WO2017043237A1 - 電池管理装置 - Google Patents

電池管理装置 Download PDF

Info

Publication number
WO2017043237A1
WO2017043237A1 PCT/JP2016/073223 JP2016073223W WO2017043237A1 WO 2017043237 A1 WO2017043237 A1 WO 2017043237A1 JP 2016073223 W JP2016073223 W JP 2016073223W WO 2017043237 A1 WO2017043237 A1 WO 2017043237A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
battery
battery cell
cell group
cell
Prior art date
Application number
PCT/JP2016/073223
Other languages
English (en)
French (fr)
Inventor
彰彦 工藤
金井 友範
智行 有馬
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP16844101.2A priority Critical patent/EP3349327B1/en
Priority to CN201680041507.9A priority patent/CN108093662B/zh
Priority to US15/754,199 priority patent/US10886578B2/en
Priority to JP2017539069A priority patent/JP6403897B2/ja
Publication of WO2017043237A1 publication Critical patent/WO2017043237A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor

Definitions

  • the present invention relates to a battery management device.
  • an assembled battery configured by connecting a large number of single battery cells of a secondary battery in series is used to secure a desired high voltage.
  • a battery monitoring / control integrated circuit is provided for each cell group for capacity calculation and protection management of each single battery cell (see Patent Document 1).
  • a service disconnect switch is provided in the middle part of the assembled battery to cut off the current path of the assembled battery and ensure the safety of the operator. At the time of safety inspection, this service disconnect switch is opened to disconnect the assembled battery in series so that no electric shock will occur even if an operator accidentally touches the highest potential terminal and the lowest potential terminal of the assembled battery. it can.
  • a battery management device is provided corresponding to a first battery cell group electrically connected to one side of a shut-off mechanism that cuts off an electrical connection, and includes a plurality of battery packs constituting the first battery cell group.
  • a plurality of first integrated circuits that measure the respective voltages of the battery cells and a second battery cell group that is electrically connected to the other side of the shut-off mechanism and constitutes the second battery cell group
  • a second integrated circuit that measures the voltage of each of the battery cells; a signal transmission path that transmits a signal between the first integrated circuit and the second integrated circuit; and any one of the first battery cell group
  • a connection circuit that AC-couples through a capacitor Provided.
  • the integrated circuit connected to the single battery cell can be operated even when the service disconnect switch is opened.
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicles
  • EV electric vehicles
  • railway vehicles and the like.
  • a lithium-ion battery having a voltage in the range of 3.0 to 4.2 V (average output voltage: 3.6 V) is assumed as a storage / discharge device that is the minimum unit of control. Any device that can store and discharge electricity, such as restricting its use when the SOC (State of Charge) is too high (overcharge) or too low (overdischarge), can be used here. Collectively, it is called a single battery or single battery cell.
  • a plurality of (approximately several to a dozen) single battery cells connected in series are called cell groups, and a plurality of cell groups connected in series are called battery modules.
  • a plurality of cell groups or battery modules connected in series or in series and parallel are called assembled batteries.
  • An integrated circuit that detects the cell voltage of each single battery cell and monitors and controls the battery state while performing a balancing operation or the like is provided for each cell group.
  • FIG. 1 is a diagram showing a configuration example of a hybrid vehicle including a battery system including a battery management device according to the present invention.
  • Battery system 100 is connected to inverter 700 via relays 600 and 610.
  • Inverter 700 is connected to motor 800.
  • discharge power is supplied from the battery system 100 to the motor 800 through the inverter 700 to assist an engine (not shown).
  • the inverter 700 includes an inverter circuit including a plurality of semiconductor switching elements, a gate driving circuit for the semiconductor switching elements, and a motor controller that generates a pulse signal for PWM control of the gate driving circuit. 1 is omitted.
  • the battery system 100 mainly includes an assembled battery 102 composed of a plurality of single battery cells 101 that are lithium ion batteries, and a battery that performs a balancing discharge operation by detecting the voltage of each single battery cell 101 for each cell group.
  • the cell controller 200 includes a plurality of integrated circuits 300 for monitoring and control, and the battery controller 500 that controls the operation of the cell controller 200 and determines the state of each unit cell 101.
  • a lithium ion battery having a rated capacity of 5.5 Ah is used as a single battery cell 101 and 96 batteries are connected in series.
  • the battery controller 500 communicates with the plurality of integrated circuits 300 via the insulating element group 400 and controls them.
  • the integrated circuit 300 is provided for each cell group.
  • the cell controller 200 functions as a battery management device that manages the assembled battery 102 using these integrated circuits 300.
  • a voltage detection line between the assembled battery 102 and the cell controller 200 is connected to the cell controller 200 by a connector (not shown).
  • the battery controller 500 includes a total voltage detection circuit 501 that measures the total voltage of the battery pack 102, a charge / discharge current detection circuit 502 that is connected to the current sensor 503 and detects a charge / discharge current flowing through the battery pack 102, and a cell controller. 200, a microcomputer 504 that communicates with the inverter 700 and a host vehicle controller (not shown) to control the entire battery controller 500. If the total voltage of the assembled battery 102 can be measured, the total voltage detection circuit 501 does not have to be provided in the battery controller 500 as shown in FIG.
  • a total voltage detection circuit 701 that detects the total voltage of the assembled battery 102 is provided.
  • the battery controller 500 performs temperature correction of the battery state parameter based on the temperature of the unit cell 101 measured by the temperature detection circuit connected to the integrated circuit 300. ing.
  • the cell controller 200 and the battery controller 500 are provided on a single substrate, and these are housed in a metal case.
  • the assembled battery 102 is also housed in a metal case.
  • the cell controller 200 and the assembled battery 102 are connected by a harness in which a plurality of voltage detection lines, connection lines for temperature sensors (not shown) of the single battery cells 101, and the like are bundled.
  • the battery controller 500 transmits a command for performing OCV (open circuit voltage) measurement of each single battery cell 101 to the cell controller 200 via the insulating element group 400.
  • the OCV data of each single battery cell 101 measured in response to this command is transmitted from the cell controller 200 to the battery controller 500 via the insulating element group 400 in units of cell groups.
  • the battery controller 500 converts the received OCV of each single battery cell 101 into SOC, and calculates the deviation of the SOC of each single battery cell 101.
  • the single battery cell 101 in which the SOC deviation is larger than a predetermined value is a target for balancing discharge.
  • the time until the SOC deviation of the single battery cell 101 subject to balancing discharge becomes zero is calculated, and a command for performing a control operation to turn on the balancing switch in the integrated circuit 300 for this time is given by the battery controller 500.
  • the cell controller 200 performs balancing discharge of the unit cell 101 to be balanced.
  • the inverter 700 After the SOC of the battery pack 102 is calculated from the OCV of each single battery cell 101 measured as described above, the inverter 700 or a vehicle controller (not shown) which is a host controller turns on the relay 600 and the relay 610 to turn on the battery.
  • System 100 is connected to inverter 700 and motor 800.
  • the inverter 700 receives a charge / discharge command from the vehicle controller, the inverter 700 operates to drive the motor 800 and the battery system 100 is charged / discharged.
  • the battery controller 500 uses the total voltage detection circuit 501 and the charging / discharging current detection circuit 502 to perform the total voltage and charging / discharging at regular intervals. Measure the current. From the obtained total voltage and charge / discharge current values, the battery controller 500 calculates the state of charge (SOC) and internal resistance (DCR) of the assembled battery 102 in real time. Furthermore, from these values, the current or power that can be charged / discharged by the assembled battery 102 is calculated in real time and transmitted to the inverter 700. The inverter 700 controls the charge / discharge current or power within the range of the current or power.
  • SOC state of charge
  • DCR internal resistance
  • FIG. 2 is a diagram showing an example of communication connection between the integrated circuits 300a to 300d in the cell controller 200 and the microcomputer 504 in the battery controller 500 by a conventional connection method. Note that the integrated circuits 300a to 300d in FIG. 2 correspond to the integrated circuit 300 in FIG.
  • the microcomputer 504 includes a data transmission port TXD for transmitting commands and data to the integrated circuits 300a to 300d in the cell controller 200, and an FF for outputting a data packet (FF signal) for detecting an overcharge state. And a signal output port.
  • Integrated circuits 300a, 300b, 300c, and 300d are provided corresponding to the cell groups 104a, 104b, 104c, and 104d, respectively. In the following, when the integrated circuit 300 is simply referred to, the integrated circuits 300a to 300d are not particularly limited.
  • the integrated circuits 300a to 300d each have a power supply terminal Vcc and a ground terminal GND.
  • the power supply terminal Vcc is connected to the highest potential terminal of the cell groups 104a to 104d corresponding to the integrated circuits 300a to 300d, that is, the positive electrode side of the single cell 101 having the highest potential in the cell group.
  • the ground terminal GND is connected to the lowest potential terminal of the cell group 104a to 104d corresponding to the integrated circuit 300a to 300d, that is, the negative electrode side of the single cell 101 having the lowest potential in the cell group.
  • SD-SW 103 is a switch often used in a high voltage assembled battery or the like. The purpose is to open the SD-SW 103 at the time of maintenance and inspection to cut off the current path of the assembled battery 102 and prevent the operator from getting an electric shock. If the SD-SW 103 is opened, the series connection between the battery modules is cut off, so that a high voltage is not applied to the human body even if a person touches the uppermost terminal and the lowermost terminal of the assembled battery 102. Therefore, electric shock can be prevented.
  • the command and data signal are transmitted from the data transmission port TXD of the microcomputer 504 through the high-speed insulating element 401 to the communication of the integrated circuit 300a corresponding to the cell group 104a on the lowest potential side in the assembled battery 102. It is transmitted to the receiving terminal RXD.
  • the FF signal is transmitted from the FF signal output port of the microcomputer 504 to the FF input terminal FFIN of the integrated circuit 300 a through the low-speed insulating element 402.
  • the integrated circuit 300a corresponding to the cell group 104a on the lowest potential side has a communication output terminal TXD connected via a capacitor 403 to the communication receiving terminal RXD of the integrated circuit 300b corresponding to the cell group 104b one higher in potential order. It is connected.
  • the FF output terminal FFOUT of the integrated circuit 300a is connected to the FF input terminal FFIN of the integrated circuit 300b via a capacitor 403.
  • the communication output terminal TXD and the FF output terminal FFOUT of the integrated circuit 300b are respectively connected to the communication reception terminal RXD and the FF input terminal FFIN of the integrated circuit 300c corresponding to the cell group 104c that is one higher in potential order. Connected through.
  • the communication output terminal TXD and the FF output terminal FFOUT of the integrated circuit 300c are connected to the communication reception terminals RXD and FF of the integrated circuit 300d corresponding to the cell group 104d that is one higher in the potential order, that is, the cell group 104d on the highest potential side.
  • Each is connected to an input terminal FFIN via a capacitor 403.
  • the communication output terminal TXD is connected to the data reception port RXD of the microcomputer 504 via the high-speed insulating element 401.
  • the FF output terminal FFOUT of the integrated circuit 300d is connected to the FF signal input port of the microcomputer 504 via a low-speed insulating element 402.
  • the high-speed insulating element 401 and the low-speed insulating element 402 used in each communication path between the microcomputer 504 and the integrated circuits 300a and 300d are collectively shown as an insulating element group 400 in FIG.
  • the integrated circuit 300a When an activation communication signal is input from the data transmission port TXD of the microcomputer 504 to the communication reception terminal RXD of the integrated circuit 300a, the integrated circuit 300a is activated accordingly, and the next integrated circuit 300b is activated. Output communication signals. At this time, the integrated circuit 300a outputs a communication signal from the communication output terminal TXD to the communication reception terminal RXD of the integrated circuit 300b via the capacitor 403.
  • the integrated circuit 300b When a communication signal from the integrated circuit 300a is input to the communication receiving terminal RXD, the integrated circuit 300b is activated in response thereto, and outputs a communication signal for activating the next integrated circuit 300c in the same manner as the integrated circuit 300a. . That is, the integrated circuit 300b outputs a communication signal from the communication output terminal TXD to the communication reception terminal RXD of the integrated circuit 300c via the capacitor 403. Thereafter, a similar operation is performed in the integrated circuit 300c.
  • a communication signal from the integrated circuit 300c is input to the communication reception terminal RXD and the integrated circuit 300d is activated
  • a communication signal is output from the communication output terminal TXD of the integrated circuit 300d to the data reception port RXD of the microcomputer 504.
  • the microcomputer 504 can confirm the activation of the integrated circuits 300a to 300d and can recognize that the cell controller 200 has been activated.
  • the microcomputer 504 transmits a command signal and data (data packet) to the receiving terminal RXD of the integrated circuit 300a through the high-speed insulating element 401.
  • the integrated circuit 300a receives the command signal and the data packet, and further transmits them from the output terminal TXD to the next integrated circuit 300b.
  • all the integrated circuits 300a to 300d receive the command signal and data, and operate according to the command signal and data.
  • the respective integrated circuits 300a to 300d are converted into data packets.
  • Data is added and transmitted from the transmission terminal TXD to the RXD terminal of the next integrated circuit, and finally received by the data reception port RXD of the microcomputer 504.
  • the microcomputer 504 receives the data packet including the command signal transmitted by itself, the microcomputer 504 confirms that the command signal transfer has been normally performed, and there is data added by the integrated circuits 300a to 300d. Receives the data.
  • the loop of the FF signal that passes through the FF input terminal FFIN and the FF output terminal FFOUT of the integrated circuits 300a to 300d is a communication path for detecting the overcharge or overdischarge state of the unit cell 101.
  • the overcharge is performed by a system different from the communication line via the TXD terminal and the RXD terminal. It is for detecting.
  • the FF signal is assumed to be a rectangular wave signal with a constant period. For example, the normal state is a rectangular wave of 1 kHz, and the overcharged state is a rectangular wave of 2 KHz.
  • the integrated circuit 300 When a 1 KHz rectangular wave is input to the FF input terminal FFIN input, the integrated circuit 300 recognizes that each of the higher order communication circuits 300 is in a normal state (not overcharged), and outputs the FF output terminal FFOUT. Output a 1 kHz rectangular wave.
  • the cell voltage detection value of the integrated circuit 300 detects an overcharge voltage
  • the FF output terminal FFOUT output has a 2 kHz rectangular shape regardless of whether the frequency of the input signal at the FF input terminal FFIN is 1 kHz or 2 kHz. A wave is output, and the overcharge state is output to the next integrated circuit 300.
  • the frequency of the input signal at the FFIN terminal is a signal other than 1 kHz or 2 kHz, a rectangular wave is not output to the FF output terminal FFOUT.
  • the integrated circuit 300 Even if a certain integrated circuit 300 does not detect the overcharge voltage of the single battery cell 101 of the cell group to be controlled, when the 2 kHz rectangular wave is input from the other integrated circuit 300 to the FF input terminal FFIN, the integrated circuit 300 The circuit 300 outputs a 2 kHz rectangular wave to the FF output terminal FFOUT. In this way, the FF signal loop outputs that any of the integrated circuits 300 has detected overcharge. Thereby, the microcomputer 504 can detect overcharge by a path different from the high-speed communication signal loop.
  • the microcomputer 504 normally outputs the rectangular wave indicating the normal state of 1 kHz as the FF signal with the integrated circuit 300a on the lowest potential side as the highest communication order.
  • a 2 kHz rectangular wave indicating overcharge may be output. That is, even if not all the integrated circuits 300a to 300d detect the overcharge voltage, if the returned FF signal has a rectangular wave of 2 kHz, the microcomputer 504 confirms that the FF loop is operating normally. Can be confirmed. Further, when a failure occurs in the FF loop, for example, when the wire breaks, the state can be identified because the rectangular wave is not transmitted.
  • the ground terminals GND are insulated from each other between the integrated circuit 300b and the integrated circuit 300c with the SD-SW 103 interposed therebetween.
  • communication cannot be performed between the integrated circuit 300b and the integrated circuit 300c because a communication signal cannot be transmitted through the communication path via the capacitor 403.
  • the integrated circuits 300a to 300d cannot operate normally as a whole, and the cell controller 200 cannot manage the assembled battery 102. Furthermore, it becomes impossible to start the cell controller 200 by the method as described above.
  • FIG. 3 is a diagram showing a communication connection example according to the first embodiment of the present invention.
  • the connection method shown in FIG. 3 is different from the conventional connection method shown in FIG. 2 in that a connection circuit 310 is provided between the integrated circuit 300b and the integrated circuit 300c.
  • connection circuit 310 is AC-coupled between the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c via a capacitor 311.
  • a communication signal can be transmitted between the integrated circuit 300b and the integrated circuit 300c via the capacitor 403.
  • the integrated circuit 300b on the transmission side receives a communication signal from the communication output terminal TXD using the potential on the negative electrode side of the single cell 101 connected to the ground terminal GND in the corresponding cell group 104b as the reference potential of the communication signal. It is preferable to output.
  • the reception-side integrated circuit 300c receives a communication signal input to the communication reception terminal RXD with the potential on the negative electrode side of the single cell 101 connected to the ground terminal GND in the corresponding cell group 104c as a reference potential. It is preferable to do.
  • the connection method shown in FIG. 3 is particularly effective in transmitting a communication signal in such a case.
  • the cell controller 200 includes the signal transmission path via the integrated circuits 300b and 300c and the capacitor 403 that transmits a signal between the integrated circuit 300b and the integrated circuit 300c. And a connection circuit 310.
  • the integrated circuit 300b is provided corresponding to the cell group 104b that is electrically connected to one side of the SD-SW 103 as a cutoff mechanism that cuts off the electrical connection, and a plurality of unit cells constituting the cell group 104b. Each voltage of 101 is measured.
  • the integrated circuit 300c is provided corresponding to the cell group 104c electrically connected to the other side of the SD-SW 103, and measures each voltage of the plurality of single cells 101 constituting the cell group 104c.
  • connection circuit 310 is electrically connected to a connection target terminal of the integrated circuit 300b electrically connected to any single battery cell 101 of the cell group 104b and to any single battery cell 101 of the cell group 104c.
  • AC coupling is performed between the coupling target terminals of the integrated circuit 300 c and the capacitor 311.
  • the connection circuit 310 AC-couples the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c as coupling target terminals, respectively.
  • the ground terminal GND which is the connection target terminal of the integrated circuit 300b, is connected to the negative electrode side of the battery cell having the lowest potential in the cell group 104b
  • the ground terminal GND which is the connection target terminal of the integrated circuit 300c, is connected to the cell group 104c. It is connected to the negative electrode side of the battery cell having the lowest potential.
  • FIG. 4 is a diagram illustrating a communication connection example according to the second embodiment of the present invention.
  • a connection circuit 320 is provided between the integrated circuit 300 b and the integrated circuit 300 c instead of the connection circuit 310 in the first embodiment illustrated in FIG. 3.
  • connection circuit 320 is AC-coupled between the power supply terminal Vcc of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c via a capacitor 321.
  • a communication signal can be transmitted between the integrated circuit 300b and the integrated circuit 300c via the capacitor 403.
  • the integrated circuit 300b on the transmission side receives the communication signal from the communication output terminal TXD with the potential on the positive side of the single cell 101 connected to the power supply terminal Vcc in the corresponding cell group 104b as the reference potential of the communication signal. It is preferable to output.
  • the reception-side integrated circuit 300c receives a communication signal input to the communication reception terminal RXD with the potential on the negative electrode side of the single cell 101 connected to the ground terminal GND in the corresponding cell group 104c as a reference potential. It is preferable to do.
  • the connection method shown in FIG. 4 is particularly effective in transmitting a communication signal in such a case.
  • FIG. 4 when the integrated circuit 300b outputs a communication signal with the potential on the negative side of the single battery cell 101 connected to the ground terminal GND of the integrated circuit 300b as a reference potential, FIG.
  • the connection method of this embodiment shown in FIG. 4 may be applied.
  • an impedance corresponding to the sum of the internal resistances of the single battery cells 101 of the cell group 104b is inserted in series.
  • this impedance is sufficiently small with respect to the frequency of the communication signal, the communication signal can be normally transmitted from the integrated circuit 300b to the integrated circuit 300c.
  • the connection circuit 320 includes the connection target terminal of the integrated circuit 300b that is electrically connected to any single battery cell 101 of the cell group 104b, and the cell group 104c.
  • the integrated circuit 300c electrically connected to any one of the battery cells 101 is AC-coupled via a capacitor 321.
  • the connection circuit 320 AC-couples the power supply terminal Vcc of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c as coupling target terminals.
  • the power supply terminal Vcc which is a connection target terminal of the integrated circuit 300b, is connected to the positive side of the battery cell having the highest potential in the cell group 104b, and the ground terminal GND, which is the connection target terminal of the integrated circuit 300c, is connected to the cell group 104c. It is connected to the negative electrode side of the battery cell having the lowest potential.
  • the integrated circuits 300a to 300d connected to the single battery cell 101 can be operated.
  • FIG. 5 is a diagram showing a communication connection example according to the third embodiment of the present invention.
  • a connection circuit 330 is provided between the integrated circuit 300 b and the integrated circuit 300 c instead of the connection circuit 310 in the first embodiment illustrated in FIG. 3.
  • connection circuit 330 is AC-coupled between the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c via two capacitors 331 and 332 connected in series.
  • a communication signal can be transmitted between the integrated circuit 300b and the integrated circuit 300c via the capacitor 403.
  • connection circuit 330 may be used for AC coupling between the power supply terminal Vcc of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c, as in the second embodiment.
  • connection circuit 330 uses the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c as coupling target terminals, respectively. AC coupling is performed via capacitors 331 and 332.
  • the integrated circuits 300a to 300d connected to the single battery cell 101 can be operated. Furthermore, it is possible to improve safety by preventing short circuit of the cell group 104b.
  • FIG. 6 is a diagram showing a communication connection example according to the fourth embodiment of the present invention.
  • a connection circuit 340 is provided between the integrated circuit 300 b and the integrated circuit 300 c instead of the connection circuit 310 in the first embodiment illustrated in FIG. 3.
  • connection circuit 340 is AC-coupled between the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c via a capacitor 341.
  • a current limiting element 342 using a resistor or the like is connected to the capacitor 341 in series.
  • connection circuit 340 couples the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c with an alternating current.
  • the power supply of the integrated circuit 300b is connected.
  • the terminal Vcc and the ground terminal GND of the integrated circuit 300c may be AC-coupled.
  • connection circuit 340 uses the ground terminal GND of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c as coupling target terminals, respectively, and a capacitor is interposed between them. AC coupling is performed via 341.
  • Connection circuit 340 further includes a current limiting element 342 connected in series to capacitor 341.
  • connection circuit 310 in which at least one capacitor is provided between the ground terminal GND or the power supply terminal Vcc of the integrated circuit 300b and the ground terminal GND of the integrated circuit 300c, 320, 330 or 340 is connected. Therefore, the AC impedance between the integrated circuit 300b and the integrated circuit 300c can be reduced, and the noise resistance of the communication signal transmitted and received between them can be improved. For example, it is possible to reduce a noise component generated by superimposing a ripple voltage or the like generated by the operation of the inverter 700 of FIG. 1 on a communication signal. Therefore, the present invention is also effective from the viewpoint of improving the operation reliability of the cell controller 200.
  • the application range of the present invention is not limited to the battery system configured as described in the above embodiment.
  • the present invention can be applied to battery systems having various configurations and to electric vehicles having various specifications.
  • battery controller 101 single battery cell 102 assembled batteries 102a to 102d cell group 103 service disconnect switch (SD-SW) 104a to 104d Cell group 200
  • Cell controller 300, 300a to 300d Integrated circuit 310, 320, 330, 340 Connection circuit 311, 321, 331, 332, 341 Capacitor 342 Current limiting element 400 Insulating element group 401 High speed insulating element 402 Low speed insulating element 403 Capacitor 500 Battery controller 501 Total voltage detection circuit 502 Charge / discharge current detection circuit 503 Current sensor 504 Microcomputer 600 Relay 610 Relay 700 Inverter 701 Total voltage detection circuit 800 Motor

Abstract

サービスディスコネクトスイッチを開放した場合でも、単電池セルに接続された集積回路を動作させる。セルコントローラ200は、集積回路300bおよび300cと、集積回路300bと集積回路300cとの間で信号を伝送するコンデンサ403を介した信号伝送路と、接続回路310とを備える。集積回路300bは、SD-SW103の一方側に電気的に接続されたセルグループ104bに対応して設けられており、集積回路300cは、SD-SW103の他方側に電気的に接続されたセルグループ104cに対応して設けられている。接続回路310は、集積回路300bのグランド端子GNDと、集積回路300cのグランド端子GNDとを、コンデンサ311を介して交流結合する。

Description

電池管理装置
 本発明は電池管理装置に関する。
 ハイブリッド自動車(HEV)や電気自動車(EV)などでは、所望の高電圧を確保するため、二次電池の単電池セルを多数直列接続して構成される組電池(電池システム)が用いられている。このような組電池において、各単電池セルの容量計算や保護管理のため、電池監視・制御用の集積回路がセルグループごとに設けられているものが知られている(特許文献1参照)。
 特許文献1に記載された組電池では、組電池の中間部に、組電池の電流経路を遮断して作業者の安全を確保するためのサービスディスコネクトスイッチが設けられている。保安点検時には、このサービスディスコネクトスイッチを開放して組電池の直列接続を切断することで、作業者が誤って組電池の最高電位端子と最低電位端子に触っても感電しないようにすることができる。
特許第5706543号
 特許文献1に記載の組電池では、互いに隣接し合う二つの集積回路間の通信経路がコンデンサを介して結合されている。そのため、サービスディスコネクトスイッチを開放すると、サービスディスコネクトスイッチを挟んだ二つの集積回路のグランド同士が絶縁されてしまい、これらの集積回路間では通信ができなくなる。したがって、セル電圧測定やバランシング等の動作を各集積回路に実行させることができない。
 本発明による電池管理装置は、電気的な接続を遮断する遮断機構の一方側に電気的に接続された第1電池セル群に対応して設けられ、前記第1電池セル群を構成する複数の電池セルのそれぞれの電圧を計測する第1集積回路と、前記遮断機構の他方側に電気的に接続された第2電池セル群に対応して設けられ、前記第2電池セル群を構成する複数の電池セルのそれぞれの電圧を計測する第2集積回路と、前記第1集積回路と前記第2集積回路との間で信号を伝送する信号伝送路と、前記第1電池セル群のいずれかの電池セルに電気的に接続された前記第1集積回路の結合対象端子と、前記第2電池セル群のいずれかの電池セルに電気的に接続された前記第2集積回路の結合対象端子との間を、コンデンサを介して交流結合する接続回路と、を備える。
 本発明によれば、サービスディスコネクトスイッチを開放した場合でも、単電池セルに接続された集積回路を動作させることができる。
本発明による電池管理装置を含む電池システムを備えたハイブリッド自動車の構成例を示す図である。 従来の接続方法による通信接続例を示す図である。 本発明の第1の実施形態による通信接続例を示す図である。 本発明の第2の実施形態による通信接続例を示す図である。 本発明の第3の実施形態による通信接続例を示す図である。 本発明の第4の実施形態による通信接続例を示す図である。
 以下、図面を参照して本発明を実施するための形態について説明する。以下に説明する実施形態は、本発明をハイブリッド自動車(HEV)などに用いられる電池システムに対して適用した場合の例である。なお、本発明はHEVに限らず、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)、鉄道車両などに搭載される各種電池システムに対して幅広く適用可能である。
 以下の実施例では、制御の最小単位となる蓄電・放電デバイスとして3.0~4.2V(平均出力電圧:3.6V)の範囲に電圧を持つリチウムイオン電池を想定しているが、それ以外でもSOC(State of Charge)が高すぎる場合(過充電)や低すぎる場合(過放電)に使用を制限するような、電気を蓄え放電可能なデバイスであれば何でもよく、ここでは、それらを総称して単電池あるいは単電池セルと呼ぶ。
 以下に説明する実施形態では、単電池セルを複数個(概ね数個から十数個)直列に接続したものをセルグループと呼び、このセルグループを複数個直列に接続したものを電池モジュールと呼ぶ。更にこのセルグループあるいは電池モジュールを複数個直列または直並列に接続したものを組電池と呼称する。各単電池セルのセル電圧を検出し、バランシング動作等を行いながら電池状態を監視および制御する集積回路は、セルグループ毎に設けられる。
(ハイブリッド自動車用駆動システム)
 まず、図1を用いて、本発明による電池管理装置を含む電池システムをハイブリッド自動車用駆動システムに適用した例について説明する。図1は、本発明による電池管理装置を含む電池システムを備えたハイブリッド自動車の構成例を示す図である。
 電池システム100は、リレー600、610を介してインバータ700に接続されている。インバータ700はモータ800に接続されている。車両の発進・加速時には電池システム100から放電電力がインバータ700を通じてモータ800に供給されて図示されないエンジンをアシストする。車両停止・減速時には、モータ800からの回生電力がインバータ700を通じて電池システム100に充電される。なお、ここではインバータ700は複数の半導体スイッチング素子を備えたインバータ回路と、半導体スイッチング素子のゲート駆動回路と、ゲート駆動回路をPWM制御するパルス信号を発生するモータコントローラとを備えているが、図1では省略されている。
 電池システム100は、主に、リチウムイオン電池である複数の単電池セル101から構成される組電池102と、各単電池セル101の電圧をセルグループごとに検出してバランシング放電動作等を行う電池監視・制御用の集積回路300を複数備えたセルコントローラ200と、セルコントローラ200の動作を制御し、各単電池セル101の状態判定を行うバッテリコントローラ500とで構成される。本実施形態に示す電池システム100の例では、定格容量5.5Ahのリチウムイオン電池を単電池セル101として、これを96個直列に接続したものを使用している。バッテリコントローラ500は、絶縁素子群400を介して複数の集積回路300と通信を行い、これらを制御する。集積回路300は、前述のように、セルグループ毎に設けられている。セルコントローラ200は、これらの集積回路300を用いて、組電池102の管理を行う電池管理装置として機能する。なお、組電池102とセルコントローラ200の間の電圧検出線は、不図示のコネクタでセルコントローラ200に接続されている。
 バッテリコントローラ500は、組電池102の総電圧を測定する総電圧検出回路501と、電流センサ503に接続されており組電池102に流れる充放電電流を検出する充放電電流検出回路502と、セルコントローラ200とインバータ700及び図示されない上位の車両コントローラとの間で通信を行い、バッテリコントローラ500の全体を制御するマイクロコンピュータ504とを備えている。なお、組電池102の総電圧を測定できれば、総電圧検出回路501は、図1のようにバッテリコントローラ500の内部に設けられていなくともよい。
 インバータ700の内部にも、組電池102の総電圧を検出する総電圧検出回路701が設けられている。また、図1には示されていないが、バッテリコントローラ500は、集積回路300に接続された温度検出回路によって測定された単電池セル101の温度に基づいて、電池状態のパラメータの温度補正を行っている。
 なお、図1では省略されているが、セルコントローラ200とバッテリコントローラ500は、一つの基板の上に設けられており、これらは金属製のケースに収納されている。また、組電池102も金属製のケースに収納されている。セルコントローラ200と組電池102とは、複数の電圧検出線や単電池セル101の温度センサ(不図示)の接続線等が束ねられたハーネスで接続されている。
 この電池システム100の起動後に以下の動作が行われる。バッテリコントローラ500は、セルコントローラ200に対して、各単電池セル101のOCV(開路電圧)測定を行う指令を絶縁素子群400を介して送信する。この指令に応じて測定された各単電池セル101のOCVのデータは、セルコントローラ200からセルグループ単位で絶縁素子群400を介して、バッテリコントローラ500に送信される。
 バッテリコントローラ500は、受信した各単電池セル101のOCVをSOCに変換し、各単電池セル101のSOCの偏差を算出する。このSOCの偏差が所定の値よりも大きい単電池セル101がバランシング放電を行う対象となる。バランシング放電の対象となった単電池セル101のSOCの偏差が0となるまでの時間が計算され、この時間だけ集積回路300内のバランシングスイッチをオンとする制御動作を行う指令が、バッテリコントローラ500からセルコントローラ200に送られる。この指令に応じて、セルコントローラ200によりバランシング対象の単電池セル101のバランシング放電が行われる。
 上記で測定された各単電池セル101のOCVから、組電池102のSOCが算出された後、インバータ700あるいは上位コントローラである車両コントローラ(不図示)がリレー600とリレー610とをオンとして、電池システム100がインバータ700とモータ800に接続される。そして、車両コントローラからの充放電指令をインバータ700が受けると、インバータ700が動作してモータ800を駆動するとともに、電池システム100の充放電動作が行われる。
 リレー600及びリレー610をオンとして電池システム100が充放電を開始する時から、バッテリコントローラ500は、総電圧検出回路501および充放電電流検出回路502を用いて、一定時間毎に総電圧と充放電電流を測定する。得られた総電圧と充放電電流の値から、バッテリコントローラ500は組電池102の充電状態(SOC)と内部抵抗(DCR)をリアルタイムに算出する。さらに、これらの値から、組電池102が充放電可能な電流あるいは電力をリアルタイムに算出して、インバータ700に送信する。インバータ700は、その電流あるいは電力の範囲内で充放電電流あるいは電力を制御する。
(従来の接続方法)
 図2は、従来の接続方法によるセルコントローラ200内の集積回路300a~300dとバッテリコントローラ500内のマイクロコンピュータ504の間の通信接続例を示す図である。なお、図2の集積回路300a~300dは、図1の集積回路300に対応するものである。
 マイクロコンピュータ504は、セルコントローラ200内の集積回路300a~300dにコマンド及びデータを送信するためのデータ送信ポートTXDと、過充電状態を検出するためのデータパケット(FF信号)を出力するためのFF信号出力ポートとを有している。
 図2の例では、組電池102において、複数の単電池セル101をそれぞれ直列接続した4個のセルグループ104a、104b、104c、104dが設けられている。そして、セルグループ104aおよび104bを直列接続した電池モジュールと、セルグループ104cおよび104dを直列接続した電池モジュールとを、サービスディスコネクトスイッチ(SD-SW)103の下側と上側にそれぞれ配した構成となっている。これらの電池モジュールを構成するセルグループの数は2個に限定されず、3個以上であってもよい。セルグループ104a、104b、104c、104dにそれぞれ対応して、集積回路300a、300b、300c、300dが設けられている。なお、以下において単に集積回路300と呼ぶ場合は、集積回路300a~300dを特に限定しない場合とする。
 集積回路300a~300dは、電源端子Vccおよびグランド端子GNDをそれぞれ有している。電源端子Vccは、集積回路300a~300dがそれぞれ対応するセルグループ104a~104dの最高電位端子、すなわち当該セルグループ内で最高電位の単電池セル101の正極側に接続されている。一方、グランド端子GNDは、集積回路300a~300dがそれぞれ対応するセルグループ104a~104dの最低電位端子、すなわち当該セルグループ内で最低電位の単電池セル101の負極側に接続されている。
 SD-SW103は、高電圧の組電池などでよく用いられるスイッチである。保守点検時にこのSD-SW103を開放することによって、組電池102の電流経路を遮断し、作業者の感電を防止することを目的としている。このSD-SW103を開放しておけば、電池モジュール間の直列接続が絶たれるため、組電池102の最上位端子と最下位端子を人間が触っても高電圧が人体に印加されることはないので、感電が防止できる。
 コマンドおよびデータ信号の通信ラインでは、コマンドおよびデータ信号が、マイクロコンピュータ504のデータ送信ポートTXDから高速絶縁素子401を通じて、組電池102において最下位電位側のセルグループ104aに対応する集積回路300aの通信受信端子RXDに送信される。また、FF信号の通信ラインでは、FF信号がマイクロコンピュータ504のFF信号出力ポートから、低速絶縁素子402を通じて集積回路300aのFF入力端子FFINに送信される。
 最下位電位側のセルグループ104aに対応する集積回路300aは、その通信出力端子TXDが、電位順序で一つ上位のセルグループ104bに対応する集積回路300bの通信受信端子RXDにコンデンサ403を介して接続されている。また、集積回路300aのFF出力端子FFOUTは、集積回路300bのFF入力端子FFINにコンデンサ403を介して接続されている。
 同様に、集積回路300bの通信出力端子TXDおよびFF出力端子FFOUTは、電位順序で一つ上位のセルグループ104cに対応する集積回路300cの通信受信端子RXDおよびFF入力端子FFINに、それぞれコンデンサ403を介して接続されている。また、集積回路300cの通信出力端子TXDおよびFF出力端子FFOUTは、電位順序で一つ上位のセルグループ104d、すなわち最上位電位側のセルグループ104dに対応する集積回路300dの通信受信端子RXDおよびFF入力端子FFINに、それぞれコンデンサ403を介して接続されている。
 なお、SD-SW103の下側のセルグループ104bに接続されている集積回路300bと、上側のセルグループ104cに接続されている集積回路300cとの間の通信は、絶縁して行う必要がある。その理由は、もしもこれらの通信ラインを直結すると、その接続を通じて、SD-SW103の上下に配置されている電池モジュール同士が直列接続されることになるためである。この場合、SD-SW103の切り離しを行っても電池モジュール同士の直列接続が維持されるため、組電池102の通電を遮断できなくなる。したがって、各セルグループにそれぞれ含まれる単電池セル101の数が多く、各セルグループの端子間電圧が高いと、作業者が感電する可能性を生じることになる。このため、図2の例では、集積回路300bと集積回路300cの間にコンデンサ403を挿入している。
 最上位電位側のセルグループ104dに対応する集積回路300dは、その通信出力端子TXDが、マイクロコンピュータ504のデータ受信ポートRXDに高速絶縁素子401を介して接続されている。同様に、集積回路300dのFF出力端子FFOUTは、マイクロコンピュータ504のFF信号入力ポートに、低速の絶縁素子402を介して接続されている。
 なお、マイクロコンピュータ504と集積回路300aおよび300dの間の各通信経路で用いられている高速絶縁素子401と低速絶縁素子402を、図1ではまとめて絶縁素子群400として示している。
 マイクロコンピュータ504のデータ送信ポートTXDから起動用の通信信号が集積回路300aの通信受信端子RXDに入力されると、これに応じて集積回路300aが起動し、次の集積回路300bを起動するための通信信号を出力する。このとき集積回路300aは、コンデンサ403を介して、通信出力端子TXDから集積回路300bの通信受信端子RXDへ通信信号を出力する。
 集積回路300aからの通信信号が通信受信端子RXDへ入力されると、これに応じて集積回路300bが起動し、次の集積回路300cを起動するための通信信号を集積回路300aと同様に出力する。すなわち、集積回路300bは、コンデンサ403を介して、通信出力端子TXDから集積回路300cの通信受信端子RXDへ通信信号を出力する。その後、集積回路300cでも同様の動作が行われる。
 集積回路300cからの通信信号が通信受信端子RXDへ入力され、集積回路300dが起動すると、集積回路300dの通信出力端子TXDからマイクロコンピュータ504のデータ受信ポートRXDへ通信信号が出力される。これを受けることで、マイクロコンピュータ504は、集積回路300a~300dの起動を確認し、セルコントローラ200が起動されたことを認識することができる。
 セルコントローラ200の起動後は、マイクロコンピュータ504は高速絶縁素子401を通じて集積回路300aの受信端子RXDにコマンド信号及びデータ(データパケット)を送信する。集積回路300aはコマンド信号とデータパケットを受信し、さらにこれらを出力端子TXDから次の集積回路300bに送信する。このようにして全部の集積回路300a~300dはコマンド信号とデータを受信し、このコマンド信号とデータに従って動作を行う。集積回路300a~300dがそれぞれ制御するセルグループ104a~104dの各単電池セル101の端子間電圧(セル電圧と呼ぶ)等のデータを得る場合には、それぞれの集積回路300a~300dがデータパケットにデータを付加して、送信端子TXDから次の集積回路のRXD端子に送信し、最終的にマイクロコンピュータ504のデータ受信ポートRXDで受信される。マイクロコンピュータ504は、自分が送信したコマンド信号を含めたデータパケットを受信することで、正常にコマンド信号転送が行われたことを確認し、かつ集積回路300a~300dが付加したデータがある場合にはそのデータを受信する。
 なお、集積回路300a~300dの各FF入力端子FFINおよびFF出力端子FFOUTを経由するFF信号のループは、単電池セル101の過充電あるいは過放電の状態を検出するための通信路である。これは、リチウムイオン電池を用いた単電池セル101の安全性確保に重要な過充電の検出の信頼性を向上するため、TXD端子とRXD端子を経由する通信ラインとは別の系統で過充電を検出するためのものである。FF信号は一定周期の矩形波信号を想定しており、例えば、正常状態は1kHzの矩形波で、過充電状態は2KHzの矩形波とする。
 集積回路300は、FF入力端子FFIN入力に1KHzの矩形波が入力された場合、上位の通信順序の各集積回路300は正常な状態である(過充電でない)と認識し、FF出力端子FFOUT出力に1kHzの矩形波を出力する。一方、当該集積回路300のセル電圧検出値が過充電電圧を検出した場合には、FF入力端子FFINの入力信号の周波数が1kHzまたは2kHzのどちらの場合でも、FF出力端子FFOUT出力に2kHzの矩形波を出力し、過充電状態を次の集積回路300に出力する。また、FFIN端子の入力信号の周波数が1kHzあるいは2kHz以外の信号の場合は、FF出力端子FFOUTに矩形波を出力しないものとする。
 ある集積回路300がその制御するセルグループの単電池セル101の過充電電圧を検出していなくても、FF入力端子FFINに他の集積回路300から2kHzの矩形波が入力されると、当該集積回路300はFF出力端子FFOUTに2kHzの矩形波を出力する。このようにして、FF信号ループはいずれかの集積回路300が過充電を検出したことを出力する。これにより、マイクロコンピュータ504は高速の通信信号ループとは別の経路で過充電を検出できる。
 なお、マイクロコンピュータ504は、通常、最下位電位側の集積回路300aを最上位の通信順序として、これに1kHzの正常状態を示す矩形波をFF信号として出力するものとする。一方、FFループの動作確認時には、過充電を示す2kHzの矩形波を出力すればよい。すなわち、全部の集積回路300a~300dが過充電電圧を検出していなくても、戻ってきたFF信号の矩形波が2kHzであれば、マイクロコンピュータ504はFFループが正常に動作していることを確認することができる。また、FFループに障害が発生した場合、例えば断線した場合は、矩形波が伝送されないのでその状態を識別できる。
 上記で説明した従来の接続方法による電池システムでは、SD-SW103を開放すると、SD-SW103を挟んで隣接する集積回路300bと集積回路300cとの間で、これらのグランド端子GND同士が絶縁される。このとき、集積回路300bと集積回路300cとの間では、コンデンサ403を介した通信経路で通信信号を伝達することができないため、通信が不可能となる。そのため、集積回路300a~300dの全体で正常な動作を行うことができず、セルコントローラ200による組電池102の管理が不可能となる。さらに、前述のような方法でセルコントローラ200を起動させることも不可能となる。
 そこで本発明では、集積回路300bと集積回路300cとの間の接続を工夫することで、従来の接続方法とは異なり、SD-SW103を開放した場合でも上記のような不都合が起きないようにした。以下の各実施形態では、その具体例を説明する。
(第1の実施形態)
 図3は、本発明の第1の実施形態による通信接続例を示す図である。図3に示す接続方法では、図2に示した従来の接続方法と比べて、集積回路300bと集積回路300cとの間に接続回路310が設けられている点が異なっている。
 接続回路310は、集積回路300bのグランド端子GNDと集積回路300cのグランド端子GNDとの間を、コンデンサ311を介して交流結合している。これにより、SD-SW103を開放した場合でも、集積回路300bと集積回路300cとの間で、コンデンサ403を介して通信信号を伝達することができる。
 ここで、送信側の集積回路300bは、対応するセルグループ104bにおいてグランド端子GNDが接続されている単電池セル101の負極側の電位を通信信号の基準電位として、通信出力端子TXDから通信信号を出力することが好ましい。また、受信側の集積回路300cは、対応するセルグループ104cにおいてグランド端子GNDが接続されている単電池セル101の負極側の電位を基準電位として、通信受信端子RXDに入力された通信信号を受信することが好ましい。図3に示す接続方法は、このような場合の通信信号の伝達において特に有効である。
 以上説明した本発明の第1の実施形態によれば、セルコントローラ200は、集積回路300bおよび300cと、集積回路300bと集積回路300cとの間で信号を伝送するコンデンサ403を介した信号伝送路と、接続回路310とを備える。集積回路300bは、電気的な接続を遮断する遮断機構としてのSD-SW103の一方側に電気的に接続されたセルグループ104bに対応して設けられ、セルグループ104bを構成する複数の単電池セル101のそれぞれの電圧を計測する。集積回路300cは、SD-SW103の他方側に電気的に接続されたセルグループ104cに対応して設けられ、セルグループ104cを構成する複数の単電池セル101のそれぞれの電圧を計測する。接続回路310は、セルグループ104bのいずれかの単電池セル101に電気的に接続された集積回路300bの結合対象端子と、セルグループ104cのいずれかの単電池セル101に電気的に接続された集積回路300cの結合対象端子との間を、コンデンサ311を介して交流結合する。具体的には、接続回路310は、集積回路300bのグランド端子GNDと、集積回路300cのグランド端子GNDとを、それぞれ結合対象端子として交流結合する。集積回路300bの結合対象端子であるグランド端子GNDは、セルグループ104bにおいて最低電位の電池セルの負極側に接続されており、集積回路300cの結合対象端子であるグランド端子GNDは、セルグループ104cにおいて最低電位の電池セルの負極側に接続されている。このようにしたので、SD-SW103を開放した場合でも、単電池セル101に接続された集積回路300a~300dを動作させることができる。
(第2の実施形態)
 図4は、本発明の第2の実施形態による通信接続例を示す図である。図4に示す接続方法では、集積回路300bと集積回路300cとの間に、図3に示した第1の実施形態における接続回路310に替えて、接続回路320が設けられている。
 接続回路320は、集積回路300bの電源端子Vccと集積回路300cのグランド端子GNDとの間を、コンデンサ321を介して交流結合している。これにより、第1の実施形態と同様に、SD-SW103を開放した場合でも、集積回路300bと集積回路300cとの間で、コンデンサ403を介して通信信号を伝達することができる。
 ここで、送信側の集積回路300bは、対応するセルグループ104bにおいて電源端子Vccが接続されている単電池セル101の正極側の電位を通信信号の基準電位として、通信出力端子TXDから通信信号を出力することが好ましい。また、受信側の集積回路300cは、対応するセルグループ104cにおいてグランド端子GNDが接続されている単電池セル101の負極側の電位を基準電位として、通信受信端子RXDに入力された通信信号を受信することが好ましい。図4に示す接続方法は、このような場合の通信信号の伝達において特に有効である。
 あるいは、第1の実施形態と同様に、集積回路300bのグランド端子GNDが接続されている単電池セル101の負極側の電位を基準電位として、集積回路300bが通信信号を出力する場合において、図4に示した本実施形態の接続方法を適用してもよい。この場合は、集積回路300bと集積回路300cとの間の通信経路において、セルグループ104bの各単電池セル101の内部抵抗を合わせたものに相当するインピーダンスが直列に挿入されることになる。しかし、通信信号の周波数に対してこのインピーダンスが十分に小さければ、集積回路300bから集積回路300cに通信信号を正常に伝達することができる。
 以上説明した本発明の第2の実施形態によれば、接続回路320は、セルグループ104bのいずれかの単電池セル101に電気的に接続された集積回路300bの結合対象端子と、セルグループ104cのいずれかの単電池セル101に電気的に接続された集積回路300cの結合対象端子との間を、コンデンサ321を介して交流結合する。具体的には、接続回路320は、集積回路300bの電源端子Vccと、集積回路300cのグランド端子GNDとを、それぞれ結合対象端子として交流結合する。集積回路300bの結合対象端子である電源端子Vccは、セルグループ104bにおいて最高電位の電池セルの正極側に接続されており、集積回路300cの結合対象端子であるグランド端子GNDは、セルグループ104cにおいて最低電位の電池セルの負極側に接続されている。このようにしたので、第1の実施形態と同様に、SD-SW103を開放した場合でも、単電池セル101に接続された集積回路300a~300dを動作させることができる。
(第3の実施形態)
 図5は、本発明の第3の実施形態による通信接続例を示す図である。図5に示す接続方法では、集積回路300bと集積回路300cとの間に、図3に示した第1の実施形態における接続回路310に替えて、接続回路330が設けられている。
 接続回路330は、集積回路300bのグランド端子GNDと集積回路300cのグランド端子GNDとの間を、直列に接続された二つのコンデンサ331および332を介して交流結合している。これにより、第1の実施形態と同様に、SD-SW103を開放した場合でも、集積回路300bと集積回路300cとの間で、コンデンサ403を介して通信信号を伝達することができる。さらに、コンデンサ331または332のいずれか一方が故障等で短絡した場合でも、接続回路330を介してセルグループ104bが短絡されるのを防止することができる。そのため、安全性の向上を図ることができる。
 なお、図5では二つのコンデンサ331および332を直列接続しているが、三つ以上のコンデンサを直列接続してもよい。また、接続回路330を用いて、第2の実施形態と同様に、集積回路300bの電源端子Vccと集積回路300cのグランド端子GNDとの間を交流結合してもよい。
 以上説明した本発明の第3の実施形態によれば、接続回路330は、集積回路300bのグランド端子GNDと、集積回路300cのグランド端子GNDとを、それぞれ結合対象端子として、これらの間を複数のコンデンサ331および332を介して交流結合する。このようにしたので、第1および第2の実施形態と同様に、SD-SW103を開放した場合でも、単電池セル101に接続された集積回路300a~300dを動作させることができる。さらに、セルグループ104bの短絡を防いで安全性の向上を図ることもできる。
(第4の実施形態)
 図6は、本発明の第4の実施形態による通信接続例を示す図である。図6に示す接続方法では、集積回路300bと集積回路300cとの間に、図3に示した第1の実施形態における接続回路310に替えて、接続回路340が設けられている。
 接続回路340は、集積回路300bのグランド端子GNDと集積回路300cのグランド端子GNDとの間を、コンデンサ341を介して交流結合している。このコンデンサ341には、抵抗等を用いた電流制限素子342が直列に接続されている。これにより、第1の実施形態と同様に、SD-SW103を開放した場合でも、集積回路300bと集積回路300cとの間で、コンデンサ403を介して通信信号を伝達することができる。さらに、コンデンサ341が故障等で短絡した場合には、接続回路340に流れる電流を電流制限素子342により制限し、過大な電流が流れるのを防止することができる。そのため、安全性の向上を図ることができる。
 なお、図6では接続回路340により、集積回路300bのグランド端子GNDと集積回路300cのグランド端子GNDとの間を交流結合しているが、第2の実施形態と同様に、集積回路300bの電源端子Vccと集積回路300cのグランド端子GNDとの間を交流結合してもよい。
 以上説明した本発明の第4の実施形態によれば、接続回路340は、集積回路300bのグランド端子GNDと、集積回路300cのグランド端子GNDとを、それぞれ結合対象端子として、これらの間をコンデンサ341を介して交流結合する。接続回路340はさらに、コンデンサ341に直列接続された電流制限素子342を有する。このようにしたので、第1~第3の実施形態と同様に、SD-SW103を開放した場合でも、単電池セル101に接続された集積回路300a~300dを動作させることができる。さらに、コンデンサ341の短絡時に過大な電流が流れるのを防いで安全性の向上を図ることもできる。
 なお、以上説明した本発明の各実施形態では、集積回路300bのグランド端子GNDまたは電源端子Vccと、集積回路300cのグランド端子GNDとの間に、少なくとも一つのコンデンサが設けられた接続回路310、320、330または340が接続されている。そのため、集積回路300bと集積回路300cの間の交流インピーダンスを低くして、これらの間で送受信される通信信号の耐ノイズ性を向上させることができる。たとえば、図1のインバータ700の動作により生じたリプル電圧等が通信信号に重畳されることで生じるノイズ成分を低減することができる。したがって、セルコントローラ200の動作信頼性の向上という観点からも、本発明は有効である。
 本発明の適用範囲は、上記実施形態で説明したような構成の電池システムに限定されるものではない。様々な構成の電池システムに対して、また様々な仕様の電動車両に対して本発明の適用が可能である。
 以上説明した各実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。
100 電池システム
101 単電池セル
102 組電池
102a~102d セルグループ
103 サービスディスコネクトスイッチ(SD-SW)
104a~104d セルグループ
200 セルコントローラ
300、300a~300d 集積回路
310、320、330、340 接続回路
311、321、331、332、341 コンデンサ
342 電流制限素子
400 絶縁素子群
401 高速絶縁素子
402 低速絶縁素子
403 コンデンサ
500 バッテリコントローラ
501 総電圧検出回路
502 充放電電流検出回路
503 電流センサ
504 マイクロコンピュータ
600 リレー
610 リレー
700 インバータ
701 総電圧検出回路
800 モータ

Claims (6)

  1.  電気的な接続を遮断する遮断機構の一方側に電気的に接続された第1電池セル群に対応して設けられ、前記第1電池セル群を構成する複数の電池セルのそれぞれの電圧を計測する第1集積回路と、
     前記遮断機構の他方側に電気的に接続された第2電池セル群に対応して設けられ、前記第2電池セル群を構成する複数の電池セルのそれぞれの電圧を計測する第2集積回路と、
     前記第1集積回路と前記第2集積回路との間で信号を伝送する信号伝送路と、
     前記第1電池セル群のいずれかの電池セルに電気的に接続された前記第1集積回路の結合対象端子と、前記第2電池セル群のいずれかの電池セルに電気的に接続された前記第2集積回路の結合対象端子との間を、コンデンサを介して交流結合する接続回路と、
    を備える電池管理装置。
  2.  請求項1に記載の電池管理装置において、
     前記第1集積回路の結合対象端子の電位は、前記信号伝送路を介して前記第2集積回路に前記信号を送信する前記第1集積回路の送信端子の基準電位であり、
     前記第2集積回路の結合対象端子の電位は、前記第1集積回路から前記信号伝送路を介して送信された前記信号を受信する前記第2集積回路の受信端子の基準電位である電池管理装置。
  3.  請求項1または2に記載の電池管理装置において、
     前記第1集積回路の結合対象端子は、前記第1電池セル群において最低電位の電池セルの負極側に接続されており、
     前記第2集積回路の結合対象端子は、前記第2電池セル群において最低電位の電池セルの負極側に接続されている電池管理装置。
  4.  請求項1または2に記載の電池管理装置において、
     前記第1集積回路の結合対象端子は、前記第1電池セル群において最高電位の電池セルの正極側に接続されており、
     前記第2集積回路の結合対象端子は、前記第2電池セル群において最低電位の電池セルの負極側に接続されている電池管理装置。
  5.  請求項1乃至4のいずれか一項に記載の電池管理装置において、
     前記接続回路は、前記第1集積回路の結合対象端子と前記第2集積回路の結合対象端子
    との間を、直列に接続された複数のコンデンサを介して交流結合する電池管理装置。
  6.  請求項1乃至4のいずれか一項に記載の電池管理装置において、
     前記接続回路は、前記コンデンサに直列接続された電流制限素子を有する電池管理装置。
PCT/JP2016/073223 2015-09-11 2016-08-08 電池管理装置 WO2017043237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16844101.2A EP3349327B1 (en) 2015-09-11 2016-08-08 Battery management device
CN201680041507.9A CN108093662B (zh) 2015-09-11 2016-08-08 电池管理装置
US15/754,199 US10886578B2 (en) 2015-09-11 2016-08-08 Battery management device
JP2017539069A JP6403897B2 (ja) 2015-09-11 2016-08-08 電池管理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-179359 2015-09-11
JP2015179359 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043237A1 true WO2017043237A1 (ja) 2017-03-16

Family

ID=58240686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073223 WO2017043237A1 (ja) 2015-09-11 2016-08-08 電池管理装置

Country Status (5)

Country Link
US (1) US10886578B2 (ja)
EP (1) EP3349327B1 (ja)
JP (2) JP6403897B2 (ja)
CN (1) CN108093662B (ja)
WO (1) WO2017043237A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309398A (zh) * 2018-09-30 2019-02-05 联想(北京)有限公司 一种处理方法及电源装置
JP2019033653A (ja) * 2017-08-10 2019-02-28 田淵電機株式会社 蓄電装置
WO2020105303A1 (ja) * 2018-11-22 2020-05-28 日立オートモティブシステムズ株式会社 セルコントローラ、バッテリコントローラ、電池管理システムおよび電池システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624084B2 (ja) * 2017-01-12 2019-12-25 トヨタ自動車株式会社 電動車両

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074333A (ja) * 2010-09-30 2012-04-12 Hitachi Vehicle Energy Ltd 蓄電装置及びそれに用いられる監視制御装置
WO2013035183A1 (ja) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 電池システム監視装置
JP2013076602A (ja) * 2011-09-30 2013-04-25 Hitachi Ltd 蓄電システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486780B2 (ja) * 2008-07-01 2014-05-07 株式会社日立製作所 電池システム
JP5470073B2 (ja) * 2010-02-05 2014-04-16 日立ビークルエナジー株式会社 電池制御装置および電池システム
JP2012004856A (ja) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd 電力線通信装置
JP5599123B2 (ja) * 2011-02-28 2014-10-01 日立オートモティブシステムズ株式会社 電池制御装置
JP6026577B2 (ja) * 2011-12-20 2016-11-16 日立オートモティブシステムズ株式会社 電池監視・制御用集積回路および電池システム
US9356453B2 (en) 2011-12-20 2016-05-31 Hitachi Automotive Systems, Ltd. Battery monitoring and control integrated circuit and battery system
JP5853099B2 (ja) * 2012-05-24 2016-02-09 日立オートモティブシステムズ株式会社 電池制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074333A (ja) * 2010-09-30 2012-04-12 Hitachi Vehicle Energy Ltd 蓄電装置及びそれに用いられる監視制御装置
WO2013035183A1 (ja) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 電池システム監視装置
JP2013076602A (ja) * 2011-09-30 2013-04-25 Hitachi Ltd 蓄電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349327A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033653A (ja) * 2017-08-10 2019-02-28 田淵電機株式会社 蓄電装置
CN109309398A (zh) * 2018-09-30 2019-02-05 联想(北京)有限公司 一种处理方法及电源装置
CN109309398B (zh) * 2018-09-30 2023-09-19 联想(北京)有限公司 一种处理方法及电源装置
WO2020105303A1 (ja) * 2018-11-22 2020-05-28 日立オートモティブシステムズ株式会社 セルコントローラ、バッテリコントローラ、電池管理システムおよび電池システム
JPWO2020105303A1 (ja) * 2018-11-22 2021-10-07 日立Astemo株式会社 セルコントローラ、バッテリコントローラ、電池管理システムおよび電池システム
JP7087110B2 (ja) 2018-11-22 2022-06-20 日立Astemo株式会社 セルコントローラ、電池管理システムおよび電池システム

Also Published As

Publication number Publication date
EP3349327B1 (en) 2020-10-07
US10886578B2 (en) 2021-01-05
CN108093662A (zh) 2018-05-29
CN108093662B (zh) 2022-03-18
JP2019004697A (ja) 2019-01-10
JP6403897B2 (ja) 2018-10-10
JP6581706B2 (ja) 2019-09-25
EP3349327A1 (en) 2018-07-18
EP3349327A4 (en) 2019-02-27
US20180241100A1 (en) 2018-08-23
JPWO2017043237A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
US10454283B2 (en) Battery system monitoring apparatus and electric storage device including the same
KR101616233B1 (ko) 충 방전 장치
JP6581706B2 (ja) 電池管理装置
JP5753764B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
US9853463B2 (en) Battery monitoring and control integrated circuit and battery system
JP5470073B2 (ja) 電池制御装置および電池システム
WO2013035183A1 (ja) 電池システム監視装置
US20170149101A1 (en) Battery system
US11031640B2 (en) Battery pack, battery monitoring device, and vehicle
KR20130081215A (ko) 전원 장치
CN104838536A (zh) 蓄电池管理系统和蓄电池系统
JP6087675B2 (ja) 電池モジュール
US11801770B2 (en) Charging architecture for reconfigurable battery pack using solid-state and contactor switches
JP6251136B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
JP6026577B2 (ja) 電池監視・制御用集積回路および電池システム
JP7349510B2 (ja) 車載電池システム
JP7373372B2 (ja) 電池制御装置
JP2020021637A (ja) 電池システム監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539069

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE