WO2017043685A1 - Device for enhancing efficiency of photovoltaic power generation plant - Google Patents

Device for enhancing efficiency of photovoltaic power generation plant Download PDF

Info

Publication number
WO2017043685A1
WO2017043685A1 PCT/KR2015/010489 KR2015010489W WO2017043685A1 WO 2017043685 A1 WO2017043685 A1 WO 2017043685A1 KR 2015010489 W KR2015010489 W KR 2015010489W WO 2017043685 A1 WO2017043685 A1 WO 2017043685A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
hot water
snow
tank
return
Prior art date
Application number
PCT/KR2015/010489
Other languages
French (fr)
Korean (ko)
Inventor
유상필
정성대
오에녹
Original Assignee
㈜하이레벤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜하이레벤 filed Critical ㈜하이레벤
Publication of WO2017043685A1 publication Critical patent/WO2017043685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a device for improving the efficiency of a solar power plant, and more particularly, the efficiency of a solar power plant that can maintain the power generation efficiency to the maximum by quickly removing snow accumulated to the extent that it is impossible to collect the solar light itself due to heavy snow. It relates to an improvement device.
  • solar power is a clean energy source without the risks of greenhouse gas emissions, noise, and environmental degradation that cause global warming, and there is no fear of exhaustion.
  • Photovoltaic power generation facilities have the advantage of free installation and low maintenance costs.
  • the temperature of the photovoltaic module x in particular, when the snow falls on the solar panel in winter, the power generation efficiency may decrease.
  • an efficiency improvement facility (maintenance facility) of a solar power generation facility is used.
  • the solar power plant's efficiency improvement system is designed to cool the solar module's temperature and to clean and remove dirt and snow accumulated in the solar panel so that the solar module can generate a constant output. It maintains the function.
  • the output of the solar module may be lowered.
  • the preceding 1 and the preceding 2 can be used in places where the amount of snowfall is not very high, but when installed in areas with heavy snow conditions, it is impossible to spray the fluid to remove snow accumulated from the nozzle itself. Will be faced.
  • the present invention has been invented to improve the above problems, it provides a device for improving efficiency of the solar power plant to maintain the power generation efficiency to the maximum by quickly removing the snow accumulated so that it is impossible to collect the solar light itself due to heavy snow. It is to.
  • the present invention is installed on the power generation site adjacent to each of the lower edges of the plurality of PV (photovoltaic) modules arranged at an angle with respect to the power generation site ( ⁇ ⁇ ), hot water therein And a snow removal piping module for forming a flow path through which the snow removal piping module melts snow accumulated on the upper surface of each of the PV modules from the power generation site.
  • a snow removal piping module for forming a flow path through which the snow removal piping module melts snow accumulated on the upper surface of each of the PV modules from the power generation site.
  • the snow removal piping module is characterized in that it is disposed inclined from one side to the other side in the direction in which the plurality of PV modules are arranged.
  • the snow removing piping module is connected to the discharge pipe portion to form a first flow path for the hot water flowing from one side to the other side along the direction in which the PV module is disposed, and the first flow path formed by the discharge pipe portion And a return pipe portion forming a second flow path for returning the hot water from the other side to the one side, wherein the discharge pipe portion and the portion of the return pipe portion are respectively installed at the power generation site adjacent to the lower edges of the plurality of PV modules.
  • the hot water circulates through the first flow path and the second flow path.
  • the snow removal piping module may include a first tank disposed at a first position of the power generation site, in which the hot water is received, and one end of the discharge pipe portion and the other end of the return piping portion are respectively connected; And a second tank disposed at a second position to receive the hot water, and to which the other end of the discharge pipe portion and one end of the return pipe portion are respectively connected, wherein the first position is higher than the second position. do.
  • the snow removing piping module may include at least one first fluid pump provided on the return pipe part to transfer the hot water to the discharge pipe part, and at least one provided on the discharge pipe part to supply the hot water. It further comprises a second fluid pump for transferring to the return pipe portion.
  • the snow removing piping module may further include a first fluid pump provided on at least one of the return pipe parts to return the hot water to the discharge pipe part.
  • the snow removing pipe module may include a first discharge port provided under the outer side of the first tank and connected to one end of the discharge pipe, and provided above the outer side of the first tank.
  • a first return port connected to an end portion, a second discharge port provided below the outer side of the second tank and connected to one end of the return pipe portion, and disposed above the outer side of the second tank; It further comprises a second return port connected to the other end of the negative.
  • the snow removing pipe module may further include a first fluid motor provided at the other end side of the return pipe part to draw up the hot water to the first return port side.
  • the snow removing pipe module may further include a second fluid motor provided at the other end side of the discharge pipe part to draw up the hot water to the second return port side.
  • the discharge pipe part may include: a first melting part installed at each of the power generation sites adjacent to lower edges of the plurality of PV modules, and a first connecting part of one end or the other end of each of the plurality of first melting parts; A connecting portion, a first start portion interconnecting the first fusion portion disposed closest to the first tank and the first discharge port, the first fusion portion disposed closest to the second tank and the first And a first transit portion interconnecting the two return ports.
  • the return pipe part may further include a second fusion part provided at each of the power generation sites adjacent to edges of lower ends of the plurality of PV modules, and a second interconnection part of one end or the other end of each of the plurality of second fusion parts.
  • the present invention provides a snow piled up to the extent that it is impossible to condense solar light due to heavy snow from a structure including a snow removal piping module installed at the power generation site adjacent to the lower edges of the plurality of PV modules and forming a flow path through which hot water flows. By removing it quickly, it is possible to maintain the power generation efficiency to the maximum.
  • the present invention is to arrange the snow removal piping module inclined from one side to the other side along the direction in which the PV module is arranged, or by installing the snow removing piping module along the inclined direction of the power generation site itself is arranged obliquely, from low to high Since hot water needs to be circulated using the driving force only in the flow path of hot water, power consumption can be minimized.
  • FIG. 1 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention
  • FIG. 3 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention
  • Figure 4 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention
  • Figure 5 and 6 sequentially show the process of snow removal using the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention
  • Figure 5 (a) is a main part of the present invention to operate the snow removal piping module Snow is accumulated in the power generation site and the entire PV module before making it
  • Figure 5 (b) is a melting state of snow accumulated on the power generation site
  • Figure 6 (a) is snow accumulated on the PV module slides along the direction of gravity
  • Figure 6 (b) is a side conceptual view showing a state in which all the snow accumulated by the snow removal piping module which is the main part of the present invention melted down and stacked on the snow removal piping module and the power generation site.
  • Figure 1 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention.
  • Figure 2 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention.
  • Figure 3 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention.
  • Figure 4 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention.
  • FIG. 5 and 6 sequentially illustrate a process of removing snow using an efficiency improving apparatus for a photovoltaic power generation facility according to an embodiment of the present invention
  • FIG. 5 (a) shows a snow removing piping module which is a main part of the present invention.
  • Figure 5 (b) is a state in which the accumulated snow 500 on the power generation site 300 is melted Side conceptual view showing each.
  • FIG. 6A illustrates a state in which the snow 500 accumulated on the PV module 100 slides down along the gravity direction and flows down on the snow removing piping module 200 and the power generation site 300.
  • (b) is a side conceptual view showing a state in which all the snow 500 accumulated by the snow removing piping module 200 which is a main part of the present invention is melted.
  • the present invention is installed on each of the power generation site 300 adjacent to the bottom edge of the plurality of photovoltaic (PV) modules 100 arranged inclined at a predetermined angle with respect to the power generation site (300), as shown, It can be seen that the structure including the snow removal piping module 200 to form a flow path for flowing hot water therein.
  • PV photovoltaic
  • the snow removing piping module 200 is capable of melting the snow 500 (see FIGS. 5 and 6 below) accumulated on the upper surface of each of the PV modules 100 from the power generation site 300.
  • the present invention can maintain the power generation efficiency to the maximum by quickly removing the snow accumulated to the extent that it is impossible to collect the sunlight itself due to heavy snow.
  • the power generation site 300 may be formed to be inclined from one side to the other side along the direction in which the plurality of PV modules 100 are disposed so as to enable circulation of the hot water flowing in the snow removing piping module 200, or the snow removing piping module ( 200 may be arranged to be inclined from one side to the other side along the direction in which the plurality of PV modules 100 are arranged.
  • a part of the discharge pipe 210 and the return pipe 220 are respectively installed in the power generation site 300 adjacent to the lower edges of the plurality of PV modules 100, the hot water is the first flow path (P1) and the first The two flow paths P2 are circulated.
  • the snow removing piping module 200 may include the first and second tanks 230 and 240 so as to provide a space in which the hot water circulating in the first flow path P1 and the second flow path P2 is temporarily stored. It is preferable to further provide.
  • the first tank 230 is disposed at the first position T1 of the power generation site 300 to receive hot water, and one end of the discharge pipe 210 and the other end of the return pipe 220 are connected to each other. will be.
  • the second tank 240 is disposed at the second position T2 of the power generation site 300 to receive hot water, and the other end of the discharge pipe part 210 and one end of the return pipe part 220 are connected to each other. .
  • the first position T1 may be higher than the second position T2 so that the hot water flows in the gravity direction through the first flow path P1.
  • the snow removing pipe module 200 may further include a first fluid pump 250 provided on at least one of the return pipe parts 220 to return the hot water to the discharge pipe part 210 as shown in FIG. 2. .
  • the power generation site 300 has a terrain condition formed to be gradually inclined downward from one side to the other side as shown in FIG. 2, or the exhaust pipe 210 and the return piping 220 are gradually inclined downward from one side to the other side. You can do that.
  • the hot water in the discharge pipe 210 may be naturally transferred in the direction of gravity.
  • the snow removal piping module 200 when the power generation site 300 is a flat plain with little gradient, at least one is provided on the return piping 220, hot water to the discharge pipe 210 side. It may be further provided with a first fluid pump 250 for transferring and a second fluid pump 260 provided on at least one on the discharge pipe 210 to transfer hot water to the return pipe 220.
  • the snow removing piping module 200 is provided below the outer side surface of the first tank 230 and is connected to one end of the discharge pipe part 210.
  • a first return port 232 provided on the outer side of the first tank 230 and connected to the other end of the return pipe part 220.
  • the snow removal piping module 200 is provided under the outer side of the second tank 240 and connected to one end of the return pipe portion 220 and the second tank 240. It may be further provided with a second return port 242 is provided on the outer side of the upper portion connected to the other end of the discharge pipe (210).
  • the positions of the first and second discharge ports 231 and 241 and the first and second return ports 232 and 242 are arranged at different heights as shown in FIG. And to reduce the heating load.
  • the hot water replenishment inside the first and second tanks 230 and 240 is usually made from the top of each of the first and second tanks 230 and 240, and usually replenishes the cold water.
  • the temperature of the cold water rises to some extent by mixing with the cold water supplemented with the warm water of the lowered temperature returned from the first and second return ports 232 and 242, the cold water is directly heated to the use temperature. It is possible to reduce the heating load and the operation of the heater for.
  • the discharge pipe 210 as described in more detail with reference to Figures 2 to 4, the first melting portion 211 which is respectively installed in the power generation site 300 adjacent to the lower edge of the plurality of PV modules 100 ) And a first connection part 212 connecting one end or the other end of each of the plurality of first fusion parts 211 to each other.
  • the discharge pipe part 210 may include a first start part 213 connecting the first fusion part 211 and the first discharge port 231 disposed closest to the first tank 230, and It can also be seen that it includes a first fusion portion 214 interconnecting the first fusion portion 211 and the second return port 242 disposed closest to the two tanks 240.
  • the return pipe part 220 may include a second start part 223 connecting the second fusion part 221 and the second discharge port 241 disposed closest to the second tank 240, and It can also be seen that the second melter 221 disposed closest to the first tank 230 includes a second gas passage 224 that interconnects the first return port 232.
  • the snow removing piping module 200 may further include the first and second fluid motors 270 and 280 to smoothly return the hot water to the first and second return ports 232 and 242 as shown in FIG. 4. It is preferable to provide.
  • the first fluid motor 270 is provided at the other end side of the return pipe part 220, that is, the second gas passage part 224, and serves to draw hot water to the first return port 232.
  • the second fluid motor 280 is provided at the other end side of the discharge pipe part 210, that is, the first gas oil part 214, and serves to raise hot water to the second return port 242.
  • the temperature sensor (not shown) provided in each of the first tank 230 and the second tank 240 to sense the temperature of hot water in real time may be electrically connected to the temperature sensor.
  • Each of the first tank 230 and the second tank 240 may further include a heater (hereinafter, not shown) that is heated when the temperature of the hot water drops below a predetermined temperature.
  • the snow 500 is accumulated on one side of the power generation site 300 or the PV module 100 in real time. It may further include a snow detection sensor or an optical sensor that can detect.
  • the present invention is electrically connected to the heater, the first fluid motor 270 and the second fluid motor 280 as shown in Figure 4, respectively, the heater, the first fluid motor 270 and the second fluid motor 280 It may further include a controller 400 for controlling the operation of the.
  • controller 400 also controls the operation of the first fluid pump 250 and the second fluid pump 260.
  • FIGS. 5 and 6 refer to FIGS. 1 to 4.
  • snow 500 accumulates over the power generation site 300 and the entire PV module 100 due to heavy snow as shown in FIG.
  • the snow removal piping module 200 continues.
  • the PV module 100 is to make a state that can normally generate power.
  • the present invention provides a basic technical idea to provide a device for improving efficiency of a photovoltaic power plant that can maintain power generation efficiency by quickly removing snow accumulated so that it is impossible to collect solar light due to heavy snow. Able to know.

