WO2017022856A1 - Method for producing isoprene monomer - Google Patents

Method for producing isoprene monomer Download PDF

Info

Publication number
WO2017022856A1
WO2017022856A1 PCT/JP2016/073148 JP2016073148W WO2017022856A1 WO 2017022856 A1 WO2017022856 A1 WO 2017022856A1 JP 2016073148 W JP2016073148 W JP 2016073148W WO 2017022856 A1 WO2017022856 A1 WO 2017022856A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
protein
seq
isoprene
acid sequence
Prior art date
Application number
PCT/JP2016/073148
Other languages
French (fr)
Japanese (ja)
Inventor
國夫 中田
洋子 三原
靖王 福島
Original Assignee
味の素株式会社
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社, 株式会社ブリヂストン filed Critical 味の素株式会社
Publication of WO2017022856A1 publication Critical patent/WO2017022856A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic

Definitions

  • the present invention relates to a method for producing an isoprene monomer.
  • Natural rubber is a very important raw material in the tire industry and rubber industry. As demand grows in the future due to motorization centering on emerging countries, it is difficult to expand farms due to competition with deforestation and palm cultivation. Therefore, the supply-demand balance is expected to become tight.
  • Synthetic polyisoprene is an alternative material to natural rubber, but the raw material monomer (isoprene (2-methyl-1,3-butadiene)) is obtained mainly by extraction from the C5 fraction obtained by naphtha cracking. .
  • the production of isoprene has been decreasing with the lightening of the cracker feed, and there is concern about the supply. In recent years, it is strongly affected by fluctuations in oil prices, and in order to stably secure isoprene monomers, establishment of a system for producing isoprene at low cost from non-petroleum resources is desired.
  • dimethylallyl diphosphate is obtained using a transformant obtained by incorporating an isolated isoprene synthase gene derived from kuzu or poplar and a mutant thereof into a fungus for fermentation production.
  • DMAPP dimethylallyl diphosphate
  • Non-Patent Document 1 analyzes the dependence of isoprene synthase on the Mg ion concentration using a fraction extracted from a Velvet bean plant and roughly purified.
  • Non-Patent Document 2 describes that the optimal bivalent cation requirement is 20 mM for the relationship between the isoprene synthase derived from Populus x canescens and the divalent cation.
  • Patent Document 4 reports a change in the amount of isoprene produced at two Mg ion concentrations (10 mM and 20 mM) for isoprene synthase derived from peanut.
  • Patent Documents 1 to 5 can be cited as reports showing a method for producing isoprene by fermentation using isoprene synthase.
  • the present invention aims to provide an alternative method for producing isoprene monomers.
  • isoprene synthase derived from Ginkgo biloba exhibits higher activity at a lower Mg ion (Mg 2+ ) concentration than the previously reported isoprene synthase.
  • Mg ion concentration in microorganisms may vary depending on the type of microorganism, and as far as the present inventors know, it seems that an accurate value is not reported.
  • conventional isoprene synthase exhibits high activity. Expected to be lower than ion concentration.
  • the present inventors when the present inventors expressed isoprene synthase derived from Ginkgo biloba in a microorganism, it showed higher activity than conventional isoprene synthase.
  • the present inventors have isolated and identified an isoprene synthase derived from Ginkgo biloba that can exhibit higher activity than conventional isoprene synthase under the condition of physiological Mg ion concentration in the microorganism, and the isoprene The inventors found that isoprene monomers can be efficiently produced by using synthase, and have completed the present invention.
  • a method for producing an isoprene monomer comprising producing an isoprene monomer from dimethylallyl diphosphate in the presence of a protein selected from the group consisting of the following (A) to (F): (A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2; (B) a protein comprising a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2 and further comprising a starting amino acid residue at the N-terminus; (C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; (D) an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, further comprising a starting amino acid residue at the N-terminus; (A protein having isoprene
  • a protein further comprising a starting amino acid residue and having isoprene synthesis activity [2] The method according to [1], wherein the protein is derived from Ginkgo biloba. [3] The method according to [1] or [2], wherein isoprene monomer is produced by culturing the transformant producing the protein. [4] The method according to any one of [1] to [3], wherein dimethylallyl diphosphate is supplied from a carbon source in the medium by culturing the transformant.
  • the transformant is prepared by introducing an expression vector containing a polynucleotide selected from the group consisting of (a) to (g) below into a host cell, [3] or [3] Method 4): (A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1; (B) a polynucleotide comprising a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 and further comprising a start codon at the 5 ′ end; (C) a polynucleotide encoding a protein comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and having isoprene synthesis activity; (D) a base sequence having 90% or more identity to a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, further including a start codon at the 5
  • a method for producing an isoprene polymer comprising the following (I) and (II): (I) producing an isoprene monomer by any one of the methods [1] to [11]; (II) polymerizing isoprene monomers to produce isoprene polymers.
  • [15] An expression vector comprising a polynucleotide encoding the protein of [13], or a polynucleotide of [14], and a heterologous promoter operably linked thereto.
  • a host cell comprising the expression vector according to [15].
  • a method for producing a protein comprising producing the protein using the host cell of [16].
  • an excellent isoprene monomer production system can be established.
  • FIG. 1 shows a map of the pAH162-Para-mvaES plasmid.
  • FIG. 2 is a diagram showing a map of pAH162-KKDyI-ispS (K).
  • FIG. 3 is a view showing a map of pAH162-Ptac-ispS (M) -mvk (Mma).
  • FIG. 4 is a diagram showing the construction of ⁇ ampC :: KKDyI-ispS (K) chromosome variant.
  • FIG. 5 is a diagram showing the construction of ⁇ ampH :: Para-mvaES chromosome variant.
  • FIG. 5 is a diagram showing the construction of ⁇ ampH :: Para-mvaES chromosome variant.
  • FIG. 6 is a diagram showing the construction of a ⁇ crt :: KKDyI-ispS (K) variant of pEA320 megapramide.
  • K KKDyI-ispS
  • FIG. 7 is a diagram showing the analysis results of the molecular masses of IspSU and IspSM by SDS-PAGE.
  • FIG. 8 is a diagram showing a pAH162-Ptac-integrated expression vector.
  • FIG. 9 is a diagram showing a map of pAH162-Ptac-mvk (M. palidicola).
  • the present invention provides a protein (isoprene synthase) having isoprene synthesis activity.
  • Isoprene synthase (EC: 4.2.2.37) is an enzyme that converts dimethylallyl diphosphate (DMAPP) to isoprene.
  • DMAPP dimethylallyl diphosphate
  • the present inventors have found that isoprene synthase derived from Ginkgo biloba exhibits higher activity under low Mg ion (Mg 2+ ) concentration conditions than reported isoprene synthase.
  • Mg ion (Mg 2+ ) concentration conditions Mg ion (Mg 2+ ) concentration conditions than reported isoprene synthase.
  • the identity (%) between the ginseng-derived isoprene synthase and the known isoprene synthase is as follows.
  • the protein of the invention is: (A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2; and (B) a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, and the starting amino acid residue at the N-terminus Further comprising a protein.
  • the amino acid sequence consisting of amino acid residues 1 to 25 encodes a putative chloroplast translocation signal
  • the amino acid sequence consisting of amino acid residues 26 to 581 is mature isoprene. It can encode a synthase.
  • the chloroplast translocation signal containing the N-terminal methionine residue is removed after chloroplast translocation. Therefore, despite the removal of the chloroplast translocation signal, the protein (B) containing the starting amino acid residue at the N-terminus, and the proteins (D) and (F) described later are naturally occurring proteins. is not.
  • the amino acid sequence encoding the protein (B) is the same as the amino acid sequence of SEQ ID NO: 4.
  • starting amino acid residue refers to an amino acid residue encoded by a start codon.
  • the amino acid residue encoded by the start codon include a methionine residue, a valine residue, an isoleucine residue, and a leucine residue, and a methionine residue is preferable.
  • the protein of the present invention is a homologous protein of the protein of (A) or (B).
  • homologous proteins include the following: (C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (D) amino acids 26 to 581 in the amino acid sequence of SEQ ID NO: 2
  • a protein comprising an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of residues, further comprising a starting amino acid residue at the N-terminus, and having isoprene synthesis activity.
  • the percent identity with the amino acid sequence may be 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more.
  • the protein of the present invention is a modified protein of the protein of (A) or (B).
  • modified proteins include the following: (E) a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (F) a sequence Including an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of No. 2, and at the N-terminus A protein further comprising a starting amino acid residue and having isoprene synthesis activity.
  • one or several amino acid residues can be modified by 1, 2, 3 or 4 mutations selected from the group consisting of deletion, substitution, addition and insertion of amino acid residues.
  • the amino acid residue mutation may be introduced into one region in the amino acid sequence, or may be introduced into a plurality of different regions.
  • the term “one or several” refers to a number that does not significantly impair the activity of the protein.
  • the number represented by the term “one or several” is, for example, 1 to 100, preferably 1 to 80, more preferably 1 to 50, 1 to 30, 1 to 20, 1 to 10 or 1 to 5 (eg, 1, 2, 3, 4, or 5).
  • isoprene synthesis activity refers to an enzyme activity that produces isoprene from dimethylallyl diphosphate (DMAPP).
  • DMAPP dimethylallyl diphosphate
  • the protein of (A) or (B) above preferably has an activity of 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more of the isoprene synthesis activity.
  • the protein of the present invention can preferably exhibit high isoprene synthesis activity under low-concentration Mg ion conditions.
  • the protein of the present invention can exhibit higher isoprene synthesis activity under 10 mM Mg ion concentration conditions than under 20 mM Mg ion concentration conditions.
  • the ratio of isoprene synthesis activity “(isoprene synthesis activity measured in a reaction solution containing 10 mM Mg ions) / (isoprene synthesis activity measured in a reaction solution containing 20 mM Mg ions)” is about 1.1. About 1.2 or more, about 1.3 or more, about 1.4 or more, about 1.5 or more, about 1.6 or more, about 1.7 or more, about 1.8 or more, or about 1.9 or more It may be. The ratio is not particularly limited, but may be about 3.0 or less, about 2.5 or less, or about 2.0 or less.
  • the protein of the present invention may have mutations introduced at sites in the catalytic domain and at sites other than the catalytic domain as long as the target activity can be maintained.
  • the positions of amino acid residues to which mutations can be introduced that can retain the desired activity will be apparent to those skilled in the art.
  • a person skilled in the art compares 1) the amino acid sequences of a plurality of proteins having the same type of activity (eg, the amino acid sequence of SEQ ID NO: 2 or 4 and the amino acid sequence of other isoprene synthase), and 2) relative The regions that are conserved and the relatively unconserved regions, then 3) from the relatively conserved regions and the relatively unconserved regions, respectively, Areas that can play a role and areas that cannot play an important role in function can be predicted, so that the correlation between structure and function can be recognized. Therefore, those skilled in the art can specify the position of an amino acid residue to which a mutation may be introduced in the amino acid sequence of isoprene synthase.
  • amino acid residue substitution may be a conservative substitution.
  • conservative substitution refers to the replacement of a given amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues with similar side chains are well known in the art.
  • such families include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having uncharged polar side chains (Eg, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), ⁇ -branched side chain Amino acids (eg, threonine, valine, isoleucine), amino acids having aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine), amino acids having side groups containing hydroxyl groups (eg, alcoholic, phenolic) ( Example, serine, thread Nin, tyrosine), and amino acids (e.g.
  • the conservative substitution of amino acids is a substitution between aspartic acid and glutamic acid, a substitution between arginine and lysine and histidine, a substitution between tryptophan and phenylalanine, and between phenylalanine and valine. Or a substitution between leucine, isoleucine and alanine, and a substitution between glycine and alanine.
  • the protein of the present invention may also be a fusion protein linked to a heterologous moiety via a peptide bond.
  • heterogeneous moieties include peptide components that facilitate the purification of the target protein (eg, tag sections such as histidine tag, Strep-tag II, etc .; purification of target proteins such as glutathione-S-transferase, maltose binding protein, etc. ), Peptide components that improve the solubility of the target protein (eg, Nus-tag), peptide components that act as chaperones (eg, trigger factor), peptide components that have other functions (eg, full-length protein or its protein) Some), as well as linkers.
  • tag sections such as histidine tag, Strep-tag II, etc .
  • target proteins such as glutathione-S-transferase, maltose binding protein, etc.
  • Peptide components that improve the solubility of the target protein eg, Nus-tag
  • the proteins of the invention can also be post-translationally modified (eg, glycosylated) proteins, or post-translationally unmodified (eg, non-glycosylated) proteins, depending on the type of host cell in which production of the protein of the invention is desired. There may be. Since the protein of the present invention is derived from the eukaryotic ginkgo, it is considered that it may be post-translationally modified (eg, glycosylated) in nature. In prokaryotes, proteins are not post-translationally modified, and in animal cells, plant cells, insect cells (eg, Sf9 cells), and lower eukaryotes (eg, yeast), the post-translational modification of proteins is very different.
  • Examples of the protein of the present invention as described above include proteins derived from Ginkgo biloba, naturally occurring homologues, or artificially produced mutant proteins.
  • the mutant protein can be obtained, for example, by introducing a mutation into DNA encoding the target protein and producing the mutant protein using the obtained mutant DNA.
  • Examples of the mutagenesis method include site-specific mutagenesis and random mutagenesis treatment (eg, treatment with a mutagen and ultraviolet irradiation).
  • the present invention provides a polynucleotide encoding isoprene synthase.
  • the polynucleotide of the present invention may be DNA or RNA, but is preferably DNA.
  • the polynucleotide of the present invention may be derived from Ginkgo biloba.
  • the polynucleotide of the present invention is not particularly limited as long as it encodes the protein of the present invention. For example, the polynucleotide described below may be used.
  • the polynucleotide of the present invention is: (A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1; and (b) a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, and a start codon at the 5 ′ end
  • a polynucleotide further comprising: The base sequence of SEQ ID NO: 1 encodes the amino acid sequence of SEQ ID NO: 2.
  • nucleotide sequence of SEQ ID NO: 1 the nucleotide sequence consisting of the 1st to 75th nucleotide residues encodes the amino acid sequence of the putative chloroplast transition signal, and the nucleotide sequence consisting of the 76th to 1746th nucleotide residues is Can encode the amino acid sequence of mature isoprene synthase.
  • the base sequence of SEQ ID NO: 1 corresponds to cDNA. This is because the polynucleotide (a) is derived from Eukaryote (plant), Ginkgo biloba.
  • the polynucleotide (a) and the polynucleotides (c) and (e) described below are not naturally occurring polynucleotides. Further, in nature, the base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 is not linked to the start codon. Therefore, the polynucleotide of (b) containing the initiation codon at the 5 ′ end, and the polynucleotides of (d) and (f) described below, even though the polynucleotide encoding the chloroplast translocation signal has been removed Is not a naturally occurring polynucleotide.
  • the base sequence encoding the polynucleotide of (b) is the same as the base sequence of SEQ ID NO: 3.
  • start codon refers to a codon that specifies the start of protein synthesis.
  • start codon include, for example, a codon encoding a methionine residue (eg, AUG), a codon encoding a valine residue (eg, GUG), a codon encoding an isoleucine residue (eg, AUA), and a leucine residue Are codons (eg, UUG), and a codon (eg, AUG) encoding a methionine residue is preferred.
  • nucleotide residue “U” should be used as described above.
  • T is substituted for nucleotide residue “U”. Should be used.
  • the polynucleotide of the present invention is a homologous polynucleotide of the polynucleotide of (a) or (b).
  • homologous polynucleotides include the following: (C) a polynucleotide comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and encoding a protein having isoprene synthesis activity; and (d) 76 in the base sequence of SEQ ID NO: 1
  • the percent identity with the base sequence may be 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more.
  • the polynucleotide of the present invention is an analog polynucleotide of the polynucleotide of (a) or (b).
  • analog polynucleotides include the following: (E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the full-length base sequence of SEQ ID NO: 1 and encodes a protein having isoprene synthesis activity; and (f) SEQ ID NO: 1 And a polynucleotide comprising a nucleotide sequence complementary to a partial nucleotide sequence consisting of nucleotide residues 76 to 1746 in the nucleotide sequence under the stringent conditions, further comprising a start codon at the 5 ′ end, and isoprene A polynucleotide encoding a protein having synthetic activity.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • stringent conditions include hybridization at about 45 ° C. in 6 ⁇ SSC (sodium chloride / sodium citrate), followed by 50 ⁇ 65 ° C. in 0.2 ⁇ SSC, 0.1% SDS. 1 or 2 or more washing
  • the polynucleotide of the invention is a degenerate polynucleotide.
  • degenerate polynucleotides include the following: (G) A degenerate variant of a polynucleotide selected from the group consisting of (a) to (f).
  • the term “degenerate variant” refers to another codon in which at least one codon encoding a given amino acid residue in a polynucleotide before mutation encodes the same amino acid residue. Refers to a polynucleotide variant that has been altered to. Since such a degenerate mutant is a mutant based on a silent mutation, the protein encoded by the degenerate mutant is the same as the protein encoded by the polynucleotide before the mutation.
  • a degenerate variant is a polynucleotide variant in which the codons have been altered to match the codon usage of the host cell into which it is to be introduced.
  • a gene is expressed in a heterologous host cell (eg, a microorganism)
  • the corresponding tRNA molecular species are not sufficiently supplied due to the difference in codon usage, resulting in decreased translation efficiency and / or incorrect translation (eg, translation). Stop) may occur.
  • the low frequency codons shown in Table 2 are known.
  • a degenerate mutant that matches the codon usage of the host cell (eg, microorganism) as described below can be used.
  • the codon encoding one or more amino acid residues selected from the group consisting of arginine residues, glycine residues, isoleucine residues, leucine residues, and proline residues is changed. It may be what was done.
  • the degenerate mutant of the present invention has one or more codons selected from the group consisting of low frequency codons (eg, AGG, AGA, CGG, CGA, GGA, AUA, CUA, and CCC). It may have been changed.
  • the degenerate variant may comprise one or more (eg, 1, 2, 3, 4 or 5) codon changes selected from the group consisting of: i) Change of at least one codon selected from the group consisting of four codons encoding Arg (AGG, AGA, CGG, and CGA) to another codon encoding Arg (CGU or CGC); ii) changing one codon (GGA) encoding Gly to another codon (GGG, GGU, or GGC); iii) changing one codon (AUA) encoding Ile to another codon (AUU, or AUC); iv) changing one codon (CUA) encoding Leu to another codon (UUG, UUA, CUG, CUU, or CUC); and v) one codon (CCC) encoding Pro.
  • codon changes selected from the group consisting of: i) Change of at least one codon selected from the group consisting of four codons encoding Arg (AGG, AGA, CGG
  • nucleotide residue “U” When the degenerate variant of the present invention is RNA, the nucleotide residue “U” should be used as described above. However, when the degenerate variant of the present invention is DNA, the nucleotide residue “U” is substituted. “T” should be used.
  • the number of nucleotide residue mutations for adapting to the codon usage of the host cell is not particularly limited as long as it encodes the same protein before and after the mutation. For example, 1 to 500, 1 to 400, 1 to 300 1 to 200, or 1 to 100.
  • a degenerate variant may include a change from a low frequency codon to a non-low frequency codon (eg, a high frequency codon).
  • a non-low frequency codon eg, a high frequency codon.
  • there are known methods for designing mutants in consideration of not only low-frequency codons but also factors such as suitability of the production strain to the genomic GC content (Alan Villabos et al., Gene Designer: a synthetic). biology tool for constructing artificial DNA segments, BMC Bioinformatics. 2006 Jun 6; 7: 285.), such a method may be used.
  • the above-described mutant can be appropriately prepared according to the type of any host cell into which it can be introduced (for example, a microorganism as described below).
  • a host commonly used for fermentation production of heterologous proteins. It may be made to fit the cell type.
  • host cells widely used for fermentative production of heterologous proteins include any microorganism described below, and bacteria and yeasts are preferred. Examples of such bacteria and yeasts include bacteria belonging to the genus Bacillus such as Bacillus subtilis, bacteria belonging to the genus Corynebacterium such as Corynebacterium glutamicum, and Escherichia coli.
  • Escherichia bacteria such as Escherichia coli
  • Pantoea bacteria such as Pantoea ananatis
  • Enterobacter cerevisiae such as Enterobacter aerogenes (Saccha Omyces cerevisiae) Saccharomyces (Saccharomyces) genus, and the like
  • Schizosaccharomyces pombe Schizosaccharomyces pombe
  • Schizosaccharomyces Schizosaccharomyces such
  • yeasts of the genus include yeasts of the genus. Therefore, consideration of factors such as changing the low frequency codons to non-low frequency codons in such microorganisms (eg, bacteria, yeast) and suitability for genomic GC content is preferable.
  • the present invention provides an expression vector.
  • the expression vector of the present invention contains a polynucleotide encoding the protein of the present invention or the polynucleotide of the present invention.
  • heterologous promoter refers to a promoter other than the natural promoter of the ginkgo beetle-derived isoprene synthase gene.
  • heterologous promoters include promoters of ginkgo bean-derived genes other than ginkgo beetle-derived isoprene synthase gene, promoters derived from other organisms (eg, microorganisms, animals, insects, and plants) other than ginkgo beetle, promoters derived from viruses, and artificial synthesis A promoter is mentioned.
  • heterologous promoter a promoter widely used for heterologous protein production may be used.
  • promoters include PhoA promoter, PhoC promoter, T7 promoter, T5 promoter, T3 promoter, lac promoter, trp promoter, trc promoter, tac promoter, PR promoter, PL promoter, SP6 promoter, arabinose inducible promoter, cold A shock promoter and a tetracycline inducible promoter are mentioned.
  • the expression vector of the present invention may further contain a terminator downstream of the polynucleotide.
  • terminators include T7 terminator, fd phage terminator, T4 terminator, tetracycline resistance gene terminator, and Escherichia coli trpA gene terminator.
  • the expression vector of the present invention may further contain a ribosome binding site (eg, Shine-Dalgarno sequence) upstream of the start codon.
  • a ribosome binding site eg, Shine-Dalgarno sequence
  • the expression vector of the present invention may further contain a polynucleotide encoding a drug resistance gene.
  • drug resistance genes include resistance genes for drugs such as tetracycline, ampicillin, kanamycin, hygromycin, and phosphinothricin.
  • Examples of the expression vector of the present invention include a cell-based vector for expressing a protein in a host and a cell-free vector utilizing a protein translation system.
  • the expression vector can also be a plasmid, viral vector, phage, integrative vector, or artificial chromosome.
  • An integrative vector may be a type of vector that is integrated entirely into the genome of the host cell. Alternatively, the integrative vector may be a vector in which only a part (eg, an expression unit described later) is integrated into the host cell genome.
  • the expression vector may further be a DNA vector or an RNA vector.
  • As the cell-based vector a known expression vector suitable for the host is used.
  • Examples of such vectors include pUC (eg, pUC19, pUC18), pSTV, pBR (eg, pBR322), pHSG (eg, pHSG299, pHSG298, pHSG399, pHSG398), RSF (eg, RSF1010), pACYC (eg, PACYC177, pACYC184), pMW (eg, pMW119, pMW118, pMW219, pMW218), pQE (eg, pQE30), and derivatives thereof.
  • Examples of the cell-free vector include wheat-cell-free protein synthesis vectors such as an expression vector having a T7 or T3 promoter and a pEU-based plasmid having an SP6 promoter.
  • the transformant of the present invention is a host cell capable of producing the protein of the present invention or expressing the polynucleotide of the present invention to produce the protein.
  • the transformant of the present invention is a host cell containing an expression unit containing the polynucleotide of the present invention.
  • the expression unit containing the polynucleotide of the present invention refers to the expression of the protein encoded by the polynucleotide of the present invention, including the polynucleotide of the present invention and a promoter operably linked thereto (eg, homologous promoter, heterologous promoter). A unit that makes possible.
  • Examples of the host cell containing the expression unit containing the polynucleotide of the present invention include a host cell containing the expression vector of the present invention.
  • the host cell is not particularly limited as long as it can express the protein of the present invention.
  • the host cell may be homologous or heterologous to the protein of the present invention and the polynucleotide of the present invention, but is preferably heterologous.
  • the host cell may also be homologous or heterologous to the promoter, but is preferably heterologous.
  • Examples of host cells include animal cells, plant cells, insect cells, and microorganisms, with microorganisms being preferred.
  • Examples of the microorganism include bacteria such as bacteria belonging to the family Enterobacteriaceae and fungi.
  • the bacterium may be a gram positive bacterium or a gram negative bacterium.
  • Gram-positive bacteria examples include Bacillus bacteria, Listeria bacteria, Staphylococcus bacteria, Streptococcus bacteria, Enterococcus bacteria, Clostridium bacteria, Clostridium bacteria, and Clostridium bacteria.
  • Examples include bacteria belonging to the genus Corynebacterium and bacteria belonging to the genus Streptomyces, and bacteria belonging to the genus Bacillus and bacteria belonging to the genus Corynebacterium are preferred.
  • Bacillus bacteria include Bacillus subtilis, Bacillus anthracis, Bacillus cereus, and the like, and Bacillus subtilis is more preferable.
  • bacteria belonging to the genus Corynebacterium include Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium, and Corynebacterium. Is more preferable.
  • Examples of the gram-negative bacteria include Escherichia bacteria, Pantoea bacteria, Salmonella bacteria, Vibrio bacteria, Serratia bacteria, Enterobacter bacteria, and the like. Among them, Escherichia bacteria, Pantoea bacteria, Enterobacter bacteria are preferable. As the bacterium belonging to the genus Escherichia, Escherichia coli is preferable. Examples of the genus Pantoea include Pantoea ananatis, Pantoea stewartii, Pantoea agglomerans, Pantoea citrea, and Pantoea citrea Pantoea ananatis) and Pantoea citrea are preferred.
  • Pantoea bacterium strains exemplified in European Patent Application Publication No. 09522121 may be used.
  • Pantoea ananatis AJ13355 strain for example, Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis AJ13356 strain (FERM BP-6615), and Pantoea disclosed in European Patent Application No. 0952212 are disclosed.
  • Ananatis SC17 (0) strain The Pantoea Ananatis SC17 (0) strain was established on September 21, 2005, in the Russian National Collection of Industrial Microorganisms (VKPM), GNII Genetika (adress: 11).
  • Enterobacter bacteria include Enterobacter agglomerans, Enterobacter aerogenes, and the like, with Enterobacter aerogenes being preferred.
  • Enterobacter bacterium a strain exemplified in European Patent Application Publication No. 09522121 may be used.
  • Enterobacter agglomerans ATCC 12287 strain Enterobacter aerogenes ATCC 13048 strain
  • Enterobacter aerogenes NBRC 12010 strain (Sakai Set et al., Biotechnol. Bioeng., Vol. 98, pp.
  • Enterobacter aerogenes AJ11037 (FERM BP-10955).
  • Enterobacter aerogenes AJ110737 is an independent administrative agency, National Institute of Advanced Industrial Science and Technology (currently National Institute of Advanced Industrial Science and Technology), Patent Biological Deposit Center (Tsukuba, Ibaraki, 305-8856, Japan) Deposited as FERM P-21348 in 1st, 1-Chome, 1-City, City East, and transferred to an international deposit based on the Budapest Treaty on March 13, 2008, and received the FERM BP-10955 receipt number. .
  • fungi examples include the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, the genus Trichoderma, the genus Aspergillus, the genus Aspergillus, Preferred are microorganisms of the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, or the genus Trichoderma.
  • Saccharomyces The Saccharomyces (Saccharomyces) microorganisms of the genus, Saccharomyces carlsbergensis (Saccharomyces carlsbergensis), Saccharomyces cerevisiae (Saccharomyces cerevisiae), Saccharomyces Deer statics (Saccharomyces diastaticus), Saccharomyces Dougurashi (Saccharomyces douglasii), Saccharomyces Kuruibera (Saccharomyces reteyveri), Saccharomyces norbensis, Saccharomyces obiformis, and Saccharomyces s. -Saccharomyces cerevisiae is preferred.
  • Schizosaccharomyces As a microorganism belonging to the genus Schizosaccharomyces, Schizosaccharomyces pombe is preferable. As a microorganism belonging to the genus Yarrowia, Yarrowia lipolytica is preferable.
  • the host used in the present invention includes dimethylallyl diphosphate by the mevalonate (MVA) pathway and / or methylerythritol phosphate (MEP) pathway involved in the synthesis of dimethylallyl diphosphate which is a substrate for isoprene synthase.
  • MVA mevalonate
  • MEP methylerythritol phosphate
  • DMAPP methylerythritol phosphate
  • Escherichia bacteria such as Escherichia coli may inherently have the ability to synthesize dimethylallyl diphosphate through the methylerythritol phosphate pathway.
  • Pantoea bacteria such as Pantoea ananatis may inherently have the ability to synthesize dimethylallyl diphosphate by the mevalonate pathway.
  • DMAPP dimethylallyl diphosphate
  • MVA mevalonic acid pathway
  • MEP methylerythritol phosphate
  • the pathway for synthesizing dimethylallyl diphosphate (DMAPP), which is a substrate for isoprene synthase may be further enhanced.
  • an isopentenyl diphosphate delta isomerase expression vector having the ability to convert isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) was introduced into the transformant of the present invention. May be.
  • an expression vector for one or more enzymes involved in the mevalonate pathway and / or methylerythritol phosphate pathway associated with the production of IPP and / or DMAPP may be introduced into the transformant of the present invention.
  • Such enzyme expression vectors may be plasmids or integrative vectors.
  • Such enzyme expression vectors may also be DNA vectors or RNA vectors.
  • Such an enzyme expression vector further expresses a plurality of (eg, 1, 2, 3 or 4 or more) enzymes involved in the mevalonate pathway and / or the methylerythritol phosphate pathway.
  • it may be an expression vector for polycistronic mRNA.
  • the origin of one or more enzymes involved in the mevalonate pathway and / or the methylerythritol phosphate pathway may be homologous or heterologous to the host.
  • the host is a bacterium as described above (eg, Escherichia coli), and mevalonic acid At least one enzyme involved in the pathway may be derived from a fungus (eg, Saccharomyces cerevisiae).
  • a fungus eg, Saccharomyces cerevisiae
  • one or more expression vectors introduced into the host are involved in the mevalonate pathway (eg, 1 type, 2 types). (3 types or 4 types or more) of enzymes may be expressed.
  • Idi1p ACCESSION ID NP_015208
  • AT3G02780 ACCESSION ID NP_186927
  • AT5G16440 ACCESSION ID NP_197165N, ID_197165N, P_197165
  • Examples of enzymes involved in the mevalonate (MVA) pathway include, for example, mevalonate kinase (EC: 2.7.1.36; Example 1, Erg12p, ACCESSION ID NP — 013935; Example 2, AT5G27450, ACCESSION ID NP — 001190411), phosphomevalonic acid Kinase (EC: 2.7.4.2; Example 1, Erg8p, ACCESSION ID NP_013947; Example 2, AT1G31910, ACCESSION ID NP_001185124), diphosphomevalonate decarboxylase (EC: 4.1.1.33; Example 1, Mvd1p , ACCESSION ID NP_014441; Example 2, AT2G38700, ACCESSION ID NP_181404; Example 3, AT3G54250, A CESSION ID NP_566995), acetyl-CoA-C-acetyltransferase (EC: 2.3.1.9; Example 1, Erg10p,
  • Examples of enzymes involved in the methylerythritol phosphate (MEP) pathway include 1-deoxy-D-xylulose-5-phosphate synthase (EC: 2.2.1.7, Example 1, Dxs, ACCESSION ID NP_414954; Example 2, AT3G21500, ACCESSION ID NP_566686; Example 3, AT4G15560, ACCESSION ID NP_193291; Example 4, AT5G11380, ACCESSION ID NP_001078570), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (EC: 1.1.
  • Example 1 Dxr, ACCESSION ID NP_414715; Example 2, AT5G62790, ACCESSION ID NP_001190600), 4 Diphosphocytidyl-2-C-methyl-D-erythritol synthase (EC: 2.7.7.60; Example 1, IspD, ACCESSION ID NP_417227; Example 2, AT2G02500, ACCESSION ID NP_565286), 4-diphosphocytidyl-2-C- Methyl-D-erythritol kinase (EC: 2.7.1.148; Example 1, IspE, ACCESSION ID NP_415726; Example 2, AT2G26930, ACCESSION ID NP_180261), 2-C-methyl-D-erythritol-2,4- Cycloniphosphate synthase (EC: 4.6.1.12; Example 1, IspF, ACCESSION ID NP_417226;
  • the introduction (transformation) of an expression vector into which a gene has been incorporated into a host can be performed using a conventionally known method.
  • a competent cell method using microbial cells treated with calcium, an electroporation method, and the like can be mentioned.
  • a phage vector may be used to infect and introduce into a microbial cell.
  • a gene encoding a mevalonate pathway or methylerythritol phosphate pathway enzyme that synthesizes dimethylallyl diphosphate, which is a substrate for isoprene synthase may be introduced.
  • Such enzymes include 1-deoxy-D-xylose-5-phosphate synthase that converts pyruvate and D-glyceraldehyde-3-phosphate to 1-deoxy-D-xylose-5-phosphate; isopentenyl Examples include isopentyl diphosphate isomerase that converts diphosphate to dimethylallyl diphosphate.
  • genomic regions include, for example, the crt operon (encoding isoprenoid biosynthetic pathways such as polyprenyl synthetase, beta-carotene hydroxylase, phytoene synthase, phytoene dehydrogenase, lycopene cyclase), amp gene (eg, ampC gene, Or ampH gene).
  • the destruction of the crt operon can be advantageous because it can suppress the production of isoprenoid compounds.
  • the disruption of the amp gene can be advantageous as an ampicillin resistance gene (drug resistance selection marker) becomes available.
  • the term “disruption” for a gene means that the gene coding region has been modified to reduce or completely eliminate the function or expression of the protein encoded by the gene.
  • the term “disruption” for an operon means that the genomic region corresponding to the operon has been modified to reduce or completely eliminate the function of the operon.
  • the expression of a protein encoded by a gene operably linked to the operon can be improved.
  • modifications include, but are not limited to, insertions, deletions and exchanges, for example.
  • the genomic region may be destroyed, for example, by introducing the above-described gene (eg, isoprene synthase gene) into the genomic region according to a known gene targeting method.
  • Isoprene synthase may be purified from the transformant of the present invention.
  • the purification method include a salting-out method and a method using various chromatographies.
  • the isoprene synthase can be purified by an affinity column using a metal such as nickel or a substance having affinity for the heterogeneous moiety.
  • the purity of the protein of the present invention can be increased by appropriately combining methods such as ion exchange chromatography and gel filtration chromatography.
  • the present invention provides a method for producing an isoprene monomer comprising producing an isoprene monomer from dimethylallyl diphosphate (DMAPP) in the presence of the protein of the present invention.
  • DMAPP dimethylallyl diphosphate
  • the method for producing the isoprene monomer of the present invention can be performed using the protein itself of the present invention.
  • a natural protein or a recombinant protein can be used as the protein of the present invention.
  • the recombinant protein can be obtained, for example, using a cell-free vector or from the transformant of the present invention.
  • the protein of the present invention can be used as an unpurified, crudely purified or purified protein.
  • a buffer solution eg, pH 6.0 to 9.0
  • DMAPP substrate
  • Mg ions Mg ions
  • the Mg ion (Mg 2+ ) concentration is not particularly limited, but the protein of the present invention can exhibit high activity at a low Mg ion concentration, and thus, for example, the reaction is performed at a Mg ion concentration of 15 mM or less, 12 mM or less, or 10 mM or less. It may be broken.
  • the method for producing an isoprene monomer of the present invention can be performed using the transformant of the present invention. Since the transformant of the present invention can produce isoprene monomer mainly as an outgas from a carbon source in the medium, the isoprene monomer can be recovered by collecting the gas generated by the transformant. .
  • Dimethylallyl diphosphate which is a raw material for the isoprene monomer, is synthesized by the mevalonate pathway or the methyl erythritol phosphate pathway in the host, using the carbon source in the medium as the basis. Alternatively, dimethylallyl diphosphate may be added to the medium.
  • the medium for culturing the transformant of the present invention preferably contains a carbon source for conversion to mevalonic acid or isoprene.
  • the carbon source include carbohydrates such as monosaccharides, disaccharides, oligosaccharides and polysaccharides; invert sugar obtained by hydrolyzing sucrose; glycerol; 1 carbon number such as methanol, formaldehyde, formate, carbon monoxide and carbon dioxide Compounds (hereinafter referred to as C1 compounds); oils such as corn oil, palm oil and soybean oil; acetates; animal fats; animal oils; fatty acids such as saturated fatty acids and unsaturated fatty acids; lipids; phospholipids; glycerolipids; Glycerin fatty acid esters such as glyceride, diglyceride, and the like; polypeptides such as microbial proteins and plant proteins; renewable carbon sources such as hydrolyzed biomass carbon sources; yeast extracts; or combinations thereof.
  • inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate
  • organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like
  • it is desirable to contain an appropriate amount of a required substance such as vitamin B1, L-homoserine or a yeast extract.
  • a small amount of potassium phosphate, magnesium sulfate, iron ion, manganese ion or the like is added as necessary.
  • the medium used in the present invention may be a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic ions, and other organic trace components as required.
  • monosaccharides include trioses such as ketotriose (dihydroxyacetone) and aldtriose (glyceraldehyde); tetroses such as ketotetrose (erythrulose) and aldetetrose (erythrose and threose); ketopentose (ribulose and xylulose) Pentose such as ribose, arabinose, xylose, lyxose), deoxy sugar (deoxyribose); ketohexose (psicose, fructose, sorbose, tagatose), aldohexose (allose, altrose, glucose, mannose, gulose, idose, galactose, talose ), Deoxy sugars (fucose, fucrose, rhamnose) and other hexoses; heptose such as sedoheptulose; Scan, galactose,
  • Examples of the disaccharide include sucrose, lactose, maltose, trehalose, tunulose, and cellobiose, and sucrose and lactose are preferable.
  • Examples of oligosaccharides include trisaccharides such as raffinose, melezitose, and maltotriose; tetrasaccharides such as acarbose and stachyose; and other oligosaccharides such as fructooligosaccharide (FOS), galactooligosaccharide (GOS), and mannan oligosaccharide (MOS).
  • Examples of the polysaccharide include glycogen, starch (amylose, amylopectin), cellulose, dextrin, and glucan ( ⁇ 1,3-glucan), and starch and cellulose are preferable.
  • Microbial proteins include polypeptides derived from yeast or bacteria.
  • plant proteins include polypeptides derived from soybean, corn, canola, jatropha, palm, peanut, sunflower, coconut, mustard, cottonseed, palm kernel oil, olive, safflower, sesame and flaxseed.
  • lipids include substances containing one or more saturated or unsaturated fatty acids of C4 or higher.
  • the oil contains one or more saturated or unsaturated fatty acids of C4 or higher, and is preferably a lipid that is liquid at room temperature.
  • fatty acids containing one or more C2 to C22 fatty acids are preferred, and those containing C12 fatty acids, C14 fatty acids, C16 fatty acids, C18 fatty acids, C20 fatty acids and C22 fatty acids are more preferred.
  • the carbon source include salts of these fatty acids, derivatives, and salts of derivatives.
  • the salt include lithium salt, potassium salt, sodium salt and the like.
  • examples of the carbon source include lipids, oils, fats and oils, fatty acids, combinations of glycerin fatty acid esters and carbohydrates such as glucose.
  • Biomass carbon sources include cellulosic substrates such as wood, paper, and pulp waste, foliate plants, and pulp; parts of plants such as stalks, grains, roots, and tubers.
  • Examples of plants used as biomass carbon sources include corn, wheat, rye, sorghum, triticate, rice, millet, barley, cassava, peas and other legumes, potatoes, sweet potatoes, bananas, sugar cane, tapioca and the like.
  • pretreatment is preferably performed.
  • the pretreatment include enzymatic pretreatment, chemical pretreatment, and a combination of enzymatic pretreatment and chemical pretreatment. It is preferred to hydrolyze all or part of the renewable carbon source before adding it to the cell culture medium.
  • examples of the carbon source include yeast extract or a combination of yeast extract and another carbon source such as glucose, and a combination of yeast extract and C1 compound such as carbon dioxide or methanol is preferable.
  • cells are preferably cultured in a standard medium containing physiological saline and a nutrient source.
  • the culture medium is not particularly limited, and examples thereof include commercially available conventional culture media such as Luria Bertani (LB) broth, Sabouraud Dextrose (SD) broth, and Yeast medium (YM) broth.
  • LB Luria Bertani
  • SD Sabouraud Dextrose
  • YM Yeast medium
  • the cell culture medium includes suitable minerals, salts, cofactors, buffers, and ingredients known to those skilled in the art to be suitable for cultivation or to promote isoprene production. It is desirable.
  • the culture conditions for the transformant of the present invention are not particularly limited as long as the target protein can be expressed, and standard cell culture conditions can be used.
  • the culture temperature is preferably 20 ° C. to 37 ° C.
  • the gas composition is preferably a CO 2 concentration of about 6% to about 84%, and a pH of about 5 to about 9. Further, it is preferable to perform the culture under aerobic, anoxic, or anaerobic conditions depending on the properties of the host.
  • Examples of the culture method include a method of culturing the transformant using a known fermentation method such as a batch culture method, a fed-batch culture method, or a continuous culture method.
  • the batch culture method is a method in which a medium composition is charged at the start of fermentation, a host is inoculated into the medium, and the transformant is cultured while controlling pH, oxygen concentration, and the like.
  • the transformant goes from a gentle induction phase to a logarithmic growth phase and finally to a stationary phase where the growth rate decreases or stops. Isoprene is produced by transformants in the logarithmic growth phase or stationary phase.
  • the fed-batch culture method is a method in which a carbon source is gradually added as the fermentation process proceeds in addition to the batch method described above.
  • the fed-batch culture method is effective when the metabolism of the transformant tends to be suppressed by catabolite suppression and it is preferable to limit the amount of the carbon source in the medium.
  • the fed-batch culture method can be performed using a limited or excessive amount of a carbon source such as glucose.
  • the continuous culture method is a culture method in which a predetermined amount of culture medium is continuously supplied to a bioreactor at a constant rate, and at the same time, the same amount of culture medium is withdrawn.
  • the culture can be kept at a constant high density, and the transformant in the culture solution is mainly in the logarithmic growth phase.
  • an inducing agent such as IPTG (isopropyl- ⁇ -thiogalactopyranoside) is added to the culture solution to express the target protein. May be induced.
  • Examples of a method for evaluating the production amount of isoprene monomer obtained by culturing the transformant of the present invention include a method in which a gas phase is collected by a headspace method and the gas phase is analyzed by a gas chromatography method. Specifically, the isoprene monomer in the headspace when the culture medium containing the transformant is cultured while shaking in a sealed vial is analyzed using standard gas chromatography. Next, using the calibration curve, the area obtained from the gas chromatography measurement curve is converted into the isoprene monomer production amount of the transformant.
  • gas stripping As a method for recovering the isoprene monomer obtained by culturing the transformant of the present invention, gas stripping, fractional distillation, or desorption of the isoprene monomer adsorbed on the solid phase from the solid phase by heat or vacuum, or Examples include extraction with a solvent.
  • isoprene gas is continuously removed from the outgas.
  • Such isoprene gas can be removed by various methods, such as adsorption to a solid phase, separation into a liquid phase, or a method of directly condensing isoprene gas.
  • the recovery of isoprene monomer can be performed in one stage or in multiple stages.
  • the separation of the isoprene monomer from the outgas and the conversion of the isoprene monomer into a liquid phase are simultaneously performed.
  • Isoprene monomer can also be condensed directly from the outgas into a liquid phase.
  • the separation of the isoprene monomer from the off-gas and the conversion of the isoprene monomer into a liquid phase are sequentially performed.
  • a method in which isoprene monomer is adsorbed on a solid phase and extracted from the solid phase with a solvent can be mentioned.
  • the method for recovering the isoprene monomer may include a step of purifying the isoprene monomer.
  • the purification step include separation from a liquid phase extract by distillation and various chromatographies.
  • the present invention also provides a method for producing an isoprene polymer.
  • the method for producing the isoprene polymer of the present invention includes the following (I) and (II): (I) producing an isoprene monomer by the method of the present invention; (II) polymerizing isoprene monomers to produce isoprene polymers.
  • Step (I) can be performed in the same manner as the above-described method for producing the isoprene monomer of the present invention.
  • the polymerization of the isoprene monomer in the step (II) can be performed by any method known in the art (eg, organic chemical synthesis method).
  • Example 1 P.I. Construction of ananatis AG10265 1-1) Construction of pMW-Para-mvaES-Trp 1-1-1) Chemical synthesis of enterococcus faecalis mvaE gene And the amino acid sequence are already known (base sequence ACCESSION numbers: AF29009.1, (1479..3890), amino acid sequence ACCESSION number: AAG02439) (J. Bacteriol. 182 (15), 4319-4327 (2000). )). The amino acid sequence of Enterococcus faecalis-derived mvaE protein and the nucleotide sequence of the gene are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively. The mvaE gene was transformed into E. coli. E.
  • coli for efficient expression in E. coli.
  • An mvaE gene optimized for E. coli codon usage was designed and named EFmvaE. This base sequence is shown in SEQ ID NO: 7.
  • the mvaE gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaE.
  • coli An mvaS gene optimized for E. coli codon usage was designed and named EFmvaS. This base sequence is shown in SEQ ID NO: 10. The mvaS gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaS.
  • arabinose-inducible mevalonate pathway upstream gene expression vector was constructed by the following procedure. E. coli by PCR using the plasmid pKD46 as a template and the synthetic oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 12 as primers. A PCR fragment containing Para comprising the araC and araBAD promoter sequences from E. coli was obtained. A PCR fragment containing the EFmvaE gene was obtained by PCR using the plasmid pUC57-EFmvaE as a template and the synthetic oligonucleotides shown in SEQ ID NO: 13 and SEQ ID NO: 14 as primers.
  • a PCR fragment containing the EFmvaS gene was obtained by PCR using the plasmid pUC57-EFmvaS as a template and the synthetic oligonucleotides shown in SEQ ID NO: 15 and SEQ ID NO: 16 as primers.
  • a PCR fragment containing the Ttrp sequence was obtained by PCR using the plasmid pSTV-Ptac-Ttrp as a template and the synthetic oligonucleotides shown in SEQ ID NO: 17 and SEQ ID NO: 18 as primers.
  • Prime Star polymerase (manufactured by Takara Bio Inc.) was used for PCR to obtain these four PCR fragments.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed.
  • Synthetic oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 14 using a PCR product containing purified Para and a PCR product containing EFmvaE gene as a template, and a PCR product containing purified EFmvaS gene and a PCR product containing Ttrp as a template.
  • PCR was performed using 15 and the synthetic oligonucleotide shown in SEQ ID NO: 18 as primers.
  • Plasmid pMW219 (Nippon Gene) was digested with SmaI according to a conventional method.
  • a PCR product containing pMW219 and purified Para and EFmvaE genes, and a PCR product containing EFmvaS gene and Ttrp after SmaI digestion were ligated using In-Fusion HD Cloning Kit (Clontech).
  • the resulting plasmid was named pMW-Para-mvaES-TTrp.
  • PCR using pTWV-dmd-yidi (see Example 7-2 of WO2013 / 179722A1) as a template and a primer comprising the nucleotide sequences of SEQ ID NOS: 19 to 22 and diphosphomevalonate decarboxylase and isopentenyl diphosphate delta isomerase
  • an expression plasmid was constructed in which four enzyme genes were arranged in a linear form by cloning into the pTrcHis2B vector by the In-fusion cloning method.
  • PrimeSTAR HS DNA polymerase sold by Takara Bio Inc.
  • PCR enzyme 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) ⁇ 30 cycles
  • the reaction was conducted at 72 ° C. for 10 minutes.
  • the PCR fragment was inserted into the pTrcHis2B vector treated with restriction enzymes NcoI and PstI by the in-fusion cloning method to construct an expression vector.
  • E. E. coli JM109 was transformed and a clone having the target sequence length was selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the constructed expression vector was named pTrc-KKDyI ( ⁇ ).
  • the base sequence of pTrc-KKDyI ( ⁇ ) is shown in SEQ ID NO: 23.
  • pTrc-KKDyI-ispS (K) in which IspS (K) was added to the obtained pTrc-KKDyI ( ⁇ ) (SEQ ID NO: 23) was performed by the following procedure.
  • pTrc-KKDyI ( ⁇ ) was digested with the restriction enzyme PstI (Takara Bio Inc.) to obtain pTrc-KKDyI ( ⁇ ) / PstI.
  • PCR was carried out using Prime Star Polymerase (manufactured by Takara Bio Inc.) using pUC57-ispSK as a template, pTrcKKDyIkSS_6083-10-1 (SEQ ID NO: 24) and pTrcKKDyIkSA_6083-10-2 (SEQ ID NO: 25) as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and the reaction was carried out for 30 cycles of 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds. As a result, a PCR product containing the IspSK gene was obtained.
  • the MVK gene was transformed into E. coli.
  • E. coli for efficient expression in E. coli.
  • An MVK gene optimized for E. coli codon usage was designed and named Mmamvk.
  • the base sequence of Mmamvk is shown in SEQ ID NO: 29.
  • the Mmamvk gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-Mmamvk.
  • a plasmid for expressing the IspSK gene and the Mmamvk gene in E. coli was constructed by the following procedure. PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-IspSK as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 30 and SEQ ID NO: 31 as primers. The reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C.
  • PCR product containing the IspSK gene was obtained.
  • pSTV28-Ptac-Ttrp was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 32 and SEQ ID NO: 33 as a primer.
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 210 seconds were performed.
  • PCR product containing pSTV28-Ptac-Ttrp was obtained. Thereafter, the purified IspSK gene fragment and the pSTV28-Ptac-Ttrp PCR product were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for expressing the IspSK gene was named pSTV28-Ptac-IspSK. Next, PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-Mmamvk as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NOs: 34 and 35 as primers.
  • Prime Star polymerase manufactured by Takara Bio Inc.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing the Mmamvk gene was obtained.
  • pSTV28-Ptac-IspSK was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) with a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 36 and SEQ ID NO: 37 as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C.
  • the amino acid sequence of MVK protein derived from Methanosaeta concilii and the base sequence of the gene are shown in SEQ ID NO: 38 and SEQ ID NO: 39, respectively.
  • the MVK gene was transformed into E. coli.
  • E. coli for efficient expression in E. coli.
  • An MVK gene optimized for the codon usage of E. coli was designed and named Mclmvk.
  • the base sequence of Mclmvk is shown in SEQ ID NO: 40.
  • the Mclmvk gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-Mclmvk.
  • PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-Mclmvk as a template and a synthetic oligonucleotide consisting of base sequences of Mcl_mvk_N (SEQ ID NO: 41) and Mcl_mvk_C (SEQ ID NO: 42) as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing the Mclmvk gene was obtained.
  • Prime Star Polymerase (manufactured by Takara Bio Inc.) was prepared using pMW219-Ptac-Ttrp (see WO20133066964A1), synthetic oligonucleotide consisting of the base sequences of PtTt219f (SEQ ID NO: 43) and PtTt219r (SEQ ID NO: 44) as primers. PCR was performed. The reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed.
  • a PCR product containing pMW219-Ptac-Ttrp was obtained. Thereafter, the purified Mclmvk gene and the PCR product of pMW219-Ptac-Trp were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for expression of Mclmvk gene was named pMW-Ptac-Mclmvk-Ttrp.
  • the KpnI-SalI fragment of pMW-Para-mvaES-Ttrp was cloned into the SphI-SalI recognition site of pAH162- ⁇ attL-TcR- ⁇ attR.
  • E.I. E. coli under the control of the Para Para promoter and repressor gene araC.
  • the pAH162-Para-mvaES plasmid carrying the faecalis-derived mvaES operon was constructed (FIG. 1).
  • a BglII-EcoRI fragment of pSTV28-Ptac-ispS-Mamvk containing the ispS (M) and mvk (M.mazei) genes under the control of Ptac is recognized by the BamHI-Ecl136II site of the integrating vector pAH162- ⁇ attL-TcR- ⁇ attR. Subcloned into. The resulting plasmid pAH162-Ptac-ispS (M) -mvk (Mma) is shown in FIG.
  • the pMWattphi plasmid (Minaeva NI et al., BMC Biotechnol. 2008; 8:63) was used as a template in these reactions.
  • the resulting integrants were named SC17 (0) ⁇ ampC :: attLphi80-kan-attRphi80, SC17 (0) ⁇ amph :: attLphi80-kan-attRphi80, and SC17 (0) ⁇ crt :: attLphi80-kan-attRphi80.
  • Oligonucleotides 7 and 8, 9 and 10, and 11 and 12 were converted to SC17 (0) ⁇ ampC :: attLphi80-kan-attRphi80, SC17 (0) ⁇ ampHpH :: attLphi80-kan-attRphi80, and SC17, respectively.
  • (0) ⁇ crt :: attLphi80-kan-attRphi80 strain was used for verification by PCR.
  • the obtained SC17 (0) ⁇ ampC :: pAH162-KKDyI-ispS (K) strain was obtained by following the procedure described previously (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Using the pMWintxis-cat helper plasmid carrying the gene, the vector portion of pAH162-KKDyI-ispS (K) was cured. As a result, an SC17 (0) ⁇ ampC :: KKDyI-ispS (K) strain was obtained. Oligonucleotides 7 and 15 (Table 3) were used for PCR verification of kanamycin sensitive derivatives. The construction of SC17 (0) ⁇ ampC :: KKDyI-ispS (K) is shown in FIG. 4C.
  • Genomic DNA isolated from the SC17 (0) ⁇ amph :: attLphi80-kan-attRphi80 strain using the GeneElute bacterial genomic DNA kit (Sigma) was previously reported (Katashkina JI et al., BMC Mol Biol. 2009; 10: According to the method of chromosome electroporation of 34), the SC17 (0) ⁇ ampC :: KKDyI-ispS (K) strain was electroporated. Transfer of the ⁇ ampH :: attLphi80-kan-attRphi80 mutation was confirmed by PCR using primers 9 and 10.
  • the kanamycin resistance marker was removed from the obtained strain using a phi80 Int / Xis-dependent method (Andrewa IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60).
  • the ⁇ ampC :: KKDyI-ispS (K) variant was verified by PCR using primers 7 and 15, and then SC17 (0) ⁇ ampC :: KKDyI-ispS (K) ⁇ amppH :: attBphi80 A stock was selected.
  • the pAH162-Para-mvaES plasmid was transformed into SC17 (0) ⁇ ampC :: KKDyI-ispS using the pAH123-cat helper plasmid (Andreweva IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60).
  • K Incorporated into ⁇ ampH :: attBphi80. Oligonucleotides 13 and 9 and oligonucleotides 14 and 10 (Table 3) were used for PCR verification of the resulting integrants.
  • the pAH162-Ptac-ispS (M) -mvk (Mma) plasmid described in 1-5) was prepared using the protocol (Andrewa IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55- 60) was used to integrate into the genome of SC17 (0) ⁇ crt :: attBphi80. Plasmid integration was confirmed by polymerase chain reaction using primers 11 and 13 and 12 and 14.
  • the constructed ⁇ crt :: pAH123-Ptac-mvk (M.palladicola) chromosomal variant was transformed into ISP3-S via electroporation of genomic DNA isolated from SC17 (0) ⁇ crt :: pAH162-Ptac-Mclmvk. Strain [see 1-7].
  • the resulting integrant was designated as AG10265 (P.
  • Example 2 Preparation of isoprene synthase expression plasmid derived from each plant species 2-1) Pueraria montana var. Chemical synthesis of isobarene synthase from Lovata montana var. The base sequence and amino acid sequence of isoprene synthase from Lobata are already known (ACCESSION: AAQ84170: P. montana var. lobata (kudzu) isoprene synthase (IspS)). The IspS gene was transformed into E. coli. E. coli for efficient expression in intestinal bacteria such as E. coli. An IspS gene that was optimized for E.
  • IspSK coli codon usage and further cleaved from the chloroplast translocation signal was designed and named IspSK.
  • the IspSK gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-IspSK.
  • the sequences of the IspSK gene and plasmid pUC57-IspSM are the same as those disclosed in WO2013 / 179722A1.
  • IspSU chloroplast translocation signal cleaved (however, having a methionine residue at the N-terminus) was named IspSU.
  • the base sequence of IspSU is shown in SEQ ID NO: 62.
  • Each IspSU gene was chemically synthesized and then cloned into pUC57 (manufactured by GenScript). The resulting plasmid was named pUC57-IspSU.
  • a DNA fragment (Ptac-Ttrp) having a BamHI site at the 3 ′ end was chemically synthesized.
  • the obtained Ptac-Ttrp DNA fragment was digested with KpnI and BamHI, and similarly ligated with pSTV28 (manufactured by Takara Bio Inc.) digested with KpnI and BamHI by a ligation reaction with DNA ligase.
  • the resulting plasmid was named pSTV28-Ptac-Ttrp.
  • the expression of the IspS gene can be amplified by cloning the IspS gene downstream of Ptac.
  • pSTV28-Ptac-Ttrp is the same as that disclosed in WO2013 / 179722A1.
  • IspS gene expression plasmid derived from each plant species Plasmids for expressing the IspSK gene, IspSM gene, and IspSU) gene in intestinal bacteria such as E. coli were constructed by the following procedure. Using pUC57-IspSK as a template, a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 63 and SEQ ID NO: 64, using pUC57-IspSM as a template, a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 65 and SEQ ID NO: 66, and further pUC57- PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using IspSU as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 67 and SEQ ID NO: 68 as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds were performed.
  • a PCR product containing an IspSK gene, an IspSM gene, and an IspSU gene was obtained.
  • pSTV28-Ptac-Ttrp was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 69 and SEQ ID NO: 70 as a primer.
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 210 seconds were performed. As a result, a PCR product containing pSTV28-Ptac-Ttrp was obtained. Thereafter, the purified IspSK gene, IspSM gene, and IspSU gene gene fragment and the PCR product of pSTV28-Ptac-Ttp were ligated using In-Fusion HD Cloning Kit (Clontech).
  • the resulting IspSK gene expression plasmid was named pSTV28-Ptac-IspSK
  • the IspSM gene expression plasmid was named pSTV28-Ptac-IspSM
  • the IspSU gene expression plasmid was named pSTV28-Ptac-IspSU.
  • the plasmids pSTV28-Ptac-IspSK and STV28-Ptac-IspSM are the same as those disclosed in WO2013 / 179722A1.
  • Example 3 Production of isoprene monomer using Pantoea ananatis 3-1) Construction of strain An isoprene-producing bacterium in which isoprene synthase derived from Kudzu, Mucuna and Ginkgo biloba was introduced into the constructed AG10265 according to a conventional method (Table) 4).
  • the isoprene concentration in the head space of the vial was measured by gas chromatography.
  • the OD value was measured at 600 nm with a spectrophotometer (HITACHI U-2900).
  • Table 6 shows the isoprene concentration per OD at the end of the culture of each strain.
  • Headspace Sampler (Turbo Matrix 40 manufactured by Perkin Elmer) Vial insulation temperature 40 ° C Vial incubation time 30 min Pressurization time 3.0min Injection time 0.02min Needle temperature 70 °C Transfer temperature 80 °C Carrier gas pressure (high purity helium) 124kPa
  • Reagent isoprene (specific gravity 0.681) was diluted 10, 100, 1000, 10000, and 100,000 times with cooled methanol to prepare a standard solution for addition. Thereafter, 1 ⁇ L of each standard solution for addition was added to a headspace vial containing 1 mL of water to prepare a standard sample.
  • the above strain expresses a combination of IspSK introduced in one copy into the production bacterial genome and any one isoprene synthase (IspSM, IspSK, or IspSU) introduced as a plasmid.
  • IspSM isoprene synthase
  • IspSU isoprene synthase
  • Example 4 Comparison of Magnesium Ion (Mg Ion) Concentration Dependence of Isoprene Synthesis Activity
  • the preparation method of the existing species Mucuna-derived isoprene synthase IspS (IspSM) is as described in the prior patent (Patent Document: WO2013 / 179722A1). is there.
  • Patent Document: WO2013 / 179722A1 a method for preparing the ginkgo isoprene synthase IspS (IspSU) will be described.
  • IspSU isoprene synthase
  • the DNA fragment encoding IspSU was amplified by PCR using pUC57-IspSU (manufactured by Genescript) as a template and the synthetic oligonucleotides shown in SEQ ID NO: 73 and SEQ ID NO: 74 as primers.
  • PrimeSTAR HS manufactured by TaKaRa Bio Inc.
  • the reaction solution was prepared according to the composition attached to the kit, and the reaction conditions were 95 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 6 minutes, and repeated 30 times.
  • the obtained DNA fragments were ligated using In-Fusion HD Cloning Kit (TaKaRa Bio).
  • the constructed plasmid was named pCold-TF-IspSU.
  • the base sequence of pCold-TF-IspSU is shown in SEQ ID NO: 75.
  • isoprene synthase was designed to be expressed as a protein fused with a trigger factor (TF) at the N-terminus.
  • the fusion protein of TF and isoprene synthase was named TF-IspS.
  • the fusion protein of Ginkgo biloba isoprene synthase was named TF-IspSU.
  • pCold-TF-IspSU E. coli BL21 (DE3) (one shot BL21 (DE3), manufactured by Life Technologies) was transformed by the heat shock method.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • TF-IspSU was purified in the same manner as the TF-IspSM purification method described in the literature (patent document: WO2013 / 179722A1). That is, the cells obtained from 100 mL of broth after completion of the culture were suspended in 240 mL of a disruption buffer consisting of 50 mM phosphate buffer (pH 8) and 500 mM NaCl, and an ultrasonic disrupter (Sonifier 250, manufactured by Baransan) was used. Ultrasonic crushing was performed on ice for 8 minutes under the conditions of a duty cycle of 50% and an output control of 6.
  • a disruption buffer consisting of 50 mM phosphate buffer (pH 8) and 500 mM NaCl
  • a crushing supernatant was obtained by centrifugation at 20000 ⁇ g for 20 minutes.
  • the following purification operations were all performed at 4 ° C.
  • a polyprep column manufactured by BioRad
  • His-select Nickel affinity gel manufactured by Sigma
  • 10 mL of crushing buffer was applied and equilibrated by the gravity method.
  • the whole amount of the crushed supernatant after ultrasonic pulverization was applied to this column, and TF-IspSU was adsorbed onto the column.
  • the column was washed with 10 mL of disruption buffer. Further, the column was additionally washed with 10 mL of an activity measurement buffer comprising 50 mM tris-HCl (pH 8.0) and 15 mM MgCl 2 . Thereafter, 4 mL of a washing solution composed of 50 mM tris-HCl (pH 8.0), 15 mM MgCl 2 and 10 mM imidazole was applied to the column, and the passing solution was discarded.
  • an activity measurement buffer comprising 50 mM tris-HCl (pH 8.0) and 15 mM MgCl 2 .
  • the reaction buffer consisted of 50 mM tris-HCl (pH 8.0), 100 mM NaCl, 5 mM CaCl 2 , 26 U Factor Xa was added, and the reaction was performed at 4 ° C. for 14 hours.
  • TF was removed from the reaction solution using the fact that only TF was adsorbed on the His-Select Nickel Affinity gel.
  • IspS was concentrated using a gel filtration column (Amicon ultra MWCO 50k, Millipore).
  • the tube was put into a 22 mL vial (manufactured by PerkinElmer) and immediately sealed with a cap butyl rubber septum for headspace vial (manufactured by PerkinElmer).
  • the isoprene formation reaction was carried out at 37 ° C. for 1 hour.
  • the amount of generated isoprene was determined according to Example 3.
  • the amount of isoprene generated measured under each condition was normalized with the amount of isoprene generated by IspM when 10 mM Mg ions were added, and is shown in Table 7. From Talbe1, when 20 mM Mg ions were added, IspSU and IspSM had equivalent isoprene conversion capacity per enzyme amount.
  • IspSU has an excellent isoprene conversion ability under the reaction conditions in which 10 mM Mg ions are added.
  • the present invention is useful for the production of isoprene monomers that can be used as raw materials for synthetic rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention provides an alternative method for producing an isoprene monomer. Specifically, the present invention is a method for producing an isoprene monomer including the production of an isoprene monomer from dimethylallyl diphosphate in the presence of proteins such as (A) and (B) below: (A) a protein including a full-length amino acid sequence of SEQ ID NO: 2, and (B) a protein including a partial amino acid sequence comprising amino acid residues 26-581 in the amino acid sequence of SEQ ID NO: 2 and also including a starting amino acid residue at the N-terminus.

Description

イソプレンモノマーの製造方法Method for producing isoprene monomer
 本発明は、イソプレンモノマーの製造方法などに関する。 The present invention relates to a method for producing an isoprene monomer.
 タイヤ業界及びゴム工業界において、天然ゴムは非常に重要な原材料である。新興国を中心とするモータリゼーションで今後需要が拡大していく中で、森林伐採規制やパーム栽培との競合で農園拡大は困難である。したがって、需給バランスはタイトになっていくことが予想される。天然ゴムに代わる材料として、合成ポリイソプレンがあるが、原料モノマー(イソプレン(2-メチル-1,3-ブタジエン))は、主にナフサのクラッキングにより得られたC5留分から抽出することで得られる。しかし近年、クラッカーのフィードのライト化に伴い、イソプレンの生産量は減少傾向にあり、供給が懸念されている。また、近年では石油価格の変動の影響も強く受けることから、イソプレンモノマーの安定した確保のために、非石油資源由来でイソプレンを安価に生産する系の確立が要望されている。 Natural rubber is a very important raw material in the tire industry and rubber industry. As demand grows in the future due to motorization centering on emerging countries, it is difficult to expand farms due to competition with deforestation and palm cultivation. Therefore, the supply-demand balance is expected to become tight. Synthetic polyisoprene is an alternative material to natural rubber, but the raw material monomer (isoprene (2-methyl-1,3-butadiene)) is obtained mainly by extraction from the C5 fraction obtained by naphtha cracking. . However, in recent years, the production of isoprene has been decreasing with the lightening of the cracker feed, and there is concern about the supply. In recent years, it is strongly affected by fluctuations in oil prices, and in order to stably secure isoprene monomers, establishment of a system for producing isoprene at low cost from non-petroleum resources is desired.
 このような要望に対して、単離された葛又はポプラ由来のイソプレンシンターゼ遺伝子及びこれらの変異体を発酵生産用の菌に組み込むことにより得られる形質転換体を用いて、ジメチルアリルジホスフェート(DMAPP)からイソプレンモノマーを生産する方法が開示されている(特許文献1および2参照)。 In response to such a demand, dimethylallyl diphosphate (DMAPP) is obtained using a transformant obtained by incorporating an isolated isoprene synthase gene derived from kuzu or poplar and a mutant thereof into a fungus for fermentation production. ) Has been disclosed (see Patent Documents 1 and 2).
 また、イソプレンシンターゼとMgイオンとの関係を記載した先行技術としては、以下がある。
 非特許文献1は、Velvet bean(ムクナ)植物体から抽出して粗精製した画分を用いて、イソプレンシンターゼのMgイオン濃度依存性を解析している。
 非特許文献2は、Populus x canescens由来のイソプレンシンターゼと2価カチオンとの関係について、optimal bivalent cation requirementが20mMであると記載している。
 特許文献4は、ピーナッツ由来イソプレンシンターゼについて、2点のMgイオン濃度(10mMおよび20mM)におけるイソプレン生産量の変化を報告している。
 イソプレンシンターゼを利用した発酵によるイソプレンの製造方法を示す報告としては、特許文献1から5が挙げられる。
Moreover, there exists the following as a prior art which described the relationship between isoprene synthase and Mg ion.
Non-Patent Document 1 analyzes the dependence of isoprene synthase on the Mg ion concentration using a fraction extracted from a Velvet bean plant and roughly purified.
Non-Patent Document 2 describes that the optimal bivalent cation requirement is 20 mM for the relationship between the isoprene synthase derived from Populus x canescens and the divalent cation.
Patent Document 4 reports a change in the amount of isoprene produced at two Mg ion concentrations (10 mM and 20 mM) for isoprene synthase derived from peanut.
Patent Documents 1 to 5 can be cited as reports showing a method for producing isoprene by fermentation using isoprene synthase.
国際公開第2013/179722号International Publication No. 2013/179722 特表2011-505841号公報Special table 2011-505841 gazette 特表2011-518564号公報Special table 2011-518564 国際公開第2013/166320号International Publication No. 2013/166320 国際公開第2013/016591号International Publication No. 2013/016591
 本発明は、イソプレンモノマーの代替的な製造方法を提供することを目的とする。 The present invention aims to provide an alternative method for producing isoprene monomers.
 本発明者らは鋭意研究した結果、ギンコウバイ由来のイソプレンシンターゼが、既報のイソプレンシンターゼに比し、低いMgイオン(Mg2+)濃度において高い活性を示すことを見出した。微生物内の生理学的Mgイオン濃度は微生物の種類によっても異なる可能性があり、本発明者らの知る限り正確な値は報告されていないようであるが、従来のイソプレンシンターゼが高い活性を示すMgイオン濃度よりも低いと予想される。実際、本発明者らは、ギンコウバイ由来のイソプレンシンターゼを微生物内で発現させたところ、従来のイソプレンシンターゼに比し高い活性を示した。以上より、本発明者らは、微生物内の生理学的Mgイオン濃度の条件下で、従来のイソプレンシンターゼに比し高い活性を示し得るギンコウバイ由来のイソプレンシンターゼを単離・同定すること、および当該イソプレンシンターゼを用いることによりイソプレンモノマーを効率的に生産できることなどを見出し、本願発明を完成するに至った。 As a result of intensive studies, the present inventors have found that isoprene synthase derived from Ginkgo biloba exhibits higher activity at a lower Mg ion (Mg 2+ ) concentration than the previously reported isoprene synthase. Physiological Mg ion concentration in microorganisms may vary depending on the type of microorganism, and as far as the present inventors know, it seems that an accurate value is not reported. However, conventional isoprene synthase exhibits high activity. Expected to be lower than ion concentration. In fact, when the present inventors expressed isoprene synthase derived from Ginkgo biloba in a microorganism, it showed higher activity than conventional isoprene synthase. As described above, the present inventors have isolated and identified an isoprene synthase derived from Ginkgo biloba that can exhibit higher activity than conventional isoprene synthase under the condition of physiological Mg ion concentration in the microorganism, and the isoprene The inventors found that isoprene monomers can be efficiently produced by using synthase, and have completed the present invention.
 すなわち、本願発明は、以下のとおりである。
〔1〕以下(A)~(F)からなる群より選ばれるタンパク質の存在下において、ジメチルアリル二リン酸からイソプレンモノマーを生成することを含む、イソプレンモノマーの製造方法:
(A)配列番号2の全長アミノ酸配列を含むタンパク質;
(B)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列を含み、かつN末端に開始アミノ酸残基をさらに含む、タンパク質;
(C)配列番号2の全長アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;
(D)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質;
(E)配列番号2の全長アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;ならびに
(F)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質。
〔2〕前記タンパク質がギンコウバイに由来する、〔1〕の方法。
〔3〕前記タンパク質を産生する形質転換体の培養によりイソプレンモノマーが生成される、〔1〕または〔2〕の方法。
〔4〕前記形質転換体の培養により培地中の炭素源からジメチルアリル二リン酸が供給される、〔1〕~〔3〕のいずれかの方法。
〔5〕前記形質転換体が、以下(a)~(g)からなる群より選ばれるポリヌクレオチドを含む発現ベクターが宿主細胞に導入されることにより作製されたものである、〔3〕または〔4〕の方法:
(a)配列番号1の全長塩基配列を含むポリヌクレオチド;
(b)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列を含み、かつ5’末端に開始コドンをさらに含む、ポリヌクレオチド;
(c)配列番号1の全長塩基配列と90%以上の同一性を有する塩基配列を含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
(d)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と90%以上の同一性を有する塩基配列を含み、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
(e)配列番号1の全長塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
(f)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;ならびに
(g)(a)~(f)からなる群より選ばれるポリヌクレオチドの縮重変異体。
〔6〕前記宿主が、メチルエリスリトールリン酸経路によるジメチルアリル二リン酸の合成能を有する、〔5〕の方法。
〔7〕前記宿主がエシェリヒア属細菌である、〔6〕の方法。
〔8〕前記宿主がエシェリヒア・コリである、〔7〕の方法。
〔9〕前記宿主が、メバロン酸経路によるジメチルアリル二リン酸の合成能を有する、〔5〕の方法。
〔10〕前記宿主がパントエア属細菌である、〔9〕の方法。
〔11〕前記宿主が、パントエア・アナナティスである、〔10〕の方法。
〔12〕以下(I)および(II)を含む、イソプレンポリマーの製造方法:
(I)〔1〕~〔11〕のいずれかの方法によりイソプレンモノマーを生成すること;
(II)イソプレンモノマーを重合してイソプレンポリマーを生成すること。
〔13〕以下(A)~(F)からなる群より選ばれるタンパク質:
(A)配列番号2の全長アミノ酸配列を含むタンパク質;
(B)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列を含み、かつN末端に開始アミノ酸残基をさらに含む、タンパク質;
(C)配列番号2の全長アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;
(D)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質;
(E)配列番号2の全長アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;ならびに
(F)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質。
〔14〕以下(a)~(g)からなる群より選ばれるポリヌクレオチド:
(a)配列番号1の全長塩基配列を含むポリヌクレオチド;
(b)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列を含み、かつ5’末端に開始コドンをさらに含む、ポリヌクレオチド;
(c)配列番号1の全長塩基配列と90%以上の同一性を有する塩基配列を含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
(d)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と90%以上の同一性を有する塩基配列を含み、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
(e)配列番号1の全長塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
(f)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;ならびに
(g)(a)~(f)からなる群より選ばれるポリヌクレオチドの縮重変異体。
〔15〕〔13〕のタンパク質をコードするポリヌクレオチド、または〔14〕のポリヌクレオチド、およびそれに作動可能に連結された異種プロモーターを含む、発現ベクター。
〔16〕〔15〕の発現ベクターを含む宿主細胞。
〔17〕〔16〕の宿主細胞を用いて前記タンパク質を産生することを含む、タンパク質の製造方法。
That is, the present invention is as follows.
[1] A method for producing an isoprene monomer, comprising producing an isoprene monomer from dimethylallyl diphosphate in the presence of a protein selected from the group consisting of the following (A) to (F):
(A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2;
(B) a protein comprising a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2 and further comprising a starting amino acid residue at the N-terminus;
(C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity;
(D) an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, further comprising a starting amino acid residue at the N-terminus; A protein having isoprene synthesis activity;
(E) a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (F) a sequence Including an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of No. 2, and at the N-terminus A protein further comprising a starting amino acid residue and having isoprene synthesis activity.
[2] The method according to [1], wherein the protein is derived from Ginkgo biloba.
[3] The method according to [1] or [2], wherein isoprene monomer is produced by culturing the transformant producing the protein.
[4] The method according to any one of [1] to [3], wherein dimethylallyl diphosphate is supplied from a carbon source in the medium by culturing the transformant.
[5] The transformant is prepared by introducing an expression vector containing a polynucleotide selected from the group consisting of (a) to (g) below into a host cell, [3] or [3] Method 4):
(A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1;
(B) a polynucleotide comprising a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 and further comprising a start codon at the 5 ′ end;
(C) a polynucleotide encoding a protein comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and having isoprene synthesis activity;
(D) a base sequence having 90% or more identity to a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, further including a start codon at the 5 ′ end, and isoprene A polynucleotide encoding a protein having synthetic activity;
(E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the full-length base sequence of SEQ ID NO: 1 and encodes a protein having isoprene synthesis activity;
(F) hybridizing under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to a partial nucleotide sequence comprising nucleotide residues 76 to 1746 in the nucleotide sequence of SEQ ID NO: 1, and starting codon at the 5 ′ end And (g) a degenerate variant of a polynucleotide selected from the group consisting of (a) to (f).
[6] The method according to [5], wherein the host has an ability to synthesize dimethylallyl diphosphate by the methylerythritol phosphate pathway.
[7] The method according to [6], wherein the host is an Escherichia bacterium.
[8] The method according to [7], wherein the host is Escherichia coli.
[9] The method according to [5], wherein the host has an ability to synthesize dimethylallyl diphosphate by the mevalonate pathway.
[10] The method according to [9], wherein the host is a Pantoea bacterium.
[11] The method of [10], wherein the host is Pantoea ananatis.
[12] A method for producing an isoprene polymer comprising the following (I) and (II):
(I) producing an isoprene monomer by any one of the methods [1] to [11];
(II) polymerizing isoprene monomers to produce isoprene polymers.
[13] A protein selected from the group consisting of (A) to (F) below:
(A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2;
(B) a protein comprising a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2 and further comprising a starting amino acid residue at the N-terminus;
(C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity;
(D) an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, further comprising a starting amino acid residue at the N-terminus; A protein having isoprene synthesis activity;
(E) a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (F) a sequence Including an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of No. 2, and at the N-terminus A protein further comprising a starting amino acid residue and having isoprene synthesis activity.
[14] A polynucleotide selected from the group consisting of (a) to (g) below:
(A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1;
(B) a polynucleotide comprising a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 and further comprising a start codon at the 5 ′ end;
(C) a polynucleotide encoding a protein comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and having isoprene synthesis activity;
(D) a base sequence having 90% or more identity to a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, further including a start codon at the 5 ′ end, and isoprene A polynucleotide encoding a protein having synthetic activity;
(E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the full-length base sequence of SEQ ID NO: 1 and encodes a protein having isoprene synthesis activity;
(F) hybridizing under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to a partial nucleotide sequence comprising nucleotide residues 76 to 1746 in the nucleotide sequence of SEQ ID NO: 1, and starting codon at the 5 ′ end And (g) a degenerate variant of a polynucleotide selected from the group consisting of (a) to (f).
[15] An expression vector comprising a polynucleotide encoding the protein of [13], or a polynucleotide of [14], and a heterologous promoter operably linked thereto.
[16] A host cell comprising the expression vector according to [15].
[17] A method for producing a protein, comprising producing the protein using the host cell of [16].
 本発明によれば、優れたイソプレンモノマー生産系を確立することができる。 According to the present invention, an excellent isoprene monomer production system can be established.
図1は、pAH162-Para-mvaES プラスミドのマップを示す図である。FIG. 1 shows a map of the pAH162-Para-mvaES plasmid. 図2は、pAH162-KKDyI-ispS(K)のマップを示す図である。FIG. 2 is a diagram showing a map of pAH162-KKDyI-ispS (K). 図3は、pAH162-Ptac-ispS(M)-mvk(Mma)のマップを示す図である。FIG. 3 is a view showing a map of pAH162-Ptac-ispS (M) -mvk (Mma). 図4は、ΔampC::KKDyI-ispS(K)染色体改変体の構築を示す図である。A)attLphi80-kan-attRphi80 PCR生成DNAフラグメントによるampC遺伝子のλRed依存性置換。B)pAH162-KKDyI-ispS(K)プラスミドのphi80Int依存性組込み。C)pAH162-KKDyI-ispS(K)のベクター部分のphi80Int/Xis依存性除去。FIG. 4 is a diagram showing the construction of ΔampC :: KKDyI-ispS (K) chromosome variant. A) λRed dependent substitution of the ampC gene with the attLphi80-kan-attRphi80 PCR-generated DNA fragment. B) phi80Int dependent integration of pAH162-KKDyI-ispS (K) plasmid. C) phi80Int / Xis-dependent removal of the vector portion of pAH162-KKDyI-ispS (K). 図5は、ΔampH::Para-mvaES染色体改変体の構築を示す図である。A)attLphi80-kan-attRphi80 PCR生成DNAフラグメントによるampH遺伝子のλRed依存性置換。B)pAH162-Para-mvaESプラスミドのphi80Int依存性組込み。C)pAH162-Para-mvaESのベクター部分のphi80Int/Xis依存性除去。FIG. 5 is a diagram showing the construction of ΔampH :: Para-mvaES chromosome variant. A) λRed dependent replacement of the amph gene with attLphi80-kan-attRphi80 PCR-generated DNA fragment. B) phi80Int dependent integration of pAH162-Para-mvaES plasmid. C) phi80Int / Xis-dependent removal of the vector portion of pAH162-Para-mvaES. 図6は、pEA320メガプラミドのΔcrt::KKDyI-ispS(K)改変体の構築を示す図である。A)pEA320メガプラスミド中に配置されたP.ananatis crtローカスの構造。B)attLphi80-kan-attRphi80 PCR生成DNAフラグメントによるcrtオペロンのλRed依存性置換。C)pAH162-Ptac-ispS(M)-mvk(Mma)プラスミドのphi80Int依存性組込み。D)pAH162-Ptac-ispS(M)-mvk(Mma)のベクター部分のphi80Int/Xis依存性除去。FIG. 6 is a diagram showing the construction of a Δcrt :: KKDyI-ispS (K) variant of pEA320 megapramide. A) P. coli placed in pEA320 megaplasmid. Ananatis crt locus structure. B) λRed dependent substitution of the crt operon with the attLphi80-kan-attRphi80 PCR-generated DNA fragment. C) phi80Int dependent integration of pAH162-Ptac-ispS (M) -mvk (Mma) plasmid. D) phi80Int / Xis-dependent removal of the vector portion of pAH162-Ptac-ispS (M) -mvk (Mma). 図7は、SDS-PAGEによるIspSUとIspSMの分子質量の解析結果を示す図である。FIG. 7 is a diagram showing the analysis results of the molecular masses of IspSU and IspSM by SDS-PAGE. 図8は、pAH162-Ptac組込み型発現ベクターを示す図である。FIG. 8 is a diagram showing a pAH162-Ptac-integrated expression vector. 図9は、pAH162-Ptac-mvk(M.paludicola)のマップを示す図である。FIG. 9 is a diagram showing a map of pAH162-Ptac-mvk (M. palidicola).
<イソプレンシンターゼ>
 本発明は、イソプレン合成活性を有するタンパク質(イソプレンシンターゼ)を提供する。
<Isoprene synthase>
The present invention provides a protein (isoprene synthase) having isoprene synthesis activity.
 イソプレンシンターゼ(EC:4.2.3.27)は、ジメチルアリルジホスフェート(DMAPP)をイソプレンに転換する酵素である。本発明者らは、ギンコウバイ由来のイソプレンシンターゼが、既報のイソプレンシンターゼに比し、低いMgイオン(Mg2+)濃度条件下で高い活性を示すことを見出した。葉緑体移行シグナルを除いた配列で比較した場合、ギンコウバイ由来のイソプレンシンターゼと、既知のイソプレンシンターゼとの間の同一性(%)は、以下のとおりである。 Isoprene synthase (EC: 4.2.2.37) is an enzyme that converts dimethylallyl diphosphate (DMAPP) to isoprene. The present inventors have found that isoprene synthase derived from Ginkgo biloba exhibits higher activity under low Mg ion (Mg 2+ ) concentration conditions than reported isoprene synthase. When compared with sequences excluding the chloroplast translocation signal, the identity (%) between the ginseng-derived isoprene synthase and the known isoprene synthase is as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一実施形態では、本発明のタンパク質は、以下である:
(A)配列番号2の全長アミノ酸配列を含むタンパク質;ならびに
(B)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列を含み、かつN末端に開始アミノ酸残基をさらに含む、タンパク質。
 配列番号2のアミノ酸配列において、1~25番目のアミノ酸残基からなるアミノ酸配列は、推定上の葉緑体移行シグナルをコードし、26~581番目のアミノ酸残基からなるアミノ酸配列は、成熟イソプレンシンターゼをコードし得る。
 天然では、N末端のメチオニン残基(開始アミノ酸残基)を含む葉緑体移行シグナルは、葉緑体移行後に除去される。したがって、葉緑体移行シグナルが除去されているにもかかわらず、開始アミノ酸残基をN末端に含む(B)のタンパク質、ならびに後述する(D)および(F)のタンパク質は、天然に生じるタンパク質ではない。なお、(B)のタンパク質をコードするアミノ酸配列は、配列番号4のアミノ酸配列と同一である。
In one embodiment, the protein of the invention is:
(A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2; and (B) a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, and the starting amino acid residue at the N-terminus Further comprising a protein.
In the amino acid sequence of SEQ ID NO: 2, the amino acid sequence consisting of amino acid residues 1 to 25 encodes a putative chloroplast translocation signal, and the amino acid sequence consisting of amino acid residues 26 to 581 is mature isoprene. It can encode a synthase.
In nature, the chloroplast translocation signal containing the N-terminal methionine residue (starting amino acid residue) is removed after chloroplast translocation. Therefore, despite the removal of the chloroplast translocation signal, the protein (B) containing the starting amino acid residue at the N-terminus, and the proteins (D) and (F) described later are naturally occurring proteins. is not. The amino acid sequence encoding the protein (B) is the same as the amino acid sequence of SEQ ID NO: 4.
 本明細書中で用いられる場合、用語「開始アミノ酸残基」とは、開始コドンによりコードされるアミノ酸残基をいう。開始コドンによりコードされるアミノ酸残基としては、例えば、メチオニン残基、バリン残基、イソロイシン残基、およびロイシン残基が挙げられるが、メチオニン残基が好ましい。 As used herein, the term “starting amino acid residue” refers to an amino acid residue encoded by a start codon. Examples of the amino acid residue encoded by the start codon include a methionine residue, a valine residue, an isoleucine residue, and a leucine residue, and a methionine residue is preferable.
 別の実施形態では、本発明のタンパク質は、(A)または(B)のタンパク質の相同タンパク質である。このような相同タンパク質としては、例えば、以下が挙げられる:
(C)配列番号2の全長アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;ならびに
(D)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質。
 アミノ酸配列との同一性%は、91%、92%、93%、94%、95%、96%、97%、98%または99%以上であってもよい。
In another embodiment, the protein of the present invention is a homologous protein of the protein of (A) or (B). Examples of such homologous proteins include the following:
(C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (D) amino acids 26 to 581 in the amino acid sequence of SEQ ID NO: 2 A protein comprising an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of residues, further comprising a starting amino acid residue at the N-terminus, and having isoprene synthesis activity.
The percent identity with the amino acid sequence may be 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more.
 上述したアミノ酸配列および後述する塩基配列の相同性(即ち、同一性または類似性)は、例えばKarlinおよびAltschulによるアルゴリズムBLAST(Pro.Natl.Acad.Sci.USA,90,5873(1993))、PearsonによるFASTA(MethodsEnzymol.,183,63(1990))を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTP、BLASTNとよばれるプログラムが開発されているので(http://www.ncbi.nlm.nih.gov参照)、これらのプログラムをデフォルト設定で用いて、相同性を計算してもよい。また、相同性としては、例えば、Lipman-Pearson法を採用している株式会社ゼネティックスのソフトウェアGENETYX Ver7.0.9を使用し、ORFにコードされるポリペプチド部分全長を用いて、Unit Size to Compare=2の設定でSimilarityをpercentage計算させた際の数値を用いてもよい。あるいは、相同性は、NEEDLEプログラム(J Mol Biol 1970;48:443-453)検索において、デフォルト設定のパラメータ(Gap penalty=10、Extend penalty=0.5、Matrix=EBLOSUM62)を用いて得られた値(Identity)であってもよい。相同性として、これらの計算で導き出される値のうち、最も低い値を採用してもよい。 The homology (that is, identity or similarity) between the amino acid sequence described above and the base sequence described below is described in, for example, the algorithm BLAST (Pro. Natl. Acad. Sci. USA, 90, 5873 (1993)) by Karlin and Altschul, Pearson. FASTA (Methods Enzymol., 183, 63 (1990)). Based on this algorithm BLAST, programs called BLASTP and BLASTN have been developed (see http://www.ncbi.nlm.nih.gov), and these programs are used with default settings for homology. You may calculate. In addition, as homology, for example, using the GENETYX software version 7.0.9 of GENETICS, which employs the Lipman-Pearson method, using the full length of the polypeptide part encoded by the ORF, the unit size to compare A numerical value obtained when the percentity is calculated by the percentage with the setting of = 2 may be used. Alternatively, homology was obtained using the default parameters (Gap penalty = 10, Extend penalty = 0.5, Matrix = EBLOSUM62) in the NEEDLE program (J Mol Biol 1970; 48: 443-453) search. It may be a value (Identity). As the homology, the lowest value among the values derived by these calculations may be adopted.
 さらに別の実施形態では、本発明のタンパク質は、(A)または(B)のタンパク質の改変タンパク質である。このような改変タンパク質としては、例えば、以下が挙げられる:
(E)配列番号2の全長アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;ならびに
(F)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質。
In yet another embodiment, the protein of the present invention is a modified protein of the protein of (A) or (B). Examples of such modified proteins include the following:
(E) a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (F) a sequence Including an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of No. 2, and at the N-terminus A protein further comprising a starting amino acid residue and having isoprene synthesis activity.
 上記タンパク質では、アミノ酸残基の欠失、置換、付加および挿入からなる群より選ばれる1、2、3または4種の変異により、1個または数個のアミノ酸残基が改変され得る。アミノ酸残基の変異は、アミノ酸配列中の1つの領域に導入されてもよいが、複数の異なる領域に導入されてもよい。用語「1個または数個」は、タンパク質の活性を大きく損なわない個数を示す。用語「1個または数個」が示す数は、例えば、1~100個、好ましくは1~80個、より好ましくは1~50個、1~30個、1~20個、1~10個または1~5個(例、1個、2個、3個、4個、または5個)である。 In the above protein, one or several amino acid residues can be modified by 1, 2, 3 or 4 mutations selected from the group consisting of deletion, substitution, addition and insertion of amino acid residues. The amino acid residue mutation may be introduced into one region in the amino acid sequence, or may be introduced into a plurality of different regions. The term “one or several” refers to a number that does not significantly impair the activity of the protein. The number represented by the term “one or several” is, for example, 1 to 100, preferably 1 to 80, more preferably 1 to 50, 1 to 30, 1 to 20, 1 to 10 or 1 to 5 (eg, 1, 2, 3, 4, or 5).
 本明細書中で用いられる場合、用語「イソプレン合成活性」とは、ジメチルアリルジホスフェート(DMAPP)からイソプレンを生成する酵素活性をいう。本発明のタンパク質のイソプレン合成活性は、同一反応液〔例、50mM Tris-HCl(pH8.0)、および4mM DMAPPを含む反応液〕で測定された場合、上記(A)または(B)のタンパク質のイソプレン合成活性の50%以上、60%以上、70%以上、80%以上、90%以上または95%以上の活性を有することが好ましい。また、本発明のタンパク質は、好ましくは、低濃度のMgイオン条件下で高いイソプレン合成活性を示すことができる。例えば、本発明のタンパク質は、20mM Mgイオン濃度条件下よりも、10mM Mgイオン濃度条件下でより高いイソプレン合成活性を示すことができる。例えば、イソプレン合成活性の比率「(10mM Mgイオンを含む反応液中で測定されたイソプレン合成活性)/(20mM Mgイオンを含む反応液中で測定されたイソプレン合成活性)」は、約1.1以上、約1.2以上、約1.3以上、約1.4以上、約1.5以上、約1.6以上、約1.7以上、約1.8以上、または約1.9以上であってもよい。上記比率はまた、特に限定されないが、約3.0以下、約2.5以下、または約2.0以下であってもよい。 As used herein, the term “isoprene synthesis activity” refers to an enzyme activity that produces isoprene from dimethylallyl diphosphate (DMAPP). When the isoprene synthesis activity of the protein of the present invention is measured in the same reaction solution (eg, reaction solution containing 50 mM Tris-HCl (pH 8.0) and 4 mM DMAPP), the protein of (A) or (B) above. It preferably has an activity of 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more of the isoprene synthesis activity. Moreover, the protein of the present invention can preferably exhibit high isoprene synthesis activity under low-concentration Mg ion conditions. For example, the protein of the present invention can exhibit higher isoprene synthesis activity under 10 mM Mg ion concentration conditions than under 20 mM Mg ion concentration conditions. For example, the ratio of isoprene synthesis activity “(isoprene synthesis activity measured in a reaction solution containing 10 mM Mg ions) / (isoprene synthesis activity measured in a reaction solution containing 20 mM Mg ions)” is about 1.1. About 1.2 or more, about 1.3 or more, about 1.4 or more, about 1.5 or more, about 1.6 or more, about 1.7 or more, about 1.8 or more, or about 1.9 or more It may be. The ratio is not particularly limited, but may be about 3.0 or less, about 2.5 or less, or about 2.0 or less.
 本発明のタンパク質は、目的活性を保持し得る限り、触媒ドメイン中の部位、および触媒ドメイン以外の部位に、変異が導入されていてもよい。目的活性を保持し得る、変異が導入されてもよいアミノ酸残基の位置は、当業者に明らかである。具体的には、当業者は、1)同種の活性を有する複数のタンパク質のアミノ酸配列(例、配列番号2または4のアミノ酸配列、および他のイソプレンシンターゼのアミノ酸配列)を比較し、2)相対的に保存されている領域、および相対的に保存されていない領域を明らかにし、次いで、3)相対的に保存されている領域および相対的に保存されていない領域から、それぞれ、機能に重要な役割を果たし得る領域および機能に重要な役割を果たし得ない領域を予測できるので、構造・機能の相関性を認識できる。したがって、当業者は、イソプレンシンターゼのアミノ酸配列において変異が導入されてもよいアミノ酸残基の位置を特定できる。 The protein of the present invention may have mutations introduced at sites in the catalytic domain and at sites other than the catalytic domain as long as the target activity can be maintained. The positions of amino acid residues to which mutations can be introduced that can retain the desired activity will be apparent to those skilled in the art. Specifically, a person skilled in the art compares 1) the amino acid sequences of a plurality of proteins having the same type of activity (eg, the amino acid sequence of SEQ ID NO: 2 or 4 and the amino acid sequence of other isoprene synthase), and 2) relative The regions that are conserved and the relatively unconserved regions, then 3) from the relatively conserved regions and the relatively unconserved regions, respectively, Areas that can play a role and areas that cannot play an important role in function can be predicted, so that the correlation between structure and function can be recognized. Therefore, those skilled in the art can specify the position of an amino acid residue to which a mutation may be introduced in the amino acid sequence of isoprene synthase.
 アミノ酸残基が置換により変異される場合、アミノ酸残基の置換は、保存的置換であってもよい。本明細書中で用いられる場合、用語「保存的置換」とは、所定のアミノ酸残基を、類似の側鎖を有するアミノ酸残基で置換することをいう。類似の側鎖を有するアミノ酸残基のファミリーは、当該分野で周知である。例えば、このようなファミリーとしては、塩基性側鎖を有するアミノ酸(例、リジン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(例、アスパラギン酸、グルタミン酸)、非荷電性極性側鎖を有するアミノ酸(例、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖を有するアミノ酸(例、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β位分岐側鎖を有するアミノ酸(例、スレオニン、バリン、イソロイシン)、芳香族側鎖を有するアミノ酸(例、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)、ヒドロキシル基(例、アルコール性、フェノール性)含有側鎖を有するアミノ酸(例、セリン、スレオニン、チロシン)、および硫黄含有側鎖を有するアミノ酸(例、システイン、メチオニン)が挙げられる。好ましくは、アミノ酸の保存的置換は、アスパラギン酸とグルタミン酸との間での置換、アルギニンとリジンとヒスチジンとの間での置換、トリプトファンとフェニルアラニンとの間での置換、フェニルアラニンとバリンとの間での置換、ロイシンとイソロイシンとアラニンとの間での置換、およびグリシンとアラニンとの間での置換であってもよい。 When an amino acid residue is mutated by substitution, the amino acid residue substitution may be a conservative substitution. As used herein, the term “conservative substitution” refers to the replacement of a given amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues with similar side chains are well known in the art. For example, such families include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having uncharged polar side chains (Eg, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chain Amino acids (eg, threonine, valine, isoleucine), amino acids having aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine), amino acids having side groups containing hydroxyl groups (eg, alcoholic, phenolic) ( Example, serine, thread Nin, tyrosine), and amino acids (e.g. having sulfur-containing side chains, cysteine, methionine) and the like. Preferably, the conservative substitution of amino acids is a substitution between aspartic acid and glutamic acid, a substitution between arginine and lysine and histidine, a substitution between tryptophan and phenylalanine, and between phenylalanine and valine. Or a substitution between leucine, isoleucine and alanine, and a substitution between glycine and alanine.
 本発明のタンパク質はまた、異種部分とペプチド結合を介して連結された融合タンパク質であってもよい。このような異種部分としては、例えば、目的タンパク質の精製を容易にするペプチド成分(例、ヒスチジンタグ、Strep-tag II等のタグ部分;グルタチオン-S-トランスフェラーゼ、マルトース結合タンパク質等の目的タンパク質の精製に利用されるタンパク質)、目的タンパク質の可溶性を向上させるペプチド成分(例、Nus-tag)、シャペロンとして働くペプチド成分(例、トリガーファクター)、他の機能を有するペプチド成分(例、全長タンパク質またはその一部)、ならびにリンカーが挙げられる。 The protein of the present invention may also be a fusion protein linked to a heterologous moiety via a peptide bond. Examples of such heterogeneous moieties include peptide components that facilitate the purification of the target protein (eg, tag sections such as histidine tag, Strep-tag II, etc .; purification of target proteins such as glutathione-S-transferase, maltose binding protein, etc. ), Peptide components that improve the solubility of the target protein (eg, Nus-tag), peptide components that act as chaperones (eg, trigger factor), peptide components that have other functions (eg, full-length protein or its protein) Some), as well as linkers.
