WO2017038859A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2017038859A1
WO2017038859A1 PCT/JP2016/075441 JP2016075441W WO2017038859A1 WO 2017038859 A1 WO2017038859 A1 WO 2017038859A1 JP 2016075441 W JP2016075441 W JP 2016075441W WO 2017038859 A1 WO2017038859 A1 WO 2017038859A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
magnet
magnetic field
reversal
electric motor
Prior art date
Application number
PCT/JP2016/075441
Other languages
French (fr)
Japanese (ja)
Inventor
赤津 観
普衣 山田
Original Assignee
学校法人 芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 芝浦工業大学 filed Critical 学校法人 芝浦工業大学
Priority to JP2017538066A priority Critical patent/JPWO2017038859A1/en
Publication of WO2017038859A1 publication Critical patent/WO2017038859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present invention relates to an electric motor that generates a moving magnetic field by sequentially reversing the magnetization direction of a magnet portion of a stator.
  • windings are applied to each of a plurality of teeth portions provided on the inner periphery of the stator, and a three-phase alternating current is applied to each winding, thereby extending along the circumferential direction of the stator.
  • a rotating magnetic field is generated.
  • the rotor is provided with permanent magnets so that N and S poles appear alternately in the circumferential direction, whereby the rotor rotates in synchronization with the rotating magnetic field of the stator (see, for example, Patent Document 1). .
  • copper loss can be reduced by increasing the volume ratio of the winding in the winding space by making the winding thicker or setting the winding cross-sectional shape to a rectangle.
  • there is a limit in reducing the resistance value in a situation where the space for winding is limited.
  • the current that can be passed through the winding is limited and the torque generated by the motor is limited, or the copper loss is released as thermal energy and the temperature of the motor rises.
  • a rise in temperature may cause problems such as demagnetization of the magnet and an increase in the size of the cooling device.
  • an object of the present invention is to provide an electric motor capable of reducing energy loss due to copper loss or the like.
  • the electric motor is provided with a plurality of magnet portions arranged in a predetermined direction, having a coercive force functioning as a permanent magnet and capable of reversing the magnetization direction by a predetermined magnetization reversal action,
  • a stator provided with a magnetism adjustment unit that gives the magnetization reversal action to each magnet unit in association with each magnet unit, and a mover arranged to be movable along the direction in which the magnet units are arranged,
  • the magnetization adjustment unit By the magnetization adjustment unit, the magnetization direction of each of the plurality of magnet units is alternately reversed, and a moving magnetic field is generated along the arrangement direction of the magnet units due to a shift in the magnetization direction reversal time in each magnet unit.
  • Magnetization control means for controlling the magnetization reversal action.
  • Sectional drawing in the axis orthogonal direction of the motor which concerns on one form of this invention.
  • the figure which shows the modification of FIG. The figure which shows the other modification of FIG.
  • FIG. 1 shows an embodiment in which the electric motor according to the present invention is applied to a rotary motion output type electric motor.
  • the motor 1 is configured as a synchronous motor, and includes a stator (stator) 2 and a rotor 3 as a mover disposed coaxially inside the stator 2.
  • the stator 2 includes a stator yoke 4 formed in a cylindrical container shape with a circular or polygonal cross section, and a plurality (six in the illustrated example) provided at regular intervals in the circumferential direction on the inner periphery of the stator yoke 4.
  • the teeth part 5 is provided.
  • the stator yoke 4 is formed of an electromagnetic steel plate.
  • the teeth portion 5 is provided with a magnet portion 6 so as to protrude toward the center of the stator 2.
  • a winding portion 7 is provided as a magnetization adjusting portion that causes an external magnetic field to act on the magnet portion 6 as a magnetization reversal effect on the magnet portion 6.
  • the winding part 7 is formed by winding around the magnet part 6.
  • the winding part 7 is provided so that the magnetic field lines of the external magnetic field acting on the magnet part 6 face the radial direction of the stator 2.
  • the magnet portion 6 is composed of a permanent magnet and is fixed at a fixed position on the inner periphery of the stator yoke 4.
  • a permanent magnet is an object that can maintain a magnetized state in a certain direction even when no magnetic field or current is supplied from the outside.
  • a material to be used for the magnet portion 6 a ferromagnetic material having a coercive force that can function as a permanent magnet, particularly a hard magnetic material, is used. Among them, the coercive force is relatively low and the magnetic flux density is compared.
  • a high material is preferably selected. For example, as shown in FIG.
  • an alnico magnet has a low coercive force and a high magnetic flux density as compared with a neodymium magnet, and therefore can be suitably used as a material for the magnet portion 6.
  • materials other than alnico magnets that is, hard magnetic materials such as neodymium magnets, samarium cobalt magnets, and ferrite magnets is not denied.
  • the GMR element shown in FIG. 2 means a giant magnetoresistive element (Giant Magnet Resistance)
  • the magnet part 6 can also be comprised using this. This point will be described later.
  • the rotor 3 is configured as an embedded magnet type rotor in which a plurality of plate-type permanent magnets 9 are arranged at equal intervals in the circumferential direction on a rotor body 8 formed in a substantially cylindrical shape by an electromagnetic steel plate.
  • the number of permanent magnets 9 is associated with the number of poles of the stator 2.
  • four permanent magnets 9 are provided for the six magnet portions 6. That is, the number of poles of the stator 2 is 6, and the number of poles of the rotor 3 is 4.
  • Each permanent magnet 9 is provided so that the polarization directions of the N pole and the S pole coincide with the radial direction of the rotor 3.
  • the positions of the N pole and the S pole are opposite to each other in the radial direction of the rotor 3. That is, the permanent magnets 9 are arranged so that the polarity of the outer periphery of the rotor 3 is alternately reversed along the circumferential direction.
  • the motor 1 is further provided with a control circuit unit 10 as magnetization control means.
  • the control circuit unit 10 shapes a current from a predetermined power source 11 into a predetermined waveform and supplies the current to each winding unit 7 at a predetermined cycle.
  • the power source 11 is a three-phase AC power source.
  • FIG. 1 shows a state in which the control circuit unit 10 and the winding unit 7 of the pair of adjacent teeth units 5 are connected, but each winding unit 7 is connected to the control circuit unit 10. ing.
  • FIG. 3 shows an example of the relationship between the waveform of the current supplied from the control circuit unit 10 to one winding unit 7 and the magnetic flux density of the magnet unit 6 corresponding to the winding unit 7.
  • the control circuit unit 10 shapes the current from the power supply 11 into a pulse shape and supplies the current to the winding unit 7 at a predetermined cycle.
  • the magnitude of the pulse current (peak current value) is set within a range that can overcome the coercive force of the magnet portion 6 and make the magnetization direction of the magnet portion 6 coincide with the direction of the external magnetic field created by the winding portion 7. Is done.
  • the direction of the pulse current supplied to the winding section 7 is set to be alternately reversed every cycle. Accordingly, the polarity of the magnet portion 6 on the side facing the rotor 3 is periodically reversed between the N pole and the S pole.
  • FIG. 4 shows an example of the relationship between the external magnetic field that the winding portion 7 acts on the magnet portion 6 and the magnetic flux density of the magnet portion 6.
  • the control circuit unit 10 controls the current of each winding unit 7 according to the same driving method as the 120-degree energization method used for the brushless DC motor. As shown in FIG. 3, the pulse current is energized at 120 ° intervals, and the current value is set to 0 during the energization timing. Moreover, the energization timing to each winding part 7 is shifted by 60 degrees in the circumferential direction. As a result, six drive patterns (energization patterns) are generated for all the winding portions 7.
  • FIG. 3 the pulse current is energized at 120 ° intervals, and the current value is set to 0 during the energization timing. Moreover, the energization timing to each winding part 7 is shifted by 60 degrees in the circumferential direction. As a result, six drive patterns (energization patterns) are generated for all the winding portions 7.
  • FIG. 5 shows the relationship between the magnetization directions of the three magnet portions 6 of the stator 2 and the magnetic poles corresponding to the half circumference of the rotor 3 when the energization to each winding portion 7 is controlled according to the 120-degree energization method.
  • the magnetization direction of each magnet part 6 is sequentially reversed at intervals of 120 degrees to generate a rotating magnetic field around the rotor 3, thereby making the rotor 3 constant. Can be rotated in the direction.
  • FIG. 6 shows the torque generated in the rotor 3 when the energization of the winding part 7 is controlled by the method described above.
  • the torque changes in a pulse shape with the reversal of the magnetization direction of the magnet unit 6, it is possible to output an average torque and to drive the motor 1 as an output source of the rotational motion.
  • the hysteresis of the magnetization curve shown in FIG. 4 changes according to the peak value of the pulse current. Therefore, the torque generated by the motor 1 can be changed by changing the magnitude of the pulse current.
  • FIG. 7 shows a comparison of waveforms of phase currents supplied to one winding part 7 of the motor 1 and one winding part of the conventional motor.
  • the motor 1 of this embodiment it is only necessary to periodically apply a pulse current to the winding portion 7, whereas in a conventional motor, it is necessary to continuously energize a sinusoidal current. Therefore, according to the motor 1 of the present embodiment, the integrated amount of current can be reduced as compared with the conventional motor. Therefore, the motor 1 of this embodiment is advantageous in reducing copper loss as compared with a conventional motor.
  • An example of the copper loss calculation result is shown in FIG. According to this, in comparison with a conventional motor, the copper loss can be reduced to about 1/10 in the motor 1 of the present embodiment.
  • the present invention is not limited to the above-described form, and various changes or modifications are possible.
  • the number of poles of the stator 2 and the rotor 3 can be changed as appropriate.
  • the rotor is configured as an embedded magnet type rotor in which permanent magnets 9 are embedded, but the rotor may be configured as a surface magnet type rotor in which permanent magnets are arranged on the outer peripheral surface thereof.
  • the rotor is not limited to the one provided with a permanent magnet, and may be configured to be formed of a ferromagnetic material such as iron without using a permanent magnet and to have a plurality of salient pole portions on the outer periphery.
  • FIG. 9 shows an embodiment in which the present invention is applied to an SRM type motor.
  • the same reference numerals are assigned to the parts common to FIG.
  • the control circuit unit as the magnetization control means is not shown.
