WO2017040997A1 - Multiplexed demand signaled distributed messaging - Google Patents

Multiplexed demand signaled distributed messaging Download PDF

Info

Publication number
WO2017040997A1
WO2017040997A1 PCT/US2016/050204 US2016050204W WO2017040997A1 WO 2017040997 A1 WO2017040997 A1 WO 2017040997A1 US 2016050204 W US2016050204 W US 2016050204W WO 2017040997 A1 WO2017040997 A1 WO 2017040997A1
Authority
WO
WIPO (PCT)
Prior art keywords
messages
message
lane
service
subscriber
Prior art date
Application number
PCT/US2016/050204
Other languages
French (fr)
Inventor
Christopher David SACHS
Original Assignee
Swim.IT Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swim.IT Inc. filed Critical Swim.IT Inc.
Priority to EP16843111.2A priority Critical patent/EP3341841A4/en
Publication of WO2017040997A1 publication Critical patent/WO2017040997A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • H04L63/205Network architectures or network communication protocols for network security for managing network security; network security policies in general involving negotiation or determination of the one or more network security mechanisms to be used, e.g. by negotiation between the client and the server or between peers or by selection according to the capabilities of the entities involved
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/10Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
    • G06F21/12Protecting executable software
    • G06F21/121Restricting unauthorised execution of programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/604Tools and structures for managing or administering access control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6245Protecting personal data, e.g. for financial or medical purposes
    • G06F21/6254Protecting personal data, e.g. for financial or medical purposes by anonymising data, e.g. decorrelating personal data from the owner's identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0277Online advertisement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/70Routing based on monitoring results
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/212Monitoring or handling of messages using filtering or selective blocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/214Monitoring or handling of messages using selective forwarding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5069Address allocation for group communication, multicast communication or broadcast communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1004Server selection for load balancing
    • H04L67/101Server selection for load balancing based on network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2141Access rights, e.g. capability lists, access control lists, access tables, access matrices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2149Restricted operating environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/234Monitoring or handling of messages for tracking messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4541Directories for service discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0407Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the identity of one or more communicating identities is hidden

Definitions

  • the present invention relates to the field of real-time messaging. More specifically, the present invention relates to real-time distributed messaging between granular services distributed across a cluster.
  • a multiplexed demand signaled distributed messaging system and method enables high capacity real-time messaging with efficient networking and computing resource utilization between application services by generating and utilizing new techniques for message management such as lanes, links and message distribution-related functionality.
  • FIG. 1 illustrates a diagram of a multiplexed demand signalled distributed messaging (MDSDM) implementation according to some embodiments.
  • MDSDM multiplexed demand signalled distributed messaging
  • Figure 2 illustrates a diagram of MDSDM multiplexing and local message
  • Figure 3 illustrates a diagram of handling back pressure according to some embodiments.
  • Figure 4 illustrates a diagram of MDSDM supporting message propagation according to some embodiments.
  • Figure 5 illustrates a diagram of message scoping according to some embodiments.
  • Figure 6 illustrates a diagram of the MDSDM software in operation according to some embodiments.
  • Figure 7 illustrates a block diagram of an exemplary computing device configured to implement the MDSDM method according to some embodiments.
  • the messaging infrastructure may be a bottleneck for delivery of control and data messages due to a large number of services and an extraordinarily large number of messages.
  • Services may run on single server, multiple servers in a cluster or multiple clusters, and therefore the messaging software should work seamlessly across a variety of computing infrastructures.
  • Data and control messages may arrive at different rates from different sources, and the rate may or may not be predictable.
  • a variety of networks e.g., Zigbee/802.15.4, WiFi, 4G LTE may be used for the message traffic. This results in unpredictable connectivity, bandwidth availability and message delivery intervals.
  • Message delivery endpoints e.g., mobile phone
  • Message size is able to be short or long, and the content may be structured or unstructured.
  • Messages may require transformation (e.g., to a different format, language, structure) to meet requirements of a destination.
  • Messages may require a priority scheme that enables distributions of high priority messages before lower priority messages.
  • Critical messages may require guaranteed delivery by utilizing high availability techniques (e.g., using redundant message delivery options, to protect against a single failure).
  • MDSDM Multiplexed Demand Signaled Distributed Messaging
  • MDSDM software services within an application or software services associated with one or more applications are able to communicate in real-time with no understanding of how the messages are transported and delivered under variable message load conditions, bandwidth availability conditions and message processing conditions.
  • FIG. 1 illustrates a diagram of an MDSDM implementation according to some embodiments.
  • MDSDM software includes a message sending component identified as a message sender 102 and a message receiving component identified as message receiver 104.
  • Application software services 100 are components of a software application where each of the services provides one or more functions. Services 1, 2, 3 and 4 are associated with Application A, and services 5, 6, 7, 8, and 9 are associated with Application B. Services identified as 1, 3 and 5 are both receivers and senders of messages. Services identified as 2 and 4 are message receivers only. Services identified as 6, 7, 8, and 9 are message senders only.
  • FIG. 1 shows the following high level capabilities:
  • MDSDM is a distributed functionality with no gateway or centralized message distributed broker functionality. Each software service has MDSDM sending and receiving components. 2. The following application deployment scenarios are supported: intra-server, inter-server, intra-cluster and inter-cluster.
  • MDSDM is able to be used for both intra-application and inter-application
  • MDSDM provides messages distribution as illustrated by service 5 distributing messages received from services 6, 7, 8 and 9 to services 2 and 3 via service 1.
  • Services are able to be senders of messages, receivers of messages, senders and receivers of messages, and message processing functions.
  • MDSDM is a distributed and multiplexed peer-to-peer real-time messaging, utilizing demand signaling between the message senders or publishers and message receivers or subscribers. Unlike a typical publish and subscribe messaging software, MDSDM addresses a number of application messaging issues associated with:
  • the publishing functionality of a service takes into consideration the availability of network and the ability of the subscriber to receive the message.
  • MDSDM allows privacy and security related filters to be specified in order to implement data attribute level and message end point level security implementation. Data privacy is implemented using data masking for attributes in messages.
  • the MDSDM method and system dramatically improves performance and scalability of publish/subscribe messaging software to support interactive real-time application.
  • Service Pool A pool of software services associated with applications that utilize MDSDM to communicate messages between them and are resident on a single network endpoint (e.g., pool.example.com).
  • Each service uses MDSDM to send and receive messages.
  • a service is addressed using the associated service pool domain (e.g., pool.example.com/servicel).
  • the template for the service is provided by the MDSDM.
  • Application developers implement the application specific code in the template.
  • Network Connection A standard network connection (e.g., TCP/IP, WebSocket) between two processes on two devices (e.g., servers) in a single cluster or across clusters.
  • TCP/IP Transmission Control Protocol/IP
  • WebSocket WebSocket
  • Lane Manager A logical connection manager, associated with a service pool, that generates and manages network connections between endpoints, and generates streams to distribute messages to all services in the service pool which originate from a specific service and lane for which a stream is generated.
  • Stream A logical connection established over a network connection by the lane manager between itself and a corresponding service and specific lane supported by that service. Streams share an existing network connection if the stream is between the same service pool. A stream supports both unicast and multicast messaging.
  • Link A logical connection established over a stream that is an expression of interest for messages from a specific service and a lane associated with that service. Links share an existing stream, becoming effectively multicast, if the link is to the same service and a lane associated with the service.
  • Lane A lane is a logical messaging endpoint associated with service. There are able to be zero or more lanes associated with a service. A lane is addressed using the associated service address and a lane identifier (e.g., [pool.example.com/servicel, a/lanel]).
  • the lane identifier includes a structured prefix, followed by a lane name.
  • Back Pressure This involves detection of inability of a subscribing service to receive and/or process messages for which it has expressed an interest in.
  • the lane publishing software detects a signal that the receiver/subscriber is not available to accept messages. This state of not being able to accept messages is referred to as back pressure.
  • the MDSDM functionality is based on a publish/subscribe paradigm but the following capabilities will reduce application services complexity while enhancing efficiency, performance, scalability and availability:
  • Multiplexing refers to functionality where a connection is shared to send and receive messages rather than generate a new connection for each logical messaging endpoint.
  • Figure 2 illustrates a diagram of MDSDM multiplexing according to some
  • a service pool is a group of application related services are managed within a service pool. Two service pools are shown, www.a.com 200 and www.b.com 202. A service provides a set of functions for an application. The services shown are: www.a.com/Svcl,
  • a network connection 218 is a connection between two service pools (e.g., WebSocket over TCP).
  • a network connection 218 is shown between www.a.com 200 and www.b.com 202.
  • a lane is a message queue associated with a service.
  • a service can support many lanes.
  • Figure 2 shows the following Lanes:
  • a lane as shown above has a structured prefix and a lane name to identify a lane.
  • the prefix is forward slash (e.g., "/") separating identifiers.
  • forward slash e.g., "/”
  • identifiers there is only an identifier associated with each lane (e.g., p or q or r).
  • Elements of the structured prefix are used for a message scope feature that allows access to multiple queues.
  • a lane manager manages the network connections, streams and links associated with service pool.
  • Figure 2 shows:
  • a stream is a logical connection between a lane manager and a lane associated with a service.
  • Figure 2 shows two streams:
  • a link is a logical connection between a service and a lane associated with another service that expresses interest for messages in that lane.
  • Links are able to be “synced” links or "standard” links.
  • Synchroned links allow a subscriber to receive messages from the publisher that existed prior to generation of the link (e.g., messages that are already in the queue).
  • Standard links allow a subscriber to receive only new messages from the publisher that have been generated after the generation of the link.
  • Figure 2 shows three links
  • the multiplexing functionality is managed by the lane manager component described above.
  • the multiplexing scenarios are:
  • the Lane 204 Manager on www.a.com 200 detects that there is no network connection to www.b.com 202 and establishes for example a TCP connection to the Lane Manager 206 on www.b.com. This is labeled as network connection 218 (e.g., WebSocket TCP connection).
  • network connection 218 e.g., WebSocket TCP connection
  • lane manager on www.a.com establishes a stream to www.b.com/Svc2 q/LaneY, labeled as Stream 208 from www.b.com/Svc2, q/LaneY to Lane Manager www.a.com and shown as thick shaded line.
  • Multiplexing scenarios shown are hierarchical. Streams are multiplexed on a network connection, and links are multiplexed on a stream.
  • Back pressure is a scenario where messages from a lane cannot be delivered as established by the link due to connection problems or processing problems.
  • the lane software waits for a signal before sending the message and therefore is able to handle scenarios of network connection delays or processing delays.
  • Figure 3 illustrates a diagram of handling back pressure according to some embodiments.
  • Lane Manager www.b.com 306 for service pool 302, for a back pressure managed lane will look for an availability signal, labeled signal 314 before attempting to write messages from www.b.com/svcl x/y/LaneA using the link 308 using the stream 312 over the network connection 310 to lane manager www.a.com 304 for service pool 300. So a connection availability or available for processing signal is used to handle connection problems or processing problems, and until then, the messages in x/y/LaneA are not processed, and if appropriate will not be generated, for forwarding.
  • Ephemeral is a lane type for high speed delivery of messages. Two options are supported for Ephemeral message lanes: A cached lane is where messages are maintained in memory and therefore limited by the amount and availability of memory. A lazy lane is where messages are built on demand. Therefore the delivery is throttled. Messages are therefore generated at the last minute before consumption. A persistent lane is for reliable and backed up delivery of messages. A file lane is used for a regular file for message persistence. A database lane is used for a database for message persistence. A history lane uses a combination of online and offline storage.
  • a lane sync feature allows services to get existing messages and the new messages as they are generated.
  • a keyed storage of messages in a lane table results in always up-to-date messages.
  • a message access control allows the lane to filter messages sent to the link requester based on the credentials presented.
  • a message transformation enables lanes to transform messages based on the service that requested a link using requesting service provided transformation engine.
  • a message privacy monitoring allows data filtering and data masking using a transformation engine.
  • a message priority enables processing and forwarding of high priority messages before others. Runtime configuration of lane features allows application services to update the message lane requirements without a software upgrade. The new features will be applicable to new messages only.
  • MDSDM uses Uniform Resource Identifier (URI) to identify message endpoints.
  • URI Uniform Resource Identifier
  • the URI is already used for web interactions over the Internet and demonstrates the addressing scalability.
  • the same addressing technique is applied to identify message queues to interact between the sender and receiver. As a result of using the URIs to address message queues:
  • Services and queues are able to be moved from a one hardware platform to another without impacting the consumers of message;
  • Queue addressing scales like the web addressing, and there are no limitations on the numbers of queues that are able to be generated and addressed;
  • URI address hierarchy Message scoping features are able to utilize the URI address hierarchy.
  • MDSDM enables highly scalable and efficient propagation of messages.
  • Figure 4 illustrates a diagram of MDSDM supporting message propagation according to some embodiments.
  • a message propagation scenario shown involves services 5, 6, 7 and 8 running on cluster B would like to deliver messages to services 2 and 3 running on cluster A.
  • the MDSDM message propagation feature allows services 5, 6, 7, 8 to send message to a local cluster B service 4.
  • Service 4 then propagates the messages to service 1 on cluster A, which in turn propagates messages to services 2 and 3. This results in significant reduction of message traffic, both local and network traffic.
  • Figure 5 illustrates a diagram of message scoping according to some embodiments.
  • the message scoping feature of MDSDM allows services to receive messages from any level in a hierarchy.
  • scope lane prefix "y”, hierarchically includes all lane prefixes below it in the hierarchy (i.e., "x" prefix lanes).
  • services are able to generate a link to a "Service", www.b.com/svcl3 without specifying the lanes and there by implicitly link to all lanes for the service, www.b.com/svc 13.
  • MDSDM links allow services to express interest in a lane for access to the messages that are sent on that lane from an associated service. Links are logical connections that are established to communicate over streams and ultimately over a network connection. MDSDM allows:
  • Links remain active even when the network connections have communication failures.
  • the MDSDM infrastructure software will automatically retry the underlying connections and reestablish the connection. During this interval the messages are queued. Once the underlying connection is established then the messages are delivered to the services. Back pressure handling ensures that, whenever possible, new messages are not generated when the connection over which they are to be sent is unavailable.
  • Multiple links are able to share a stream between the lane manager and the lane associated with a service.
  • Filters are able to be specified for the links by application developers for: data transformation, data privacy related masking, and data security related encryption.
  • MDSDM software provides introspection functionality that involves self monitoring.
  • MDSDM introspection software in real-time monitors and takes required actions, that are configurable, to provide the following data: contents of lane; configured parameters of lane, link, lane manager, stream, and network connection; performance parameters; capacity parameters; and availability parameters.
  • the following performance parameters are monitored and made available via special lanes to services and an administrative user interface: time to generate and delete lanes and links; time to deliver a first message for each lane; message processing rates (minimum, maximum and average) of a lane, all lanes for a service, all services of an application;
  • message delivery interval (minimum, maximum and average) of each lane, across all lanes for a service, across all services of an application; error rates and idle durations for: each lane, all lanes for a service, all services of an application, stream and network connection; status (working, idle, waiting, not-responsive, queue-full) for: each lane, all lanes for a service (status counts), all services of an application (status counts), stream, and network connection.
  • the following capacity parameters are monitored and made available via special lanes to services and administrative user interface: number of lanes per service, stored data per lane, stored data per service, stored data per application, number of links for each service, number of links for the application, message size (minimum, maximum, average) per lane, for all lanes for a service, or for all services for an application.
  • the following availability parameters are monitored and made available to services and an administrative user interface: uptime for each: lane, link, stream, and network connection; failover status of high-availability lanes; number of failovers and the associated conditions; duration on primary lane; and duration on backup lane.
  • FIG. 6 illustrates a diagram of the MDSDM software in operation according to some embodiments.
  • Software services that use message multiplexing, distributed messaging and demand signal based real-time messaging will utilize the MDSDM software.
  • Software service www.a.com/svcl 600 is the consumer of messages.
  • Software service www.a.com/svc2 602 is the consumer and publisher of messages.
  • the publishing is from lane CA/Bayarea/Traffic.
  • Software service www.a.com/svc3 604 is a publisher of messages.
  • the publishing of messages is from lane CA/SFO/Traffic and CA SFO/Concerts.
  • the following steps illustrate how the MDSDM software works:
  • MDSDM SDK is the software development kit that allows software services to implement the messaging functionality between the services.
  • MDSDM software utilizes the "link" generation function from MDSDM to generate a link to the www.a.com/svc3, CA/SFO/Traffic lane.
  • MDSDM software at runtime generates the underlying network connections, the stream between the www.a.com lane manager and the lane www.a.com svc3, CA/SFO/Traffic.
  • MDSDM software that manages the lanes www.a.com/svc2, CA/Bayarea/Traffic; www.a.com/svc3, CA/SFO/Traffic and www.a.com/svc3, CA/SFO/Concerts will route messages to the appropriate destinations based on the links generated by the services.
  • MDSDM software associated with www.a.com/svc3 sends "Linked" response 608.
  • Service www.a.com/svc3 wants to publish an event TrafficEventl to the lane CA/SFO/Traffic, so it calls the lane publish software of MDSDM.
  • MDSDM lane software records the TafficEventl 610 and looks for links to identify subscribers.
  • www.a.com/svc2 is identified as a subscriber, and therefore the message is delivered to www.a.com/svc2.
  • Service www.a.com/svc3 wants to publish an event TrafficEvent2 612 to the lane CA/SFO/Traffic, so it calls the MDSDM lane publish software.
  • MDSDM lane software records the TrafficEvent2 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svc2.
  • Service www.a.com/svc3 wants to publish an event TrafficEvent3 618 to the lane CA/SFO/Traffic, so it calls the MDSDM lane publish software.
  • MDSDM lane software records the TrafficEvent3 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svc2.
  • Service www.a.com/svc2 takes this message and requests MDSDM to publish the message on lane CA/Bayarea/Traffic.
  • MDSDM lane software records the TrafficEvent3 620 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svcl .
  • MDSDM lane software records the ConcertsEventl and does not forward the message because there are no active links.
  • MDSDM lane software records the ConcertsEvent2 and does not forward the message because there are no active links.
  • the unlink response 628 from MDSDM link management software is sent.
  • MDSDM lane management software detects the request for "Synced" link 634 for www.a.com/svc3, CA/SFO/Concerts lane and then locates existing messages ConcertEventl 636 and ConcertEvent2 638 and forwards these messages to www.a.com/svcl . So
  • www.a.com/svcl was able to receive preexisting messages from the lane. This demonstrates how messages are persistent and how services are able to receive existing messages in the lanes.
  • MDSDM software for reliable, high capacity real-time messaging between application services.
  • Application services use MDSDM software by using the MDSDM SDK during the software development of services.
  • the MDSDM will make the lanes, links and message distribution related functionality.
  • MDSDM SDK provides the software functions for the lane generation and deletion.
  • Application services consuming messages These services generate links to message lanes from which they want message subscription. These links are able to be "standard” links or "Synced” links. In case of a "Synced” link, MDSDM will deliver all messages in the lane, even messages that were in the lane prior to generation of the link. So this is a feature of the MDSDM for synchronizing with pre-existing messages.
  • MDSDM SDK provides the software functions for the link generation and deletion.
  • Application services publishing and consuming messages.
  • the services generate lanes to publish messages and generate links to subscribe to messages.
  • Figure 7 illustrates a block diagram of an exemplary computing device configured to implement the MDSDM method according to some embodiments.
  • the computing device 700 is able to be used to acquire, store, compute, process, communicate and/or display information.
  • a hardware structure suitable for implementing the computing device 700 includes a network interface 702, a memory 704, a processor 706, I/O device(s) 708, a bus 710 and a storage device 712.
  • the choice of processor is not critical as long as a suitable processor with sufficient speed is chosen.
  • the memory 704 is able to be any conventional computer memory known in the art.
  • the storage device 712 is able to include a hard drive,
  • the computing device 700 is able to include one or more network interfaces 702.
  • An example of a network interface includes a network card connected to an Ethernet or other type of LAN.
  • the I/O device(s) 708 are able to include one or more of the following: keyboard, mouse, monitor, screen, printer, modem, touchscreen, button interface and other devices.
  • MDSDM method are likely to be stored in the storage device 712 and memory 704 and processed as applications are typically processed. More or fewer components shown in Figure 7 are able to be included in the computing device 700.
  • MDSDM hardware 720 is included.
  • the computing device 700 in Figure 7 includes applications 730 and hardware 720 for the MDSDM method, the MDSDM method is able to be implemented on a computing device in hardware, firmware, software or any combination thereof.
  • the MDSDM method applications 730 are programmed in a memory and executed using a processor.
  • the MDSDM hardware 720 is programmed hardware logic including gates specifically designed to implement the MDSDM method.
  • the MDSDM application(s) 730 include several applications and/or modules.
  • modules include one or more sub-modules as well. In some embodiments, fewer or additional modules are able to be included.
  • suitable computing devices include a personal computer, a laptop computer, a computer workstation, a server, a mainframe computer, a handheld computer, a personal digital assistant, a cellular/mobile telephone, a smart appliance, a gaming console, a digital camera, a digital camcorder, a camera phone, a smart phone, a portable music player, a tablet computer, a mobile device, a video player, a video disc writer/player (e.g., DVD writer/player, high definition disc writer/player, ultra high definition disc writer/player), a television, an augmented reality device, a virtual reality device, a home entertainment system, smart jewelry (e.g., smart watch) or any other suitable computing device.
  • a personal computer e.g., a laptop computer, a computer workstation, a server, a mainframe computer, a handheld computer, a personal digital assistant, a cellular/mobile telephone, a smart appliance, a gaming console, a digital camera, a digital camcorder, a camera phone,
  • the MDSDM method and system provides:
  • Lane Manager locally distributes message to all the services that have requested links to the same Lane. This results in fewer messages between service pools, faster message delivery and lower communications bandwidth costs.
  • Lane management This feature provides simplified communication between services.
  • the MDSDM software without the knowledge of application services handles issues.
  • the URI based addressing scheme provide application services a simple and universal handle for communication without the knowledge of where the service is supported. This is a known addressing scheme used by the Web and therefore very flexible and are able to scale easily to accommodate numerous services and message endpoints.
  • the message propagation functionality will reduce the number of connections and improve message throughput of applications. This also enables real-time delivery of messages.
  • This feature allows applications to be lane efficient and link efficient and therefore contributes to message throughput and real-time delivery of messages.
  • Link management This enables real-time orchestration of message flow within an application and enables application services to be independent of the underlying message transportation related connections.
  • the message introspection allows applications to monitor the performance, capacity and availability of the messaging infrastructure and take appropriate actions (to handle performance and capacity issues) such as: start or stop new services, generate or delete new lanes, generate or delete links, and move services to different servers or clusters.
  • the introspection functionality allows applications to orchestrate the functioning of application in real-time.
  • the MDSDM method and system also provides:
  • Optimal usage of computing resources such as CPU, memory and network on a single server, multiple servers in a cluster and servers on multiple clusters that are geographically distributed.
  • a built in capability to inject transformations into messaging infrastructure enables message consumers to operate without knowledge of message provider and message structure details.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • Databases & Information Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Technology Law (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Information Transfer Between Computers (AREA)
  • Environmental & Geological Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A multiplexed demand signaled distributed messaging (MDSDM) system and method enables high capacity real-time messaging between application services by generating and utilizing innovative techniques for message management such as lanes, links and message distribution-related functionality.

Description

MULTIPLEXED DEMAND SIGNALED DISTRIBUTED MESSAGING
CROSS-REFERENCE TO RELATED APPLICATION(S)
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/214,786, filed September 4, 2015, and titled "PRIVACY AWARENESS APPLICATION, LIVE PRIVACY POLICY, AND DISTRIBUTED AND MULTIPLEXED PEER TO PEER REAL-TIME MESSAGING UTILIZING BACK PRESSURE SIGNALLING," which is hereby incorporated by reference in its entirety for all purposes.
FIELD OF THE INVENTION
The present invention relates to the field of real-time messaging. More specifically, the present invention relates to real-time distributed messaging between granular services distributed across a cluster.
BACKGROUND OF THE INVENTION
Business to business and business to consumer software applications are taking advantage of advances in networking technology, handheld devices and availability of enormous amounts of data to offer a rich set of functionality to users. These applications are increasingly becoming dependent on and demanding real-time data to provide differentiated products and services to users. Another key trend in application development is the use of a set of orchestrated services that are able to deliver the required functionality in an
environment discussed herein.
SUMMARY OF THE INVENTION
A multiplexed demand signaled distributed messaging system and method enables high capacity real-time messaging with efficient networking and computing resource utilization between application services by generating and utilizing new techniques for message management such as lanes, links and message distribution-related functionality.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates a diagram of a multiplexed demand signalled distributed messaging (MDSDM) implementation according to some embodiments.
Figure 2 illustrates a diagram of MDSDM multiplexing and local message
broadcasting according to some embodiments. Figure 3 illustrates a diagram of handling back pressure according to some
embodiments.
Figure 4 illustrates a diagram of MDSDM supporting message propagation according to some embodiments.
Figure 5 illustrates a diagram of message scoping according to some embodiments.
Figure 6 illustrates a diagram of the MDSDM software in operation according to some embodiments.
Figure 7 illustrates a block diagram of an exemplary computing device configured to implement the MDSDM method according to some embodiments.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Services are dependent on a messaging infrastructure that will deliver control and data messages between the services. Important to the orchestration of these services is the underlying messaging infrastructure that is able to solve the following problems:
1. In an environment where many services cooperate to process large amounts of data, the messaging infrastructure may be a bottleneck for delivery of control and data messages due to a large number of services and an extraordinarily large number of messages.
2. Services may run on single server, multiple servers in a cluster or multiple clusters, and therefore the messaging software should work seamlessly across a variety of computing infrastructures.
3. Data and control messages may arrive at different rates from different sources, and the rate may or may not be predictable.
4. A variety of networks (e.g., Zigbee/802.15.4, WiFi, 4G LTE) may be used for the message traffic. This results in unpredictable connectivity, bandwidth availability and message delivery intervals.
5. Message delivery endpoints (e.g., mobile phone) may or may not be able have the ability process messages at a rapid rate.
6. Message size is able to be short or long, and the content may be structured or unstructured.
7. Messages may require transformation (e.g., to a different format, language, structure) to meet requirements of a destination.
8. Messages may require a priority scheme that enables distributions of high priority messages before lower priority messages. 9. Critical messages may require guaranteed delivery by utilizing high availability techniques (e.g., using redundant message delivery options, to protect against a single failure).
10. Typically messaging infrastructure inefficiencies will demand use of additional computing platforms to handle capacity and scalability, memory and network bandwidth.
11. Inability to multiplex messages will result in connectivity explosion and
administration difficulties.
12. Software service implementations are complex and runtime execution is slower because infrastructure software capabilities are implemented in the application layer. These include: security, privacy, regulatory functions (e.g., audit), capacity/scalability management, and high availability.
The Multiplexed Demand Signaled Distributed Messaging (MDSDM) system and method is a software services (client service to server side service or between server side services) messaging software that provides distributed and multiplexed demand signaled distributed messaging, utilizing backpressure signaling. This is referred to as MDSDM.
Utilizing MDSDM, software services within an application or software services associated with one or more applications are able to communicate in real-time with no understanding of how the messages are transported and delivered under variable message load conditions, bandwidth availability conditions and message processing conditions.
Figure 1 illustrates a diagram of an MDSDM implementation according to some embodiments. As shown, there are two computer, storage and network clusters, which are each one or more servers along with the storage and networking equipment used by an application. Cluster A is used by application A, and Cluster B is used by application B. MDSDM software includes a message sending component identified as a message sender 102 and a message receiving component identified as message receiver 104. Application software services 100 are components of a software application where each of the services provides one or more functions. Services 1, 2, 3 and 4 are associated with Application A, and services 5, 6, 7, 8, and 9 are associated with Application B. Services identified as 1, 3 and 5 are both receivers and senders of messages. Services identified as 2 and 4 are message receivers only. Services identified as 6, 7, 8, and 9 are message senders only.
Figure 1 shows the following high level capabilities:
1. MDSDM is a distributed functionality with no gateway or centralized message distributed broker functionality. Each software service has MDSDM sending and receiving components. 2. The following application deployment scenarios are supported: intra-server, inter-server, intra-cluster and inter-cluster.
3. MDSDM is able to be used for both intra-application and inter-application
communication.
4. MDSDM provides messages distribution as illustrated by service 5 distributing messages received from services 6, 7, 8 and 9 to services 2 and 3 via service 1.
5. Services are able to be senders of messages, receivers of messages, senders and receivers of messages, and message processing functions.
MDSDM is a distributed and multiplexed peer-to-peer real-time messaging, utilizing demand signaling between the message senders or publishers and message receivers or subscribers. Unlike a typical publish and subscribe messaging software, MDSDM addresses a number of application messaging issues associated with:
1. Realtime distribution of messages. There is no store and forward functionality.
Messages are pushed to the subscribers/receivers and then persisted in the background, if required.
2. Understanding message bottlenecks due to network connectivity and bandwidth and processing capabilities of certain services. The publishing functionality of a service takes into consideration the availability of network and the ability of the subscriber to receive the message.
3. Efficient multiplexed messaging with minimal overhead.
4. Adding new messaging features that are typically replicated in each software services such as support for high-availability. The high-availability implementation is done outside the application service, and therefore the performance of the application service is not impacted. The message replication for high-availability is implemented in the load balancing function. 5. Network back pressure demand signaling. Network bandwidth and buffers are monitored to determine the subscriber's ability to consume message traffic.
6. Flexible addressing mechanism. Unlike other messaging software, software services are able to utilize Uniform Resource Indicator (URI)-based addressing to subscribe to or publish messages.
7. No Message distribution choke points. Other message software typically utilizes a message distribution hub, but MDSDM is a peer-to-peer messaging infrastructure.
8. Message distribution across clusters. Location of service end-points is transparent to the MDSDM; messages are delivered seamlessly across clusters. 9. Message privacy and security capabilities. MDSDM allows privacy and security related filters to be specified in order to implement data attribute level and message end point level security implementation. Data privacy is implemented using data masking for attributes in messages.
10. Message transformations which are controlled from a receiver perspective.
The MDSDM method and system dramatically improves performance and scalability of publish/subscribe messaging software to support interactive real-time application.
MDSDM Terminology Definitions
The following are definitions of the terminology used to describe the MDSDM details:
Service Pool: A pool of software services associated with applications that utilize MDSDM to communicate messages between them and are resident on a single network endpoint (e.g., pool.example.com).
Service: A software service associated with an application that is part of a service pool. Each service uses MDSDM to send and receive messages. A service is addressed using the associated service pool domain (e.g., pool.example.com/servicel). The template for the service is provided by the MDSDM. Application developers implement the application specific code in the template.
Network Connection: A standard network connection (e.g., TCP/IP, WebSocket) between two processes on two devices (e.g., servers) in a single cluster or across clusters.
Lane Manager: A logical connection manager, associated with a service pool, that generates and manages network connections between endpoints, and generates streams to distribute messages to all services in the service pool which originate from a specific service and lane for which a stream is generated.
Stream: A logical connection established over a network connection by the lane manager between itself and a corresponding service and specific lane supported by that service. Streams share an existing network connection if the stream is between the same service pool. A stream supports both unicast and multicast messaging.
Link: A logical connection established over a stream that is an expression of interest for messages from a specific service and a lane associated with that service. Links share an existing stream, becoming effectively multicast, if the link is to the same service and a lane associated with the service. Lane: A lane is a logical messaging endpoint associated with service. There are able to be zero or more lanes associated with a service. A lane is addressed using the associated service address and a lane identifier (e.g., [pool.example.com/servicel, a/lanel]). The lane identifier includes a structured prefix, followed by a lane name.
Back Pressure: This involves detection of inability of a subscribing service to receive and/or process messages for which it has expressed an interest in. The lane publishing software detects a signal that the receiver/subscriber is not available to accept messages. This state of not being able to accept messages is referred to as back pressure.
The MDSDM functionality is based on a publish/subscribe paradigm but the following capabilities will reduce application services complexity while enhancing efficiency, performance, scalability and availability:
Message multiplexing functionality: Multiplexing refers to functionality where a connection is shared to send and receive messages rather than generate a new connection for each logical messaging endpoint.
Figure 2 illustrates a diagram of MDSDM multiplexing according to some
embodiments.
Standard or Application Components
A service pool is a group of application related services are managed within a service pool. Two service pools are shown, www.a.com 200 and www.b.com 202. A service provides a set of functions for an application. The services shown are: www.a.com/Svcl,
www.a.com/Svc2 and www.a.com/Svc3 associated with service pool www.a.com 200;
www.b.com/Svcl, www.b.com/Svc2 and www.b.com/Svc3 associated with service pool www.b.com 202. A network connection 218 is a connection between two service pools (e.g., WebSocket over TCP). A network connection 218 is shown between www.a.com 200 and www.b.com 202.
MDSDM components
A lane is a message queue associated with a service. A service can support many lanes. Figure 2 shows the following Lanes:
p/LaneA and p/LaneX associated with services www.a.com/Svcl and
www.b.com/Svcl
q/LaneY and q/LaneZ associated with services www.a.com/Svc2 and
www.b.com/Svc2 r/LaneA and r/LaneZ associated with services www.a.com/Svc3 and
www.b.com/Svc3
A lane as shown above has a structured prefix and a lane name to identify a lane. The prefix is forward slash (e.g., "/") separating identifiers. In the above example, there is only an identifier associated with each lane (e.g., p or q or r). Elements of the structured prefix are used for a message scope feature that allows access to multiple queues.
A lane manager manages the network connections, streams and links associated with service pool. Figure 2 shows:
Lane Manager 204 for Service Pool www.a.com
Lane Manager 206 for Service Pool www.b.com
A stream is a logical connection between a lane manager and a lane associated with a service. Figure 2 shows two streams:
Stream 208 from Lane Manager www.a.com and q/LaneY, Service www.b.com/Svc2 Stream 214 from Lane Manager www.a.com and r/LaneA, Service www.b.com/Svc3 A link is a logical connection between a service and a lane associated with another service that expresses interest for messages in that lane. Links are able to be "synced" links or "standard" links. "Synced" links allow a subscriber to receive messages from the publisher that existed prior to generation of the link (e.g., messages that are already in the queue). "Standard" links allow a subscriber to receive only new messages from the publisher that have been generated after the generation of the link. Figure 2 shows three links
Link 210 between Service www.a.com Svcl and q/LaneY, wwww.b.com/Svc2 Link 212 between Service www.a.com Svc2 and q/LaneY, www.b.com/Svc2
Link 214 between Service www.a.com/Svc3 and r/LaneA, www.b.com/Svc3
The multiplexing functionality is managed by the lane manager component described above. The multiplexing scenarios are:
A. www.a.com/Svcl service requests a Link to www.b.com/Svc2, q/LaneY. The Lane 204 Manager on www.a.com 200 detects that there is no network connection to www.b.com 202 and establishes for example a TCP connection to the Lane Manager 206 on www.b.com. This is labeled as network connection 218 (e.g., WebSocket TCP connection). Next, lane manager on www.a.com establishes a stream to www.b.com/Svc2 q/LaneY, labeled as Stream 208 from www.b.com/Svc2, q/LaneY to Lane Manager www.a.com and shown as thick shaded line. Finally, a logical connection shown by dotted line and labeled Link 210 from www.a.com/Svcl to www.b.com/Svc2, q/LaneY is established. B. www.a.com/Svc2 service requests a Link to www.b.com/Svc2, q/LaneY. The Lane Manager 204 on www.a.com 200 detects the existing Network Connection 218 to
www.b.com 202 and existing Stream 208 to www.b.com/Svc2, q/LaneY and therefore generates a logical connection shown as a dotted and dashed line from www.a.com/Svc2 to www.b.com/Svc2, q/LaneY. The link 212 is therefore multiplexed on the same stream between Lane Manager www.a.com and www.b.com/Svc2, q/LaneY.
C. www.a.com/Svc3 service requests a Link 216 to www.b.com/Svc3, r/LaneA. The Lane Manager 204 on www.a.com 200 detects an existing Network Connection 218 to www.b.com 202. Lane Manager 204 on www.a.com 200 does not find a Stream to www.b.com/Svc3, r/LaneA so it establishes a lane labeled Stream 214 from
www.b.com/Svc3, r/LaneA to Lane Manager www.a.com. Finally, a link 216 shown as a dashed line is established between www.a.com/Svc3 and www.b.com/Svc3, r/LaneA.
D. Multiplexing scenarios shown are hierarchical. Streams are multiplexed on a network connection, and links are multiplexed on a stream.
Back pressure is a scenario where messages from a lane cannot be delivered as established by the link due to connection problems or processing problems. The lane software waits for a signal before sending the message and therefore is able to handle scenarios of network connection delays or processing delays.
Figure 3 illustrates a diagram of handling back pressure according to some embodiments. Lane Manager www.b.com 306 for service pool 302, for a back pressure managed lane, will look for an availability signal, labeled signal 314 before attempting to write messages from www.b.com/svcl x/y/LaneA using the link 308 using the stream 312 over the network connection 310 to lane manager www.a.com 304 for service pool 300. So a connection availability or available for processing signal is used to handle connection problems or processing problems, and until then, the messages in x/y/LaneA are not processed, and if appropriate will not be generated, for forwarding.
Application services are able to take advantage of numerous MDSDM lane features. There are many different lane types:
Ephemeral is a lane type for high speed delivery of messages. Two options are supported for Ephemeral message lanes: A cached lane is where messages are maintained in memory and therefore limited by the amount and availability of memory. A lazy lane is where messages are built on demand. Therefore the delivery is throttled. Messages are therefore generated at the last minute before consumption. A persistent lane is for reliable and backed up delivery of messages. A file lane is used for a regular file for message persistence. A database lane is used for a database for message persistence. A history lane uses a combination of online and offline storage.
A lane sync feature allows services to get existing messages and the new messages as they are generated. A keyed storage of messages in a lane table results in always up-to-date messages. A message access control allows the lane to filter messages sent to the link requester based on the credentials presented. A message transformation enables lanes to transform messages based on the service that requested a link using requesting service provided transformation engine. A message privacy monitoring allows data filtering and data masking using a transformation engine. A message priority enables processing and forwarding of high priority messages before others. Runtime configuration of lane features allows application services to update the message lane requirements without a software upgrade. The new features will be applicable to new messages only.
MDSDM uses Uniform Resource Identifier (URI) to identify message endpoints. The URI is already used for web interactions over the Internet and demonstrates the addressing scalability. The same addressing technique is applied to identify message queues to interact between the sender and receiver. As a result of using the URIs to address message queues:
Software services are able to be installed and run from any hardware platform as long as there is network connectivity;
Services and queues are able to be moved from a one hardware platform to another without impacting the consumers of message;
Conflicting message endpoint naming is able to be avoided;
Queue addressing scales like the web addressing, and there are no limitations on the numbers of queues that are able to be generated and addressed; and
Message scoping features are able to utilize the URI address hierarchy.
MDSDM enables highly scalable and efficient propagation of messages.
Figure 4 illustrates a diagram of MDSDM supporting message propagation according to some embodiments. A message propagation scenario shown involves services 5, 6, 7 and 8 running on cluster B would like to deliver messages to services 2 and 3 running on cluster A. The MDSDM message propagation feature allows services 5, 6, 7, 8 to send message to a local cluster B service 4. Service 4 then propagates the messages to service 1 on cluster A, which in turn propagates messages to services 2 and 3. This results in significant reduction of message traffic, both local and network traffic. Figure 5 illustrates a diagram of message scoping according to some embodiments. The message scoping feature of MDSDM allows services to receive messages from any level in a hierarchy.
Services (e.g., www.a.com/svc21) generating a link to www.a.com/svcl 1, x/Lanel 1 lane will receive messages from www.a.com/svcl, x/Lanel 1 only.
Services (e.g., www.a.com/svc31) generating a link to www.a.com/svc21, y/x/Lane21 lane will receive messages from: www.a.com/svcl 1, x/Lanel 1, www.a.com/svcl2, x/Lanel2, www.a.com/svcl3, x/Lanel3, and www.a.com/svc21, y/x/Lane21.
Even if there is no explicit message forwarding using links between
www.a.com/svc21 and services at Level 1 (www.a.com/svcl 1, www.a.com/svcl 2 and www.a.com/svcl 3), services are able to request messages using the lane prefix. For this scoping to work, the lane identifiers (prefix and lane name) are unique across the services.
In the above example, services are able to generate a link to "scoped lane", "x" and therefore get messages from www.a.com/svcl 1, x/Lanel 1; www.a.com/svcl2, x/Lanel2; www.a.com/svcl3, x/Lanel3
Similarly, services are able to generate a link to "scoped lane", y and therefore get messages from www.a.com/svcl 1, x/Lanel 1; www.a.com/svcl2, x/Lanel2;
www.a.com/svcl3, x/Lanel3; www.a.com/svc21, y/x/Lane21. In this case, scope lane prefix, "y", hierarchically includes all lane prefixes below it in the hierarchy (i.e., "x" prefix lanes).
Alternatively, services are able to generate a link to a "Service", www.b.com/svcl3 without specifying the lanes and there by implicitly link to all lanes for the service, www.b.com/svc 13.
MDSDM links allow services to express interest in a lane for access to the messages that are sent on that lane from an associated service. Links are logical connections that are established to communicate over streams and ultimately over a network connection. MDSDM allows:
Dynamic establishment of links. Services are able to link and unlink in real-time which offers flexibility based on user needs or business process needs.
Links remain active even when the network connections have communication failures. The MDSDM infrastructure software will automatically retry the underlying connections and reestablish the connection. During this interval the messages are queued. Once the underlying connection is established then the messages are delivered to the services. Back pressure handling ensures that, whenever possible, new messages are not generated when the connection over which they are to be sent is unavailable.
Multiple links are able to share a stream between the lane manager and the lane associated with a service.
Filters are able to be specified for the links by application developers for: data transformation, data privacy related masking, and data security related encryption.
MDSDM software provides introspection functionality that involves self monitoring. MDSDM introspection software in real-time monitors and takes required actions, that are configurable, to provide the following data: contents of lane; configured parameters of lane, link, lane manager, stream, and network connection; performance parameters; capacity parameters; and availability parameters.
The following performance parameters are monitored and made available via special lanes to services and an administrative user interface: time to generate and delete lanes and links; time to deliver a first message for each lane; message processing rates (minimum, maximum and average) of a lane, all lanes for a service, all services of an application;
message delivery interval (minimum, maximum and average) of each lane, across all lanes for a service, across all services of an application; error rates and idle durations for: each lane, all lanes for a service, all services of an application, stream and network connection; status (working, idle, waiting, not-responsive, queue-full) for: each lane, all lanes for a service (status counts), all services of an application (status counts), stream, and network connection.
The following capacity parameters are monitored and made available via special lanes to services and administrative user interface: number of lanes per service, stored data per lane, stored data per service, stored data per application, number of links for each service, number of links for the application, message size (minimum, maximum, average) per lane, for all lanes for a service, or for all services for an application.
The following availability parameters are monitored and made available to services and an administrative user interface: uptime for each: lane, link, stream, and network connection; failover status of high-availability lanes; number of failovers and the associated conditions; duration on primary lane; and duration on backup lane.
Figure 6 illustrates a diagram of the MDSDM software in operation according to some embodiments. Software services that use message multiplexing, distributed messaging and demand signal based real-time messaging will utilize the MDSDM software. Software service www.a.com/svcl 600 is the consumer of messages. Software service www.a.com/svc2 602 is the consumer and publisher of messages. The publishing is from lane CA/Bayarea/Traffic. Software service www.a.com/svc3 604 is a publisher of messages. The publishing of messages is from lane CA/SFO/Traffic and CA SFO/Concerts. The following steps illustrate how the MDSDM software works:
Application software services www.a.com/svcl 600, www.a.com/svc2 602 and www.a.com/svc3 604 utilize the MDSDM SDK to access the functionality. MDSDM SDK is the software development kit that allows software services to implement the messaging functionality between the services.
Service www.a.com/svcl 600 as a consumer of messages utilizes the "link" generation functions from the MDSDM SDK.
Service www.a.com/svc2 602 as a publisher of messages utilizes the "lane" generation functions, and as a subscriber uses the "link" generation functions from the MDSDM SDK. The www.a.com/svc2 602 generates a lane CA/Bayarea/Traffic.
Service www.a.com/svc3 604 as a publisher of messages utilizes the "lane" generation functions of the MDSDM SDK. The www.a.com/svc3 generates CA/SFO/Traffic lane and CA/SFO/Concerts lane.
Service www.a.com/svc2 602 wants traffic related messages from service
www.a.com/svc3. So the software utilizes the "link" generation function from MDSDM to generate a link to the www.a.com/svc3, CA/SFO/Traffic lane. MDSDM software at runtime generates the underlying network connections, the stream between the www.a.com lane manager and the lane www.a.com svc3, CA/SFO/Traffic.
MDSDM software that manages the lanes www.a.com/svc2, CA/Bayarea/Traffic; www.a.com/svc3, CA/SFO/Traffic and www.a.com/svc3, CA/SFO/Concerts will route messages to the appropriate destinations based on the links generated by the services.
The following steps illustrate the overall functioning of the MDSDM.
Service www.a.com/svc2 generates a "Standard" link 606 (note: as described previously for a standard link only new messages are sent) to www.a.com/svc3,
CA/SFO/Traffic using the link generation MDSDM software.
MDSDM software associated with www.a.com/svc3 sends "Linked" response 608. Service www.a.com/svc3 wants to publish an event TrafficEventl to the lane CA/SFO/Traffic, so it calls the lane publish software of MDSDM. MDSDM lane software records the TafficEventl 610 and looks for links to identify subscribers. Service
www.a.com/svc2 is identified as a subscriber, and therefore the message is delivered to www.a.com/svc2. Service www.a.com/svc3 wants to publish an event TrafficEvent2 612 to the lane CA/SFO/Traffic, so it calls the MDSDM lane publish software. MDSDM lane software records the TrafficEvent2 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svc2.
Service www.a.com/svcl generates a "Standard" link 614 to www.a.com/svc2
CA/Bayarea/Traffic using the link generation MDSDM software.
MDSDM software of service www.a.com/svc2 sends "Linked" response 616 as acknowlegement for the link request.
Service www.a.com/svc3 wants to publish an event TrafficEvent3 618 to the lane CA/SFO/Traffic, so it calls the MDSDM lane publish software. MDSDM lane software records the TrafficEvent3 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svc2. Service www.a.com/svc2 takes this message and requests MDSDM to publish the message on lane CA/Bayarea/Traffic. MDSDM lane software records the TrafficEvent3 620 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svcl .
Service www.a.com/svc3 wants to publish an event ConcertsEventl 622 to the lane CA/SFO/Concerts, so it calls the MDSDM lane publish software. MDSDM lane software records the ConcertsEventl and does not forward the message because there are no active links.
Service www.a.com/svc3 wants to publish an event ConcertsEvent2 624 to the lane
CA/SFO/Concerts, so it calls the MDSDM lane publish software. MDSDM lane software records the ConcertsEvent2 and does not forward the message because there are no active links.
Service www.a.com/svcl no longer wants the message from www.a.com/svc2, lane CA/Bayarea/Traffic so it uses MDSDM function to "Unlink" 626.
The unlink response 628 from MDSDM link management software is sent.
Service www.a.com/svc3 wants to publish an event TrafficEvent3 630 to the lane CA/SFO/Traffic, so it calls the MDSDM lane publish software. MDSDM lane software records the TrafficEvent3 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svc2.
Service www.a.com/svcl generates a "Synced" link 632 (note: synced links indicate that MDSDM should forward existing lane messages) to www.a.com/svc3
CA/Bayarea/Concerts using the link generation MDSDM software. MDSDM lane management software detects the request for "Synced" link 634 for www.a.com/svc3, CA/SFO/Concerts lane and then locates existing messages ConcertEventl 636 and ConcertEvent2 638 and forwards these messages to www.a.com/svcl . So
www.a.com/svcl was able to receive preexisting messages from the lane. This demonstrates how messages are persistent and how services are able to receive existing messages in the lanes.
Service www.a.com/svc3 wants to publish an event TrafficEvent5 640 to the lane CA/SFO/Traffic, so it calls the MDSDM lane publish software. MDSDM lane software records the TrafficEvent5 and forwards the message to subscribers based on the links established. The message is delivered to www.a.com/svc2.
Service www.a.com/svc3 wants to publish an event ConcertsEvent3 642 to the lane CA/SFO/Concerts, so it calls the MDSDM lane publish software. MDSDM lane software records the ConcertsEvent2 and forwards this message to www.a.com/svcl . The steps in Figure 6 are exemplary steps and are not meant to limit the invention in any way.
Applications use MDSDM software for reliable, high capacity real-time messaging between application services. Application services use MDSDM software by using the MDSDM SDK during the software development of services. At runtime, the MDSDM will make the lanes, links and message distribution related functionality. There are three messaging related scenarios associated with MDSDM:
1. Application services publishing messages. These services generate message lanes for publishing messages. Messages are not published to the lanes if there are no active subscribers. This is referred to as lazy generation, and this feature helps with handling of lane capacity. MDSDM SDK provides the software functions for the lane generation and deletion. 2. Application services consuming messages. These services generate links to message lanes from which they want message subscription. These links are able to be "standard" links or "Synced" links. In case of a "Synced" link, MDSDM will deliver all messages in the lane, even messages that were in the lane prior to generation of the link. So this is a feature of the MDSDM for synchronizing with pre-existing messages. MDSDM SDK provides the software functions for the link generation and deletion.
3. Application services publishing and consuming messages. The services generate lanes to publish messages and generate links to subscribe to messages.
Figure 7 illustrates a block diagram of an exemplary computing device configured to implement the MDSDM method according to some embodiments. The computing device 700 is able to be used to acquire, store, compute, process, communicate and/or display information. In general, a hardware structure suitable for implementing the computing device 700 includes a network interface 702, a memory 704, a processor 706, I/O device(s) 708, a bus 710 and a storage device 712. The choice of processor is not critical as long as a suitable processor with sufficient speed is chosen. The memory 704 is able to be any conventional computer memory known in the art. The storage device 712 is able to include a hard drive,
CDROM, CDRW, DVD, DVDRW, High Definition disc/drive, ultra-HD drive, flash memory card or any other storage device. The computing device 700 is able to include one or more network interfaces 702. An example of a network interface includes a network card connected to an Ethernet or other type of LAN. The I/O device(s) 708 are able to include one or more of the following: keyboard, mouse, monitor, screen, printer, modem, touchscreen, button interface and other devices. MDSDM application(s) 730 used to perform the
MDSDM method are likely to be stored in the storage device 712 and memory 704 and processed as applications are typically processed. More or fewer components shown in Figure 7 are able to be included in the computing device 700. In some embodiments, MDSDM hardware 720 is included. Although the computing device 700 in Figure 7 includes applications 730 and hardware 720 for the MDSDM method, the MDSDM method is able to be implemented on a computing device in hardware, firmware, software or any combination thereof. For example, in some embodiments, the MDSDM method applications 730 are programmed in a memory and executed using a processor. In another example, in some embodiments, the MDSDM hardware 720 is programmed hardware logic including gates specifically designed to implement the MDSDM method.
In some embodiments, the MDSDM application(s) 730 include several applications and/or modules. In some embodiments, modules include one or more sub-modules as well. In some embodiments, fewer or additional modules are able to be included.
Examples of suitable computing devices include a personal computer, a laptop computer, a computer workstation, a server, a mainframe computer, a handheld computer, a personal digital assistant, a cellular/mobile telephone, a smart appliance, a gaming console, a digital camera, a digital camcorder, a camera phone, a smart phone, a portable music player, a tablet computer, a mobile device, a video player, a video disc writer/player (e.g., DVD writer/player, high definition disc writer/player, ultra high definition disc writer/player), a television, an augmented reality device, a virtual reality device, a home entertainment system, smart jewelry (e.g., smart watch) or any other suitable computing device.
To utilize the MDSDM method and system, links, lanes and network connections are used to send messages between applications. In operation, the MDSDM method and system provides:
1. Message multiplexing. This feature of MDSDM has the following benefits:
a. Service to Service connections do not result in a physical connection. So where there are large number of services communicating with each other as in the case of a graph of services, there is no explosion of connections.
b. Physical connectivity (WebSocket) and the Stream connection is hidden from the services requesting links. Receivers and senders of messages have lower complexity because they do not have to manage connection failure of websocket and streams.
c. Lane Manager locally distributes message to all the services that have requested links to the same Lane. This results in fewer messages between service pools, faster message delivery and lower communications bandwidth costs.
2. Back pressure management. This feature allows a Lane to hold messages until a signal that the connection is up, and the Service is ready to receive messages. Therefore, there is no loss of messages due to message overflow or any other condition regarding network connectivity.
3. Lane management. This feature provides simplified communication between services. The MDSDM software without the knowledge of application services handles issues.
4. Addressing the message endpoints. The URI based addressing scheme provide application services a simple and universal handle for communication without the knowledge of where the service is supported. This is a known addressing scheme used by the Web and therefore very flexible and are able to scale easily to accommodate numerous services and message endpoints.
5. Message propagation: The message propagation functionality will reduce the number of connections and improve message throughput of applications. This also enables real-time delivery of messages.
6. Message scoping: This feature allows applications to be lane efficient and link efficient and therefore contributes to message throughput and real-time delivery of messages.
7. Link management: This enables real-time orchestration of message flow within an application and enables application services to be independent of the underlying message transportation related connections.
8. Messaging introspection: The message introspection allows applications to monitor the performance, capacity and availability of the messaging infrastructure and take appropriate actions (to handle performance and capacity issues) such as: start or stop new services, generate or delete new lanes, generate or delete links, and move services to different servers or clusters.
The introspection functionality allows applications to orchestrate the functioning of application in real-time.
The MDSDM method and system also provides:
1. Optimal usage of computing resources such as CPU, memory and network on a single server, multiple servers in a cluster and servers on multiple clusters that are geographically distributed.
2. Decoupling of applications from features such as privacy, security, capacity and high availability management.
3. Ability to develop interactive applications that utilize real-time data to implement actions in real-time
4. Support for development of applications that integrate functionality both vertically (e.g., messaging, processing, storage) and horizontally (e.g., client side and server side ). 5. Highly efficient and real-time distribution of messages within a server, intracluster and intercluster.
6. Enables implementation of highly scalable applications utilizing optimal incremental hardware infrastructure growth.
7. Enables implementation of applications which must handle messages transmitted over networks with unpredictable connectivity and bandwidth.
8. Enables implementation of applications that are able to process an extraordinarily large amount of data.
9. Use of an universal addressing scheme allows the solution to scale without restrictions.
10. Use of scoping and multiplexing allows most efficient access to message streams with very little overhead.
11. A built in capability to inject transformations into messaging infrastructure enables message consumers to operate without knowledge of message provider and message structure details.
12. Message introspection allows self monitoring of operational, performance and administrative status of the services and messaging infrastructure and therefore are able to be tuned dynamically to adjust to the demands presented. The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims

C L A I M S
What is claimed is:
A method programmed in a non-transitory memory of a device comprising:
a. establishing one or more network connections for peer-to-peer real-time
message distribution; and
b. routing one or more messages to an appropriate destination using the one or more network connections utilizing load balancing and routing functions.
The method of claim 1 wherein the peer-to-peer message distribution is implemented without a centralized hub/gateway/device between a publisher and a subscriber.
The method of claim 1 wherein an existing network connection of the one or more network connections is reused between a publisher and a subscriber transparently without involvement of application services.
The method of claim 1 wherein when the one or more messages go to multiple subscribers on a single host, the one or more messages from a publisher are only sent once over the one or more network connections, and the one or more messages are broadcast locally without explicit involvement of a publisher and a subscriber to each subscriber of the multiple subscribers on the single host.
The method of claim 1 wherein the appropriate destination is determined using universal addressing of messaging end-points.
The method of claim 5 wherein the universal addressing of messaging end-points utilizes a format of a universal resource locator and a service reference.
The method of claim 1 further comprising self-monitoring of messaging software and regulation of the messaging software based on the self-monitoring.
The method of claim 7 wherein self-monitoring includes computing analysis including analyzing how long processing of a task takes and networking analysis including transfer rates.
9. The method of claim 1 further comprising managing back pressure by detecting subscriber message consumption, analyzing network bandwidth and analyzing network issues, and throttling message publishing based on the detecting and analyzing.
10. The method of claim 9 wherein throttling message publishing includes not publishing messages if a blockage of messages is detected. 11. The method of claim 10 wherein when a blockage of messages is detected, only a most recent message of the one or more messages is published.
12. The method of claim 1 further comprising utilizing one or more custom filters for message transformation, filtering, security, and/or privacy.
13. The method of claim 1 further comprising subscribing to a hierarchy of services to receive messages from a plurality of services without a subscriber explicitly identifying each messaging end-point in the hierarchy. 14. The method of claim 1 further comprising publishing a message of the one or more messages, recording the message and searching links to identify subscribers, and delivering the message based on the identified subscribers.
15. The method of claim 1 wherein a message of the one or more messages is not
forwarded when there are no active links.
16. The method of claim 1 further comprising unlinking a link of the one or more links when a service does not want a message of the one or more messages. 17. The method of claim 1 further comprising receiving a preexisting message from a lane of one or more lanes by establishing a link in the lane after the preexisting message has been generated.
18. The method of claim 1 wherein routing the one or more messages occurs in real-time.
19. An apparatus comprising:
a. a non-transitory memory for storing a service, the service configured for: i. establishing one or more network connections for peer-to-peer realtime message distribution; and
ii. routing one or more messages to an appropriate destination using the one or more network connections utilizing load balancing and routing functions; and
b. a processor for processing the service.
20. The apparatus of claim 19 wherein the peer-to-peer message distribution is
implemented without a centralized hub/gateway/device between a publisher and a subscriber.
21. The apparatus of claim 19 wherein an existing network connection of the one or more network connections is reused between a publisher and a subscriber transparently without involvement of application services.
22. The apparatus of claim 19 wherein when the one or more messages go to multiple subscribers on a single host, the one or more messages from a publisher are only sent once over the one or more network connections, and the one or more messages are broadcast locally without explicit involvement of a publisher and a subscriber to each subscriber of the multiple subscribers on the single host.
23. The apparatus of claim 19 wherein the appropriate destination is determined using universal addressing of messaging end-points.
24. The apparatus of claim 23 wherein the universal addressing of messaging end-points utilizes a format of a universal resource locator and a service reference.
25. The apparatus of claim 19 wherein the apparatus implements self-monitoring of messaging software and regulation based on the self-monitoring.
26. The apparatus of claim 25 wherein self-monitoring includes computing analysis including analyzing how long processing of a task takes and networking analysis including transfer rates. 27. The apparatus of claim 19 wherein the apparatus manages back pressure by detecting subscriber message consumption, analyzing network bandwidth and analyzing network issues, and throttling message publishing based on the detecting and analyzing. 28. The apparatus of claim 27 wherein throttling message publishing includes not
publishing messages if a blockage of messages is detected.
29. The apparatus of claim 28 wherein when a blockage of messages is detected, only a most recent message of the one or more messages is published.
30. The apparatus of claim 19 wherein the apparatus utilizes one or more custom filters for message transformation, filtering, security, and/or privacy.
31. The apparatus of claim 19 wherein the apparatus implements subscribing to a
hierarchy of services to receive messages from a plurality of services without a subscriber explicitly identifying each messaging end-point in the hierarchy.
32. The apparatus of claim 19 wherein the apparatus publishes a message of the one or more messages, records the message and searches links to identify subscribers, and delivers the message based on the identified subscribers.
33. The apparatus of claim 19 wherein a message of the one or more messages is not forwarded when there are no active links. 34. The apparatus of claim 19 wherein the apparatus unlinks a link of the one or more links when a service does not want a message of the one or more messages.
35. The apparatus of claim 19 wherein the apparatus receives a preexisting message from a lane of one or more lanes by establishing a link in the lane after the preexisting message has been generated.
36. The apparatus of claim 19 wherein routing the one or more messages occurs in realtime.
37. A system comprising:
a. a first device configured for:
i. establishing one or more network connections for peer-to-peer realtime message distribution; and
ii. routing one or more messages to an appropriate destination using the one or more network connections utilizing load balancing and routing functions; and
b. a second device configured for receiving the one or more messages.
38. The system of claim 37 wherein the peer-to-peer message distribution is implemented without a centralized hub/gateway/device between a publisher and a subscriber, wherein the first device comprises the publisher, and the second device comprises the subscriber.
39. The system of claim 37 wherein an existing network connection of the one or more network connections is reused between a publisher and a subscriber transparently without involvement of application services.
40. The system of claim 37 wherein when of the one or more messages go to multiple subscribers on a single host, the one or more messages from a publisher are only sent once over the one or more network connections, and the one or more messages are broadcast locally without explicit involvement of the publisher and subscriber to each subscriber of the multiple subscribers on the single host.
41. The system of claim 37 wherein the appropriate destination is determined using
universal addressing of messaging end-points.
42. The system of claim 41 wherein the universal addressing of messaging end-points utilizes a format of a universal resource locator and a service reference.
43. The system of claim 37 wherein the first device implements self-monitoring of
messaging software and regulation of the messaging software based on the self- monitoring.
44. The system of claim 43 wherein self-monitoring includes computing analysis
including analyzing how long processing of a task takes and networking analysis including transfer rates.
45. The system of claim 37 wherein the first device manages back pressure by detecting subscriber message consumption, analyzing network bandwidth and analyzing network issues, and throttling message publishing based on the detecting and analyzing.
46. The system of claim 45 wherein throttling message publishing includes not publishing messages if a blockage of messages is detected.
47. The system of claim 46 wherein when a blockage of messages is detected, only a most recent message of the one or more messages is published.
48. The system of claim 37 wherein the first device utilizes one or more custom filters for message transformation, filtering, security, and/or privacy.
49. The system of claim 37 wherein the second device subscribes to a hierarchy of
services to receive messages from a plurality of services without a subscriber explicitly identifying each messaging end-point in the hierarchy.
50. The system of claim 37 wherein the first device publishes a message of the one or more messages, recording the message and searching links to identify subscribers, and delivering the message based on the identified subscribers.
51. The system of claim 37 wherein a message of the one or more messages is not forwarded when there are no active links.
52. The system of claim 37 wherein the first device unlinks a link of the one or more links when a service does not want a message of the one or more messages.
53. The system of claim 37 wherein the second device receives a preexisting message from a lane of one or more lanes by establishing a link in the lane after the preexisting message has been generated.
54. The system of claim 37 wherein routing the one or more messages occurs in real-time.
PCT/US2016/050204 2015-09-04 2016-09-02 Multiplexed demand signaled distributed messaging WO2017040997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16843111.2A EP3341841A4 (en) 2015-09-04 2016-09-02 Multiplexed demand signaled distributed messaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562214786P 2015-09-04 2015-09-04
US62/214,786 2015-09-04

Publications (1)

Publication Number Publication Date
WO2017040997A1 true WO2017040997A1 (en) 2017-03-09

Family

ID=58188681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/050204 WO2017040997A1 (en) 2015-09-04 2016-09-02 Multiplexed demand signaled distributed messaging

Country Status (3)

Country Link
US (3) US10367852B2 (en)
EP (1) EP3341841A4 (en)
WO (1) WO2017040997A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10989976B2 (en) 2011-03-16 2021-04-27 View, Inc. Commissioning window networks
US11054792B2 (en) 2012-04-13 2021-07-06 View, Inc. Monitoring sites containing switchable optical devices and controllers
US10989977B2 (en) 2011-03-16 2021-04-27 View, Inc. Onboard controller for multistate windows
US12105394B2 (en) 2011-03-16 2024-10-01 View, Inc. Commissioning window networks
RU2019109013A (en) 2014-03-05 2019-05-06 Вью, Инк. MONITORING OBJECTS CONTAINING SWITCHED OPTICAL DEVICES AND CONTROLLERS
US11868103B2 (en) 2014-03-05 2024-01-09 View, Inc. Site monitoring system
US10481459B2 (en) 2014-06-30 2019-11-19 View, Inc. Control methods and systems for networks of optically switchable windows during reduced power availability
US11740948B2 (en) 2014-12-08 2023-08-29 View, Inc. Multiple interacting systems at a site
US10574540B2 (en) * 2016-09-17 2020-02-25 Anand Sambandam Method and system for facilitating management of service agreements for consumer clarity over multiple channels
US20190166031A1 (en) * 2017-11-29 2019-05-30 LogicMonitor, Inc. Robust monitoring of it infrastructure performance
US11303601B2 (en) 2017-12-14 2022-04-12 Meta Platforms, Inc. Systems and methods for sharing content
US10873558B2 (en) 2017-12-14 2020-12-22 Facebook, Inc. Systems and methods for sharing content
US20190362069A1 (en) * 2018-05-22 2019-11-28 Allstate Insurance Company Digital Visualization and Perspective Manager
US11494502B2 (en) 2018-10-25 2022-11-08 Microsoft Technology Licensing, Llc Privacy awareness for personal assistant communications
US11017118B2 (en) 2018-11-30 2021-05-25 International Business Machines Corporation Cognitive survey policy management
US11062025B1 (en) 2018-11-30 2021-07-13 BlueOwl, LLC SAS solution to automatically control data footprint
KR20220006601A (en) 2019-05-09 2022-01-17 뷰, 인크. Antenna systems for control coverage in buildings
TW202206925A (en) * 2020-03-26 2022-02-16 美商視野公司 Access and messaging in a multi client network
US11809602B2 (en) * 2020-09-02 2023-11-07 International Business Machines Corporation Privacy verification for electronic communications
US20220414259A1 (en) * 2021-06-25 2022-12-29 Qonsent Inc. Systems and Methods for Electronic Data Privacy, Consent, and Control in Electronic Transactions
US20230153457A1 (en) * 2021-11-12 2023-05-18 Microsoft Technology Licensing, Llc Privacy data management in distributed computing systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158940A1 (en) * 2002-02-20 2003-08-21 Leigh Kevin B. Method for integrated load balancing among peer servers
US20080016198A1 (en) * 2006-06-12 2008-01-17 Enigmatec Corporation Self-managed distributed mediation networks
US20110055368A1 (en) * 2003-08-14 2011-03-03 Oracle International Corporation Connection Pool Use of Runtime Load Balancing Service Performance Advisories

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275824B1 (en) * 1998-10-02 2001-08-14 Ncr Corporation System and method for managing data privacy in a database management system
EP1393179A4 (en) 2001-05-08 2005-10-05 Ipool Corp Privacy protection system and method
US7478157B2 (en) * 2001-11-07 2009-01-13 International Business Machines Corporation System, method, and business methods for enforcing privacy preferences on personal-data exchanges across a network
US20030131052A1 (en) * 2002-01-10 2003-07-10 International Business Machines Corporatioin Method and system for HTTP time-on-page monitoring without client-side installation
US7761568B1 (en) * 2004-02-03 2010-07-20 Xweb, Inc. Data transmission verification and identification system and method
WO2006022784A1 (en) * 2004-08-23 2006-03-02 U.S. Smokeless Tobacco Company Nicotiana compositions
EP1847071A4 (en) * 2005-01-26 2010-10-20 Internet Broadcasting Corp B V Layered multicast and fair bandwidth allocation and packet prioritization
US9384345B2 (en) * 2005-05-03 2016-07-05 Mcafee, Inc. Providing alternative web content based on website reputation assessment
KR100633994B1 (en) * 2005-07-26 2006-10-13 동부일렉트로닉스 주식회사 Well photoresist pattern of semiconductor device and method for forming the same
US9058590B2 (en) * 2006-04-10 2015-06-16 Microsoft Technology Licensing, Llc Content upload safety tool
US7516418B2 (en) 2006-06-01 2009-04-07 Microsoft Corporation Automatic tracking of user data and reputation checking
US7672235B1 (en) * 2006-06-14 2010-03-02 Roxbeam Media Network Corporation System and method for buffering real-time streaming content in a peer-to-peer overlay network
US8745151B2 (en) 2006-11-09 2014-06-03 Red Hat, Inc. Web page protection against phishing
US8346753B2 (en) 2006-11-14 2013-01-01 Paul V Hayes System and method for searching for internet-accessible content
US7657648B2 (en) 2007-06-21 2010-02-02 Microsoft Corporation Hybrid tree/mesh overlay for data delivery
US20090100322A1 (en) 2007-10-11 2009-04-16 International Business Machines Corporation Retrieving data relating to a web page prior to initiating viewing of the web page
US8408879B2 (en) * 2008-03-05 2013-04-02 Dresser-Rand Company Compressor assembly including separator and ejector pump
KR20110076988A (en) * 2008-10-08 2011-07-06 에드키퍼 인크. Managing internet advertising and promotional content
US20100094860A1 (en) 2008-10-09 2010-04-15 Google Inc. Indexing online advertisements
US8364713B2 (en) 2009-01-20 2013-01-29 Titanium Fire Ltd. Personal data manager systems and methods
KR101199765B1 (en) * 2009-04-01 2012-11-09 주식회사 우듯 System and method for searching document
US9135629B2 (en) * 2009-06-23 2015-09-15 Simeon S. Simeonov User targeting management, monitoring and enforcement
US9172706B2 (en) 2009-11-23 2015-10-27 At&T Intellectual Property I, L.P. Tailored protection of personally identifiable information
US20120084349A1 (en) * 2009-12-30 2012-04-05 Wei-Yeh Lee User interface for user management and control of unsolicited server operations
US9361631B2 (en) * 2010-01-06 2016-06-07 Ghostery, Inc. Managing and monitoring digital advertising
US8612891B2 (en) * 2010-02-16 2013-12-17 Yahoo! Inc. System and method for rewarding a user for sharing activity information with a third party
US20110295988A1 (en) * 2010-05-28 2011-12-01 Le Jouan Herve Managing data on computer and telecommunications networks
CN107608755A (en) 2010-07-01 2018-01-19 纽戴纳公司 Split process between cluster by process type to optimize the use of cluster particular configuration
US8181254B1 (en) * 2011-10-28 2012-05-15 Google Inc. Setting default security features for use with web applications and extensions
US20130151547A1 (en) * 2011-12-09 2013-06-13 Sap Ag Method and system for generating document recommendations
CN104011714B (en) 2011-12-28 2018-06-19 英特尔公司 For the role manager of network communication
US9535755B2 (en) * 2012-03-09 2017-01-03 Google Inc. Tiers of data storage for web applications and browser extensions
WO2013163652A2 (en) * 2012-04-27 2013-10-31 Privowny, Inc. Managing data on computer and telecommunications networks
US9524198B2 (en) * 2012-07-27 2016-12-20 Google Inc. Messaging between web applications
CA2897042A1 (en) 2013-01-09 2014-07-17 Evernym, Inc. Systems and methods for access-controlled interactions
US9672223B2 (en) 2013-04-25 2017-06-06 Google Inc. Geo photo searching based on current conditions at a location
WO2014205431A2 (en) 2013-06-21 2014-12-24 Wifiname, Inc. Wireless network and mac address device detection system and methods
US10574766B2 (en) 2013-06-21 2020-02-25 Comscore, Inc. Clickstream analysis methods and systems related to determining actionable insights relating to a path to purchase
US9703988B1 (en) * 2013-07-12 2017-07-11 Abine, Inc. Internet privacy tool for mitigating third party transaction tracking
US10445769B2 (en) 2013-12-24 2019-10-15 Google Llc Systems and methods for audience measurement
US8898808B1 (en) 2014-01-10 2014-11-25 Ghostery, Inc. System and method for assessing effectiveness of online advertising
US10460349B2 (en) * 2015-02-11 2019-10-29 Oath Inc. Systems and methods for opting-out of targeted advertising in an online advertising environment
US20160300231A1 (en) * 2015-04-10 2016-10-13 Abine, Inc. Push notification authentication platform for secured form filling
US9904916B2 (en) 2015-07-01 2018-02-27 Klarna Ab Incremental login and authentication to user portal without username/password
US9510036B1 (en) 2015-10-26 2016-11-29 Google Inc. Systems and methods for providing content in a content list

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158940A1 (en) * 2002-02-20 2003-08-21 Leigh Kevin B. Method for integrated load balancing among peer servers
US20110055368A1 (en) * 2003-08-14 2011-03-03 Oracle International Corporation Connection Pool Use of Runtime Load Balancing Service Performance Advisories
US20080016198A1 (en) * 2006-06-12 2008-01-17 Enigmatec Corporation Self-managed distributed mediation networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3341841A4 *

Also Published As

Publication number Publication date
EP3341841A4 (en) 2019-04-10
EP3341841A1 (en) 2018-07-04
US20170070539A1 (en) 2017-03-09
US20170070457A1 (en) 2017-03-09
US20170068827A1 (en) 2017-03-09
US10367852B2 (en) 2019-07-30
US10362067B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
US10367852B2 (en) Multiplexed demand signaled distributed messaging
CN106657287B (en) Data access method and system
EP2030414B1 (en) Self-managed distributed mediation networks
US9660943B2 (en) Messaging based signaling for communications sessions
US9742651B2 (en) Client-side fault tolerance in a publish-subscribe system
US9047589B2 (en) Hierarchical publish and subscribe system
EP2901308B1 (en) Load distribution in data networks
US7177917B2 (en) Scaleable message system
WO2012118878A1 (en) Capabilities based routing of virtual data center service request
JP2018532201A (en) System and method for transferring message data
CN107528891B (en) Websocket-based automatic clustering method and system
US8966107B2 (en) System and method of streaming data over a distributed infrastructure
US7984158B2 (en) Web service for coordinating actions of clients
US9473316B2 (en) Resource consumption reduction via meeting affinity
US11616725B1 (en) Hierarchical token buckets
CN112910796B (en) Traffic management method, apparatus, device, storage medium, and program product
KR20190035592A (en) Distributed Broker Coordinator System and Method in a Distributed Cloud Environment
US11206207B1 (en) Managed multicast communications across isolated networks
CN111711675A (en) Solution for concurrent message transmission in local area network
CN109257435A (en) The communication system of more example multiple subsystems application based on message-oriented middleware
CN111541667A (en) Method, equipment and storage medium for intersystem message communication
US20090034545A1 (en) Multicasting
EP2680539B1 (en) Hierarchical publish/subscribe system
US7571245B2 (en) System and method for delivering the streaming of audio-video using external resources
Hong et al. Global-scale event dissemination on mobile social channeling platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016843111

Country of ref document: EP