 本発明のタンパク質はまた、本発明のタンパク質の産生が所望される宿主細胞の種類に応じて、翻訳後修飾(例、グリコシル化)タンパク質、または翻訳後非修飾(例、非グリコシル化)タンパク質であってもよい。本発明のタンパク質は、真核生物であるギンコウバイに由来するので、天然では翻訳後修飾(例、グリコシル化)される可能性があると考えられる。原核生物では、タンパク質が翻訳後修飾されないこと、ならびに動物細胞、植物細胞、昆虫細胞(例、Sf9細胞)、および下等真核生物(例、酵母)では、タンパク質の翻訳後修飾が大きく異なることが一般に知られている〔例、Bretthauer et al.,Biotechnol.Appl.Biochem.(1999),30(19),3-200を参照〕。したがって、天然で植物細胞に由来するタンパク質を、このような異種宿主細胞で産生させた場合、天然では生じ得ない、翻訳後非修飾タンパク質、または異なる翻訳後修飾を有するタンパク質を入手し得ると考えられる。 The proteins of the invention can also be post-translationally modified (eg, glycosylated) proteins, or post-translationally unmodified (eg, non-glycosylated) proteins, depending on the type of host cell in which production of the protein of the invention is desired. There may be. Since the protein of the present invention is derived from the eukaryotic ginkgo, it is considered that it may be post-translationally modified (eg, glycosylated) in nature. In prokaryotes, proteins are not post-translationally modified, and in animal cells, plant cells, insect cells (eg, Sf9 cells), and lower eukaryotes (eg, yeast), the post-translational modification of proteins is very different. Are generally known [eg, Bretthauser et al. Biotechnol. Appl. Biochem. (1999), 30 (19), 3-200]. Therefore, when a protein derived from a plant cell in nature is produced in such a heterologous host cell, it is considered that a post-translational unmodified protein or a protein having a different post-translational modification that cannot occur in nature can be obtained. It is done.
 上述したような本発明のタンパク質としては、例えば、ギンコウバイに由来するタンパク質、天然に生じるそのホモログ、または人為的に作出された変異タンパク質が挙げられる。変異タンパク質は、例えば、目的タンパク質をコードするDNAに変異を導入し、得られた変異DNAを用いて変異タンパク質を産生させることにより、得ることができる。変異導入法としては、例えば、部位特異的変異導入、ならびに無作為変異導入処理(例、変異剤による処理、および紫外線照射)が挙げられる。 Examples of the protein of the present invention as described above include proteins derived from Ginkgo biloba, naturally occurring homologues, or artificially produced mutant proteins. The mutant protein can be obtained, for example, by introducing a mutation into DNA encoding the target protein and producing the mutant protein using the obtained mutant DNA. Examples of the mutagenesis method include site-specific mutagenesis and random mutagenesis treatment (eg, treatment with a mutagen and ultraviolet irradiation).
<イソプレンシンターゼをコードするポリヌクレオチド>
 本発明は、イソプレンシンターゼをコードするポリヌクレオチドを提供する。本発明のポリヌクレオチドは、DNAであってもRNAであってもよいが、DNAであることが好ましい。本発明のポリヌクレオチドは、ギンコウバイに由来し得る。本発明のポリヌクレオチドは、本発明のタンパク質をコードする限り特に限定されないが、例えば、以下に述べるポリヌクレオチドであってもよい。
<Polynucleotide encoding isoprene synthase>
The present invention provides a polynucleotide encoding isoprene synthase. The polynucleotide of the present invention may be DNA or RNA, but is preferably DNA. The polynucleotide of the present invention may be derived from Ginkgo biloba. The polynucleotide of the present invention is not particularly limited as long as it encodes the protein of the present invention. For example, the polynucleotide described below may be used.
 一実施形態では、本発明のポリヌクレオチドは、以下である:
(a)配列番号1の全長塩基配列を含むポリヌクレオチド;ならびに
(b)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列を含み、かつ5’末端に開始コドンをさらに含む、ポリヌクレオチド。
 配列番号1の塩基配列は、配列番号2のアミノ酸配列をコードする。配列番号1の塩基配列において、1~75番目のヌクレオチド残基からなる塩基配列は、推定上の葉緑体移行シグナルのアミノ酸配列をコードし、76~1746番目のヌクレオチド残基からなる塩基配列は、成熟イソプレンシンターゼのアミノ酸配列をコードし得る。
 配列番号1の塩基配列は、cDNAに対応する。なぜならば、(a)のポリヌクレオチドは、真核生物(植物)であるギンコウバイに由来するためである。したがって、(a)のポリヌクレオチド、ならびに後述する(c)および(e)のポリヌクレオチドは、天然に生じるポリヌクレオチドではない。
 また、天然では、配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる塩基配列は、開始コドンに連結されていない。したがって、葉緑体移行シグナルをコードするポリヌクレオチドが除去されているにもかかわらず、開始コドンを5’末端に含む(b)のポリヌクレオチド、ならびに後述する(d)および(f)のポリヌクレオチドは、天然に生じるポリヌクレオチドではない。なお、(b)のポリヌクレオチドをコードする塩基配列は、配列番号3の塩基配列と同一である。
In one embodiment, the polynucleotide of the present invention is:
(A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1; and (b) a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, and a start codon at the 5 ′ end A polynucleotide further comprising:
The base sequence of SEQ ID NO: 1 encodes the amino acid sequence of SEQ ID NO: 2. In the nucleotide sequence of SEQ ID NO: 1, the nucleotide sequence consisting of the 1st to 75th nucleotide residues encodes the amino acid sequence of the putative chloroplast transition signal, and the nucleotide sequence consisting of the 76th to 1746th nucleotide residues is Can encode the amino acid sequence of mature isoprene synthase.
The base sequence of SEQ ID NO: 1 corresponds to cDNA. This is because the polynucleotide (a) is derived from Eukaryote (plant), Ginkgo biloba. Therefore, the polynucleotide (a) and the polynucleotides (c) and (e) described below are not naturally occurring polynucleotides.
Further, in nature, the base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 is not linked to the start codon. Therefore, the polynucleotide of (b) containing the initiation codon at the 5 ′ end, and the polynucleotides of (d) and (f) described below, even though the polynucleotide encoding the chloroplast translocation signal has been removed Is not a naturally occurring polynucleotide. The base sequence encoding the polynucleotide of (b) is the same as the base sequence of SEQ ID NO: 3.
 本明細書中で用いられる場合、用語「開始コドン」とは、タンパク質の合成開始を指定するコドンをいう。開始コドンとしては、例えば、メチオニン残基をコードするコドン(例、AUG)、バリン残基をコードするコドン(例、GUG)、イソロイシン残基をコードするコドン(例、AUA)、およびロイシン残基をコードするコドン(例、UUG)が挙げられるが、メチオニン残基をコードするコドン(例、AUG)が好ましい。本発明のポリヌクレオチドがRNAの場合、上記のとおりヌクレオチド残基「U」が利用されるべきであるが、本発明のポリヌクレオチドがDNAの場合、ヌクレオチド残基「U」の代わりに「T」が利用されるべきである。 As used herein, the term “start codon” refers to a codon that specifies the start of protein synthesis. Examples of the start codon include, for example, a codon encoding a methionine residue (eg, AUG), a codon encoding a valine residue (eg, GUG), a codon encoding an isoleucine residue (eg, AUA), and a leucine residue Are codons (eg, UUG), and a codon (eg, AUG) encoding a methionine residue is preferred. When the polynucleotide of the present invention is RNA, nucleotide residue “U” should be used as described above. However, when the polynucleotide of the present invention is DNA, “T” is substituted for nucleotide residue “U”. Should be used.
 別の実施形態では、本発明のポリヌクレオチドは、(a)または(b)のポリヌクレオチドの相同ポリヌクレオチドである。このような相同ポリヌクレオチドとしては、例えば、以下が挙げられる:
(c)配列番号1の全長塩基配列と90%以上の同一性を有する塩基配列を含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;ならびに
(d)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と90%以上の同一性を有する塩基配列を含み、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド。
 塩基配列との同一性%は、91%、92%、93%、94%、95%、96%、97%、98%または99%以上であってもよい。
In another embodiment, the polynucleotide of the present invention is a homologous polynucleotide of the polynucleotide of (a) or (b). Examples of such homologous polynucleotides include the following:
(C) a polynucleotide comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and encoding a protein having isoprene synthesis activity; and (d) 76 in the base sequence of SEQ ID NO: 1 A polynucleotide encoding a protein comprising a partial base sequence consisting of a partial base sequence consisting of the 1746th nucleotide residue and having 90% or more identity, further comprising a start codon at the 5 ′ end, and having isoprene synthesis activity.
The percent identity with the base sequence may be 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more.
 さらに別の実施形態では、本発明のポリヌクレオチドは、(a)または(b)のポリヌクレオチドのアナログポリヌクレオチドである。このようなアナログポリヌクレオチドとしては、例えば、以下が挙げられる:
(e)配列番号1の全長塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;ならびに
(f)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド。
In yet another embodiment, the polynucleotide of the present invention is an analog polynucleotide of the polynucleotide of (a) or (b). Examples of such analog polynucleotides include the following:
(E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the full-length base sequence of SEQ ID NO: 1 and encodes a protein having isoprene synthesis activity; and (f) SEQ ID NO: 1 And a polynucleotide comprising a nucleotide sequence complementary to a partial nucleotide sequence consisting of nucleotide residues 76 to 1746 in the nucleotide sequence under the stringent conditions, further comprising a start codon at the 5 ′ end, and isoprene A polynucleotide encoding a protein having synthetic activity.
 本明細書中で用いられる場合、用語「ストリンジェント条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、ストリンジェント条件としては、6×SSC(塩化ナトリウム/クエン酸ナトリウム)中、約45℃でのハイブリダイゼーション、続いて、0.2×SSC、0.1%SDS中、50~65℃での1または2回以上の洗浄が挙げられる。 As used herein, the term “stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, stringent conditions include hybridization at about 45 ° C. in 6 × SSC (sodium chloride / sodium citrate), followed by 50 × 65 ° C. in 0.2 × SSC, 0.1% SDS. 1 or 2 or more washing | cleaning is mentioned.
 なおさらに別の実施形態では、本発明のポリヌクレオチドは、縮重ポリヌクレオチドである。このような縮重ポリヌクレオチドとしては、例えば、以下が挙げられる:
(g)(a)~(f)からなる群より選ばれるポリヌクレオチドの縮重変異体。
In yet another embodiment, the polynucleotide of the invention is a degenerate polynucleotide. Examples of such degenerate polynucleotides include the following:
(G) A degenerate variant of a polynucleotide selected from the group consisting of (a) to (f).
 本明細書中で用いられる場合、用語「縮重変異体」とは、変異前のポリヌクレオチド中の所定のアミノ酸残基をコードする少なくとも1つのコドンが、同一アミノ酸残基をコードする別のコドンに変更されたポリヌクレオチド変異体をいう。このような縮重変異体はサイレント変異に基づく変異体であることから、縮重変異体によりコードされるタンパク質は、変異前のポリヌクレオチドによりコードされるタンパク質と同一である。 As used herein, the term “degenerate variant” refers to another codon in which at least one codon encoding a given amino acid residue in a polynucleotide before mutation encodes the same amino acid residue. Refers to a polynucleotide variant that has been altered to. Since such a degenerate mutant is a mutant based on a silent mutation, the protein encoded by the degenerate mutant is the same as the protein encoded by the polynucleotide before the mutation.
 好ましくは、縮重変異体は、それが導入されるべき宿主細胞のコドン使用頻度に適合するようにコドンが変更されたポリヌクレオチド変異体である。ある遺伝子を異種宿主細胞(例、微生物)で発現させる場合、コドン使用頻度の相違により、対応するtRNA分子種が十分に供給されず、翻訳効率の低下および/または不正確な翻訳(例、翻訳の停止)が生じることがある。例えば、エシェリヒア・コリでは、表2に示される低頻度コドンが知られている。 Preferably, a degenerate variant is a polynucleotide variant in which the codons have been altered to match the codon usage of the host cell into which it is to be introduced. When a gene is expressed in a heterologous host cell (eg, a microorganism), the corresponding tRNA molecular species are not sufficiently supplied due to the difference in codon usage, resulting in decreased translation efficiency and / or incorrect translation (eg, translation). Stop) may occur. For example, in Escherichia coli, the low frequency codons shown in Table 2 are known.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 したがって、本発明では、後述するような宿主細胞(例、微生物)のコドン使用頻度に適合する縮重変異体を利用することができる。例えば、本発明の縮重変異体は、アルギニン残基、グリシン残基、イソロイシン残基、ロイシン残基、およびプロリン残基からなる群より選ばれる1種以上のアミノ酸残基をコードするコドンが変更されたものであってもよい。より具体的には、本発明の縮重変異体は、低頻度コドン(例、AGG、AGA、CGG、CGA、GGA、AUA、CUA、およびCCC)からなる群より選ばれる1種以上のコドンが変更されたものであってもよい。好ましくは、縮重変異体は、以下からなる群より選ばれる1種以上(例、1種、2種、3種、4種、または5種)のコドンの変更を含んでいてもよい:
i)Argをコードする4種のコドン(AGG、AGA、CGG、およびCGA)からなる群より選ばれる少なくとも1種のコドンの、Argをコードする別のコドン(CGU、またはCGC)への変更;
ii)Glyをコードする1種のコドン(GGA)の、別のコドン(GGG、GGU、またはGGC)への変更;
iii)Ileをコードする1種のコドン(AUA)の、別のコドン(AUU、またはAUC)への変更;
iv)Leuをコードする1種のコドン(CUA)の、別のコドン(UUG、UUA、CUG、CUU、またはCUC)への変更;ならびに
v)Proをコードする1種のコドン(CCC)の、別のコドン(CCG、CCA、またはCCU)への変更。
 本発明の縮重変異体がRNAの場合、上記のとおりヌクレオチド残基「U」が利用されるべきであるが、本発明の縮重変異体がDNAの場合、ヌクレオチド残基「U」の代わりに「T」が利用されるべきである。宿主細胞のコドン使用頻度に適合させるためのヌクレオチド残基の変異数は、変異前後で同一のタンパク質をコードする限り特に限定されないが、例えば、1~500個、1~400個、1~300個、1~200個、または1~100個である。
Therefore, in the present invention, a degenerate mutant that matches the codon usage of the host cell (eg, microorganism) as described below can be used. For example, in the degenerate mutant of the present invention, the codon encoding one or more amino acid residues selected from the group consisting of arginine residues, glycine residues, isoleucine residues, leucine residues, and proline residues is changed. It may be what was done. More specifically, the degenerate mutant of the present invention has one or more codons selected from the group consisting of low frequency codons (eg, AGG, AGA, CGG, CGA, GGA, AUA, CUA, and CCC). It may have been changed. Preferably, the degenerate variant may comprise one or more (eg, 1, 2, 3, 4 or 5) codon changes selected from the group consisting of:
i) Change of at least one codon selected from the group consisting of four codons encoding Arg (AGG, AGA, CGG, and CGA) to another codon encoding Arg (CGU or CGC);
ii) changing one codon (GGA) encoding Gly to another codon (GGG, GGU, or GGC);
iii) changing one codon (AUA) encoding Ile to another codon (AUU, or AUC);
iv) changing one codon (CUA) encoding Leu to another codon (UUG, UUA, CUG, CUU, or CUC); and v) one codon (CCC) encoding Pro. Change to another codon (CCG, CCA, or CCU).
When the degenerate variant of the present invention is RNA, the nucleotide residue “U” should be used as described above. However, when the degenerate variant of the present invention is DNA, the nucleotide residue “U” is substituted. “T” should be used. The number of nucleotide residue mutations for adapting to the codon usage of the host cell is not particularly limited as long as it encodes the same protein before and after the mutation. For example, 1 to 500, 1 to 400, 1 to 300 1 to 200, or 1 to 100.
 低頻度コドンの同定は、当該分野で既知の技術を利用することにより、任意の宿主細胞の種類およびゲノム配列情報に基づいて容易に行うことができる。したがって、縮重変異体は、低頻度コドンの非低頻度コドン(例、高頻度コドン)への変更を含むものであってもよい。また、低頻度コドンのみならず、生産菌株のゲノムGC含量への適合性などの要素を考慮して変異体を設計する方法が知られているので(Alan Villalobos et al., Gene Designer: a synthetic biology tool for constructing artificial DNA segments, BMC Bioinformatics. 2006 Jun 6;7:285.)、このような方法を利用してもよい。このように、上述の変異体は、それが導入され得る任意の宿主細胞(例、後述するような微生物)の種類に応じて適宜作製できるが、例えば、異種タンパク質の発酵生産に汎用される宿主細胞の種類に適合するように作製されてもよい。異種タンパク質の発酵生産に汎用される宿主細胞としては、例えば、後述する任意の微生物が挙げられるが、細菌および酵母が好ましい。このような細菌および酵母としては、例えば、枯草菌(Bacillus subtilis)等のバシラス(Bacillus)属細菌、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)等のコリネバクテリウム(Corynebacterium)属細菌、エシェリヒア・コリ(Escherichia coli)等のエシェリヒア(Escherichia)属細菌、パントエア・アナナティス(Pantoea ananatis)等のパントエア(Pantoea)属細菌、エンテロバクター・アエロゲネス(Enterobacter aerogenes)等のエンテロバクター(Enterobacter)属細菌、ならびにサッカロミセス・セレビシエー(Saccharomyces cerevisiae)等のサッカロミセス(Saccharomyces)属、およびシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等のシゾサッカロミセス(Schizosaccharomyces)属の酵母が挙げられる。したがって、このような微生物(例、細菌、酵母)における低頻度コドンの非低頻度コドンへの変更、およびゲノムGC含量適合性等の要素の考慮が好ましい。 Identification of low-frequency codons can be easily performed based on any host cell type and genome sequence information by using a technique known in the art. Thus, a degenerate variant may include a change from a low frequency codon to a non-low frequency codon (eg, a high frequency codon). In addition, there are known methods for designing mutants in consideration of not only low-frequency codons but also factors such as suitability of the production strain to the genomic GC content (Alan Villabos et al., Gene Designer: a synthetic). biology tool for constructing artificial DNA segments, BMC Bioinformatics. 2006 Jun 6; 7: 285.), such a method may be used. As described above, the above-described mutant can be appropriately prepared according to the type of any host cell into which it can be introduced (for example, a microorganism as described below). For example, a host commonly used for fermentation production of heterologous proteins. It may be made to fit the cell type. Examples of host cells widely used for fermentative production of heterologous proteins include any microorganism described below, and bacteria and yeasts are preferred. Examples of such bacteria and yeasts include bacteria belonging to the genus Bacillus such as Bacillus subtilis, bacteria belonging to the genus Corynebacterium such as Corynebacterium glutamicum, and Escherichia coli. Escherichia bacteria such as Escherichia coli, Pantoea bacteria such as Pantoea ananatis, Enterobacter cerevisiae such as Enterobacter aerogenes (Saccha Omyces cerevisiae) Saccharomyces (Saccharomyces) genus, and the like, and Schizosaccharomyces pombe (Schizosaccharomyces pombe) Schizosaccharomyces (Schizosaccharomyces such) include yeasts of the genus. Therefore, consideration of factors such as changing the low frequency codons to non-low frequency codons in such microorganisms (eg, bacteria, yeast) and suitability for genomic GC content is preferable.
<発現ベクター>
 本発明は、発現ベクターを提供する。本発明の発現ベクターは、本発明のタンパク質をコードするポリヌクレオチド、または本発明のポリヌクレオチドを含む。
<Expression vector>
The present invention provides an expression vector. The expression vector of the present invention contains a polynucleotide encoding the protein of the present invention or the polynucleotide of the present invention.
 本発明の発現ベクターは、上記ポリヌクレオチドに作動可能に連結された異種プロモーターをさらに含んでいてもよい。用語「異種プロモーター」とは、ギンコウバイ由来イソプレンシンターゼ遺伝子の天然プロモーター以外のプロモーターをいう。したがって、異種プロモーターとしては、例えば、ギンコウバイ由来イソプレンシンターゼ遺伝子以外のギンコウバイ由来遺伝子のプロモーター、ギンコウバイ以外の他の生物(例、微生物、動物、昆虫、および植物)由来プロモーター、ウイルス由来プロモーター、ならびに人工合成プロモーターが挙げられる。異種プロモーターとしてはまた、異種タンパク質生産に汎用されるプロモーターを用いてもよい。このようなプロモーターとしては、例えば、PhoAプロモーター、PhoCプロモーター、T7プロモーター、T5プロモーター、T3プロモーター、lacプロモーター、trpプロモーター、trcプロモーター、tacプロモーター、PRプロモーター、PLプロモーター、SP6プロモーター、アラビノース誘導プロモーター、コールドショックプロモーター、テトラサイクリン誘導性プロモーターが挙げられる。 The expression vector of the present invention may further contain a heterologous promoter operably linked to the polynucleotide. The term “heterologous promoter” refers to a promoter other than the natural promoter of the ginkgo beetle-derived isoprene synthase gene. Accordingly, examples of heterologous promoters include promoters of ginkgo bean-derived genes other than ginkgo beetle-derived isoprene synthase gene, promoters derived from other organisms (eg, microorganisms, animals, insects, and plants) other than ginkgo beetle, promoters derived from viruses, and artificial synthesis A promoter is mentioned. As the heterologous promoter, a promoter widely used for heterologous protein production may be used. Examples of such promoters include PhoA promoter, PhoC promoter, T7 promoter, T5 promoter, T3 promoter, lac promoter, trp promoter, trc promoter, tac promoter, PR promoter, PL promoter, SP6 promoter, arabinose inducible promoter, cold A shock promoter and a tetracycline inducible promoter are mentioned.
 本発明の発現ベクターはまた、上記ポリヌクレオチドの下流にターミネーターをさらに含んでいてもよい。このようなターミネーターとしては、例えば、T7ターミネーター、fdファージターミネーター、T4ターミネーター、テトラサイクリン耐性遺伝子のターミネーター、エシェリヒア・コリtrpA遺伝子のターミネーターが挙げられる。 The expression vector of the present invention may further contain a terminator downstream of the polynucleotide. Examples of such terminators include T7 terminator, fd phage terminator, T4 terminator, tetracycline resistance gene terminator, and Escherichia coli trpA gene terminator.
 本発明の発現ベクターはまた、開始コドンの上流にリボゾーム結合部位(例、シャイン・ダルガノ配列)をさらに含んでいてもよい。 The expression vector of the present invention may further contain a ribosome binding site (eg, Shine-Dalgarno sequence) upstream of the start codon.
 本発明の発現ベクターはまた、薬剤耐性遺伝子をコードするポリヌクレオチドをさらに含んでいてもよい。薬剤耐性遺伝子としては、例えば、テトラサイクリン、アンピシリン、カナマイシン、ハイグロマイシン、ホスフィノスリシン等の薬剤に対する耐性遺伝子が挙げられる。 The expression vector of the present invention may further contain a polynucleotide encoding a drug resistance gene. Examples of drug resistance genes include resistance genes for drugs such as tetracycline, ampicillin, kanamycin, hygromycin, and phosphinothricin.
 本発明の発現ベクターとしては、例えば、宿主においてタンパク質を発現させる細胞系ベクター、およびタンパク質翻訳系を利用する無細胞系ベクターが挙げられる。発現ベクターはまた、プラスミド、ウイルスベクター、ファージ、組込み型(integrative)ベクター、または人工染色体であってもよい。組込み型ベクターは、その全体が宿主細胞のゲノムに組み込まれるタイプのベクターであってもよい。あるいは、組込み型ベクターは、その一部(例、後述の発現単位)のみが宿主細胞のゲノムに組み込まれるタイプのベクターであってもよい。発現ベクターはさらに、DNAベクターまたはRNAベクターであってもよい。
 細胞系ベクターとしては、宿主に適した公知の発現ベクターが用いられる。このようなベクターとしては、例えば、pUC(例、pUC19、pUC18)、pSTV、pBR(例、pBR322)、pHSG(例、pHSG299、pHSG298、pHSG399、pHSG398)、RSF(例、RSF1010)、pACYC(例、pACYC177、pACYC184)、pMW(例、pMW119、pMW118、pMW219、pMW218)、pQE(例、pQE30)、およびその誘導体が挙げられる。
 無細胞系ベクターとしては、例えば、T7またはT3プロモーターを有する発現ベクター、SP6プロモーター等を有するpEU系プラスミド等の小麦無細胞タンパク質合成用ベクター等が挙げられる。
Examples of the expression vector of the present invention include a cell-based vector for expressing a protein in a host and a cell-free vector utilizing a protein translation system. The expression vector can also be a plasmid, viral vector, phage, integrative vector, or artificial chromosome. An integrative vector may be a type of vector that is integrated entirely into the genome of the host cell. Alternatively, the integrative vector may be a vector in which only a part (eg, an expression unit described later) is integrated into the host cell genome. The expression vector may further be a DNA vector or an RNA vector.
As the cell-based vector, a known expression vector suitable for the host is used. Examples of such vectors include pUC (eg, pUC19, pUC18), pSTV, pBR (eg, pBR322), pHSG (eg, pHSG299, pHSG298, pHSG399, pHSG398), RSF (eg, RSF1010), pACYC (eg, PACYC177, pACYC184), pMW (eg, pMW119, pMW118, pMW219, pMW218), pQE (eg, pQE30), and derivatives thereof.
Examples of the cell-free vector include wheat-cell-free protein synthesis vectors such as an expression vector having a T7 or T3 promoter and a pEU-based plasmid having an SP6 promoter.
<形質転換体>
 本発明の形質転換体は、本発明のタンパク質を産生できる、または本発明のポリヌクレオチドを発現してタンパク質を産生できる宿主細胞である。具体的には、本発明の形質転換体は、本発明のポリヌクレオチドを含む発現単位を含む宿主細胞である。本発明のポリヌクレオチドを含む発現単位とは、本発明のポリヌクレオチドおよびそれに作動可能に連結されたプロモーター(例、同種プロモーター、異種プロモーター)を含む、本発明のポリヌクレオチドによりコードされるタンパク質の発現を可能にする単位をいう。本発明のポリヌクレオチドを含む発現単位を含む宿主細胞としては、例えば、本発明の発現ベクターを含む宿主細胞が挙げられる。宿主細胞は、本発明のタンパク質を発現できる限り特に限定されない。宿主細胞は、本発明のタンパク質および本発明のポリヌクレオチドに対して同種であっても異種であってもよいが、異種であることが好ましい。宿主細胞はまた、上記プロモーターに対して同種であっても異種であってもよいが、異種であることが好ましい。宿主細胞としては、例えば、動物細胞、植物細胞、昆虫細胞、および微生物が挙げられるが、微生物が好ましい。微生物としては、例えば、腸内細菌科(Enterobacteriaceae)に属する細菌等の細菌、および真菌が挙げられる。細菌は、グラム陽性菌であってもグラム陰性菌であってもよい。
<Transformant>
The transformant of the present invention is a host cell capable of producing the protein of the present invention or expressing the polynucleotide of the present invention to produce the protein. Specifically, the transformant of the present invention is a host cell containing an expression unit containing the polynucleotide of the present invention. The expression unit containing the polynucleotide of the present invention refers to the expression of the protein encoded by the polynucleotide of the present invention, including the polynucleotide of the present invention and a promoter operably linked thereto (eg, homologous promoter, heterologous promoter). A unit that makes possible. Examples of the host cell containing the expression unit containing the polynucleotide of the present invention include a host cell containing the expression vector of the present invention. The host cell is not particularly limited as long as it can express the protein of the present invention. The host cell may be homologous or heterologous to the protein of the present invention and the polynucleotide of the present invention, but is preferably heterologous. The host cell may also be homologous or heterologous to the promoter, but is preferably heterologous. Examples of host cells include animal cells, plant cells, insect cells, and microorganisms, with microorganisms being preferred. Examples of the microorganism include bacteria such as bacteria belonging to the family Enterobacteriaceae and fungi. The bacterium may be a gram positive bacterium or a gram negative bacterium.
 グラム陽性細菌としては、バシラス(Bacillus)属細菌、リステリア(Listeria)属細菌、スタフィロコッカス(Staphylococcus)属細菌、ストレプトコッカス(Streptococcus)属細菌、エンテロコッカス(Enterococcus)属細菌、クロストリジウム(Clostridium)属細菌、コリネバクテリウム(Corynebacterium)属細菌、ストレプトマイセス(Streptomyces)属細菌等が挙げられ、バシラス(Bacillus)属細菌、コリネバクテリウム(Corynebacterium)属細菌が好ましい。
 バシラス(Bacillus)属細菌としては、枯草菌(Bacillus subtilis)、炭疽菌(Bacillus anthracis)、セレウス菌(Bacillus cereus)等が挙げられ、枯草菌(Bacillus subtilis)がより好ましい。
 コリネバクテリウム(Corynebacterium)属細菌としては、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、コリネバクテリウム・エフィシエンス(Corynebacterium efficiens)、コリネバクテリウム・カルナエ(Corynebacterium callunae)等が挙げられ、コリネバクテリウム・グルタミカムがより好ましい。
Examples of Gram-positive bacteria include Bacillus bacteria, Listeria bacteria, Staphylococcus bacteria, Streptococcus bacteria, Enterococcus bacteria, Clostridium bacteria, Clostridium bacteria, and Clostridium bacteria. Examples include bacteria belonging to the genus Corynebacterium and bacteria belonging to the genus Streptomyces, and bacteria belonging to the genus Bacillus and bacteria belonging to the genus Corynebacterium are preferred.
Examples of Bacillus bacteria include Bacillus subtilis, Bacillus anthracis, Bacillus cereus, and the like, and Bacillus subtilis is more preferable.
Examples of bacteria belonging to the genus Corynebacterium include Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium, and Corynebacterium. Is more preferable.
 グラム陰性細菌としては、エシェリヒア(Escherichia)属細菌、パントエア(Pantoea)属細菌、サルモネラ(Salmonella)属細菌、ビブリオ(Vivrio)属細菌、セラチア(Serratia)属細菌、エンテロバクター(Enterobacter)属細菌等が挙げられ、エシェリヒア(Escherichia)属細菌、パントエア(Pantoea)属細菌、エンテロバクター(Enterobacter)属細菌が好ましい。
 エシェリヒア(Escherichia)属細菌としては、エシェリヒア・コリ(Escherichia coli)が好ましい。
 パントエア(Pantoea)属細菌としては、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)等が挙げられ、パントエア・アナナティス(Pantoea ananatis)、パントエア・シトレア(Pantoea citrea)が好ましい。また、パントエア属細菌としては、欧州特許出願公開0952221号に例示された株を使用してもよい。パントエア属細菌の代表的な株としては、例えば、欧州特許出願公開0952221号に開示されるパントエア・アナナティスAJ13355株(FERM BP-6614)、パントエア・アナナティスAJ13356株(FERM BP-6615)、およびパントエアアナナティスSC17(0)株が挙げられる。パントエアアナナティスSC17(0)株は、2005年9月21にロシアン・ナショナル・コレクション・オブ・インダストリアル・マイ クロオーガニズム(Russian National Collection of Industrial Microorganisms (VKPM), GNII Genetika)(住所:Russia, 117545 Moscow, 1 Dorozhny proezd. 1)に受託番号VKPM B-9246として登録されている。
 エンテロバクター(Enterobacter)属細菌としては、エンテロバクター・アグロメランス(Enterobacter agglomerans)、エンテロバクター・アエロゲネス(Enterobacter aerogenes)等が挙げられ、エンテロバクター・アエロゲネス(Engerobacter aerogenes)が好ましい。また、エンテロバクター属細菌としては、欧州特許出願公開0952221号に例示された菌株を使用してもよい。エンテロバクター属細菌の代表的な株としては、例えば、エンテロバクター・アグロメランスATCC12287株、エンテロバクター・アエロゲネスATCC13048株、エンテロバクター・アエロゲネスNBRC12010株(Sakai S et al.,Biotechnol.Bioeng.,vol.98,pp.340-348,2007)、エンテロバクター・アエロゲネスAJ110637(FERM BP-10955)株等が挙げられる。エンテロバクター・アエロゲネスAJ110637株は、2007年8月22日付で独立行政法人 産業技術総合研究所(現:国立研究開発法人 産業技術総合研究所) 特許生物寄託センター(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-21348として寄託され、2008年3月13日にブダペスト条約に基づく国際寄託に移管され、FERM BP-10955の受領番号が付与されている。
Examples of the gram-negative bacteria include Escherichia bacteria, Pantoea bacteria, Salmonella bacteria, Vibrio bacteria, Serratia bacteria, Enterobacter bacteria, and the like. Among them, Escherichia bacteria, Pantoea bacteria, Enterobacter bacteria are preferable.
As the bacterium belonging to the genus Escherichia, Escherichia coli is preferable.
Examples of the genus Pantoea include Pantoea ananatis, Pantoea stewartii, Pantoea agglomerans, Pantoea citrea, and Pantoea citrea Pantoea ananatis) and Pantoea citrea are preferred. Further, as the Pantoea bacterium, strains exemplified in European Patent Application Publication No. 09522121 may be used. As typical strains of the genus Pantoea, for example, Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis AJ13356 strain (FERM BP-6615), and Pantoea disclosed in European Patent Application No. 0952212 are disclosed. Ananatis SC17 (0) strain. The Pantoea Ananatis SC17 (0) strain was established on September 21, 2005, in the Russian National Collection of Industrial Microorganisms (VKPM), GNII Genetika (adress: 11). 1) Registration number VKPM B-9246 in Moscow, 1 Dorozhny proezd.
Examples of Enterobacter bacteria include Enterobacter agglomerans, Enterobacter aerogenes, and the like, with Enterobacter aerogenes being preferred. Further, as the Enterobacter bacterium, a strain exemplified in European Patent Application Publication No. 09522121 may be used. As representative strains of Enterobacter bacteria, for example, Enterobacter agglomerans ATCC 12287 strain, Enterobacter aerogenes ATCC 13048 strain, Enterobacter aerogenes NBRC 12010 strain (Sakai Set et al., Biotechnol. Bioeng., Vol. 98, pp. 340-348, 2007) and Enterobacter aerogenes AJ11037 (FERM BP-10955). Enterobacter aerogenes AJ110737 is an independent administrative agency, National Institute of Advanced Industrial Science and Technology (currently National Institute of Advanced Industrial Science and Technology), Patent Biological Deposit Center (Tsukuba, Ibaraki, 305-8856, Japan) Deposited as FERM P-21348 in 1st, 1-Chome, 1-City, City East, and transferred to an international deposit based on the Budapest Treaty on March 13, 2008, and received the FERM BP-10955 receipt number. .
 真菌としては、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコデルマ(Trichoderma)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ムコール(Mucor)属の微生物等が挙げられ、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ヤロウイア(Yarrowia)属、またはトリコデルマ(Trichoderma)属の微生物が好ましい。
 サッカロミセス(Saccharomyces)属の微生物としては、サッカロミセス・カールスベルゲンシス(Saccharomyces carlsbergensis)、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)、サッカロミセス・ディアスタティクス(Saccharomyces diastaticus)、サッカロミセス・ドウグラシー(Saccharomyces douglasii)、サッカロミセス・クルイベラ(Saccharomyces kluyveri)、サッカロミセス・ノルベンシス(Saccharomyces norbensis)、サッカロミセス・オビフォルミス(Saccharomyces oviformis)が挙げられ、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)が好ましい。
 シゾサッカロミセス(Schizosaccharomyces)属の微生物としては、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)が好ましい。
 ヤロウイア(Yarrowia)属の微生物としては、ヤロウィア・リポリティカ(Yarrowia lipolytica)が好ましい。
 トリコデルマ(Trichoderma)属の微生物としては、トリコデルマ・ハルジアヌム(Ttichoderma harzianum)、トリコデルマ・コニンギー(Trichoderma koningii)、トリコデルマ・ロンギブラキアム(Trichoderma longibrachiatum)、トリコデルマ・リーゼイ(Trichoderma reesei)、トリコデルマ・ビリデ(Trichoderma viride)が挙げられ、トリコデルマ・リーゼイ(Trichoderma reesei)が好ましい。
 その他、本発明に用いられる宿主としては、イソプレンシンターゼの基質であるジメチルアリル二リン酸の合成に関与するメバロン酸(MVA)経路および/またはメチルエリスリトールリン酸(MEP)経路によるジメチルアリル二リン酸(DMAPP)の合成能を備えていれば特に限定されず、昆虫細胞、動物細胞、植物細胞等であってもよい。例えば、エシェリヒア・コリ等のエシェリヒア属細菌は、メチルエリスリトールリン酸経路によるジメチルアリル二リン酸の合成能を固有に有し得る。また、パントエア・アナナティス等のパントエア属細菌は、メバロン酸経路によるジメチルアリル二リン酸の合成能を固有に有し得る。
 表現「ジメチルアリル二リン酸(DMAPP)の合成能」については、Michelle C Y Chang およびJay D Keasling,Nature Chemical Biology 2,674-681(2006)を参照のこと。
 表現「メバロン酸(MVA)経路」については、Kuzuyama TおよびSeto H, Proc Jpn Acad Ser B Phys Biol Sci.88,41-52(2012);Miziorko HM,Arch Biochem Biophys.505,131-143(2011)を参照のこと。
 表現「メチルエリスリトールリン酸(MEP)経路」については、Kuzuyama TおよびSeto H,Proc Jpn Acad Ser B Phys Biol Sci.88,41-52(2012);Grawert T et al.,Cell Mol Life Sci.68,3797-3814(2011)を参照のこと。
Examples of the fungi include the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, the genus Trichoderma, the genus Aspergillus, the genus Aspergillus, Preferred are microorganisms of the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, or the genus Trichoderma.
The Saccharomyces (Saccharomyces) microorganisms of the genus, Saccharomyces carlsbergensis (Saccharomyces carlsbergensis), Saccharomyces cerevisiae (Saccharomyces cerevisiae), Saccharomyces Deer statics (Saccharomyces diastaticus), Saccharomyces Dougurashi (Saccharomyces douglasii), Saccharomyces Kuruibera (Saccharomyces kluyveri), Saccharomyces norbensis, Saccharomyces obiformis, and Saccharomyces s. -Saccharomyces cerevisiae is preferred.
As a microorganism belonging to the genus Schizosaccharomyces, Schizosaccharomyces pombe is preferable.
As a microorganism belonging to the genus Yarrowia, Yarrowia lipolytica is preferable.
The Trichoderma (Trichoderma) microorganisms of the genus, Trichoderma Harujianumu (Ttichoderma harzianum), Trichoderma Koningi (Trichoderma koningii), Trichoderma Rongiburakiamu (Trichoderma longibrachiatum), Trichoderma reesei (Trichoderma reesei), Trichoderma viride (Trichoderma viride) are And Trichoderma reesei is preferred.
In addition, the host used in the present invention includes dimethylallyl diphosphate by the mevalonate (MVA) pathway and / or methylerythritol phosphate (MEP) pathway involved in the synthesis of dimethylallyl diphosphate which is a substrate for isoprene synthase. It is not particularly limited as long as it has the ability to synthesize (DMAPP), and may be an insect cell, an animal cell, a plant cell, or the like. For example, Escherichia bacteria such as Escherichia coli may inherently have the ability to synthesize dimethylallyl diphosphate through the methylerythritol phosphate pathway. In addition, Pantoea bacteria such as Pantoea ananatis may inherently have the ability to synthesize dimethylallyl diphosphate by the mevalonate pathway.
For the expression “ability to synthesize dimethylallyl diphosphate (DMAPP)”, see Michele CY Chang and Jay D Keasling, Nature Chemical Biology 2,674-681 (2006).
For the expression “mevalonic acid (MVA) pathway”, see Kuzuyama T and Seto H, Proc Jpn Acad Ser B Phys Biol Sci. 88, 41-52 (2012); Miziorko HM, Arch Biochem Biophys. 505, 131-143 (2011).
For the expression “methylerythritol phosphate (MEP) pathway”, see Kuzuyama T and Seto H, Proc Jpn Acad Ser B Phys Biol Sci. 88, 41-52 (2012); Grawert T et al. , Cell Mol Life Sci. 68, 3797-3814 (2011).
 本発明の形質転換体は、さらにイソプレンシンターゼの基質であるジメチルアリル二リン酸(DMAPP)を合成する経路が強化されていてもよい。このような強化のため、イソペンテニル二リン酸(IPP)からジメチルアリル二リン酸(DMAPP)への変換能を有するイソペンテニル二リン酸デルタイソメラーゼの発現ベクターが、本発明の形質転換体に導入されてもよい。また、IPPおよび/またはDMAPPの生成に関連するメバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する1以上の酵素の発現ベクターが、本発明の形質転換体に導入されてもよい。このような酵素の発現ベクターは、プラスミド、または組込み型(integrative)ベクターであってもよい。このような酵素の発現ベクターはまた、DNAベクターまたはRNAベクターであってもよい。このような酵素の発現ベクターはさらに、メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する複数(例、1種、2種、3種または4種以上)の酵素を発現するものであってもよく、例えば、ポリシストロニックmRNAの発現ベクターであってもよい。メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する1以上の酵素の由来は、宿主に対して同種であってもよいし、異種であってもよい。メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する酵素の由来が宿主に対して異種である場合、例えば、宿主が上述したような細菌(例、エシェリヒア・コリ)であり、かつ、メバロン酸経路に関与する少なくとも1つの酵素が真菌(例、サッカロミセス・セレビシエ)に由来するものであってもよい。また、宿主が、メチルエリスリトールリン酸経路に関与する酵素を固有に産生するものである場合、宿主に導入される発現ベクターは、メバロン酸経路に関与する1または複数(例、1種、2種、3種または4種以上)の酵素を発現するものであってもよい。 In the transformant of the present invention, the pathway for synthesizing dimethylallyl diphosphate (DMAPP), which is a substrate for isoprene synthase, may be further enhanced. For such enhancement, an isopentenyl diphosphate delta isomerase expression vector having the ability to convert isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) was introduced into the transformant of the present invention. May be. In addition, an expression vector for one or more enzymes involved in the mevalonate pathway and / or methylerythritol phosphate pathway associated with the production of IPP and / or DMAPP may be introduced into the transformant of the present invention. Such enzyme expression vectors may be plasmids or integrative vectors. Such enzyme expression vectors may also be DNA vectors or RNA vectors. Such an enzyme expression vector further expresses a plurality of (eg, 1, 2, 3 or 4 or more) enzymes involved in the mevalonate pathway and / or the methylerythritol phosphate pathway. For example, it may be an expression vector for polycistronic mRNA. The origin of one or more enzymes involved in the mevalonate pathway and / or the methylerythritol phosphate pathway may be homologous or heterologous to the host. When the origin of the enzyme involved in the mevalonate pathway and / or the methylerythritol phosphate pathway is heterologous to the host, for example, the host is a bacterium as described above (eg, Escherichia coli), and mevalonic acid At least one enzyme involved in the pathway may be derived from a fungus (eg, Saccharomyces cerevisiae). In addition, when the host inherently produces an enzyme involved in the methylerythritol phosphate pathway, one or more expression vectors introduced into the host are involved in the mevalonate pathway (eg, 1 type, 2 types). (3 types or 4 types or more) of enzymes may be expressed.
 イソペンテニル二リン酸デルタイソメラーゼ(EC:5.3.3.2)としては、例えば、Idi1p(ACCESSION ID NP_015208)、AT3G02780(ACCESSION ID NP_186927)、AT5G16440(ACCESSION ID NP_197148)、およびIdi(ACCESSION ID NP_417365)が挙げられる。 As isopentenyl diphosphate delta isomerase (EC: 5.3.3.2), for example, Idi1p (ACCESSION ID NP_015208), AT3G02780 (ACCESSION ID NP_186927), AT5G16440 (ACCESSION ID NP_197165N, ID_197165N, P_197165) ).
 メバロン酸(MVA)経路に関与する酵素としては、例えば、メバロン酸キナーゼ(EC:2.7.1.36;例1、Erg12p、ACCESSION ID NP_013935;例2、AT5G27450、ACCESSION ID NP_001190411)、ホスホメバロン酸キナーゼ(EC:2.7.4.2;例1、Erg8p、ACCESSION ID NP_013947;例2、AT1G31910、ACCESSION ID NP_001185124)、ジホスホメバロン酸デカルボキシラーゼ(EC:4.1.1.33;例1、Mvd1p、ACCESSION ID NP_014441;例2、AT2G38700、ACCESSION ID NP_181404;例3、AT3G54250、ACCESSION ID NP_566995)、アセチル-CoA-C-アセチルトランスフェラーゼ(EC:2.3.1.9;例1、Erg10p、ACCESSION ID NP_015297;例2、AT5G47720、ACCESSION ID NP_001032028;例3、AT5G48230、ACCESSION ID NP_568694)、ヒドロキシメチルグルタリル-CoAシンターゼ(EC:2.3.3.10;例1、Erg13p、ACCESSION ID NP_013580;例2、AT4G11820、ACCESSION ID NP_192919;例3、MvaS、ACCESSION ID AAG02438)、ヒドロキシメチルグルタリル-CoAリダクターゼ(EC:1.1.1.34;例1、Hmg2p、ACCESSION ID NP_013555;例2、Hmg1p、ACCESSION ID NP_013636;例3、AT1G76490、ACCESSION ID NP_177775;例4、AT2G17370、ACCESSION ID NP_179329、EC:1.1.1.88、例、MvaA、ACCESSION ID P13702)、アセチル-CoA-C-アセチルトランスフェラーゼ/ヒドロキシメチルグルタリル-CoAリダクターゼ(EC:2.3.1.9/1.1.1.34、例、MvaE、ACCESSION ID AAG02439)が挙げられる。 Examples of enzymes involved in the mevalonate (MVA) pathway include, for example, mevalonate kinase (EC: 2.7.1.36; Example 1, Erg12p, ACCESSION ID NP — 013935; Example 2, AT5G27450, ACCESSION ID NP — 001190411), phosphomevalonic acid Kinase (EC: 2.7.4.2; Example 1, Erg8p, ACCESSION ID NP_013947; Example 2, AT1G31910, ACCESSION ID NP_001185124), diphosphomevalonate decarboxylase (EC: 4.1.1.33; Example 1, Mvd1p , ACCESSION ID NP_014441; Example 2, AT2G38700, ACCESSION ID NP_181404; Example 3, AT3G54250, A CESSION ID NP_566995), acetyl-CoA-C-acetyltransferase (EC: 2.3.1.9; Example 1, Erg10p, ACCESSION ID NP_015297; Example 2, AT5G47720, ACCESSION ID NP_001032028; Example 3, AT5G4856ID, 941 ), Hydroxymethylglutaryl-CoA synthase (EC: 2.3.3.10; Example 1, Erg13p, ACCESSION ID NP_013580; Example 2, AT4G11820, ACCESSION ID NP_192919; Example 3, MvaS, ACCESSION ID AAG02438), hydroxymethyl Glutaryl-CoA reductase (EC: 1.1 1.34; Example 1, Hmg2p, ACCESSION ID NP_013555; Example 2, Hmg1p, ACCESSION ID NP_013636; Example 3, AT1G76490, ACCESSION ID NP_177775; Example 4, AT2G17370, ACCESSION ID.NP. Example, MvaA, ACCESSION ID P13702), acetyl-CoA-C-acetyltransferase / hydroxymethylglutaryl-CoA reductase (EC: 2.3.1.9/1.1.1.34, example, MvaE, ACCESSION ID) AAG02439).
 メチルエリスリトールリン酸(MEP)経路に関与する酵素としては、例えば、1-デオキシ-D-キシルロース-5-リン酸シンターゼ(EC:2.2.1.7、例1、Dxs、ACCESSION ID NP_414954;例2、AT3G21500、ACCESSION ID NP_566686;例3、AT4G15560、ACCESSION ID NP_193291;例4、AT5G11380、ACCESSION ID NP_001078570)、1-デオキシ-D-キシルロース-5-リン酸リダクトイソメラーゼ(EC:1.1.1.267;例1、Dxr、ACCESSION ID NP_414715;例2、AT5G62790、ACCESSION ID NP_001190600)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールシンターゼ(EC:2.7.7.60;例1、IspD、ACCESSION ID NP_417227;例2、AT2G02500、ACCESSION ID NP_565286)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールキナーゼ(EC:2.7.1.148;例1、IspE、ACCESSION ID NP_415726;例2、AT2G26930、ACCESSION ID NP_180261)、2-C-メチル―D-エリスリトール-2,4-シクロニリン酸シンターゼ(EC:4.6.1.12;例1、IspF、ACCESSION ID NP_417226;例2、AT1G63970、ACCESSION ID NP_564819)、1-ヒドロキシ-2-メチル-2-(E)-ブテニル-4-ニリン酸シンターゼ(EC:1.17.7.1;例1、IspG、ACCESSION ID NP_417010;例2、AT5G60600、ACCESSION ID NP_001119467)、4-ヒドロキシ-3-メチル-2-ブテニル二リン酸レダクターゼ(EC:1.17.1.2;例1、IspH、ACCESSION ID NP_414570;例2、AT4G34350、ACCESSION ID NP_567965)が挙げられる。 Examples of enzymes involved in the methylerythritol phosphate (MEP) pathway include 1-deoxy-D-xylulose-5-phosphate synthase (EC: 2.2.1.7, Example 1, Dxs, ACCESSION ID NP_414954; Example 2, AT3G21500, ACCESSION ID NP_566686; Example 3, AT4G15560, ACCESSION ID NP_193291; Example 4, AT5G11380, ACCESSION ID NP_001078570), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (EC: 1.1. 1.267; Example 1, Dxr, ACCESSION ID NP_414715; Example 2, AT5G62790, ACCESSION ID NP_001190600), 4 Diphosphocytidyl-2-C-methyl-D-erythritol synthase (EC: 2.7.7.60; Example 1, IspD, ACCESSION ID NP_417227; Example 2, AT2G02500, ACCESSION ID NP_565286), 4-diphosphocytidyl-2-C- Methyl-D-erythritol kinase (EC: 2.7.1.148; Example 1, IspE, ACCESSION ID NP_415726; Example 2, AT2G26930, ACCESSION ID NP_180261), 2-C-methyl-D-erythritol-2,4- Cycloniphosphate synthase (EC: 4.6.1.12; Example 1, IspF, ACCESSION ID NP_417226; Example 2, AT1G63970, ACCESSION ID NP 564819), 1-hydroxy-2-methyl-2- (E) -butenyl-4-nitrophosphate synthase (EC: 1.1.77.1; Example 1, IspG, ACCESSION ID NP — 417010; Example 2, AT5G60600, ACCESSION ID NP_001119467), 4-hydroxy-3-methyl-2-butenyl diphosphate reductase (EC: 1.17.1.2; Example 1, IspH, ACCESSION ID NP_414570; Example 2, AT4G34350, ACCESSION ID NP_567965) It is done.
 遺伝子が組込まれた発現ベクターの宿主への導入(形質転換)は従来公知の方法を用いて行うことができる。例えば、カルシウム処理された菌体を用いるコンピテント細胞法や、エレクトロポレーション法等が挙げられる。また、プラスミドベクター以外にもファージベクターを用いて、菌体内に感染させ導入する方法によってもよい。 The introduction (transformation) of an expression vector into which a gene has been incorporated into a host can be performed using a conventionally known method. For example, a competent cell method using microbial cells treated with calcium, an electroporation method, and the like can be mentioned. In addition to a plasmid vector, a phage vector may be used to infect and introduce into a microbial cell.
 さらに、本発明の形質転換体において、イソプレンシンターゼの基質であるジメチルアリル二リン酸を合成するメバロン酸経路又はメチルエリスリトールリン酸経路の酵素をコードする遺伝子が導入されていてもよい。
 このような酵素としては、ピルビン酸塩とD-グリセルアルデヒド-3-ホスフェートを1-デオキシ-D-キシロース-5-ホスフェートに転換する1-デオキシ-D-キシロース-5-ホスフェートシンターゼ;イソペンテニル二リン酸をジメチルアリル二リン酸に転換するイソペンチルジホスフェートイソメラーゼ等が挙げられる。
Furthermore, in the transformant of the present invention, a gene encoding a mevalonate pathway or methylerythritol phosphate pathway enzyme that synthesizes dimethylallyl diphosphate, which is a substrate for isoprene synthase, may be introduced.
Such enzymes include 1-deoxy-D-xylose-5-phosphate synthase that converts pyruvate and D-glyceraldehyde-3-phosphate to 1-deoxy-D-xylose-5-phosphate; isopentenyl Examples include isopentyl diphosphate isomerase that converts diphosphate to dimethylallyl diphosphate.
 本発明の形質転換体では、1箇所または複数(例、2、3、4または5箇所)の特定のゲノム領域(例、コーディングまたはノンコーディング領域)が、破壊されていてもよい。このようなゲノム領域としては、例えば、crtオペロン(ポリプレニルシンテターゼ、ベータ-カロテンヒドロキシラーゼ、フィトエンシンターゼ、フィトエンデヒドロゲナーゼ、リコペンシクラーゼ等のイソプレノイド生合成経路をコードする)、amp遺伝子(例、ampC遺伝子、またはampH遺伝子)が挙げられる。例えば、crtオペロンの破壊は、イソプレノイド化合物の生成を抑制できるので有利であり得る。amp遺伝子の破壊は、アンピシリン耐性遺伝子(薬剤耐性選択マーカー)が利用可能になるので有利であり得る。
 遺伝子について用語「破壊」とは、遺伝子よりコードされるタンパク質の機能または発現を低下または完全消失させるように、遺伝子コーディング領域が改変されることを意味する。オペロンについて用語「破壊」とは、オペロンの機能を低下または完全消失させるように、オペロンに対応するゲノム領域が改変されることを意味する。エンハンサーとして作用し得るオペロン(例、上述したcrtオペロン)の機能が低下または完全消失すると、当該オペロンに作動可能に連結されている遺伝子によりコードされるタンパク質の発現が低下または完全消失し得る。一方、リプレッサーとして作用し得るオペロンの機能が低下または完全消失すると、当該オペロンに作動可能に連結されている遺伝子によりコードされるタンパク質の発現が向上し得る。当該改変としては、例えば、挿入、欠失および交換が挙げられるが、これらに限定されない。
 ゲノム領域は、例えば、既知の遺伝子ターゲティング法にしたがい上述の遺伝子(例、イソプレンシンターゼ遺伝子)を当該ゲノム領域に導入することにより、破壊されてもよい。
In the transformant of the present invention, one or a plurality of (eg, 2, 3, 4 or 5) specific genomic regions (eg, coding or non-coding regions) may be disrupted. Such genomic regions include, for example, the crt operon (encoding isoprenoid biosynthetic pathways such as polyprenyl synthetase, beta-carotene hydroxylase, phytoene synthase, phytoene dehydrogenase, lycopene cyclase), amp gene (eg, ampC gene, Or ampH gene). For example, the destruction of the crt operon can be advantageous because it can suppress the production of isoprenoid compounds. The disruption of the amp gene can be advantageous as an ampicillin resistance gene (drug resistance selection marker) becomes available.
The term “disruption” for a gene means that the gene coding region has been modified to reduce or completely eliminate the function or expression of the protein encoded by the gene. The term “disruption” for an operon means that the genomic region corresponding to the operon has been modified to reduce or completely eliminate the function of the operon. When the function of an operon that can act as an enhancer (eg, the crt operon described above) is reduced or completely lost, the expression of a protein encoded by a gene operably linked to the operon can be reduced or completely lost. On the other hand, when the function of an operon that can act as a repressor is reduced or completely eliminated, the expression of a protein encoded by a gene operably linked to the operon can be improved. Such modifications include, but are not limited to, insertions, deletions and exchanges, for example.
The genomic region may be destroyed, for example, by introducing the above-described gene (eg, isoprene synthase gene) into the genomic region according to a known gene targeting method.
 イソプレンシンターゼは、本発明の形質転換体から精製されてもよい。精製方法としては、例えば、塩析法、および各種クロマトグラフィーを用いた方法が挙げられる。イソプレンシンターゼがヒスチジンタグ等の異種部分を含むように設計されている場合、ニッケル等の金属、または異種部分に親和性を有する物質を用いたアフィニティーカラムにより、イソプレンシンターゼを精製することができる。その他、イオン交換クロマトグラフィーやゲルろ過クロマトグラフィー等の方法を適宜組み合わせて精製することにより、本発明のタンパク質の純度を高めることができる。 Isoprene synthase may be purified from the transformant of the present invention. Examples of the purification method include a salting-out method and a method using various chromatographies. When the isoprene synthase is designed to include a heterologous moiety such as a histidine tag, the isoprene synthase can be purified by an affinity column using a metal such as nickel or a substance having affinity for the heterogeneous moiety. In addition, the purity of the protein of the present invention can be increased by appropriately combining methods such as ion exchange chromatography and gel filtration chromatography.
<イソプレンモノマーおよびイソプレンポリマーの製造方法>
 本発明は、本発明のタンパク質の存在下において、ジメチルアリル二リン酸(DMAPP)からイソプレンモノマーを生成することを含む、イソプレンモノマーの製造方法を提供する。
<Method for producing isoprene monomer and isoprene polymer>
The present invention provides a method for producing an isoprene monomer comprising producing an isoprene monomer from dimethylallyl diphosphate (DMAPP) in the presence of the protein of the present invention.
 一実施形態では、本発明のイソプレンモノマーの製造方法は、本発明のタンパク質自体を用いて行うことができる。本発明のタンパク質として、天然タンパク質または組換えタンパク質を利用することができる。組換えタンパク質は、例えば、無細胞系ベクターを用いて、または本発明の形質転換体から得ることができる。本発明のタンパク質は、未精製、粗精製または精製タンパク質として利用することができる。反応系としては、例えば、本発明のタンパク質、基質(DMAPP)およびMgイオンを含む緩衝液(例、pH6.0~9.0)を利用することができる。Mgイオン(Mg2+)濃度は、特に限定されないが、本発明のタンパク質は低いMgイオン濃度で高い活性を示し得ることから、例えば、15mM以下、12mM以下または10mM以下のMgイオン濃度で反応が行われてもよい。 In one embodiment, the method for producing the isoprene monomer of the present invention can be performed using the protein itself of the present invention. A natural protein or a recombinant protein can be used as the protein of the present invention. The recombinant protein can be obtained, for example, using a cell-free vector or from the transformant of the present invention. The protein of the present invention can be used as an unpurified, crudely purified or purified protein. As the reaction system, for example, a buffer solution (eg, pH 6.0 to 9.0) containing the protein of the present invention, a substrate (DMAPP) and Mg ions can be used. The Mg ion (Mg 2+ ) concentration is not particularly limited, but the protein of the present invention can exhibit high activity at a low Mg ion concentration, and thus, for example, the reaction is performed at a Mg ion concentration of 15 mM or less, 12 mM or less, or 10 mM or less. It may be broken.
 別の実施形態では、本発明のイソプレンモノマーの製造方法は、本発明の形質転換体を用いて行うことができる。本発明の形質転換体は、培地中の炭素源から、イソプレンモノマーを主にアウトガスとして生産することができるため、形質転換体により発生するガスを採取することにより、イソプレンモノマーを回収することができる。イソプレンモノマーの原料となるジメチルアリル二リン酸は、培地中の炭素源を素に、宿主内のメバロン酸経路又はメチルエリスリトールリン酸経路で合成される。あるいは、ジメチルアリル二リン酸を培地に加えてもよい。 In another embodiment, the method for producing an isoprene monomer of the present invention can be performed using the transformant of the present invention. Since the transformant of the present invention can produce isoprene monomer mainly as an outgas from a carbon source in the medium, the isoprene monomer can be recovered by collecting the gas generated by the transformant. . Dimethylallyl diphosphate, which is a raw material for the isoprene monomer, is synthesized by the mevalonate pathway or the methyl erythritol phosphate pathway in the host, using the carbon source in the medium as the basis. Alternatively, dimethylallyl diphosphate may be added to the medium.
 本発明の形質転換体を培養する培地としては、メバロン酸またはイソプレンに転換されるための炭素源を含むことが好ましい。炭素源としては、単糖類、二糖類、オリゴ糖類、多糖類等の炭水化物;ショ糖を加水分解した転化糖;グリセロール;メタノール、ホルムアルデヒド、ギ酸塩、一酸化炭素、二酸化炭素等の炭素数が1の化合物(以下、C1化合物という。);コーン油、パーム油、大豆油等のオイル;アセテート;動物油脂;動物オイル;飽和脂肪酸、不飽和脂肪酸等の脂肪酸;脂質;リン脂質;グリセロ脂質;モノグリセライド、ジグリセライド、トリグリセライド等のグリセリン脂肪酸エステル;微生物性タンパク質、植物性タンパク質等のポリペプチド;加水分解されたバイオマス炭素源等の再生可能な炭素源;酵母エキス;又はこれらを組み合わせたものが挙げられる。窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。有機微量栄養源としては、ビタミンB1、L-ホモセリンなどの要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必要に応じて、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。なお、本発明で用いる培地は、炭素源、窒素源、無機イオン及び必要に応じてその他の有機微量成分を含む培地であれば、天然培地、合成培地のいずれでもよい。 The medium for culturing the transformant of the present invention preferably contains a carbon source for conversion to mevalonic acid or isoprene. Examples of the carbon source include carbohydrates such as monosaccharides, disaccharides, oligosaccharides and polysaccharides; invert sugar obtained by hydrolyzing sucrose; glycerol; 1 carbon number such as methanol, formaldehyde, formate, carbon monoxide and carbon dioxide Compounds (hereinafter referred to as C1 compounds); oils such as corn oil, palm oil and soybean oil; acetates; animal fats; animal oils; fatty acids such as saturated fatty acids and unsaturated fatty acids; lipids; phospholipids; glycerolipids; Glycerin fatty acid esters such as glyceride, diglyceride, and the like; polypeptides such as microbial proteins and plant proteins; renewable carbon sources such as hydrolyzed biomass carbon sources; yeast extracts; or combinations thereof. As the nitrogen source, inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like can be used. As an organic trace nutrient source, it is desirable to contain an appropriate amount of a required substance such as vitamin B1, L-homoserine or a yeast extract. In addition to these, a small amount of potassium phosphate, magnesium sulfate, iron ion, manganese ion or the like is added as necessary. The medium used in the present invention may be a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic ions, and other organic trace components as required.
 単糖類としては、ケトトリオース(ジヒドロキシアセトン)、アルドトリオース(グリセルアルデヒド)等のトリオース;ケトテトロース(エリトルロース)、アルドテトロース(エリトロース、トレオース)等のテトロース;ケトペントース(リブロース、キシルロース)、アルドペントース(リボース、アラビノース、キシロース、リキソース)、デオキシ糖(デオキシリボース)等のペントース;ケトヘキソース(プシコース、フルクトース、ソルボース、タガトース)、アルドヘキソース(アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース)、デオキシ糖(フコース、フクロース、ラムノース)等のヘキソース;セドヘプツロース等のヘプトースが挙げられ、フルクトース、マンノース、ガラクトース、グルコース等のC6糖;キシロース、アラビノース等のC5糖の炭水化物が好ましい。
 二糖類としては、スクロース、ラクトース、マルトース、トレハロース、ツラノース、セロビオース等が挙げられ、スクロース、ラクトースが好ましい。
 オリゴ糖類としては、ラフィノース、メレジトース、マルトトリオース等の三糖類;アカルボース、スタキオース等の四糖類;フラクトオリゴ糖(FOS)、ガラクトオリゴ糖(GOS)、マンナンオリゴ糖(MOS)等のその他のオリゴ糖類が挙げられる。
 多糖類としては、グリコーゲン、デンプン(アミロース、アミロペクチン)、セルロース、デキストリン、グルカン(β1,3-グルカン)が挙げられ、デンプン、セルロースが好ましい。
Examples of monosaccharides include trioses such as ketotriose (dihydroxyacetone) and aldtriose (glyceraldehyde); tetroses such as ketotetrose (erythrulose) and aldetetrose (erythrose and threose); ketopentose (ribulose and xylulose) Pentose such as ribose, arabinose, xylose, lyxose), deoxy sugar (deoxyribose); ketohexose (psicose, fructose, sorbose, tagatose), aldohexose (allose, altrose, glucose, mannose, gulose, idose, galactose, talose ), Deoxy sugars (fucose, fucrose, rhamnose) and other hexoses; heptose such as sedoheptulose; Scan, galactose, C6 sugars such as glucose; xylose, carbohydrates C5 sugars arabinose and the like are preferable.
Examples of the disaccharide include sucrose, lactose, maltose, trehalose, tunulose, and cellobiose, and sucrose and lactose are preferable.
Examples of oligosaccharides include trisaccharides such as raffinose, melezitose, and maltotriose; tetrasaccharides such as acarbose and stachyose; and other oligosaccharides such as fructooligosaccharide (FOS), galactooligosaccharide (GOS), and mannan oligosaccharide (MOS). Can be mentioned.
Examples of the polysaccharide include glycogen, starch (amylose, amylopectin), cellulose, dextrin, and glucan (β1,3-glucan), and starch and cellulose are preferable.
 微生物性タンパク質としては、酵母または細菌由来のポリペプチドが挙げられる。
 植物性タンパク質としては、大豆、コーン、キャノーラ、ジャトロファ、パーム、ピーナッツ、ヒマワリ、ココナッツ、マスタード、綿実、パーム核油、オリーブ、紅花、ゴマ、亜麻仁由来のポリペプチドが挙げられる。
Microbial proteins include polypeptides derived from yeast or bacteria.
Examples of plant proteins include polypeptides derived from soybean, corn, canola, jatropha, palm, peanut, sunflower, coconut, mustard, cottonseed, palm kernel oil, olive, safflower, sesame and flaxseed.
 脂質としては、C4以上の飽和、不飽和脂肪酸を1以上含む物質が挙げられる。 Examples of lipids include substances containing one or more saturated or unsaturated fatty acids of C4 or higher.
 オイルとしては、C4以上の飽和、不飽和脂肪酸が1以上含み、室温で液体の脂質が好ましく、大豆、コーン、キャノーラ、ジャトロファ、パーム、ピーナッツ、ヒマワリ、ココナッツ、マスタード、綿実、パーム核油、オリーブ、紅花、ゴマ、亜麻仁、油性微生物細胞、ナンキンハゼ、又はこれらの2以上の組み合わせからなるものが挙げられる。 The oil contains one or more saturated or unsaturated fatty acids of C4 or higher, and is preferably a lipid that is liquid at room temperature. Soybean, corn, canola, jatropha, palm, peanut, sunflower, coconut, mustard, cottonseed, palm kernel oil, Examples thereof include olives, safflowers, sesame, flaxseed, oily microbial cells, peanuts, or combinations of two or more thereof.
 脂肪酸としては、式RCOOH(「R」は炭化水素基を表す。)で表される化合物が挙げられる。
 不飽和脂肪酸は、「R」に少なくとも1の炭素-炭素二重結合を有する化合物であり、オレイン酸、バクセン酸、リノール酸、パルミテライジン酸、アラキドン酸等が挙げられる。
 飽和脂肪酸は、「R」が飽和脂肪族基である化合物であり、ドコサン酸、イコサン酸、オクタデカン酸、ヘキサデカン酸、テトラデカン酸、ドデカン酸等が挙げられる。
 中でも、脂肪酸としては、1以上のC2からC22の脂肪酸が含まれるものが好ましく、C12脂肪酸、C14脂肪酸、C16脂肪酸、C18脂肪酸、C20脂肪酸、C22脂肪酸が含まれるものがより好ましい。
 また、炭素源としては、これら脂肪酸の塩、誘導体、誘導体の塩も挙げられる。塩としては、リチウム塩、カリウム塩、ナトリウム塩等が挙げられる。
Examples of the fatty acid include compounds represented by the formula RCOOH (“R” represents a hydrocarbon group).
The unsaturated fatty acid is a compound having at least one carbon-carbon double bond in “R”, and examples thereof include oleic acid, vaccenic acid, linoleic acid, palmitate acid, and arachidonic acid.
The saturated fatty acid is a compound in which “R” is a saturated aliphatic group, and examples thereof include docosanoic acid, icosanoic acid, octadecanoic acid, hexadecanoic acid, tetradecanoic acid, and dodecanoic acid.
Among these, fatty acids containing one or more C2 to C22 fatty acids are preferred, and those containing C12 fatty acids, C14 fatty acids, C16 fatty acids, C18 fatty acids, C20 fatty acids and C22 fatty acids are more preferred.
Examples of the carbon source include salts of these fatty acids, derivatives, and salts of derivatives. Examples of the salt include lithium salt, potassium salt, sodium salt and the like.
 また、炭素源としては、脂質、オイル、油脂、脂肪酸、グリセリン脂肪酸エステルとグルコース等の炭水化物との組み合わせが挙げられる。 Also, examples of the carbon source include lipids, oils, fats and oils, fatty acids, combinations of glycerin fatty acid esters and carbohydrates such as glucose.
 再生可能な炭素源としては、加水分解されたバイオマス炭素源が挙げられる。
 バイオマス炭素源としては、木、紙、及びパルプの廃材、葉状植物、果肉等のセルロース系基質;柄、穀粒、根、塊茎等の植物の一部分が挙げられる。
 バイオマス炭素源として用いられる植物としては、コーン、小麦、ライ麦、ソルガム、トリティケイト、コメ、アワ、大麦、キャッサバ、エンドウマメ等のマメ科植物、ジャガイモ、サツマイモ、バナナ、サトウキビ、タピオカ等が挙げられる。
Renewable carbon sources include hydrolyzed biomass carbon sources.
Biomass carbon sources include cellulosic substrates such as wood, paper, and pulp waste, foliate plants, and pulp; parts of plants such as stalks, grains, roots, and tubers.
Examples of plants used as biomass carbon sources include corn, wheat, rye, sorghum, triticate, rice, millet, barley, cassava, peas and other legumes, potatoes, sweet potatoes, bananas, sugar cane, tapioca and the like.
 バイオマス等の再生可能な炭素源を細胞培地に添加する際には、前処理することが好ましい。前処理としては、酵素的前処理、化学的前処理、酵素的前処理と化学的前処理の組み合わせが挙げられる。
 再生可能な炭素源を細胞培地に添加する前に、その全部または一部を加水分解することが好ましい。
When a renewable carbon source such as biomass is added to the cell culture medium, pretreatment is preferably performed. Examples of the pretreatment include enzymatic pretreatment, chemical pretreatment, and a combination of enzymatic pretreatment and chemical pretreatment.
It is preferred to hydrolyze all or part of the renewable carbon source before adding it to the cell culture medium.
 また、炭素源としては、酵母エキス、または酵母エキスと、グルコース等の他の炭素源との組み合わせが挙げられ、酵母エキスと、二酸化炭素やメタノール等のC1化合物との組み合わせが好ましい。 Further, examples of the carbon source include yeast extract or a combination of yeast extract and another carbon source such as glucose, and a combination of yeast extract and C1 compound such as carbon dioxide or methanol is preferable.
 本発明において、形質転換体の培養方法としては、細胞を生理食塩水と栄養源を含む標準的培地で培養することが好ましい。
 培養培地としては、特に限定されず、Luria Bertani(LB)ブロス、Sabouraud Dextrose(SD)ブロス、Yeast medium(YM)ブロス等の一般的に市販されている既成の培地が挙げられる。特定の宿主の培養に適した培地を適宜選択して用いることができる。
In the present invention, as a method for culturing a transformant, cells are preferably cultured in a standard medium containing physiological saline and a nutrient source.
The culture medium is not particularly limited, and examples thereof include commercially available conventional culture media such as Luria Bertani (LB) broth, Sabouraud Dextrose (SD) broth, and Yeast medium (YM) broth. A medium suitable for cultivation of a specific host can be appropriately selected and used.
 細胞培地には適切な炭素源の他に、適切なミネラル、塩、補助因子、緩衝液、及び培養に適していること、またはイソプレン産出を促進することが当業者にとって公知の成分が含まれていることが望ましい。
 本発明の形質転換体において、目的タンパク質の発現を維持するために、糖、金属塩、抗菌物質等を培地に添加しておくことが好ましい。
In addition to a suitable carbon source, the cell culture medium includes suitable minerals, salts, cofactors, buffers, and ingredients known to those skilled in the art to be suitable for cultivation or to promote isoprene production. It is desirable.
In the transformant of the present invention, it is preferable to add sugar, metal salt, antibacterial substance and the like to the medium in order to maintain the expression of the target protein.
 本発明の形質転換体の培養条件としては、目的タンパク質の発現が可能な条件であれば、特に限定されず、標準的な細胞培養条件を用いることができる。
 培養温度としては、20℃~37℃が好ましく、ガス組成としては、CO濃度が約6%~約84%であることが好ましく、pHが、約5~約9であることが好ましい。
 また、宿主の性質に応じて好気性、無酸素性、又は嫌気性条件下で培養を行うことが好ましい。
The culture conditions for the transformant of the present invention are not particularly limited as long as the target protein can be expressed, and standard cell culture conditions can be used.
The culture temperature is preferably 20 ° C. to 37 ° C., the gas composition is preferably a CO 2 concentration of about 6% to about 84%, and a pH of about 5 to about 9.
Further, it is preferable to perform the culture under aerobic, anoxic, or anaerobic conditions depending on the properties of the host.
 培養方法としては、形質転換体をバッチ培養法、流加培養法、連続培養法等の公知の発酵方法を用いて培養する方法が挙げられる。 Examples of the culture method include a method of culturing the transformant using a known fermentation method such as a batch culture method, a fed-batch culture method, or a continuous culture method.
 バッチ培養法は、発酵開始時に培地組成物に仕込み、宿主を培地に植菌し、pHや酸素濃度等の制御を行いながら形質転換体の培養を行う方法である。バッチ培養法による形質転換体の培養において、形質転換体は、穏やかな誘導期から対数増殖期を経て最終的に成長速度が減少または停止する定常期に至る。イソプレンは、対数増殖期や定常期の形質転換体によって産出される。 The batch culture method is a method in which a medium composition is charged at the start of fermentation, a host is inoculated into the medium, and the transformant is cultured while controlling pH, oxygen concentration, and the like. In culturing a transformant by a batch culture method, the transformant goes from a gentle induction phase to a logarithmic growth phase and finally to a stationary phase where the growth rate decreases or stops. Isoprene is produced by transformants in the logarithmic growth phase or stationary phase.
 流加培養法は、上述したバッチ法に加えて、発酵プロセスが進行するに従い徐々に炭素源を添加する方法である。流加培養法は、カタボライト抑制により形質転換体の代謝が抑制される傾向があり、培地中の炭素源の量を制限することが好ましいときに有効である。流加培養法は、制限された量または過剰な量のグルコース等の炭素源を用いて行うことができる。 The fed-batch culture method is a method in which a carbon source is gradually added as the fermentation process proceeds in addition to the batch method described above. The fed-batch culture method is effective when the metabolism of the transformant tends to be suppressed by catabolite suppression and it is preferable to limit the amount of the carbon source in the medium. The fed-batch culture method can be performed using a limited or excessive amount of a carbon source such as glucose.
 連続培養法は、一定の速度でバイオリアクターに所定量の培地を連続的に供給しながら、同時に同量の培養液を抜き取る培養法である。連続培養法では培養物を一定の高密度に保つことができ、培養液中の形質転換体は主に対数増殖期にある。
 適宜、培地の一部または全部を入れ換えることにより、栄養素の補給を行うことができ、形質転換体の生育に悪影響を及ぼす可能性のある代謝副産物、及び死細胞の蓄積を防ぐことができる。
The continuous culture method is a culture method in which a predetermined amount of culture medium is continuously supplied to a bioreactor at a constant rate, and at the same time, the same amount of culture medium is withdrawn. In the continuous culture method, the culture can be kept at a constant high density, and the transformant in the culture solution is mainly in the logarithmic growth phase.
By appropriately replacing a part or all of the medium, it is possible to supplement nutrients and prevent accumulation of metabolic byproducts and dead cells that may adversely affect the growth of the transformant.
 発現ベクターがlacプロモーター等の誘導的プロモーターを有している場合には、培養液中に、例えばIPTG(イソプロピル-β-チオガラクトピラノシド)等の誘導剤を添加して、目的タンパク質の発現を誘導してもよい。 When the expression vector has an inducible promoter such as lac promoter, an inducing agent such as IPTG (isopropyl-β-thiogalactopyranoside) is added to the culture solution to express the target protein. May be induced.
 本発明の形質転換体を培養することにより得られるイソプレンモノマーの生産量の評価方法としては、ヘッドスペース法により気相を採取し、この気相をガスクロマトグラフィー法で分析する方法が挙げられる。
 詳細には、密封したバイアル中で形質転換体を含む培養液を振蕩しながら培養したときのヘッドスペース中のイソプレンモノマーを、標準的なガスクロマトグラフィーを用いて分析する。次いで、検量線を用いて、ガスクロマトグラフィー測定カーブから得られる面積を、形質転換体のイソプレンモノマー生産量に換算する。
Examples of a method for evaluating the production amount of isoprene monomer obtained by culturing the transformant of the present invention include a method in which a gas phase is collected by a headspace method and the gas phase is analyzed by a gas chromatography method.
Specifically, the isoprene monomer in the headspace when the culture medium containing the transformant is cultured while shaking in a sealed vial is analyzed using standard gas chromatography. Next, using the calibration curve, the area obtained from the gas chromatography measurement curve is converted into the isoprene monomer production amount of the transformant.
 本発明の形質転換体を培養することにより得られるイソプレンモノマーの回収方法としては、ガスストリッピング、分留、或いは、固相に吸着させたイソプレンモノマーの熱若しくは真空による固相からの脱着、又は溶媒による抽出等が挙げられる。
 ガスストリッピングでは、アウトガスから連続的にイソプレンガスを除去する。このようなイソプレンガスの除去は種々の方法で行うことができ、固相への吸着、液相への分離、又はイソプレンガスを直接凝縮させる方法が挙げられる。
As a method for recovering the isoprene monomer obtained by culturing the transformant of the present invention, gas stripping, fractional distillation, or desorption of the isoprene monomer adsorbed on the solid phase from the solid phase by heat or vacuum, or Examples include extraction with a solvent.
In gas stripping, isoprene gas is continuously removed from the outgas. Such isoprene gas can be removed by various methods, such as adsorption to a solid phase, separation into a liquid phase, or a method of directly condensing isoprene gas.
 イソプレンモノマーの回収は一段階又は多段階で行うことができる。イソプレンモノマーを一段階で回収する場合には、アウトガスからのイソプレンモノマーの分離と、イソプレンモノマーの液相への変換を同時に行う。イソプレンモノマーをアウトガスから直接凝縮させて液相にすることもできる。イソプレンモノマーを多段階で回収する場合には、オフガスからのイソプレンモノマーの分離と、イソプレンモノマーの液相への変換とを順次行う。例えば、イソプレンモノマーを固相に吸着させ、溶媒で固相から抽出する方法が挙げられる。 The recovery of isoprene monomer can be performed in one stage or in multiple stages. When the isoprene monomer is recovered in one stage, the separation of the isoprene monomer from the outgas and the conversion of the isoprene monomer into a liquid phase are simultaneously performed. Isoprene monomer can also be condensed directly from the outgas into a liquid phase. When the isoprene monomer is recovered in multiple stages, the separation of the isoprene monomer from the off-gas and the conversion of the isoprene monomer into a liquid phase are sequentially performed. For example, a method in which isoprene monomer is adsorbed on a solid phase and extracted from the solid phase with a solvent can be mentioned.
 更に、イソプレンモノマーの回収方法は、イソプレンモノマーを精製する工程が含まれていてもよい。精製工程としては、液相抽出物からの蒸留による分離や各種クロマトグラフィーが挙げられる。 Furthermore, the method for recovering the isoprene monomer may include a step of purifying the isoprene monomer. Examples of the purification step include separation from a liquid phase extract by distillation and various chromatographies.
 本発明はまた、イソプレンポリマーの製造方法を提供する。本発明のイソプレンポリマーの製造方法は、以下(I)および(II)を含む:
(I)本発明の方法によりイソプレンモノマーを生成すること;
(II)イソプレンモノマーを重合してイソプレンポリマーを生成すること。
The present invention also provides a method for producing an isoprene polymer. The method for producing the isoprene polymer of the present invention includes the following (I) and (II):
(I) producing an isoprene monomer by the method of the present invention;
(II) polymerizing isoprene monomers to produce isoprene polymers.
 工程(I)は、上述した本発明のイソプレンモノマーの製造方法と同様にして行うことができる。工程(II)におけるイソプレンモノマーの重合は、当該分野で公知の任意の方法(例、有機化学的な合成法)により行うことができる。 Step (I) can be performed in the same manner as the above-described method for producing the isoprene monomer of the present invention. The polymerization of the isoprene monomer in the step (II) can be performed by any method known in the art (eg, organic chemical synthesis method).
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
実施例1:P.ananatis AG10265の構築
1-1)pMW-Para-mvaES-Ttrpの構築
1-1-1)Enterococcus faecalis由来mvaE遺伝子の化学合成
 acetyl-CoA acetyltransferaseとhydroxymethlglutaryl-CoAreductaseをコードするEnterococcus faecalis由来mvaEの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:AF290092.1、(1479..3890)、アミノ酸配列のACCESSION番号:AAG02439)(J.Bacteriol.182(15),4319-4327(2000))。Enterococcus faecalis由来mvaEタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号5、及び配列番号6にそれぞれ示す。mvaE遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したmvaE遺伝子を設計し、これをEFmvaEと名付けた。この塩基配列を配列番号7に示す。mvaE遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-EFmvaEと名付けた。
Example 1: P.I. Construction of ananatis AG10265 1-1) Construction of pMW-Para-mvaES-Trp 1-1-1) Chemical synthesis of enterococcus faecalis mvaE gene And the amino acid sequence are already known (base sequence ACCESSION numbers: AF29009.1, (1479..3890), amino acid sequence ACCESSION number: AAG02439) (J. Bacteriol. 182 (15), 4319-4327 (2000). )). The amino acid sequence of Enterococcus faecalis-derived mvaE protein and the nucleotide sequence of the gene are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively. The mvaE gene was transformed into E. coli. E. coli for efficient expression in E. coli. An mvaE gene optimized for E. coli codon usage was designed and named EFmvaE. This base sequence is shown in SEQ ID NO: 7. The mvaE gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaE.
1-1-2)Enterococcus faecalis由来mvaS遺伝子の化学合成
 hydroxymethylglutaryl-CoA synthaseをコードするEnterococcus faecalis由来mvaSの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:AF290092.1、complement(142..1293)、アミノ酸配列のACCESSION番号:AAG02438)(J.Bacteriol.182(15),4319-4327(2000))。Enterococcus faecalis由来mvaSタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号8、及び配列番号9にそれぞれ示す。mvaS遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したmvaS遺伝子を設計し、これをEFmvaSと名付けた。この塩基配列を配列番号10に示す。mvaS遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-EFmvaSと名付けた。
1-1-2) Chemical synthesis of Enterococcus faecalis-derived mvaS gene The base sequence of Enterococcus faecalis-derived mvaS encoding hydroxymethyl-CoA synthase, and the amino acid sequence thereof are already known (base number: ACFSON. (142 .. 1293), ACCESSION number of amino acid sequence: AAG02438) (J. Bacteriol. 182 (15), 4319-4327 (2000)). The amino acid sequence of Enterococcus faecalis-derived mvaS protein and the base sequence of the gene are shown in SEQ ID NO: 8 and SEQ ID NO: 9, respectively. The mvaS gene was transformed into E. coli. E. coli for efficient expression in E. coli. An mvaS gene optimized for E. coli codon usage was designed and named EFmvaS. This base sequence is shown in SEQ ID NO: 10. The mvaS gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaS.
1-1-3)アラビノース誘導型mvaES発現ベクターの構築
 アラビノース誘導型メバロン酸経路上流遺伝子発現ベクターは次の手順で構築した。プラスミドpKD46を鋳型として配列番号11と配列番号12に示す合成オリゴヌクレオチドをプライマーとしたPCRによりE.coli由来araCとaraBADプロモーター配列からなるParaを含むPCR断片を得た。プラスミドpUC57-EFmvaEを鋳型として配列番号13と配列番号14に示す合成オリゴヌクレオチドをプライマーとしたPCRによりEFmvaE遺伝子を含むPCR断片を得た。プラスミドpUC57-EFmvaSを鋳型として配列番号15と配列番号16に示す合成オリゴヌクレオチドをプライマーとしたPCRによりEFmvaS遺伝子を含むPCR断片を得た。プラスミドpSTV-Ptac-Ttrpを鋳型として配列番号17と配列番号18に示す合成オリゴヌクレオチドをプライマーとしたPCRによりTtrp配列を含むPCR断片を取得した。これら4つのPCR断片を得るためのPCRにはPrime Starポリメラーゼ(タカラバイオ社製)を用いた。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。精製したParaを含むPCR産物とEFmvaE遺伝子を含むPCR産物を鋳型として配列番号11と配列番号14に示す合成オリゴヌクレオチドを、精製したEFmvaS遺伝子を含むPCR産物とTtrpを含むPCR産物を鋳型として配列番号15と配列番号18に示す合成オリゴヌクレオチドをプライマーとしてPCRを行った。その結果、ParaとEFmvaE遺伝子、EFmvaSとTtrp含むPCR産物を取得した。プラスミドpMW219(ニッポンジーン社製)は常法に従ってSmaI消化した。SmaI消化後pMW219と精製したParaとEFmvaE遺伝子を含むPCR産物、EFmvaS遺伝子とTtrpを含むPCR産物はIn-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたプラスミドは、pMW-Para-mvaES-Ttrpと命名した。
1-1-3) Construction of arabinose-inducible mvaES expression vector An arabinose-inducible mevalonate pathway upstream gene expression vector was constructed by the following procedure. E. coli by PCR using the plasmid pKD46 as a template and the synthetic oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 12 as primers. A PCR fragment containing Para comprising the araC and araBAD promoter sequences from E. coli was obtained. A PCR fragment containing the EFmvaE gene was obtained by PCR using the plasmid pUC57-EFmvaE as a template and the synthetic oligonucleotides shown in SEQ ID NO: 13 and SEQ ID NO: 14 as primers. A PCR fragment containing the EFmvaS gene was obtained by PCR using the plasmid pUC57-EFmvaS as a template and the synthetic oligonucleotides shown in SEQ ID NO: 15 and SEQ ID NO: 16 as primers. A PCR fragment containing the Ttrp sequence was obtained by PCR using the plasmid pSTV-Ptac-Ttrp as a template and the synthetic oligonucleotides shown in SEQ ID NO: 17 and SEQ ID NO: 18 as primers. Prime Star polymerase (manufactured by Takara Bio Inc.) was used for PCR to obtain these four PCR fragments. The reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. Synthetic oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 14 using a PCR product containing purified Para and a PCR product containing EFmvaE gene as a template, and a PCR product containing purified EFmvaS gene and a PCR product containing Ttrp as a template. PCR was performed using 15 and the synthetic oligonucleotide shown in SEQ ID NO: 18 as primers. As a result, PCR products containing Para and EFmvaE genes, EFmvaS and Ttrp were obtained. Plasmid pMW219 (Nippon Gene) was digested with SmaI according to a conventional method. A PCR product containing pMW219 and purified Para and EFmvaE genes, and a PCR product containing EFmvaS gene and Ttrp after SmaI digestion were ligated using In-Fusion HD Cloning Kit (Clontech). The resulting plasmid was named pMW-Para-mvaES-TTrp.
1-2)pTrc-KKDyI-ispS(K)の構築
 先ず、メバロン酸キナーゼ、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼを直鎖状に並べた配列を含む発現ベクターの構築を、In-fusionクローニング法にて行った。pUC-mvk-pmk(WO2013/179722A1の実施例7-2)を参照)を鋳型とし配列番号19~22の塩基配列からなるプライマーを用いてメバロン酸キナーゼとホスホメバロン酸キナーゼ配列をPCR法により増幅し、pTWV-dmd-yidi(WO2013/179722A1の実施例7-2)を参照)を鋳型とし配列番号19~22の塩基配列からなるプライマーを用いてジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼをPCR法により増幅した後、pTrcHis2BベクターにIn-fusionクローニング法にてクローニングを行うことで4種の酵素遺伝子を直鎖状に並べた発現プラスミドの構築を行った。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、98℃、2分、(98℃、10秒、52℃、5秒、72℃、1分/kb)×30サイクル、72℃、10分の条件で反応を行った。PCR断片は、制限酵素NcoIとPstIで処理したpTrcHis2Bベクターにin-fusionクローニング法にて挿入し、発現ベクター構築を行った。E.coli JM109に形質転換を行い、目的配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。構築した発現ベクターをpTrc-KKDyI(α)と名付けた。pTrc-KKDyI(α)の塩基配列を配列番号23に示す。
1-2) Construction of pTrc-KKDyI-ispS (K) First, construction of an expression vector including a sequence in which mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase and isopentenyl diphosphate delta isomerase are linearly arranged is performed. The in-fusion cloning method was used. Mevalonate kinase and phosphomevalonate kinase sequences were amplified by the PCR method using pUC-mvk-pmk (see Example 7-2 of WO2013 / 179722A1) as a template and using primers consisting of the nucleotide sequences of SEQ ID NOS: 19-22. PCR using pTWV-dmd-yidi (see Example 7-2 of WO2013 / 179722A1) as a template and a primer comprising the nucleotide sequences of SEQ ID NOS: 19 to 22 and diphosphomevalonate decarboxylase and isopentenyl diphosphate delta isomerase After amplification by the method, an expression plasmid was constructed in which four enzyme genes were arranged in a linear form by cloning into the pTrcHis2B vector by the In-fusion cloning method. PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used as a PCR enzyme, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) × 30 cycles The reaction was conducted at 72 ° C. for 10 minutes. The PCR fragment was inserted into the pTrcHis2B vector treated with restriction enzymes NcoI and PstI by the in-fusion cloning method to construct an expression vector. E. E. coli JM109 was transformed and a clone having the target sequence length was selected, followed by plasmid extraction according to a conventional method to confirm the sequence. The constructed expression vector was named pTrc-KKDyI (α). The base sequence of pTrc-KKDyI (α) is shown in SEQ ID NO: 23.
 次いで、得られたpTrc-KKDyI(α)(配列番号23)にIspS(K)を付加したプラスミドpTrc-KKDyI-ispS(K)の構築は以下の手順で行った。
 pTrc-KKDyI(α)を制限酵素PstI(タカラバイオ社製)で消化処理し、pTrc-KKDyI(α)/PstIを得た。pUC57-ispSKを鋳型とし、pTrcKKDyIkSS_6083-10-1(配列番号24)、pTrcKKDyIkSA_6083-10-2(配列番号25)をプライマーとし、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を30サイクル行った。その結果IspSK遺伝子を含む、PCR産物を取得した。その後、精製されたIspSK遺伝子断片と、pTrc-KKDyI(α)/PstIを、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたプラスミドをpTrc-KKDyI-ispS(K)(配列番号26)と命名した。
Subsequently, the construction of the plasmid pTrc-KKDyI-ispS (K) in which IspS (K) was added to the obtained pTrc-KKDyI (α) (SEQ ID NO: 23) was performed by the following procedure.
pTrc-KKDyI (α) was digested with the restriction enzyme PstI (Takara Bio Inc.) to obtain pTrc-KKDyI (α) / PstI. PCR was carried out using Prime Star Polymerase (manufactured by Takara Bio Inc.) using pUC57-ispSK as a template, pTrcKKDyIkSS_6083-10-1 (SEQ ID NO: 24) and pTrcKKDyIkSA_6083-10-2 (SEQ ID NO: 25) as primers. The reaction solution was prepared according to the composition attached to the kit, and the reaction was carried out for 30 cycles of 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds. As a result, a PCR product containing the IspSK gene was obtained. Thereafter, the purified IspSK gene fragment and pTrc-KKDyI (α) / PstI were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid was designated as pTrc-KKDyI-ispS (K) (SEQ ID NO: 26).
1-3)pSTV-Ptac-ispS-Mmamvkの構築
1-3-1)Methanosarcina mazei由来メバロン酸キナーゼの化学合成
 Methanosarcina mazei Go1由来、メバロン酸キナーゼの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:NC_003901.1(2101873..2102778、LOCUS TAG MM_1762,アミノ酸配列の番号:NP_633786.1))。Methanosarcina mazei由来MVKタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号27、及び配列番号28にそれぞれ示す。MVK遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したMVK遺伝子を設計し、これをMmamvkと名付けた。Mmamvkの塩基配列を配列番号29に示す。Mmamvk遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-Mmamvkと名付けた。
1-3) Construction of pSTV-Ptac-ispS-Mmamvk 1-3-1) Chemical Synthesis of Methanosarcina mazei Mevalonate Kinase From Methanosarcina mazei Go1, the base sequence of mevalonate kinase and the amino acid sequence are already known ( ACCESSION number of the nucleotide sequence: NC — 000039.1.1 (2101873 ... 2102778, LOCUS TAG MM — 1762, amino acid sequence number: NP — 633786.1)). The amino acid sequence of the MVK protein derived from Methanosarcina mazei and the base sequence of the gene are shown in SEQ ID NO: 27 and SEQ ID NO: 28, respectively. The MVK gene was transformed into E. coli. E. coli for efficient expression in E. coli. An MVK gene optimized for E. coli codon usage was designed and named Mmamvk. The base sequence of Mmamvk is shown in SEQ ID NO: 29. The Mmamvk gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-Mmamvk.
1-3-2)Pueraria montana var.lobata(葛)由来イソプレンシンターゼとMVK遺伝子発現用プラスミドの構築
 E.coliでIspSK遺伝子とMmamvk遺伝子とを発現させる為のプラスミドは次の手順で構築した。pUC57-IspSKを鋳型として、配列番号30と配列番号31の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を40サイクル行った。その結果IspSK遺伝子を含む、PCR産物を取得した。同様に、pSTV28-Ptac-Ttrpを、配列番号32と配列番号33の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて210秒の反応を40サイクル行った。その結果、pSTV28-Ptac-Ttrpを含む、PCR産物を取得した。その後、精製されたIspSK遺伝子断片と、pSTV28-Ptac-TtrpのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたIspSK遺伝子発現用プラスミドをpSTV28-Ptac-IspSKと命名した。次に、pUC57-Mmamvkを鋳型として、配列番号34と配列番号35の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果Mmamvk遺伝子を含むPCR産物を取得した。同様に、pSTV28-Ptac-IspSKを、配列番号36と配列番号37の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果、pSTV28-Ptac-IspSKを含む、PCR産物を取得した。その後、精製されたMmamvk遺伝子と、pSTV28-Ptac-IspSKのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたIspSK遺伝子とMmamvk遺伝子の発現用プラスミドをpSTV28-Ptac-ispSK-Mmamvkと名付けた。
1-3-2) Pueraria montana var. Construction of isobarene synthase from lobata and MVK gene expression E. A plasmid for expressing the IspSK gene and the Mmamvk gene in E. coli was constructed by the following procedure. PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-IspSK as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 30 and SEQ ID NO: 31 as primers. The reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds were performed. As a result, a PCR product containing the IspSK gene was obtained. Similarly, pSTV28-Ptac-Ttrp was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 32 and SEQ ID NO: 33 as a primer. The reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 210 seconds were performed. As a result, a PCR product containing pSTV28-Ptac-Ttrp was obtained. Thereafter, the purified IspSK gene fragment and the pSTV28-Ptac-Ttrp PCR product were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for expressing the IspSK gene was named pSTV28-Ptac-IspSK. Next, PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-Mmamvk as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NOs: 34 and 35 as primers. The reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing the Mmamvk gene was obtained. Similarly, pSTV28-Ptac-IspSK was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) with a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 36 and SEQ ID NO: 37 as primers. The reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing pSTV28-Ptac-IspSK was obtained. Thereafter, the purified Mmamvk gene and the pSTV28-Ptac-IspSK PCR product were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for expression of IspSK gene and Mmamvk gene was named pSTV28-Ptac-ispSK-Mmamvk.
1-4)pMW-Ptac-Mclmvk-Ttrpの構築
 次に、MVK発現プラスミド(pMW-Ptac-mvk-Ttrp)を構築した。
 先ず、Methanosaeta concilii由来メバロン酸キナーゼの塩基配列およびアミノ酸配列はすでに知られている(塩基配列のACCESSION:NC_015416.1(2189051..2190004,complement,LOCUS TAG MCON_2559)、アミノ酸配列のACCESSION番号:YP_004384801.1(GenPept))。Methanosaeta concilii由来MVKタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号38、及び配列番号39にそれぞれ示す。MVK遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したMVK遺伝子を設計し、これをMclmvkと名付けた。Mclmvkの塩基配列を配列番号40に示す。Mclmvk遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-Mclmvkと名付けた。
1-4) Construction of pMW-Ptac-Mclmvk-Ttrp Next, an MVK expression plasmid (pMW-Ptac-mvk-Ttrp) was constructed.
First, the base sequence and amino acid sequence of Methanosaeta concilii-derived mevalonate kinase are already known (base sequence ACCESSION: NC — 01546.16.1 (2189055.10.22190004, LOCUS TAG MCON — 2559), amino acid sequence ACCESSION number: YP_84. 1 (GenPept)). The amino acid sequence of MVK protein derived from Methanosaeta concilii and the base sequence of the gene are shown in SEQ ID NO: 38 and SEQ ID NO: 39, respectively. The MVK gene was transformed into E. coli. E. coli for efficient expression in E. coli. An MVK gene optimized for the codon usage of E. coli was designed and named Mclmvk. The base sequence of Mclmvk is shown in SEQ ID NO: 40. The Mclmvk gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-Mclmvk.
 pUC57-Mclmvkを鋳型として、Mcl_mvk_N(配列番号41)とMcl_mvk_C(配列番号42)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果Mclmvk遺伝子を含むPCR産物を取得した。同様に、pMW219-Ptac-Ttrp(WO2013069634A1を参照)を、PtTt219f(配列番号43)とPtTt219r(配列番号44)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果、pMW219-Ptac-Ttrpを含む、PCR産物を取得した。その後、精製されたMclmvk遺伝子と、pMW219-Ptac-TtrpのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたMclmvk遺伝子の発現用プラスミドをpMW-Ptac-Mclmvk-Ttrpと名付けた。 PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-Mclmvk as a template and a synthetic oligonucleotide consisting of base sequences of Mcl_mvk_N (SEQ ID NO: 41) and Mcl_mvk_C (SEQ ID NO: 42) as primers. The reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing the Mclmvk gene was obtained. Similarly, Prime Star Polymerase (manufactured by Takara Bio Inc.) was prepared using pMW219-Ptac-Ttrp (see WO20133066964A1), synthetic oligonucleotide consisting of the base sequences of PtTt219f (SEQ ID NO: 43) and PtTt219r (SEQ ID NO: 44) as primers. PCR was performed. The reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing pMW219-Ptac-Ttrp was obtained. Thereafter, the purified Mclmvk gene and the PCR product of pMW219-Ptac-Trp were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for expression of Mclmvk gene was named pMW-Ptac-Mclmvk-Ttrp.
1-5)メバロン酸経路の上流および下流遺伝子を保有する組込み型コンディショナル複製プラスミドの構築
 メバロン酸経路の上流および下流遺伝子を保有する組込み型プラスミドを構築するため、pAH162-λattL-TcR-λattR vector(Minaeva NI et al.,BMC Biotechnol.2008;8:63)を用いた。
1-5) Construction of an integrative conditional replication plasmid carrying genes upstream and downstream of the mevalonate pathway In order to construct an integrative plasmid carrying genes upstream and downstream of the mevalonate pathway, pAH162-λattL-TcR-λattR vector (Minaeva NI et al., BMC Biotechnol. 2008; 8:63) was used.
 pMW-Para-mvaES-TtrpのKpnI-SalIフラグメントを、pAH162-λattL-TcR-λattRのSphI-SalI認識部位中にクローニングした。その結果、E.coli Paraプロモーターおよびリプレッサー遺伝子araCの制御下にあるE.faecalis由来mvaESオペロンを保有するpAH162-Para-mvaESプラスミドを構築した(図1)。 The KpnI-SalI fragment of pMW-Para-mvaES-Ttrp was cloned into the SphI-SalI recognition site of pAH162-λattL-TcR-λattR. As a result, E.I. E. coli under the control of the Para Para promoter and repressor gene araC. The pAH162-Para-mvaES plasmid carrying the faecalis-derived mvaES operon was constructed (FIG. 1).
 S.cerevisiae由来のメバロン酸キナーゼ、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、およびIPPイソメラーゼ遺伝子、および葛由来ispS遺伝子のコーディング部分を含むpTrc-KKDyI-ispS(K)プラスミドのEcl136II-SalIフラグメントを、pAH162-λattL-TcR-λattRのSphI-SalI部位中にサブクローニングし、得られたプラスミドを、pAH162-KKDyI-ispS(K)と命名した(図2)。 S. The Ecl136II-SalI fragment of the pTrc-KKDyI-ispS (K) plasmid containing the coding portion of the mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and IPP isomerase genes from cerevisiae, and the kasp-derived ispS gene, was transformed into pAH162-λattL -Subcloning into the SphI-SalI site of TcR-λattR and the resulting plasmid was named pAH162-KKDyI-ispS (K) (Figure 2).
 Ptacの制御下にあるispS(M)およびmvk(M.mazei)遺伝子を含むpSTV28-Ptac-ispS-MmamvkのBglII-EcoRIフラグメントを、組込み型ベクターpAH162-λattL-TcR-λattRのBamHI-Ecl136II認識部位中にサブクローニングした。得られたプラスミドpAH162-Ptac-ispS(M)-mvk(Mma)を、図3に示す。 A BglII-EcoRI fragment of pSTV28-Ptac-ispS-Mamvk containing the ispS (M) and mvk (M.mazei) genes under the control of Ptac is recognized by the BamHI-Ecl136II site of the integrating vector pAH162-λattL-TcR-λattR. Subcloned into. The resulting plasmid pAH162-Ptac-ispS (M) -mvk (Mma) is shown in FIG.
1-6)phi80ファージのattB部位をゲノムの異なる部位に保有するP.ananatis SC17(0)誘導体の構築
 ampC遺伝子、ampH遺伝子またはcrtオペロンを置換したphi80ファージのattB部位を保有するP.ananatis SC17(0)誘導体を構築した(P.ananatis AJ13355の注釈付完全ゲノム配列は、PRJDA162073またはGenBankアクセッション番号AP01232.1およびAP012033.1として入手可能)。これらの株を得るために、ゲノム中の標的部位に相同である40bp領域に隣接したattLphi80-kan-attRphi80を保有するPCR増幅DNAフラグメントのλRed依存性組込みを、既報の手法(Katashkina JI et al.,BMC Mol Biol.2009;10:34)にしたがって行った。エレクトロポレーション後、50mg/lカナマイシン含有L-アガー上で細胞を培養した。attLphi80-kan-attRphi80によるampCおよびampH遺伝子ならびにcrtオペロンの置換に用いたDNAフラグメントを、それぞれ、オリゴヌクレオチド1および2、3および4、ならびに5および6(表3)を用いた反応で増幅した。pMWattphiプラスミド(Minaeva NI et al.,BMC Biotechnol.2008;8:63)を、これらの反応で鋳型として用いた。得られた組込み体を、SC17(0)ΔampC::attLphi80-kan-attRphi80、SC17(0)ΔampH::attLphi80-kan-attRphi80、およびSC17(0)Δcrt::attLphi80-kan-attRphi80と命名した。オリゴヌクレオチド7および8、9および10、ならびに11および12(表3)を、それぞれ、SC17(0)ΔampC::attLphi80-kan-attRphi80、SC17(0)ΔampH::attLphi80-kan-attRphi80、およびSC17(0)Δcrt::attLphi80-kan-attRphi80株のPCRによる検証のために用いた。得られたΔampC::attLphi80-kan-attRphi80、ΔampH::attLphi80-kan-attRphi80、およびΔcrt::attLphi80-kan-attRphi80、ゲノム改変体のマップを、それぞれ、図4A)、図5A)および図6A)に示す。
1-6) P. coli harboring attB sites of phi80 phage at different sites in the genome Construction of ananatis SC17 (0) Derivatives P. cerevisiae carrying the attB site of phi80 phage substituted with ampC gene, ampH gene or crt operon. Ananatis SC17 (0) derivatives were constructed (annotated complete genome sequence of P. ananatis AJ13355 is available as PRJDA 162073 or GenBank accession numbers AP01232.1 and AP012033.1). In order to obtain these strains, λRed-dependent integration of a PCR amplified DNA fragment carrying attLphi80-kan-attRphi80 adjacent to a 40 bp region homologous to the target site in the genome was performed by a previously reported method (Katashkina JI et al. , BMC Mol Biol. 2009; 10:34). After electroporation, the cells were cultured on L-agar containing 50 mg / l kanamycin. The DNA fragments used to replace the ampC and ampH genes and the crt operon with attLphi80-kan-attRphi80 were amplified in reactions with oligonucleotides 1 and 2, 3 and 4, and 5 and 6 (Table 3), respectively. The pMWattphi plasmid (Minaeva NI et al., BMC Biotechnol. 2008; 8:63) was used as a template in these reactions. The resulting integrants were named SC17 (0) ΔampC :: attLphi80-kan-attRphi80, SC17 (0) Δamph :: attLphi80-kan-attRphi80, and SC17 (0) Δcrt :: attLphi80-kan-attRphi80. Oligonucleotides 7 and 8, 9 and 10, and 11 and 12 (Table 3) were converted to SC17 (0) ΔampC :: attLphi80-kan-attRphi80, SC17 (0) ΔampHpH :: attLphi80-kan-attRphi80, and SC17, respectively. (0) Δcrt :: attLphi80-kan-attRphi80 strain was used for verification by PCR. The resulting ΔampC :: attLphi80-kan-attRphi80, ΔampH :: attLphi80-kan-attRphi80, and Δcrt :: attLphi80-kan-attRphi80, maps of the genome variants, FIG. 4A), FIG. 5A) and FIG. 6A, respectively. ).
 カナマイシン耐性マーカーからの構築株のキュアリングを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)の手法にしたがい、pAH129-catヘルパープラスミドを用いて行った。オリゴヌクレオチド7および8、9および10、ならびに11および12(表3)を、それぞれ、得られたSC17(0)ΔampC::attBphi80、SC17(0)ΔampH::attBphi80、およびSC17(0)Δcrt::attBphi80株のPCRによる検証のために用いた。 Curing of the constructed strain from the kanamycin resistance marker was performed using the pAH129-cat helper plasmid according to the method of the previous report (Andreeva IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60). . Oligonucleotides 7 and 8, 9 and 10, and 11 and 12 (Table 3) were obtained from SC17 (0) ΔampC :: attBphi80, SC17 (0) ΔampH :: attBphi80, and SC17 (0) Δcrt: : Used for verification of attBphi80 strain by PCR.
1-7)ISP3-S株の構築
 1-5)に記載されるpAH162-KKDyI-ispS(K)のプラスミドを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)の手法にしたがい、ヘルパープラスミドpAH123-catを用いて、1-6)に記載されるSC17(0)ΔampC::attBphi80株に組み込んだ。オリゴヌクレオチド13および7、ならびに14および8(表3)を、得られた組込み体のPCRによる検証のために用いた。得られたSC17(0)ΔampC::pAH162-KKDyI-ispS(K)株を、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の手法にしたがい、λファージのintおよびxis遺伝子を保有するpMWintxis-catヘルパープラスミドを用いて、pAH162-KKDyI-ispS(K)のベクター部分からキュアした。その結果、SC17(0)ΔampC::KKDyI-ispS(K)株を得た。オリゴヌクレオチド7および15(表3)を、カナマイシン感受性誘導体のPCRによる検証のために用いた。SC17(0)ΔampC::KKDyI-ispS(K)の構築を図4Cに示す。
1-7) Construction of ISP3-S strain The plasmid of pAH162-KKDyI-ispS (K) described in 1-5) was previously reported (Andrewa IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55. According to the procedure of −60), the helper plasmid pAH123-cat was used to integrate into the SC17 (0) ΔampC :: attBphi80 strain described in 1-6). Oligonucleotides 13 and 7, and 14 and 8 (Table 3) were used for PCR verification of the resulting integrants. The obtained SC17 (0) ΔampC :: pAH162-KKDyI-ispS (K) strain was obtained by following the procedure described previously (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Using the pMWintxis-cat helper plasmid carrying the gene, the vector portion of pAH162-KKDyI-ispS (K) was cured. As a result, an SC17 (0) ΔampC :: KKDyI-ispS (K) strain was obtained. Oligonucleotides 7 and 15 (Table 3) were used for PCR verification of kanamycin sensitive derivatives. The construction of SC17 (0) ΔampC :: KKDyI-ispS (K) is shown in FIG. 4C.
 GeneElute細菌性ゲノムDNAキット(Sigma)を用いて上記SC17(0)ΔampH::attLphi80-kan-attRphi80株から単離したゲノムDNAを、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の染色体エレクトロポレーションの方法にしたがって、SC17(0)ΔampC::KKDyI-ispS(K)株にエレクトロポレーションした。ΔampH::attLphi80-kan-attRphi80変異の移入を、プライマー9および10を用いたPCRにより確認した。 Genomic DNA isolated from the SC17 (0) Δamph :: attLphi80-kan-attRphi80 strain using the GeneElute bacterial genomic DNA kit (Sigma) was previously reported (Katashkina JI et al., BMC Mol Biol. 2009; 10: According to the method of chromosome electroporation of 34), the SC17 (0) ΔampC :: KKDyI-ispS (K) strain was electroporated. Transfer of the ΔampH :: attLphi80-kan-attRphi80 mutation was confirmed by PCR using primers 9 and 10.
 得られた株からのカナマイシン耐性マーカーの除去を、phi80 Int/Xis依存性手法(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)を用いて行った。得られたKmS組換え体においてプライマー7および15を用いてΔampC::KKDyI-ispS(K)改変体をPCRにより検証した後、SC17(0)ΔampC::KKDyI-ispS(K) ΔampH::attBphi80株を選択した。 The kanamycin resistance marker was removed from the obtained strain using a phi80 Int / Xis-dependent method (Andrewa IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60). In the obtained KmS recombinant, the ΔampC :: KKDyI-ispS (K) variant was verified by PCR using primers 7 and 15, and then SC17 (0) ΔampC :: KKDyI-ispS (K) ΔamppH :: attBphi80 A stock was selected.
 上記pAH162-Para-mvaESプラスミドを、pAH123-catヘルパープラスミド(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)を用いて、SC17(0)ΔampC::KKDyI-ispS(K)ΔampH::attBphi80に組み込んだ。オリゴヌクレオチド13および9、ならびにオリゴヌクレオチド14および10(表3)を、得られた組込み体のPCRによる検証のために用いた。この組込み体を、ファージλ Int/Xis依存性技術(Katashkina JI et al.,BMC Mol Biol.2009;10:34)を用いて、pAH162-Para-mvaESのベクター部分を除去した。染色体からのベクターの除去は、プライマー9および16を用いたPCRにより確認した。その結果、マーカーを含まないSC17(0)ΔampC::KKDyI-ispS(K)ΔampH::Para-mvaESを得た。ΔampH::Para-mvaES染色体改変体の構築物を、図5に示す。 The pAH162-Para-mvaES plasmid was transformed into SC17 (0) ΔampC :: KKDyI-ispS using the pAH123-cat helper plasmid (Andreweva IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60). (K) Incorporated into ΔampH :: attBphi80. Oligonucleotides 13 and 9 and oligonucleotides 14 and 10 (Table 3) were used for PCR verification of the resulting integrants. From this integrant, the vector portion of pAH162-Para-mvaES was removed using a phage λ Int / Xis-dependent technology (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). The removal of the vector from the chromosome was confirmed by PCR using primers 9 and 16. As a result, SC17 (0) ΔampC :: KKDyI-ispS (K) ΔampH :: Para-mvaES containing no marker was obtained. The construct of ΔampH :: Para-mvaES chromosome variant is shown in FIG.
 1-5)に記載されるpAH162-Ptac-ispS(M)-mvk(Mma)プラスミドを、既報に記載されるプロトコル(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)を用いて、SC17(0)Δcrt::attBphi80のゲノムに組み込んだ。プラスミド組込みを、プライマー11および13ならびに12および14を用いたポリメラーゼ連鎖反応で確認した。 The pAH162-Ptac-ispS (M) -mvk (Mma) plasmid described in 1-5) was prepared using the protocol (Andrewa IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55- 60) was used to integrate into the genome of SC17 (0) Δcrt :: attBphi80. Plasmid integration was confirmed by polymerase chain reaction using primers 11 and 13 and 12 and 14.
 このようにして構築された染色体改変体SC17(0)Δcrt::pAH162-Ptac-ispS(M)-mvk(Mma)を、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)のゲノムDNAによるエレクトロポレーションの方法を用いて、SC17(0)ΔampC::KKDyI-ispS(K)ΔampH::Para-mvaES株に移した。得られた組込み体を、ファージλ Int/Xis依存性技術(Katashkina JI et al.,BMC Mol Biol.2009;10:34)を用いて、pAH162-Ptac-ispS(M)-mvk(Mma)のベクター部分を除去した。最終構築物Δcrt::Ptac-ispS(M)-mvk(Mma)の構造(図6D)は、プライマー11および17を用いたPCRで確認した。 The chromosome variant SC17 (0) Δcrt :: pAH162-Ptac-ispS (M) -mvk (Mma) thus constructed has been reported (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Was transferred to the SC17 (0) ΔampC :: KKDyI-ispS (K) ΔampH :: Para-mvaES strain. The resulting integrant was transformed into pAH162-Ptac-ispS (M) -mvk (Mma) using phage λ Int / Xis dependent technology (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). The vector part was removed. The structure of the final construct Δcrt :: Ptac-ispS (M) -mvk (Mma) (FIG. 6D) was confirmed by PCR using primers 11 and 17.
 この最終株に導入された組込み型発現カセットをPCRにより検証したところ、S.cerevisiae由来のMVK、PMK、MVDおよびyldI遺伝子を含むKKDyIオペロンの5’-部分で幾つか予想外に再構成していることが判明した。このカセットを修復するため、既報の手法(Katashkina JI et al.,BMC Mol Biol.2009;10:34)にしたがい、GeneElute細菌性ゲノムDNAキット(Sigma)を用いて、SC17(0)ΔampC::pAH162-KKDyI-ispS(K)株から単離したゲノムDNAをこの株にエレクトロポレーションした。得られた株は、イソプレン産生に必要な全ての遺伝子を含んでいた。 When the integrative expression cassette introduced into this final strain was verified by PCR, S. It was found that some unexpected rearrangements were made in the 5'-part of the KKDyI operon including the MVK, PMK, MVD and yldI genes from cerevisiae. In order to repair this cassette, SC17 (0) ΔampC :: using GeneElute bacterial genomic DNA kit (Sigma) according to a previously reported method (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Genomic DNA isolated from the pAH162-KKDyI-ispS (K) strain was electroporated into this strain. The resulting strain contained all the genes necessary for isoprene production.
 pAH162-KKDyI-ispS(K)(上記を参照)のベクター部分からファージλ Int/Xis依存性で除去した後、マーカーを含まないISP3-S株(P.ananatis SC17(0) ΔampC::attLphi80-KKDyI-ispS(K)-attRphi80 ΔampH::attLphi80-Para-mvaES-attRphi80 Δcrt::attLphi80-Ptac-ispS(M)-mvk(Mma)-attRphi80)を得た。 After removal from the vector portion of pAH162-KKDyI-ispS (K) (see above) in a phage λ Int / Xis dependency, an ISP3-S strain (P. ananatis SC17 (0) ΔampC :: attLphi80- containing no marker) KKDyI-ispS (K) -attRphi80 ΔampH :: attLphi80-Para-mvaES-attRphi80 Δcrt :: attLphi80-Ptac-ispS (M) -mvk (Mma) -attRphi80) was obtained.
1-8)異なるメバロン酸キナーゼ遺伝子を保有する組込み型プラスミドの構築
 pMW-Ptac-Mclmvk-TtrpのKpnI-BamHIフラグメントを、pAH162-λattL-TcR-λattR組込み型ベクターのKpnI-Ecl136II認識部位中にサブクローニングした。その結果、tacプロモーターの制御下にあるM.concilli由来MVK遺伝子を保有するpAH162-Ptac-Mclmvkプラスミドを構築した。
1-8) Construction of an integrative plasmid carrying a different mevalonate kinase gene The KpnI-BamHI fragment of pMW-Ptac-Mclmvk-Ttp was subcloned into the KpnI-Ecl136II recognition site of the pAH162-λattL-TcR-λattR integration vector did. As a result, M. coli under the control of the tac promoter. The pAH162-Ptac-Mclmvk plasmid carrying the MVK gene from concili was constructed.
1-9)AG10265株の構築
 1-8)に記載されるpAH162-Ptac-Mclmvkプラスミドを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)のプロトコルにしたがい、pAH123-catヘルパープラスミドを用いて、SC17(0)Δcrt::attBphi80のゲノム中に組み込んだ。
1-9) Construction of AG10265 strain The pAH162-Ptac-Mclmvk plasmid described in 1-8) was used in the protocol of the previously reported (Andrewa IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60). Therefore, it was integrated into the genome of SC17 (0) Δcrt :: attBphi80 using the pAH123-cat helper plasmid.
 構築されたΔcrt::pAH123-Ptac-mvk(M.paludicola)染色体改変体を、SC17(0)Δcrt::pAH162-Ptac-Mclmvkから単離したゲノムDNAのエレクトロポレーションを介して、ISP3-S株〔1-7)を参照〕に移入した。得られた組込み体を、AG10265(P.ananatis SC17(0) ΔampC::attLphi80-KKDyI-ispS(K)-attRphi80 ΔampH::attLphi80-Para-mvaES-attRphi80 Δcrt::attLphi80-λattL-TcR-λattR-Ptac-Mclmvk-attRphi80)と命名した。 The constructed Δcrt :: pAH123-Ptac-mvk (M.palladicola) chromosomal variant was transformed into ISP3-S via electroporation of genomic DNA isolated from SC17 (0) Δcrt :: pAH162-Ptac-Mclmvk. Strain [see 1-7]. The resulting integrant was designated as AG10265 (P. ananatis SC17 (0) ΔampC :: attLphi80-KKDyI-ispS (K) -attRphi80 ΔamppH :: attLphi80-Para-mvaES-attRphi80 ΔcrtLt80 Ptac-Mclmvk-attRphi80).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例2:各植物種由来イソプレンシンターゼの発現プラスミドの調製
2-1)Pueraria montana var.lobata(葛)由来イソプレンシンターゼの化学合成
 P.montana var.lobata由来、イソプレンシンターゼの塩基配列、及びアミノ酸配列は既に知られている(ACCESSION: AAQ84170:P.montana var.lobata(葛) isoprene synthase(IspS))。IspS遺伝子を、E.coli等の腸内細菌で効率的に発現させる為にE.coliのコドン使用頻度に最適化し、更に葉緑体移行シグナルが切断されたIspS遺伝子を設計し、これをIspSKと名付けた。IspSK遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-IspSKと名付けた。なお、IspSK遺伝子およびプラスミドpUC57-IspSMの配列は、WO2013/179722A1に開示されるものと同一である。
Example 2: Preparation of isoprene synthase expression plasmid derived from each plant species 2-1) Pueraria montana var. Chemical synthesis of isobarene synthase from Lovata montana var. The base sequence and amino acid sequence of isoprene synthase from Lobata are already known (ACCESSION: AAQ84170: P. montana var. lobata (kudzu) isoprene synthase (IspS)). The IspS gene was transformed into E. coli. E. coli for efficient expression in intestinal bacteria such as E. coli. An IspS gene that was optimized for E. coli codon usage and further cleaved from the chloroplast translocation signal was designed and named IspSK. The IspSK gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-IspSK. The sequences of the IspSK gene and plasmid pUC57-IspSM are the same as those disclosed in WO2013 / 179722A1.
2-2)Mucuna pururiens(ムクナ)由来イソプレンシンターゼの化学合成
 M.pururiens由来イソプレンシンターゼの塩基配列を基に、前記と同様に、E. coliのコドン使用頻度に最適化されたIspS遺伝子を設計し、葉緑体移行シグナルを切断したものをIspSMと名付けた。IspSM遺伝子は、化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-IspSMと名付けた。なお、IspSM遺伝子およびプラスミドpUC57-IspSMの配列は、WO2013/179722A1に開示されるものと同一である。
2-2) Chemical synthesis of isoprene synthase from Mucuna pururiens (Mucuna) Based on the base sequence of pururiens-derived isoprene synthase, E. An IspS gene optimized for the codon usage of E. coli was designed, and the one obtained by cleaving the chloroplast translocation signal was named IspSM. The IspSM gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-IspSM. The sequences of the IspSM gene and plasmid pUC57-IspSM are the same as those disclosed in WO2013 / 179722A1.
2-3)True myrtle(ギンコウバイ)由来イソプレンシンターゼの化学合成
 T.myrtle由来イソプレンシンターゼの塩基配列を基に、前記と同様に、E.coliのコドン使用頻度に最適化されたIspS遺伝子を設計し、葉緑体移行シグナルを切断したもの(但し、N末端にメチオニン残基を有する)をIspSUと名付けた。IspSUの塩基配列を配列番号62に示す。IspSU遺伝子は、それぞれ化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-IspSUと名付けた。
2-3) Chemical synthesis of isoprene synthase derived from True myrtle Based on the base sequence of myrtle-derived isoprene synthase, E. An IspS gene optimized for the codon usage of E. coli was designed, and the chloroplast translocation signal cleaved (however, having a methionine residue at the N-terminus) was named IspSU. The base sequence of IspSU is shown in SEQ ID NO: 62. Each IspSU gene was chemically synthesized and then cloned into pUC57 (manufactured by GenScript). The resulting plasmid was named pUC57-IspSU.
2-4)発現用プラスミドpSTV28-Ptac-Ttrpの構築
 E.coli等の腸内細菌で各植物種由来IspSを発現させる為の発現用プラスミドpSTV28-Ptac-Ttrpを構築した。始めに、tacプロモーター(同意語:Ptac)領域(deBoer,et al.,(1983) Proc.Natl.Acad.Sci.U.S.A.,80,21-25)及びE.coli由来トリプトファンオペロンのターミネーター(同意語Ttrp)領域(Wu et al.,(1978) Proc.Natl.Acad.Sci.U.S.A.,75,5442-5446)を含み、5’末端にKpnIサイト、3’末端にBamHIサイトを有するDNA断片(Ptac-Ttrp)を化学合成した。得られたPtac-TtrpのDNA断片をKpnI、及びBamHIにて消化処理し、同様にKpnI、及びBamHIで消化処理したpSTV28(タカラバイオ社製)とをDNA Ligaseによるライゲーション反応によって連結した。得られたプラスミドをpSTV28-Ptac-Ttrpと名付けた。本プラスミドは、Ptac下流にIspS遺伝子をクローニングすることで、IspS遺伝子の発現増幅が可能となる。なお、pSTV28-Ptac-Ttrpは、WO2013/179722A1に開示されるものと同一である。
2-4) Construction of expression plasmid pSTV28-Ptac-Ttrp An expression plasmid pSTV28-Ptac-Ttrp for expressing IspS derived from each plant species in intestinal bacteria such as E. coli was constructed. First, the tac promoter (synonymous: Ptac) region (deBoer, et al., (1983) Proc. Natl. Acad. Sci. USA, 80, 21-25) and E. coli. E. coli-derived tryptophan operon terminator (synonymous Ttrp) region (Wu et al., (1978) Proc. Natl. Acad. Sci. USA, 75, 5442-5446). A DNA fragment (Ptac-Ttrp) having a BamHI site at the 3 ′ end was chemically synthesized. The obtained Ptac-Ttrp DNA fragment was digested with KpnI and BamHI, and similarly ligated with pSTV28 (manufactured by Takara Bio Inc.) digested with KpnI and BamHI by a ligation reaction with DNA ligase. The resulting plasmid was named pSTV28-Ptac-Ttrp. In this plasmid, the expression of the IspS gene can be amplified by cloning the IspS gene downstream of Ptac. Note that pSTV28-Ptac-Ttrp is the same as that disclosed in WO2013 / 179722A1.
2-5)各植物種由来IspS遺伝子発現用プラスミドの構築
 E.coli等の腸内細菌でIspSK遺伝子、IspSM遺伝子、及びIspSU)遺伝子を発現させる為のプラスミドは次の手順で構築した。pUC57-IspSKを鋳型として、配列番号63と配列番号64の塩基配列からなる合成オリゴヌクレオチド、pUC57-IspSMを鋳型として、配列番号65と配列番号66の塩基配列からなる合成オリゴヌクレオチド、更にはpUC57-IspSUを鋳型として、配列番号67と配列番号68の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を40サイクル行った。その結果、IspSK遺伝子、IspSM遺伝子、及びIspSU遺伝子を含む、PCR産物を取得した。同様に、pSTV28-Ptac-Ttrpを、配列番号69と配列番号70の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて210秒の反応を40サイクル行った。その結果、pSTV28-Ptac-Ttrpを含む、PCR産物を取得した。その後、精製されたIspSK遺伝子、IspSM遺伝子、及びIspSU遺伝子遺伝子断片と、pSTV28-Ptac-TtrpのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたIspSK遺伝子発現用プラスミドをpSTV28-Ptac-IspSK、IspSM遺伝子発現用プラスミドをpSTV28-Ptac-IspSM、IspSU遺伝子発現用プラスミドをpSTV28-Ptac-IspSUと命名した。なお、プラスミドpSTV28-Ptac-IspSKおよびSTV28-Ptac-IspSMは、WO2013/179722A1に開示されるものと同一である。
2-5) Construction of IspS gene expression plasmid derived from each plant species Plasmids for expressing the IspSK gene, IspSM gene, and IspSU) gene in intestinal bacteria such as E. coli were constructed by the following procedure. Using pUC57-IspSK as a template, a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 63 and SEQ ID NO: 64, using pUC57-IspSM as a template, a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 65 and SEQ ID NO: 66, and further pUC57- PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using IspSU as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 67 and SEQ ID NO: 68 as primers. The reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds were performed. As a result, a PCR product containing an IspSK gene, an IspSM gene, and an IspSU gene was obtained. Similarly, pSTV28-Ptac-Ttrp was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 69 and SEQ ID NO: 70 as a primer. The reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 210 seconds were performed. As a result, a PCR product containing pSTV28-Ptac-Ttrp was obtained. Thereafter, the purified IspSK gene, IspSM gene, and IspSU gene gene fragment and the PCR product of pSTV28-Ptac-Ttp were ligated using In-Fusion HD Cloning Kit (Clontech). The resulting IspSK gene expression plasmid was named pSTV28-Ptac-IspSK, the IspSM gene expression plasmid was named pSTV28-Ptac-IspSM, and the IspSU gene expression plasmid was named pSTV28-Ptac-IspSU. The plasmids pSTV28-Ptac-IspSK and STV28-Ptac-IspSM are the same as those disclosed in WO2013 / 179722A1.
実施例3:パントエア・アナナティスを用いたイソプレンモノマーの生産
3-1)菌株の構築
 構築したAG10265に対し、常法に従い葛及びムクナ、ギンコウバイ由来のイソプレンシンターゼを導入したイソプレン生産菌を構築した(表4)。
Example 3: Production of isoprene monomer using Pantoea ananatis 3-1) Construction of strain An isoprene-producing bacterium in which isoprene synthase derived from Kudzu, Mucuna and Ginkgo biloba was introduced into the constructed AG10265 according to a conventional method (Table) 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
3-2)P.ananatisのイソプレン生産菌における、各植物種由来イソプレンシンターゼの導入効果
 P.ananatisのイソプレン生産菌におけるグルコースからのイソプレン生産能を比較した。AG10265/IspSK、AG10265/IspSM、AG10265/IspSUを、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、34℃にて18時間培養した。得られたプレートから、1白金耳分の菌体を、ヘッドスペースバイアル中のM9グルコース培地1mLに接種し、ヘッドスペースバイアル用キャップブチルゴムセプタム付(Perkin Elmer社製CRIMPS cat♯B0104240)で密栓後、往復振とう培養装置(120rpm)で、30℃にて48時間培養を行った。M9グルコース培地の組成は表5に記載のとおりである。
3-2) P.I. Effects of introduction of isoprene synthase derived from each plant species in ananasis isoprene-producing bacteria The ability to produce isoprene from glucose in ananatis isoprene-producing bacteria was compared. AG10265 / IspSK, AG10265 / IspSM, and AG10265 / IspSU were uniformly applied to an LB plate containing 60 (mg / L) chloramphenicol and cultured at 34 ° C. for 18 hours. From the obtained plate, 1 platinum loop of microbial cells was inoculated into 1 mL of M9 glucose medium in a headspace vial and sealed with a capbutyl rubber septum for headspace vial (CRIMPS cat # B0104240 manufactured by Perkin Elmer). Incubation was performed at 30 ° C. for 48 hours with a reciprocating shake culture apparatus (120 rpm). The composition of the M9 glucose medium is as shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 培養終了後、バイアルのヘッドスペース中のイソプレン濃度をガスクロマトグラフィーにより測定した。また、OD値は分光光度計(HITACHI U-2900)によって600nmで測定した。表6に各菌株の培養終了時のODあたりイソプレン濃度を記載した。 After completion of the culture, the isoprene concentration in the head space of the vial was measured by gas chromatography. The OD value was measured at 600 nm with a spectrophotometer (HITACHI U-2900). Table 6 shows the isoprene concentration per OD at the end of the culture of each strain.
 以下にガスクロマトグラフィーの分析条件を記載する。
Headspace Sampler (Perkin Elmer社製 Turbo Matrix 40)
バイアル保温温度 40℃
バイアル保温時間 30min
加圧時間 3.0min
注入時間 0.02min
ニードル温度 70℃
トランスファー温度 80℃
キャリアガス圧力(高純度ヘリウム) 124kPa
The analysis conditions for gas chromatography are described below.
Headspace Sampler (Turbo Matrix 40 manufactured by Perkin Elmer)
Vial insulation temperature 40 ° C
Vial incubation time 30 min
Pressurization time 3.0min
Injection time 0.02min
Needle temperature 70 ℃
Transfer temperature 80 ℃
Carrier gas pressure (high purity helium) 124kPa
ガスクロマトグラフィー(島津社製 GC-2010 Plus AF)
カラム(Rxi(登録商標)-1ms: 長さ30m、内径0.53mm、液相膜厚1.5μm cat♯13370)
カラム温度 37℃
圧力 24.8kPa
カラム流量 5mL/min
流入方法 スプリット 1:0(実測1:18)
トランスファー流量 90mL
GC注入量 1.8mL(トランスファー流量×注入時間)
カラムへの試料注入量 0.1mL
注入口温度 250℃
検出機 FID(水素 40mL/min、空気 400mL/min、メイクアップガス ヘリウム 30mL/min)
検出器温度 250℃
Gas chromatography (Shimadzu GC-2010 Plus AF)
Column (Rxi (registered trademark) -1 ms: length 30 m, inner diameter 0.53 mm, liquid phase film thickness 1.5 μm cat # 13370)
Column temperature 37 ° C
Pressure 24.8kPa
Column flow rate 5mL / min
Inflow method Split 1: 0 (actual measurement 1:18)
Transfer flow rate 90mL
GC injection volume 1.8mL (transfer flow rate x injection time)
Sample injection volume to the column 0.1 mL
Inlet temperature 250 ℃
Detector FID (hydrogen 40 mL / min, air 400 mL / min, makeup gas helium 30 mL / min)
Detector temperature 250 ° C
イソプレン標準試料の調整
 試薬イソプレン(比重0.681)を冷却したメタノールで10、100、1000、10000、100000倍希釈し、添加用標準溶液を調整した。その後、水1mLを入れたヘッドスペースバイアルに各添加用標準溶液を、それぞれ1μL添加し、標準試料とした。
Preparation of isoprene standard sample Reagent isoprene (specific gravity 0.681) was diluted 10, 100, 1000, 10000, and 100,000 times with cooled methanol to prepare a standard solution for addition. Thereafter, 1 μL of each standard solution for addition was added to a headspace vial containing 1 mL of water to prepare a standard sample.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記株は、生産菌ゲノムに1コピー導入されたIspSKと、プラスミドで導入されたいずれか一つのイソプレンシンターゼ(IspSM、IspSK、またはIspSU)との組み合わせを発現している。バックグラウンドとして、生産菌ゲノム上のIspSK由来の一定のイソプレン生産が認められるものの、3種の株でいずれも同等程度で、かつ、著しく低いイソプレン生産量であろうと推定される。したがって、上記値は、3種のイソプレンシンターゼのイソプレン生産性の差に由来すると考えられる。 The above strain expresses a combination of IspSK introduced in one copy into the production bacterial genome and any one isoprene synthase (IspSM, IspSK, or IspSU) introduced as a plasmid. As a background, although certain isoprene production derived from IspSK on the production bacterial genome is observed, it is presumed that all three strains are of the same level and have significantly low isoprene production. Therefore, the above value is considered to be derived from the difference in isoprene productivity of the three types of isoprene synthase.
 表6の結果から、イソプレン生産量は高い順に、AG10265/IspSU、AG10265/IspSK、AG10265/IspSMとなった。上記の結果から、P.ananatisのイソプレン生産菌では、ギンコウバイ由来イソプレンシンターゼを導入した株が最も高いイソプレン生産能を示した。 From the results of Table 6, the isoprene production amounts were AG10265 / IspSU, AG10265 / IspSK, and AG10265 / IspSM in descending order. From the above results, P.I. Among the ananatis isoprene-producing bacteria, the strain into which the ginseng-derived isoprene synthase was introduced showed the highest isoprene-producing ability.
実施例4:イソプレン合成活性のマグネシウムイオン(Mgイオン)濃度依存性の比較
 既存種であるムクナ由来イソプレンシンターゼIspS(IspSM)の調製法は先行特許(特許文献:WO2013/179722A1)に記載した通りである。ここでは、ギンコウバイ由来イソプレンシンターゼIspS(IspSU)の調製法について述べる。
Example 4 Comparison of Magnesium Ion (Mg Ion) Concentration Dependence of Isoprene Synthesis Activity The preparation method of the existing species Mucuna-derived isoprene synthase IspS (IspSM) is as described in the prior patent (Patent Document: WO2013 / 179722A1). is there. Here, a method for preparing the ginkgo isoprene synthase IspS (IspSU) will be described.
4-1)発現用プラスミドの構築
 ギンコウバイ由来イソプレンシンターゼ(IspSU)の大量発現用プラスミドを次の手順に従って構築した。まず、ベクター部分については、pCold-TF(TaKaRaバイオ社製、#3365、配列情報はGenBank/EMBL/DDBJ accession ID AB213654)を鋳型とし、配列番号71と配列番号72に示す合成オリゴヌクレオチドをプライマーとしたPCR法で増幅した。IspSUをコードするDNA断片についてはpUC57-IspSU(Genescript社製)を鋳型とし、配列番号73と配列番号74に示す合成オリゴヌクレオチドをプライマーとしたPCR法で増幅した。PCR法のポリメラーゼとして、PrimeSTAR HS(TaKaRaバイオ社製)を利用した。また、反応溶液はキットに添付された組成に従って調製し、反応条件は95℃にて10秒、55℃にて5秒、72℃にて6分間を一連のサイクルとし、30回繰り返した。得られたこれらのDNA断片をIn-Fusion HD Cloning Kit(TaKaRaバイオ社製)を用いて連結した。構築したプラスミドをpCold-TF-IspSUと名付けた。pCold-TF-IspSUの塩基配列を配列番号75に示す。
 この発現ベクターでは、イソプレンシンターゼはtrigger factor(TF)をN末端に融合した蛋白質として発現するよう設計した。TFとイソプレンシンターゼの融合タンパク質をTF-IspSと命名した。ギンコウバイ由来イソプレンシンターゼの融合タンパク質をTF-IspSUと名付けた。
 pCold-TF-IspSUをE.coli BL21(DE3)(one shot BL 21(DE3)、LifeTechnologies社製)にヒートショック法により形質転換を行った。42℃、30秒のヒートショックの後、SOC培地を用いた回復培養を37℃、1時間、120rpmの条件で実施した。その後、アンピシリン0.1mg/Lを含むLBプレートに全量播種し、37℃、14時間静置培養した。
4-1) Construction of plasmid for expression A plasmid for large-scale expression of isoprene synthase (IspSU) from Ginkgo biloba was constructed according to the following procedure. First, for the vector part, pCold-TF (TaKaRa Bio, # 3365, sequence information is GenBank / EMBL / DDBJ accession ID AB213654) was used as a template, and the synthetic oligonucleotides shown in SEQ ID NO: 71 and SEQ ID NO: 72 were used as primers. Amplified by the PCR method. The DNA fragment encoding IspSU was amplified by PCR using pUC57-IspSU (manufactured by Genescript) as a template and the synthetic oligonucleotides shown in SEQ ID NO: 73 and SEQ ID NO: 74 as primers. PrimeSTAR HS (manufactured by TaKaRa Bio Inc.) was used as a polymerase for PCR. The reaction solution was prepared according to the composition attached to the kit, and the reaction conditions were 95 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 6 minutes, and repeated 30 times. The obtained DNA fragments were ligated using In-Fusion HD Cloning Kit (TaKaRa Bio). The constructed plasmid was named pCold-TF-IspSU. The base sequence of pCold-TF-IspSU is shown in SEQ ID NO: 75.
In this expression vector, isoprene synthase was designed to be expressed as a protein fused with a trigger factor (TF) at the N-terminus. The fusion protein of TF and isoprene synthase was named TF-IspS. The fusion protein of Ginkgo biloba isoprene synthase was named TF-IspSU.
pCold-TF-IspSU E. coli BL21 (DE3) (one shot BL21 (DE3), manufactured by Life Technologies) was transformed by the heat shock method. After heat shock at 42 ° C. for 30 seconds, recovery culture using an SOC medium was performed at 37 ° C. for 1 hour at 120 rpm. Thereafter, the entire amount was seeded on an LB plate containing 0.1 mg / L of ampicillin, and statically cultured at 37 ° C. for 14 hours.
4-2)イソプレンシンターゼの大量調製のための培養
 プレート上に形成されたコロニーをピックし、アンピシリン0.1mg/Lを含む5mL LB培地に植菌した後、OD660=1.0になるまで37℃、200rpmで培養した。当該OD値への到達を確認後、アンピシリン100mg/Lを含むLB培地100mLを張り込んだ250mL容量の坂口フラスコに全量を植菌し、OD660=1.0に到達するまで37℃、120rpmで培養した。その後、1Mイソプロピル-β-チオガラクトピラノシド(IPTG:ナカライテスク社)を終濃度1mMになるよう添加し、15℃、100rpmで終夜培養した。培養終了後、800×g、10分で遠心分離して菌体を回収し、精製操作を行うまで-80℃にて保存した。
4-2) Culture for large-scale preparation of isoprene synthase A colony formed on the plate is picked and inoculated into 5 mL LB medium containing 0.1 mg / L of ampicillin, and then 37 until OD660 = 1.0. The cells were cultured at 200 ° C. and 200 ° C. After confirming that the OD value was reached, the entire amount was inoculated into a 250 mL Sakaguchi flask with 100 mL of LB medium containing ampicillin 100 mg / L, and cultured at 37 ° C. and 120 rpm until OD660 = 1.0 was reached. did. Thereafter, 1M isopropyl-β-thiogalactopyranoside (IPTG: Nacalai Tesque) was added to a final concentration of 1 mM and cultured overnight at 15 ° C. and 100 rpm. After completion of the culture, the cells were collected by centrifugation at 800 × g for 10 minutes, and stored at −80 ° C. until purification.
4-3)イソプレンシンターゼの精製
 上で述べた通り、TF-IspSUの精製は、文献(特許文献:WO2013/179722A1)に記載したTF-IspSMの精製方法と同様に行った。すなわち、培養終了後のブロス100mLより得られた菌体を50mM リン酸バッファー(pH8)、500mM NaClからなる破砕バッファー240mLに懸濁し、超音波破砕機(Sonifier 250、Baransan社製)を用いて、duty cycle 50%、output control 6の条件にて、8分間、氷上にて超音波破砕を実施した。超音波破砕後、20000 ×g、20分の遠心分離操作により破砕上清を得た。以下の精製操作は全て4℃にて実施した。polyprep column(BioRad社製)にHis-select Nickel affinity gel (Sigma社製)を、ベッドボリューム2mL相当をアプライし、重力法により充填した。次に破砕バッファー10mLをアプライし、重力法で平衡化した。このカラムに対し超音波破砕後の破砕上清を全量アプライし、TF-IspSUをカラムに吸着させた。
 アプライした破砕上清の全量がカラムを通過したことを確認した後、破砕バッファー10mLでカラムを洗浄した。更に、50mM tris-HCl(pH8.0)、15mM MgClからなる活性測定用バッファー10mLでカラムを追加洗浄した。その後、50mM tris-HCl(pH8.0)、15mM MgCl、10mM imidazoleからなる洗浄液をカラムに4mLアプライし、通過液を廃棄した。最後に、50mM tris-HCl(pH8.0)、15mM MgCl、200mM imidazoleからなる溶出液を4mLカラムにアプライし、TF-IspSの溶出を行った。溶出後のTF-IspSを遠心式フィルター濾過(amicon ultra MWCO 100k(Millipore社))で濃縮した。
 続いて、TF-IspSU融合タンパク質のTFを切断した。切断には、Factor Xa(Novagen社製)を利用した。反応バッファーは、50mM tris-HCl(pH8.0)、100mM NaCl、5mM CaClからなり、26UのFactor Xaを添加し、4℃にて、14時間反応を行った。反応終了後の反応液を、His-Select Nickel Affinity gelに通過させることにより、TFのみがHis-Select Nickel Affinity gelに吸着する事を利用して、反応液中からTFを除去した。続いてゲル濾過カラム(amicon ultra MWCO50k、Millipore社)を用いてIspSを濃縮した。得られた濃縮液をNuPAGE 4-12%(Life Technologies社製)で展開したところ、IspSUをアプライしたレーンでIspSMのバンドと泳動度が一致するバンドが検出された(図7)。
 このようにして得られたIspSU溶液は、活性測定用バッファーに対して終濃度5% glycerolを添加して活性測定に供するまで-80℃冷凍庫で保存した。
4-3) Purification of isoprene synthase As described above, TF-IspSU was purified in the same manner as the TF-IspSM purification method described in the literature (patent document: WO2013 / 179722A1). That is, the cells obtained from 100 mL of broth after completion of the culture were suspended in 240 mL of a disruption buffer consisting of 50 mM phosphate buffer (pH 8) and 500 mM NaCl, and an ultrasonic disrupter (Sonifier 250, manufactured by Baransan) was used. Ultrasonic crushing was performed on ice for 8 minutes under the conditions of a duty cycle of 50% and an output control of 6. After ultrasonic crushing, a crushing supernatant was obtained by centrifugation at 20000 × g for 20 minutes. The following purification operations were all performed at 4 ° C. A polyprep column (manufactured by BioRad) was applied with His-select Nickel affinity gel (manufactured by Sigma) corresponding to a bed volume of 2 mL and filled by a gravity method. Next, 10 mL of crushing buffer was applied and equilibrated by the gravity method. The whole amount of the crushed supernatant after ultrasonic pulverization was applied to this column, and TF-IspSU was adsorbed onto the column.
After confirming that all of the applied disruption supernatant had passed through the column, the column was washed with 10 mL of disruption buffer. Further, the column was additionally washed with 10 mL of an activity measurement buffer comprising 50 mM tris-HCl (pH 8.0) and 15 mM MgCl 2 . Thereafter, 4 mL of a washing solution composed of 50 mM tris-HCl (pH 8.0), 15 mM MgCl 2 and 10 mM imidazole was applied to the column, and the passing solution was discarded. Finally, an eluate composed of 50 mM tris-HCl (pH 8.0), 15 mM MgCl 2 and 200 mM imidazole was applied to a 4 mL column to elute TF-IspS. The TF-IspS after elution was concentrated by centrifugal filter filtration (Amicon ultra MWCO 100k (Millipore)).
Subsequently, the TF of the TF-IspSU fusion protein was cleaved. For the cutting, Factor Xa (manufactured by Novagen) was used. The reaction buffer consisted of 50 mM tris-HCl (pH 8.0), 100 mM NaCl, 5 mM CaCl 2 , 26 U Factor Xa was added, and the reaction was performed at 4 ° C. for 14 hours. By passing the reaction solution after completion of the reaction through a His-Select Nickel Affinity gel, TF was removed from the reaction solution using the fact that only TF was adsorbed on the His-Select Nickel Affinity gel. Subsequently, IspS was concentrated using a gel filtration column (Amicon ultra MWCO 50k, Millipore). When the obtained concentrated solution was developed with NuPAGE 4-12% (manufactured by Life Technologies), a band having the same migration degree as the IspSM band was detected in the lane to which IspSU was applied (FIG. 7).
The IspSU solution thus obtained was stored in a −80 ° C. freezer until the final concentration of 5% glycerol was added to the activity measurement buffer and used for activity measurement.
4-4)イソプレンシンターゼのMgイオン濃度依存性の比較
 イソプレンシンターゼが反応を触媒する際のMgイオン濃度の依存性を調べた。反応に供するIspSM, IspSUを氷上で解凍した後、glycerolを除去するためにバッファー交換した。また、反応に供する酵素濃度はSDS-PAGE上の比色定量により定量した。反応液の組成は50mM tris-HCl, pH8.0, 4mM DMAPP(Dimethylallyl diphospahate:Cayman社)である。Mgイオン濃度依存性を調べる為に金属イオンとして10mM MgClあるいは20mM MgClを反応液に添加した。反応の際1μgのIspSを反応液に添加し、最終的な液量を50μLに合わせた。このようにして調整した反応液50μLを0.2mL容積のPCR tube(日本ジェネティクス社製)に入れ、ニードル(テルモ社製)で蓋に穴を穿った。次に、当該チューブを22mL バイアル(PerkinElmer社製)に入れ、ヘッドスペースバイアル用キャップブチルゴムセプタム(PerkinElmer社製)で直ちに密栓した。イソプレン生成反応は37℃にて1時間実施した。発生したイソプレンの定量は、実施例3に従った。各条件において測定したイソプレン発生量を、10mM Mgイオン添加時のIspMにより発生したイソプレン量で規格化して表7に示した。Talbe1から、20mM Mgイオンを添加した場合IspSUとIspSMは酵素量当たりのイソプレン変換能が同等であった。一方、10mM Mgイオンを添加した場合、IspSUのイソプレン変換能は同条件下のIspSMのイソプレン変換能の1.9倍程度であった。このことから、10mM Mgイオンを添加する反応条件ではIspSUが優れたイソプレン変換能をもつことが明らかとなった。
4-4) Comparison of Mg ion concentration dependence of isoprene synthase The dependence of Mg ion concentration when isoprene synthase catalyzes the reaction was investigated. IspSM and IspSU to be subjected to the reaction were thawed on ice, and then buffer exchange was performed to remove glycerol. The enzyme concentration used for the reaction was quantified by colorimetric determination on SDS-PAGE. The composition of the reaction solution is 50 mM tris-HCl, pH 8.0, 4 mM DMAPP (Dimethylallyl diphosphate: Cayman). In order to examine the Mg ion concentration dependency, 10 mM MgCl 2 or 20 mM MgCl 2 was added to the reaction solution as a metal ion. During the reaction, 1 μg of IspS was added to the reaction solution, and the final solution volume was adjusted to 50 μL. 50 μL of the reaction solution thus prepared was placed in a 0.2 mL PCR tube (manufactured by Nippon Genetics), and a hole was made in the lid with a needle (manufactured by Terumo). Next, the tube was put into a 22 mL vial (manufactured by PerkinElmer) and immediately sealed with a cap butyl rubber septum for headspace vial (manufactured by PerkinElmer). The isoprene formation reaction was carried out at 37 ° C. for 1 hour. The amount of generated isoprene was determined according to Example 3. The amount of isoprene generated measured under each condition was normalized with the amount of isoprene generated by IspM when 10 mM Mg ions were added, and is shown in Table 7. From Talbe1, when 20 mM Mg ions were added, IspSU and IspSM had equivalent isoprene conversion capacity per enzyme amount. On the other hand, when 10 mM Mg ion was added, the isoprene conversion ability of IspSU was about 1.9 times that of IspSM under the same conditions. From this, it became clear that IspSU has an excellent isoprene conversion ability under the reaction conditions in which 10 mM Mg ions are added.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明は、合成ゴムの原料として使用できるイソプレンモノマーの製造などに有用である。 The present invention is useful for the production of isoprene monomers that can be used as raw materials for synthetic rubber.

Claims (17)

  1.  以下(A)~(F)からなる群より選ばれるタンパク質の存在下において、ジメチルアリル二リン酸からイソプレンモノマーを生成することを含む、イソプレンモノマーの製造方法:
    (A)配列番号2の全長アミノ酸配列を含むタンパク質;
    (B)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列を含み、かつN末端に開始アミノ酸残基をさらに含む、タンパク質;
    (C)配列番号2の全長アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;
    (D)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質;
    (E)配列番号2の全長アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;ならびに
    (F)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質。
    A method for producing an isoprene monomer, comprising producing an isoprene monomer from dimethylallyl diphosphate in the presence of a protein selected from the group consisting of (A) to (F) below:
    (A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2;
    (B) a protein comprising a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2 and further comprising a starting amino acid residue at the N-terminus;
    (C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity;
    (D) an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, further comprising a starting amino acid residue at the N-terminus; A protein having isoprene synthesis activity;
    (E) a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (F) a sequence Including an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of No. 2, and at the N-terminus A protein further comprising a starting amino acid residue and having isoprene synthesis activity.
  2.  前記タンパク質がギンコウバイに由来する、請求項1記載の方法。 The method according to claim 1, wherein the protein is derived from Ginkgo biloba.
  3.  前記タンパク質を産生する形質転換体の培養によりイソプレンモノマーが生成される、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein isoprene monomer is produced by culturing the transformant producing the protein.
  4.  前記形質転換体の培養により培地中の炭素源からジメチルアリル二リン酸が供給される、請求項1~3のいずれか一項記載の方法。 The method according to any one of claims 1 to 3, wherein dimethylallyl diphosphate is supplied from a carbon source in the medium by culturing the transformant.
  5.  前記形質転換体が、以下(a)~(g)からなる群より選ばれるポリヌクレオチドを含む発現単位を含む宿主細胞である、請求項3または4記載の方法:
    (a)配列番号1の全長塩基配列を含むポリヌクレオチド;
    (b)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列を含み、かつ5’末端に開始コドンをさらに含む、ポリヌクレオチド;
    (c)配列番号1の全長塩基配列と90%以上の同一性を有する塩基配列を含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
    (d)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と90%以上の同一性を有する塩基配列を含み、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
    (e)配列番号1の全長塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
    (f)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;ならびに
    (g)(a)~(f)からなる群より選ばれるポリヌクレオチドの縮重変異体。
    The method according to claim 3 or 4, wherein the transformant is a host cell comprising an expression unit comprising a polynucleotide selected from the group consisting of the following (a) to (g):
    (A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1;
    (B) a polynucleotide comprising a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 and further comprising a start codon at the 5 ′ end;
    (C) a polynucleotide encoding a protein comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and having isoprene synthesis activity;
    (D) a base sequence having 90% or more identity to a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, further including a start codon at the 5 ′ end, and isoprene A polynucleotide encoding a protein having synthetic activity;
    (E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the full-length base sequence of SEQ ID NO: 1 and encodes a protein having isoprene synthesis activity;
    (F) hybridizing under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to a partial nucleotide sequence comprising nucleotide residues 76 to 1746 in the nucleotide sequence of SEQ ID NO: 1, and starting codon at the 5 ′ end And (g) a degenerate variant of a polynucleotide selected from the group consisting of (a) to (f).
  6.  前記宿主が、メチルエリスリトールリン酸経路によるジメチルアリル二リン酸の合成能を有する、請求項5記載の方法。 The method according to claim 5, wherein the host has the ability to synthesize dimethylallyl diphosphate through the methyl erythritol phosphate pathway.
  7.  前記宿主がエシェリヒア属細菌である、請求項6記載の方法。 The method according to claim 6, wherein the host is an Escherichia bacterium.
  8.  前記宿主がエシェリヒア・コリである、請求項7に記載の方法。 The method according to claim 7, wherein the host is Escherichia coli.
  9.  前記宿主が、メバロン酸経路によるジメチルアリル二リン酸の合成能を有する、請求項5記載の方法。 The method according to claim 5, wherein the host has the ability to synthesize dimethylallyl diphosphate by the mevalonate pathway.
  10.  前記宿主がパントエア属細菌である、請求項9記載の方法。 The method according to claim 9, wherein the host is a Pantoea bacterium.
  11.  前記宿主が、パントエア・アナナティスである、請求項10に記載の方法。 The method according to claim 10, wherein the host is Pantoea ananatis.
  12.  以下(I)および(II)を含む、イソプレンポリマーの製造方法:
    (I)請求項1~11のいずれか一項記載の方法によりイソプレンモノマーを生成すること;
    (II)イソプレンモノマーを重合してイソプレンポリマーを生成すること。
    A method for producing an isoprene polymer comprising the following (I) and (II):
    (I) producing an isoprene monomer by the method according to any one of claims 1 to 11;
    (II) polymerizing isoprene monomers to produce isoprene polymers.
  13.  以下(A)~(F)からなる群より選ばれるタンパク質:
    (A)配列番号2の全長アミノ酸配列を含むタンパク質;
    (B)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列を含み、かつN末端に開始アミノ酸残基をさらに含む、タンパク質;
    (C)配列番号2の全長アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;
    (D)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列と90%以上の同一性を有するアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質;
    (E)配列番号2の全長アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、かつイソプレン合成活性を有するタンパク質;ならびに
    (F)配列番号2のアミノ酸配列中の26~581番目のアミノ酸残基からなる部分アミノ酸配列において1個または数個のアミノ酸残基が欠失、置換、付加または挿入されているアミノ酸配列を含み、N末端に開始アミノ酸残基をさらに含み、かつイソプレン合成活性を有するタンパク質。
    A protein selected from the group consisting of (A) to (F) below:
    (A) a protein comprising the full-length amino acid sequence of SEQ ID NO: 2;
    (B) a protein comprising a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2 and further comprising a starting amino acid residue at the N-terminus;
    (C) a protein comprising an amino acid sequence having 90% or more identity with the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity;
    (D) an amino acid sequence having 90% or more identity with a partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of SEQ ID NO: 2, further comprising a starting amino acid residue at the N-terminus; A protein having isoprene synthesis activity;
    (E) a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the full-length amino acid sequence of SEQ ID NO: 2 and having isoprene synthesis activity; and (F) a sequence Including an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the partial amino acid sequence consisting of amino acid residues 26 to 581 in the amino acid sequence of No. 2, and at the N-terminus A protein further comprising a starting amino acid residue and having isoprene synthesis activity.
  14.  以下(a)~(g)からなる群より選ばれるポリヌクレオチド:
    (a)配列番号1の全長塩基配列を含むポリヌクレオチド;
    (b)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列を含み、かつ5’末端に開始コドンをさらに含む、ポリヌクレオチド;
    (c)配列番号1の全長塩基配列と90%以上の同一性を有する塩基配列を含み、かつ
    イソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
    (d)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と90%以上の同一性を有する塩基配列を含み、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
    (e)配列番号1の全長塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;
    (f)配列番号1の塩基配列中の76~1746番目のヌクレオチド残基からなる部分塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント条件下でハイブリダイズし、5’末端に開始コドンをさらに含み、かつイソプレン合成活性を有するタンパク質をコードするポリヌクレオチド;ならびに
    (g)(a)~(f)からなる群より選ばれるポリヌクレオチドの縮重変異体。
    A polynucleotide selected from the group consisting of (a) to (g) below:
    (A) a polynucleotide comprising the full-length base sequence of SEQ ID NO: 1;
    (B) a polynucleotide comprising a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1 and further comprising a start codon at the 5 ′ end;
    (C) a polynucleotide encoding a protein comprising a base sequence having 90% or more identity with the full-length base sequence of SEQ ID NO: 1 and having isoprene synthesis activity;
    (D) a base sequence having 90% or more identity to a partial base sequence consisting of nucleotide residues 76 to 1746 in the base sequence of SEQ ID NO: 1, further including a start codon at the 5 ′ end, and isoprene A polynucleotide encoding a protein having synthetic activity;
    (E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the full-length base sequence of SEQ ID NO: 1 and encodes a protein having isoprene synthesis activity;
    (F) hybridizing under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to a partial nucleotide sequence comprising nucleotide residues 76 to 1746 in the nucleotide sequence of SEQ ID NO: 1, and starting codon at the 5 ′ end And (g) a degenerate variant of a polynucleotide selected from the group consisting of (a) to (f).
  15.  請求項13記載のタンパク質をコードするポリヌクレオチド、または請求項14記載のポリヌクレオチド、およびそれに作動可能に連結された異種プロモーターを含む、発現ベクター。 An expression vector comprising the polynucleotide encoding the protein of claim 13, or the polynucleotide of claim 14, and a heterologous promoter operably linked thereto.
  16.  請求項15記載の発現ベクターを含む宿主細胞。 A host cell comprising the expression vector according to claim 15.
  17.  請求項16記載の宿主細胞を用いて前記タンパク質を産生することを含む、タンパク質の製造方法。 A method for producing a protein, comprising producing the protein using the host cell according to claim 16.
PCT/JP2016/073148 2015-08-05 2016-08-05 Method for producing isoprene monomer WO2017022856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015155486A JP2018148797A (en) 2015-08-05 2015-08-05 Isoprene monomer production method
JP2015-155486 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022856A1 true WO2017022856A1 (en) 2017-02-09

Family

ID=57943053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073148 WO2017022856A1 (en) 2015-08-05 2016-08-05 Method for producing isoprene monomer

Country Status (2)

Country Link
JP (1) JP2018148797A (en)
WO (1) WO2017022856A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018062A1 (en) * 2005-08-10 2007-02-15 National Institute Of Advanced Industrial Science And Technology Eucalyptus globulus monoterpene synthetase gene
WO2013016591A1 (en) * 2011-07-26 2013-01-31 Zuvachem, Inc. High efficiency isoprene synthases produced by protein engineering
WO2013179722A1 (en) * 2012-05-30 2013-12-05 株式会社ブリヂストン Isoprene synthase and polynucleotide encoding same, and method for producing isoprene monomer
WO2015080273A1 (en) * 2013-11-28 2015-06-04 味の素株式会社 Method for producing isoprene monomer
JP2015521036A (en) * 2012-05-02 2015-07-27 ダニスコ・ユーエス・インク Legume Isoprene Synthase for Isoprene Production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018062A1 (en) * 2005-08-10 2007-02-15 National Institute Of Advanced Industrial Science And Technology Eucalyptus globulus monoterpene synthetase gene
WO2013016591A1 (en) * 2011-07-26 2013-01-31 Zuvachem, Inc. High efficiency isoprene synthases produced by protein engineering
JP2015521036A (en) * 2012-05-02 2015-07-27 ダニスコ・ユーエス・インク Legume Isoprene Synthase for Isoprene Production
WO2013179722A1 (en) * 2012-05-30 2013-12-05 株式会社ブリヂストン Isoprene synthase and polynucleotide encoding same, and method for producing isoprene monomer
WO2015080273A1 (en) * 2013-11-28 2015-06-04 味の素株式会社 Method for producing isoprene monomer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE GenBank 23 August 2014 (2014-08-23), "Eugenia uniflora isolate Eun-06523 monoterpene synthase mRNA, complete cds", XP055361969, Database accession no. KJ826400.1 *

Also Published As

Publication number Publication date
JP2018148797A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6254728B2 (en) Isoprene synthase, polynucleotide encoding the same, and method for producing isoprene monomer
JP5774493B2 (en) Diol production method
US10941420B2 (en) Linalool composition and method of producing therefor
US20210403954A1 (en) Method of producing isoprenoid compound
JP7530554B2 (en) Genetically modified microorganisms for producing 3-hydroxyadipic acid, α-hydromuconic acid and/or adipic acid and methods for producing said chemicals
US8962296B2 (en) Isoprene synthase and gene encoding the same, and method for producing isoprene monomer
US10184137B2 (en) Method of producing isoprene monomer
WO2017022856A1 (en) Method for producing isoprene monomer
WO2015080273A1 (en) Method for producing isoprene monomer
WO2018147446A1 (en) Production method for isoprenoid compound
JP7331839B2 (en) Method for producing 13-hydroxy-9(Z)-octadecenoic acid
JP2017104099A (en) Method for producing limonene
WO2019059337A1 (en) Nootkatone production method
WO2015076392A1 (en) Modified isoprene synthase
JP7216396B2 (en) Non-archaeal organisms with a novel mevalonate pathway
WO2024116153A1 (en) Compositions and methods for using previously cultured cells
JP2023111889A (en) Method for producing 3-hydroxy 3-methylbutyric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16833135

Country of ref document: EP

Kind code of ref document: A1