Abstract

The present invention relates to a device for enhancing efficiency of a photovoltaic (PV) power generation plant, comprising a snow removing pipe module which is installed at a power plant site adjacent to the edges of the lower ends of a plurality of PV modules arranged so as to be inclined at a predetermined angle with respect to the power plant site, and which has therein a flow path through which hot water flows, wherein the snow removing pipe module melts snow piled up from the power plant site across the upper surface of each of the PV modules. The present invention is capable of rapidly removing snow which has piled up to the extent that the concentration of sunlight is impossible due to heavy snowfall, thereby maintaining maximum generating efficiency.

Description

태양광 발전설비의 효율 향상 장치Efficiency Improvement Device of Photovoltaic Power Plant
본 발명은 태양광 발전설비의 효율 향상 장치에 관한 것으로, 더욱 상세하게는 폭설로 태양광의 집광 자체가 불가능할 정도로 쌓인 눈을 신속하게 제거함으로써 발전 효율을 최대한으로 유지할 수 있도록 한 태양광 발전설비의 효율 향상 장치에 관한 것이다.The present invention relates to a device for improving the efficiency of a solar power plant, and more particularly, the efficiency of a solar power plant that can maintain the power generation efficiency to the maximum by quickly removing snow accumulated to the extent that it is impossible to collect the solar light itself due to heavy snow. It relates to an improvement device.
태양광은 화석원료 등의 기존 에너지원과는 달리 지구 온난화를 유발하는 온실가스 배출, 소음, 환경파괴 등의 위험성이 없는 청정 에너지원이며 고갈의 염려도 없음은 물론, 여타 풍력이나 해수력과 달리 태양광 발전설비는 설치가 자유롭고 유지비용이 저렴하다는 장점을 갖는다.Unlike conventional energy sources such as fossil raw materials, solar power is a clean energy source without the risks of greenhouse gas emissions, noise, and environmental degradation that cause global warming, and there is no fear of exhaustion. Photovoltaic power generation facilities have the advantage of free installation and low maintenance costs.
하지만, 가장 널리 사용되고 있는 실리콘 태양전지의 경우 태양광 모듈의 온도가 x특히, 겨울철에 눈이 태양 전지판에 내릴 경우 발전효율의 저하가 발생할 수 있다.However, in the case of the most widely used silicon solar cells, the temperature of the photovoltaic module x, in particular, when the snow falls on the solar panel in winter, the power generation efficiency may decrease.
이러한 눈으로 인한 발전효율의 저하의 방지를 위해 태양광 발전설비의 효율향상설비(유지설비)가 사용된다.In order to prevent such deterioration of power generation efficiency due to such snow, an efficiency improvement facility (maintenance facility) of a solar power generation facility is used.
태양광 발전설비의 효율향상설비는 태양광 모듈의 온도를 식혀주는 냉각 작용과 태양 전지판에 쌓인 오물, 눈 등을 세척, 제설함으로써 태양광 모듈이 일정한 출력의 발전을 수행할 수 있도록 태양광 발전설비를 유지관리하는 기능을 한다.The solar power plant's efficiency improvement system is designed to cool the solar module's temperature and to clean and remove dirt and snow accumulated in the solar panel so that the solar module can generate a constant output. It maintains the function.
만약, 태양광 발전설비의 효율향상설비의 태양광 모듈에 대한 냉각 작용이 원활하지 않거나 태양 전지판의 세정 작용이 원할하지 않으면 태양광 모듈의 출력이 저하될 수 있다.If the cooling effect on the solar module of the efficiency improvement facility of the solar power generation facility is not smooth or the cleaning action of the solar panel is not desired, the output of the solar module may be lowered.
이러한 관점에서 본 출원인인 기출원한 등록특허 제10-0914965호의 "태양광 발전설비의 효율향상장치"(이하 '선행1')와, 등록특허 제10-1326240호의 "이상 유동 발생 노즐 및 그를 이용한 태양광 발전설비의 효율향상설비"(이하 '선행2')와 같은 것을 들 수 있다.From this point of view, the present applicant has filed an application for "efficiency improving apparatus of photovoltaic power generation facilities" (hereinafter, "preceding 1") of the registered patent No. 10-0914965, and "ideal flow generating nozzle and the use thereof." Efficiency improvement facilities of photovoltaic power generation facilities "(hereinafter," preceding 2 ").
그러나, 선행1 및 선행2는 강설량이 그다지 많지 않은 곳에서는 사용이 가능하지만, 강설량이 많은 기후 조건을 가진 지역에 설치될 경우 노즐로부터 쌓인 눈을 제거하기 위한 유체를 분사하는 것 자체가 불가능한 문제에 직면하게 되는 것이다.However, the preceding 1 and the preceding 2 can be used in places where the amount of snowfall is not very high, but when installed in areas with heavy snow conditions, it is impossible to spray the fluid to remove snow accumulated from the nozzle itself. Will be faced.
따라서, 태양광의 집광 자체가 불가능할 정도로 폭설이 자주 내리는 기후 조건을 가진 지역에서도 적용하여 운용 가능한 장치의 개발이 절실한 것이다.Therefore, there is an urgent need to develop a device that can be applied and operated in an area with climatic conditions such as heavy snowfall that it is impossible to collect solar light itself.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
등록특허 제10-0914965호Patent Registration No. 10-0914965
등록특허 제10-1326240호Patent Registration No. 10-1326240
본 발명은 상기와 같은 문제점을 개선하기 위하여 발명된 것으로, 폭설로 태양광의 집광 자체가 불가능할 정도로 쌓인 눈을 신속하게 제거함으로써 발전 효율을 최대한으로 유지할 수 있도록 하는 태양광 발전설비의 효율 향상 장치를 제공하기 위한 것이다.The present invention has been invented to improve the above problems, it provides a device for improving efficiency of the solar power plant to maintain the power generation efficiency to the maximum by quickly removing the snow accumulated so that it is impossible to collect the solar light itself due to heavy snow. It is to.
상기와 같은 목적을 달성하기 위하여, 본 발명은 발전 부지(敷地)에 대하여 일정 각도로 경사를 이루며 배치된 복수의 PV(photovoltaic) 모듈의 하단부 가장자리와 각각 인접한 상기 발전 부지에 설치되며, 내부에 온수가 흐르는 유로를 형성하는 제설 배관 모듈을 포함하며, 상기 제설 배관 모듈은 상기 발전 부지로부터 상기 PV 모듈 각각의 상면에 걸쳐 쌓인 눈을 융해시키는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치를 제공할 수 있다.In order to achieve the above object, the present invention is installed on the power generation site adjacent to each of the lower edges of the plurality of PV (photovoltaic) modules arranged at an angle with respect to the power generation site (敷 地), hot water therein And a snow removal piping module for forming a flow path through which the snow removal piping module melts snow accumulated on the upper surface of each of the PV modules from the power generation site. Can be.
여기서, 상기 제설 배관 모듈은 상기 복수의 PV 모듈이 배치된 방향을 따라 일측에서 타측으로 경사지게 배치되는 것을 특징으로 한다.Here, the snow removal piping module is characterized in that it is disposed inclined from one side to the other side in the direction in which the plurality of PV modules are arranged.
이때, 상기 제설 배관 모듈은, 상기 PV 모듈이 배치된 방향을 따라 일측에서 타측으로 상기 온수가 흐르는 제1 유로를 형성하는 배출 배관부와, 상기 배출 배관부가 형성하는 상기 제1 유로와 연결되며 상기 타측에서 상기 일측으로 상기 온수가 되돌아가는 제2 유로를 형성하는 복귀 배관부를 포함하며, 상기 배출 배관부와 상기 복귀 배관부의 일부는 각각 상기 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 설치되고, 상기 온수는 상기 제1 유로 및 상기 제2 유로를 순환하는 것을 특징으로 한다.In this case, the snow removing piping module is connected to the discharge pipe portion to form a first flow path for the hot water flowing from one side to the other side along the direction in which the PV module is disposed, and the first flow path formed by the discharge pipe portion And a return pipe portion forming a second flow path for returning the hot water from the other side to the one side, wherein the discharge pipe portion and the portion of the return pipe portion are respectively installed at the power generation site adjacent to the lower edges of the plurality of PV modules. The hot water circulates through the first flow path and the second flow path.
