WO2017045619A1 - 一种通过电化学电极设备处理水的工艺 - Google Patents

一种通过电化学电极设备处理水的工艺 Download PDF

Info

Publication number
WO2017045619A1
WO2017045619A1 PCT/CN2016/099063 CN2016099063W WO2017045619A1 WO 2017045619 A1 WO2017045619 A1 WO 2017045619A1 CN 2016099063 W CN2016099063 W CN 2016099063W WO 2017045619 A1 WO2017045619 A1 WO 2017045619A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrochemical
electrode
electrochemical electrode
current
Prior art date
Application number
PCT/CN2016/099063
Other languages
English (en)
French (fr)
Inventor
李艳波
Original Assignee
李艳波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李艳波 filed Critical 李艳波
Priority to CA2998657A priority Critical patent/CA2998657A1/en
Priority to EP16845733.1A priority patent/EP3351514A4/en
Priority to US15/758,260 priority patent/US20180244547A1/en
Publication of WO2017045619A1 publication Critical patent/WO2017045619A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46147Diamond coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46195Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water characterised by the oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4619Supplying gas to the electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop

Definitions

  • the present invention relates to the field of contaminated water treatment technology, and more particularly to a process for treating wastewater by electrochemical equipment.
  • the use of this invention can almost completely destroy the poor solute present in the wastewater, which may be organic or inorganic, and the treated water contains low or very low levels of water produced by the above-mentioned poor solvates.
  • Toxic and harmful organic matter in the environment, especially substances that may affect human health, has become an issue of increasing concern.
  • a special water treatment process called Advanced Oxidation Treatment (AOP) removes: drinking pure water containing toxic organic substances and toxic inorganic substances, tap water, surface water, contaminated groundwater, treated municipal wastewater, industrial wastewater
  • AOP Advanced Oxidation Treatment
  • the processing aspect has become a competitive advantage.
  • "Electrochemical Advanced Oxidation Process (EAOP) is one of many processes derived from AOP.
  • the present invention relates to a method of controlling a power source in an EAOP process that can improve processing efficiency and significantly increase the cost performance of the
  • the first advantage of the new process is that it has lower construction and operating costs than other water treatment processes that remove and destroy poor solute;
  • the second advantage of the new process is that it can reliably process the influent water to produce water with low or very low concentrations of all or most types of dissolved organic matter;
  • the third advantage of the new process is that the treated wastewater contains very low concentrations of ammonia nitrogen
  • the third advantage of the new process is that the concentration of certain inorganic substances in the treated wastewater is very low, such as sulfides and cyanides.
  • One of the objectives of the new process is to destroy the above-mentioned poor lysate in the high-concentration wastewater without any further treatment, and reduce the concentration to within the standard of the standard discharge, so that it can be directly discharged into the environment;
  • 1 is a general flow chart of different wastewater infiltration processes applied to different fields in different fields;
  • FIG. 2 is a power supply diagram of an electrochemical electrode in the process of the present invention.
  • Fig. 3 is another alternative general flow chart of the novel wastewater oxidation process applied to different wastewaters in different fields.
  • FIG. 1 General flow chart for the application of this industrial wastewater as an influent process.
  • the influent water 10 containing the poor solute is stored in the water tank 12.
  • This high concentration wastewater is then pumped into the inlet of pump 20 and then to the inlet of electrochemical electrode 30.
  • oxygen 22 is injected into the influent water to increase the concentration of dissolved oxygen in the wastewater.
  • the electrochemical electrode 30 comprises at least two electrode plates processed using a boron doped diamond (BDD) material, arranged such that the influent water flows through the two electrode plates and is charged. Divided into two electrode plates.
  • BDD boron doped diamond
  • an electrochemical electrode will contain several pairs of parallel-arranged boron-doped diamond electrode plates through which wastewater can flow in parallel.
  • the power source 40 is connected to the electrochemical electrode, and the current between the electrodes is controlled as described in FIG. 2, and the current is passed through the electrode plate to be in contact with the influent water.
  • the influent water is recycled to the electrochemical electrode several times until the concentration of the poor dissolved matter is lowered to the desired value, at which time the water pump of the electrochemical electrode is de-energized, and the liquid in the water tank is sent to the drain port 16.
  • Destruction of the poor dissolved matter Speed can be increased by increasing the number of electrochemical electrodes. Adding a second electrochemical electrode to the system is shown in the dotted line. During the circulation of water in the electrochemical electrode, the water temperature will increase.
  • the cooling water 14 is sent to a heat exchanger of the water tank to remove heat and maintain the inlet water temperature at a desired value.
  • FIG. 2 is a circuit diagram of current applied to an electrochemical electrode for use in an embodiment of the invention showing a flow diagram of current circuit control applied to the electrochemical electrode.
  • the key features of this circuit diagram can be described as:
  • a constant current is applied to the electrochemical module for a period of time; the magnitude of the constant current I CC1 can be determined by various methods, even only empirical estimates;
  • Inverting pole at the CC1 stage of time T 1 , the positive and negative electrodes of the current applied to the electrochemical electrode are inverted;
  • CC2 between time points T 2 and T 3 , a constant current is applied to the electrochemical electrode for a period of time; the current value supplied to the module is equal to MF x I CC1 , and MF is an adjustment coefficient which is cycled by the previous power supply program The difference in potential read is calculated by comparing with the specified value;
  • Inverting pole at the CC2 stage of time point T 3 , the positive and negative electrodes of the current applied to the electrochemical electrode are inverted;
  • FIG. 3 General flow chart for the application of this industrial oxidation wastewater as an influent process: containing poor dissolution
  • the influent water 50 of the object is sent to the water inlet tank 51. These feed water is then sent by pump 60 to the inlet of electrochemical electrode 70. At the pump outlet, oxygen 61 is injected into the influent water to increase the concentration of dissolved oxygen.
  • the electrochemical electrode 70 includes at least two electrode plates processed using boron doped diamond (BDD) in such a manner that the influent water flows between the two electrode plates and sufficiently contacts the two electrode plates.
  • BDD boron doped diamond
  • an electrochemical electrode will contain several pairs of electrode plates arranged in parallel on both sides of the channel through which the influent water flows.
  • the power source 90 is connected to the electrochemical electrode, and the current through the electrode is controlled to contact the incoming water through the electrode plate as described in FIG.
  • the electrochemical electrode 71 is similar to the electrochemical electrode 70 and is connected to the power source 91.
  • the power source 91 is controlled in exactly the same manner as the power source 90.
  • the electrochemical electrode 72 is similar to the electrochemical electrode 70 and is connected to the power source 92.
  • the power source 92 is controlled in exactly the same manner as the power source 90.
  • Additional oxygen dosing 63 and pump 64 are installed as required to maintain a sufficient dissolved oxygen concentration throughout the system.
  • a heat exchanger 80 needs to be installed in the system to reduce the temperature of the wastewater.

