WO2017042448A1 - Carter pour machines tournantes et en particulier pour turbomachines - Google Patents

Carter pour machines tournantes et en particulier pour turbomachines Download PDF

Info

Publication number
WO2017042448A1
WO2017042448A1 PCT/FR2016/052116 FR2016052116W WO2017042448A1 WO 2017042448 A1 WO2017042448 A1 WO 2017042448A1 FR 2016052116 W FR2016052116 W FR 2016052116W WO 2017042448 A1 WO2017042448 A1 WO 2017042448A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
recess
reinforcing structure
casing
turbine
Prior art date
Application number
PCT/FR2016/052116
Other languages
English (en)
Inventor
Frédéric IMPELLIZZERI
Stéphane ABED
Original Assignee
Poly Shape (Sas)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poly Shape (Sas) filed Critical Poly Shape (Sas)
Publication of WO2017042448A1 publication Critical patent/WO2017042448A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • F01D25/145Thermally insulated casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • F05D2250/283Three-dimensional patterned honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present invention relates to a casing for rotating machines and in particular for turbomachines. It also relates to machines provided with such a housing and a method of manufacturing the housing
  • the invention finds applications in the production or the equipment of turbomachines such as turbojets or turbochargers. It can advantageously be used in the manufacture of aircraft thrusters or for the equipment of combustion engines of motor vehicles.
  • a casing according to the invention can be adapted to any rotating machine having a turbine or a rotary element capable of being driven at high rotational speeds and to generate significant mechanical and thermal stresses.
  • turbocharger housings for motor cars.
  • they may be provided with a turbine housed in a housing and placed in the flow of the exhaust gas exiting said engine.
  • the turbine is driven at high speed by the gases.
  • the turbine is connected to a compressor, preferably of the rotary type, arranged in the intake duct of the heat engine.
  • the compressor comprises a second turbine connected to the first through a shaft.
  • the turbocharger comprises a first driving turbine rotated by the flow of the exhaust gas emitted by the internal combustion engine and a second compression turbine fixed in rotation with the first. This device increases the pressure of the air admitted into the engine and, consequently, the power of the latter.
  • turbocharger housings used on combustion engines are manufactured by traditional methods of the metal foundry type.
  • the invention aims to provide a housing having improved mechanical and thermal characteristics to overcome these difficulties and to be implemented in rotating machines subject to high thermal and mechanical stresses.
  • the invention also aims to provide a lighter housing and able to withstand, if necessary, a breakage of the turbine.
  • the invention proposes a casing for rotating machines, in particular for turbomachines, comprising a chamber intended for housing a turbine, and a gas flow duct opening in said chamber.
  • the casing comprises at least one recess surrounding at least a portion of the gas circulation duct.
  • the recess is formed in a solid portion of the housing and contains a reinforcing structure.
  • the casing may comprise one or more recesses, open or closed, communicating with each other or not.
  • the recess or the recesses are formed in a solid part of the housing.
  • the recess is thus distinguished from a simple chamber defined by a sheet or a chamber constituted by a piece attached to the housing.
  • the recess may extend inside the housing casing, around the gas circulation duct. IF may surround all or part of the gas duct according to its section, and all or part of its length.
  • the recess extends over more than half the length of the gas flow conduit and surrounds the conduit over more than half of its section.
  • the recess contains a reinforcing structure, so that the recess does not weaken the housing, but strengthens it.
  • the reinforcing structure may be a rigid mesh structure, or a honeycomb structure.
  • the reinforcing structure can be made of the same material as the solid part of the housing. It can be made of steel, titanium, aluminum or alloys of these materials. This is, for example, a mesh of metal son.
  • the reinforcing structure may also be made of a material different from that of the housing. This is, for example a compact structure in a lighter material, that is to say less dense than the material of the solid part of the casing housing.
  • a fluid passage, in particular a heat transfer fluid, is preferably formed in the reinforcing structure. This is particularly the case when the reinforcing structure is made of a mailing or an open cell structure. The fluid can then pass into the cells or in the mailing days.
  • the reinforcing structure may have meshes or cells in a regular pattern of repetition, for example a honeycomb structure, or possibly an irregular pattern.
  • the pattern may advantageously be tighter in high stress areas of the housing and looser in areas of lower stress.
  • the recess in the housing can be a closed chamber. It can also be provided with one or more connections.
  • the connectors can be used during the manufacture of the housing to introduce the reinforcement structure into the recess. This is, for example, a fluid of pulverulent material which fills the recess by clogging.
  • Connections may also be provided for connecting one or more cooling circuits to the casing and circulating a coolant in the recess or recesses.
  • one or more inlet fittings and one or more outlet fittings may be provided.
  • the use of a plurality of inlet and / or outlet connections may in particular be considered to independently control the temperature of several zones of the housing or to maintain inside the housing a heat transfer fluid of substantially uniform temperature.
  • the invention also relates to a method of producing a housing according to the invention with one or more recesses, comprising a layer-by-layer additive manufacturing step.
  • the manufacture of layered structures by layers is in itself known.
  • a virtual model of the crankcase is created in three dimensions on a computer in order to generate 3D CAD data in three dimensions. These data are converted into two-dimensional layered manufacturing data. Finally, two-dimensional layer data is used to deposit material in thin layers, typically 20 to 100 microns.
  • successive layers may comprise, for example, the deposition of powders and their fusion by laser.
  • the invention relates to a turbomachine comprising a turbojet or a turbocharger with a housing according to the invention and a turbine housed in the housing.
  • the turbomachine may comprise a turbocharger and an internal combustion engine with which the turbocharger is associated.
  • the crankcase gas flow duct is connected to an exhaust gas outlet of the engine.
  • the exhaust gas then drives a drive turbine which in turn can be coupled to a second turbine of a compressor, in a known manner.
  • Figure 1 is a front view in section, of a conventional turbocharger housing.
  • Figure 2 is a front view in section of a first embodiment of a housing according to the invention.
  • Figure 3 is a sectional view along the plane A-A 'of Figure 2.
  • Figure 4 is a front view in section of a second embodiment of a housing according to the invention incorporating a lightweight mesh reinforcement structure.
  • Figure 5 is a detail section, on a larger scale, of a portion of a housing similar to the housing of Figure 4 with a honeycomb reinforcement structure.
  • Figure 6 is a perspective view in section of a third embodiment of turbocharger housing according to the invention.
  • FIG. 7 is a detail view, on an enlarged scale, of part of FIG. 6.
  • crankcases for rotating machines made according to the invention.
  • Figure 1 shows a housing 1 used for turbochargers of known type.
  • a conduit or channel 3 of gas circulation is formed in the mass of the housing 1, around the central chamber 2.
  • the duct 3 is connected to the exhaust of an internal combustion engine M.
  • This duct 3 has a spiral shape or a volute shape with an inlet end 3a. It opens into the chamber 2 and communicates with the turbine T shown very schematically.
  • the input end communicates with the exhaust gas outlet of a motor M.
  • the driving turbine T is then subjected to exhaust gas flow. It causes, for example, a compression turbine not shown that sucks and compresses the ambient air and sends it into the cylinders of the engine, thus improving the filling thereof, which increases the amount of air mixture fuel entering said cylinders.
  • FIG. 2 illustrates an implementation possibility of the invention for a casing comparable to FIG. 1.
  • Identical references are used to indicate identical or similar parts described with reference to FIG. 1 so that one can 'carry it forward.
  • a recess 4 is formed in the part of the casing 1 which surrounds the duct or channel 3 for the circulation of the exhaust gases. In the transverse direction, this recess 4 extends over an angular distance approximately corresponding to the angular distance that the duct 3 travels around the chamber 2.
  • the recess 4 is formed in a solid portion of the casing between an outer skin and an inner skin of the housing. It has a section which decreases in the direction of flow of gas in the conduit 3.
  • the recess 4 is a hollow chamber formed in a solid portion of the housing.
  • the arrangement of the recess around the chamber 3, on at least a portion of its section, is also visible in FIG. 3.
  • the recess 4 is extended to also surround part of the chamber 2.
  • the recess 4 may contain a reinforcing structure 5.
  • This is a mesh structure, rigid and lightweight.
  • This rigid mesh structure may comprise a mesh formed by a crisscrossing of rigid metal son connected to each other in a regular pattern or not. It can be formed in the same material as the wall or the solid part of the casing 1. It can also be formed in a material lighter than the material of the housing.
  • the reinforcing structure 5 ensures a good rigidity of the wall of the casing 1, without increasing the mass thereof. While improving the burst resistance of the turbine not shown, it allows, in case of bursting thereof, to absorb the energy that results. Thus, the blades and debris of the turbine remain confined in the body of the casing and lose their dangerousness.
  • the reinforcing structure may also be an open or closed cell structure, for example a honeycomb structure, as shown in FIG. 5.
  • Figure 6 shows a housing according to the invention in which recess is used to form a heat exchanger.
  • the recess 4 is provided with a reinforcing structure 5.
  • the reinforcing structure is a mesh structure which thereby provides a passage for a heat transfer fluid that can pass between the meshes.
  • a coolant circulation circuit represented symbolically with reference numeral 10, is connected to an inlet fitting 12a and to an outlet fitting 14, provided on the recess 4 along the cooling channel. gas 3.
  • the inlet connector 12a and the outlet connector 14 are provided in particular at the ends 4a and 4b of the recess 4.
  • One or more intermediate inlet connections may be provided.
  • Figure 6 shows an intermediate inlet fitting 12b.
  • Figure 7 shows that the mesh of the reinforcement structure is not necessarily regular.
  • the pattern of the structure may indeed be irregular so as to form meshes, or possibly cells, of different dimensions.
  • the irregular nature of the structure can be advantageously used to create zones of greater or lesser mechanical strength, more or less strong heat exchange capacity or areas with more or less heat transfer fluid flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Carter pour machines tournantes, en particulier pour turbomachines, comprenant une chambre (2) destinée au logement d'une turbine, et un conduit (3) de circulation de gaz débouchant dans ladite chambre, le carter présentant au moins un évidement (4) entourant au moins une partie du conduit de circulation de gaz (3). Turbomachine comprenant un carter correspondant et procédé de fabrication de carter correspondant.

Description

Carter pour machines tournantes et en particulier pour turbomachines
La présente invention concerne un carter pour machines tournantes et en particulier pour turbomachines. Elle concerne également des machines pourvues d'un tel carter et un procédé de fabrication du carter
L'invention trouve des applications dans la réalisation ou l'équipement de turbomachines telles que des turboréacteurs ou des turbocompresseurs. Elle peut avantageusement être mise en oeuvre dans la fabrication de propulseurs d'aéronefs ou pour l'équipement de moteurs a combustion de véhicules automobiles. Toutefois, un carter selon l'invention peut être adapté à toute machine tournante présentant une turbine ou un élément rotatif susceptible d'être entraîné à des vitesses de rotation élevées et de générer des contraintes mécaniques et thermiques importantes.
Etat de la technique antérieure
L'état de la technique peut être illustré par les carters de turbocompresseurs pour voitures automobiles. Afin d'augmenter la puissance des moteurs thermiques, ceux-ci peuvent être pourvus d'une turbine logée dans un carter et placée dans le flux des gaz d'échappement sortant dudit moteur. La turbine est entraînée à grande vitesse par les gaz. La turbine est reliée à un compresseur, de préférence de type rotatif, disposé dans le conduit d'admission du moteur thermique. Le compresseur comprend une deuxième turbine reliée à la première par l'intermédiaire d'un arbre. De la sorte, le turbocompresseur comprend une première turbine entraînante mise en rotation par le flux des gaz d'échappement émis par le moteur à combustion interne et une deuxième turbine de compression solidaire en rotation de la première. Ce dispositif permet d'augmenter la pression de l'air admis dans le moteur et, par conséquent, la puissance de ce dernier. Actuellement, les carters de turbocompresseurs utilisés sur les moteurs thermiques, sont fabriqués par des procédés traditionnels du type fonderie métallique.
Ces carters, de môme que ceux utilisés dans d'autres domaines techniques présentent un certain nombre d'inconvénients et de limites.
Parmi ceux-ci on peut citer un poids relativement élevé dû à des épaisseurs de matière importante de leur peau externe. Cette épaisseur de matière est prévue de manière à résister à des contraintes mécaniques élevées et de manière à contenir, si nécessaire, les éclats de la turbine en cas d'explosion de celle-ci.
Une autre difficulté rencontrée avec les carters usuels est l'évacuation de la chaleur qui est générée, notamment par le passage de gaz et par la rotation de la turbine.
Un état de la technique est illustré par exemple par les documents suivants US 4 066 612, US2015/211383, US2014/321998, US2015/030434 et DE102010 042104.
Exposé de l'invention
L'invention a pour objectif de proposer un carter présentant des caractéristiques mécaniques et thermiques améliorées permettant d'obvier ces difficultés et permettant d'être mis en œuvre dans des machines tournantes sujettes à des contraintes thermiques et mécaniques élevées. L'invention a également pour objectif de proposer un carter allégé et capable de résister, le cas échéant, à une casse de la turbine.
Ainsi, l'invention propose un carter pour machines tournantes, en particulier pour turbomachines, comprenant une chambre destinée au logement d'une turbine, et un conduit de circulation de gaz débouchant dans ladite chambre. Conformément à l'invention, le carter comprend au moins un évidement entourant au moins une partie du conduit de circulation de gaz. L'évidement est ménagé dans une partie massive du carter et contient une structure de renforcement.
Le carter peut comporter un ou plusieurs évidements, ouverts ou fermés, communiquant entre eux ou non.
Comme indiqué ci-dessus l'évidement ou les évidements sont ménagés dans une partie massive du carter. L'évidement se distingue ainsi d'une simple chambre délimitée par une tôle ou une chambre constituée par une pièce rapportée au carter. En particulier, l'évidement peut s'étendre à l'intérieur de l'enveloppe du carter, autour du conduit de circulation de gaz. IF peut entourer tout ou partie du conduit de gaz selon sa section, et sur tout ou partie de sa longueur. De préférence, l'évidement s'étend sur plus de la moitié de la longueur du conduit de circulation de gaz et entoure le conduit sur plus de la moitié de sa section.
L'une des fonctions de l'évidement est d'alléger le carter. Toutefois, et de préférence, on peut prévoir que l'évidement contienne une structure de renforcement, de manière que l'évidement ne fragilise pas le carter, mais le renforce. La structure de renforcement peut être une structure à maillage rigide, ou une structure alvéolaire. La structure de renforcement peut être réalisée dans le même matériau que la partie massive du carter. Elle peut être réalisée en acier, en titane, en aluminium ou en des alliages de ces matériaux. Il s'agit, par exemple, d'un maillage de fils métalliques.
La structure de renforcement peut aussi être réalisée en un matériau différent de celui du carter. Il s'agit, par exemple d'une structure compacte en un matériau plus léger, c'est-à-dire moins dense que le matériau de la partie massive de l'enveloppe du carter. Un passage de fluide, en particulier d'un fluide caloporteur, est de préférence ménagé dans la structure de renforcement. Ceci est le cas notamment lorsque la structure de renforcement est faite d'un mailiage ou d'une structure à alvéoles ouvertes. Le fluide peut alors passer dans les alvéoles ou dans les jours du mailiage.
La structure de renforcement peut présenter des mailles ou des alvéoles selon un motif de répétition régulier, par exemple une structure en nid d'abeille, ou éventuellement un motif irrégulier. Dans ce dernier cas, le motif peut avantageusement être plus serré dans des régions de contraintes élevées du carter et plus lâche dans des régions à moindres contraintes.
L'évidement ménagé dans le carter peut constituer une chambre fermée. Il peut aussi être pourvu d'un ou de plusieurs raccords. Les raccords peuvent servir lors de la fabrication du carter pour introduire la structure de renforcement dans l'évidement. Il s'agit, par exemple, d'un fluide de matière pulvérulente qui vient combler l'évidement par colmatage.
Des raccords peuvent aussi être prévus pour relier au carter un ou plusieurs circuits de refroidissement et faire circuler dans le ou les évidements un fluide caloporteur. Par exemple, un ou plusieurs raccords d'entrée et un ou plusieurs raccords de sortie peuvent être prévus. L'utilisation d'une pluralité de raccords d'entrée et/ou de sortie peut notamment être envisagée pour contrôler indépendamment la température de plusieurs zones du carter ou pour maintenir à l'intérieur du carter un fluide caloporteur de température sensiblement homogène.
L'invention concerne aussi un procédé de réalisation d'un carter conforme à l'invention avec un ou plusieurs évidements, comprenant une étape de fabrication additive couche par couche. La fabrication de structures couches par couches est en soi connue.
Un modèle virtuel du carter est créé en trois dimensions sur un ordinateur de manière de générer des données de CAO 3D à trois dimensions. Ces données sont converties en données de fabrication par couches en deux dimensions. Enfin, les données par couches en deux dimensions sont utilisées pour déposer de la matière en couches fines, typiquement de 20 à 100 micromètres.
La formation des couches successives peut comporter, par exemple, le dépôt de poudres et leur fusion par laser.
L'invention concerne enfin une turbomachine comprenant un turboréacteur ou un turbocompresseur avec un carter conforme à l'invention et une turbine logée dans le carter.
En particulier, la turbomachine peut comporter un turbocompresseur et un moteur à combustion interne auquel le turbocompresseur est associé. Dans ce cas, le conduit de circulation de gaz du carter est relié à une sortie de gaz d'échappement du moteur.
Le gaz d'échappement entraine alors une turbine d'entraînement qui à son tour peut être couplée à une deuxième turbine d'un compresseur, de manière connue.
Brève description des figures.
D'autres caractéristiques et avantages de l'invention ressortiront de la description qui suit, donnée à titre d'illustration. Elle fait référence aux figures des dessins annexés dans lesquels :
La figure 1 est une vue de face et en coupe, d'un carter de turbocompresseur classique. La figure 2 est une vue de face et en coupe d'un premier mode de réalisation d'un carter conforme à l'invention.
La figure 3 est une vue en coupe selon le plan A-A' de la figure 2.
La figure 4 est une vue de face et en coupe d'un deuxième mode de réalisation d'un carter conforme à l'invention incorporant une structure maillée allégée de renfort.
La figure 5 est une coupe de détail, à plus grande échelle, d'une partie d'un carter similaire au carter de la figure 4 avec une structure de renforcement en nid d'abeille.
La figure 6 est une vue en perspective et en coupe d'un troisième mode de réalisation de carter de turbocompresseur selon l'invention.
La figure 7 est une vue de détail, à échelle agrandie, d'une partie de la figure 6.
Description détaillée de modes de mises en œuvre de l'invention.
On se reporte aux dessins pour décrire des exemples intéressants, quoique nullement limitatifs, de carters pour machines tournantes réalisés selon l'invention.
La figure 1 représente un carter 1 utilisé pour des turbocompresseurs de type connu.
Il présente, dans sa partie centrale, une chambre 2 destinée au logement d'une turbine d'entraînement T. Un conduit ou canal 3 de circulation de gaz, est ménagé dans la masse du carter 1 , autour de la chambre centrale 2. Dans le cas d'un turbocompresseur le conduit 3 est relié à l'échappement d'un moteur à combustion interne M.
Ce conduit 3 présente une forme en spirale ou une forme de volute avec une extrémité d'entrée 3a. Il débouche dans la chambre 2 et communique avec la turbine T représentée très schématiquement.
Dans l'application aux turbocompresseurs destinés à améliorer la puissance et le rendement des moteurs thermiques, l'extrémité d'entrée communique, avec la sortie du gaz d'échappement d'un moteur M. La turbine T d'entraînement est alors soumise au flux des gaz d'échappement. Elle entraîne, par exemple, une turbine de compression non représentée qui aspire et comprime l'air ambiant et l'envoie dans les cylindres du moteur, en améliorant ainsi le remplissage de ces derniers, ce qui permet d'augmenter la quantité de mélange air/carburant entrant dans lesdits cylindres.
La figure 2 illustre une possibilité de mise en œuvre de l'invention pour un carter comparable à la figure 1. Des références identiques sont utilisées pour indiquer des parties identiques ou similaires décrites en référence à la figure 1 de manière que l'on puisse s'y reporter. On peut observer qu'un évidement 4 est ménagé dans la partie du carter 1 qui entoure le conduit ou canal 3 de circulation des gaz d'échappement. Dans la direction transversale, cet évidement 4 s'étend sur une distance angulaire correspondant approximativement à la distance angulaire que le conduit 3 parcourt autour de la chambre 2. L'évidement 4 est ménagé dans une partie massive du carter comprise entre une peau extérieure et une peau intérieure du carter. Il présente une section qui décroit en direction du sens de circulation des gaz dans le conduit 3. Dans la mise en œuvre illustré par la figure 2, l'évidement 4 constitue une chambre creuse ménagée dans une partie massive du carter. La disposition de l'évidement autour de la chambre 3, sur au moins une partie de sa section, est également visible sur la figure 3. L'évidement 4 se prolonge pour entourer également une partie de la chambre 2.
Comme le montre la figure 4, l'évidement 4 peut contenir une structure de renforcement 5. Il s'agit ici d'une structure maillée, rigide et légère. Cette structure maillée rigide peut comporter un treillis formé par un entrecroisement de fils métalliques rigides reliés les uns aux autres selon un motif régulier ou non. Elle peut être formée dans le même matériau que la paroi ou la partie massive du carter 1. Elle peut aussi être formée dans un matériau plus léger que le matériau du carter.
La structure de renforcement 5 assure une bonne rigidité de la paroi du carter 1 , sans augmentation de la masse de celui-ci. Tout en améliorant la résistance à l'éclatement de la turbine non représentée, elle permet, en cas d'éclatement de celle-ci, d'absorber l'énergie qui en résulte. Ainsi, les palettes et débris de la turbine restent confinés dans le corps du carter et perdent leur dangerosité.
Selon une variante de réalisation du carter de la figure 4, la structure de renforcement peut aussi être une structure à alvéoles, ouvertes ou fermées, par exemple une structure en nid d'abeille, comme le montre la figure 5.
La figure 6, montre un carter conforme à l'invention dans lequel d'évidement est mis à profit pour former un échangeur thermique. Tout comme le carter de la figure 4, l'évidement 4 est pourvu d'une structure de renforcement 5. La structure de renforcement est une structure maillée qui de ce fait ménage un passage pour un fluide caloporteur qui peut passer entre les mailles. Un circuit de circulation du fluide caloporteur, représenté symboliquement avec la référence 10, est relié à un raccord d'entrée 12a et à un raccord de sortie 14, prévus sur l'évidement 4 le long du canal de gaz 3. Le raccord d'entrée 12a et le raccord de sortie 14 sont prévus notamment aux extrémités 4a et 4b de l'évidement 4. Un ou plusieurs raccords d'entrée intermédiaires peuvent être prévus. Sur la figure 6 on représente un raccord d'entrée intermédiaire 12b. Il permet d'éviter qu'un fluide caloporteur de plus en plus chaud ne circule le long de l'évidement 4. Il convient de noter que la structure de renforcement 5, à travers laquelle s'écoule le fluide caloporteur depuis le ou les raccords d'entrée et vers le ou les raccords de sortie participe à une fonction d'échange thermique entre le carter et le fluide.
La figure 7 montre que le maillage de la structure de renforcement n'est pas nécessairement régulier. Le motif de la structure peut en effet être irrégulier de manière à former des mailles, ou le cas échéant des alvéoles, de dimensions différentes. Le caractère irrégulier de la structure peut être avantageusement mis à profit pour créer des zones de plus ou moins forte résistance mécanique, de plus ou moins forte capacité d'échange thermique ou encore des zones ménageant un plus ou moins fort débit de fluide caloporteur.

Claims

REVENDICATIONS
1. Carter pour machines tournantes, en particulier pour turbomachines, comprenant une chambre (2) destinée au logement d'une turbine, un conduit (3) de circulation de gaz débouchant dans ladite chambre, et au moins un évidement (4) ménagé dans une partie massive du carter, dans lequel l'évidement entoure au moins une partie du conduit de circulation de gaz (3) et contient une structure de renforcement (5).
2. Carter selon la revendication 1 , dans lequel un passage de fluide est ménagé dans la structure de renforcement (5).
3. Carter selon l'une des revendications 1 ou 2, dans lequel la structure de renforcement (5) est choisie parmi une structure alvéolaire et une structure maillée.
4. Carter selon la revendication 3, dans laquelle la structure de renforcement (5) présente un motif de répétition choisi parmi un motif régulier et un motif irrégulier.
5. Carter selon la revendication 1 , dans lequel la structure de renforcement comprend un matériau moins dense que la partie massive du carter.
6. Carter selon fa revendication 1 , dans lequel l'évidement est pourvu d'au moins un raccord (12a, 12b, 14) pour une connexion fluidique.
7. Carter selon la revendication 6, comportant au moins un raccord d'entrée (12a, 12b) et au moins un raccord de sortie (14), le raccord d'entrée et le raccord de sortie étant reliés à un circuit de circulation (10) d'un fluide caloporteur.
8. Carter selon la revendication 1 dans lequel l'évidement forme une chambre fermée.
9. Procédé de fabrication d'un carter (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une étape de fabrication additive couche par couche.
10. Turbomachine comprenant l'un parmi un turboréacteur et un turbocompresseur équipés d'un carter (1) selon l'une des revendications 1 à 8, et une turbine logée dans le carter.
11. Turbomachine selon la revendication 10, comprenant un turbocompresseur et un moteur à combustion interne (M), dans laquelle le conduit de circulation de gaz (3) du carter (1 ) est relié à une sortie de gaz d'échappement du moteur.
PCT/FR2016/052116 2015-09-07 2016-08-24 Carter pour machines tournantes et en particulier pour turbomachines WO2017042448A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1558277A FR3040733B1 (fr) 2015-09-07 2015-09-07 Carter pour machines tournantes et en particulier pour turbomachines.
FR1558277 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017042448A1 true WO2017042448A1 (fr) 2017-03-16

Family

ID=54366397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052116 WO2017042448A1 (fr) 2015-09-07 2016-08-24 Carter pour machines tournantes et en particulier pour turbomachines

Country Status (2)

Country Link
FR (1) FR3040733B1 (fr)
WO (1) WO2017042448A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018130772A1 (de) * 2018-12-04 2020-06-04 Man Energy Solutions Se Turbolader, Verfahren zur Herstellung einer Baugruppe eines Turboladers und Verwendung
DE102018132414A1 (de) * 2018-12-17 2020-06-18 Man Energy Solutions Se Abgasturbolader mit auxetischen Strukturen
DE102019106733A1 (de) * 2019-03-18 2020-09-24 Man Energy Solutions Se Kühlung von Rotor- und Statorkomponenten eines Turboladers mit Hilfe von additiv gefertigten bauteilinternen Kühlkanälen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199136B2 (en) 2018-10-05 2021-12-14 Raytheon Technologies Corporation Additively manufactured thermally insulating structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068612A (en) * 1976-01-26 1978-01-17 M & W Gear Company Turbocharger housing construction for marine turbocharger and device for turbocharging a marine engine
DE102010042104A1 (de) * 2010-10-07 2012-04-26 Bayerische Motoren Werke Aktiengesellschaft Abgasturbolader
US20140321998A1 (en) * 2013-04-24 2014-10-30 MTU Aero Engines AG Housing section of a turbine engine compressor stage or turbine engine turbine stage
US20150030434A1 (en) * 2013-07-23 2015-01-29 MTU Aero Engines AG Damping device for being situated between a housing wall and a casing ring of a housing of a thermal gas turbine
US20150211383A1 (en) * 2014-01-27 2015-07-30 Ford Global Technologies, Llc Internal combustion engine with cooled turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068612A (en) * 1976-01-26 1978-01-17 M & W Gear Company Turbocharger housing construction for marine turbocharger and device for turbocharging a marine engine
DE102010042104A1 (de) * 2010-10-07 2012-04-26 Bayerische Motoren Werke Aktiengesellschaft Abgasturbolader
US20140321998A1 (en) * 2013-04-24 2014-10-30 MTU Aero Engines AG Housing section of a turbine engine compressor stage or turbine engine turbine stage
US20150030434A1 (en) * 2013-07-23 2015-01-29 MTU Aero Engines AG Damping device for being situated between a housing wall and a casing ring of a housing of a thermal gas turbine
US20150211383A1 (en) * 2014-01-27 2015-07-30 Ford Global Technologies, Llc Internal combustion engine with cooled turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018130772A1 (de) * 2018-12-04 2020-06-04 Man Energy Solutions Se Turbolader, Verfahren zur Herstellung einer Baugruppe eines Turboladers und Verwendung
DE102018132414A1 (de) * 2018-12-17 2020-06-18 Man Energy Solutions Se Abgasturbolader mit auxetischen Strukturen
DE102019106733A1 (de) * 2019-03-18 2020-09-24 Man Energy Solutions Se Kühlung von Rotor- und Statorkomponenten eines Turboladers mit Hilfe von additiv gefertigten bauteilinternen Kühlkanälen

Also Published As

Publication number Publication date
FR3040733B1 (fr) 2018-08-31
FR3040733A1 (fr) 2017-03-10

Similar Documents

Publication Publication Date Title
WO2017042448A1 (fr) Carter pour machines tournantes et en particulier pour turbomachines
EP2435680B1 (fr) Dispositif de refroidissement de fluides pour propulseur à turbomachine
CA2854316C (fr) Systeme de chauffage de l'habitacle d'un aeronef muni d'un echangeur thermique annulaire autour de la tuyere d'echappement
CA2782661C (fr) Chambre de combustion pour turbomachine
FR3071008A1 (fr) Aube directrice de sortie pour turbomachine, comprenant un passage de refroidissement de lubrifiant equipe d'une matrice de conduction thermique comprimee entre les parois d'intrados et d'extrados
EP3735518B1 (fr) Turbomachine comportant un échangeur de chaleur dans la veine secondaire
CN109477399A (zh) 具有双板受热壁的发动机空气入口
EP1902948B1 (fr) Moteur d'hélicoptère à turbine à gaz à émission sonore réduite par traitement acoustique d'un éjecteur
CA2702684A1 (fr) Procede pour ameliorer les performances d'un turbomoteur a double flux
FR3065490A1 (fr) Ensemble propulsif pour aeronef comportant des echangeurs de chaleur air-liquide
FR3033602A1 (fr) Realisation d'etages de redresseurs semi-monoblocs, par fabrication additive
FR2956875A1 (fr) Aube allegee pour turbomachine, carter comportant une pluralite d'une telle aube et turbomachine comportant au moins un tel carter
EP3213025B1 (fr) Echangeur de chaleur et turbomoteur comportant un tel echangeur
FR2996878A1 (fr) Moteur thermique pour l'entrainement d'un arbre moteur
EP3623606B1 (fr) Matrice d'échangeur de chaleur multi-fluides
EP4405569A1 (fr) Carter d'injection d'air de refroidissement pour turbine de turbomachine
EP2799666B1 (fr) Volute à deux volumes pour turbine à gaz
FR3035153B1 (fr) Turbopropulseur a doublet d'helices contrarotatives dispose en amont du generateur de gaz
EP2721271B1 (fr) Architecture double corps de turbomoteur avec compresseur haute pression lie a la turbine basse pression.
FR3109179A1 (fr) Grille de conduit de décharge optimisée et vanne de décharge optimisée
FR3057616B1 (fr) Turbopropulseur
EP0945596B1 (fr) Structure de protection thermique
FR3101915A1 (fr) Anneau de turbine de turbomachine comprenant des conduites internes de refroidissement
WO2024156971A1 (fr) Système propulsif aéronautique comprenant une section de soufflante optimisée
FR3100285A1 (fr) Couple volet convergent-volet divergent pour tuyère de turboréacteur à géométrie variable comprenant un volet divergent refroidi par impact et par pompage thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16763925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16763925

Country of ref document: EP

Kind code of ref document: A1