그리고, 상기 제설 배관 모듈은, 상기 발전 부지의 제1 위치에 배치되어 상기 온수가 수용되고, 상기 배출 배관부의 일단부 및 상기 복귀 배관부의 타단부가 각각 연결되는 제1 탱크와, 상기 발전 부지의 제2 위치에 배치되어 상기 온수가 수용되고, 상기 배출 배관부의 타단부 및 상기 복귀 배관부의 일단부가 각각 연결되는 제2 탱크를 더 포함하며, 상기 제1 위치는 상기 제2 위치보다 높은 것을 특징으로 한다.The snow removal piping module may include a first tank disposed at a first position of the power generation site, in which the hot water is received, and one end of the discharge pipe portion and the other end of the return piping portion are respectively connected; And a second tank disposed at a second position to receive the hot water, and to which the other end of the discharge pipe portion and one end of the return pipe portion are respectively connected, wherein the first position is higher than the second position. do.
그리고, 상기 제설 배관 모듈은, 상기 복귀 배관부 상에 적어도 하나 이상 구비되어 상기 온수를 상기 배출 배관부측으로 이송시키는 제1 유체 펌프와, 상기 배출 배관부 상에 적어도 하나 이상 구비되어 상기 온수를 상기 복귀 배관부측으로 이송시키는 제2 유체 펌프를 더 포함하는 것을 특징으로 한다.The snow removing piping module may include at least one first fluid pump provided on the return pipe part to transfer the hot water to the discharge pipe part, and at least one provided on the discharge pipe part to supply the hot water. It further comprises a second fluid pump for transferring to the return pipe portion.
그리고, 상기 제설 배관 모듈은, 상기 복귀 배관부 상에 적어도 하나 이상 구비되어 상기 온수를 상기 배출 배관부측으로 되돌리는 제1 유체 펌프를 더 포함하는 것을 특징으로 한다.The snow removing piping module may further include a first fluid pump provided on at least one of the return pipe parts to return the hot water to the discharge pipe part.
그리고, 상기 제설 배관 모듈은, 상기 제1 탱크의 외측면 하부에 구비되어 상기 배출 배관부의 일단부와 연결되는 제1 배출 포트와, 상기 제1 탱크의 외측면 상부에 구비되어 상기 복귀 배관부의 타단부와 연결되는 제1 복귀 포트와, 상기 제2 탱크의 외측면 하부에 구비되어 상기 복귀 배관부의 일단부와 연결되는 제2 배출 포트와, 상기 제2 탱크의 외측면 상부에 구비되어 상기 배출 배관부의 타단부와 연결되는 제2 복귀 포트를 더 포함하는 것을 특징으로 한다.The snow removing pipe module may include a first discharge port provided under the outer side of the first tank and connected to one end of the discharge pipe, and provided above the outer side of the first tank. A first return port connected to an end portion, a second discharge port provided below the outer side of the second tank and connected to one end of the return pipe portion, and disposed above the outer side of the second tank; It further comprises a second return port connected to the other end of the negative.
그리고, 상기 제설 배관 모듈은, 상기 복귀 배관부의 타단부측에 구비되어 상기 제1 복귀 포트측으로 상기 온수를 끌어올리는 제1 유체 모터를 더 포함하는 것을 특징으로 한다.The snow removing pipe module may further include a first fluid motor provided at the other end side of the return pipe part to draw up the hot water to the first return port side.
그리고, 상기 제설 배관 모듈은, 상기 배출 배관부의 타단부측에 구비되어 상기 제2 복귀 포트측으로 상기 온수를 끌어올리는 제2 유체 모터를 더 포함하는 것을 특징으로 한다.The snow removing pipe module may further include a second fluid motor provided at the other end side of the discharge pipe part to draw up the hot water to the second return port side.
그리고, 상기 배출 배관부는, 상기 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 각각 설치되는 제1 융해부와, 복수의 상기 제1 융해부 각각의 일단부 또는 타단부를 상호 연결하는 제1 연결부와, 상기 제1 탱크와 가장 가깝게 배치된 상기 제1 융해부와 상기 제1 배출 포트를 상호 연결하는 제1 시작부와, 상기 제2 탱크와 가장 가깝게 배치된 상기 제1 융해부와 상기 제2 복귀 포트를 상호 연결하는 제1 경유부를 포함하는 것을 특징으로 한다.The discharge pipe part may include: a first melting part installed at each of the power generation sites adjacent to lower edges of the plurality of PV modules, and a first connecting part of one end or the other end of each of the plurality of first melting parts; A connecting portion, a first start portion interconnecting the first fusion portion disposed closest to the first tank and the first discharge port, the first fusion portion disposed closest to the second tank and the first And a first transit portion interconnecting the two return ports.
또한, 상기 복귀 배관부는, 상기 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 각각 설치되는 제2 융해부와, 복수의 상기 제2 융해부 각각의 일단부 또는 타단부를 상호 연결하는 제2 연결부와, 상기 제2 탱크와 가장 가깝게 배치된 상기 제2 융해부와 상기 제2 배출 포트를 상호 연결하는 제2 시작부와, 상기 제1 탱크와 가장 가깝게 배치된 상기 제2 융해부와 상기 제1 복귀 포트를 상호 연결하는 제2 경유부를 포함하는 것을 특징으로 한다.The return pipe part may further include a second fusion part provided at each of the power generation sites adjacent to edges of lower ends of the plurality of PV modules, and a second interconnection part of one end or the other end of each of the plurality of second fusion parts. A connecting portion, a second starting portion interconnecting the second fusion portion disposed closest to the second tank and the second discharge port, the second fusion portion disposed closest to the first tank and the first And a second transit unit interconnecting the first return port.
상기와 같은 구성의 본 발명에 따르면, 다음과 같은 효과를 도모할 수 있다.According to the present invention having the above configuration, the following effects can be achieved.
우선, 본 발명은 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 설치되어 내부에 온수가 흐르는 유로를 형성하는 제설 배관 모듈을 포함하는 구조로부터, 폭설로 태양광의 집광 자체가 불가능할 정도로 쌓인 눈을 신속하게 제거함으로써 발전 효율을 최대한으로 유지할 수 있게 된다.First, the present invention provides a snow piled up to the extent that it is impossible to condense solar light due to heavy snow from a structure including a snow removal piping module installed at the power generation site adjacent to the lower edges of the plurality of PV modules and forming a flow path through which hot water flows. By removing it quickly, it is possible to maintain the power generation efficiency to the maximum.
특히, 본 발명은 제설 배관 모듈을 PV 모듈이 배치된 방향을 따라 일측에서 타측으로 경사지게 배치되도록 하거나, 경사지게 배치된 발전 부지 자체의 경사 방향을 따라 제설 배관 모듈을 설치함으로써, 낮은 곳에서 높은 곳으로 온수가 흐르는 유로에만 구동력을 이용하여 온수를 순환시키면 되므로, 동력 소모 또한 최소화할 수 있게 된다.In particular, the present invention is to arrange the snow removal piping module inclined from one side to the other side along the direction in which the PV module is arranged, or by installing the snow removing piping module along the inclined direction of the power generation site itself is arranged obliquely, from low to high Since hot water needs to be circulated using the driving force only in the flow path of hot water, power consumption can be minimized.
도 1은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도1 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention
도 2는 본 발명의 다른 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도Figure 2 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention
도 3은 본 발명의 또 다른 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도Figure 3 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention
도 4는 본 발명의 기타 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도Figure 4 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention
도 5 및 도 6은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율 향상 장치를 이용하여 제설하는 과정을 순차적으로 나타낸 것으로, 도 5(a)는 본 발명의 주요부인 제설 배관 모듈을 가동시키기 전에 눈이 발전 부지와 PV 모듈 전체에 걸쳐 쌓인 상태를, 도 5(b)는 발전 부지 상의 쌓인 눈이 녹은 상태를, 도 6(a)는 PV 모듈 상에 쌓인 눈이 중력 방향을 따라 미끄러져내려 제설 배관 모듈 및 발전 부지상에 흘러내려 쌓인 상태를, 도 6(b)는 본 발명의 주요부인 제설 배관 모듈에 의하여 쌓인 눈이 전부 녹은 상태를 각각 나타낸 측면 개념도5 and 6 sequentially show the process of snow removal using the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention, Figure 5 (a) is a main part of the present invention to operate the snow removal piping module Snow is accumulated in the power generation site and the entire PV module before making it, Figure 5 (b) is a melting state of snow accumulated on the power generation site, Figure 6 (a) is snow accumulated on the PV module slides along the direction of gravity Figure 6 (b) is a side conceptual view showing a state in which all the snow accumulated by the snow removal piping module which is the main part of the present invention melted down and stacked on the snow removal piping module and the power generation site.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
그러나, 본 발명은 이하에서 개시되는 실시예로 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이다.However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms.
본 명세서에서 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.In this specification, the embodiments are provided so that the disclosure of the present invention may be completed and the scope of the present invention may be completely provided to those skilled in the art.
그리고 본 발명은 청구항의 범주에 의해 정의될 뿐이다.And the present invention is only defined by the scope of the claims.
따라서, 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다.Thus, in some embodiments, well known components, well known operations and well known techniques are not described in detail in order to avoid obscuring the present invention.
또한, 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭하고, 본 명세서에서 사용된(언급된) 용어들은 실시예를 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.In addition, the same reference numerals throughout the specification refer to the same components, and the terminology (discussed) used herein is for the purpose of describing the embodiments are not intended to limit the invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함하며, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다.As used herein, the singular forms "a", "an" and "the" include plural unless the context clearly dictates otherwise, and the elements and acts referred to as 'comprises' or 'do' not exclude the presence or addition of one or more other components and acts. .
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art.
또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.In addition, the terms defined in the commonly used dictionary are not ideally or excessively interpreted unless they are defined.
이하, 첨부된 도면을 참고로 본 발명의 바람직한 실시예에 대하여 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.
참고로, 도 1은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도이다.For reference, Figure 1 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention.
그리고, 도 2는 본 발명의 다른 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도이다.And, Figure 2 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention.
그리고, 도 3은 본 발명의 또 다른 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도이다.And, Figure 3 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention.
그리고, 도 4는 본 발명의 기타 실시예에 따른 태양광 발전설비의 효율 향상 장치의 전체적인 구조를 나타낸 사시도이다.And, Figure 4 is a perspective view showing the overall structure of the efficiency improving apparatus of the solar power plant according to another embodiment of the present invention.
그리고, 도 5 및 도 6은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율 향상 장치를 이용하여 제설하는 과정을 순차적으로 나타낸 것으로, 도 5(a)는 본 발명의 주요부인 제설 배관 모듈(200)을 가동시키기 전에 눈(500)이 발전 부지(300)와 PV 모듈(100) 전체에 걸쳐 쌓인 상태를, 도 5(b)는 발전 부지(300) 상의 쌓인 눈(500)이 녹은 상태를 각각 나타낸 측면 개념도이다.5 and 6 sequentially illustrate a process of removing snow using an efficiency improving apparatus for a photovoltaic power generation facility according to an embodiment of the present invention, and FIG. 5 (a) shows a snow removing piping module which is a main part of the present invention. Before operating the 200, the snow 500 is stacked on the power generation site 300 and the entire PV module 100, Figure 5 (b) is a state in which the accumulated snow 500 on the power generation site 300 is melted Side conceptual view showing each.
또한, 도 6(a)는 PV 모듈(100) 상에 쌓인 눈(500)이 중력 방향을 따라 미끄러져내려 제설 배관 모듈(200) 및 발전 부지(300)상에 흘러내려 쌓인 상태를, 도 6(b)는 본 발명의 주요부인 제설 배관 모듈(200)에 의하여 쌓인 눈(500)이 전부 녹은 상태를 각각 나타낸 측면 개념도이다.6A illustrates a state in which the snow 500 accumulated on the PV module 100 slides down along the gravity direction and flows down on the snow removing piping module 200 and the power generation site 300. (b) is a side conceptual view showing a state in which all the snow 500 accumulated by the snow removing piping module 200 which is a main part of the present invention is melted.
본 발명은 도시된 바와 같이 발전 부지(敷地)(300)에 대하여 일정 각도로 경사를 이루며 배치된 복수의 PV(photovoltaic) 모듈(100)의 하단부 가장자리와 인접한 발전 부지(300)에 각각 설치되며, 내부에 온수가 흐르는 유로를 형성하는 제설 배관 모듈(200)을 포함하는 구조임을 파악할 수 있다.The present invention is installed on each of the power generation site 300 adjacent to the bottom edge of the plurality of photovoltaic (PV) modules 100 arranged inclined at a predetermined angle with respect to the power generation site (300), as shown, It can be seen that the structure including the snow removal piping module 200 to form a flow path for flowing hot water therein.
여기서, 제설 배관 모듈(200)은 발전 부지(300)로부터 PV 모듈(100) 각각의 상면에 걸쳐 쌓인 눈(500, 이하 도 5 및 도 6 참조)을 융해시킬 수 있게 된다.Here, the snow removing piping module 200 is capable of melting the snow 500 (see FIGS. 5 and 6 below) accumulated on the upper surface of each of the PV modules 100 from the power generation site 300.
따라서, 본 발명은 폭설로 태양광의 집광 자체가 불가능할 정도로 쌓인 눈을 신속하게 제거함으로써 발전 효율을 최대한으로 유지할 수 있게 된다.Therefore, the present invention can maintain the power generation efficiency to the maximum by quickly removing the snow accumulated to the extent that it is impossible to collect the sunlight itself due to heavy snow.
본 발명은 상기와 같은 실시예의 적용이 가능하며, 다음과 같은 다양한 실시예의 적용 또한 가능함은 물론이다.The present invention can be applied to the above embodiments, and of course, the following various embodiments are also applicable.
우선, 제설 배관 모듈(200) 내부를 흐르는 온수의 순환이 가능하도록, 발전 부지(300)는 복수의 PV 모듈(100)이 배치된 방향을 따라 일측에서 타측으로 경사지게 형성되도록 하거나, 제설 배관 모듈(200)을 복수의 PV 모듈(100)이 배치된 방향을 따라 일측에서 타측으로 경사지게 배치되도록 할 수도 있을 것이다.First, the power generation site 300 may be formed to be inclined from one side to the other side along the direction in which the plurality of PV modules 100 are disposed so as to enable circulation of the hot water flowing in the snow removing piping module 200, or the snow removing piping module ( 200 may be arranged to be inclined from one side to the other side along the direction in which the plurality of PV modules 100 are arranged.
여기서, 제설 배관 모듈(200)은, PV 모듈(100)이 배치된 방향을 따라 일측에서 타측으로 온수가 흐르는 제1 유로(P1)를 형성하는 배출 배관부(210)와, 배출 배관부(210)가 형성하는 제1 유로(P1)와 연결되며 타측에서 일측으로 온수가 되돌아가는 제2 유로(P2)를 형성하는 복귀 배관부(220)를 포함할 수 있다.Here, the snow removing piping module 200, the discharge pipe portion 210 and the discharge pipe portion 210 to form a first flow path (P1) in which hot water flows from one side to the other side along the direction in which the PV module 100 is disposed. ) May be connected to the first flow path (P1) is formed and may include a return pipe 220 for forming a second flow path (P2) to return the hot water from one side to one side.
이때, 배출 배관부(210)와 복귀 배관부(220)의 일부는 각각 복수의 PV 모듈(100)의 하단부 가장자리와 인접한 발전 부지(300)에 설치되고, 온수는 제1 유로(P1) 및 제2 유로(P2)를 순환하게 되는 것이다.In this case, a part of the discharge pipe 210 and the return pipe 220 are respectively installed in the power generation site 300 adjacent to the lower edges of the plurality of PV modules 100, the hot water is the first flow path (P1) and the first The two flow paths P2 are circulated.
그리고, 제설 배관 모듈(200)은, 전술한 제1 유로(P1) 및 제2 유로(P2)를 순환하는 온수가 일시 저장되는 공간의 제공이 가능하도록, 제1, 2 탱크(230, 240)를 더 구비하는 것이 바람직하다.In addition, the snow removing piping module 200 may include the first and second tanks 230 and 240 so as to provide a space in which the hot water circulating in the first flow path P1 and the second flow path P2 is temporarily stored. It is preferable to further provide.
제1 탱크(230)는 발전 부지(300)의 제1 위치(T1)에 배치되어 온수가 수용되고, 배출 배관부(210)의 일단부 및 복귀 배관부(220)의 타단부가 각각 연결되는 것이다.The first tank 230 is disposed at the first position T1 of the power generation site 300 to receive hot water, and one end of the discharge pipe 210 and the other end of the return pipe 220 are connected to each other. will be.
제2 탱크(240)는 발전 부지(300)의 제2 위치(T2)에 배치되어 온수가 수용되고, 배출 배관부(210)의 타단부 및 복귀 배관부(220)의 일단부가 각각 연결되는 것이다.The second tank 240 is disposed at the second position T2 of the power generation site 300 to receive hot water, and the other end of the discharge pipe part 210 and one end of the return pipe part 220 are connected to each other. .
여기서, 제1 위치(T1)는, 온수가 제1 유로(P1)를 통하여 중력 방향으로 흘러갈 수 있도록 제2 위치(T2)보다 높을 수 있다.Here, the first position T1 may be higher than the second position T2 so that the hot water flows in the gravity direction through the first flow path P1.
이때, 제설 배관 모듈(200)은 도 2와 같이 복귀 배관부(220) 상에 적어도 하나 이상 구비되어 온수를 배출 배관부(210)측으로 되돌리는 제1 유체 펌프(250)를 더 구비할 수 있다.In this case, the snow removing pipe module 200 may further include a first fluid pump 250 provided on at least one of the return pipe parts 220 to return the hot water to the discharge pipe part 210 as shown in FIG. 2. .
즉, 발전 부지(300)는 도 2와 같이 일측에서 타측으로 갈수록 점차 하향 경사지게 형성된 지형 조건을 갖거나, 배출 배관부(210) 및 복귀 배관부(220)는 일측에서 타측으로 갈수록 점차 하향 경사지게 배치되도록 할 수 있다.That is, the power generation site 300 has a terrain condition formed to be gradually inclined downward from one side to the other side as shown in FIG. 2, or the exhaust pipe 210 and the return piping 220 are gradually inclined downward from one side to the other side. You can do that.
따라서, 배출 배관부(210) 내의 온수는 중력 방향으로 자연스레 이송될 수 있는 것이다.Therefore, the hot water in the discharge pipe 210 may be naturally transferred in the direction of gravity.
한편, 제설 배관 모듈(200)은, 도 3과 같이 발전 부지(300)가 구배가 거의 없는 평지일 경우, 복귀 배관부(220) 상에 적어도 하나 이상 구비되어 온수를 배출 배관부(210)측으로 이송시키는 제1 유체 펌프(250)와, 배출 배관부(210) 상에 적어도 하나 이상 구비되어 온수를 복귀 배관부(220)측으로 이송시키는 제2 유체 펌프(260)를 더 구비할 수도 있을 것이다.On the other hand, the snow removal piping module 200, as shown in Figure 3, when the power generation site 300 is a flat plain with little gradient, at least one is provided on the return piping 220, hot water to the discharge pipe 210 side. It may be further provided with a first fluid pump 250 for transferring and a second fluid pump 260 provided on at least one on the discharge pipe 210 to transfer hot water to the return pipe 220.
한편, 제설 배관 모듈(200)은, 도 2 내지 도 4를 참조하면, 제1 탱크(230)의 외측면 하부에 구비되어 배출 배관부(210)의 일단부와 연결되는 제1 배출 포트(231)와, 제1 탱크(230)의 외측면 상부에 구비되어 복귀 배관부(220)의 타단부와 연결되는 제1 복귀 포트(232)를 더 구비할 수 있다.Meanwhile, referring to FIGS. 2 to 4, the snow removing piping module 200 is provided below the outer side surface of the first tank 230 and is connected to one end of the discharge pipe part 210. ) And a first return port 232 provided on the outer side of the first tank 230 and connected to the other end of the return pipe part 220.
또한, 제설 배관 모듈(200)은, 제2 탱크(240)의 외측면 하부에 구비되어 복귀 배관부(220)의 일단부와 연결되는 제2 배출 포트(241)와, 제2 탱크(240)의 외측면 상부에 구비되어 배출 배관부(210)의 타단부와 연결되는 제2 복귀 포트(242)를 더 구비할 수도 있다.In addition, the snow removal piping module 200 is provided under the outer side of the second tank 240 and connected to one end of the return pipe portion 220 and the second tank 240. It may be further provided with a second return port 242 is provided on the outer side of the upper portion connected to the other end of the discharge pipe (210).
제1, 2 배출 포트(231, 241)와 제1, 2 복귀 포트(232, 242)의 위치가 도시된 바와 같이 서로 다른 높이에 배치되도록 한 것은, 후술할 히터(이하 미도시) 등의 가동 및 가열 부하를 줄여줄 수 있도록 하기 위함이다.The positions of the first and second discharge ports 231 and 241 and the first and second return ports 232 and 242 are arranged at different heights as shown in FIG. And to reduce the heating load.
즉, 제1, 2 탱크(230, 240) 내부의 온수 보충은 통상적으로 제1, 2 탱크(230, 240) 각각의 상부로부터 이루어지는데, 보통 냉수를 보충하게 된다.That is, the hot water replenishment inside the first and second tanks 230 and 240 is usually made from the top of each of the first and second tanks 230 and 240, and usually replenishes the cold water.
따라서, 제1, 2 복귀 포트(232, 242)로부터 복귀된 일정 정도 하강된 온도의 온수가 보충된 냉수와 혼합되어 냉수의 온도가 일정 정도 상승하게 되므로, 냉수를 바로 사용 온도의 온수로 가열하기 위한 히터의 가동 및 가열 부하를 줄여줄 수 있게 되는 것이다.Therefore, since the temperature of the cold water rises to some extent by mixing with the cold water supplemented with the warm water of the lowered temperature returned from the first and second return ports 232 and 242, the cold water is directly heated to the use temperature. It is possible to reduce the heating load and the operation of the heater for.
한편, 배출 배관부(210)는, 도 2 내지 도 4를 참조하여 더욱 구체적으로 살펴보면, 복수의 PV 모듈(100)의 하단부 가장자리와 인접한 발전 부지(300)에 각각 설치되는 제1 융해부(211)와, 복수의 제1 융해부(211) 각각의 일단부 또는 타단부를 상호 연결하는 제1 연결부(212)를 포함하는 것을 알 수 있다.On the other hand, the discharge pipe 210, as described in more detail with reference to Figures 2 to 4, the first melting portion 211 which is respectively installed in the power generation site 300 adjacent to the lower edge of the plurality of PV modules 100 ) And a first connection part 212 connecting one end or the other end of each of the plurality of first fusion parts 211 to each other.
그리고, 배출 배관부(210)는, 제1 탱크(230)와 가장 가깝게 배치된 제1 융해부(211)와 제1 배출 포트(231)를 상호 연결하는 제1 시작부(213)와, 제2 탱크(240)와 가장 가깝게 배치된 제1 융해부(211)와 제2 복귀 포트(242)를 상호 연결하는 제1 경유부(214)를 포함하는 것 또한 파악할 수 있다.The discharge pipe part 210 may include a first start part 213 connecting the first fusion part 211 and the first discharge port 231 disposed closest to the first tank 230, and It can also be seen that it includes a first fusion portion 214 interconnecting the first fusion portion 211 and the second return port 242 disposed closest to the two tanks 240.