Abstract

一种通过电化学电极设备处理水的工艺,工艺的设备中包括至少一个电化学电极(30),电化学电极(30)包含适合的电极板,工艺的步骤如下:使含不良溶解物的水通过至少一个电化学电极(30),在电化学电极(30)中通过一个直流电流,以破坏进水中的不良溶解物,从而产出一股含有不良溶解物浓度更低的产水。直流电流将通过一个特定的电源控制程序进行调节,这个控制程序至少包括以下一次电流的循环:向电化学电极(30)中通入预设的恒定电流,并运行一段时间;接着在保持电化学电极(30)中电流绝对值的前提下通入反向的恒定电流,使正负极反转进行倒极;接着电化学电极(30)运行一段时间的恒定电流。

Description

一种通过电化学电极设备处理水的工艺
本发明涉及被污染水处理技术领域,尤其是涉及一种通过电化学设备处理废水的工艺。使用此发明可以几乎完全破坏废水中存在的不良溶解物,这些溶解物可能是有机的或者无机的,处理后的水中含有低或非常低含量的上述不良溶解物的产水。环境中的有毒有害有机物,特别是可能影响人体健康的物质,已经成为一个越来越受关注的问题。一种叫做“高级氧化处理”(AOP)的特殊水处理工艺在去除:含有有毒有机物和有毒无机物的饮用纯净水、自来水、地表水、被污染的地下水、经过处理后的市政废水、工业废水的处理方面变得具有竞争优势。“电化学高级氧化工艺(EAOP)就是AOP衍生的众多工艺中的一种。本发明涉及到一种在EAOP工艺中控制电源的方法,此工艺可以提高处理效果并显著的提高此工艺的性价比。
本发明的有益效果可以总结如下:
1)新工艺的第一个优势是,相比其他可去除和破坏不良溶解物的水处理工艺,它的建造成本和运行成本更低;
2)新工艺的第二个优势是,它能可靠的处理进水产出含有低浓度或者极低浓度所有种类或绝大多数种类溶解有机物的产水;
3)新工艺的第三个优势是,其处理后的废水所含氨氮的浓度非常低;
4)新工艺的第三个优势是,其处理后的废水中特定几种无机物的浓度非常低,如硫化物和氰化物。
5)新工艺的一个目标是,在不需要任何进一步处理的条件下,将高浓度废水中上述不良溶解物破坏,使其浓度降低到可达标排放的标准以内,从而可以直接排放到环境中;
6)新工艺的一个目标是,电化学电极运行时在任何条件下都能够保证提供 充足的羟基自由基;
7)新工艺的一个目标是,它不需要“严格控制”,它可以适应进水水质的变化;
8)新工艺的一个优势是,它的效率极高,其能耗比其他相似的电化学氧化工艺低很多。
本发明其他重要的目标、特性以及其他的优势将通过下文详细描述,附加说明和附带图纸进一步展示。
附图说明:
为了让读者更为完整的理解本发明,以及本发明新的特性和优势,请结合参考以下附图:
图1为本发明新的废水氧化工艺应用于不同领域的不同进水的通用流程图;
图2为本发明工艺中的电化学电极的电源供电图;
图3为本发明新的废水氧化工艺应用于不同领域的不同废水的另一种可以备选的通用流程图。
上述图纸仅为示范,其包含的处理因素可能根据实际情况被省略或添加。申请人试图使用图纸能够至少展现出对于理解本发明的各个方面特点的重要元素。但在具体的特定环境下,多种其他的工艺步骤也可能被使用,以构成一个完整的废水处理系统。