  • the stator 2A has the same configuration as the stator 2 except that the number of the tooth portions 5 is changed to 12 compared to the stator 2 of FIG.
  • the permanent magnet 9 is omitted as compared with the rotor 3 of FIG. 1, and the entire rotor 20 is formed of a ferromagnetic material.
  • the rotor 20 is made of iron, which is a typical soft magnetic material that has a small coercive force and cannot function as a permanent magnet.
  • a plurality of salient pole portions 21 are formed at regular intervals in the circumferential direction. The number of salient pole portions 21 is set to 8 corresponding to 2/3 of the number of poles of the stator 2A.
  • a rotating magnetic field is generated around the rotor 20 by periodically supplying a pulse current to each winding part 7 of the stator 2A and sequentially reversing the magnetization direction of the magnet part 6.
  • Torque can be generated in the rotor 20.
  • the number of salient pole portions 21 of the rotor 20 is not limited to the illustrated form, and may be appropriately changed according to the number of poles of the stator 2A. According to the example of FIG. 9, since it is not necessary to provide a magnet in the rotor 20, the configuration of the rotor 20 can be simplified, thereby providing the motor 1A having a simple structure.
  • the magnet portion 6 of the tooth portion 5 is formed of a permanent magnet, but a magnetization reversal device such as a GMR element can be used instead.
  • a GMR element 30 which is an example of a magnetization reversal device, is disposed in place of the permanent magnets of the teeth portions 5.
  • the GMR element 30 has a structure in which a magnetization fixed layer 31 and a magnetization variable layer 32 made of a ferromagnetic material are laminated with an intermediate layer 33 interposed therebetween.
  • the magnetization fixed layer 31 and the magnetization variable layer 32 are formed as perpendicular magnetization type magnetization layers whose magnetization directions coincide with the stacking direction (vertical direction in the figure).
  • the GMR element 30 includes a stator so that the direction in which the stator 2 and the rotor 3 face each other matches the magnetization direction of the GMR element 30, and the magnetization variable layer 32 faces the rotor 3. 2 is arranged on the inner circumference.
  • the magnetization direction of the magnetization fixed layer 31 is constant, and is set so as to face the rotor 3 side (radial direction center side), for example, as shown by a white arrow in FIG.
  • the magnetization direction of the magnetization variable layer 32 corresponds to the magnetization direction of the magnetization fixed layer 31 (the direction indicated by the solid white arrow) according to the direction of the external magnetic field created by the winding portion 7 and the magnetization fixed layer. It changes between the direction opposite to the magnetization direction of 31 (the direction indicated by the dashed white arrow).
  • the magnetization variable layer 32 may be referred to as a free layer.
  • the intermediate layer 33 is made of a nonmagnetic material metal. As an example, copper (Cu), platinum (Pt), or gold (Au) is used as the material of the intermediate layer 33.
  • the magnetization variable layer 32 of the GMR element 30 can function as a magnet having a considerably high magnetic flux density by the action of a slight external magnetic field. Moreover, the magnetization variable layer 32 has a coercive force that functions as a permanent magnet that is magnetized in a certain direction even when there is no external magnetic field. Therefore, the GMR element 30 can be used as a magnet portion having a low coercive force and a high magnetic flux density. In addition, what is necessary is just to control the electric current supplied to the coil
  • the magnetization direction of the magnetization variable layer 32 of the GMR element 30 is reversed by an external magnetic field created by the winding portion 7.
  • the magnetization reversal action is not limited to the example using an external magnetic field, for example, external A magnetization reversal action can also be given using an electric current.
  • the electrode 34 is disposed outside the magnetization fixed layer 31 and the magnetization variable layer 32 of the GMR element 30.
  • the magnetization direction of the magnetization variable layer 32 coincides with that of the magnetization fixed layer 31, and when a current in the direction of the arrow C2 is passed between the electrodes 34, the magnetization of the magnetization variable layer 32 is obtained.
  • the direction is reversed in the opposite direction to that of the magnetization fixed layer 31.
  • the pulse current for magnetization reversal may be energized between the electrodes 34 while alternately reversing the direction at a constant period.
  • the control circuit unit 10 in FIG. 1 can be used as the magnetization control means.
  • the electrode 34 functions as a magnetization adjusting unit.
  • the single magnet portion 6 can be composed of one or a plurality of GMR elements 30.
  • the GMR elements 30 it is not necessary to provide a winding portion around the GMR element 30, so that it is easy to configure a single magnet unit 6 by combining a number of GMR elements 30.
  • the magnetic field produced by the magnet part 6 can be appropriately changed.
  • FIGS. In each figure, similarly to FIGS. 10 and 11, the magnet unit 6 is depicted as a rotor positioned above the magnet unit 6.
  • the arrow in the GMR element 30 indicates the magnetization direction
  • the length of the arrow indicates the strength of the magnetic field (magnetic flux density)
  • the waveform above the GMR element 30 indicates the magnetic flux density distribution of the magnetic field.
  • the magnetization direction of the GMR element 30 changes between the center side and the outer peripheral side of the magnet unit 6. That is, the GMR element 30 on the center side is arranged so that the magnetization direction is parallel to the radial direction of the rotor, and the GMR element 30 on the outer peripheral side is magnetized at one end facing the rotor more than the end on the opposite side. It is arranged to be inclined with respect to the radial direction of the rotor so as to be shifted toward the center side of the portion 6. According to this, the magnetic field of the GMR element 30 can be concentrated on the center side of the magnet portion 6, thereby strengthening the magnetic field of the stator and increasing the motor torque.
  • the GMR element 30 on the center side is arranged in the same manner as in the example of FIG. 12, while the outer GMR element 30 is opposite to the end of the rotor opposite to the example of FIG. It is arranged to be inclined with respect to the radial direction of the rotor so as to be shifted to the outer peripheral side of the magnet portion 6 from the end portion on the side. According to this, the magnetic field of each GMR element 30 can be dispersed, thereby increasing the harmonic magnetic field of the stator and increasing the torque of the motor.
  • the GMR element 30 on the center side is arranged so that the magnetization direction faces a direction parallel to the radial direction of the rotor, and the GMR element 30 on the outer peripheral side faces the rotor.
  • the one end that is tilted with respect to the radial direction of the rotor is arranged so as to be shifted toward the center of the magnet portion 6 with respect to the opposite end.
  • the inclination of the GMR element 30 on the outer peripheral side is constant, whereas in the example of FIG. 14, the GMR element 30 close to the outer periphery of the magnet unit 6 is the inner GMR element.
  • the inclination of the GMR element 30 is differentiated so that it is more inclined than the rotor 30 in the radial direction of the rotor. Thereby, a magnetic field having a sinusoidal intensity distribution is generated. In this case, the torque ripple of the motor can be reduced.
  • each GMR element 30 is aligned in a direction parallel to the radial direction of the rotor, and the strength of the magnetic field of each GMR element 30 is decreased from the center side of the magnet portion 6 toward the outside.
  • the magnitude of the pulse current applied to each GMR element 30 in order to reverse the magnetization direction may be controlled so as to decrease from the center side of the magnet unit 6 toward the outside.
  • a magnetic field having a sinusoidal intensity distribution can be generated as in the example of FIG.
  • the magnet unit 6 is adjusted by adjusting the arrangement of the GMR elements 30 and the magnetic field of each GMR element 30. It is possible to appropriately change the magnetic field.
  • 12 to 15 show a state in which a plurality of GMR elements 30 are arranged in one direction.
  • the GMR elements 30 may be arranged in a matrix shape, a honeycomb shape, or the like. It may be arranged in a dimensional direction.
  • the inner rotor type electric motor in which the rotor is arranged inside the stator is taken as an example, but the present invention is also applicable to an outer rotor type electric motor in which the rotor is arranged outside the stator.
  • the present invention is not limited to an electric motor that outputs a rotational motion, and can also be applied to an electric motor such as a linear motor that outputs a motion along a non-arc-shaped locus by opening the stator and the rotor. .
  • the electric motor (1; 1A; 1B; 1C) has a plurality of magnet portions (having a coercive force functioning as a permanent magnet and capable of reversing the magnetization direction by a predetermined magnetization reversal action) 6; 30) are arranged side by side in a predetermined direction, and further, a stator (2; 2A) in which a magnetism adjusting section (7; 34) that imparts the magnetization reversal action to each magnet section is provided in association with each magnet section.
  • the mover (3; 20) arranged to be movable along the direction in which the magnet parts are arranged, and the magnetization directions of the plurality of magnet parts are alternately reversed, and the magnetization directions of the magnet parts are Magnetization control means (10) for controlling the magnetization reversal action by the magnetization adjusting section so as to generate a moving magnetic field along the arrangement direction of the magnet sections due to the reversal timing shift.
  • the magnetization adjustment portion causes a magnetization reversal action to magnetize the magnet portion in a specific direction, and then reaches a time to reverse the magnetization direction. In the meantime, it is not necessary to supply a current or the like to the magnetization adjusting unit in order to maintain the magnetic field of the magnet unit. Therefore, it is possible to reduce energy loss due to copper loss or the like.
  • the magnet part is formed of a ferromagnetic material that can be a permanent magnet, and the winding for causing an external magnetic field to act on the magnet part as the magnetization reversal action by supplying current as the magnetization adjusting part.
  • Part (7) is provided, and the magnetization control means is configured so that the magnetization directions of the plurality of magnet parts are alternately reversed, and the moving magnetic field is generated due to a shift in the magnetization direction reversal timing of the magnet parts.
  • the current to be supplied to the winding part may be controlled.
  • the magnet part can be magnetized in a specific direction by an external magnetic field generated by supplying a current to the winding part, and the magnetization direction can be reversed by switching the direction of the current.
  • the magnet portion can function as a permanent magnet even if the supply of current to the winding portion is stopped.
  • the magnet portion may be formed of a hard magnetic material.
  • the magnet part formed of a hard magnetic material can reverse the magnetization direction by applying an external magnetic field that exceeds the coercive force, and remains magnetized in a certain direction even after the external magnetic field is lost. It can be maintained and function reliably as a permanent magnet.
  • hard magnetic materials such as alnico magnets and samarium cobalt magnets that have a relatively low coercive force and a relatively high magnetic flux density after the loss of an external magnetic field are used as materials for the magnet portion of the present invention. It can be suitably used.