한편, 복귀 배관부(220)는, 도 2 내지 도 4를 참조하여 더욱 구체적으로 살펴보면, 복수의 PV 모듈(100)의 하단부 가장자리와 인접한 발전 부지(300)에 각각 설치되는 제2 융해부(221)와, 복수의 제2 융해부(221) 각각의 일단부 또는 타단부를 상호 연결하는 제2 연결부(222)를 포함하는 것을 알 수 있다.Meanwhile, the return pipe part 220 will be described in more detail with reference to FIGS. 2 to 4, and the second fusion part 221 respectively installed at the power generation site 300 adjacent to the bottom edges of the plurality of PV modules 100 will be described. ) And a second connecting portion 222 connecting one end or the other end of each of the plurality of second fusion portions 221 to each other.
또한, 복귀 배관부(220)는, 제2 탱크(240)와 가장 가깝게 배치된 제2 융해부(221)와 제2 배출 포트(241)를 상호 연결하는 제2 시작부(223)와, 제1 탱크(230)와 가장 가깝게 배치된 제2 융해부(221)와 제1 복귀 포트(232)를 상호 연결하는 제2 경유부(224)를 포함하는 것 또한 파악할 수 있다.In addition, the return pipe part 220 may include a second start part 223 connecting the second fusion part 221 and the second discharge port 241 disposed closest to the second tank 240, and It can also be seen that the second melter 221 disposed closest to the first tank 230 includes a second gas passage 224 that interconnects the first return port 232.
한편, 제설 배관 모듈(200)은 경우에 따라, 도 4와 같이 제1, 2 복귀 포트(232, 242)측으로 온수가 원활하게 복귀될 수 있도록 제1, 2 유체 모터(270, 280)를 더 구비하는 것이 바람직하다.Meanwhile, the snow removing piping module 200 may further include the first and second fluid motors 270 and 280 to smoothly return the hot water to the first and second return ports 232 and 242 as shown in FIG. 4. It is preferable to provide.
제1 유체 모터(270)는 복귀 배관부(220)의 타단부측, 즉 제2 경유부(224)에 구비되어 제1 복귀 포트(232)측으로 온수를 끌어올리는 역할을 하게 된다.The first fluid motor 270 is provided at the other end side of the return pipe part 220, that is, the second gas passage part 224, and serves to draw hot water to the first return port 232.
그리고, 제2 유체 모터(280)는 배출 배관부(210)의 타단부측, 즉 제1 경유부(214)에 구비되어 제2 복귀 포트(242)측으로 온수를 끌어올리는 역할을 하게 된다.In addition, the second fluid motor 280 is provided at the other end side of the discharge pipe part 210, that is, the first gas oil part 214, and serves to raise hot water to the second return port 242.
한편, 본 발명은 특별히 도시하지 않았으나, 제1 탱크(230) 및 제2 탱크(240)에 각각 구비되어 온수의 온도를 실시간으로 감지하는 온도 센서(이하 미도시)와, 온도 센서와 전기적으로 연결되며, 제1 탱크(230) 및 제2 탱크(240)에 각각 구비되어 온수의 온도가 일정 온도 이하로 하강하면 가열시키는 히터(이하 미도시)를 더 구비할 수 있다.Meanwhile, although the present invention is not particularly illustrated, the temperature sensor (not shown) provided in each of the first tank 230 and the second tank 240 to sense the temperature of hot water in real time may be electrically connected to the temperature sensor. Each of the first tank 230 and the second tank 240 may further include a heater (hereinafter, not shown) that is heated when the temperature of the hot water drops below a predetermined temperature.
그리고, 본 발명은 특별히 도시하지 않았으나, 온도 센서 및 히터와 후술할 컨트롤러(400)와 연계하여, 발전 부지(300)나 PV 모듈(100)의 일측에 구비되어 눈(500)이 쌓인 것을 실시간으로 감지할 수 있는 적설 감지 센서 또는 광 센서 등을 더 구비할 수 있다.In addition, although the present invention is not particularly illustrated, in association with the temperature sensor and the heater and the controller 400 to be described later, the snow 500 is accumulated on one side of the power generation site 300 or the PV module 100 in real time. It may further include a snow detection sensor or an optical sensor that can detect.
또한, 본 발명은 도 4와 같이 히터와 제1 유체 모터(270) 및 제2 유체 모터(280)와 각각 전기적으로 연결되며, 히터와 제1 유체 모터(270) 및 제2 유체 모터(280)의 가동을 제어하는 컨트롤러(400)를 더 구비할 수 있다.In addition, the present invention is electrically connected to the heater, the first fluid motor 270 and the second fluid motor 280 as shown in Figure 4, respectively, the heater, the first fluid motor 270 and the second fluid motor 280 It may further include a controller 400 for controlling the operation of the.
여기서, 컨트롤러(400)는 제1 유체 펌프(250) 및 제2 유체 펌프(260)의 가동 또한 제어하게 된다.Here, the controller 400 also controls the operation of the first fluid pump 250 and the second fluid pump 260.
상기와 같은 본 발명의 다양한 실시예에 따른 태양광 발전설비의 효율 향상 장치를 이용하여 제설하는 과정에 대하여 도 5 및 도 6을 참조하여 간략히 살펴보고자 한다.With reference to FIGS. 5 and 6, a snow removal process using the efficiency improving apparatus of the solar power plant according to various embodiments of the present invention as described above will be briefly described.
참고로, 도 5 및 도 6에서 표시되지 않은 도면의 부호는 도 1 내지 도 4를 참조한다.For reference, reference numerals not shown in FIGS. 5 and 6 refer to FIGS. 1 to 4.
우선, 제설 배관 모듈(200)을 가동시키기 전에는, 도 5(a)와 같이 폭설로 인하여 눈(500)이 발전 부지(300)와 PV 모듈(100) 전체에 걸쳐 쌓여 있다.First, before operating the snow removal piping module 200, snow 500 accumulates over the power generation site 300 and the entire PV module 100 due to heavy snow as shown in FIG.
이러한 상태에서는 눈(500)이 PV 모듈(100)의 집광 자체를 불가능하게 하므로, 발전 자체 또한 불가능하다.In this state, since the eye 500 makes it impossible to condense the PV module 100 itself, power generation itself is also impossible.
이때, 적설 센서 또는 광 센서가 발전 부지(300)와 PV 모듈(100) 전체에 걸쳐 쌓인 눈(500)으로 인하여 PV 모듈(100)의 정상적인 집광에 따른 발전 자체가 불가능한 것을 감지하게 되면, 제설 배관 모듈(200)의 가동을 위한 신호를 컨트롤러(400)에 전달하게 된다.At this time, when the snow sensor or the optical sensor detects that the power generation itself is not possible due to the normal condensation of the PV module 100 due to the snow 500 accumulated throughout the power generation site 300 and the PV module 100, snow removal piping The signal for operating the module 200 is transmitted to the controller 400.
이후, 제설 배관 모듈(200)의 제1, 2 융해부(211, 221)를 통하여 흐르는 온수에 의하여 도 5(b)와 같이 발전 부지(300) 상의 쌓인 눈(500)이 녹으면, PV 모듈(100) 상면의 눈(500)이 경사지게 형성된 PV 모듈(100)의 상면을 따라 흘러내리게 된다.Thereafter, when snow 500 accumulated on the power generation site 300 is melted as shown in FIG. 5B by hot water flowing through the first and second melting parts 211 and 221 of the snow removing piping module 200, the PV module The eye 500 of the upper surface 100 flows down the upper surface of the PV module 100 formed to be inclined.
계속하여, 흘러내린 눈(500)이 도 6(a)와 같이 중력 방향을 따라 미끄러져내려 제설 배관 모듈(200) 및 발전 부지(300)상에 흘러내려 쌓이면, 제설 배관 모듈(200)이 계속 가동되어 도 6(b)와 같이 쌓인 눈(500)을 전부 녹임으로써 PV 모듈(100)이 정상적으로 발전할 수 있는 상태를 만들게 되는 것이다.Subsequently, when the snow 500 which has flowed down slides along the gravity direction as shown in FIG. 6 (a) and flows down on the snow removal piping module 200 and the power generation site 300, the snow removal piping module 200 continues. By operating and melting all the snow 500 stacked as shown in FIG. 6 (b), the PV module 100 is to make a state that can normally generate power.
이상과 같이 본 발명은 폭설로 태양광의 집광 자체가 불가능할 정도로 쌓인 눈을 신속하게 제거함으로써 발전 효율을 최대한으로 유지할 수 있도록 하는 태양광 발전설비의 효율 향상 장치를 제공하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있다.As described above, the present invention provides a basic technical idea to provide a device for improving efficiency of a photovoltaic power plant that can maintain power generation efficiency by quickly removing snow accumulated so that it is impossible to collect solar light due to heavy snow. Able to know.
그리고, 본 발명의 기본적인 기술적 사상의 범주 내에서 당해 업계 통상의 지식을 가진 자에게 있어서는 다른 많은 변형 및 응용 또한 가능함은 물론이다.In addition, many modifications and applications are possible to those skilled in the art within the scope of the basic technical idea of the present invention.

