close to each other, the heat dissipation of the coil 21 is improved. Therefore, a large current can be passed through the coil 21 while suppressing the temperature rise of the coil 21. As a result, the output of the motor 1 can be improved.
 ステータ20は、後退面23に対応する位置において、ステータコア24及びコイル21の間に形成された樹脂部28をさらに有していてもよい。この場合、後退面23に対応する位置においてコイル21とステータコア24との間に樹脂を介在させることで、ステータコア24とコイル21との間の電気絶縁性を高めることができる。 The stator 20 may further include a resin portion 28 formed between the stator core 24 and the coil 21 at a position corresponding to the receding surface 23. In this case, electrical insulation between the stator core 24 and the coil 21 can be enhanced by interposing a resin between the coil 21 and the stator core 24 at a position corresponding to the receding surface 23.
 後退面23は、コイル21の成形面21aに形成されていてもよい。この場合、プレスにより成形面21aを形成するための成形型50により後退面23を容易に形成できる。 The receding surface 23 may be formed on the molding surface 21 a of the coil 21. In this case, the receding surface 23 can be easily formed by the molding die 50 for forming the molding surface 21a by pressing.
 ステータ20は、ステータコア24とコイル21との間に介在し電気絶縁性を有するインシュレータ27を更に有し、後退面23は、インシュレータ27の縁部(周縁部27c,27d)に対応する位置に設けられていてもよい。この場合、コイル21とステータコア24とインシュレータ27の周縁部27c,27dに対応する位置においてコイル21とステータコア24との間の距離が広がるため、コイル21とステータコア24との間の沿面距離が小さい当該位置においても上記沿面距離を十分に確保でき、コイル21とステータコア24との間の電気絶縁性を高めることができる。 The stator 20 further includes an insulator 27 that is interposed between the stator core 24 and the coil 21 and has electrical insulation, and the receding surface 23 is provided at a position corresponding to the edges ( peripheral portions 27 c and 27 d) of the insulator 27. It may be done. In this case, the distance between the coil 21 and the stator core 24 increases at positions corresponding to the peripheral portions 27c and 27d of the coil 21, the stator core 24, and the insulator 27, and therefore the creepage distance between the coil 21 and the stator core 24 is small. The creepage distance can be sufficiently secured even at the position, and the electrical insulation between the coil 21 and the stator core 24 can be enhanced.
 後退面23は、ロータ30の中心軸線Ax1に沿って延びていてもよい。この場合、ロータ30の中心軸線Ax1方向に沿って樹脂の流路が形成されるので、後退面23に対応する位置においてコイル21とステータコア24との間に樹脂を充填しやすい。このため、上記樹脂部28を形成しやすい。また、コイル21及びステータコア24をモールディングにより一体化する場合、モールディング用の樹脂により上記樹脂部を形成することも容易となる。 The receding surface 23 may extend along the central axis Ax1 of the rotor 30. In this case, since a resin flow path is formed along the direction of the central axis Ax1 of the rotor 30, it is easy to fill the resin between the coil 21 and the stator core 24 at a position corresponding to the receding surface 23. For this reason, the resin portion 28 is easily formed. In addition, when the coil 21 and the stator core 24 are integrated by molding, it is easy to form the resin portion with a molding resin.
 以上、実施形態について説明したが、本開示は必ずしも上述した実施形態に限られるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 As mentioned above, although embodiment was described, this indication is not necessarily restricted to embodiment mentioned above, A various change is possible in the range which does not deviate from the gist.
 本開示は、回転電機に利用可能である。 This disclosure can be used for rotating electrical machines.
 1…モータ(回転電機)、20…ステータ、21a…成形面、23…後退面、24…ステータコア、24c…表面、26…スロット、27…インシュレータ、27c,27d…周縁部(縁部)、28…樹脂部、30…ロータ、Ax1…中心軸線(回転軸)。 DESCRIPTION OF SYMBOLS 1 ... Motor (rotary electric machine), 20 ... Stator, 21a ... Molding surface, 23 ... Retraction surface, 24 ... Stator core, 24c ... Surface, 26 ... Slot, 27 ... Insulator, 27c, 27d ... Peripheral part (edge part), 28 ... resin part, 30 ... rotor, Ax1 ... center axis (rotary axis).

Claims (5)