  • the magnetization control means may reverse the magnetization direction of the magnet unit by supplying a pulsed current to the winding unit. According to this, it is not necessary to supply a pulse current to the winding part at a time when the magnetization should be reversed and to supply a current to the winding part in other periods. Therefore, the effect of reducing energy loss due to copper loss or the like can be enhanced.
  • the magnet portion has a magnetization direction in a direction coinciding with a direction in which the mover and the stator face each other, and depends on the direction of the supplied external magnetic field or external current.
  • At least one magnetization reversal device (30) having a magnetization variable layer (32) whose magnetization direction is reversed is provided so that the magnetization variable layer faces the mover, and the magnetization adjusting unit (7; 34) may supply the external electric field or the external current to the magnetization switching device as the magnetization switching action.
  • a magnetization reversal device such as a GMR element can easily reverse the magnetization direction of the magnetization reversal layer with low energy by applying an external magnetic field or external current, and even after the external electric field or external current is lost.
  • a magnetization reversal device can be suitably used as a means for realizing the magnet unit of the present invention.
  • a magnetization reversal device of the type that reverses magnetization with an external current is advantageous in reducing the size of an electric motor because it is not necessary to provide a means for generating an external magnetic field such as a winding part separately from a magnet part. .
  • a single magnet unit may be configured by combining a plurality of magnetization reversal devices. According to this, it is possible to appropriately change the magnetic field generated in the magnet unit by appropriately adjusting the arrangement of the magnetization switching devices and the magnetic field of each magnetization switching device.
  • the mover (20) is formed of a ferromagnetic material without using a permanent magnet, and has a plurality of salient pole portions (21) along the arrangement direction of the magnet portions. It may be. According to this, the movement along the moving magnetic field can be given to the mover by attracting the salient pole part of the mover by the moving magnetic field generated by the plurality of magnet parts. Since it is not necessary to dispose a permanent magnet on the mover side, an electric motor having a simple structure can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A motor (1) is provided with: a stator (2) in which a plurality of magnet parts (6), which have a coercive force functioning as a permanent magnet and in which the magnetization direction can be reversed by a predetermined magnetization reversal action, are provided so as to be lined up in a predetermined direction, and in which magnetization adjustment parts (7) for applying the magnetization reversal action to each of the magnet parts (6) are provided in correspondence with each of the magnet parts (6); a movable element (3) disposed so as to be capable of moving along the direction in which the magnet parts (6) are lined up; and a magnetization control means (10) for controlling the magnetization reversal action produced by the magnetization adjustment parts (7) so that the magnetization directions of the plurality of magnet parts (6) are alternatingly reversed and a moving magnetic field along the direction in which the magnet parts (6) are lined up is generated by a deviation in the timing of magnetization direction reversal between each of the magnet parts (6).

Description

電動機Electric motor
 本発明は、固定子の磁石部の磁化方向を順次反転させて移動磁界を発生させる電動機に関する。 The present invention relates to an electric motor that generates a moving magnetic field by sequentially reversing the magnetization direction of a magnet portion of a stator.
 従来の電動機では、固定子の内周に設けられた複数のティース部のそれぞれに巻線が施され、各巻線に対して三相交流電流が通電されることにより固定子の周方向に沿った回転磁界を発生させている。回転子には周方向にN極とS極とが交互に現れるようにして永久磁石が設けられ、それにより、回転子は固定子の回転磁界に同期して回転する(例えば特許文献1参照)。 In a conventional electric motor, windings are applied to each of a plurality of teeth portions provided on the inner periphery of the stator, and a three-phase alternating current is applied to each winding, thereby extending along the circumferential direction of the stator. A rotating magnetic field is generated. The rotor is provided with permanent magnets so that N and S poles appear alternately in the circumferential direction, whereby the rotor rotates in synchronization with the rotating magnetic field of the stator (see, for example, Patent Document 1). .
特開2015-096022号公報Japanese Patent Laying-Open No. 2015-096022
 従来の電動機では、三相交流電流を巻線に通電することにより発生する銅損と、ティース部に交番磁界が発生することに伴う鉄損の2種類の損失が生じる。銅損は電流の2乗に比例するため、高トルクを発生させる場合に支配的である。一方、鉄損は交番磁界の磁束密度の2乗と回転速度の2乗とに比例するため、高速回転が必要な場合に支配的である。鉄損の低減方法としては、磁束密度の正弦波化、電磁鋼板の薄板化といった手法が提案されている。これに対して、銅損の低減については、巻線を太くし、あるいは巻線の断面形状を長方形に設定して巻線用のスペースに占める巻線の体積比率を向上させるといった手法により、巻線の抵抗値を下げる以外に有効な低減方法がない。しかしながら、巻線用スペースが限られている状況では抵抗値の低減にも限界がある。そのため、巻線に通電できる電流が制限されて電動機の発生トルクに限界が生じ、あるいは、銅損が熱エネルギーとして放出されて電動機の温度が上昇するといった不都合が生じる。温度上昇は磁石の減磁や冷却装置の大型化といった問題をもたらすおそれがある。 In conventional motors, there are two types of losses: copper loss that occurs when a three-phase alternating current is passed through the windings and iron loss that occurs when an alternating magnetic field is generated in the teeth. Since copper loss is proportional to the square of the current, it is dominant when high torque is generated. On the other hand, since the iron loss is proportional to the square of the magnetic flux density of the alternating magnetic field and the square of the rotational speed, it is dominant when high speed rotation is required. As a method for reducing the iron loss, methods such as sine wave of magnetic flux density and thinning of an electromagnetic steel sheet have been proposed. In contrast, copper loss can be reduced by increasing the volume ratio of the winding in the winding space by making the winding thicker or setting the winding cross-sectional shape to a rectangle. There is no effective reduction method other than lowering the resistance of the wire. However, in a situation where the space for winding is limited, there is a limit in reducing the resistance value. As a result, the current that can be passed through the winding is limited and the torque generated by the motor is limited, or the copper loss is released as thermal energy and the temperature of the motor rises. A rise in temperature may cause problems such as demagnetization of the magnet and an increase in the size of the cooling device.
 そこで、本発明は銅損等に起因するエネルギー損失の低減を図ることが可能な電動機を提供することを目的とする。 Therefore, an object of the present invention is to provide an electric motor capable of reducing energy loss due to copper loss or the like.
 本発明の一態様に係る電動機は、永久磁石として機能する保磁力を有しかつ所定の磁化反転作用により磁化方向を反転させることが可能な複数の磁石部が所定方向に並べて設けられ、さらに、各磁石部に前記磁化反転作用を与える磁化調整部が各磁石部に対応付けて設けられた固定子と、前記磁石部の並び方向に沿って移動可能に配置される可動子と、
 前記複数の磁石部のそれぞれの磁化方向が交互に反転し、かつ各磁石部における磁化方向の反転時期のずれにより前記磁石部の並び方向に沿った移動磁界が生じるように、前記磁化調整部による前記磁化反転作用を制御する磁化制御手段と、を備えたものである。
The electric motor according to one aspect of the present invention is provided with a plurality of magnet portions arranged in a predetermined direction, having a coercive force functioning as a permanent magnet and capable of reversing the magnetization direction by a predetermined magnetization reversal action, A stator provided with a magnetism adjustment unit that gives the magnetization reversal action to each magnet unit in association with each magnet unit, and a mover arranged to be movable along the direction in which the magnet units are arranged,
By the magnetization adjustment unit, the magnetization direction of each of the plurality of magnet units is alternately reversed, and a moving magnetic field is generated along the arrangement direction of the magnet units due to a shift in the magnetization direction reversal time in each magnet unit. Magnetization control means for controlling the magnetization reversal action.
本発明の一形態に係るモータの軸直角方向における断面図。Sectional drawing in the axis orthogonal direction of the motor which concerns on one form of this invention. 代表的な硬質磁性材料の保磁力と磁束密度との関係を示す図。The figure which shows the relationship between the coercive force and magnetic flux density of typical hard magnetic material. 巻線部に供給される電流の波形とその巻線部に対応する磁石部の磁束密度との関係の一例を示す図。The figure which shows an example of the relationship between the waveform of the electric current supplied to a coil | winding part, and the magnetic flux density of the magnet part corresponding to the coil | winding part. 巻線部による外部磁界と磁石部の磁束密度との関係の一例を示す図。The figure which shows an example of the relationship between the external magnetic field by a coil | winding part, and the magnetic flux density of a magnet part. 図1のモータにて各巻線部への通電を120度通電方式に従って制御した場合のステータの三つの磁石部の磁化方向とロータの半周相当の磁極との関係を示す図。The figure which shows the relationship between the magnetization direction of the three magnet parts of a stator, and the magnetic pole equivalent to a half circumference of a rotor at the time of energizing to each coil | winding part with the motor of FIG. 図5に従って通電を制御した場合の発生トルクとその平均トルクとを示す図。The figure which shows the generated torque at the time of controlling electricity supply according to FIG. 5, and its average torque. モータの電気角と巻線部に供給される相電流との関係を本形態のモータと従来型モータとで比較して示す図。The figure which shows the relationship between the electrical angle of a motor, and the phase current supplied to a coil | winding part by comparing with the motor of this form, and the conventional motor. 図7の相電流の変化に基づく銅損の計算結果を示す図。The figure which shows the calculation result of the copper loss based on the change of the phase current of FIG. 突極部を有するロータを採用した変形例に係るモータの軸直角方向における断面図。Sectional drawing in the axis orthogonal direction of the motor which concerns on the modification which employ | adopted the rotor which has a salient pole part. GMR素子を磁石部に用いた変形例に係るモータの軸直角方向における断面図。Sectional drawing in the axis orthogonal direction of the motor which concerns on the modification which used the GMR element for the magnet part. GMR素子を磁石部に用いた他の変形例に係るモータの軸直角方向における断面図。Sectional drawing in the axis orthogonal direction of the motor which concerns on the other modification which used the GMR element for the magnet part. 複数のGMR素子を組み合わせて単一の磁石部を構成する一形態を示す図。The figure which shows one form which comprises a single magnet part combining several GMR element. 図12の変形例を示す図。The figure which shows the modification of FIG. 図12の他の変形例を示す図。The figure which shows the other modification of FIG. 図12のさらなる変形例を示す図。The figure which shows the further modification of FIG.
 図1は本発明に係る電動機を、回転運動出力型の電動モータに適用した一形態を示している。モータ1は同期電動機として構成され、ステータ(固定子)2と、そのステータ2の内側に同軸的に配置される可動子としてのロータ3とを備えている。ステータ2は、断面円形又は多角形の筒型容器状に形成されたステータヨーク4と、そのステータヨーク4の内周に周方向へ一定間隔を空けて設けられた複数(図示例では6個)のティース部5とを備えている。ステータヨーク4は電磁鋼板にて形成されている。ティース部5には、ステータ2の中心に向かって突出するようにして磁石部6が設けられている。各磁石部6の外周には、磁石部6に対する磁化反転作用として外部磁界を磁石部6に作用させる巻線部7が磁化調整部として設けられている。巻線部7は、磁石部6の周囲に巻線を施して形成されている。巻線部7は磁石部6に作用する外部磁界の磁力線がステータ2の半径方向を向くように設けられている。 FIG. 1 shows an embodiment in which the electric motor according to the present invention is applied to a rotary motion output type electric motor. The motor 1 is configured as a synchronous motor, and includes a stator (stator) 2 and a rotor 3 as a mover disposed coaxially inside the stator 2. The stator 2 includes a stator yoke 4 formed in a cylindrical container shape with a circular or polygonal cross section, and a plurality (six in the illustrated example) provided at regular intervals in the circumferential direction on the inner periphery of the stator yoke 4. The teeth part 5 is provided. The stator yoke 4 is formed of an electromagnetic steel plate. The teeth portion 5 is provided with a magnet portion 6 so as to protrude toward the center of the stator 2. On the outer periphery of each magnet portion 6, a winding portion 7 is provided as a magnetization adjusting portion that causes an external magnetic field to act on the magnet portion 6 as a magnetization reversal effect on the magnet portion 6. The winding part 7 is formed by winding around the magnet part 6. The winding part 7 is provided so that the magnetic field lines of the external magnetic field acting on the magnet part 6 face the radial direction of the stator 2.
 磁石部6は永久磁石にて構成されてステータヨーク4の内周の定位置に固定されている。永久磁石とは、外部から磁界や電流が供給されなくとも、一定方向に磁化された状態を保つことができる物体である。磁石部6に用いられるべき材料としては、永久磁石として機能し得る保磁力を有する強磁性材料、特には硬質磁性材料が用いられるが、その中でも、保磁力が比較的低く、かつ磁束密度が比較的高い材料が好適に選択される。例えば、図2に示すように、アルニコ磁石はネオジウム磁石と比較して低保磁力で高磁束密度の特徴を有するため、磁石部6の材料として好適に用いることができる。ただし、本発明において、アルニコ磁石以外の材料、すなわちネオジウム磁石、サマリウムコバルト磁石、フェライト磁石といった硬質磁性材料の使用が否定されるものではない。なお、図2に示したGMR素子は、巨大磁気抵抗素子(Giant Magnet Resistance)を意味するが、これを用いて磁石部6を構成することもできる。この点は後述する。 The magnet portion 6 is composed of a permanent magnet and is fixed at a fixed position on the inner periphery of the stator yoke 4. A permanent magnet is an object that can maintain a magnetized state in a certain direction even when no magnetic field or current is supplied from the outside. As a material to be used for the magnet portion 6, a ferromagnetic material having a coercive force that can function as a permanent magnet, particularly a hard magnetic material, is used. Among them, the coercive force is relatively low and the magnetic flux density is compared. A high material is preferably selected. For example, as shown in FIG. 2, an alnico magnet has a low coercive force and a high magnetic flux density as compared with a neodymium magnet, and therefore can be suitably used as a material for the magnet portion 6. However, in the present invention, the use of materials other than alnico magnets, that is, hard magnetic materials such as neodymium magnets, samarium cobalt magnets, and ferrite magnets is not denied. In addition, although the GMR element shown in FIG. 2 means a giant magnetoresistive element (Giant Magnet Resistance), the magnet part 6 can also be comprised using this. This point will be described later.
 図1に戻って、ロータ3は、電磁鋼板により概略円柱状に形成されたロータ本体8に、複数の平板型の永久磁石9を周方向に等間隔に配置した埋込磁石型のロータとして構成されている。永久磁石9の個数はステータ2の極数と関連付けられている。図示例では、6個の磁石部6に対して4個の永久磁石9が設けられている。つまり、ステータ2の極数は6極で、ロータ3の極数は4極である。各永久磁石9は、N極とS極の分極方向がロータ3の半径方向と一致するように設けられている。しかも、周方向に隣接する一対の永久磁石9間では、N極とS極との位置がロータ3の半径方向に関して逆向きである。つまり、ロータ3の外周の極性が周方向に沿って交互に反転するように永久磁石9が配置されている。 Returning to FIG. 1, the rotor 3 is configured as an embedded magnet type rotor in which a plurality of plate-type permanent magnets 9 are arranged at equal intervals in the circumferential direction on a rotor body 8 formed in a substantially cylindrical shape by an electromagnetic steel plate. Has been. The number of permanent magnets 9 is associated with the number of poles of the stator 2. In the illustrated example, four permanent magnets 9 are provided for the six magnet portions 6. That is, the number of poles of the stator 2 is 6, and the number of poles of the rotor 3 is 4. Each permanent magnet 9 is provided so that the polarization directions of the N pole and the S pole coincide with the radial direction of the rotor 3. In addition, between the pair of permanent magnets 9 adjacent in the circumferential direction, the positions of the N pole and the S pole are opposite to each other in the radial direction of the rotor 3. That is, the permanent magnets 9 are arranged so that the polarity of the outer periphery of the rotor 3 is alternately reversed along the circumferential direction.
 モータ1には、磁化制御手段として、制御回路部10がさらに設けられている。制御回路部10は、所定の電源11からの電流を所定の波形に整形して所定の周期で各巻線部7に供給する。電源11は三相交流電源である。なお、図1では、制御回路部10と、隣接する一対のティース部5における巻線部7とが接続された状態を示しているが、各巻線部7はいずれも制御回路部10と接続されている。 The motor 1 is further provided with a control circuit unit 10 as magnetization control means. The control circuit unit 10 shapes a current from a predetermined power source 11 into a predetermined waveform and supplies the current to each winding unit 7 at a predetermined cycle. The power source 11 is a three-phase AC power source. FIG. 1 shows a state in which the control circuit unit 10 and the winding unit 7 of the pair of adjacent teeth units 5 are connected, but each winding unit 7 is connected to the control circuit unit 10. ing.
 図3は、制御回路部10から一つの巻線部7に供給される電流の波形とその巻線部7に対応する磁石部6の磁束密度との関係の一例を示している。制御回路部10は、電源11からの電流をパルス状に整形して巻線部7に所定の周期で供給する。パルス電流の大きさ(ピーク時の電流値)は、磁石部6の保磁力に打ち勝って磁石部6の磁化方向を巻線部7が作り出す外部磁界の方向に一致させることが可能な範囲に設定される。しかも、巻線部7に通電されるパルス電流の方向は一周期毎に交互に逆向きとなるように設定される。したがって、磁石部6のロータ3と対向する側の極性はN極とS極との間で周期的に反転する。 FIG. 3 shows an example of the relationship between the waveform of the current supplied from the control circuit unit 10 to one winding unit 7 and the magnetic flux density of the magnet unit 6 corresponding to the winding unit 7. The control circuit unit 10 shapes the current from the power supply 11 into a pulse shape and supplies the current to the winding unit 7 at a predetermined cycle. The magnitude of the pulse current (peak current value) is set within a range that can overcome the coercive force of the magnet portion 6 and make the magnetization direction of the magnet portion 6 coincide with the direction of the external magnetic field created by the winding portion 7. Is done. In addition, the direction of the pulse current supplied to the winding section 7 is set to be alternately reversed every cycle. Accordingly, the polarity of the magnet portion 6 on the side facing the rotor 3 is periodically reversed between the N pole and the S pole.
 図4は、巻線部7が磁石部6に作用させる外部磁界と磁石部6の磁束密度との関係の一例を示している。巻線部7に正のパルス電流が供給されると磁石部6は初期磁化曲線に従って+方向に磁化される。パルス電流がなくなると外部磁界が消滅し、それに伴って磁石部6の動作点は負の保磁力方向に移動し、A1点で動作する。したがって、図3に示したように、パルス電流の消滅後も磁石部6には正方向の磁力が残る。次に、巻線部7に対して負のパルス電流が供給されると、磁石部6の動作点はA1から負の磁束密度方向に移動して飽和する。パルス電流がなくなると磁石部6の動作点は正の保磁力方向に移動し、A2点で動作する。したがって、図3に示したように、パルス電流の消滅後も磁石部6には負方向の磁力が残る。 FIG. 4 shows an example of the relationship between the external magnetic field that the winding portion 7 acts on the magnet portion 6 and the magnetic flux density of the magnet portion 6. When a positive pulse current is supplied to the winding part 7, the magnet part 6 is magnetized in the + direction according to the initial magnetization curve. When the pulse current disappears, the external magnetic field disappears, and accordingly the operating point of the magnet unit 6 moves in the negative coercive force direction and operates at the point A1. Therefore, as shown in FIG. 3, the magnetic force in the positive direction remains in the magnet portion 6 even after the pulse current disappears. Next, when a negative pulse current is supplied to the winding part 7, the operating point of the magnet part 6 moves from A1 in the negative magnetic flux density direction and becomes saturated. When the pulse current disappears, the operating point of the magnet unit 6 moves in the positive coercive force direction and operates at point A2. Therefore, as shown in FIG. 3, a negative magnetic force remains in the magnet portion 6 even after the pulse current disappears.
 制御回路部10は、ブラシレスDCモータに用いられる120度通電方式と同一の駆動方式に従って各巻線部7の電流を制御する。図3に示したように、パルス電流は120°間隔で通電され、それらの通電時期の間は電流値が0に設定される。また、各巻線部7への通電時期は周方向に60度ずらされる。それにより、全ての巻線部7に対しては6通りの駆動パターン(通電パターン)が生じることになる。図5は、120度通電方式に従って各巻線部7への通電を制御した場合のステータ2の三つの磁石部6の磁化方向とロータ3の半周相当の磁極との関係を示している。120度通電方式に従って巻線部7の電流を制御することにより、各磁石部6の磁化方向を120度間隔で順次反転させてロータ3の周囲に回転磁界を生じさせ、それによりロータ3を一定方向に回転させることができる。 The control circuit unit 10 controls the current of each winding unit 7 according to the same driving method as the 120-degree energization method used for the brushless DC motor. As shown in FIG. 3, the pulse current is energized at 120 ° intervals, and the current value is set to 0 during the energization timing. Moreover, the energization timing to each winding part 7 is shifted by 60 degrees in the circumferential direction. As a result, six drive patterns (energization patterns) are generated for all the winding portions 7. FIG. 5 shows the relationship between the magnetization directions of the three magnet portions 6 of the stator 2 and the magnetic poles corresponding to the half circumference of the rotor 3 when the energization to each winding portion 7 is controlled according to the 120-degree energization method. By controlling the current of the winding part 7 according to the 120-degree energization method, the magnetization direction of each magnet part 6 is sequentially reversed at intervals of 120 degrees to generate a rotating magnetic field around the rotor 3, thereby making the rotor 3 constant. Can be rotated in the direction.
 図6は、上述した方法で巻線部7の通電を制御した場合にロータ3にて発生するトルクを示している。磁石部6の磁化方向の反転に伴ってトルクはパルス状に変化するが、平均トルクを出力することができ、モータ1を回転運動の出力源として駆動することが可能である。なお、図4に示す磁化曲線のヒステリシスは、パルス電流のピーク値に応じて変化する。したがって、パルス電流の大きさを変えることにより、モータ1が発生するトルクを変化させることができる。 FIG. 6 shows the torque generated in the rotor 3 when the energization of the winding part 7 is controlled by the method described above. Although the torque changes in a pulse shape with the reversal of the magnetization direction of the magnet unit 6, it is possible to output an average torque and to drive the motor 1 as an output source of the rotational motion. Note that the hysteresis of the magnetization curve shown in FIG. 4 changes according to the peak value of the pulse current. Therefore, the torque generated by the motor 1 can be changed by changing the magnitude of the pulse current.
 図7は、モータ1の一つの巻線部7と、従来型のモータの一つの巻線部のそれぞれに供給される相電流の波形の比較を示す。本形態のモータ1では、巻線部7に対して周期的にパルス電流を与えるだけで足りるのに対して、従来型のモータでは正弦波状の電流を絶えず通電する必要がある。したがって、本形態のモータ1によれば、従来型のモータよりも電流の積算量を低減することができる。そのため、本形態のモータ1は、従来型のモータに比して銅損の低減に有利である。銅損の計算結果の一例を図8に示す。これによれば、従来型のモータとの比較において、本形態のモータ1では銅損を1/10程度に低減することが可能である。 FIG. 7 shows a comparison of waveforms of phase currents supplied to one winding part 7 of the motor 1 and one winding part of the conventional motor. In the motor 1 of this embodiment, it is only necessary to periodically apply a pulse current to the winding portion 7, whereas in a conventional motor, it is necessary to continuously energize a sinusoidal current. Therefore, according to the motor 1 of the present embodiment, the integrated amount of current can be reduced as compared with the conventional motor. Therefore, the motor 1 of this embodiment is advantageous in reducing copper loss as compared with a conventional motor. An example of the copper loss calculation result is shown in FIG. According to this, in comparison with a conventional motor, the copper loss can be reduced to about 1/10 in the motor 1 of the present embodiment.
 本発明は上述した形態に限定されず、各種の変更又は変形が可能である。例えば、ステータ2及びロータ3のそれぞれの極数は適宜に変更が可能である。上記の形態では、ロータを永久磁石9が内部に埋め込まれた埋込磁石型ロータとして構成されているが、ロータはその外周面上に永久磁石が配置された表面磁石型ロータとして構成されてもよい。また、ロータは永久磁石を備えたものに限定されず、永久磁石を用いることなく鉄等の強磁性材料にて形成され、かつ外周に複数の突極部を有するように構成されてもよい。そのようなロータを有するモータは、SRM(Switched Reluctance Motor)タイプと呼ばれるが、本発明をSRMタイプのモータに適用した一形態を図9に示す。なお、図9において、図1と共通する部分には同一の参照符号を付してある。また、図9において、磁化制御手段としての制御回路部の図示は省略した。 The present invention is not limited to the above-described form, and various changes or modifications are possible. For example, the number of poles of the stator 2 and the rotor 3 can be changed as appropriate. In the above embodiment, the rotor is configured as an embedded magnet type rotor in which permanent magnets 9 are embedded, but the rotor may be configured as a surface magnet type rotor in which permanent magnets are arranged on the outer peripheral surface thereof. Good. Further, the rotor is not limited to the one provided with a permanent magnet, and may be configured to be formed of a ferromagnetic material such as iron without using a permanent magnet and to have a plurality of salient pole portions on the outer periphery. A motor having such a rotor is called an SRM (Switched Reluctance Motor) type. FIG. 9 shows an embodiment in which the present invention is applied to an SRM type motor. In FIG. 9, the same reference numerals are assigned to the parts common to FIG. In FIG. 9, the control circuit unit as the magnetization control means is not shown.
 図9に示すモータ1Aにおいて、ステータ2Aは、図1のステータ2と比較して、ティース部5の個数が12個に変更されている点を除いてはステータ2と同様の構成である。一方、ロータ20に関しては、図1のロータ3と比較して永久磁石9が省略され、ロータ20の全体は強磁性材料にて形成されている。特には、保磁力が小さくて永久磁石として機能し得ない軟磁性材料の代表である鉄にてロータ20が構成されている。ロータ20の外周には、複数の突極部21が周方向に一定間隔で形成されている。突極部21の個数は、ステータ2Aの極数の2/3に相当する8個に設定されている。 In the motor 1A shown in FIG. 9, the stator 2A has the same configuration as the stator 2 except that the number of the tooth portions 5 is changed to 12 compared to the stator 2 of FIG. On the other hand, as for the rotor 20, the permanent magnet 9 is omitted as compared with the rotor 3 of FIG. 1, and the entire rotor 20 is formed of a ferromagnetic material. In particular, the rotor 20 is made of iron, which is a typical soft magnetic material that has a small coercive force and cannot function as a permanent magnet. On the outer periphery of the rotor 20, a plurality of salient pole portions 21 are formed at regular intervals in the circumferential direction. The number of salient pole portions 21 is set to 8 corresponding to 2/3 of the number of poles of the stator 2A.
 以上のようなモータ1Aにおいても、ステータ2Aの各巻線部7にパルス電流を周期的に供給して磁石部6の磁化方向を順次反転させることにより、ロータ20の周囲に回転磁界を生じさせてロータ20にトルクを発生させることができる。なお、ロータ20の突極部21の個数は図示の形態に限定されず、ステータ2Aの極数に応じて適宜に変更されてよい。図9の例によれば、ロータ20に磁石を設ける必要がないため、ロータ20の構成を簡素化し、それによりシンプルな構造のモータ1Aを提供することができる。 Also in the motor 1A as described above, a rotating magnetic field is generated around the rotor 20 by periodically supplying a pulse current to each winding part 7 of the stator 2A and sequentially reversing the magnetization direction of the magnet part 6. Torque can be generated in the rotor 20. The number of salient pole portions 21 of the rotor 20 is not limited to the illustrated form, and may be appropriately changed according to the number of poles of the stator 2A. According to the example of FIG. 9, since it is not necessary to provide a magnet in the rotor 20, the configuration of the rotor 20 can be simplified, thereby providing the motor 1A having a simple structure.
 上記の形態では、ティース部5の磁石部6を永久磁石にて構成したが、これに代えてGMR素子等の磁化反転デバイスを用いることができる。その一例を図10に示す。図10に示すモータ1Bでは、各ティース部5の永久磁石に代えて、磁化反転デバイスの一例であるGMR素子30が配置されている。GMR素子30は、強磁性材料からなる磁化固定層31及び磁化可変層32が、それらの間に中間層33が介在するようにして積層された構造を有している。磁化固定層31及び磁化可変層32は、それらの磁化方向が積層方向(図の上下方向)と一致する垂直磁化型の磁化層として形成されている。各磁石部6において、GMR素子30は、ステータ2とロータ3とが対向する方向とGMR素子30の磁化方向とが一致するように、かつ磁化可変層32がロータ3側を向くようにしてステータ2の内周に配置されている。磁化固定層31の磁化方向は一定であり、例えば図10に白抜き矢印で示したようにロータ3側(半径方向中心側)を向くように設定される。一方、磁化可変層32の磁化方向は巻線部7が作り出す外部磁界の方向に応じて、磁化固定層31の磁化方向と一致する方向(実線の白抜き矢印で示す方向)と、磁化固定層31の磁化方向とは反対向きの方向(破線の白抜き矢印で示す方向)との間で変化する。磁化可変層32はフリー層と呼ばれることがある。中間層33は非磁性材料の金属にて形成される。一例として銅(Cu)、白金(Pt)あるいは金(Au)が中間層33の材料として用いられる。 In the above embodiment, the magnet portion 6 of the tooth portion 5 is formed of a permanent magnet, but a magnetization reversal device such as a GMR element can be used instead. An example is shown in FIG. In the motor 1 </ b> B shown in FIG. 10, a GMR element 30, which is an example of a magnetization reversal device, is disposed in place of the permanent magnets of the teeth portions 5. The GMR element 30 has a structure in which a magnetization fixed layer 31 and a magnetization variable layer 32 made of a ferromagnetic material are laminated with an intermediate layer 33 interposed therebetween. The magnetization fixed layer 31 and the magnetization variable layer 32 are formed as perpendicular magnetization type magnetization layers whose magnetization directions coincide with the stacking direction (vertical direction in the figure). In each magnet portion 6, the GMR element 30 includes a stator so that the direction in which the stator 2 and the rotor 3 face each other matches the magnetization direction of the GMR element 30, and the magnetization variable layer 32 faces the rotor 3. 2 is arranged on the inner circumference. The magnetization direction of the magnetization fixed layer 31 is constant, and is set so as to face the rotor 3 side (radial direction center side), for example, as shown by a white arrow in FIG. On the other hand, the magnetization direction of the magnetization variable layer 32 corresponds to the magnetization direction of the magnetization fixed layer 31 (the direction indicated by the solid white arrow) according to the direction of the external magnetic field created by the winding portion 7 and the magnetization fixed layer. It changes between the direction opposite to the magnetization direction of 31 (the direction indicated by the dashed white arrow). The magnetization variable layer 32 may be referred to as a free layer. The intermediate layer 33 is made of a nonmagnetic material metal. As an example, copper (Cu), platinum (Pt), or gold (Au) is used as the material of the intermediate layer 33.
 図2からも明らかなように、GMR素子30の磁化可変層32は、僅かな外部磁界の作用により磁束密度が相当に高い磁石として機能させることが可能である。しかも、磁化可変層32は、外部磁界がなくなっても一定方向に磁化された永久磁石として機能する保磁力を有する。したがって、GMR素子30を低保磁力かつ高磁束密度の磁石部として用いることが可能である。なお、巻線部7に供給する電流は、図1の形態の制御回路部10により、永久磁石製の磁石部6を用いる場合と同様に制御すればよい。つまり、図1の制御回路部10を磁化制御手段として用いることができる。 As apparent from FIG. 2, the magnetization variable layer 32 of the GMR element 30 can function as a magnet having a considerably high magnetic flux density by the action of a slight external magnetic field. Moreover, the magnetization variable layer 32 has a coercive force that functions as a permanent magnet that is magnetized in a certain direction even when there is no external magnetic field. Therefore, the GMR element 30 can be used as a magnet portion having a low coercive force and a high magnetic flux density. In addition, what is necessary is just to control the electric current supplied to the coil | winding part 7 similarly to the case where the magnet part 6 made from a permanent magnet is used by the control circuit part 10 of the form of FIG. That is, the control circuit unit 10 in FIG. 1 can be used as the magnetization control means.
 なお、図10の例では、GMR素子30の磁化可変層32の磁化方向を巻線部7が作り出す外部磁界によって反転させているが、磁化反転作用は外部磁界を用いる例に限らず、例えば外部電流を用いて磁化反転作用を与えることもできる。例えば、図11に示すモータ1Cでは、GMR素子30の磁化固定層31及び磁化可変層32の外側に電極34が配置される。電極34間に例えば矢印C1方向の電流を通電させると磁化可変層32の磁化方向は磁化固定層31のそれと一致し、電極34間に矢印C2方向の電流を通電させると磁化可変層32の磁化方向は磁化固定層31のそれに対して逆向きに反転する。この場合には、図1又は図10の巻線部7に与えたパルス電流と同様に、磁化反転のためのパルス電流を一定周期で交互に向きを反転させながら電極34間に通電すればよい。つまり、図1の制御回路部10を磁化制御手段として用いることができる。この例では、電極34が磁化調整部として機能する。 In the example of FIG. 10, the magnetization direction of the magnetization variable layer 32 of the GMR element 30 is reversed by an external magnetic field created by the winding portion 7. However, the magnetization reversal action is not limited to the example using an external magnetic field, for example, external A magnetization reversal action can also be given using an electric current. For example, in the motor 1 </ b> C shown in FIG. 11, the electrode 34 is disposed outside the magnetization fixed layer 31 and the magnetization variable layer 32 of the GMR element 30. For example, when a current in the direction of the arrow C1 is passed between the electrodes 34, the magnetization direction of the magnetization variable layer 32 coincides with that of the magnetization fixed layer 31, and when a current in the direction of the arrow C2 is passed between the electrodes 34, the magnetization of the magnetization variable layer 32 is obtained. The direction is reversed in the opposite direction to that of the magnetization fixed layer 31. In this case, similarly to the pulse current applied to the winding section 7 in FIG. 1 or FIG. 10, the pulse current for magnetization reversal may be energized between the electrodes 34 while alternately reversing the direction at a constant period. . That is, the control circuit unit 10 in FIG. 1 can be used as the magnetization control means. In this example, the electrode 34 functions as a magnetization adjusting unit.
 図11の形態によれば、磁石部6の周囲に巻線部7を配置する必要がない。そのため、モータ1Cの小型化に有利である。以上の他にも、外部磁界又は外部電流を磁化反転作用として与えることにより、磁化方向を反転可能で、かつ磁化反転作用が失われた後も永久磁石として機能する保磁力を有する磁化可変層を備えたデバイスであれば、永久磁石に代えてそのデバイスを磁石部に用いることができる。 11, it is not necessary to arrange the winding part 7 around the magnet part 6. Therefore, it is advantageous for miniaturization of the motor 1C. In addition to the above, by providing an external magnetic field or external current as a magnetization reversal action, a magnetization variable layer having a coercive force that can reverse the magnetization direction and functions as a permanent magnet even after the magnetization reversal action is lost. If it is a device provided, it can replace with a permanent magnet and can use the device for a magnet part.
 図10及び図11の形態においては、単一の磁石部6を一又は複数のGMR素子30にて構成することができる。特に、図11の形態では、GMR素子30の周囲に巻線部を設ける必要がないため、多数のGMR素子30を組み合わせて単一の磁石部6を構成することが容易である。しかも、一つの磁石部6内において、GMR素子30の配置や各GMR素子30の磁界を調整することにより、磁石部6が作り出す磁界を適宜に変化させることができる。図11に示したタイプの複数のGMR素子30を用いて単一の磁石部6を構成する具体的形態を図12~図15に示す。なお、各図では図10及び図11と同様に、磁石部6の上方にロータが位置するものとして磁石部6が描かれている。各図において、GMR素子30中の矢印は磁化方向を、矢印の長さは磁界の強弱(磁束密度の高低)を、GMR素子30の上方の波形は磁界の磁束密度分布をそれぞれ示している。 10 and 11, the single magnet portion 6 can be composed of one or a plurality of GMR elements 30. In particular, in the form of FIG. 11, it is not necessary to provide a winding portion around the GMR element 30, so that it is easy to configure a single magnet unit 6 by combining a number of GMR elements 30. In addition, by adjusting the arrangement of the GMR elements 30 and the magnetic field of each GMR element 30 in one magnet part 6, the magnetic field produced by the magnet part 6 can be appropriately changed. Specific embodiments in which a single magnet unit 6 is configured using a plurality of GMR elements 30 of the type shown in FIG. 11 are shown in FIGS. In each figure, similarly to FIGS. 10 and 11, the magnet unit 6 is depicted as a rotor positioned above the magnet unit 6. In each figure, the arrow in the GMR element 30 indicates the magnetization direction, the length of the arrow indicates the strength of the magnetic field (magnetic flux density), and the waveform above the GMR element 30 indicates the magnetic flux density distribution of the magnetic field.
 図12の例では、磁石部6の中心側と外周側とでGMR素子30の磁化方向が変化している。すなわち、中心側のGMR素子30は磁化方向がロータの半径方向と平行な方向を向くように配置され、外周側のGMR素子30は、ロータと対向する一端部が反対側の端部よりも磁石部6の中心側にずれるように、ロータの半径方向に対して傾けて配置されている。これによれば、GMR素子30の磁界を磁石部6の中心側に集中させ、それによりステータの磁界を強めてモータのトルクを増加させることができる。 In the example of FIG. 12, the magnetization direction of the GMR element 30 changes between the center side and the outer peripheral side of the magnet unit 6. That is, the GMR element 30 on the center side is arranged so that the magnetization direction is parallel to the radial direction of the rotor, and the GMR element 30 on the outer peripheral side is magnetized at one end facing the rotor more than the end on the opposite side. It is arranged to be inclined with respect to the radial direction of the rotor so as to be shifted toward the center side of the portion 6. According to this, the magnetic field of the GMR element 30 can be concentrated on the center side of the magnet portion 6, thereby strengthening the magnetic field of the stator and increasing the motor torque.
 図13の例では、中心側のGMR素子30が図12の例と同様に配置される一方で、外側のGMR素子30は、図12の例とは逆に、ロータと対向する一端部が反対側の端部よりも磁石部6の外周側にずれるように、ロータの半径方向に対して傾けて配置されている。これによれば、各GMR素子30の磁界を分散させ、それによりステータの高調波磁界を強めてモータのトルクを増加させることができる。 In the example of FIG. 13, the GMR element 30 on the center side is arranged in the same manner as in the example of FIG. 12, while the outer GMR element 30 is opposite to the end of the rotor opposite to the example of FIG. It is arranged to be inclined with respect to the radial direction of the rotor so as to be shifted to the outer peripheral side of the magnet portion 6 from the end portion on the side. According to this, the magnetic field of each GMR element 30 can be dispersed, thereby increasing the harmonic magnetic field of the stator and increasing the torque of the motor.
 図14の例では、図12の例と同様に、中心側のGMR素子30は磁化方向がロータの半径方向と平行な方向を向くように配置され、外周側のGMR素子30は、ロータと対向する一端部が反対側の端部よりも磁石部6の中心側にずれるように、ロータの半径方向に対して傾けて配置されている。ただし、図12の例では、外周側のGMR素子30の傾きが一定であるのに対して、図14の例では、磁石部6の外周に近いGMR素子30が、それよりも内側のGMR素子30よりもロータの半径方向に対してより大きく傾くように、GMR素子30の傾きが差別化されている。それにより、正弦波状の強度分布を持った磁界を発生させている。この場合には、モータのトルクリップルを減少させることができる。 In the example of FIG. 14, as in the example of FIG. 12, the GMR element 30 on the center side is arranged so that the magnetization direction faces a direction parallel to the radial direction of the rotor, and the GMR element 30 on the outer peripheral side faces the rotor. The one end that is tilted with respect to the radial direction of the rotor is arranged so as to be shifted toward the center of the magnet portion 6 with respect to the opposite end. However, in the example of FIG. 12, the inclination of the GMR element 30 on the outer peripheral side is constant, whereas in the example of FIG. 14, the GMR element 30 close to the outer periphery of the magnet unit 6 is the inner GMR element. The inclination of the GMR element 30 is differentiated so that it is more inclined than the rotor 30 in the radial direction of the rotor. Thereby, a magnetic field having a sinusoidal intensity distribution is generated. In this case, the torque ripple of the motor can be reduced.
 図15の例は、各GMR素子30の方向をロータの半径方向と平行な方向に揃えつつ、各GMR素子30の磁界の強さを磁石部6の中心側から外側に向かうほど小さくなるように差別化している。このためには、磁化方向を反転させるために各GMR素子30に与えるパルス電流の大きさを、磁石部6の中心側から外側に向かうほど小さくなるように制御すればよい。この例では、図14の例と同様に正弦波状の強度分布を有する磁界を生じさせることができる。 In the example of FIG. 15, the direction of each GMR element 30 is aligned in a direction parallel to the radial direction of the rotor, and the strength of the magnetic field of each GMR element 30 is decreased from the center side of the magnet portion 6 toward the outside. Differentiated. For this purpose, the magnitude of the pulse current applied to each GMR element 30 in order to reverse the magnetization direction may be controlled so as to decrease from the center side of the magnet unit 6 toward the outside. In this example, a magnetic field having a sinusoidal intensity distribution can be generated as in the example of FIG.
 以上に示した例に限らず、複数のGMR素子30を組み合わせて単一の磁石部6を構成する場合、各GMR素子30の配置や各GMR素子30の磁界を調整することにより、磁石部6の磁界を適宜に変化させることが可能である。なお、図12~図15では、複数のGMR素子30が一方向に並べられた状態を示したが、単一の磁石部6において、GMR素子30は例えばマトリクス状、ハニカム状といったように、二次元方向に配置されてよい。 Not only the example described above, but also when a single magnet unit 6 is configured by combining a plurality of GMR elements 30, the magnet unit 6 is adjusted by adjusting the arrangement of the GMR elements 30 and the magnetic field of each GMR element 30. It is possible to appropriately change the magnetic field. 12 to 15 show a state in which a plurality of GMR elements 30 are arranged in one direction. However, in the single magnet portion 6, the GMR elements 30 may be arranged in a matrix shape, a honeycomb shape, or the like. It may be arranged in a dimensional direction.
 上記の形態では、ステータの内側にロータが配置されたインナーロータタイプの電動機を例に挙げたが、本発明はロータがステータの外側に配置されるアウターロータタイプの電動機にも適用可能である。また、本発明は、回転運動を出力する電動機に限らず、ステータ及びロータを切り開くことにより、非円弧状の軌跡に沿った運動を出力するリニアモータ等の電動機にも適用することが可能である。 In the above embodiment, the inner rotor type electric motor in which the rotor is arranged inside the stator is taken as an example, but the present invention is also applicable to an outer rotor type electric motor in which the rotor is arranged outside the stator. In addition, the present invention is not limited to an electric motor that outputs a rotational motion, and can also be applied to an electric motor such as a linear motor that outputs a motion along a non-arc-shaped locus by opening the stator and the rotor. .
 上述した実施の形態及び変形例のそれぞれから導き出される本発明の各種の態様を以下に記載する。なお、以下の説明では、本発明の各態様の理解を容易にするために添付図面に図示された対応する部材を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。 Various aspects of the present invention derived from each of the above-described embodiments and modifications will be described below. In the following description, in order to facilitate understanding of each aspect of the present invention, the corresponding members illustrated in the accompanying drawings are added in parentheses, but the present invention is thereby limited to the illustrated embodiments. It is not a thing.
 本発明の一態様に係る電動機(1;1A;1B;1C)は、永久磁石として機能する保磁力を有しかつ所定の磁化反転作用により磁化方向を反転させることが可能な複数の磁石部(6;30)が所定方向に並べて設けられ、さらに、各磁石部に前記磁化反転作用を与える磁化調整部(7;34)が各磁石部に対応付けて設けられた固定子(2;2A)と、前記磁石部の並び方向に沿って移動可能に配置される可動子(3;20)と、前記複数の磁石部のそれぞれの磁化方向が交互に反転し、かつ各磁石部における磁化方向の反転時期のずれにより前記磁石部の並び方向に沿った移動磁界が生じるように、前記磁化調整部による前記磁化反転作用を制御する磁化制御手段(10)と、を備えたものである。 The electric motor (1; 1A; 1B; 1C) according to one aspect of the present invention has a plurality of magnet portions (having a coercive force functioning as a permanent magnet and capable of reversing the magnetization direction by a predetermined magnetization reversal action) 6; 30) are arranged side by side in a predetermined direction, and further, a stator (2; 2A) in which a magnetism adjusting section (7; 34) that imparts the magnetization reversal action to each magnet section is provided in association with each magnet section. And the mover (3; 20) arranged to be movable along the direction in which the magnet parts are arranged, and the magnetization directions of the plurality of magnet parts are alternately reversed, and the magnetization directions of the magnet parts are Magnetization control means (10) for controlling the magnetization reversal action by the magnetization adjusting section so as to generate a moving magnetic field along the arrangement direction of the magnet sections due to the reversal timing shift.
 上記態様に係る電動機によれば、複数の磁石部の磁化方向を順次反転させることにより、磁石部の並び方向に沿った移動磁界を発生させ、それにより可動子を移動磁界の方向に駆動することができる。磁石部が永久磁石として機能する保磁力を有しているので、磁化調整部にて磁化反転作用を生じさせて磁石部を特定方向に磁化させた後、その磁化方向を反転させるべき時期に至るまでの間、磁石部の磁界を維持するために磁化調整部に電流等を供給する必要がないか、あってもそのエネルギー量は相対的に小さくて足りる。したがって、銅損等に起因するエネルギー損失を低減することが可能である。 According to the electric motor according to the above aspect, by sequentially reversing the magnetization directions of the plurality of magnet portions, a moving magnetic field is generated along the direction in which the magnet portions are arranged, thereby driving the mover in the direction of the moving magnetic field. Can do. Since the magnet portion has a coercive force that functions as a permanent magnet, the magnetization adjustment portion causes a magnetization reversal action to magnetize the magnet portion in a specific direction, and then reaches a time to reverse the magnetization direction. In the meantime, it is not necessary to supply a current or the like to the magnetization adjusting unit in order to maintain the magnetic field of the magnet unit. Therefore, it is possible to reduce energy loss due to copper loss or the like.
 本発明の一形態においては、前記磁石部が永久磁石となり得る強磁性材料にて形成され、前記磁化調整部として、電流の供給により前記磁石部に前記磁化反転作用として外部磁界を作用させる巻線部(7)が設けられ、前記磁化制御手段は、前記複数の磁石部のそれぞれの磁化方向が交互に反転し、かつ前記磁石部における磁化方向の反転時期のずれにより前記移動磁界が生じるように、前記巻線部に供給されるべき電流を制御してもよい。これによれば、巻線部への電流の供給によって生成される外部磁界により、磁石部を特定方向に磁化することができ、かつ電流の向きを切り替えることにより磁化方向を反転させることができる。磁石部が強磁性材料にて形成されることにより、巻線部への電流の供給を停止しても、磁石部を永久磁石として機能させることができる。 In one aspect of the present invention, the magnet part is formed of a ferromagnetic material that can be a permanent magnet, and the winding for causing an external magnetic field to act on the magnet part as the magnetization reversal action by supplying current as the magnetization adjusting part. Part (7) is provided, and the magnetization control means is configured so that the magnetization directions of the plurality of magnet parts are alternately reversed, and the moving magnetic field is generated due to a shift in the magnetization direction reversal timing of the magnet parts. The current to be supplied to the winding part may be controlled. According to this, the magnet part can be magnetized in a specific direction by an external magnetic field generated by supplying a current to the winding part, and the magnetization direction can be reversed by switching the direction of the current. By forming the magnet portion from a ferromagnetic material, the magnet portion can function as a permanent magnet even if the supply of current to the winding portion is stopped.
 また、上記の形態においては、前記磁石部が硬質磁性材料にて形成されてもよい。硬質磁性材料にて形成された磁石部は、保磁力を超える外部磁界を作用させることにより磁化方向を反転させることができ、かつ外部磁界が失われた後も、一定方向に磁化された状態を維持して永久磁石として確実に機能させることができる。特に、硬質磁性材料の中でも、保磁力が比較的低く、かつ外部磁界が失われた後の磁束密度が比較的高いアルニコ磁石やサマリウムコバルト磁石等の硬質磁性材料は本発明の磁石部の材料として好適に用いることが可能である。 In the above embodiment, the magnet portion may be formed of a hard magnetic material. The magnet part formed of a hard magnetic material can reverse the magnetization direction by applying an external magnetic field that exceeds the coercive force, and remains magnetized in a certain direction even after the external magnetic field is lost. It can be maintained and function reliably as a permanent magnet. In particular, among hard magnetic materials, hard magnetic materials such as alnico magnets and samarium cobalt magnets that have a relatively low coercive force and a relatively high magnetic flux density after the loss of an external magnetic field are used as materials for the magnet portion of the present invention. It can be suitably used.
 上記の形態において、前記磁化制御手段は、前記巻線部にパルス状の電流を供給して前記磁石部の磁化方向を反転させてもよい。これによれば、磁化を反転させるべき時期に巻線部にパルス電流を供給し、それ以外の期間では巻線部に電流を与える必要がない。したがって、銅損等に起因するエネルギー損失の低減効果を高めることができる。 In the above embodiment, the magnetization control means may reverse the magnetization direction of the magnet unit by supplying a pulsed current to the winding unit. According to this, it is not necessary to supply a pulse current to the winding part at a time when the magnetization should be reversed and to supply a current to the winding part in other periods. Therefore, the effect of reducing energy loss due to copper loss or the like can be enhanced.
 本発明の他の形態において、前記磁石部には、前記可動子と前記固定子とが対向する方向と一致する方向に磁化方向を有し、かつ供給される外部磁界又は外部電流の向きに応じて前記磁化方向が反転する磁化可変層(32)を有する少なくとも一の磁化反転デバイス(30)が、前記磁化可変層を前記可動子側に向けるようにして設けられ、前記磁化調整部(7;34)は、前記磁化反転作用として前記磁化反転デバイスに前記外部電界又は前記外部電流を供給してもよい。GMR素子等の磁化反転デバイスは、外部磁界や外部電流を作用させることにより、低いエネルギーで磁化反転層の磁化方向を容易に反転させることができ、しかも外部電界や外部電流が失われた後も、磁束密度が比較的高く維持される。したがって、本発明の磁石部を実現する手段として、磁化反転デバイスを好適に用いることができる。外部電流にて磁化を反転させるタイプの磁化反転デバイスであれば、巻線部のような外部磁界を生成する手段を磁石部とは別に設ける必要がないため、電動機の小型化にも有利である。 In another embodiment of the present invention, the magnet portion has a magnetization direction in a direction coinciding with a direction in which the mover and the stator face each other, and depends on the direction of the supplied external magnetic field or external current. At least one magnetization reversal device (30) having a magnetization variable layer (32) whose magnetization direction is reversed is provided so that the magnetization variable layer faces the mover, and the magnetization adjusting unit (7; 34) may supply the external electric field or the external current to the magnetization switching device as the magnetization switching action. A magnetization reversal device such as a GMR element can easily reverse the magnetization direction of the magnetization reversal layer with low energy by applying an external magnetic field or external current, and even after the external electric field or external current is lost. The magnetic flux density is kept relatively high. Therefore, a magnetization reversal device can be suitably used as a means for realizing the magnet unit of the present invention. A magnetization reversal device of the type that reverses magnetization with an external current is advantageous in reducing the size of an electric motor because it is not necessary to provide a means for generating an external magnetic field such as a winding part separately from a magnet part. .
 上記の形態においては、単一の磁石部が複数の磁化反転デバイスを組み合わせて構成されてもよい。これによれば、各磁化反転デバイスの配置や各磁化反転デバイスの磁界を適宜に調整することにより、磁石部にて生じる磁界を適宜に変化させることが可能である。 In the above embodiment, a single magnet unit may be configured by combining a plurality of magnetization reversal devices. According to this, it is possible to appropriately change the magnetic field generated in the magnet unit by appropriately adjusting the arrangement of the magnetization switching devices and the magnetic field of each magnetization switching device.
 本発明のさらなる形態において、前記可動子(20)は、永久磁石を用いることなく強磁性材料にて形成され、かつ前記磁石部の並び方向に沿って複数の突極部(21)を有していてもよい。これによれば、複数の磁石部が作り出す移動磁界により可動子の突極部を吸引して移動磁界に沿った運動を可動子に与えることができる。可動子側に永久磁石を配置する必要がないので、シンプルな構造の電動機を実現することができる。 In a further embodiment of the present invention, the mover (20) is formed of a ferromagnetic material without using a permanent magnet, and has a plurality of salient pole portions (21) along the arrangement direction of the magnet portions. It may be. According to this, the movement along the moving magnetic field can be given to the mover by attracting the salient pole part of the mover by the moving magnetic field generated by the plurality of magnet parts. Since it is not necessary to dispose a permanent magnet on the mover side, an electric motor having a simple structure can be realized.

Claims (7)

  1.  永久磁石として機能する保磁力を有しかつ所定の磁化反転作用により磁化方向を反転させることが可能な複数の磁石部が所定方向に並べて設けられ、さらに、各磁石部に前記磁化反転作用を与える磁化調整部が各磁石部に対応付けて設けられた固定子と、
     前記磁石部の並び方向に沿って移動可能に配置される可動子と、
     前記複数の磁石部のそれぞれの磁化方向が交互に反転し、かつ各磁石部における磁化方向の反転時期のずれにより前記磁石部の並び方向に沿った移動磁界が生じるように、前記磁化調整部による前記磁化反転作用を制御する磁化制御手段と、
    を備えた電動機。
    A plurality of magnet parts having a coercive force functioning as a permanent magnet and capable of reversing the magnetization direction by a predetermined magnetization reversal action are provided side by side in a predetermined direction, and the magnetization reversal action is given to each magnet part. A stator in which a magnetization adjustment unit is provided in association with each magnet unit;
    A mover arranged to be movable along the direction in which the magnet parts are arranged;
    By the magnetization adjustment unit, the magnetization direction of each of the plurality of magnet units is alternately reversed, and a moving magnetic field is generated along the arrangement direction of the magnet units due to a shift in the magnetization direction reversal time in each magnet unit. Magnetization control means for controlling the magnetization reversal action;
    With electric motor.
  2.  前記磁石部が永久磁石となり得る強磁性材料にて形成され、
     前記磁化調整部として、電流の供給により前記磁石部に前記磁化反転作用として外部磁界を作用させる巻線部が設けられ、
     前記磁化制御手段は、前記複数の磁石部のそれぞれの磁化方向が交互に反転し、かつ前記磁石部における磁化方向の反転時期のずれにより前記移動磁界が生じるように、前記巻線部に供給されるべき電流を制御する請求項1に記載の電動機。
    The magnet portion is formed of a ferromagnetic material that can be a permanent magnet,
    As the magnetization adjusting portion, a winding portion is provided that causes an external magnetic field to act on the magnet portion as the magnetization reversal effect by supplying current,
    The magnetization control means is supplied to the winding portion so that the magnetization directions of the plurality of magnet portions are alternately reversed and the moving magnetic field is generated due to a shift in the magnetization direction reversal timing in the magnet portions. The electric motor according to claim 1, wherein the electric current to be controlled is controlled.
  3.  前記磁石部が硬質磁性材料にて形成されている請求項2に記載の電動機。 The electric motor according to claim 2, wherein the magnet portion is formed of a hard magnetic material.
  4.  前記磁化制御手段は、前記巻線部にパルス状の電流を供給して前記磁石部の磁化方向を反転させる請求項2又は3に記載の電動機。 4. The electric motor according to claim 2, wherein the magnetization control means supplies a pulsed current to the winding portion to reverse the magnetization direction of the magnet portion.
  5.  前記磁石部には、前記可動子と前記固定子とが対向する方向と一致する方向に磁化方向を有し、かつ供給される外部磁界又は外部電流の向きに応じて前記磁化方向が反転する磁化可変層を有する少なくとも一の磁化反転デバイスが、前記磁化可変層を前記可動子側に向けるようにして設けられ、
     前記磁化調整部は、前記磁化反転作用として前記磁化反転デバイスに前記外部電界又は前記外部電流を供給する請求項1に記載の電動機。
    The magnet portion has a magnetization direction in a direction coinciding with a direction in which the mover and the stator face each other, and the magnetization direction is reversed according to the direction of an external magnetic field or an external current supplied. At least one magnetization reversal device having a variable layer is provided such that the magnetization variable layer faces the mover,
    The electric motor according to claim 1, wherein the magnetization adjusting unit supplies the external electric field or the external current to the magnetization switching device as the magnetization switching action.
  6.  単一の磁石部が複数の磁化反転デバイスを組み合わせて構成されている請求項5に記載の電動機。 The electric motor according to claim 5, wherein the single magnet unit is configured by combining a plurality of magnetization reversal devices.
  7.  前記可動子は、永久磁石を用いることなく強磁性材料にて形成され、かつ前記磁石部の並び方向に沿って複数の突極部を有している請求項1~6のいずれか一項に記載の電動機。 7. The mover according to claim 1, wherein the mover is made of a ferromagnetic material without using a permanent magnet, and has a plurality of salient pole portions along an arrangement direction of the magnet portions. The electric motor described.
PCT/JP2016/075441 2015-08-31 2016-08-31 Motor WO2017038859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538066A JPWO2017038859A1 (en) 2015-08-31 2016-08-31 Electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171123 2015-08-31
JP2015171123 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038859A1 true WO2017038859A1 (en) 2017-03-09

Family

ID=58188807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075441 WO2017038859A1 (en) 2015-08-31 2016-08-31 Motor

Country Status (2)

Country Link
JP (1) JPWO2017038859A1 (en)
WO (1) WO2017038859A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252071A (en) * 2006-03-15 2007-09-27 Mitsubishi Electric Corp Synchronous machine
CN103078466A (en) * 2012-12-20 2013-05-01 东南大学 Magnetism-gathering-type magnetic flux switching permanent magnet memory motor
JP2013150538A (en) * 2011-12-22 2013-08-01 Yamaha Motor Co Ltd Dynamo-electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252071A (en) * 2006-03-15 2007-09-27 Mitsubishi Electric Corp Synchronous machine
JP2013150538A (en) * 2011-12-22 2013-08-01 Yamaha Motor Co Ltd Dynamo-electric machine
CN103078466A (en) * 2012-12-20 2013-05-01 东南大学 Magnetism-gathering-type magnetic flux switching permanent magnet memory motor

Also Published As

Publication number Publication date
JPWO2017038859A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP2549538B2 (en) Magnetically enhanced variable reluctance motor system
JP5906360B2 (en) Magnetic rotating device, electric motor, and motor generator
JP3212310B2 (en) Multi-phase switching type reluctance motor
KR101154022B1 (en) Electric Motor
US4883999A (en) Polyphase electronically commutated reluctance motor
WO2010058576A1 (en) Permanent magnet type rotating electric machine
JP5272831B2 (en) Rotating electric machine
JP7284503B2 (en) Variable magnetic force motor
US20110210686A1 (en) Electric machine
KR20130067218A (en) Motor
JPH1198794A (en) Torque-generating equipment
JP5751147B2 (en) Motor equipment
JP6393843B1 (en) Switched reluctance motor
JP2016536952A (en) Improved switched reluctance motor and switched reluctance device for hybrid vehicles
JP5649203B1 (en) Stepping motor
JP5885423B2 (en) Permanent magnet rotating electric machine
KR101702035B1 (en) A Motor using the control magnetic line of force of permanent magnet
JP4160358B2 (en) Rotating electric machine
WO2017038859A1 (en) Motor
JP2005124335A (en) Switched reluctance motor and control method therefor
JP7042536B1 (en) Rotating electric machine
TW498590B (en) Electric motor with rotor of closed magnetic flux
KR100408051B1 (en) Resonance type magnet motor
CN113644760A (en) High-efficiency large-torque controllable motor
KR20230153192A (en) motor generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841889

Country of ref document: EP

Kind code of ref document: A1