Claims (11)

  1. 발전 부지(敷地)에 대하여 일정 각도로 경사를 이루며 배치된 복수의 PV(photovoltaic) 모듈의 하단부 가장자리와 각각 인접한 상기 발전 부지에 설치되며, 내부에 온수가 흐르는 유로를 형성하는 제설 배관 모듈을 포함하며,It is installed at each power generation site adjacent to the lower edge of the plurality of PV (photovoltaic) modules arranged at an angle with respect to the power generation site, and includes a snow removal piping module to form a flow path for the hot water therein; ,
    상기 제설 배관 모듈은 상기 발전 부지로부터 상기 PV 모듈 각각의 상면에 걸쳐 쌓인 눈을 융해시키는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.The snow removing piping module is a device for improving efficiency of a photovoltaic power generation facility, characterized in that to melt the snow accumulated on the upper surface of each of the PV module from the power generation site.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제설 배관 모듈은 상기 복수의 PV 모듈이 배치된 방향을 따라 일측에서 타측으로 경사지게 배치되는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.The snow removing pipe module is an efficiency improving apparatus of the solar power generation facility, characterized in that arranged inclined from one side to the other side along the direction in which the plurality of PV modules are arranged.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 PV 모듈이 배치된 방향을 따라 일측에서 타측으로 상기 온수가 흐르는 제1 유로를 형성하는 배출 배관부와,A discharge pipe part forming a first flow path in which the hot water flows from one side to the other side along the direction in which the PV module is disposed;
    상기 배출 배관부가 형성하는 상기 제1 유로와 연결되며 상기 타측에서 상기 일측으로 상기 온수가 되돌아가는 제2 유로를 형성하는 복귀 배관부를 포함하며,A return pipe part connected to the first flow path formed by the discharge pipe part and forming a second flow path to which the hot water is returned from the other side to the one side;
    상기 배출 배관부와 상기 복귀 배관부의 일부는 각각 상기 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 설치되고,A portion of the discharge pipe portion and the return pipe portion are respectively installed at the power generation site adjacent to the lower edges of the plurality of PV modules,
    상기 온수는 상기 제1 유로 및 상기 제2 유로를 순환하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.The hot water circulates through the first flow passage and the second flow passage.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 발전 부지의 제1 위치에 배치되어 상기 온수가 수용되고, 상기 배출 배관부의 일단부 및 상기 복귀 배관부의 타단부가 각각 연결되는 제1 탱크와,A first tank disposed at a first position of the power generation site and accommodating the hot water, and having one end portion of the discharge pipe portion and the other end portion of the return piping portion connected to each other;
    상기 발전 부지의 제2 위치에 배치되어 상기 온수가 수용되고, 상기 배출 배관부의 타단부 및 상기 복귀 배관부의 일단부가 각각 연결되는 제2 탱크를 더 포함하며,A second tank disposed at a second position of the power generation site to accommodate the hot water and to which the other end of the discharge pipe part and one end of the return pipe part are respectively connected;
    상기 제1 위치는 상기 제2 위치보다 높은 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.The first position is higher than the second position, the efficiency improving apparatus of the solar power plant.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 복귀 배관부 상에 적어도 하나 이상 구비되어 상기 온수를 상기 배출 배관부측으로 이송시키는 제1 유체 펌프와,A first fluid pump provided on at least one of the return pipe parts to transfer the hot water to the discharge pipe part;
    상기 배출 배관부 상에 적어도 하나 이상 구비되어 상기 온수를 상기 복귀 배관부측으로 이송시키는 제2 유체 펌프를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.At least one or more provided on the discharge pipe portion efficiency improvement apparatus for a photovoltaic power generation equipment further comprises a second fluid pump for transferring the hot water to the return pipe side.
  6. 청구항 3 또는 청구항 4에 있어서,The method according to claim 3 or 4,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 복귀 배관부 상에 적어도 하나 이상 구비되어 상기 온수를 상기 배출 배관부측으로 되돌리는 제1 유체 펌프를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.At least one or more on the return pipe portion is provided with a first fluid pump for returning the hot water to the discharge pipe portion side efficiency improvement apparatus of the solar power plant.
  7. 청구항 4에 있어서,The method according to claim 4,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 제1 탱크의 외측면 하부에 구비되어 상기 배출 배관부의 일단부와 연결되는 제1 배출 포트와,A first discharge port provided below the outer surface of the first tank and connected to one end of the discharge pipe;
    상기 제1 탱크의 외측면 상부에 구비되어 상기 복귀 배관부의 타단부와 연결되는 제1 복귀 포트와,A first return port provided on the outer side of the first tank and connected to the other end of the return pipe;
    상기 제2 탱크의 외측면 하부에 구비되어 상기 복귀 배관부의 일단부와 연결되는 제2 배출 포트와,A second discharge port provided below the outer surface of the second tank and connected to one end of the return pipe;
    상기 제2 탱크의 외측면 상부에 구비되어 상기 배출 배관부의 타단부와 연결되는 제2 복귀 포트를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.And a second return port provided on the outer side of the second tank and connected to the other end of the discharge pipe part.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 배출 배관부는,The discharge pipe portion,
    상기 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 각각 설치되는 제1 융해부와,A first fusion unit installed at each of the power generation sites adjacent to edges of lower ends of the plurality of PV modules;
    복수의 상기 제1 융해부 각각의 일단부 또는 타단부를 상호 연결하는 제1 연결부와,A first connection part interconnecting one end or the other end of each of the plurality of first fusion parts;
    상기 제1 탱크와 가장 가깝게 배치된 상기 제1 융해부와 상기 제1 배출 포트를 상호 연결하는 제1 시작부와,A first start portion interconnecting the first fusion portion and the first discharge port disposed closest to the first tank,
    상기 제2 탱크와 가장 가깝게 배치된 상기 제1 융해부와 상기 제2 복귀 포트를 상호 연결하는 제1 경유부를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.And a first gas passage unit configured to interconnect the first fusion unit and the second return port disposed closest to the second tank.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 복귀 배관부는,The return pipe portion,
    상기 복수의 PV 모듈의 하단부 가장자리와 인접한 상기 발전 부지에 각각 설치되는 제2 융해부와,A second fusion unit installed at each of the power generation sites adjacent to lower edges of the plurality of PV modules;
    복수의 상기 제2 융해부 각각의 일단부 또는 타단부를 상호 연결하는 제2 연결부와,A second connection part interconnecting one end or the other end of each of the plurality of second fusion parts;
    상기 제2 탱크와 가장 가깝게 배치된 상기 제2 융해부와 상기 제2 배출 포트를 상호 연결하는 제2 시작부와,A second starting portion interconnecting the second melted portion and the second discharge port disposed closest to the second tank;
    상기 제1 탱크와 가장 가깝게 배치된 상기 제2 융해부와 상기 제1 복귀 포트를 상호 연결하는 제2 경유부를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.And a second gas passage unit which interconnects the second fusion unit and the first return port disposed closest to the first tank.
  10. 청구항 7에 있어서,The method according to claim 7,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 복귀 배관부의 타단부측에 구비되어 상기 제1 복귀 포트측으로 상기 온수를 끌어올리는 제1 유체 모터를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.And a first fluid motor provided at the other end side of the return pipe portion to draw up the hot water to the first return port side.
  11. 청구항 7에 있어서,The method according to claim 7,
    상기 제설 배관 모듈은,The snow removal piping module,
    상기 배출 배관부의 타단부측에 구비되어 상기 제2 복귀 포트측으로 상기 온수를 끌어올리는 제2 유체 모터를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율 향상 장치.And a second fluid motor provided at the other end side of the discharge pipe portion to pull up the hot water to the second return port side.
PCT/KR2015/010489 2015-09-07 2015-10-05 Device for enhancing efficiency of photovoltaic power generation plant WO2017043685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0126203 2015-09-07
KR20150126203 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043685A1 true WO2017043685A1 (en) 2017-03-16

Family

ID=58240080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010489 WO2017043685A1 (en) 2015-09-07 2015-10-05 Device for enhancing efficiency of photovoltaic power generation plant

Country Status (1)

Country Link
WO (1) WO2017043685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295866A (en) * 1992-02-17 1993-11-09 Kawakami Yougiyoushiyo:Kk Keeping-warm or heat recovering method for roofing material, and roofing material applied the same
JPH11274543A (en) * 1998-03-19 1999-10-08 Solar System Kk Method and apparatus for solar generation, heat collection and melting snow
JP2006278758A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar battery module and solar battery array
KR20110053610A (en) * 2009-11-16 2011-05-24 (주)하이레벤 Efficiency improvement system for solar photovoltaic power facilities
JP2014236213A (en) * 2013-05-31 2014-12-15 健夫 宮本 Solar cell panel cleaning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295866A (en) * 1992-02-17 1993-11-09 Kawakami Yougiyoushiyo:Kk Keeping-warm or heat recovering method for roofing material, and roofing material applied the same
JPH11274543A (en) * 1998-03-19 1999-10-08 Solar System Kk Method and apparatus for solar generation, heat collection and melting snow
JP2006278758A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar battery module and solar battery array
KR20110053610A (en) * 2009-11-16 2011-05-24 (주)하이레벤 Efficiency improvement system for solar photovoltaic power facilities
JP2014236213A (en) * 2013-05-31 2014-12-15 健夫 宮本 Solar cell panel cleaning device

Similar Documents

Publication Publication Date Title
WO2013073823A1 (en) Electricity-generating system using solar heat energy
WO2013154372A1 (en) Dry-type automatic dust removal apparatus for solar photovoltaic panels
JP5605707B2 (en) Energy supply device with energy panels in the form of roof tiles
GB2448920A (en) Solar energy collector for obtaining electrical and thermal energy
WO2009139586A2 (en) Photovoltaic module management system using water jet
WO2012108612A1 (en) Solar cell power generating device
WO2014084466A1 (en) System for improving efficiency of solar module
WO2022154202A1 (en) Variable rail-driven surface cleaning robot device
WO2020139004A1 (en) Cooling tower for reducing white smoke
WO2018199456A1 (en) Photovoltaic thermal hybrid power generation system and method using concentrated and flat hybrid solar cell
WO2015023009A1 (en) Complex power generation and desalination system
WO2010137763A1 (en) Wastewater heat recovery device and method thereof
WO2017043685A1 (en) Device for enhancing efficiency of photovoltaic power generation plant
WO2012011634A1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
US20120279555A1 (en) Solar cell roof tiles
WO2017043844A1 (en) Efficiency enhancement apparatus for solar photovoltaic equipment
WO2018117337A1 (en) Solar cell cooling device
WO2011034329A9 (en) Sunlight-collecting apparatus
WO2022119028A1 (en) Heating and cooling system using solar heat and geothermal heat as composite heat source
CN201887057U (en) Light-concentrating type solar energy power-generation module structure
CA2750261C (en) Heating apparatus using solar energy and method of heating using solar energy
CN201166380Y (en) High-efficiency anti-low temperature corrosion hydrothermal medium air pre-heating device
SE1250216A1 (en) Ceiling for absorbing solar energy
WO2015064791A1 (en) Automatic cleaning apparatus for solar cell module, automatic cleaning method for solar cell module using same, and solar power generating apparatus
WO2021040224A1 (en) Hot-air control system using heat storage function of solar block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.07.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15903665

Country of ref document: EP

Kind code of ref document: A1