WO2017034105A1 - Method for transmitting dmrs and device therefor - Google Patents

Method for transmitting dmrs and device therefor Download PDF

Info

Publication number
WO2017034105A1
WO2017034105A1 PCT/KR2016/000815 KR2016000815W WO2017034105A1 WO 2017034105 A1 WO2017034105 A1 WO 2017034105A1 KR 2016000815 W KR2016000815 W KR 2016000815W WO 2017034105 A1 WO2017034105 A1 WO 2017034105A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
dmrs
terminal
base station
filter coefficient
Prior art date
Application number
PCT/KR2016/000815
Other languages
French (fr)
Korean (ko)
Inventor
이상림
고현수
노광석
김동규
이호재
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017034105A1 publication Critical patent/WO2017034105A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting DMRS.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the new waveform technology which is being considered as the core technology of the next generation 5G system, significantly reduces out-of-band emission (OOBE) compared to OFDM, and effectively utilizes fragmented spectrum in time depleted and time asynchronous performance. You can expect a benefit.
  • OOBE out-of-band emission
  • the technical problem to be achieved in the present invention is to provide a method for a terminal to transmit a DeModulation Referenece Signal (DMRS).
  • DMRS DeModulation Referenece Signal
  • Another object of the present invention is to provide a terminal for transmitting a DMRS (DeModulation Referenece Signal).
  • DMRS Demodulation Referenece Signal
  • a method for transmitting a DMRS (DeModulation Referenece Signal) by the terminal for each DMRS sequence generated for each subcarrier of the first resource block (RB) allocated to the terminal Presenting an inverse of a phase of a corresponding filter coefficient and a magnitude of the corresponding filter coefficient for each subcarrier; And transmitting the DMRS to which the presentation is applied to a base station.
  • DMRS Demodulation Referenece Signal
  • the method may further include performing the presentation in RB units for each of the RBs allocated by the terminal in addition to the first RB; And transmitting, to the base station, a DMRS to which an award is applied for each of the RBs allocated by the terminal, in addition to the first RB.
  • the phase for each filter coefficient is different for each subcarrier.
  • the inverse of the magnitude of the corresponding filter coefficient for each subcarrier is 1 /
  • the filter is characterized in that the filtering is applied to a plurality of subcarriers.
  • a terminal transmitting a DMRS includes a subcarrier for each DMRS sequence generated for each subcarrier of a first resource block (RB) allocated to the terminal.
  • a processor configured to present a reciprocal of a phase of each filter coefficient and a magnitude of the magnitude of the corresponding filter coefficient for each;
  • a transmitter configured to transmit the DMRS to which the announcement is applied to a base station.
  • the processor is configured to present the prizes in RB units for each of the RBs allocated by the terminal in addition to the first RB, and the transmitter is configured to apply the prize for each of the RBs allocated by the terminal in addition to the first RB. And may transmit a DMRS to the base station.
  • the processor may be configured to phase out corresponding filter coefficients for each subcarrier. And the inverse of the magnitude of the corresponding filter coefficient for each subcarrier is 1 /
  • the filter is characterized in that the filtering is applied to a plurality of subcarriers.
  • all channels of RB-wise filtered OFDM or Filtered Multicarrier system as well as FCP-OFDM can maintain and receive DMRS sequence characteristics, thereby enabling accurate channel estimation.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a transmitting and receiving end of an apparatus using an FCP-OFDM scheme that applies a filter in units of a subcarrier bundle.
  • FIG. 3 is a diagram illustrating an example of a power spectrum comparison between FCP-OFDM and OFDM.
  • FIG. 5 is a diagram illustrating a frequency response of an actual chebyshev filter applied to one RB.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • the present invention relates to a new waveform, called Filtered CP-OFDM (FCP-OFDM), which is a new waveform for future communication.
  • FCP-OFDM Filtered CP-OFDM
  • the present invention proposes a sequence when a filter is applied in RB units.
  • FIG. 2 is a diagram illustrating a transmitting and receiving end of an apparatus using an FCP-OFDM scheme that applies a filter in units of a subcarrier bundle.
  • the transmitter applies a filter in units of a bundle of several subcarriers.
  • filters in subband units as described above, the influence of signals on other adjacent bands can be greatly reduced as compared to the conventional OFDM scheme.
  • the application of subband filters has great gains in terms of the utilization of the fragmented spectrum in a situation where the frequency resources are currently depleted, and also serves as a foundation for future technology communication.
  • FIG. 3 is a diagram illustrating an example of a power spectrum comparison between FCP-OFDM and OFDM.
  • the power of the signal affecting the other bands of the existing OFDM gradually drops, whereas in the case of UF-OFDM, it drops quickly. Based on this characteristic, it is regarded as one candidate of the new waveform.
  • a filter as shown in FIG. 4 As a filter for reducing out-of-emission radiation in FCP-OFDM, a filter as shown in FIG. 4 is generally applied. Application of the filter shown in FIG. 4 reduces out-of-band emissions of the FCP-OFDM shown in FIG.
  • This new waveform enables a variety of services using the fragmented spectrum. For example, it can provide machine type communication and low latency services. In addition, it can be regarded as one waveform that satisfies heterogeneous service requirements in the future.
  • the present invention proposes a new reference signal design for a new waveform to which a filter is applied in RB units. More specifically, the position pattern of the new reference signal according to the characteristics of the filter is proposed.
  • the signal-to-noise ratio of each subcarrier differs according to the frequency response of the filter.
  • FIG. 5 is a diagram illustrating a frequency response of an actual chebyshev filter applied to one RB.
  • the frequency response of the portion is not flat. That is, the magnitude and phase of the corresponding frequency response are different from the conventional one. Therefore, in the case of the existing uplink demodual reference reference singling (DMRS), the characteristics of the existing Zad-off sequence are changed by the influence of the filter, and the pre-selection is performed in advance according to the applied filter in order to maintain this property. Compensation is possible to operate the same in the existing receiver.
  • DMRS uplink demodual reference reference singling
  • Table 1 below shows a method of generating an uplink DMRS sequence in an LTE / LTE-A system.
  • the uplink DMRS sequence shown in Table 1 is generated for each subcarrier.
  • n represents a subcarrier index.
  • a method of creating an uplink DMRS sequence in an existing LTE / LTE-A system will be described.
  • the existing LTE system in order to estimate a channel between layers in a multi-antenna situation, it is designed to maintain orthogonality with each other.
  • the orthogonality at the receiver or the receiver is broken, resulting in degradation of channel estimation.
  • f1 to f12 have complex values. Therefore, in order to maintain the orthogonality of the DMRS sequence at the receiving end or the receiving side, the transmission end or the transmitting side may preliminarily present the subcarrier unit to multiply the inverse of the filter coefficient magnitude by the inverse of the phase to maintain the orthogonality of the sequence. This will affect performance.
  • Embodiment 1 Phase Presentation Technique for Uplink DMRS Reception
  • the sequence is S1, S2,... In each subcarrier of one RB among the N resource blocks (RBs) allocated by the terminal. Assume that S12 is applied. And, the phase for each coefficient of the filter F Suppose that the DMRS sequence generated for each subcarrier Multiply by to compensate for the phase of the original data through the filter at the transmitting end of the terminal, the receiving end of the base station can receive the DMRS while maintaining the characteristics of the original sequence.
  • the receiving end of the base station receives a value multiplied by the size of the filter coefficient for each RB unit. Therefore, after receiving the DMRS, the base station receives 1 /
  • Embodiment 2 A Size and Phase Representation Technique for Uplink DMRS Reception
  • the receiving end of the base station can estimate a better channel using the characteristics of the existing DMRS sequence without further processing.
  • the peak-to-average power ratio PAPR
  • the PAPR peak-to-average power ratio
  • the technique of presenting both the phase and the magnitude at the transmitting end of the terminal flattens the frequency response in the in-band region, thereby improving the PAPR.
  • the subcarrier located at the edge of the RB Increasing power results in worsening OOB. Therefore, which of the first and second embodiments is to be used, it is necessary to adaptively use both techniques according to the power situation of the terminal.
  • the UE located at the cell edge is in a power-limited environment and the issue of PAPR becomes an important issue. Accordingly, the terminal located at the cell edge can mitigate the PAPR problem through the technique of presenting both magnitude and phase as in the first embodiment.
  • the effect of reducing OOB can be maximized by only showing the phase as in the second embodiment.
  • the base station may instruct the terminal whether to use any of the first and second techniques as a physical layer signal or a higher layer signal.
  • the terminal may indicate to the base station which technique to use for the base station as a physical layer signal (for example, PUCCH, PUSCH). In this case, it may be indicated by a size of 1 bit indicating whether to use which technique.
  • the method proposed in the present invention can be applied not only to FCP-OFDM but also to all RB-wise filtered OFDM schemes or to a filtered multicarrier system.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the method of transmitting a DMRS by the terminal can be used in various industries in various wireless communication systems such as 3GPP LTE / LTE-A system.

Abstract

A method for a terminal transmitting a demodulation reference signal (DMRS) may comprise the steps of: for a DMRS sequence generated per each subcarrier of a first resource block (RB) allocated to the terminal, pre-compensating, per each of the subcarriers, a phase per corresponding filter coefficient and the reciprocal of the size of the corresponding filter coefficient; and transmitting, to a base station, the DMRS having the pre-compensation applied thereto.

Description

DMRS를 전송하는 방법 및 이를 위한 장치Method for transmitting DMRS and apparatus therefor
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 DMRS를 전송하는 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting DMRS.
기존 직교 주파수 분할 다중화(Orthogonal Frequency Division Multiplexing, OFDM) 방식은 시간-주파수 동기에 대한 제약을 강하게 요구하는 반면 5G 통신 기술들 중 핵심 기술 중 하나인 New waveform은 이런 제약 사항을 완화함으로써 기존의 OFDM 방식의 약점을 보완하고 보다 다양한 서비스를 수용할 수 있도록 개발되고 있다.Conventional Orthogonal Frequency Division Multiplexing (OFDM) strongly demands time-frequency synchronization constraints, whereas New waveform, one of the core technologies of 5G communication technologies, relaxes these constraints. It is being developed to compensate for weaknesses and accommodate a wider range of services.
차세대 5G 시스템의 코어 기술로서 고려되고 있는 새로운 waveform 기술은 특히, OFDM에 비해 Out-of-band emission(OOBE)를 획기적 낮춤으로써 주파수가 고갈된 상태에서의 fragmented spectrum의 활용성 및 시간 비동기에 대한 성능 이득을 기대할 수 있다. The new waveform technology, which is being considered as the core technology of the next generation 5G system, significantly reduces out-of-band emission (OOBE) compared to OFDM, and effectively utilizes fragmented spectrum in time depleted and time asynchronous performance. You can expect a benefit.
본 발명에서 이루고자 하는 기술적 과제는 단말이 DMRS(DeModulation Referenece Signal)를 전송하는 방법을 제공하는 데 있다.The technical problem to be achieved in the present invention is to provide a method for a terminal to transmit a DeModulation Referenece Signal (DMRS).
본 발명에서 이루고자 하는 다른 기술적 과제는 DMRS(DeModulation Referenece Signal)를 전송하는 단말을 제공하는 데 있다.Another object of the present invention is to provide a terminal for transmitting a DMRS (DeModulation Referenece Signal).
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 기술적 과제를 달성하기 위한, 단말이 DMRS(DeModulation Referenece Signal)를 전송하는 방법은, 상기 단말에 할당된 제 1 자원 블록(Resource Block, RB)의 각 부반송파 별로 생성된 DMRS 시퀀스에 대해 상기 각 부반송파 별로 해당 필터 계수 별 위상 및 상기 해당 필터 계수의 크기의 역수를 선보상하는 단계; 및 상기 선보상이 적용된 DMRS를 기지국으로 전송하는 단계를 포함할 수 있다.In order to achieve the above technical problem, a method for transmitting a DMRS (DeModulation Referenece Signal) by the terminal, for each DMRS sequence generated for each subcarrier of the first resource block (RB) allocated to the terminal Presenting an inverse of a phase of a corresponding filter coefficient and a magnitude of the corresponding filter coefficient for each subcarrier; And transmitting the DMRS to which the presentation is applied to a base station.
상기 방법은, 상기 제 1 RB외에 상기 단말이 할당받은 RB들 각각에 대해 RB 단위로 상기 선보상을 하는 단계; 및 상기 제 1 RB 외에 상기 단말이 할당받은 RB들 각각에 대해 선보상이 적용된 DMRS를 상기 기지국으로 전송하는 단계를 더 포함할 수 있다. 상기 선보상하는 단계는, 상기 각 부반송파 별로 해당 필터 계수 별 위상이
Figure PCTKR2016000815-appb-I000001
이고 상기 각 부반송파 별로 해당 필터 계수의 크기의 역수가 1/|f1|, 1/|f2|, …, 1/|f12|일 때, 상기 각 부반송파 별로 생성된 DMRS 시퀀스에 각각
Figure PCTKR2016000815-appb-I000002
를 곱하는 단계를 더 포함하고, 여기서, 1, 2, ..., 12는 상기 각 부반송파의 인덱스를 나타낸다. 상기 필터는 복수의 부반송파 단위로 필터링을 적용하는 것을 특징으로 한다.
The method may further include performing the presentation in RB units for each of the RBs allocated by the terminal in addition to the first RB; And transmitting, to the base station, a DMRS to which an award is applied for each of the RBs allocated by the terminal, in addition to the first RB. In the presenting step, the phase for each filter coefficient is different for each subcarrier.
Figure PCTKR2016000815-appb-I000001
And the inverse of the magnitude of the corresponding filter coefficient for each subcarrier is 1 / | f1 |, 1 / | f2 |,. , 1 / | f12 |, respectively, in the DMRS sequence generated for each subcarrier
Figure PCTKR2016000815-appb-I000002
Multiplying by 1, 2, ..., 12 denotes the indices of the respective subcarriers. The filter is characterized in that the filtering is applied to a plurality of subcarriers.
상기의 다른 기술적 과제를 달성하기 위한, DMRS(DeModulation Referenece Signal)를 전송하는 단말은, 상기 단말에 할당된 제 1 자원 블록(Resource Block, RB)의 각 부반송파 별로 생성된 DMRS 시퀀스에 대해 상기 각 부반송파 별로 해당 필터 계수 별 위상 및 상기 해당 필터 계수의 크기의 역수를 선보상하도록 구성된 프로세서; 및 상기 선보상이 적용된 DMRS를 기지국으로 전송하도록 구성된 송신기를 포함할 수 있다. 상기 프로세서는 상기 제 1 RB외에 상기 단말이 할당받은 RB들 각각에 대해 RB 단위로 상기 선보상하도록 구성되며, 상기 송신기는 상기 제 1 RB 외에 상기 단말이 할당받은 RB들 각각에 대해 선보상이 적용된 DMRS를 상기 기지국으로 전송하도록 구성될 수 있다. 상기 프로세서는, 상기 각 부반송파 별로 해당 필터 계수 별 위상이
Figure PCTKR2016000815-appb-I000003
이고 상기 각 부반송파 별로 해당 필터 계수의 크기의 역수가 1/|f1|, 1/|f2|, …, 1/|f12|일 때, 상기 각 부반송파 별로 생성된 DMRS 시퀀스에 각각
Figure PCTKR2016000815-appb-I000004
를 곱함으로써 상기 선보상을 하도록 구성되고, 여기서, 1, 2, ..., 12는 상기 각 부반송파의 인덱스를 나타낼 수 있다. 상기 필터는 복수의 부반송파 단위로 필터링을 적용하는 것을 특징으로 한다.
In order to achieve the above another technical problem, a terminal transmitting a DMRS (DeModulation Referenece Signal) includes a subcarrier for each DMRS sequence generated for each subcarrier of a first resource block (RB) allocated to the terminal. A processor configured to present a reciprocal of a phase of each filter coefficient and a magnitude of the magnitude of the corresponding filter coefficient for each; And a transmitter configured to transmit the DMRS to which the announcement is applied to a base station. The processor is configured to present the prizes in RB units for each of the RBs allocated by the terminal in addition to the first RB, and the transmitter is configured to apply the prize for each of the RBs allocated by the terminal in addition to the first RB. And may transmit a DMRS to the base station. The processor may be configured to phase out corresponding filter coefficients for each subcarrier.
Figure PCTKR2016000815-appb-I000003
And the inverse of the magnitude of the corresponding filter coefficient for each subcarrier is 1 / | f1 |, 1 / | f2 |,. , 1 / | f12 |, respectively, in the DMRS sequence generated for each subcarrier
Figure PCTKR2016000815-appb-I000004
It is configured to perform the presentation by multiplying, where 1, 2, ..., 12 may represent the index of each subcarrier. The filter is characterized in that the filtering is applied to a plurality of subcarriers.
본 발명에 따른 선보상 기법에 따라 FCP-OFDM 뿐만 아니라 RB-wise filtered OFDM의 모든 방식 또는 Filtered Multicarrier 시스템에서 DMRS 시퀀스 특징을 유지하며 수신할 수 있게 되어 정확한 채널 추정이 가능해진다.According to the inventive technique according to the present invention, all channels of RB-wise filtered OFDM or Filtered Multicarrier system as well as FCP-OFDM can maintain and receive DMRS sequence characteristics, thereby enabling accurate channel estimation.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
도 2는 부반송파의 묶음 단위로 필터를 적용하는 FCP-OFDM 방식을 이용하는 장치의 송수신단을 나타낸 도면이다. 2 is a diagram illustrating a transmitting and receiving end of an apparatus using an FCP-OFDM scheme that applies a filter in units of a subcarrier bundle.
도 3은 FCP-OFDM와 OFDM의 파워 스펙트럼 비교 예를 도시한 도면이다.3 is a diagram illustrating an example of a power spectrum comparison between FCP-OFDM and OFDM.
도 4는 Dolph-Chebyshev 필터의 시간 도메인 및 주파수 도메인에서의 특성을 도시한 도면이다.4 shows the characteristics in the time domain and frequency domain of a Dolph-Chebyshev filter.
도 5는 한 RB에 적용한 실제 chebyshev 필터의 주파수 응답을 예시적으로 나타낸 도면이다. 5 is a diagram illustrating a frequency response of an actual chebyshev filter applied to one RB.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. For example, the following detailed description will be described in detail on the assumption that the mobile communication system is a 3GPP LTE, LTE-A system, but is also applied to any other mobile communication system except for the specific matters of 3GPP LTE, LTE-A. Applicable
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.In addition, in the following description, it is assumed that a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like. In addition, it is assumed that the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP). Although described herein based on the IEEE 802.16 system, the contents of the present invention can be applied to various other communication systems.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.In a mobile communication system, a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink. The information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA. LTE-A (Advanced) is an evolution of 3GPP LTE.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.Although one base station 105 and one terminal 110 are shown to simplify the wireless communication system 100, the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.Referring to FIG. 1, the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197. The terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150. Although the transmit and receive antennas 130 and 135 are shown as one in the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다. On the downlink, the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols "). The symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.The symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125. In this case, each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero. In each symbol period, pilot symbols may be sent continuously. The pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다. Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다. In the configuration of the terminal 110, the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140. Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples. The symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.The symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.The processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.The terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols. The symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175. The transmitter 175 receives and processes a stream of symbols to generate an uplink signal. The transmit antenna 135 transmits the generated uplink signal to the base station 105.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다. In the base station 105, an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples. The symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink. The received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다. Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively. Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data. The memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다. The processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. The processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof. When implementing embodiments of the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) configured to perform the present invention. Field programmable gate arrays (FPGAs) may be provided in the processors 155 and 180.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.Meanwhile, when implementing embodiments of the present invention using firmware or software, the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention. The firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.The layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3. The physical layer belongs to the first layer and provides an information transmission service through a physical channel. A Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network. The terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.In the present specification, the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively. For convenience of description, the following description does not specifically refer to the processors 155 and 180. Although not specifically mentioned by the processors 155 and 180, it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
본 발명은 미래 통신을 위한 새로운 waveform인 일명 Filtered CP-OFDM(FCP-OFDM)에 관한 것이다. 구체적으로, 본 발명은 기존 CP-OFDM과 달리, 자원블록(RB) 단위로 필터가 적용되었을 때 시퀀스를 제안한다. The present invention relates to a new waveform, called Filtered CP-OFDM (FCP-OFDM), which is a new waveform for future communication. Specifically, unlike the existing CP-OFDM, the present invention proposes a sequence when a filter is applied in RB units.
도 2는 부반송파의 묶음 단위로 필터를 적용하는 FCP-OFDM 방식을 이용하는 장치의 송수신단을 나타낸 도면이다. 2 is a diagram illustrating a transmitting and receiving end of an apparatus using an FCP-OFDM scheme that applies a filter in units of a subcarrier bundle.
도 2에서 볼 수 있듯이 송신기에서 기존 OFDM과 달리, 여러 부반송파의 묶음 단위로 필터를 적용한다는 차이점이 있다. 이렇게 서브밴드(subband) 단위로 필터를 적용함으로써 기존 OFDM 기법에 비해 다른 인접 밴드로 미치는 신호의 영향을 많이 줄일 수 있다. 서브밴드 단위의 필터의 적용은 현재 주파수 자원이 고갈되어 있는 상황에서의 Fragmented 스펙트럼의 활용도 측면에서 큰 이득을 가지고, 또한 미래 기술 통신을 위한 큰 밑거름으로 작용한다. As shown in FIG. 2, unlike the conventional OFDM, the transmitter applies a filter in units of a bundle of several subcarriers. By applying filters in subband units as described above, the influence of signals on other adjacent bands can be greatly reduced as compared to the conventional OFDM scheme. The application of subband filters has great gains in terms of the utilization of the fragmented spectrum in a situation where the frequency resources are currently depleted, and also serves as a foundation for future technology communication.
도 3은 FCP-OFDM와 OFDM의 파워 스펙트럼 비교 예를 도시한 도면이다.3 is a diagram illustrating an example of a power spectrum comparison between FCP-OFDM and OFDM.
도 3에 도시된 것처럼, 기존 OFDM의 다른 밴드로 영향을 미치는 신호의 파워가 서서히 떨어지는 반면, UF-OFDM의 경우는 빨리 떨어지는 것을 알 수 있다. 이런 특성에 기반하여 새로운 waveform의 하나의 후보로 간주되고 있다. As shown in FIG. 3, the power of the signal affecting the other bands of the existing OFDM gradually drops, whereas in the case of UF-OFDM, it drops quickly. Based on this characteristic, it is regarded as one candidate of the new waveform.
도 4는 Dolph-Chebyshev 필터의 시간 도메인 및 주파수 도메인에서의 특성을 도시한 도면이다.4 shows the characteristics in the time domain and frequency domain of a Dolph-Chebyshev filter.
FCP-OFDM에서의 Out-of-emission 방사를 줄이기 위한 필터로서 일반적으로 도 4와 같은 필터를 적용하고 있다. 도 4에 나온 필터를 적용함으로써 도 3에 보여지는 FCP-OFDM의 대역외 방사를 줄여준다. 이 새로운 waveform을 통해 Fragmented 스펙트럼을 이용한 다양한 서비스가 가능해진다. 예를 들어, machine type communication과 low latency 서비스 등을 제공할 수 있다. 또한, 앞으로 다가올 서로 이질적인 서비스 요구사항을 만족하는 하나의 waveform으로 간주될 수 있다. As a filter for reducing out-of-emission radiation in FCP-OFDM, a filter as shown in FIG. 4 is generally applied. Application of the filter shown in FIG. 4 reduces out-of-band emissions of the FCP-OFDM shown in FIG. This new waveform enables a variety of services using the fragmented spectrum. For example, it can provide machine type communication and low latency services. In addition, it can be regarded as one waveform that satisfies heterogeneous service requirements in the future.
기존 LTE 시스템에서의 CP-OFDM의 경우는 부반송파에 동일한 크기의 파워를 적용하면 송신 신호에서의 부반송파 당 파워는 모두 동일하다. 반면에, 필터를 적용한 FCP-OFDM의 경우 참조신호(Reference signal)의 특성이 기존과 달라지게 되고 이를 극복하기 위해 새로운 시퀀스 설계 기법이 필요하다. In the case of CP-OFDM in the existing LTE system, when the same amount of power is applied to the subcarriers, the power per subcarrier in the transmission signal is the same. On the other hand, in the case of the FCP-OFDM to which the filter is applied, the characteristics of the reference signal are different from those of the conventional one, and a new sequence design technique is required to overcome this.
따라서, 본 발명에서는 RB 단위로 필터를 적용하는 새로운 waveform을 위한 새로운 참조 신호 설계를 제안한다. 보다 구체적으로는, 필터의 특성에 따른 새로운 참조 신호의 위치 패턴을 제안한다. Accordingly, the present invention proposes a new reference signal design for a new waveform to which a filter is applied in RB units. More specifically, the position pattern of the new reference signal according to the characteristics of the filter is proposed.
상술한 바와 같이, RB 단위로 필터를 사용하는 기법의 경우는 도 5와 같이 필터의 주파수 응답에 따라 각 부반송파의 신호 대 잡음비가 다르다. As described above, in the case of using the filter in units of RB, as shown in FIG. 5, the signal-to-noise ratio of each subcarrier differs according to the frequency response of the filter.
도 5는 한 RB에 적용한 실제 chebyshev 필터의 주파수 응답을 예시적으로 나타낸 도면이다. 5 is a diagram illustrating a frequency response of an actual chebyshev filter applied to one RB.
도 5에서의 굵은 박스 모양으로 부분을 보면 해당 부분의 주파수 응답이 flat 하지 않을 것을 확인할 수 있다. 즉, 해당 주파수 응답의 크기와 위상이 기존과 달라지게 된다. 따라서, 기존에 상향 링크 Demodualtion Reference Singal (DMRS)의 경우는 필터의 영향으로 기존의 자도프-츄(Zad-off) 시퀀스의 특성이 달라지게 되고 이 성질을 유지하게 하기 위해서 적용된 필터에 따라서 미리 선보상을 해주어야만 기존 수신단에서 동일하게 동작 가능하다. Looking at the portion in bold box in Figure 5 it can be seen that the frequency response of the portion is not flat. That is, the magnitude and phase of the corresponding frequency response are different from the conventional one. Therefore, in the case of the existing uplink demodual reference reference singling (DMRS), the characteristics of the existing Zad-off sequence are changed by the influence of the filter, and the pre-selection is performed in advance according to the applied filter in order to maintain this property. Compensation is possible to operate the same in the existing receiver.
다음 표 1은 LTE/LTE-A 시스템에서의 상향링크 DMRS 시퀀스를 생성하는 방법을 나타내고 있다. 표 1에 도시된 상향링크 DMRS 시퀀스는 부반송파 별로 생성된 것이다. 표 1에서, n은 부반송파 인덱스를 나타낸다.Table 1 below shows a method of generating an uplink DMRS sequence in an LTE / LTE-A system. The uplink DMRS sequence shown in Table 1 is generated for each subcarrier. In Table 1, n represents a subcarrier index.
기존 LTE/LTE-A 시스템에서의 상향링크 DMRS 시퀀스를 만드는 방법을 설명한다. 기존 LTE 시스템의 경우, 다중 안테나 상황에서의 레이어(Layer)간의 채널을 추정하기 위해서 서로 직교성을 유지하게 설계되어 있다. 그러나, 필터의 영향으로 시퀀스의 크기와 위상이 바뀐 부분으로 인해 수신단 혹은 수신 측에서의 직교성이 깨짐으로 인해 채널 추정의 열화 등이 발생하게 된다. A method of creating an uplink DMRS sequence in an existing LTE / LTE-A system will be described. In the existing LTE system, in order to estimate a channel between layers in a multi-antenna situation, it is designed to maintain orthogonality with each other. However, due to the change of the magnitude and phase of the sequence due to the filter, the orthogonality at the receiver or the receiver is broken, resulting in degradation of channel estimation.
먼저, 1개 RB 단위로 주파수 영역에서의 필터링 계수를 F = [ f1, f2, … , f12]라고 가정하자. 여기서, f1부터 f12는 복소수 값을 가진다. 따라서, 수신단 혹은 수신 측에서 DMRS 시퀀스의 직교성을 유지하기 위해서는 송신단 혹은 송신 측에서 부반송파 단위로 미리 선보상을 함으로써 필터 계수 크기의 역수와 위상의 역을 곱해줌으로써 시퀀스의 직교성을 유지할 수 있고 이는 채널 추정 성능에 영향을 미치게 된다. First, the filtering coefficients in the frequency domain in units of one RB are denoted by F = [f1, f2,... , f12]. Here, f1 to f12 have complex values. Therefore, in order to maintain the orthogonality of the DMRS sequence at the receiving end or the receiving side, the transmission end or the transmitting side may preliminarily present the subcarrier unit to multiply the inverse of the filter coefficient magnitude by the inverse of the phase to maintain the orthogonality of the sequence. This will affect performance.
표 1
Figure PCTKR2016000815-appb-T000001
Table 1
Figure PCTKR2016000815-appb-T000001
실시예 1: 상향링크 DMRS 수신을 위한 위상 선보상 기법Embodiment 1: Phase Presentation Technique for Uplink DMRS Reception
크기와 위상 중에서 위상을 먼저 선보상을 해주는 방법이다. 예를 들어, 단말이 할당 받은 N개의 자원블록(RB)중에서 한 RB의 각 부반송파에 시퀀스가 S1,S2, … , S12가 적용되었다고 가정하자. 그리고, 필터 F의 각 계수별 위상을
Figure PCTKR2016000815-appb-I000005
라고 가정하면, 부반송파 별로 생성된 DMRS 시퀀스에
Figure PCTKR2016000815-appb-I000006
를 곱하여 단말의 송신단에서 필터를 거쳐 위상을 원래 데이터의 위상으로 보상해 줄 수 있고, 기지국의 수신단에서 원래 시퀀스의 특성을 유지하면서 DMRS를 수신할 수 있다.
It is a method of presenting phase first of magnitude and phase. For example, the sequence is S1, S2,... In each subcarrier of one RB among the N resource blocks (RBs) allocated by the terminal. Assume that S12 is applied. And, the phase for each coefficient of the filter F
Figure PCTKR2016000815-appb-I000005
Suppose that the DMRS sequence generated for each subcarrier
Figure PCTKR2016000815-appb-I000006
Multiply by to compensate for the phase of the original data through the filter at the transmitting end of the terminal, the receiving end of the base station can receive the DMRS while maintaining the characteristics of the original sequence.
기지국의 수신단에서는 RB 단위 별로 필터 계수의 크기만큼 곱해진 형태의 값을 수신하게 된다. 따라서, 기지국은 DMRS 수신 후, 부반송파 별로 생성된 DMRS 시퀀스 블록에 부반송파 단위로 필터 계수의 크기의 역수인 1/|f1|, 1/|f2|, …, 1/|f12|를 곱함으로써 DMRS 시퀀스의 특성을 유지하여 채널 추정을 할 수 있다. The receiving end of the base station receives a value multiplied by the size of the filter coefficient for each RB unit. Therefore, after receiving the DMRS, the base station receives 1 / | f1 |, 1 / | f2 |, which are inverses of the magnitude of the filter coefficient in the subcarrier unit in the DMRS sequence block generated for each subcarrier. By multiplying 1 / | f12 |, the characteristics of the DMRS sequence can be maintained and channel estimation can be performed.
실시예 2: 상향링크 DMRS 수신을 위한 크기와 위상 선보상 기법Embodiment 2: A Size and Phase Representation Technique for Uplink DMRS Reception
크기와 위상을 단말의 송신단에서 둘 다 선보상 해주는 방법이다. 이 경우는 단말이 할당받은 N개의 RB중에서 한 RB의 각 부반송파의 시퀀스에 다음과 같이 크기의 역수와 위상을 동시에 적용한다. It is a method of presenting both magnitude and phase at the transmitting end of the terminal. In this case, the reciprocal of the magnitude and the phase are simultaneously applied to the sequence of subcarriers of one RB among the N RBs allocated by the UE as follows.
수학식 1
Figure PCTKR2016000815-appb-M000001
Equation 1
Figure PCTKR2016000815-appb-M000001
따라서, 기지국의 수신단에서는 추가적인 프로세싱 없이 기존 DMRS 시퀀스의 특성을 이용하여 보다 나은 채널을 추정 가능하다. Therefore, the receiving end of the base station can estimate a better channel using the characteristics of the existing DMRS sequence without further processing.
실시예 3: 상향링크 DMRS 수신을 위한 선택적으로 크기와 위상 선보상 기법 Example 3 Selective Size and Phase Representation Techniques for Uplink DMRS Reception
일반적으로 주파수 영역에서 펄스 모양이 압축될수록 PAPR(Peak-to-Average Power Ratio)은 높아지고, 반대로 주파수 영역에서 퍼질수록 PAPR이 낮아지는 게 일반적이다. 따라서, 실시예 1과 같이 단말의 송신단에서 위상만 선보상하는 경우는 필터에 의해 OOB(out-of-band)는 낮게 유지하지만 주파수 영역에서 압축되는 효과로 인해 PAPR이 나빠지게 된다. 그러나, 실시예 2와 같이 단말의 송신단에서 위상과 크기를 모두 선보상 기법은 In-Band 영역에서의 주파수 응답이 flat하게 되어 PAPR은 좋아지는 효과가 발생하지만, RB에서 에지(edge)에 위치한 부반송파의 파워 증가로 인해 OOB가 나빠지는 결과를 가지고 오게 된다. 따라서, 실시예 1 기법 및 실시예 2 기법 중 어느 기법을 사용할 지는 단말의 파워 상황에 따라 적응적으로 두 기법을 활용할 필요성이 있다.In general, as the pulse shape is compressed in the frequency domain, the peak-to-average power ratio (PAPR) is increased, and conversely, as the pulse shape is spread in the frequency domain, the PAPR is lowered. Therefore, as shown in the first embodiment, when only a phase is presented at the transmitting end of the terminal, the out-of-band (OOB) is kept low by the filter, but the PAPR is deteriorated due to the compression effect in the frequency domain. However, as in the second embodiment, the technique of presenting both the phase and the magnitude at the transmitting end of the terminal flattens the frequency response in the in-band region, thereby improving the PAPR. However, the subcarrier located at the edge of the RB Increasing power results in worsening OOB. Therefore, which of the first and second embodiments is to be used, it is necessary to adaptively use both techniques according to the power situation of the terminal.
셀 에지에 위치하고 있는 단말은 Power-limited 환경에 있고 PAPR의 이슈가 중요한 문제가 된다. 따라서, 셀 에지에 위치한 단말은 실시예 1과 같이 크기와 위상을 모두 선보상하는 기법을 통해서 PAPR 문제를 완화할 수 있다.The UE located at the cell edge is in a power-limited environment and the issue of PAPR becomes an important issue. Accordingly, the terminal located at the cell edge can mitigate the PAPR problem through the technique of presenting both magnitude and phase as in the first embodiment.
반대로, 셀 중앙에 위치한 단말의 경우는 실시예 2와 같이 위상만을 선보상함으로써 OOB 줄이는 효과를 극대화 할 수 있다. On the contrary, in the case of the UE located in the center of the cell, the effect of reducing OOB can be maximized by only showing the phase as in the second embodiment.
이런 적응적 기법을 위해서, 기지국이 단말에게 물리계층 신호 혹은 상위 계층 신호로 실시예 1 및 실시예 2 중 어느 기법을 사용할 지 여부를 지시해 줄 수 있다. 반대로, 단말이 기지국에 물리계층 신호(예를 들어, PUCCH, PUSCH)로 기지국에 어느 기법을 사용할 지 여부를 지시해 줄 수 있다. 이때 어느 기법을 사용할 지여 부에 대한 지시 1 비트 크기로 지시될 수 있다.For this adaptive technique, the base station may instruct the terminal whether to use any of the first and second techniques as a physical layer signal or a higher layer signal. On the contrary, the terminal may indicate to the base station which technique to use for the base station as a physical layer signal (for example, PUCCH, PUSCH). In this case, it may be indicated by a size of 1 bit indicating whether to use which technique.
본 발명에서 제안한 방법은 FCP-OFDM 뿐만 아니라 RB-wise filtered OFDM의 모든 방식 또는 Filtered Multicarrier 시스템에 모두 적용 가능하다. The method proposed in the present invention can be applied not only to FCP-OFDM but also to all RB-wise filtered OFDM schemes or to a filtered multicarrier system.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
단말이 DMRS를 전송하는 방법은 3GPP LTE/LTE-A 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다. The method of transmitting a DMRS by the terminal can be used in various industries in various wireless communication systems such as 3GPP LTE / LTE-A system.

Claims (8)

  1. 단말이 DMRS(DeModulation Referenece Signal)를 전송하는 방법에 있어서,In a method for transmitting a DMRS (DeModulation Referenece Signal),
    상기 단말에 할당된 제 1 자원 블록(Resource Block, RB)의 각 부반송파 별로 생성된 DMRS 시퀀스에 대해 상기 각 부반송파 별로 해당 필터 계수 별 위상 및 상기 해당 필터 계수의 크기의 역수를 선보상하는 단계; 및Presenting an inverse of the phase of each filter coefficient and the magnitude of the corresponding filter coefficient for each subcarrier with respect to a DMRS sequence generated for each subcarrier of a first resource block (RB) allocated to the terminal; And
    상기 선보상이 적용된 DMRS를 기지국으로 전송하는 단계를 포함하는, DMRS 전송 방법.And transmitting the DMRS to which the presentation is applied to a base station.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제 1 RB외에 상기 단말이 할당받은 RB들 각각에 대해 RB 단위로 상기 선보상을 하는 단계; 및Performing the award in RB units for each of the RBs allocated by the UE in addition to the first RB; And
    상기 제 1 RB 외에 상기 단말이 할당받은 RB들 각각에 대해 선보상이 적용된 DMRS를 상기 기지국으로 전송하는 단계를 더 포함하는, DMRS 전송 방법.And transmitting the DMRS to which the presentation is applied for each of the RBs allocated by the terminal in addition to the first RB, to the base station.
  3. 제 1항에 있어서,The method of claim 1,
    상기 선보상하는 단계는, 상기 각 부반송파 별로 해당 필터 계수 별 위상이
    Figure PCTKR2016000815-appb-I000007
    이고 상기 각 부반송파 별로 해당 필터 계수의 크기의 역수가 1/|f1|, 1/|f2|, …, 1/|f12|일 때,
    In the presenting step, the phase for each filter coefficient is different for each subcarrier.
    Figure PCTKR2016000815-appb-I000007
    And the inverse of the magnitude of the corresponding filter coefficient for each subcarrier is 1 / | f1 |, 1 / | f2 |,. , When 1 / | f12 |
    상기 각 부반송파 별로 생성된 DMRS 시퀀스에 각각
    Figure PCTKR2016000815-appb-I000008
    를 곱하는 단계를 더 포함하고, 여기서, 1, 2, ..., 12는 상기 각 부반송파의 인덱스를 나타내는, DMRS 전송 방법.
    In the DMRS sequence generated for each subcarrier, respectively
    Figure PCTKR2016000815-appb-I000008
    And multiplying by 1, 2, ..., 12, indicative of the indices of the respective subcarriers.
  4. 제 1항에 있어서,The method of claim 1,
    상기 필터는 복수의 부반송파 단위로 필터링을 적용하는 것을 특징으로 하는, DMRS 전송 방법.The filter, DMRS transmission method, characterized in that for applying a plurality of sub-carrier filtering.
  5. DMRS(DeModulation Referenece Signal)를 전송하는 단말에 있어서,In a terminal for transmitting a DMRS (DeModulation Referenece Signal),
    상기 단말에 할당된 제 1 자원 블록(Resource Block, RB)의 각 부반송파 별로 생성된 DMRS 시퀀스에 대해 상기 각 부반송파 별로 해당 필터 계수 별 위상 및 상기 해당 필터 계수의 크기의 역수를 선보상하도록 구성된 프로세서; 및A processor configured to present a reciprocal of a phase of each filter coefficient and an inverse of the magnitude of the filter coefficient for each subcarrier with respect to a DMRS sequence generated for each subcarrier of a first resource block (RB) allocated to the terminal; And
    상기 선보상이 적용된 DMRS를 기지국으로 전송하도록 구성된 송신기를 포함하는, 단말.And a transmitter configured to transmit the DMRS to which the announcement is applied to a base station.
  6. 제 5항에 있어서,The method of claim 5,
    상기 프로세서는 상기 제 1 RB외에 상기 단말이 할당받은 RB들 각각에 대해 RB 단위로 상기 선보상하도록 구성되며,The processor is configured to present the prize in RB units for each of the RBs allocated by the terminal in addition to the first RB.
    상기 송신기는 상기 제 1 RB 외에 상기 단말이 할당받은 RB들 각각에 대해 선보상이 적용된 DMRS를 상기 기지국으로 전송하도록 구성된, 단말.The transmitter is configured to transmit to the base station a DMRS to which an award is applied for each of the RBs allocated by the terminal in addition to the first RB.
  7. 제 5항에 있어서,The method of claim 5,
    상기 프로세서는, The processor,
    상기 각 부반송파 별로 해당 필터 계수 별 위상이
    Figure PCTKR2016000815-appb-I000009
    이고 상기 각 부반송파 별로 해당 필터 계수의 크기의 역수가 1/|f1|, 1/|f2|, …, 1/|f12|일 때, 상기 각 부반송파 별로 생성된 DMRS 시퀀스에 각각
    Figure PCTKR2016000815-appb-I000010
    를 곱함으로써 상기 선보상을 하도록 구성되고, 여기서, 1, 2, ..., 12는 상기 각 부반송파의 인덱스를 나타내는, 단말.
    Phase for each filter coefficient is different for each subcarrier
    Figure PCTKR2016000815-appb-I000009
    And the inverse of the magnitude of the corresponding filter coefficient for each subcarrier is 1 / | f1 |, 1 / | f2 |,. , 1 / | f12 |, respectively, in the DMRS sequence generated for each subcarrier
    Figure PCTKR2016000815-appb-I000010
    And presenting the presentation by multiplying, wherein 1, 2,..., 12 represent an index of each subcarrier.
  8. 제 5항에 있어서,The method of claim 5,
    상기 필터는 복수의 부반송파 단위로 필터링을 적용하는 것을 특징으로 하는, 단말.The filter is characterized in that to apply filtering in a plurality of subcarriers.
PCT/KR2016/000815 2015-08-24 2016-01-26 Method for transmitting dmrs and device therefor WO2017034105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562208818P 2015-08-24 2015-08-24
US62/208,818 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017034105A1 true WO2017034105A1 (en) 2017-03-02

Family

ID=58100530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000815 WO2017034105A1 (en) 2015-08-24 2016-01-26 Method for transmitting dmrs and device therefor

Country Status (1)

Country Link
WO (1) WO2017034105A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091570A1 (en) * 2018-11-02 2020-05-07 엘지전자 주식회사 Method whereby terminal receives preconfigured uplink resource from base station in wireless communication system, and device for same
CN115987725A (en) * 2023-03-17 2023-04-18 深圳国人无线通信有限公司 Time offset processing method and device based on multi-user DMRS (demodulation reference signal) channel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022090A1 (en) * 2011-07-21 2013-01-24 Jianfeng Weng Dynamic Cyclic Prefix Mode for Uplink Radio Resource Management
US20130336282A1 (en) * 2011-03-01 2013-12-19 Sharp Kabushiki Kaisha Transmitter apparatus, receiver apparatus, communication system, communication method, and integrated circuit
US20140064391A1 (en) * 2010-10-11 2014-03-06 Peng Cheng Uplink noise estimation for virtual mimo
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
US20150049704A1 (en) * 2012-05-18 2015-02-19 Lg Electronics Inc. Method and apparatus for transmitting or receiving downlink signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140064391A1 (en) * 2010-10-11 2014-03-06 Peng Cheng Uplink noise estimation for virtual mimo
US20130336282A1 (en) * 2011-03-01 2013-12-19 Sharp Kabushiki Kaisha Transmitter apparatus, receiver apparatus, communication system, communication method, and integrated circuit
US20130022090A1 (en) * 2011-07-21 2013-01-24 Jianfeng Weng Dynamic Cyclic Prefix Mode for Uplink Radio Resource Management
US20150043465A1 (en) * 2012-03-09 2015-02-12 Sharp Kabushiki Kaisha Base station, terminal, communication method, and integrated circuit
US20150049704A1 (en) * 2012-05-18 2015-02-19 Lg Electronics Inc. Method and apparatus for transmitting or receiving downlink signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091570A1 (en) * 2018-11-02 2020-05-07 엘지전자 주식회사 Method whereby terminal receives preconfigured uplink resource from base station in wireless communication system, and device for same
CN115987725A (en) * 2023-03-17 2023-04-18 深圳国人无线通信有限公司 Time offset processing method and device based on multi-user DMRS (demodulation reference signal) channel
CN115987725B (en) * 2023-03-17 2023-05-23 深圳国人无线通信有限公司 Multi-user DMRS (digital radio service) channel time offset processing method and device

Similar Documents

Publication Publication Date Title
US8942196B2 (en) Downlink control information receiving method in wireless communication system and apparatus therefor
WO2011065797A2 (en) Terminal device for receiving signal in wireless communication system for supporting a plurality of component carriers and method thereof
US8848840B2 (en) Control information receiving method in wireless communication system and apparatus therefor
WO2011142608A2 (en) Method for transmitting an srs-triggering-based srs in a wireless communication system
WO2010035987A2 (en) Downlink channel transmission method and apparatus and common channel reception method and apparatus in cellular communication system supporting bandwidth scalability
WO2012150773A2 (en) Method for transmitting/receiving downlink control information in wireless communication system and device therefor
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2012108640A2 (en) Method for signaling a subframe pattern for preventing inter-cell interference from occurring in a heterogeneous network system and appartus for the same
WO2011102666A2 (en) Terminal device for controlling uplink transmission power and method therefor
WO2011002173A9 (en) Method for transmitting a downlink signal in a multi-antenna wireless communication system, and apparatus for same
WO2013058564A1 (en) Method for allowing mtc terminal to transmit and receive signal in wireless communication system
WO2012150772A2 (en) Method for terminal to receive downlink signal from base station in wireless communication system and device therefor
WO2012150793A2 (en) Method for transmitting/receiving downlink control information in wireless communication system and device therefor
WO2013012261A2 (en) Method for transmitting and receiving resource allocation information in wireless communication system and apparatus therefor
WO2018043997A1 (en) Method for transmitting and receiving multiplexed uplink control channel and localized sounding reference symbol and device therefor
WO2016159502A1 (en) Method for processing in-band multiplexing using fcp-ofdm scheme, and device therefor
WO2012141490A2 (en) Method for sending and receiving signals for alleviating inter-cell interference in a wireless communication system and a device therefor
WO2018021591A1 (en) Otfs basis allocation method in wireless communication system using otfs transmission system
WO2018066924A1 (en) Method for transmitting or receiving downlink signal in wireless communication system, and apparatus therefor
WO2011087276A2 (en) User equipment that transmits an uplink signal in a multi-carrier supporting mobile communication system and a method therefor
WO2013015590A2 (en) Method and apparatus for transmitting uplink control information in a wireless communication system
WO2017061670A1 (en) Method for transmitting feedback information in wireless communication system and device therefor
EP3146688A1 (en) Method and apparatus for indicating user equipment capability in wireless communication system
WO2011071337A2 (en) Repeater apparatus for simultaneously transceiving signals in a wireless communication system, and method for same
WO2017188486A1 (en) Method for receiving data by using 2d channel-based transmission scheme, and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839396

Country of ref document: EP

Kind code of ref document: A1