图1:为一个工业废水作为进水应用本氧化工艺的总流程图。含不良溶解物的进水10被储存于水箱12中。此高浓度废水接着被打入泵20的入口,接着到电化学电极30的入口。在高浓度废水到达电化学电极入口前,氧气22被注入到进水中以提高废水中溶解氧的浓度。电化学电极30包括最少有2片使用掺硼金钢石(BDD)材料加工的电极板,布置按照可使进水从两个电极板中流过并充 分接触两个电极板。通常来讲,电化学电极会含有几对平行排列的掺硼金刚石电极板,废水可平行流过。电源40与电化学电极连接,通过电极间的电流依据图2所述控制,电流通过电极板后与进水接触。当被部分处理的进水流出电化学电极后,将回流到水箱12中。此进水再循环到电化学电极中数次,直至不良溶解物的浓度降低到要求值,此时电化学电极的水泵断电,水箱中的液体被送入排水口16.破坏不良溶解物的速度可以通过增加电化学电极的数量。在系统中增加第二个电化学电极如图中虚线所示。水流在电化学电极内循环的过程中,水温会升高。冷却水14被送入水箱的热交换器中去除热量并维持进水温度在要求的值。
图2:为应用于本发明一个实例中加入到电化学电极上电流的电路图,它显示了加在电化学电极上电流电路控制的流程图。此电路图的关键特性可描述为:
CC1:时间点T0和T1之间,在所述电化学模块上施加一段时间的恒定电流;所述恒定电流ICC1的大小可由多种方法确定,甚至仅为经验估计;
倒极:在时间T1的CC1阶段,将加在所述电化学电极上电流的正负极进行倒极;
CC2:时间点T2和T3之间,在所述电化学电极上施加一段时间的恒定电流;供应到模块的电流值等于MF x ICC1,MF是一个调整系数,由上一个供电程序循环中读取的电势差值与规定数值比较计算得出;
倒极:在时间点T3的CC2阶段,将加在所述电化学电极上电流的正负极进行倒极;
在第二次电极倒极之后,重复执行上述流程。多次重复,直到将不良溶解物降低到要求的值。
图3:为另一个工业废水作为进水应用本氧化工艺的总流程图:含不良溶解 物的进水50被送入进水箱51中。这些进水接着被泵60送到电化学电极70的入口。在泵出口氧气61被注入到进水中以提高溶解氧的浓度。电化学电极70包括至少包含2片使用掺硼金钢石(BDD)加工的电极板,按照能使进水从两个电极板间流过并充分接触两个电极板的方式设置。通常来讲,电化学电极会含有几对电极板,在进水流过的通道两侧平行排列。电源90与电化学电极连接,通过电极的电流依据图2所述控制通过电极板与进水接触。当进水通过电化学电极后,部分被处理的进水中需要注入氧气以保证废水中的溶解氧有足够浓度,接着再将进水送到另一个电化学电极71的入口。电化学电极71和电化学电极70相似,被连接到电源91上,电源91的控制方式与电源90完全一样。当流出第二个电化学电极后,进水又被打入相似的电化学电极72进行处理,直至将不良溶解物降低到可排放值以下,并被从排放出口100处排出。电化学电极72和电化学电极70相似,被连接到电源92上,电源92的控制方式完全与电源90相同。额外的氧气投加63和泵64按要求安装,以维持整个系统的溶解氧浓度充足。随着进水通过每个电化学电极,其温度会升高。在系统中需要安装热交换器80,降低废水的温度。

Claims (7)

  1. 一种通过电化学设备处理水的工艺,其特征在于,所述工艺的设备中包括至少一个电化学电极,所述电化学电极包含适合的电极板;所述工艺的流程包括步骤如下:
    a)提供一股含不良溶解物的水作为进水,所述不良溶解物包括任意一种或几种以下物质:
    i)有机物种类或分子
    ii)氨氮
    iii)有机氮
    iv)无机硫化物
    v)有机硫化物
    b)使步骤a)中的所述进水通过至少一个所述电化学电极,并使所述进水接触到所述电化学电极中的电极板;
    c)在所述电化学电极中通过一个直流电流,以破坏所述进水中所述的不良溶解物,从而产出一股含有所述不良溶解物浓度更低的产水;电化学电极中所述直流电流将通过一个特定的电源控制程序进行调节,这个控制程序包括:至少一次在预设的电压下通入一个恒定的直流电流,从而由此计算出一个系数,用于调整后续阶段所应通入的直流电流;
    d)或者将步骤c)中通过至少一个所述电化学电极之后含有所述不良溶解物浓度更低的产水回流到步骤b)点前,经过步骤b)后再次流过所述电化学电极,从而形成一个对所述进水中含有所述不良可溶解物进行循环处理的处理过程;直到将所述进水中不良溶解物的浓度处理到设计的要求;
    或者将步骤c)中通过至少一个所述电化学电极之后含有所述不良溶解物浓度更低的产水打入另外的电化学电极,加在所述另外的电化学电极的电流控制 方式与上述步骤c)的控制方式相同,从而形成一个对所述进水中含有的所述不良溶解物进行延长处理的处理过程;直到将所述进水中不良溶解物的浓度降低到设计的要求;
    或者联合使用上述两种方式。
  2. 权利要求1中步骤c)所述的直流电流控制至少包括一次此电源控制程序:
    i)在预设的恒定电流下运行一段时间电化学电极,此恒定电流值可以通过任意方法确定;
    接着
    ii)继续向电化学电极中通入一段时间的恒定电流,此电流的值介于0和步骤i)电流值之间;
    接着
    iii)在保持电化学电极中电流绝对值的前提下通入反向的恒定电流,使正负极反转进行倒极;
    接着
    iv)电化学电极运行一段时间的恒定电流,并读取在电化学电极两端的电压数次,并与要求值作比较,并由此计算出iv)后续步骤所应使用的电源控制调节的系数。
  3. 根据权利要求1所述的通过电化学设备的水处理工艺,其特征在于:步骤a)和步骤b)之间,还通过以下任何方法之一,对所述进水进行预处理:
    i)向所述进水中投加氧化剂,以便提高所述进水中的溶解氧分子的浓度;
    ii)结合使用催化剂,向所述进水中投加化学药剂,以便提高所述进水中的溶解氧分子的浓度;
    iii)同时使用步骤i)和步骤ii)中的方法,以便提高所述进水中的溶解氧分子 的浓度。
  4. 权利要求1所述工艺的电化学设备包括由掺硼金刚石加工的电极,或包括在2.0伏特SHE(标准氢电极)以上正电势发生氧化反应的电极。
  5. 权利要求1到权利要求4所述工艺所指进水为饮用纯净水、自来水、地表水。
  6. 权利要求1到权利要求4所述工艺所指进水为经过处理的市政污水、工业废水。
  7. 权利要求1到权利要求4所述工艺所指进水为受到污染的地下水。
PCT/CN2016/099063 2015-09-14 2016-09-14 一种通过电化学电极设备处理水的工艺 WO2017045619A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2998657A CA2998657A1 (en) 2015-09-14 2016-09-14 Method for controlling an electrochemical water and wastewater treatment process
EP16845733.1A EP3351514A4 (en) 2015-09-14 2016-09-14 PROCESS FOR TREATING WASTEWATER USING ELECTROCHEMICAL ELECTRODE DEVICE
US15/758,260 US20180244547A1 (en) 2015-09-14 2016-09-14 Method for Controlling an Electrochemical Water and Wastewater Treatment Process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510600655.7A CN106517441A (zh) 2015-09-14 2015-09-14 一种通过电化学电极设备处理水的工艺
CN201510600655.7 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017045619A1 true WO2017045619A1 (zh) 2017-03-23

Family

ID=58288053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099063 WO2017045619A1 (zh) 2015-09-14 2016-09-14 一种通过电化学电极设备处理水的工艺

Country Status (5)

Country Link
US (1) US20180244547A1 (zh)
EP (1) EP3351514A4 (zh)
CN (1) CN106517441A (zh)
CA (1) CA2998657A1 (zh)
WO (1) WO2017045619A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780306B2 (en) * 2002-02-12 2004-08-24 Bioelectromagnetics, Inc. Electroionic water disinfection apparatus
CN103101993A (zh) * 2011-11-10 2013-05-15 李艳波 一种湿式氧化法减少水溶液中不良溶解物浓度的方法
CN103359806A (zh) * 2012-04-09 2013-10-23 安德鲁·罗纳德 一种通过电化学设备处理废水的工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384943A (en) * 1980-09-11 1983-05-24 The University Of Virginia Alumni Patents Foundation Fluid treatment
AUPP263898A0 (en) * 1998-03-30 1998-04-23 Tradon Enterprises Pty Ltd Waste water sterilisation by electro-oxidation treatment apparatus and method
US20050194263A1 (en) * 2004-03-02 2005-09-08 Ronald Miziolek Electrochemical water purification system and method
CN101671088B (zh) * 2009-10-15 2011-06-22 同济大学 一种处理废水的电催化湿式过氧化氢氧化方法及其装置
GB2484699B (en) * 2010-10-20 2017-05-24 Aguacure Ltd A method for electrochemical treatment of a liquid
CN204162485U (zh) * 2014-09-11 2015-02-18 北京今大禹环保技术有限公司 一种低能耗的难降解有机废水电化学处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780306B2 (en) * 2002-02-12 2004-08-24 Bioelectromagnetics, Inc. Electroionic water disinfection apparatus
CN103101993A (zh) * 2011-11-10 2013-05-15 李艳波 一种湿式氧化法减少水溶液中不良溶解物浓度的方法
CN103359806A (zh) * 2012-04-09 2013-10-23 安德鲁·罗纳德 一种通过电化学设备处理废水的工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351514A4 *

Also Published As

Publication number Publication date
EP3351514A1 (en) 2018-07-25
EP3351514A4 (en) 2019-03-27
CN106517441A (zh) 2017-03-22
CA2998657A1 (en) 2017-03-23
US20180244547A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2013152692A1 (zh) 一种通过电化学设备处理废水的工艺
Al-Shannag et al. Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique
García-Morales et al. Synergy of electrochemical oxidation using boron-doped diamond (BDD) electrodes and ozone (O3) in industrial wastewater treatment
KR101372416B1 (ko) 유입수의 유입구를 분기시킨 생물전기화학적 폐수처리장치 및 이를 이용한 폐수처리 방법
Etchepare et al. Application of flocculation–flotation followed by ozonation in vehicle wash wastewater treatment/disinfection and water reclamation
CN110577271A (zh) 一种等离子体曝气污水处理装置及等离子体曝气污水处理方法
Wu et al. Study on the effect of total dissolved solids (TDS) on the performance of an SBR for COD and nutrients removal
Song et al. Treatment of landfill leachate RO concentration by Iron–carbon micro–electrolysis (ICME) coupled with H2O2 with emphasis on convex optimization method
Klauson et al. Combined processes for wastewater purification: treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes
CN205442899U (zh) 一种耦合式反渗透浓水处理系统
WO2017045619A1 (zh) 一种通过电化学电极设备处理水的工艺
JP5259311B2 (ja) 水処理方法及びそれに用いる水処理システム
JP2006326423A (ja) 水処理方法及び水処理装置
CN103922442A (zh) 一种基于膜及电极高效富集水中氨氮离子的方法
CN104276650B (zh) 一种降解亚甲基蓝的方法
KR101852536B1 (ko) 아질산성 질소를 축적하여 하폐수에 포함된 유기물 및 질소를 제거할 수 있는 생물전기화학적 시스템
CN110563223A (zh) 一种处理高含硫气田采出水中难降解cod的工艺方法
Que et al. Nanosecond pulse used to enhance the electrocoagulation of municipal wastewater treatment with low specific energy consumption
CN205820938U (zh) 臭氧法烟气脱硫脱硝净化系统中循环水脱氮装置
KR20170035473A (ko) 코크스 폐수 처리장치 및 이를 이용한 코크스 폐수 처리방법
JP4335970B2 (ja) 窒素含有排水の処理装置
JP2000279987A (ja) 有機物含有廃水の処理方法及びその装置
CN105198068A (zh) 一种降解胭脂红的方法
Dong et al. Statistical analysis of thermal and nonthermal effects of sequential microwave/aeration process for the removal of ammonia from aqueous solution
Kabay et al. Effect of process parameters on separation performance of nitrate by electrodialysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758260

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2998657

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016845733

Country of ref document: EP