  1.  回転磁界を発生させるステータと、前記ステータの内周側に配置され前記回転磁界に応じて回転するロータと、を備え、
     前記ステータは、スロットを含むステータコアと、前記スロットに配置されるコイルと、を有し、
     前記コイルは、前記ステータコアの表面に倣う成形面を有し、
     互いに対向する前記ステータコアの前記表面及び前記コイルの前記成形面の少なくとも一方には、前記表面及び前記成形面の他方から遠ざかる後退面が部分的に形成されている、回転電機。
    A stator that generates a rotating magnetic field, and a rotor that is arranged on the inner peripheral side of the stator and rotates according to the rotating magnetic field,
    The stator has a stator core including a slot, and a coil disposed in the slot,
    The coil has a molding surface that follows the surface of the stator core;
    A rotating electrical machine, wherein at least one of the surface of the stator core and the molding surface of the coil facing each other is partially formed with a receding surface away from the other of the surface and the molding surface.
  2.  前記ステータは、前記後退面に対応する位置において、前記ステータコア及び前記コイルの間に形成された樹脂部をさらに有する、請求項1記載の回転電機。 The rotating electrical machine according to claim 1, wherein the stator further includes a resin portion formed between the stator core and the coil at a position corresponding to the receding surface.
  3.  前記後退面は、前記コイルの前記成形面に形成されている、請求項1又は2記載の回転電機。 The rotating electrical machine according to claim 1 or 2, wherein the receding surface is formed on the molding surface of the coil.
  4.  前記ステータは、前記ステータコアと前記コイルとの間に介在し電気絶縁性を有するインシュレータを更に有し、前記後退面は、インシュレータの縁部に対応する位置に設けられる、請求項1~3のいずれか一項記載の回転電機。 The stator according to any one of claims 1 to 3, wherein the stator further includes an insulator having electrical insulation interposed between the stator core and the coil, and the receding surface is provided at a position corresponding to an edge of the insulator. A rotating electrical machine according to claim 1.
  5.  前記後退面は、前記ロータの回転軸に沿って延びている、請求項1~4のいずれか一項記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 4, wherein the receding surface extends along a rotation axis of the rotor.
PCT/JP2015/076732 2015-09-18 2015-09-18 Rotary electric machine WO2017046952A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/076732 WO2017046952A1 (en) 2015-09-18 2015-09-18 Rotary electric machine
JP2016052777A JP6428684B2 (en) 2015-09-18 2016-03-16 Rotating electric machine
CN201610154199.2A CN106549515B (en) 2015-09-18 2016-03-17 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076732 WO2017046952A1 (en) 2015-09-18 2015-09-18 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2017046952A1 true WO2017046952A1 (en) 2017-03-23

Family

ID=58288487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076732 WO2017046952A1 (en) 2015-09-18 2015-09-18 Rotary electric machine

Country Status (3)

Country Link
JP (1) JP6428684B2 (en)
CN (1) CN106549515B (en)
WO (1) WO2017046952A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127157A1 (en) * 2017-11-17 2019-05-23 Gkn Sinter Metals Engineering Gmbh Rotor for an axial flux motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149649A1 (en) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki Revolving electric device, and its manufacturing method
JP2009100625A (en) * 2007-10-19 2009-05-07 Toyota Motor Corp Stator and rotating armature
JP2013005652A (en) * 2011-06-20 2013-01-07 Toyota Motor Corp Rotary electric machine and concentrated winding coil
JP2013158105A (en) * 2012-01-27 2013-08-15 Denso Corp Stator of dynamo-electric machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122855A (en) * 1997-10-17 1999-04-30 Toshiba Corp Stator coil bobbin and motor
JP2006081252A (en) * 2004-09-07 2006-03-23 Toyota Motor Corp Winding structure of coil, motor, and method of forming coil
JP2011036010A (en) * 2009-07-31 2011-02-17 Hitachi Ltd Rotating electrical machine
JP2011200050A (en) * 2010-03-23 2011-10-06 Daikin Industries Ltd Stator, motor and compressor
JP5429241B2 (en) * 2011-08-02 2014-02-26 株式会社安川電機 Rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149649A1 (en) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki Revolving electric device, and its manufacturing method
JP2009100625A (en) * 2007-10-19 2009-05-07 Toyota Motor Corp Stator and rotating armature
JP2013005652A (en) * 2011-06-20 2013-01-07 Toyota Motor Corp Rotary electric machine and concentrated winding coil
JP2013158105A (en) * 2012-01-27 2013-08-15 Denso Corp Stator of dynamo-electric machine

Also Published As

Publication number Publication date
JP6428684B2 (en) 2018-11-28
JP2017060376A (en) 2017-03-23
CN106549515A (en) 2017-03-29
CN106549515B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2011114594A1 (en) Permanent magnet-type rotary generator
US20150001979A1 (en) Axial Gap Rotating Electric Machine
KR101528026B1 (en) Permanent magnet motor
JP2011130598A (en) Axial gap permanent-magnet motor, rotor used in the same, and manufacturing method for the rotor
JP2015082860A (en) Dynamo-electric machine and method of manufacturing rotor core
JP4940469B2 (en) Generator
JP2008061312A (en) Stator and motor equipped with the same
JP2013158156A (en) Core block, stator, rotary electric machine, and method for manufacturing core block
US20150091404A1 (en) Rotor for rotating electric machine, rotating electric machine, and magnetizing apparatus for rotating electric machine
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
US9653953B2 (en) Rotor with blade portions and rotating electric machine having the same
JP2006254561A (en) Rotary electric machine
US20220209611A1 (en) Rotating electric machine and method of manufacturing core
JP2017112693A (en) Rotary electric machine
KR101611519B1 (en) Rotor for permanent magnet type and manufacturing method of the same
JP2011172359A (en) Split rotor and electric motor
WO2017046952A1 (en) Rotary electric machine
WO2017046950A1 (en) Rotary electric machine
JP2018061367A (en) Brushless motor and winding method of stator
JP6210003B2 (en) Stator core, rotating electric machine, and stator core manufacturing method
JP6293382B1 (en) Stator core piece and rotating electric machine
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
WO2017046951A1 (en) Rotary electric machine
JP2014166095A (en) Stator, sealed compressor and motor equipped with the same, and mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP