WO2017043421A1 - 位置入力機能付き表示装置 - Google Patents

位置入力機能付き表示装置 Download PDF

Info

Publication number
WO2017043421A1
WO2017043421A1 PCT/JP2016/075764 JP2016075764W WO2017043421A1 WO 2017043421 A1 WO2017043421 A1 WO 2017043421A1 JP 2016075764 W JP2016075764 W JP 2016075764W WO 2017043421 A1 WO2017043421 A1 WO 2017043421A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display
position detection
crystal panel
detection electrode
Prior art date
Application number
PCT/JP2016/075764
Other languages
English (en)
French (fr)
Inventor
野間 幹弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017539147A priority Critical patent/JPWO2017043421A1/ja
Priority to CN201680049667.8A priority patent/CN107924255A/zh
Priority to US15/757,929 priority patent/US20180348904A1/en
Publication of WO2017043421A1 publication Critical patent/WO2017043421A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present invention relates to a display device with a position input function.
  • the touch display device described in Patent Document 1 includes a display touch screen including a first substrate, a second substrate, a liquid crystal layer, and a plurality of pixel units, and the display touch screen is arranged in a two-dimensional array.
  • the display touch control circuit includes a plurality of common electrodes, and the display touch control circuit includes a display control circuit and a touch control circuit.
  • the display touch control circuit is connected to the plurality of common electrodes through wiring so that the plurality of common electrodes are connected to a common level provided to the display control circuit, and touch detection is performed.
  • each of the plurality of common electrodes is connected to the touch control circuit as a touch detection electrode.
  • Patent Document 1 detects the touch position in the surface of the display touch screen, but cannot detect an operation in which the user pushes the display touch screen.
  • the present invention has been completed based on the above situation, and an object thereof is to detect an operation of pushing a display surface.
  • the display device with a position input function includes a display panel, a housing made of a conductive material that houses the display panel and is arranged to cover at least the surface opposite to the display surface, and the display panel.
  • a position detection electrode configured to form an electrostatic capacitance between the casing and the position input body that performs position input in the plane of the display surface, and detects an input position by the position input body; and the position detection On the basis of the difference in the signal related to the capacitance detected when the position change related to the input position by the position input body detected by the electrode is within a certain range, the pressing in the normal direction of the display surface is performed.
  • a calculation unit that calculates pressure.
  • the position detection electrode that forms a capacitance between the casing made of the conductive material and the position input body.
  • An input position by the position input body is detected. If the position change related to the input position by the position input body detected by the position detection electrode is within a certain range, an operation (pressing) in which the display panel is pushed along the normal direction of the display surface by the position input body Operation) may have been performed.
  • the display panel is bent and the position detection electrode provided on the display panel covers the surface opposite to the display surface of the display panel.
  • the calculation unit calculates the difference between the signals related to the capacitance detected when the position change related to the input position by the position input body detected by the position detection electrode is within a certain range.
  • the calculated difference is the amount of change in the signal related to the capacitance caused by the pressing operation by the position input body, and the pressing force in the normal direction of the display surface of the display panel is calculated based on the difference. .
  • the pressing force related to the pressing operation can be acquired in addition to the input position on the display surface of the display panel without requiring a sensor for detecting the pressing force.
  • the calculation unit calculates the pressing force by multiplying the difference by a correction coefficient corresponding to an input position on the display surface.
  • the amount of displacement of the position detection electrode due to the bending of the display panel when a pressing operation is performed by the position input body varies depending on the input position on the display surface, and is relatively large on the center side of the display surface, and the edge of the display surface On the side, it tends to be relatively small.
  • the calculation unit multiplies the difference relating to the capacitance by a correction coefficient corresponding to the input position on the display surface. This correction coefficient is derived based on the input position on the display surface.
  • the correction coefficient is a relatively small value. If there is, it tends to be a relatively large value.
  • the pressing force calculated by the calculation unit becomes more appropriate regardless of the input position.
  • a memory that stores, as a reference value, a signal related to the capacitance that is acquired when a variation value related to the input position detected by the position detection electrode exceeds a threshold value;
  • the pressing force is calculated based on the difference between the signal relating to the capacitance acquired when the fluctuation value does not exceed the threshold value and the reference value stored in the memory.
  • the input position by the position input body may have stopped and a pressing operation may have been performed.
  • the computing unit computes the pressing force based on the difference between the signal related to the acquired capacitance and the reference value stored in the memory. As described above, since the reference value of the signal related to the capacitance is obtained based on the fluctuation value related to the input position detected by the position detection electrode, the pressing force is calculated. The pressing force can be calculated based on the above, and the acquired pressing force becomes more appropriate.
  • the memory stores, as the reference value, a peak value in a signal related to capacitance acquired when the variation value exceeds the threshold value. In this way, the amount of information stored in the memory can be reduced as compared with the case where all signals relating to the capacitance are stored, so that the memory size can be reduced.
  • the housing includes a bottom portion that covers a surface of the display panel opposite to the display surface, and the bottom portion extends from the display panel toward the end side from the center side of the display surface.
  • a curved surface is formed so that the distance of is gradually reduced.
  • the displacement amount of the position detection electrode accompanying the pressing operation by the position input body tends to be relatively smaller on the end side of the display surface of the display panel than on the center side if the pressing force is the same.
  • the capacitance formed between the bottom and the position detection electrode due to the curved bottom as described above is relative to the end side of the display surface of the display panel relative to the center side. Therefore, the detection sensitivity related to the pressing force on the end side on the display surface is improved, and the difference that may occur between the detection sensitivity and the detection sensitivity on the center side is reduced.
  • a driver for driving the position detection electrode is mounted on the display panel, and the arithmetic unit is provided in the driver. As described above, since the pressing force is calculated by the calculation unit provided in the driver mounted on the display panel, it is preferable to increase the calculation speed of the pressing force.
  • connection component having one end connected to the display panel and a control circuit board connected to the other end of the connection component are provided, and the arithmetic unit is provided in the control circuit substrate. ing. If it does in this way, the calculating part with which a control circuit board is equipped can calculate a pressing force based on the signal transmitted from a display panel via a connection component. As compared with a case where a calculation unit is provided in a driver mounted on a display panel or a connection component, the driver can be reduced in size.
  • the calculation unit does not calculate the pressing force when the difference does not exceed the threshold value, and calculates the pressing force when the difference exceeds the threshold value. In this way, when the difference relating to the capacitance detected by the position detection electrode does not exceed the threshold value, the calculation unit does not calculate the pressing force, thereby detecting that there is no pressing operation. it can. On the other hand, if the difference between the maximum value of the capacitance detected by the position detection electrode and the reference value exceeds the threshold value, the calculation unit calculates the pressing force. It can be detected. As described above, it is possible to detect the presence or absence of the pressing operation.
  • the position detection electrode is built in the display panel. In this case, it is preferable to reduce the thickness as compared with the case where the position detection electrode is provided on a touch panel which is a separate component from the display panel.
  • the display panel is provided with at least a pixel electrode to which a voltage of a gradation corresponding to an image displayed on the display surface is applied and a common electrode to which a common potential is applied,
  • the common electrode includes a plurality of divided common electrodes that are arranged in a matrix in the plane of the display surface and constitute the position detection electrode. In this way, a predetermined image is displayed on the display surface of the display panel based on the potential difference between the pixel electrode and the common electrode. Since the common electrode is divided into a plurality of divided common electrodes, and the plurality of divided common electrodes are used as position detection electrodes, the structure is simplified and reduced compared to the case where a position detection electrode is provided separately from the common electrode. This is suitable for cost reduction.
  • the display panel includes at least a plurality of wirings individually connected to the plurality of divided common electrodes. In this way, when displaying an image on the display surface, the same common potential is applied to the plurality of divided common electrodes via the plurality of wires.
  • an input position by the position input body can be specified by supplying individual position detection signals to a plurality of divided common electrodes via a plurality of wires. As a result, the position detection sensitivity and the pressing force detection sensitivity become high, and it is also suitable for detecting multi-touch at two or more input positions.
  • the display panel includes at least a pair of substrates stacked on the housing side and the opposite side, and the position detection electrode is formed on a substrate disposed on the housing side of the pair of substrates. Is provided. In this case, the distance between the position detection electrode and the housing is shorter than when the position detection electrode is provided on the substrate opposite to the housing side. The pressure detection sensitivity becomes higher.
  • FIG. 1 is a plan view of a liquid crystal display device according to Embodiment 1 of the present invention.
  • Schematic sectional view of the liquid crystal display device cut along the short side direction Schematic cross-sectional view showing the cross-sectional configuration in the display area of the liquid crystal panel
  • the top view which shows roughly the wiring structure in the display area of the array board
  • the enlarged plan view which shows the plane structure in the display area of CF substrate which comprises a liquid crystal panel Sectional view of array substrate cut along line AA in FIG.
  • a plan view showing a planar arrangement of common electrodes on an array substrate constituting a liquid crystal panel Block diagram showing the relationship of the configuration related to position detection and pressure calculation Flowchart for calculating a pressing force related to a pressing operation with a finger Schematic sectional view showing a state where the center side of the display surface of the liquid crystal panel is pressed Schematic sectional view showing a state where the end side of the display surface of the liquid crystal panel is pressed A graph showing the reference value of the input position by the finger and the reference value of the capacitance signal in the state before the pressing operation Graph showing input position by finger and capacitance signal in the state of pressing operation A graph showing a state where the reference value of the capacitance signal is subtracted from the detected capacitance signal.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • a liquid crystal display device (display device with a position input function) 10 having a position input function is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side of FIGS. 2, 3 and 6 is the front side, and the lower side is the back side.
  • the liquid crystal display device 10 has a rectangular shape as a whole, and as shown in FIGS. 1 and 2, a liquid crystal panel (display panel) 11 having a display surface 11DS capable of displaying an image on the front plate surface, and a liquid crystal A backlight device (illumination device) 12 that is an external light source that is disposed on the back side (the opposite side to the display surface 11DS side) with respect to the panel 11 and irradiates the liquid crystal panel 11 with light for display, and the liquid crystal panel 11 And a case 13 that accommodates the backlight device 12, a cover glass (protective panel) 14 that is disposed on the front side with respect to the liquid crystal panel 11, and a case 13 and a cover glass 14 that are disposed on the back side, and these are arranged from the back side.
  • the liquid crystal display device 10 includes a mobile phone (including a smart phone), a notebook computer (including a tablet laptop computer), a wearable terminal (including a smart watch), a portable information terminal (electronic book or (Including PDAs), portable game machines, digital photo frames, and other various electronic devices (not shown).
  • the screen size of the liquid crystal panel 11 is about several inches to several tens of inches, and is generally a size classified as small or medium-sized.
  • the backlight device 12 includes at least a light source (not shown) (for example, a cold cathode tube, an LED, an organic EL, etc.) and an optical member (not shown).
  • the optical member has a function of converting light emitted from the light source into a planar shape.
  • the case 13 is made of a synthetic resin material (non-conductive material) having no electrical conductivity and has a substantially box shape opened toward the front side.
  • the liquid crystal panel 11 and the backlight device 12 are accommodated in the case 13. Yes.
  • the cover glass 14 is disposed so as to cover the liquid crystal panel 11 from the front side over the entire region, thereby protecting the liquid crystal panel 11.
  • the cover glass 14 constitutes the external appearance of the front side of the liquid crystal display device 10.
  • the cover glass 14 is formed of a plate-like base material made of glass having a rectangular shape in a plan view and substantially transparent and having excellent translucency, and preferably made of tempered glass.
  • the tempered glass used for the cover glass 14 it is preferable to use a chemically tempered glass having a chemically strengthened layer on the surface, for example, by subjecting the surface of a plate-shaped glass substrate to a chemical strengthening treatment.
  • the cover glass 14 has high mechanical strength and impact resistance, the liquid crystal panel 11 arranged on the back side can be more reliably prevented from being damaged or damaged. .
  • the casing 15 is made of a metal material (conductive material) such as iron or aluminum having conductivity and is formed in a substantially box shape with an opening on the front side. The opening is formed by a cover glass 14. It is blocked.
  • the casing 15 includes a bottom portion 15a that is opposed to and covers the surface of the liquid crystal panel 11 opposite to the display surface 11DS side, and a side portion 15b that rises from the outer peripheral end of the bottom portion 15a toward the front side. It is configured.
  • the bottom portion 15a has a flat plate shape parallel to the display surface 11DS of the liquid crystal panel 11, and has the same shape and size as viewed from above in the same manner as the cover glass 14.
  • the bottom 15a has a long side direction corresponding to the Y-axis direction and a short side direction corresponding to the X-axis direction.
  • the side portion 15b rises from each side at the outer peripheral end portion of the bottom portion 15a, thereby forming a substantially short cylindrical shape as a whole.
  • the back surface of the outer peripheral end portion of the cover glass 14 is fixed to the rising tip portion of the side portion 15b.
  • a fixing member such as a double-sided tape is used for fixing the casing 15 to the cover glass 14.
  • the liquid crystal panel 11 will be described. As shown in FIGS. 1 and 7, the liquid crystal panel 11 has a vertically long rectangular shape (rectangular shape) as a whole, and is offset to one end side (the upper side shown in FIG. 7) in the long side direction. A display area (active area) AA in which an image is displayed is arranged at a position, and the driver 16 and the flexible substrate 17 are respectively positioned at the other end side (the lower side shown in FIG. 7) in the long side direction. It is attached. An area outside the display area AA in the liquid crystal panel 11 is a non-display area (non-active area) NAA in which an image is not displayed.
  • the non-display area NAA is a substantially frame-shaped area (CF described later) surrounding the display area AA.
  • the mounting area (attachment area) of the driver 16 and the flexible substrate 17 is included in the area secured on the other end side in the long side direction.
  • the short side direction coincides with the X-axis direction
  • the long side direction coincides with the Y-axis direction
  • the normal direction of the display surface 11DS coincides with the Z-axis direction.
  • a control board (control circuit board) 18 serving as a signal supply source is connected to an end of the flexible board 17 opposite to the liquid crystal panel 11 side.
  • a frame-shaped one-dot chain line represents the outer shape of the display area AA, and an area outside the one-dot chain line is a non-display area NAA.
  • the driver 16 is composed of an LSI chip having a drive circuit therein, and operates based on a signal supplied from the control board 18 to generate an output signal. Are output toward the display area AA of the liquid crystal panel 11.
  • the driver 16 has a horizontally long rectangular shape when viewed in a plan view (longitudinal along the short side of the liquid crystal panel 11), and also with respect to a non-display area NAA of the liquid crystal panel 11 (array substrate 11b described later). It is mounted directly, that is, COG (Chip On Glass).
  • the long side direction of the driver 16 coincides with the X-axis direction (the short side direction of the liquid crystal panel 11), and the short side direction coincides with the Y-axis direction (the long side direction of the liquid crystal panel 11).
  • the flexible substrate 17 includes a base material made of a synthetic resin material having insulating properties and flexibility (for example, polyimide resin), and a large number of wiring patterns (not shown) are formed on the base material. And one end in the length direction is connected to the control substrate 18 as described above, while the other end (the other end) is connected to the array substrate 11b in the liquid crystal panel 11. It is connected to the. For this reason, the flexible substrate 17 is bent in a folded shape so that the cross-sectional shape is substantially U-shaped in the liquid crystal display device 10. At both ends of the flexible substrate 17 in the length direction, the wiring pattern is exposed to the outside to form terminal portions (not shown), and these terminal portions are respectively connected to the control substrate 18 and the liquid crystal panel 11. Are electrically connected. As a result, a signal supplied from the control board 18 side can be transmitted to the liquid crystal panel 11 side.
  • a synthetic resin material having insulating properties and flexibility for example, polyimide resin
  • control board 18 is attached to the back surface (the outer surface opposite to the liquid crystal panel 11 side) of the backlight device 12 with screws or the like.
  • the control board 18 is mounted with electronic components for supplying various signals to the driver 16 on a board made of paper phenol or glass epoxy resin, and wiring (conductive path) of a predetermined pattern (not shown) is routed. Is formed.
  • One end (one end side) of the flexible substrate 17 is electrically and mechanically connected to the control substrate 18 via an ACF (Anisotropic Conductive Film) (not shown).
  • the liquid crystal panel 11 includes a pair of substrates 11 a and 11 b and liquid crystal molecules that are disposed in an internal space between the substrates 11 a and 11 b and change in optical properties when an electric field is applied.
  • the liquid crystal layer (medium layer) 11c is included, and the liquid crystal layer 11c is surrounded by a seal portion (not shown) interposed between the substrates 11a and 11b for sealing.
  • the front side (front side) is a CF substrate (counter substrate) 11a
  • the back side (back side) is an array substrate (active matrix substrate, element substrate) 11b.
  • Each of the CF substrate 11a and the array substrate 11b is formed by laminating various films on the inner surface side of a glass substrate made of glass. Note that polarizing plates 11d and 11e are attached to the outer surface sides of both the substrates 11a and 11b, respectively.
  • the display area AA on the inner surface side of the array substrate 11b is a TFT (Thin Film Transistor: display element) as a switching element.
  • TFT Thin Film Transistor: display element
  • a plurality of pixel electrodes 11g are provided side by side in a matrix (matrix), and a gate wiring (scanning line) 11i and a source wiring (data line) that form a grid around the TFT 11f and the pixel electrode 11g.
  • Signal line is disposed so as to surround it.
  • a gate insulating film 11p for insulating each other is provided between the gate wiring 11i and the source wiring 11j.
  • the gate wiring 11i and the source wiring 11j are connected to the gate electrode 11f1 and the source electrode 11f2 of the TFT 11f, respectively, and the pixel electrode 11g is connected to the drain electrode 11f3 of the TFT 11f.
  • the TFT 11f is driven based on various signals respectively supplied to the gate wiring 11i and the source wiring 11j, and the supply of the potential to the pixel electrode 11g is controlled in accordance with the driving.
  • the TFT 11f has a channel portion 11f4 that connects the drain electrode 11f3 and the source electrode 11f2, and an oxide semiconductor material is used as a semiconductor film constituting the channel portion 11f4.
  • the oxide semiconductor material that constitutes the channel portion 11f4 has an electron mobility that is, for example, about 20 to 50 times higher than that of an amorphous silicon material. Therefore, the TFT 11f can be easily miniaturized to reduce the size of the pixel electrode 11g.
  • the amount of transmitted light (the aperture ratio of the pixel PX) can be maximized, which is suitable for achieving high definition and low power consumption.
  • the extending direction of the gate wiring 11i coincides with the X-axis direction
  • the extending direction of the source wiring 11j coincides with the Y-axis direction.
  • the pixel electrode 11g is arranged in a rectangular region surrounded by the gate wiring 11i and the source wiring 11j, and a plurality of slits are formed.
  • the pixel electrode 11g is made of a transparent electrode film (upper side transparent electrode film) such as ITO (IndiumInTin Oxide) or ZnO (Zinc Oxide).
  • the pixel electrode 11g is provided on the upper layer side with respect to the lower layer side interlayer insulating film 11q, the planarizing film 11r, and the upper layer side interlayer insulating film 11s.
  • a TFT contact hole CH1 is formed in the lower interlayer insulating film 11q, the planarizing film 11r, and the upper interlayer insulating film 11s so as to overlap with the drain electrode 11f3 of the TFT 11f in a plan view.
  • the pixel electrode 11g is electrically connected to the drain electrode 11f3 of the TFT 11f through the contact hole CH1.
  • a common electrode 11h made of a transparent electrode film (lower layer side transparent electrode film) is provided between the planarizing film 11r and the upper interlayer insulating film 11s. In the common electrode 11h, an opening is formed at least in a portion overlapping with the TFT contact hole CH1.
  • the pixel electrode 11g and the common electrode 11h are formed on the array substrate 11b.
  • the liquid crystal layer 11c extends along the plate surface of the array substrate 11b.
  • a fringe electric field an oblique electric field
  • the operation mode of the liquid crystal panel 11 is an FFS (Fringe Field Switching) mode in which the IPS (In-Plane Switching) mode is further improved.
  • a color filter 11k is provided at a position facing each pixel electrode 11g on the array substrate 11b side.
  • the color filter 11k is formed by repeatedly arranging three colored portions of R (red), G (green), and B (blue) in a matrix.
  • the colored portions (each pixel PX) of the color filter 11k arranged in a matrix are partitioned by a light shielding portion (black matrix) 11l.
  • the light shielding portion 11l prevents color mixing in which light of each color transmitted through each colored portion is mixed.
  • the light-shielding portion 11l has a lattice shape when viewed from the plane and partitions the colored portions, and a frame that forms a frame shape (frame shape) when viewed from the plane and surrounds the lattice portion from the outer peripheral side. And a shape portion.
  • the grid-like portion in the light shielding portion 11l is arranged so as to overlap with the above-described gate wiring 11i and source wiring 11j in a plan view.
  • the frame-shaped portion in the light shielding portion 11l extends following the seal portion, and has a vertically long rectangular frame shape when seen in a plan view.
  • An overcoat film (planarizing film) 11m is provided on the inner surface of the color filter 11k and the light shielding part 11l.
  • one pixel PX is configured by a set of a colored portion in the color filter 11k and a pixel electrode 11g opposed to the colored portion.
  • the pixel PX includes a red pixel having an R colored portion of the color filter 11k, a green pixel having a G colored portion of the color filter 11k, and a blue pixel having a B colored portion of the color filter 11k, and It is included.
  • These three-color pixels PX are arranged repeatedly along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 11 to form a pixel group, and this pixel group is arranged in the column direction (Y-axis). Many are arranged along the direction.
  • a large number of pixels PX are arranged in a matrix within the display area AA of the liquid crystal panel 11.
  • alignment layers 11n and 11o for aligning liquid crystal molecules contained in the liquid crystal layer 11c are formed as the innermost layers of both the substrates 11a and 11b and in contact with the liquid crystal layer 11c.
  • the liquid crystal panel 11 has a display function for displaying an image and a position input function (position) for detecting a position (input position) input by the user based on the displayed image.
  • Detection function a position input function for detecting a position (input position) input by the user based on the displayed image.
  • Detection function a touch panel pattern for implementing the position input function is built in (in-cell).
  • This touch panel pattern is a so-called projected capacitance method, and its detection method is a self-capacitance method.
  • the touch panel pattern is provided on the array substrate 11b of the pair of substrates 11a and 11b, and a plurality of touch panel patterns arranged in a matrix within the surface of the display surface 11DS on the array substrate 11b.
  • the position detection electrode 19 is configured.
  • the position detection electrode 19 is arranged in the display area AA of the array substrate 11b. Therefore, the display area AA in the liquid crystal panel 11 substantially coincides with the touch area where the input position can be detected, and the non-display area NAA substantially coincides with the non-touch area where the input position cannot be detected.
  • the position detection electrode 19 forms a capacitance with the conductive casing 15 in the liquid crystal display device 10.
  • a finger (position detection body) F that is a conductor is brought close to the surface of the cover glass 14 in order to input a position based on the image of the display area AA visually recognized through the cover glass 14 in the liquid crystal display device 10. Then, a capacitance is also formed between the finger F and the position detection electrode 19.
  • the capacitance detected by the position detection electrode 19 near the finger F is changed from the state before the finger approaches, and is different from the position detection electrode 19 far from the finger F. Therefore, it becomes possible to detect an input position based on it.
  • the position detection electrode 19 may form a parasitic capacitance for conductors other than the housing 15 and the finger F.
  • the position detection electrode 19 is composed of a common electrode 11h provided on the array substrate 11b.
  • the common electrode 11h includes a plurality of divided common electrodes 11hS which are divided into a grid pattern in the plane of the display surface 11DS and are electrically independent from each other. Each of them constitutes a position detection electrode 19.
  • a plurality of position detection electrodes 19 are arranged in a matrix along the X-axis direction and the Y-axis direction in the plane of the display surface 11DS.
  • the position detection electrode 19 has a substantially square shape when seen in a plan view, and has a side dimension of about 4 mm, for example. Accordingly, the position detection electrode 19 is larger in size in plan view than the pixel PX (pixel electrode 11g), and is arranged in a range that spans a plurality of pixels PX in the X-axis direction and the Y-axis direction. .
  • the number of the position detection electrodes 19 is preferably about 500.
  • FIG. 7 schematically shows the arrangement of the position detection electrodes 19, and the specific number and arrangement of the position detection electrodes 19 can be changed as appropriate other than the illustration.
  • a plurality of wirings 20 are individually connected to the plurality of position detection electrodes 19.
  • the wiring 20 is made of, for example, a metal film provided in a form (see FIG. 6) interposed between the lower interlayer insulating film 11q and the planarizing film 11r, and is a position detection electrode having an opening formed in the planarizing film 11r.
  • the position detection electrode 19 (the divided common electrode 11hS) is connected through the contact hole CH2.
  • the wiring 20 extends linearly along the Y-axis direction in the display area AA, that is, the extending direction of the source wiring 11j, and overlaps with the source wiring 11j (the light shielding portion 11l) when viewed in a plan view. Are arranged at non-overlapping positions.
  • the wiring 20 has one end connected to the position detection electrode 19 through the position detection electrode contact hole CH2 in the display area AA, whereas the other end is connected to the driver 16 in the non-display area NAA.
  • the driver 16 connected to the wiring 20 can drive the position detection electrode 19 through the wiring 20. That is, the driver 16 drives the TFT 11f when displaying an image, and drives the position detection electrode 19 when detecting the position, and has both a display function and a position detection function.
  • the plurality of wirings 20 connected to the driver 16 are individually associated with the plurality of position detection electrodes 19.
  • the capacitance detected by one or more specific position detection electrodes 19 has changed that the other position detection electrodes 19 do not have.
  • the position detection electrode 19 whose capacitance has changed can be specified by the wiring 20 associated therewith, and the input position can be easily specified and detected.
  • the position detection sensitivity and the pressure detection sensitivity described later are high, and it is also suitable for detecting multi-touch at two or more input positions.
  • the user moves the liquid crystal panel 11 to the display surface 11DS. It is also possible to detect a pressing force related to an operation (pressing operation) that is pushed in along the linear direction (Z-axis direction).
  • the driver 16 according to the present embodiment has a position change related to the input position by the user's finger F detected by the position detection electrode 19 within a certain range.
  • a computing unit 21 is provided that computes the pressing force in the normal direction of the display surface 11DS based on the difference in signal related to the electrostatic capacitance that is sometimes detected.
  • the pressing operation may be performed by the finger F.
  • the liquid crystal panel 11 is bent and the built-in position detection electrode 19 covers the surface of the liquid crystal panel 11 opposite to the display surface 11DS. Since it is displaced so as to approach the bottom 15a of the case 15 disposed, the capacitance between the position detection electrode 19 and the case 15 increases accordingly. Therefore, the calculation unit 21 calculates the difference between the signals related to the capacitance detected when the position change related to the input position by the finger F detected by the position detection electrode 19 is within a certain range.
  • the calculated difference is a change amount of a signal related to the capacitance caused by the pressing operation with the finger F, and the calculation unit 21 acts on the liquid crystal panel 11 in accordance with the pressing operation with the finger F based on the difference.
  • the pressing force is calculated.
  • the pressing force related to the pressing operation can be acquired in addition to the input position on the display surface 11DS of the liquid crystal panel 11 without requiring a sensor for detecting the pressing force.
  • the calculation unit 21 is provided in the driver 16, it is suitable for increasing the calculation speed of the pressing force.
  • the driver 16 uses a signal related to the capacitance acquired when the fluctuation value related to the input position detected by the position detection electrode 19 exceeds the threshold as a reference.
  • a memory 22 for storing values is provided.
  • the memory 22 is a non-volatile recording medium such as a flash memory.
  • the calculation unit 21 stores in the memory 22 a signal related to the capacitance acquired when the fluctuation value related to the input position detected by the position detection electrode 19 does not exceed the threshold value, and the memory 22.
  • the pressing force is calculated based on the difference between the calculated reference value and the reference value.
  • the memory 22 stores a signal related to the acquired capacitance as a reference value.
  • the fluctuation value related to the input position detected by the position detection electrode 19 does not exceed the threshold value, it can be determined that the input position by the finger F is stopped and the pressing operation is performed.
  • the calculation unit 21 calculates a difference between the signal related to the acquired capacitance and the reference value stored in the memory 22, and based on the calculated difference, presses that act on the liquid crystal panel 11 in accordance with the pressing operation. The pressure is calculated.
  • the pressing force is calculated.
  • the pressing force can be calculated based on the value, and the acquired pressing force becomes more appropriate.
  • the calculation unit 21 detects a correction coefficient corresponding to the input position on the display surface 11DS of the liquid crystal panel 11 when the position change related to the input position by the finger F is within a certain range.
  • the pressing force is calculated by multiplying the difference of the signal related to the electrostatic capacitance.
  • the correction coefficient is stored in the memory 22 and is set as follows. First, when the pressing operation with the finger F is performed, the amount of displacement of the position detection electrode 19 due to the bending of the liquid crystal panel 11 varies depending on the input position on the display surface 11DS. Specifically, for example, when the pressing force acting on the liquid crystal panel 11 in the pressing operation with the finger F is constant, the liquid crystal panel 11 is easily bent at the center side of the display surface 11DS as shown in FIG.
  • the accompanying displacement amount of the position detection electrode 19 is relatively large.
  • the liquid crystal panel 11 On the end side of the display surface 11DS, as shown in FIG. 11, the liquid crystal panel 11 is difficult to bend. It tends to be relatively small. Therefore, the correction coefficient multiplied by the difference relating to the capacitance when calculating the pressing force is a relatively small value when the input position is on the center side of the display surface 11DS, and the input position is the display surface 11DS. Is set to a relatively large value in the case of the end side. That is, the correction coefficient has an inverse correlation with the distribution of the deflection amount of the liquid crystal panel 11 due to the input position in the display surface 11DS and the displacement amount of the position detection electrode 19 associated therewith. As a result, as shown in FIG.
  • the input position is changed.
  • the difference related to the capacitance is relatively larger than that on the end side of the display surface 11DS, the correction force to be multiplied by the difference is set to be small, so that the calculated pressing force is excessive. Can be avoided.
  • the input position is the end side of the display surface 11DS and the liquid crystal panel 11 is bent relatively small and the displacement amount of the position detection electrode 19 is small, the input position is the center side of the display surface 11DS.
  • the difference relating to the capacitance is relatively smaller than in the case where the difference is made, it is possible to prevent the calculated pressing force from becoming too small by setting a large correction coefficient to be multiplied by the difference. As described above, the pressing force calculated by the calculation unit 21 becomes more appropriate regardless of the input position.
  • This embodiment has the structure as described above, and its operation will be described next. Since the liquid crystal display device 10 according to the present embodiment has a position input function, the user can perform position input with the finger F based on an image displayed on the display surface 11DS of the liquid crystal panel 11. . Since the common electrode 11h provided on the array substrate 11b of the liquid crystal panel 11 is also the position detection electrode 19, a common potential (reference potential) serving as a reference for the potential of the pixel electrode 11g is applied by the driver 16 during display. When detecting the position, the driver 16 applies a potential for forming a capacitance between the housing 15 and the finger F. That is, the driver 16 controls driving of the liquid crystal panel 11 by dividing one unit period into a display period and a position detection period.
  • a scanning signal is supplied from the driver 16 to each gate line 11i, a data signal is supplied to each source line 11j, and a common potential signal is supplied to each line 20.
  • a voltage corresponding to the data signal supplied to each source line 11j is supplied to the pixel electrode via the channel portion 11f4 of the TFT 11f. 11 g.
  • the same common potential is collectively applied at the same timing to each divided common electrode 11hS of the common electrode 11h by the common potential signal supplied to each wiring 20.
  • each pixel PX Based on the potential difference between each pixel electrode 11g and the common electrode 11h, each pixel PX performs display with a predetermined gradation, and thus a predetermined image is displayed on the display surface 11DS of the liquid crystal panel 11.
  • a position detection drive signal is supplied from the driver 16 to each wiring 20.
  • Each position detection electrode 19 driven by the position detection drive signal supplied to each wiring 20 forms a predetermined capacitance with the housing 15.
  • the position detection electrode 19 near the finger F is used.
  • a capacitance is formed between the finger F and the finger F. That is, the position detection electrode 19 close to the finger F forms a capacitance with the finger F in addition to the housing 15, and therefore has a larger capacitance than the position detection electrode 19 far from the finger F.
  • the driver 16 detects the capacitance of each position detection electrode 19 via each wiring 20, the driver 16 extracts the detected capacitance from the detected capacitance, and the change has occurred. Position information on the display surface 11DS of the position detection electrode 19 connected to the wiring 20 that has transmitted the capacitance is acquired. Thereby, the input position by the user's finger F can be detected.
  • the liquid crystal display device 10 can detect the pressing force in the following manner when a pressing operation for pressing the liquid crystal panel 11 along the Z-axis direction is performed by the user's finger F. it can.
  • the calculation unit 21 acquires a signal related to the capacitance of the position detection electrode 19 to which position input has been performed by the finger F (step S ⁇ b> 10), and determines an input position based on the acquired signal.
  • step S11 the calculation unit 21 calculates coordinate information (x, y) related to the input position on the display surface 11 ⁇ / b> DS of the liquid crystal panel 11.
  • the calculation unit 21 calculates the change amount of the input position and determines whether the calculated change amount is equal to or less than a threshold value (step S12). As a change amount of the input position, the calculation unit 21 subtracts the coordinate information (x1, y1) related to the reference value of the input position from the coordinate information (x2, y2) related to the acquired input position ( ⁇ x, ⁇ y) is calculated.
  • the threshold value of the change amount is set to a numerical value such that at least the input position with the finger F is less than the change amount during movement and the input position with the finger F exceeds the change amount during stop.
  • the coordinate information (x2, y2) relating to the acquired input position becomes equal to the difference value ( ⁇ x, ⁇ y) and exceeds the change amount threshold.
  • the amount of change in the input position exceeds the threshold value, it can be determined that the input position is moving and no pressing operation is performed, so the calculation unit 21 stores the acquired signal and input position in the memory 22 as a reference value. (Step S13), the process returns to Step S10.
  • step S14 When the change amount of the input position is less than or equal to the threshold value, as shown in FIG. 9, it can be determined that there is a possibility that the input position is stopped and a pressing operation has been performed.
  • the difference from the value is calculated (step S14).
  • the difference calculated here is the electrostatic capacity signal (see FIG. 12) before the pressing operation with the finger F is performed, and the electrostatic capacity signal (FIG. 13) when the pressing operation with the finger F is performed. (Refer to FIG. 14), and reflects the change in capacitance caused by the pressing operation (see FIG. 14).
  • 12 to 14 are graphs showing the input position by the finger F and the electrostatic capacity signal.
  • the X-axis direction and the Y-axis direction in each figure indicate the input position in the plane of the display surface 11DS.
  • Each of the axial directions represents a capacitance signal.
  • the numerical values related to the capacitance signal in FIGS. 12 to 14 are unitless numerical values obtained by converting analog data related to the electrostatic
  • the calculation unit 21 multiplies the difference by a correction coefficient corresponding to the input position (step S15).
  • the calculation unit 21 extracts the one associated with the coordinate information (x2, y2) related to the input position from the correction coefficients stored in the memory 22, and multiplies the difference by the extracted correction coefficient.
  • This correction coefficient has an inverse correlation with the distribution of the deflection amount of the liquid crystal panel 11 due to the input position in the display surface 11DS and the displacement amount of the position detection electrode 19 associated therewith.
  • the value calculated by multiplying is appropriate regardless of the input position.
  • the calculating part 21 converts a calculated value into a pressure value (step S16).
  • the memory 22 stores a database in which the calculated value related to the difference and the pressure value are linked, and the calculation unit 21 converts the calculated value into a pressure value with reference to this database. If a pressure value is acquired, it will return to step S10 again.
  • the liquid crystal display device (display device with position input function) 10 accommodates the liquid crystal panel (display panel) 11 and the liquid crystal panel 11 at least on the surface opposite to the display surface 11DS.
  • the casing 15 made of a conductive material arranged in a covering manner and a finger (position input body) F provided on the liquid crystal panel 11 and performing position input in the plane of the casing 15 and the display surface 11DS.
  • a position detection electrode 19 that forms a capacitance and detects an input position by the finger F, and electrostatic that is detected when the position change related to the input position by the finger F detected by the position detection electrode 19 is within a certain range.
  • a calculation unit 21 that calculates a pressing force in the normal direction of the display surface 11DS based on a difference in signal related to the capacity.
  • the position detection electrode that forms a capacitance between the casing 15 made of a conductive material and the finger F.
  • the input position by the finger F is detected by 19. If the position change related to the input position by the finger F detected by the position detection electrode 19 is within a certain range, an operation in which the liquid crystal panel 11 is pushed by the finger F along the normal direction of the display surface 11DS ( (Pressing operation) may be performed.
  • the pressing operation with the finger F is performed, the liquid crystal panel 11 is bent and the position detection electrode 19 provided on the liquid crystal panel 11 is the surface opposite to the display surface 11DS of the liquid crystal panel 11.
  • the calculation unit 21 calculates a difference between signals related to the capacitance detected when the position change related to the input position by the finger F detected by the position detection electrode 19 is within a certain range.
  • the calculated difference is the amount of change in the signal related to the capacitance caused by the pressing operation with the finger F, and the pressing force in the normal direction of the display surface 11DS of the liquid crystal panel 11 is calculated based on the difference. Yes.
  • the pressing force related to the pressing operation can be acquired in addition to the input position on the display surface 11DS of the liquid crystal panel 11 without requiring a sensor for detecting the pressing force.
  • the calculation unit 21 calculates a pressing force by multiplying the difference by a correction coefficient corresponding to the input position on the display surface 11DS.
  • the displacement amount of the position detection electrode 19 due to the bending of the liquid crystal panel 11 varies depending on the input position on the display surface 11DS, and becomes relatively large on the center side of the display surface 11DS. It tends to be relatively small on the end side of the surface 11DS.
  • the calculation unit 21 multiplies the difference relating to the capacitance by a correction coefficient corresponding to the input position on the display surface 11DS. This correction coefficient is derived based on the input position on the display surface 11DS.
  • the correction coefficient is a relatively small value. In the case of the end side, it tends to be a relatively large value. By using such a correction coefficient, the pressing force calculated by the calculation unit 21 becomes more appropriate regardless of the input position.
  • the memory 22 which memorize
  • the pressing force is calculated based on the difference between the signal related to the capacitance acquired when the value does not exceed the threshold and the reference value stored in the memory 22.
  • the input position by the finger F is moving, and in this case, the acquired capacitance is stored in the memory 22. Is stored as a reference value.
  • the input position by the finger F may have stopped and a pressing operation may have been performed.
  • the computing unit 21 computes the pressing force based on the difference between the signal related to the acquired capacitance and the reference value stored in the memory 22. As described above, since the reference value of the signal related to the capacitance is obtained based on the fluctuation value related to the input position detected by the position detection electrode 19, the pressing force is calculated. The pressing force can be calculated based on the value, and the acquired pressing force becomes more appropriate.
  • a driver 16 for driving the position detection electrode 19 is mounted on the liquid crystal panel 11, and the calculation unit 21 is provided in the driver 16. As described above, since the pressing force is calculated by the calculation unit 21 provided in the driver 16 mounted on the liquid crystal panel 11, it is preferable to increase the calculation speed of the pressing force.
  • the position detection electrode 19 is built in the liquid crystal panel 11. In this way, it is preferable to reduce the thickness as compared with the case where the position detection electrode 19 is provided on a touch panel that is a separate component from the liquid crystal panel 11.
  • the liquid crystal panel 11 is provided with at least a pixel electrode 11g to which a voltage having a gradation corresponding to an image displayed on the display surface 11DS is applied and a common electrode 11h to which a common potential is applied.
  • the common electrode 11h includes a plurality of divided common electrodes 11hS that are arranged side by side in a matrix within the display surface 11DS and that constitute the position detection electrode 19. In this way, a predetermined image is displayed on the display surface 11DS of the liquid crystal panel 11 based on the potential difference between the pixel electrode 11g and the common electrode 11h.
  • the common electrode 11h is divided into a plurality of divided common electrodes 11hS and the plurality of divided common electrodes 11hS are used as the position detection electrodes 19, compared with the case where the position detection electrode 19 is provided separately from the common electrode 11h, This is suitable for simplifying the structure and reducing the cost.
  • the liquid crystal panel 11 is provided with at least a plurality of wirings 20 that are individually connected to the plurality of divided common electrodes 11hS. In this way, when displaying an image on the display surface 11DS, the same common potential is applied to the plurality of divided common electrodes 11hS via the plurality of wirings 20.
  • an input position by the finger F can be specified by supplying individual position detection signals to the plurality of divided common electrodes 11hS via the plurality of wires 20.
  • the position detection sensitivity and the pressing force detection sensitivity become high, and it is also suitable for detecting multi-touch at two or more input positions.
  • the liquid crystal panel 11 has at least a pair of substrates 11a and 11b that are stacked on the housing 15 side and the opposite side, and the position detection electrode 19 is on the housing 15 side of the pair of substrates 11a and 11b. Are provided on an array substrate (substrate) 11b. In this way, the distance between the position detection electrode 19 and the housing 15 is shorter than when the position detection electrode 19 is provided on the CF substrate 11a opposite to the housing 15 side. Therefore, the position detection sensitivity and the pressing force detection sensitivity become higher.
  • step S23 the peak value in the capacitance signal is stored as the peak value of the reference value.
  • the electrostatic capacity signal and its peak value will be described.
  • the graphs shown in FIGS. 12 to 14 are the electrostatic capacity signal, whereas the peak value is the largest in the Z-axis direction of the signal. It is a high number. That is, if it is determined as “NO” in step S22, the calculation unit extracts a peak value from the acquired signal and stores the peak value and the input position in the memory as a reference value. .
  • step S24 the calculation unit calculates a difference between the peak value in the capacitance signal and the peak value of the reference value. Steps S20 to S22 and steps S25 to S26 other than steps S23 and S24 are the same as steps S10 to S12 and steps S15 to S16 of the first embodiment.
  • the memory stores, as a reference value, the peak value in the signal related to the capacitance acquired when the variation value exceeds the threshold value. In this way, the amount of information stored in the memory can be reduced as compared with the case where all signals relating to the capacitance are stored, so that the memory size can be reduced.
  • the casing 215 has a curved bottom surface 215a so that the distance from the liquid crystal panel 211 gradually decreases from the center side to the end side of the display surface 211DS of the liquid crystal panel 211. It has a shape. Specifically, the bottom portion 215a has a substantially spherical crown as a whole, and a distance in the Z-axis direction (the normal direction of the display surface 211DS) between the liquid crystal panel 211 and a portion overlapping with the center position of the display surface 211DS. Is the largest, whereas the distance between the outer peripheral end portion and the liquid crystal panel 211 in the Z-axis direction is the smallest.
  • the displacement amount of the position detection electrode accompanying the pressing operation with the finger F is relatively smaller on the end side of the display surface 211DS of the liquid crystal panel 211 than on the center side, and vice versa.
  • the center side tends to be relatively larger than the end side (see FIG. 17).
  • the capacitance formed between the bottom portion 215a and the position detection electrode due to the curved bottom portion 215a as described above is such that the end side of the display surface 211DS of the liquid crystal panel 211 is closer to the center side.
  • the center side is relatively smaller than the end side. Therefore, the detection sensitivity relating to the pressing force on the end side on the display surface 211DS is improved, and the difference that may occur between the detection sensitivity and the same detection sensitivity on the center side is reduced.
  • the housing 215 has the bottom 215a that covers the surface opposite to the display surface 211DS of the liquid crystal panel 211, and the bottom 215a is the central side of the display surface 211DS.
  • a curved surface is formed so that the distance from the liquid crystal panel 211 gradually decreases from the end toward the end.
  • the displacement amount of the position detection electrode accompanying the pressing operation with the finger F tends to be relatively smaller on the end side of the display surface 211DS of the liquid crystal panel 211 than on the center side if the pressing force is the same.
  • the capacitance formed between the bottom portion 215a and the position detection electrode due to the curved bottom portion 215a as described above is such that the end side of the display surface 211DS of the liquid crystal panel 211 is closer to the center side. Therefore, the detection sensitivity related to the pressing force on the end side on the display surface 211DS is improved, and a difference that may occur between the detection sensitivity and the same detection sensitivity on the center side is reduced.
  • the calculation unit determines whether or not the difference is equal to or greater than a threshold value after calculating the difference between the capacitance signal and the reference value in Step S34 (Step S34). S35).
  • the threshold value in step S35 is, for example, the minimum value of the amount of change in capacitance that can occur with the pressing operation. Therefore, if the difference does not exceed the threshold value in step S34, it can be determined that the difference is due to a capacitance detection error or the like, so the calculation unit returns to step S30 without calculating the pressing force. Thereby, it can be detected that there has been no pressing operation.
  • step S34 If the difference is equal to or greater than the threshold value in step S34, the calculation unit multiplies the difference by a correction coefficient corresponding to the input position (step S36), and then converts the calculated value into a pressure value (step S37). As described above, it is possible to detect the presence or absence of the pressing operation. Step S30 to step S34, step S36, and step S37 are the same as step S10 to step S16 of the first embodiment described above.
  • the calculation unit does not calculate the pressing force when the difference does not exceed the threshold value, and calculates the pressing force when the difference exceeds the threshold value. In this way, when the difference relating to the capacitance detected by the position detection electrode does not exceed the threshold value, the calculation unit does not calculate the pressing force, thereby detecting that there is no pressing operation. it can. On the other hand, if the difference between the maximum value of the capacitance detected by the position detection electrode and the reference value exceeds the threshold value, the calculation unit calculates the pressing force. It can be detected. As described above, it is possible to detect the presence or absence of the pressing operation.
  • Embodiment 5 of the present invention will be described with reference to FIG.
  • the arrangement of the calculation unit 421 and the memory 422 is changed from the first embodiment described above.
  • action, and effect as above-mentioned Embodiment 1 is abbreviate
  • the calculation unit 421 and the memory 422 according to the present embodiment are provided on the control board 418 as shown in FIG.
  • the calculation unit 421 is connected to the position detection electrode 419 via a wiring 420, a driver 416, and a flexible substrate 417.
  • Such a configuration eliminates the need for the driver 416 to include the calculation unit 421 and the memory 422, which is suitable for downsizing the driver 416.
  • the flexible substrate (connection component) 417 whose one end is connected to the liquid crystal panel, the control substrate (control circuit substrate) 418 connected to the other end of the flexible substrate 417,
  • the calculation unit 421 is provided on the control board 418.
  • the calculation unit 421 provided in the control board 418 can calculate the pressing force based on the signal transmitted from the liquid crystal panel via the flexible board 417.
  • the driver 416 can be downsized as compared with a case where the driver mounted on the liquid crystal panel or the flexible substrate is provided with the calculation unit 421.
  • the configuration (in-cell type) in which the touch panel pattern (position detection electrode, wiring, etc.) is built in the liquid crystal panel is shown.
  • the touch panel in which the touch panel pattern is stacked on the liquid crystal panel can also be applied to a configuration (out-cell type) provided in.
  • liquid crystal panel whose planar shape is rectangular has been described.
  • present invention can also be applied to a liquid crystal panel whose planar shape is square, circular, elliptical, or the like.
  • the semiconductor film constituting the channel portion of the TFT is made of an oxide semiconductor material
  • polysilicon polycrystallized silicon (polycrystal It is also possible to use CG silicon (ContinuousconGrain Silicon), which is a kind of silicon), or amorphous silicon as a material for the semiconductor film.
  • CG silicon ContinuousconGrain Silicon
  • the liquid crystal panel in which the operation mode is the FFS mode is illustrated, but other than that, there are other modes such as an IPS (In-Plane Switching) mode and a VA (Vertical Alignment) mode.
  • the present invention can also be applied to a liquid crystal panel in the operation mode.
  • the liquid crystal panel color filter is exemplified by a three-color configuration of red, green, and blue.
  • a yellow colored portion is added to each colored portion of red, green, and blue.
  • the present invention can also be applied to a color filter having a four-color configuration.
  • the liquid crystal panel classified as small or medium-sized is exemplified.
  • the liquid crystal panel is classified into medium-sized or large-sized (super-large) with a screen size of, for example, 20 inches to 100 inches.
  • the present invention is also applicable.
  • the liquid crystal panel can be used for an electronic device such as a television receiver, an electronic signboard (digital signage), or an electronic blackboard.
  • a liquid crystal panel having a configuration in which a liquid crystal layer is sandwiched between a pair of substrates has been exemplified.
  • a display panel in which functional organic molecules other than a liquid crystal material are sandwiched between a pair of substrates is also applicable to.
  • the TFT is used as the switching element of the liquid crystal panel.
  • the present invention can be applied to a liquid crystal panel using a switching element other than the TFT (for example, a thin film diode (TFD)), and performs color display.
  • a switching element other than the TFT for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal panel that displays black and white.

Abstract

液晶表示装置10は、液晶パネル11と、液晶パネル11を収容しその表示面11DSとは反対側の面を少なくとも覆う形で配される導電材料からなる筐体15と、液晶パネル11に設けられて筐体15及び表示面11DSの面内に位置入力を行う指Fとの間で静電容量を形成し、指Fによる入力位置を検出する位置検出電極19と、位置検出電極19にて検出される指Fによる入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分に基づいて表示面11DSの法線方向についての押圧力を演算する演算部21と、を備える。

Description

位置入力機能付き表示装置
 本発明は、位置入力機能付き表示装置に関する。
 近年、タブレット型ノートパソコンやスマートフォンなどの電子機器において、操作性及びユーザビリティを高めることを目的として、タッチパネルを搭載したタッチディスプレイ装置の開発が進められている。タッチディスプレイ装置の一例として下記特許文献1に記載されたものが知られている。特許文献1に記載されたタッチディスプレイ装置は、第一の基板、第二の基板、液晶層及び複数の画素ユニットを包含するディスプレイタッチスクリーンを包含し、ディスプレイタッチスクリーンが二次元アレイに配列された複数の共通電極を包含し、ディスプレイタッチ制御回路がディスプレイ制御回路及びタッチ制御回路を包含する。ディスプレイが実行される場合では、複数の共通電極がディスプレイ制御回路に提供されるコモンレベルに接続されるように、ディスプレイタッチ制御回路が配線を通じて複数の共通電極に接続され、タッチ検知が実行される場合では、複数の共通電極の各々がタッチ検知電極としてタッチ制御回路に接続される。
特開2014-238816号公報
(発明が解決しようとする課題)
 上記した特許文献1は、ディスプレイタッチスクリーンの面内におけるタッチ位置を検知するものであるが、使用者がディスプレイタッチスクリーンを押し込むような操作を検知することはできないものであった。
 本発明は上記のような事情に基づいて完成されたものであって、表示面を押し込む操作を検知することを目的とする。
(課題を解決するための手段)
 本発明の位置入力機能付き表示装置は、表示パネルと、前記表示パネルを収容しその表示面とは反対側の面を少なくとも覆う形で配される導電材料からなる筐体と、前記表示パネルに設けられて前記筐体及び前記表示面の面内に位置入力を行う位置入力体との間で静電容量を形成し、前記位置入力体による入力位置を検出する位置検出電極と、前記位置検出電極にて検出される前記位置入力体による入力位置に係る位置変化が一定の範囲内のときに検出される前記静電容量に係るシグナルの差分に基づいて前記表示面の法線方向についての押圧力を演算する演算部と、を備える。
 このようにすれば、位置入力体によって表示パネルの表示面の面内に位置入力が行われると、導電材料からなる筐体及び位置入力体との間で静電容量を形成する位置検出電極によって位置入力体による入力位置が検出される。位置検出電極にて検出される位置入力体による入力位置に係る位置変化が一定の範囲内であれば、位置入力体によって表示パネルが表示面の法線方向に沿って押し込まれるような操作(押圧操作)が行われている可能性がある。ここで、位置入力体による押圧操作が行われた場合には、表示パネルに撓みが生じるとともに表示パネルに設けられた位置検出電極が、表示パネルの表示面とは反対側の面を覆う形で配される筐体に対して近づくよう変位することになるため、それに伴って位置検出電極と筐体との間の静電容量が増加することになる。そこで、演算部は、位置検出電極にて検出される位置入力体による入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分を算出する。この算出した差分は、位置入力体による押圧操作に起因する静電容量に係るシグナルの変化量であり、その差分に基づいて表示パネルの表示面の法線方向についての押圧力を演算している。以上により、押圧力検知用のセンサなどを要することなく、表示パネルの表示面における入力位置に加えて、押圧操作に係る押圧力をも取得することができる。
 本発明の実施態様として、次の構成が好ましい。
(1)前記演算部は、前記表示面における入力位置に応じた補正係数を、前記差分に乗算して前記押圧力を演算する。位置入力体による押圧操作が行われた場合における表示パネルの撓みに伴う位置検出電極の変位量は、表示面における入力位置によって異なり、表示面の中央側では相対的に大きくなり、表示面の端側では相対的に小さくなる傾向にある。このため、演算部では、押圧力を演算するに際して静電容量に係る差分に、表示面における入力位置に応じた補正係数を乗算するようにしている。この補正係数は、表示面における入力位置に基づいて導き出されるものであり、例えば入力位置が表示面の中央側であった場合には相対的に小さな値となり、入力位置が表示面の端側であった場合には相対的に大きな値となる傾向とされる。このような補正係数を利用することで、演算部により演算される押圧力が入力位置を問わずより適切なものとなる。
(2)前記位置検出電極にて検出された入力位置に係る変動値が閾値を超える場合に取得する静電容量に係るシグナルを基準値として記憶するメモリを備えており、前記演算部は、前記変動値が前記閾値を超えない場合に取得する静電容量に係るシグナルと前記メモリに記憶された前記基準値との差分に基づいて前記押圧力を演算する。位置検出電極にて検出された入力位置に係る変動値が閾値を超える場合には、位置入力体による入力位置が移動中であるから、その場合には、メモリには、取得する静電容量に係るシグナルが基準値として記憶される。一方、位置検出電極にて検出された入力位置に係る変動値が閾値を超えない場合には、位置入力体による入力位置が停止していて押圧操作がなされた可能性があるので、その場合には、演算部では、取得する静電容量に係るシグナルとメモリに記憶された基準値との差分に基づいて押圧力を演算する。以上のように、位置検出電極にて検出された入力位置に係る変動値に基づいて静電容量に係るシグナルの基準値を取得した上で押圧力を演算するようにしたから、適切な基準値に基づいて押圧力を演算することができ、もって取得される押圧力がより適切なものとなる。
(3)前記メモリは、前記変動値が前記閾値を超える場合に取得する静電容量に係るシグナルの中のピーク値を前記基準値として記憶する。このようにすれば、静電容量に係るシグナルを全て記憶する場合に比べると、メモリに記憶される情報量が少なく済むので、メモリサイズを小さくすることができる。
(4)前記筐体は、前記表示パネルの前記表示面とは反対側の面を覆う底部を有しており、前記底部は、前記表示面の中央側から端側に向けて前記表示パネルからの距離が次第に小さくなるよう、曲面状をなしている。位置入力体による押圧操作に伴う位置検出電極の変位量は、押圧力が同一であれば、表示パネルの表示面における端側の方が中央側よりも相対的に小さくなる傾向にある。これに対し、上記のように底部が曲面状をなすことによって底部と位置検出電極との間に形成される静電容量は、表示パネルの表示面における端側の方が中央側よりも相対的に大きなものとなるので、表示面における端側での押圧力に係る検出感度が向上し、中央側での同検出感度との間に生じ得る差が緩和される。
(5)前記表示パネルには、前記位置検出電極を駆動するドライバが実装されており、前記演算部は、前記ドライバに備えられている。このように、表示パネルに実装されたドライバに備えられる演算部により押圧力を演算するようにしているので、押圧力の演算速度を高速化する上で好適となる。
(6)一端側が前記表示パネルに接続される接続部品と、前記接続部品の他端側に接続される制御回路基板と、が備えられており、前記演算部は、前記制御回路基板に備えられている。このようにすれば、制御回路基板に備えられる演算部は、接続部品を介して表示パネルから伝送されるシグナルに基づいて押圧力を演算することができる。仮に表示パネルまたは接続部品に実装されるドライバに演算部が備えられる構成を採った場合に比べると、ドライバの小型化を図ることができる。
(7)前記演算部は、前記差分が閾値を超えない場合は前記押圧力を演算せず、前記差分が前記閾値を超えた場合は前記押圧力を演算する。このようにすれば、位置検出電極にて検出される静電容量に係る差分が閾値を超えない場合は、演算部では押圧力を演算することがなく、それにより押圧操作がなかったことを検知できる。一方、位置検出電極にて検出される静電容量の最大値と基準値との差分が閾値を超えた場合は、演算部では押圧力が演算されるので、それにより押圧操作があったことを検知できる。以上により、押圧操作の有無を検知することができる。
(8)前記位置検出電極は、前記表示パネルに内蔵されている。このようにすれば、仮に表示パネルとは別部品のタッチパネルに位置検出電極を設けるようにした場合に比べると、薄型化などを図る上で好適となる。
(9)前記表示パネルには、前記表示面に表示される画像に応じた階調の電圧が印加される画素電極と、共通電位が印加される共通電極と、が少なくとも設けられており、前記共通電極は、前記表示面の面内においてマトリクス状に並んで配されるとともに前記位置検出電極を構成する複数の分割共通電極からなる。このようにすれば、画素電極と共通電極との間の電位差に基づいて表示パネルの表示面には所定の画像が表示されるようになっている。共通電極を複数の分割共通電極に分割し、その複数の分割共通電極を位置検出電極としているので、仮に共通電極とは別途に位置検出電極を設けた場合に比べると、構造の簡素化及び低コスト化などを図る上で好適となる。
(10)前記表示パネルには、前記複数の分割共通電極に対して個別に接続される複数の配線が少なくとも設けられている。このようにすれば、表示面に画像を表示する際には、複数の分割共通電極に複数の配線を介して同一の共通電位が印加される。これに対し、位置検出及び押圧力検出に際しては、複数の分割共通電極に複数の配線を介して個別の位置検出信号が供給されることで位置入力体による入力位置を特定することができる。これにより、位置検出感度及び押圧力検出感度が高いものになるとともに、入力位置が2箇所以上のマルチタッチを検出する上でも好適となる。
(11)前記表示パネルは、前記筐体側とその反対側とに重ねられる一対の基板を少なくとも有しており、前記位置検出電極は、前記一対の基板のうち前記筐体側に配される基板に設けられている。このようにすれば、仮に筐体側とは反対側の基板に位置検出電極を設けた場合に比べると、位置検出電極と筐体との間の距離が短いものとなるので、位置検出感度及び押圧力検出感度がより高いものになる。
(発明の効果)
 本発明によれば、表示面を押し込む操作を検知することができる。
本発明の実施形態1に係る液晶表示装置の平面図 液晶表示装置を短辺方向に沿って切断した概略断面図 液晶パネルの表示領域における断面構成を示す概略断面図 液晶パネルを構成するアレイ基板の表示領域における配線構成を概略的に示す平面図 液晶パネルを構成するCF基板の表示領域における平面構成を示す拡大平面図 アレイ基板を図3のA-A線に沿って切断した断面図 液晶パネルを構成するアレイ基板における共通電極の平面配置を表す平面図 位置検出及び押圧力演算に関する構成の関係を表すブロック図 指による押圧操作に係る押圧力を演算するためのフローチャート 液晶パネルの表示面における中央側を押圧した状態を示す概略断面図 液晶パネルの表示面における端側を押圧した状態を示す概略断面図 押圧操作を行う前の状態における指による入力位置の基準値と静電容量のシグナルの基準値とを表すグラフ 押圧操作を行った状態における指による入力位置と静電容量のシグナルとを表すグラフ 検出した静電容量のシグナルから静電容量のシグナルの基準値を差し引いた状態を示すグラフ 本発明の実施形態2に係る指による押圧操作に係る押圧力を演算するためのフローチャート 本発明の実施形態3に係る液晶表示装置を短辺方向に沿って切断した概略断面図 液晶パネルの表示面における中央側を押圧した状態を示す概略断面図 本発明の実施形態4に係る指による押圧操作に係る押圧力を演算するためのフローチャート 本発明の実施形態5に係る指による押圧操作に係る押圧力を演算するためのフローチャート
 <実施形態1>
 本発明の実施形態1を図1から図14によって説明する。本実施形態では、位置入力機能を備えた液晶表示装置(位置入力機能付き表示装置)10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図2,図3及び図6などの上側を表側とし、同図下側を裏側とする。
 液晶表示装置10は、全体として長方形状をなしており、図1及び図2に示すように、画像を表示可能な表示面11DSを表側の板面に備える液晶パネル(表示パネル)11と、液晶パネル11に対して裏側(表示面11DS側とは反対側)に配されるとともに液晶パネル11に表示のための光を照射する外部光源であるバックライト装置(照明装置)12と、液晶パネル11及びバックライト装置12を収容するケース13と、液晶パネル11に対して表側に配されるカバーガラス(保護パネル)14と、ケース13及びカバーガラス14に対して裏側に配されてこれらを裏側から覆う筐体15と、を少なくとも備えている。本実施形態に係る液晶表示装置10は、携帯電話(スマートフォンなどを含む)、ノートパソコン(タブレット型ノートパソコンなどを含む)、ウェアラブル端末(スマートウォッチなどを含む)、携帯型情報端末(電子ブックやPDAなどを含む)、携帯型ゲーム機、デジタルフォトフレームなどの各種電子機器(図示せず)に用いられるものである。このため、液晶パネル11の画面サイズは、数インチ~10数インチ程度とされ、一般的には小型または中小型に分類される大きさとされている。
 液晶表示装置10のうち、液晶パネル11以外の構成部品について先に説明する。バックライト装置12は、図2に示すように、図示しない光源(例えば冷陰極管、LED、有機ELなど)と、図示しない光学部材と、を少なくとも備える。光学部材は、光源から発せられる光を面状に変換するなどの機能を有するものである。ケース13は、導電性を有さない合成樹脂材料(非導電材料)からなるとともに表側に向けて開口した略箱型をなしており、その内部に液晶パネル11及びバックライト装置12を収容している。
 カバーガラス14は、図1及び図2に示すように、液晶パネル11を表側からその全域にわたって覆う形で配されており、それにより液晶パネル11の保護が図られている。カバーガラス14は、液晶表示装置10における正面側の外観を構成している。カバーガラス14は、平面に視て長方形状をなすとともにほぼ透明で優れた透光性を有するガラス製で板状の基材からなり、好ましくは強化ガラスからなる。カバーガラス14に用いられる強化ガラスとしては、例えば板状のガラス基材の表面に化学強化処理が施されることで、表面に化学強化層を備えた化学強化ガラスを用いることが好ましい。これにより、カバーガラス14は、機械的強度及び耐衝撃性能が高いものとされているから、その裏側に配される液晶パネル11が破損したり、傷付くのをより確実に防止することができる。
 筐体15は、図2に示すように、導電性を有する鉄やアルミニウムなどの金属材料(導電材料)からなるとともに表側が開口した略箱型に形成されており、その開口がカバーガラス14により閉塞されている。筐体15は、液晶パネル11における表示面11DS側とは反対側の面と対向状をなしてこれを覆う底部15aと、底部15aにおける外周端部から表側に向けて立ち上がる側部15bと、から構成されている。底部15aは、液晶パネル11の表示面11DSに並行するフラットな板状をなしており、平面に視た形状及び大きさがカバーガラス14と同様となっている。底部15aは、その長辺方向がY軸方向と、短辺方向がX軸方向と、それぞれ一致している。側部15bは、底部15aの外周端部における各辺からそれぞれ立ち上がることで、全体として略短筒状をなしている。側部15bにおける立ち上がり先端部には、カバーガラス14における外周端部の裏面が固着されている。カバーガラス14に対する筐体15の固着には、例えば両面テープなどの固着部材が用いられる。
 液晶パネル11について説明する。液晶パネル11は、図1及び図7に示すように、全体として縦長な方形状(矩形状)をなしており、その長辺方向における一方の端部側(図7に示す上側)に片寄った位置に画像が表示される表示領域(アクティブエリア)AAが配されるとともに、長辺方向における他方の端部側(図7に示す下側)に片寄った位置にドライバ16及びフレキシブル基板17がそれぞれ取り付けられている。この液晶パネル11において表示領域AA外の領域が、画像が表示されない非表示領域(ノンアクティブエリア)NAAとされ、この非表示領域NAAは、表示領域AAを取り囲む略枠状の領域(後述するCF基板11aにおける額縁部分)と、長辺方向の他方の端部側に確保された領域(後述するアレイ基板11bのうちCF基板11aとは重畳せずに露出する部分)と、からなり、このうちの長辺方向の他方の端部側に確保された領域にドライバ16及びフレキシブル基板17の実装領域(取付領域)が含まれている。液晶パネル11は、その短辺方向がX軸方向と一致し、長辺方向がY軸方向と一致し、さらには表示面11DSの法線方向がZ軸方向と一致している。また、フレキシブル基板17における液晶パネル11側とは反対側の端部には、信号供給源であるコントロール基板(制御回路基板)18が接続されている。なお、図7では、枠状の一点鎖線が表示領域AAの外形を表しており、当該一点鎖線よりも外側の領域が非表示領域NAAとなっている。
 続いて、液晶パネル11に実装または接続される部材(ドライバ16、フレキシブル基板17及びコントロール基板18)について順次に説明する。ドライバ16は、図7に示すように、内部に駆動回路を有するLSIチップからなるものとされ、コントロール基板18から供給される信号に基づいて作動することで、出力信号を生成し、その出力信号を液晶パネル11の表示領域AAへ向けて出力するものとされる。このドライバ16は、平面に視て横長の方形状をなす(液晶パネル11の短辺に沿って長手状をなす)とともに、液晶パネル11(後述するアレイ基板11b)の非表示領域NAAに対して直接実装され、つまりCOG(Chip On Glass)実装されている。なお、ドライバ16の長辺方向がX軸方向(液晶パネル11の短辺方向)と一致し、同短辺方向がY軸方向(液晶パネル11の長辺方向)と一致している。
 フレキシブル基板17は、図7に示すように、絶縁性及び可撓性を有する合成樹脂材料(例えばポリイミド系樹脂等)からなる基材を備え、その基材上に多数本の配線パターン(図示せず)を有しており、長さ方向についての一方の端部が既述した通りコントロール基板18に接続されるのに対し、他方の端部(他端側)が液晶パネル11におけるアレイ基板11bに接続されている。このため、フレキシブル基板17は、液晶表示装置10内では断面形状が略U型となるよう折り返し状に屈曲されている。フレキシブル基板17における長さ方向についての両端部においては、配線パターンが外部に露出して端子部(図示せず)を構成しており、これらの端子部がそれぞれコントロール基板18及び液晶パネル11に対して電気的に接続されている。これにより、コントロール基板18側から供給される信号を液晶パネル11側に伝送することが可能とされている。
 コントロール基板18は、図7に示すように、バックライト装置12における裏面(液晶パネル11側とは反対側の外面)にネジなどにより取り付けられている。このコントロール基板18は、紙フェノールないしはガラスエポキシ樹脂製の基板上に、ドライバ16に各種信号を供給するための電子部品が実装されるとともに、図示しない所定のパターンの配線(導電路)が配索形成されている。このコントロール基板18には、フレキシブル基板17の一方の端部(一端側)が図示しないACF(Anisotropic Conductive Film)を介して電気的に且つ機械的に接続されている。
 改めて、液晶パネル11について説明する。液晶パネル11は、図3に示すように、一対の基板11a,11bと、両基板11a,11b間の内部空間に配されて電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層(媒質層)11cと、を有しており、液晶層11cが両基板11a,11b間に介在する図示しないシール部によって取り囲まれて封止が図られている。一対の基板11a,11bのうち表側(正面側)がCF基板(対向基板)11aとされ、裏側(背面側)がアレイ基板(アクティブマトリクス基板、素子基板)11bとされる。CF基板11a及びアレイ基板11bは、いずれもガラス製のガラス基板の内面側に各種の膜が積層形成されてなるものとされる。なお、両基板11a,11bの外面側には、それぞれ偏光板11d,11eが貼り付けられている。
 アレイ基板11bの内面側(液晶層11c側、CF基板11aとの対向面側)における表示領域AAには、図4及び図6に示すように、スイッチング素子であるTFT(Thin Film Transistor:表示素子)11f及び画素電極11gが多数個マトリクス状(行列状)に並んで設けられるとともに、これらTFT11f及び画素電極11gの周りには、格子状をなすゲート配線(走査線)11i及びソース配線(データ線、信号線)11jが取り囲むようにして配設されている。ゲート配線11iとソース配線11jとの間には、相互を絶縁するためのゲート絶縁膜11pが介在する形で設けられている。ゲート配線11iとソース配線11jとがそれぞれTFT11fのゲート電極11f1とソース電極11f2とに接続され、画素電極11gがTFT11fのドレイン電極11f3に接続されている。そして、TFT11fは、ゲート配線11i及びソース配線11jにそれぞれ供給される各種信号に基づいて駆動され、その駆動に伴って画素電極11gへの電位の供給が制御されるようになっている。このTFT11fは、ドレイン電極11f3とソース電極11f2とを繋ぐチャネル部11f4を有しているが、このチャネル部11f4を構成する半導体膜として、酸化物半導体材料が用いられている。チャネル部11f4を構成する酸化物半導体材料は、その電子移動度がアモルファスシリコン材料などに比べると、例えば20倍~50倍程度と高くなっているので、TFT11fを容易に小型化して画素電極11gの透過光量(画素PXの開口率)を極大化することができ、もって高精細化及び低消費電力化などを図る上で好適とされる。なお、本実施形態では、各図面においてゲート配線11iの延在方向がX軸方向と、ソース配線11jの延在方向がY軸方向と、それぞれ一致するものとされている。
 画素電極11gは、図4及び図6に示すように、ゲート配線11i及びソース配線11jにより囲まれた方形の領域に配されており、複数本のスリットが形成されている。画素電極11gは、ITO(Indium Tin Oxide:酸化インジウム錫)或いはZnO(Zinc Oxide:酸化亜鉛)といった透明電極膜(上層側透明電極膜)からなる。画素電極11gは、下層側層間絶縁膜11q、平坦化膜11r及び上層側層間絶縁膜11sに対して上層側に積層する形で設けられている。下層側層間絶縁膜11q、平坦化膜11r及び上層側層間絶縁膜11sのうちTFT11fのドレイン電極11f3と平面に視て重畳する位置には、TFT用コンタクトホールCH1が開口形成されており、このTFT用コンタクトホールCH1を通して画素電極11gがTFT11fのドレイン電極11f3に対して電気的に接続されている。平坦化膜11rと上層側層間絶縁膜11sとの間には、画素電極11gと同様に透明電極膜(下層側透明電極膜)からなる共通電極11hが介在する形で設けられている。共通電極11hには、少なくともTFT用コンタクトホールCH1と重畳する部分に開口が形成されている。このようにアレイ基板11bには、画素電極11gと共通電極11hとが共に形成されており、両電極11g,11h間に電位差が生じると、液晶層11cには、アレイ基板11bの板面に沿う成分に加えて、アレイ基板11bの板面に対する法線方向の成分を含むフリンジ電界(斜め電界)が印加されるようになっている。つまり、この液晶パネル11は、動作モードがIPS(In-Plane Switching)モードをさらに改良したFFS(Fringe Field Switching)モードとされている。
 一方、CF基板11aのうちの表示領域AAの内面側には、図3及び図5に示すように、アレイ基板11b側の各画素電極11gと対向状をなす位置にカラーフィルタ11kが設けられている。カラーフィルタ11kは、R(赤色),G(緑色),B(青色)の三色の着色部がマトリクス状に繰り返し並んで配列されてなる。マトリクス状に配列されるカラーフィルタ11kの各着色部(各画素PX)の間は、遮光部(ブラックマトリクス)11lによって仕切られている。この遮光部11lによって各着色部を透過する各色の光同士が混ざり合う混色が防がれるようになっている。遮光部11lは、平面に視て格子状をなしていて各着色部の間を仕切る格子状部と、平面に視て枠状(額縁状)をなしていて格子状部を外周側から取り囲む枠状部と、から構成されている。遮光部11lにおける格子状部は、上記したゲート配線11i及びソース配線11jと平面に視て重畳する配置とされる。遮光部11lにおける枠状部は、シール部に倣って延在しており、平面に視て縦長の方形の枠状をなしている。カラーフィルタ11k及び遮光部11lの表面には、オーバーコート膜(平坦化膜)11mが内側に重なって設けられている。なお、当該液晶パネル11においては、カラーフィルタ11kにおける着色部と、それと対向する画素電極11gと、の組によって1つの画素PXが構成されている。画素PXには、カラーフィルタ11kのうちRの着色部を有する赤色画素と、カラーフィルタ11kのうちGの着色部を有する緑色画素と、カラーフィルタ11kのうちBの着色部を有する青色画素と、が含まれている。これら3色の画素PXは、液晶パネル11の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。このように画素PXは、液晶パネル11の表示領域AA内においてマトリクス状に多数が配列されている。また、両基板11a,11bのうち最も内側にあって液晶層11cに接する層としては、液晶層11cに含まれる液晶分子を配向させるための配向膜11n,11oがそれぞれ形成されている。
 ところで、本実施形態に係る液晶パネル11は、既述した通り、画像を表示する表示機能と、表示される画像に基づいて使用者が入力する位置(入力位置)を検出する位置入力機能(位置検出機能)と、を併有しており、このうちの位置入力機能を発揮するためのタッチパネルパターンを内蔵(インセル化)している。このタッチパネルパターンは、いわゆる投影型静電容量方式とされており、その検出方式が自己容量方式とされるものである。タッチパネルパターンは、図7に示すように、一対の基板11a,11bのうちのアレイ基板11bに設けられており、アレイ基板11bにおいて表示面11DSの面内にマトリクス状に並んで配される複数の位置検出電極19から構成されている。位置検出電極19は、アレイ基板11bの表示領域AAに配されている。従って、液晶パネル11における表示領域AAは、入力位置を検出可能なタッチ領域とほぼ一致しており、非表示領域NAAが入力位置を検出不能な非タッチ領域とほぼ一致していることになる。この位置検出電極19は、液晶表示装置10における導電性を有する筐体15との間で静電容量を形成している。これに対し、使用者が液晶表示装置10におけるカバーガラス14を通して視認する表示領域AAの画像に基づいて位置入力をしようとしてカバーガラス14の表面に導電体である指(位置検出体)Fを近づけると、その指Fと位置検出電極19との間でも静電容量が形成されることになる。これにより、指Fの近くにある位置検出電極19にて検出される静電容量には指が近づく前の状態から変化が生じ、指Fから遠くにある位置検出電極19とは異なるものとなるので、それに基づいて入力位置を検出することが可能となる。なお、位置検出電極19は、筐体15及び指F以外の導電体に対しても寄生容量を形成する場合もあり得る。
 そして、この位置検出電極19は、アレイ基板11bに設けられた共通電極11hにより構成されている。共通電極11hは、図7に示すように、表示面11DSの面内において碁盤目状に分割されて相互が電気的に独立した複数の分割共通電極11hSからなり、これら複数の分割共通電極11hSの個々が位置検出電極19を構成している。これにより、仮に共通電極11hとは別途に位置検出電極を設けた場合に比べると、構造の簡素化及び低コスト化などを図る上で好適となる。位置検出電極19(分割共通電極11hS)は、表示面11DSの面内においてX軸方向及びY軸方向に沿って複数ずつがマトリクス状に並んで配されている。位置検出電極19は、平面に視て略正方形状をなしており、一辺の寸法が例えば約4mm程度とされている。従って、位置検出電極19は、平面に視た大きさが画素PX(画素電極11g)よりも大きくなっており、X軸方向及びY軸方向について複数ずつの画素PXに跨る範囲に配置されている。位置検出電極19の設置数は、例えば画面サイズが5インチの液晶パネル11においては、約500個程度とされるのが好ましい。なお、図7は、位置検出電極19の配列を模式的に表したものであり、位置検出電極19の具体的な設置数や配置については図示以外にも適宜に変更可能である。
 複数の位置検出電極19には、複数の配線20が個別に接続されている。配線20は、例えば下層側層間絶縁膜11qと平坦化膜11rとの間に介在する形(図6を参照)で設けられた金属膜からなり、平坦化膜11rに開口形成された位置検出電極用コンタクトホールCH2を通して位置検出電極19(分割共通電極11hS)に接続されている。配線20は、表示領域AAにおいてY軸方向、つまりソース配線11jの延在方向に沿って直線的に延在するとともに、平面に視てソース配線11j(遮光部11l)と重畳し、画素PXとは非重畳となる位置に配されている。これにより、配線20によって画素PXの開口率が低下する事態が避けられている。配線20は、一方の端部が表示領域AAにおいて上記した位置検出電極用コンタクトホールCH2を通して位置検出電極19に接続されているのに対し、他方の端部が非表示領域NAAにおいてドライバ16に接続されている。配線20に接続されるドライバ16は、配線20を介して位置検出電極19を駆動することが可能とされる。つまり、このドライバ16は、画像表示に際してはTFT11fを駆動するのに対し、位置検出に際しては位置検出電極19を駆動するものとされており、表示機能と位置検出機能とを併有している。ドライバ16に接続された複数の配線20は、既述した通り、複数の位置検出電極19に対して個別に対応付けられている。従って、ドライバ16により駆動される複数の位置検出電極19のうち、特定の1つまたは複数の位置検出電極19にて検出される静電容量に他の位置検出電極19にはない変化が生じた場合には、その静電容量に変化が生じた位置検出電極19をそれに対応付けられた配線20によって特定することができ、もって入力位置を容易に特定・検出することができる。これにより、位置検出感度及び後述する押圧力検出感度が高いものになるとともに、入力位置が2箇所以上のマルチタッチを検出する上でも好適となる。
 さて、本実施形態に係る液晶表示装置10によれば、液晶パネル11の表示面11DSの面内における使用者による二次元の入力位置に加えて、使用者が液晶パネル11を表示面11DSの法線方向(Z軸方向)に沿って押し込むような操作(押圧操作)に係る押圧力についても検出することが可能とされている。これを実現するため、本実施形態に係るドライバ16には、図8に示すように、位置検出電極19にて検出される使用者の指Fによる入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分に基づいて表示面11DSの法線方向についての押圧力を演算する演算部21が備えられている。まず、位置検出電極19にて検出される使用者の指Fによる入力位置に係る位置変化が一定の範囲内であれば、指Fによって押圧操作が行われている可能性がある。ここで、指Fによる押圧操作が行われた場合には、液晶パネル11に撓みが生じるとともに内蔵された位置検出電極19が、液晶パネル11の表示面11DSとは反対側の面を覆う形で配される筐体15の底部15aに対して近づくよう変位することになるため、それに伴って位置検出電極19と筐体15との間の静電容量が増加することになる。そこで、演算部21は、位置検出電極19にて検出される指Fによる入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分を算出するものとされる。この算出した差分は、指Fによる押圧操作に起因する静電容量に係るシグナルの変化量であり、その差分に基づいて演算部21は、指Fによる押圧操作に伴って液晶パネル11に作用する押圧力を演算している。以上により、押圧力検知用のセンサなどを要することなく、液晶パネル11の表示面11DSにおける入力位置に加えて、押圧操作に係る押圧力をも取得することができる。しかも、演算部21がドライバ16に備えられているので、押圧力の演算速度を高速化する上で好適となる。
 ドライバ16には、図8に示すように、演算部21に加えて、位置検出電極19にて検出された入力位置に係る変動値が閾値を超える場合に取得する静電容量に係るシグナルを基準値として記憶するメモリ22が備えられている。メモリ22は、フラッシュメモリなどの不揮発性記録媒体とされる。そして、演算部21は、図9に示すように、位置検出電極19にて検出された入力位置に係る変動値が閾値を超えない場合に取得する静電容量に係るシグナルと、メモリ22に記憶された基準値と、の差分に基づいて押圧力を演算するものとされる。位置検出電極19にて検出された入力位置に係る変動値が閾値を超える場合には、指Fによる入力位置が移動中であって押圧操作が行われていないと判断できることから、その場合には、メモリ22には、取得する静電容量に係るシグナルが基準値として記憶される。一方、位置検出電極19にて検出された入力位置に係る変動値が閾値を超えない場合には、指Fによる入力位置が停止していて押圧操作が行われたと判断できるので、その場合には、演算部21では、取得する静電容量に係るシグナルと、メモリ22に記憶された基準値と、の差分を算出し、算出した差分に基づいて押圧操作に伴って液晶パネル11に作用する押圧力を演算するものとされる。以上のように、位置検出電極19にて検出された入力位置に係る変動値に基づいて静電容量に係るシグナルの基準値を取得した上で押圧力を演算するようにしたから、適切な基準値に基づいて押圧力を演算することができ、もって取得される押圧力がより適切なものとなる。
 さらには、演算部21は、図9に示すように、液晶パネル11の表示面11DSにおける入力位置に応じた補正係数を、指Fによる入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分に乗算して押圧力を演算するものとされる。この補正係数は、メモリ22に記憶されるとともに、以下のように設定されている。まず、指Fによる押圧操作が行われた場合における液晶パネル11の撓みに伴う位置検出電極19の変位量は、表示面11DSにおける入力位置によって異なる。具体的には、例えば指Fによる押圧操作において液晶パネル11に作用する押圧力が一定とされた場合、表示面11DSの中央側では、図10に示すように、液晶パネル11が撓み易いのでそれに伴う位置検出電極19の変位量が相対的に大きくなるのに対し、表示面11DSの端側では、図11に示すように、液晶パネル11が撓み難いのでそれに伴う位置検出電極19の変位量が相対的に小さくなる傾向にある。従って、押圧力を演算するに際して静電容量に係る差分に乗算される補正係数は、入力位置が表示面11DSの中央側であった場合には相対的に小さな値となり、入力位置が表示面11DSの端側であった場合には相対的に大きな値となるように設定されている。つまり、補正係数は、表示面11DSの面内における入力位置に起因する液晶パネル11の撓み量及びそれに伴う位置検出電極19の変位量の分布と逆相関の関係にある。これにより、図10に示すように、入力位置が表示面11DSの中央側とされて液晶パネル11が相対的に大きく撓んで位置検出電極19の変位量が大きくなった場合には、入力位置が表示面11DSの端側であった場合よりも、静電容量に係る差分が相対的に大きくなるものの、その差分に乗算される補正係数が小さく設定されることで、演算される押圧力が過大になることが避けられる。一方、入力位置が表示面11DSの端側とされて液晶パネル11が相対的に小さく撓んで位置検出電極19の変位量が小さくなった場合には、入力位置が表示面11DSの中央側であった場合よりも、静電容量に係る差分が相対的に小さくなるものの、その差分に乗算される補正係数が大きく設定されることで、演算される押圧力が過小になることが避けられる。以上により、演算部21にて演算される押圧力が入力位置を問わずより適切なものとなる。
 本実施形態は以上のような構造であり、続いてその作用を説明する。本実施形態に係る液晶表示装置10は、位置入力機能を備えているので、その使用者は、液晶パネル11の表示面11DSに表示される画像に基づいて指Fにより位置入力を行うことができる。液晶パネル11のアレイ基板11bに備えられる共通電極11hは、位置検出電極19でもあるため、表示時にはドライバ16によって画素電極11gの電位に対する基準となる共通電位(基準電位)が印加されるのに対し、位置検出時にはドライバ16によって筐体15や指Fとの間で静電容量を形成するための電位が印加されるようになっている。つまり、ドライバ16は、一単位期間を表示期間と位置検出期間とに分けて液晶パネル11の駆動を制御している。
 表示期間においては、ドライバ16から各ゲート配線11iに走査信号が、各ソース配線11jにデータ信号が、各配線20に共通電位信号が、それぞれ供給されるようになっている。各ゲート配線11iに供給される走査信号によって選択された行に属する各TFT11fがONされると、各ソース配線11jに供給されるデータ信号に応じた電圧がTFT11fのチャネル部11f4を介して画素電極11gに印加される。各配線20に供給される共通電位信号によって共通電極11hの各分割共通電極11hSには、同一の共通電位が同じタイミングでもって一括して印加される。各画素電極11gと共通電極11hとの電位差に基づいて各画素PXでは所定の階調でもって表示が行われ、もって液晶パネル11の表示面11DSには所定の画像が表示される。
 位置検出期間においては、ドライバ16から各配線20に位置検出駆動信号が供給されるようになっている。各配線20に供給される位置検出駆動信号によって駆動される各位置検出電極19は、筐体15との間で所定の静電容量を形成することになる。このとき、液晶表示装置10の使用者がカバーガラス14を介して液晶パネル11の表示面11DSの面内に指Fでもって位置入力を行った場合には、その指Fに近い位置検出電極19と指Fとの間に静電容量が形成される。つまり、指Fに近い位置検出電極19は、筐体15に加えて指Fとの間にも静電容量を形成するので、指Fから遠い位置検出電極19よりも静電容量が大きなものとなる。ドライバ16において各配線20を介して各位置検出電極19の静電容量が検出されると、ドライバ16は、その検出した静電容量の中から変化が生じたものを抽出し、変化が生じた静電容量を伝送した配線20に接続された位置検出電極19における表示面11DSでの位置情報を取得する。これにより、使用者の指Fによる入力位置を検出することができる。
 そして、この液晶表示装置10は、使用者の指Fによって液晶パネル11をZ軸方向に沿って押圧する押圧操作が行われた場合には、その押圧力を以下のようにして検出することができる。まず、演算部21は、図9に示すように、指Fによる位置入力がなされた位置検出電極19の静電容量に係るシグナルを取得し(ステップS10)、取得したシグナルに基づいて入力位置を算出する(ステップS11)。ステップS11では、演算部21は、液晶パネル11の表示面11DSにおける入力位置に係る座標情報(x,y)を算出している。次に、演算部21は、入力位置の変化量を算出し、その算出した変化量が閾値以下か、を判定する(ステップS12)。演算部21は、入力位置の変化量としては、入力位置の基準値に係る座標情報(x1,y1)を、取得した入力位置に係る座標情報(x2,y2)から差し引いた差分値(Δx,Δy)を算出している。上記変化量の閾値は、少なくとも指Fによる入力位置が移動中における変化量を下回るとともに、指Fによる入力位置が停止中における変化量を上回るような数値に設定されている。なお、位置入力が初めてであった場合は、取得した入力位置に係る座標情報(x2,y2)が差分値(Δx,Δy)と等しくなるとともに、変化量の閾値を超えることになる。入力位置の変化量が閾値を超える場合は、入力位置が移動中で押圧操作が行われていないものと判断できることから、演算部21は、取得したシグナル及び入力位置を基準値としてメモリ22に記憶させ(ステップS13)、ステップS10に戻る。
 入力位置の変化量が閾値以下の場合は、図9に示すように、入力位置が停止中で押圧操作が行われた可能性があると判断できることから、演算部21は、取得したシグナルと基準値との差分を算出する(ステップS14)。ここで算出された差分は、指Fによる押圧操作が行われる前の静電容量のシグナル(図12を参照)を、指Fによる押圧操作が行われた状態における静電容量のシグナル(図13を参照)から差し引いたものであり、押圧操作に伴って生じる静電容量の変化を反映したものとなっている(図14を参照)。なお、図12から図14は、指Fによる入力位置と静電容量のシグナルとを表すグラフであり、各図におけるX軸方向及びY軸方向が表示面11DSの面内の入力位置を、Z軸方向が静電容量のシグナルを、それぞれ表している。また、図12から図14における静電容量のシグナルに係る数値は、位置検出電極19の静電容量に係るアナログデータをデジタルデータに変換して得た無単位の数値である。
 続いて、演算部21は、図9に示すように、差分に、入力位置に応じた補正係数を乗算する(ステップS15)。このとき、演算部21は、メモリ22に記憶された補正係数の中から、入力位置に係る座標情報(x2,y2)に紐付けられたものを抽出し、その抽出した補正係数を差分に乗算するようにしている。この補正係数は、表示面11DSの面内における入力位置に起因する液晶パネル11の撓み量及びそれに伴う位置検出電極19の変位量の分布と逆相関の関係にあることから、この補正係数を差分に乗算して算出される値が入力位置を問わず適切なものとなる。次に、演算部21は、算出値を圧力値に換算する(ステップS16)。メモリ22には、差分に係る算出値と圧力値とを紐付けたデータベースが記憶されており、演算部21は、このデータベースを参照して算出値を圧力値に換算している。圧力値を取得したら、再びステップS10に戻る。
 以上説明したように本実施形態の液晶表示装置(位置入力機能付き表示装置)10は、液晶パネル(表示パネル)11と、液晶パネル11を収容しその表示面11DSとは反対側の面を少なくとも覆う形で配される導電材料からなる筐体15と、液晶パネル11に設けられて筐体15及び表示面11DSの面内に位置入力を行う指(位置入力体)Fとの間で静電容量を形成し、指Fによる入力位置を検出する位置検出電極19と、位置検出電極19にて検出される指Fによる入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分に基づいて表示面11DSの法線方向についての押圧力を演算する演算部21と、を備える。
 このようにすれば、指Fによって液晶パネル11の表示面11DSの面内に位置入力が行われると、導電材料からなる筐体15及び指Fとの間で静電容量を形成する位置検出電極19によって指Fによる入力位置が検出される。位置検出電極19にて検出される指Fによる入力位置に係る位置変化が一定の範囲内であれば、指Fによって液晶パネル11が表示面11DSの法線方向に沿って押し込まれるような操作(押圧操作)が行われている可能性がある。ここで、指Fによる押圧操作が行われた場合には、液晶パネル11に撓みが生じるとともに液晶パネル11に設けられた位置検出電極19が、液晶パネル11の表示面11DSとは反対側の面を覆う形で配される筐体15に対して近づくよう変位することになるため、それに伴って位置検出電極19と筐体15との間の静電容量が増加することになる。そこで、演算部21は、位置検出電極19にて検出される指Fによる入力位置に係る位置変化が一定の範囲内のときに検出される静電容量に係るシグナルの差分を算出する。この算出した差分は、指Fによる押圧操作に起因する静電容量に係るシグナルの変化量であり、その差分に基づいて液晶パネル11の表示面11DSの法線方向についての押圧力を演算している。以上により、押圧力検知用のセンサなどを要することなく、液晶パネル11の表示面11DSにおける入力位置に加えて、押圧操作に係る押圧力をも取得することができる。
 また、演算部21は、表示面11DSにおける入力位置に応じた補正係数を、差分に乗算して押圧力を演算する。指Fによる押圧操作が行われた場合における液晶パネル11の撓みに伴う位置検出電極19の変位量は、表示面11DSにおける入力位置によって異なり、表示面11DSの中央側では相対的に大きくなり、表示面11DSの端側では相対的に小さくなる傾向にある。このため、演算部21では、押圧力を演算するに際して静電容量に係る差分に、表示面11DSにおける入力位置に応じた補正係数を乗算するようにしている。この補正係数は、表示面11DSにおける入力位置に基づいて導き出されるものであり、例えば入力位置が表示面11DSの中央側であった場合には相対的に小さな値となり、入力位置が表示面11DSの端側であった場合には相対的に大きな値となる傾向とされる。このような補正係数を利用することで、演算部21により演算される押圧力が入力位置を問わずより適切なものとなる。
 また、位置検出電極19にて検出された入力位置に係る変動値が閾値を超える場合に取得する静電容量に係るシグナルを基準値として記憶するメモリ22を備えており、演算部21は、変動値が閾値を超えない場合に取得する静電容量に係るシグナルとメモリ22に記憶された基準値との差分に基づいて押圧力を演算する。位置検出電極19にて検出された入力位置に係る変動値が閾値を超える場合には、指Fによる入力位置が移動中であるから、その場合には、メモリ22には、取得する静電容量に係るシグナルが基準値として記憶される。一方、位置検出電極19にて検出された入力位置に係る変動値が閾値を超えない場合には、指Fによる入力位置が停止していて押圧操作がなされた可能性があるので、その場合には、演算部21では、取得する静電容量に係るシグナルとメモリ22に記憶された基準値との差分に基づいて押圧力を演算する。以上のように、位置検出電極19にて検出された入力位置に係る変動値に基づいて静電容量に係るシグナルの基準値を取得した上で押圧力を演算するようにしたから、適切な基準値に基づいて押圧力を演算することができ、もって取得される押圧力がより適切なものとなる。
 また、液晶パネル11には、位置検出電極19を駆動するドライバ16が実装されており、演算部21は、ドライバ16に備えられている。このように、液晶パネル11に実装されたドライバ16に備えられる演算部21により押圧力を演算するようにしているので、押圧力の演算速度を高速化する上で好適となる。
 また、位置検出電極19は、液晶パネル11に内蔵されている。このようにすれば、仮に液晶パネル11とは別部品のタッチパネルに位置検出電極19を設けるようにした場合に比べると、薄型化などを図る上で好適となる。
 また、液晶パネル11には、表示面11DSに表示される画像に応じた階調の電圧が印加される画素電極11gと、共通電位が印加される共通電極11hと、が少なくとも設けられており、共通電極11hは、表示面11DSの面内においてマトリクス状に並んで配されるとともに位置検出電極19を構成する複数の分割共通電極11hSからなる。このようにすれば、画素電極11gと共通電極11hとの間の電位差に基づいて液晶パネル11の表示面11DSには所定の画像が表示されるようになっている。共通電極11hを複数の分割共通電極11hSに分割し、その複数の分割共通電極11hSを位置検出電極19としているので、仮に共通電極11hとは別途に位置検出電極19を設けた場合に比べると、構造の簡素化及び低コスト化などを図る上で好適となる。
 また、液晶パネル11には、複数の分割共通電極11hSに対して個別に接続される複数の配線20が少なくとも設けられている。このようにすれば、表示面11DSに画像を表示する際には、複数の分割共通電極11hSに複数の配線20を介して同一の共通電位が印加される。これに対し、位置検出及び押圧力検出に際しては、複数の分割共通電極11hSに複数の配線20を介して個別の位置検出信号が供給されることで指Fによる入力位置を特定することができる。これにより、位置検出感度及び押圧力検出感度が高いものになるとともに、入力位置が2箇所以上のマルチタッチを検出する上でも好適となる。
 また、液晶パネル11は、筐体15側とその反対側とに重ねられる一対の基板11a,11bを少なくとも有しており、位置検出電極19は、一対の基板11a,11bのうち筐体15側に配されるアレイ基板(基板)11bに設けられている。このようにすれば、仮に筐体15側とは反対側のCF基板11aに位置検出電極19を設けた場合に比べると、位置検出電極19と筐体15との間の距離が短いものとなるので、位置検出感度及び押圧力検出感度がより高いものになる。
 <実施形態2>
 本発明の実施形態2を図15によって説明する。この実施形態2では、静電容量のシグナルの中のピーク値をメモリに記憶させるものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るメモリには、図15に示すように、ステップS23において、静電容量のシグナルの中のピーク値が基準値のピーク値として記憶されるようになっている。この静電容量のシグナル及びそのピーク値について説明すると、図12から図14に示されるグラフが静電容量のシグナルであるのに対し、そのピーク値とは、シグナルの中でZ軸方向について最も高い数値のことである。つまり、ステップS22にて「NO」と判定されると、演算部は、取得したシグナルの中からピーク値を抽出し、そのピーク値と入力位置とを基準値としてメモリに記憶させるようにしている。これにより、上記した実施形態1のようにシグナル全体をメモリに記憶させる場合に比べると、メモリに記憶される情報量が少なく済み、もってメモリサイズ(記憶容量)が小さくて済む。そして、ステップS24において、演算部は、静電容量のシグナルの中のピーク値と基準値のピーク値との差分を算出するようにしている。なお、ステップS23及びステップS24以外のステップS20~ステップS22,ステップS25~ステップS26については、上記した実施形態1のステップS10~ステップS12,ステップS15~ステップS16と同様である。
 以上説明したように本実施形態によれば、メモリは、変動値が閾値を超える場合に取得する静電容量に係るシグナルの中のピーク値を基準値として記憶する。このようにすれば、静電容量に係るシグナルを全て記憶する場合に比べると、メモリに記憶される情報量が少なく済むので、メモリサイズを小さくすることができる。
 <実施形態3>
 本発明の実施形態3を図16または図17によって説明する。この実施形態3では、上記した実施形態1から筐体215の構造を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る筐体215は、図16に示すように、底部215aが、液晶パネル211の表示面211DSの中央側から端側に向けて液晶パネル211からの距離が次第に小さくなるよう、曲面状をなしている。詳しくは、底部215aは、全体として略球冠状をなしており、表示面211DSの中心位置と重畳する部分が液晶パネル211との間のZ軸方向(表示面211DSの法線方向)についての距離が最も大きくなるのに対し、外周端部が液晶パネル211との間のZ軸方向についての距離が最も小さくなっている。ここで、指Fによる押圧操作に伴う位置検出電極の変位量は、押圧力が同一であれば、液晶パネル211の表示面211DSにおける端側の方が中央側よりも相対的に小さくなり、逆に中央側の方が端側よりも相対的に大きくなる傾向にある(図17を参照)。これに対し、上記のように底部215aが曲面状をなすことによって底部215aと位置検出電極との間に形成される静電容量は、液晶パネル211の表示面211DSにおける端側の方が中央側よりも相対的に大きなものとなり、逆に中央側の方が端側よりも相対的に小さなものとなる。従って、表示面211DSにおける端側での押圧力に係る検出感度が向上し、中央側での同検出感度との間に生じ得る差が緩和される。
 以上説明したように本実施形態によれば、筐体215は、液晶パネル211の表示面211DSとは反対側の面を覆う底部215aを有しており、底部215aは、表示面211DSの中央側から端側に向けて液晶パネル211からの距離が次第に小さくなるよう、曲面状をなしている。指Fによる押圧操作に伴う位置検出電極の変位量は、押圧力が同一であれば、液晶パネル211の表示面211DSにおける端側の方が中央側よりも相対的に小さくなる傾向にある。これに対し、上記のように底部215aが曲面状をなすことによって底部215aと位置検出電極との間に形成される静電容量は、液晶パネル211の表示面211DSにおける端側の方が中央側よりも相対的に大きなものとなるので、表示面211DSにおける端側での押圧力に係る検出感度が向上し、中央側での同検出感度との間に生じ得る差が緩和される。
 <実施形態4>
 本発明の実施形態4を図18によって説明する。この実施形態4では、上記した実施形態1から、静電容量のシグナルと基準値との差分が閾値以上か否かを判定するようにしたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る演算部は、図18に示すように、ステップS34にて静電容量のシグナルと基準値との差分を算出した後に、差分が閾値以上か否かを判定している(ステップS35)。ステップS35における閾値は、例えば押圧操作に伴って生じ得る静電容量の変化量の最小値などとされている。従って、ステップS34にて差分が閾値を超えない場合には、差分が静電容量の検出誤差などによるものと判断できるので、演算部は押圧力を演算することなくステップS30に戻る。これにより、押圧操作がなかったことを検知することができる。ステップS34にて差分が閾値以上だった場合は、演算部は、差分に、入力位置に応じた補正係数を乗算(ステップS36)し、その後算出値を圧力値に換算する(ステップS37)。以上により、押圧操作の有無を検知することができる。なお、ステップS30~ステップS34,ステップS36,ステップS37は、上記した実施形態1のステップS10~ステップS16と同様である。
 以上説明したように本実施形態によれば、演算部は、差分が閾値を超えない場合は押圧力を演算せず、差分が閾値を超えた場合は押圧力を演算する。このようにすれば、位置検出電極にて検出される静電容量に係る差分が閾値を超えない場合は、演算部では押圧力を演算することがなく、それにより押圧操作がなかったことを検知できる。一方、位置検出電極にて検出される静電容量の最大値と基準値との差分が閾値を超えた場合は、演算部では押圧力が演算されるので、それにより押圧操作があったことを検知できる。以上により、押圧操作の有無を検知することができる。
 <実施形態5>
 本発明の実施形態5を図19によって説明する。この実施形態5では、上記した実施形態1から演算部421及びメモリ422の配置を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る演算部421及びメモリ422は、図19に示すように、コントロール基板418に備えられている。演算部421は、位置検出電極419に対して配線420、ドライバ416及びフレキシブル基板417を介して接続されている。このような構成により、ドライバ416が演算部421及びメモリ422を備える必要がなくなるから、ドライバ416の小型化を図る上で好適となる。
 以上説明したように本実施形態によれば、一端側が液晶パネルに接続されるフレキシブル基板(接続部品)417と、フレキシブル基板417の他端側に接続されるコントロール基板(制御回路基板)418と、が備えられており、演算部421は、コントロール基板418に備えられている。このようにすれば、コントロール基板418に備えられる演算部421は、フレキシブル基板417を介して液晶パネルから伝送されるシグナルに基づいて押圧力を演算することができる。仮に液晶パネルまたはフレキシブル基板に実装されるドライバに演算部421が備えられる構成を採った場合に比べると、ドライバ416の小型化を図ることができる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、静電容量に係るシグナルの差分に補正係数を乗算する場合を示したが、押圧操作に伴う液晶パネルの撓み量が表示面の面内においてあまり差が生じない場合や全く差が生じない場合には、補正係数を乗算せずに差分を直接圧力値に換算するようにしても構わない。
 (2)上記した各実施形態以外にも筐体及びその底部における具体的な形状は適宜に変更可能である。
 (3)上記した各実施形態では、位置検出電極及び配線の配列を模式的に図示したが、これらの具体的な平面配置、平面形状、設置数などは図示以外にも適宜に変更可能である。また、アレイ基板における各積層膜に対する配線の積層順(積層配置)は適宜に変更可能である。
 (4)上記した各実施形態では、カバーガラスを設置した場合を示したが、カバーガラスに代えて合成樹脂製の保護フィルムを設置することも可能である。また、カバーガラスや保護フィルムを除去することも可能である。
 (5)上記した各実施形態では、使用者が自身の指によって位置入力を行う場合を示したが、タッチペンなど指以外の位置入力体でもって位置入力することも可能である。
 (6)上記した各実施形態では、位置検出電極が共通電極と共用化された場合を示したが、共通電極とは別途に位置検出電極を設けることも可能である。
 (7)上記した各実施形態では、タッチパネルパターン(位置検出電極及び配線など)が液晶パネルに内蔵された構成(インセルタイプ)を示したが、タッチパネルパターンが液晶パネルに対して積層配置されるタッチパネルに設けられる構成(アウトセルタイプ)にも本発明は適用可能である。
 (8)上記した各実施形態では、平面形状が長方形とされる液晶パネルについて示したが、平面形状が正方形、円形、楕円形などとされる液晶パネルにも本発明は適用可能である。
 (9)上記した各実施形態では、ドライバが液晶パネルのアレイ基板に対してCOG実装される場合を示したが、ドライバがフレキシブル基板に対してCOF(Chip On Film)実装される構成であってもよい。
 (10)上記した各実施形態では、TFTのチャネル部を構成する半導体膜が酸化物半導体材料からなる場合を例示したが、それ以外にも、例えばポリシリコン(多結晶化されたシリコン(多結晶シリコン)の一種であるCGシリコン(Continuous Grain Silicon))やアモルファスシリコンを半導体膜の材料として用いることも可能である。
 (11)上記した各実施形態では、動作モードがFFSモードとされた液晶パネルについて例示したが、それ以外にもIPS(In-Plane Switching)モードやVA(Vertical Alignment:垂直配向)モードなどの他の動作モードとされた液晶パネルについても本発明は適用可能である。
 (12)上記した各実施形態では、液晶パネルのカラーフィルタが赤色、緑色及び青色の3色構成とされたものを例示したが、赤色、緑色及び青色の各着色部に、黄色の着色部を加えて4色構成としたカラーフィルタを備えたものにも本発明は適用可能である。
 (13)上記した各実施形態では、小型または中小型に分類される液晶パネルを例示したが、画面サイズが例えば20インチ~100インチで、中型または大型(超大型)に分類される液晶パネルにも本発明は適用可能である。その場合、液晶パネルをテレビ受信装置、電子看板(デジタルサイネージ)、電子黒板などの電子機器に用いることが可能とされる。
 (14)上記した各実施形態では、一対の基板間に液晶層が挟持された構成とされる液晶パネルについて例示したが、一対の基板間に液晶材料以外の機能性有機分子を挟持した表示パネルについても本発明は適用可能である。
 (15)上記した各実施形態では、液晶パネルのスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶パネルにも適用可能であり、カラー表示する液晶パネル以外にも、白黒表示する液晶パネルにも適用可能である。
 10...液晶表示装置(位置入力機能付き表示装置)、11,211...液晶パネル(表示パネル)、11a...CF基板(基板)、11b...アレイ基板(基板)、11g...画素電極、11h...共通電極、11hS...分割共通電極、11DS,211DS...表示面、15,215...筐体、15a,215a...底部、16,416...ドライバ、17,417...フレキシブル基板(接続部品)、18,418...コントロール基板(制御回路基板)、19,419...位置検出電極、20,420...配線、21,421...演算部、22,422...メモリ、F...指(位置入力体)

Claims (12)

  1.  表示パネルと、
     前記表示パネルを収容しその表示面とは反対側の面を少なくとも覆う形で配される導電材料からなる筐体と、
     前記表示パネルに設けられて前記筐体及び前記表示面の面内に位置入力を行う位置入力体との間で静電容量を形成し、前記位置入力体による入力位置を検出する位置検出電極と、
     前記位置検出電極にて検出される前記位置入力体による入力位置に係る位置変化が一定の範囲内のときに検出される前記静電容量に係るシグナルの差分に基づいて前記表示面の法線方向についての押圧力を演算する演算部と、を備える位置入力機能付き表示装置。
  2.  前記演算部は、前記表示面における入力位置に応じた補正係数を、前記差分に乗算して前記押圧力を演算する請求項1記載の位置入力機能付き表示装置。
  3.  前記位置検出電極にて検出された入力位置に係る変動値が閾値を超える場合に取得する静電容量に係るシグナルを基準値として記憶するメモリを備えており、
     前記演算部は、前記変動値が前記閾値を超えない場合に取得する静電容量に係るシグナルと前記メモリに記憶された前記基準値との差分に基づいて前記押圧力を演算する請求項1または請求項2記載の位置入力機能付き表示装置。
  4.  前記メモリは、前記変動値が前記閾値を超える場合に取得する静電容量に係るシグナルの中のピーク値を前記基準値として記憶する請求項3記載の位置入力機能付き表示装置。
  5.  前記筐体は、前記表示パネルの前記表示面とは反対側の面を覆う底部を有しており、
     前記底部は、前記表示面の中央側から端側に向けて前記表示パネルからの距離が次第に小さくなるよう、曲面状をなしている請求項1から請求項4のいずれか1項に記載の位置入力機能付き表示装置。
  6.  前記表示パネルには、前記位置検出電極を駆動するドライバが実装されており、
     前記演算部は、前記ドライバに備えられている請求項1から請求項5のいずれか1項に記載の位置入力機能付き表示装置。
  7.  一端側が前記表示パネルに接続される接続部品と、前記接続部品の他端側に接続される制御回路基板と、が備えられており、
     前記演算部は、前記制御回路基板に備えられている請求項1から請求項5いずれか1項に記載の位置入力機能付き表示装置。
  8.  前記演算部は、前記差分が閾値を超えない場合は前記押圧力を演算せず、前記差分が前記閾値を超えた場合は前記押圧力を演算する請求項1から請求項7のいずれか1項に記載の位置入力機能付き表示装置。
  9.  前記位置検出電極は、前記表示パネルに内蔵されている請求項1から請求項8のいずれか1項に記載の位置入力機能付き表示装置。
  10.  前記表示パネルには、前記表示面に表示される画像に応じた階調の電圧が印加される画素電極と、共通電位が印加される共通電極と、が少なくとも設けられており、
     前記共通電極は、前記表示面の面内においてマトリクス状に並んで配されるとともに前記位置検出電極を構成する複数の分割共通電極からなる請求項9記載の位置入力機能付き表示装置。
  11.  前記表示パネルには、前記複数の分割共通電極に対して個別に接続される複数の配線が少なくとも設けられている請求項10記載の位置入力機能付き表示装置。
  12.  前記表示パネルは、前記筐体側とその反対側とに重ねられる一対の基板を少なくとも有しており、
     前記位置検出電極は、前記一対の基板のうち前記筐体側に配される基板に設けられている請求項10または請求項11記載の位置入力機能付き表示装置。
PCT/JP2016/075764 2015-09-09 2016-09-02 位置入力機能付き表示装置 WO2017043421A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017539147A JPWO2017043421A1 (ja) 2015-09-09 2016-09-02 位置入力機能付き表示装置
CN201680049667.8A CN107924255A (zh) 2015-09-09 2016-09-02 具有位置输入功能的显示装置
US15/757,929 US20180348904A1 (en) 2015-09-09 2016-09-02 Display apparatus with position input function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-177342 2015-09-09
JP2015177342 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017043421A1 true WO2017043421A1 (ja) 2017-03-16

Family

ID=58240804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075764 WO2017043421A1 (ja) 2015-09-09 2016-09-02 位置入力機能付き表示装置

Country Status (4)

Country Link
US (1) US20180348904A1 (ja)
JP (1) JPWO2017043421A1 (ja)
CN (1) CN107924255A (ja)
WO (1) WO2017043421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220334A1 (ja) * 2020-04-27 2021-11-04 シャープ株式会社 表示装置、及び、その製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600592B1 (ko) * 2016-08-29 2023-11-10 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
JP7310791B2 (ja) * 2018-02-16 2023-07-19 Agc株式会社 カバーガラス、およびインセル型液晶表示装置
CN110597406B (zh) * 2018-06-12 2023-06-20 夏普株式会社 输入装置
KR20210086002A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 표시장치
JP7383869B2 (ja) * 2020-02-13 2023-11-21 シャープ株式会社 タッチパネル及び表示装置
CN111459345A (zh) * 2020-03-18 2020-07-28 精电(河源)显示技术有限公司 一种触控屏及三维触控检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113445A (ja) * 2008-11-05 2010-05-20 Nec Corp タッチパネルおよび操作検出方法
WO2015059995A1 (ja) * 2013-10-22 2015-04-30 シャープ株式会社 タッチセンサ付き表示装置
JP2015106418A (ja) * 2013-11-29 2015-06-08 株式会社 ハイヂィープ 仮想タッチパッド操作方法及びこれを行う端末機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088422B2 (ja) * 2001-04-26 2008-05-21 株式会社日立製作所 表示データの伝送方法及び液晶表示装置
US20030067579A1 (en) * 2001-10-02 2003-04-10 Fujitsu Limited Liquid crystal display device and method of fabricating the same
TW571161B (en) * 2002-07-30 2004-01-11 Au Optronics Corp A flat panel display in which a digitizer is integrated
JP4714070B2 (ja) * 2006-04-14 2011-06-29 アルプス電気株式会社 入力装置
US7595788B2 (en) * 2006-04-14 2009-09-29 Pressure Profile Systems, Inc. Electronic device housing with integrated user input capability
US8432678B2 (en) * 2010-01-06 2013-04-30 Apple Inc. Component assembly
KR20130126228A (ko) * 2012-05-11 2013-11-20 크루셜텍 (주) 압력 감지가 가능한 매트릭스 스위칭 타입 터치 스크린 패널
US20150277168A1 (en) * 2012-11-21 2015-10-01 Sharp Kabushiki Kaisha Display device
US9035752B2 (en) * 2013-03-11 2015-05-19 Amazon Technologies, Inc. Force sensing input device under an unbroken exterior portion of a device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113445A (ja) * 2008-11-05 2010-05-20 Nec Corp タッチパネルおよび操作検出方法
WO2015059995A1 (ja) * 2013-10-22 2015-04-30 シャープ株式会社 タッチセンサ付き表示装置
JP2015106418A (ja) * 2013-11-29 2015-06-08 株式会社 ハイヂィープ 仮想タッチパッド操作方法及びこれを行う端末機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220334A1 (ja) * 2020-04-27 2021-11-04 シャープ株式会社 表示装置、及び、その製造方法

Also Published As

Publication number Publication date
US20180348904A1 (en) 2018-12-06
CN107924255A (zh) 2018-04-17
JPWO2017043421A1 (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017043421A1 (ja) 位置入力機能付き表示装置
US10459303B2 (en) Display device with curved part
US10303300B2 (en) Liquid crystal display device and display device substrate
JP5306059B2 (ja) タッチパネル、表示パネル、タッチパネル用基板、表示パネル用基板および表示装置
US7952862B2 (en) Electro-optical device and electronic apparatus
US8836346B2 (en) Electrostatic capacitance input device and electro-optical device having input device
JP4507480B2 (ja) 表示装置
JP5383903B2 (ja) 表示装置
US8823683B2 (en) Touch pixel structure, touch pixel array substrate and touch display panel
US10656476B2 (en) Liquid crystal panel
JP2014211825A (ja) 表示装置
EP2746904A1 (en) Touch control display panel and touch display device
US20160162096A1 (en) Oled touch control display device and manufacture method thereof
KR20170007666A (ko) 인셀 터치 타입의 표시 장치
JP2009176182A (ja) 表示装置及び電子機器
KR101745913B1 (ko) 터치 스크린이 내장된 액정 표시장치와 이의 제조방법
US10571753B2 (en) Liquid crystal panel
KR101810503B1 (ko) 터치 스크린이 내장된 액정 표시장치
JP2009198851A (ja) 電気光学装置及び電子機器
US10732447B2 (en) Touch panel and electronic device
US10852590B2 (en) Liquid crystal display device
US20210074739A1 (en) Electro-optical device, method for manufacturing electro-optical device, and electronic apparatus
JP2019066719A (ja) 表示パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844282

Country of ref document: EP

Kind code of ref document: A1