WO2017018481A1 - Substrate processing device, substrate processing method, and storage medium - Google Patents

Substrate processing device, substrate processing method, and storage medium Download PDF

Info

Publication number
WO2017018481A1
WO2017018481A1 PCT/JP2016/072157 JP2016072157W WO2017018481A1 WO 2017018481 A1 WO2017018481 A1 WO 2017018481A1 JP 2016072157 W JP2016072157 W JP 2016072157W WO 2017018481 A1 WO2017018481 A1 WO 2017018481A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
guard
nozzle
mist
processing liquid
Prior art date
Application number
PCT/JP2016/072157
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 規宏
治郎 東島
信博 緒方
貴久 大塚
裕一 道木
佑介 橋本
一博 相浦
後藤 大輔
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016122690A external-priority patent/JP6740028B2/en
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US15/747,921 priority Critical patent/US11024518B2/en
Priority to KR1020187002473A priority patent/KR102566736B1/en
Priority to CN201680044518.2A priority patent/CN107851572B/en
Publication of WO2017018481A1 publication Critical patent/WO2017018481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/025Prevention of fouling with liquids by means of devices for containing or collecting said liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0229Suction chambers for aspirating the sprayed liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0264Splash guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Definitions

  • the present invention relates to a technique for performing liquid processing on a substrate by supplying the processing liquid to a rotating substrate.
  • the manufacturing process of a semiconductor device includes liquid processing such as chemical cleaning processing or wet etching processing.
  • liquid processing apparatus that performs such liquid processing on a substrate such as a semiconductor wafer
  • a holding unit that holds the substrate in a processing container called a chamber
  • a rotating mechanism that rotates the substrate such as a semiconductor wafer
  • processing on the rotating substrate A device is known that includes a nozzle that supplies a liquid and a cup that receives the shaken processing liquid.
  • processing liquid supplied to the substrate is collected by the cup, but a part of the misted processing liquid scatters outside the cup.
  • an atmosphere derived from the processing liquid, especially chemical liquid is formed around the substrate, and chemical liquid components in the atmosphere adhere to the substrate during liquid processing and contaminate the substrate. There is.
  • the humidity around the substrate increases, which may adversely affect the drying process of the substrate.
  • the present invention provides a technique capable of preventing the processing liquid scattered from the substrate outside the cup from adhering to the inner wall of the chamber.
  • a substrate holding unit that holds a substrate, at least one processing liquid nozzle that discharges a processing liquid to the substrate held by the substrate holding unit, the substrate holding unit, and the processing liquid
  • a processing container that accommodates a nozzle
  • a fixed cup body that is arranged around the substrate holding portion and that is relatively immovable with respect to the processing container that receives at least the processing liquid supplied to the substrate or the mist of the processing liquid
  • the fixing A mist guard that is provided outside the fixed cup body so as to surround the cup body, and that blocks liquid that splashes outward beyond the upper portion of the fixed cup body
  • An elevating mechanism that elevates and lowers to a second guard height lower than the guard height, wherein the mist guard includes a cylindrical tube portion, and an upper portion of the tube portion toward the inside of the tube portion of the fixed cup body. And a projecting portion projecting toward the substrate processing apparatus is provided.
  • a substrate holding unit that holds a substrate, at least one processing liquid nozzle that discharges a processing liquid onto an upper surface of the substrate held by the substrate holding unit, and the substrate holding unit,
  • a processing container that accommodates the processing liquid nozzle, a fixed cup body that is relatively fixed to the processing container that is disposed around the substrate holding unit and that receives the processing liquid supplied to the substrate or the mist of the processing liquid;
  • a mist guard that is provided outside the fixed cup body so as to surround the fixed cup body, blocks liquid that splashes outward beyond the fixed cup body, and an elevating mechanism that raises and lowers the mist guard;
  • the mist guard includes a cylindrical tube portion, and a projecting portion that protrudes from an upper end of the tube portion toward the fixed cup body.
  • a computer program when a computer program is stored in a storage medium, and the computer program is executed by a computer constituting a control device of the substrate processing apparatus, the computer processes the substrate processing.
  • a storage medium for controlling the operation of the apparatus to execute the above substrate processing method.
  • the mist guard having the overhanging portion, it is possible to prevent the processing liquid scattered over the cup from adhering to the inner wall of the processing container.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to the present embodiment.
  • the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
  • the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3.
  • the carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of carriers C that accommodate a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
  • the transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside.
  • the substrate transfer device 13 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
  • the processing station 3 is provided adjacent to the transfer unit 12.
  • the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are provided side by side on the transport unit 15.
  • the transfer unit 15 includes a substrate transfer device 17 inside.
  • the substrate transfer device 17 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
  • the substrate processing system 1 includes a control device 4.
  • the control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19.
  • the storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1.
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
  • Such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14.
  • the wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
  • the wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier platform 11 by the substrate transfer device 13.
  • FIG. 2 is a diagram showing a schematic configuration of the processing unit 16.
  • the processing unit 16 includes a chamber 20, a substrate holding mechanism 30, a processing fluid supply unit 40, and a cup 50.
  • the processing fluid supply unit 40 supplies a processing fluid to the wafer W.
  • the chamber 20 accommodates the substrate holding mechanism 30, the processing fluid supply unit 40, and the cup 50.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
  • the FFU 21 forms a down flow in the chamber 20.
  • a rectifying plate 22 having a large number of holes (not shown) formed immediately below the outlet of the FFU 21 is provided to optimize the distribution of the downflow gas flowing through the space in the chamber 20.
  • the substrate holding mechanism 30 includes a holding unit (substrate holding unit) 31, a rotating shaft 32, and a driving unit 33.
  • the holding unit 31 can hold the wafer W horizontally.
  • the drive unit 33 rotates the holding unit 31 via the rotation shaft 32, thereby rotating the wafer W held by the holding unit 31 around the vertical axis.
  • the holding unit 31 includes a disk-shaped base plate 31a, a plurality of holding elements 31b that hold the wafer W provided on the base plate 31a, and the wafer W that is separated from the holding element 31b when the wafer W is loaded into and unloaded from the processing unit 16. It has the lift pin 31c which supports a lower surface.
  • the holding element 31b can be configured by a movable holding claw attached to the base plate 31a capable of holding / releasing the peripheral edge of the wafer W, a holding pin fixed to the base plate 31a, or the like.
  • the lift pin 31c is fixed to a ring-shaped lift pin plate 31d stored in a recess formed on the upper surface of the base plate 31a.
  • the lift pin plate 31d can be lifted by a lifting mechanism (not shown) to lift the wafer W.
  • the wafer W can be transferred between the arm of the substrate transfer device 17 that has entered the chamber 20 and the lift pin plate 31d that has been lifted.
  • the cup (cup assembly) 50 will be described in detail below.
  • the cup 50 has a role of controlling the airflow around the wafer W while collecting the processing liquid scattered from the wafer W.
  • the cup 50 is arrange
  • the cup 50 is composed of a plurality of components.
  • the cup 50 has a stationary (fixed) exhaust cup 51 on the outermost side, and a drainage cup 52 for guiding a processing liquid on the inner side.
  • first rotating cup 53 and the second rotating cup 54 are attached to the base plate 31a of the holding unit 31 and rotate together with the base plate 31a.
  • the first rotating cup 53 and the second rotating cup 54 receive the liquid splashed outward from the wafer W after being supplied to the surface (upper surface) of the wafer W, and are guided obliquely downward (radially outward and downward). To do.
  • the second rotating cup 54 also has a function of guiding the liquid splashed outward from the wafer W after being supplied to the back surface (lower surface) of the wafer W.
  • the first rotating cup 53 and the second rotating cup 54 also have a function of controlling the airflow around the wafer W.
  • the drain cup 52 includes a drain cup body 521, a first movable cup element 522 (first movable cup body), and a second movable cup element 523 (second movable cup body).
  • the drain cup main body 521 has an outer peripheral cylindrical portion 521a that extends in a substantially vertical direction, an overhang portion 521b, a bottom portion 521c, and an inner peripheral portion 521d.
  • the overhanging portion 521b extends from the upper end portion of the outer peripheral cylindrical portion 521a toward the wafer W side.
  • Two convex portions 521e and 521f extend upward from the bottom portion 521c.
  • Liquid reservoirs 522a, 522b, and 522c are defined respectively.
  • the liquid reservoirs 522a, 522b, and 522c are factory waste liquid systems for acidic liquid (DR1), alkaline liquid (DR2), and organic liquid (DR3) through drain lines 523a, 523b, and 523c connected to the liquid reservoirs 522a, 522b, and 522c, respectively. Are connected to each.
  • the first movable cup element 522 and the second movable cup element 523 are fitted to the convex portions 521e and 521f so as to be movable up and down.
  • the first movable cup element 522 and the second movable cup element 523 are moved up and down by a lifting mechanism (not shown).
  • the exhaust cup 51 has an outer peripheral cylindrical portion 511, an overhanging portion 512, a bottom portion 513, and an inner peripheral portion 514.
  • An exhaust passage 551 is formed between the surfaces of the exhaust cup 51 and the drain cup main body 521 facing each other.
  • An exhaust port 552 is provided at the bottom 513 of the exhaust cup 51, and an exhaust duct (exhaust passage) 553 is connected to the exhaust port 552.
  • the exhaust duct 553 is connected to a factory exhaust duct (not shown) of the factory exhaust system in a reduced pressure atmosphere (C-EXH).
  • the exhaust duct 553 is provided with a flow control valve 554 such as a butterfly valve or a damper.
  • the opening degree of the flow control valve 554 By adjusting the opening degree of the flow control valve 554, the flow rate of the gas sucked through the exhaust passage 551 can be adjusted.
  • a device that promotes exhaustion such as an ejector or an exhaust pump, may be interposed in the exhaust duct 553.
  • the processing fluid supply unit 40 has a plurality of nozzles that supply a processing fluid (liquid or gas). As shown in FIG. 3, these nozzles include an SC1 nozzle 411 that discharges SC1 liquid, an AS nozzle 412 that discharges two fluids including DIW (pure water) droplets and nitrogen gas, DHF (rare) A DHF nozzle 413 that discharges hydrofluoric acid), a first DIW nozzle 414 that discharges pure water (DIW), an IPA nozzle 415 that discharges warmed IPA (isopropyl alcohol), and a first nozzle that discharges nitrogen gas downward in the vertical direction. 1 nitrogen gas nozzle 416, second nitrogen gas nozzle 417 that discharges nitrogen gas obliquely downward, SC2 nozzle 418 that discharges SC2 liquid, and second DIW nozzle 419 that discharges pure water (DIW).
  • the AS nozzle 412 makes DIW mist by merging DIW into the flow of nitrogen gas, and discharges two fluids containing the mist of DIW and nitrogen gas.
  • the AS nozzle 412 By supplying only DIW without supplying nitrogen gas to the AS nozzle 412, it is possible to discharge only DIW that has not been made mist from the AS nozzle 412. From the IPA nozzle 415, solvents other than DIW that are compatible with DIW, higher in volatility than DIW, and lower in surface tension than DIW can be discharged.
  • the SC1 nozzle 411 and the AS nozzle 412 are held by the first nozzle arm 421.
  • the DHF nozzle 413, the first DIW nozzle 414, and the IPA nozzle 415 are held by the second nozzle arm.
  • the first nitrogen gas nozzle 416 and the second nitrogen gas nozzle 417 are held by the third nozzle arm.
  • the first to third nozzle arms 421, 422, and 423 can be swung around the vertical axis by the arm driving mechanisms 431, 432, and 433 provided therein, and can be moved up and down in the vertical direction.
  • Each arm drive mechanism 431, 432, 433 is, for example, a rotary motor (not shown) as a turning drive mechanism for realizing the turning function, and an air cylinder as an raising / lowering mechanism (arm lifting mechanism) for realizing the lifting function. (Not shown).
  • the SC1 nozzle 411 and the AS nozzle 412 are moved between the standby place 441 outside the cup 50 and the position directly above the center portion Wc of the wafer W. It can be located at any position (see arrow M1 in FIG. 3).
  • the DHF nozzle 413, the first DIW nozzle 414 and the IPA nozzle 415 are moved directly above the standby position 442 outside the cup 50 and the center portion Wc of the wafer W. It can be located at any position between the positions (see arrow M2 in FIG. 3).
  • the first nitrogen gas nozzle 416 and the second nitrogen gas nozzle 417 are moved directly above the home standby place 443 outside the cup 50 and the center portion Wc of the wafer W. It can be located at any position between the positions (see arrow M3 in FIG. 3).
  • the home position of the corresponding nozzle (411 to 417) and the corresponding nozzle (411 to 417) are at the home position directly above the standby places (441, 442, 443).
  • the position of the corresponding nozzle arm (421, 422, 423) is also referred to as the home position of the nozzle arm.
  • the arm raising / lowering mechanism provided in the arm driving mechanism 431, 432, 433 allows each nozzle arm (421, 422, 423) to move to a high position HN (first (third) arm height) and a low position LN (second ( 4) the arm height) (see FIG. 4), and accordingly, the nozzle carried by the corresponding nozzle arm is moved closer to the wafer W than the wafer W and closer to the wafer. It is possible to move between the separated positions away from W.
  • the SC2 nozzle 418 and the second DIW nozzle 419 are fixed stationary nozzles and are fixed on a floor plate 96 described later.
  • the SC2 nozzle 418 and the second DIW nozzle 419 discharge liquid at a predetermined flow rate so that the liquid discharged from these nozzles 418 and 419 flies in a parabola and falls to the center Wc of the wafer W. Is installed.
  • the cylindrical body 450 extends in the vertical direction inside the rotary shaft 32.
  • the cylindrical body 420 is installed so as not to rotate even if the rotary shaft 32 rotates.
  • one or a plurality of processing fluid supply paths 451 (only one is shown in FIG. 2) extend in the vertical direction.
  • the upper end opening of the processing fluid supply path 451 becomes a lower surface nozzle 452 for supplying the processing fluid.
  • DIW as a rinsing liquid or a purge liquid
  • a nitrogen gas as a dry gas or a purge gas can be supplied to the rear surface (lower surface) of the wafer W.
  • the lower surface nozzle 452 is not referred to.
  • Each nozzle (411 to 419) has a corresponding processing fluid supply source (for example, a chemical supply tank for storing SC1, DHF, etc., a supply source of pure water, nitrogen gas, etc. provided as factory power) Any one of the above processing fluids is supplied from any one (not shown) via a corresponding processing fluid supply mechanism (not shown).
  • the processing fluid supply mechanism includes a supply line that connects each nozzle (411 to 419) and a corresponding processing fluid supply source, and a flow control device such as an on-off valve and a flow control valve provided in the supply line. can do.
  • the processing liquid supplied to the rotating wafer W from the processing liquid nozzle is the surface of the wafer W of the processing liquid. (If liquid is supplied to the surface of the wafer W from two or more nozzles simultaneously) or by shaking off the wafer by centrifugal force, Become scattered. If the scattered droplets adhere to the inner wall surface of the chamber 20 or the apparatus components in the chamber 20, the problems described in the background art may occur.
  • a mist guard 80 is provided on the outer side of the cup 50 in order to prevent or at least greatly suppress the scattered processing liquid from reaching the inner wall surface of the chamber 20.
  • the mist guard 80 includes an outer peripheral cylindrical portion (cylindrical portion) 81 and an overhang portion that extends from the upper end portion of the outer peripheral cylindrical portion 81 toward the inner side of the outer peripheral cylindrical portion 81 (in the radial direction) and protrudes above the exhaust cup 51. 82.
  • a protrusion 83 protruding downward is provided on the lower surface of the tip of the overhang 82.
  • the mist guard 80 is moved up and down by an elevating mechanism 84 (guard elevating mechanism) (see FIG. 3), and three different height positions, that is, a high position HG (first guard height) (in FIG. 2, a one-dot chain line) ), A low position LG (second guard height) (shown by a solid line in FIG. 2) and an intermediate position MG (third guard height) (shown by a two-dot chain line in FIG. 2). See also).
  • the elevating mechanism 84 can be constituted by, for example, three-position air cylinders 84 a.
  • the mist guard 80 has a flange portion 85 that protrudes outward from the outer peripheral cylindrical portion 81.
  • the rod portion 84b of the air cylinder 84a below the flange portion 85 is connected to the mist guard 80 as the rod 84b advances and retreats.
  • the guard 80 moves up and down.
  • the elevating mechanism 84 may be constituted by a linear motion mechanism driven by a rotary motor or a linear motor. In this case, the mist guard 80 can be fixed at an arbitrary height position.
  • FIG. 5 shows the mist guard 80 at the high position HG.
  • the mist guard 80 is supplied to the rotating wafer W from the nozzles (the SC1 nozzle 411, the AS nozzle 412, the DHF nozzle 413, the first DIW nozzle 414, the SC2 nozzle 418, the second DIW nozzle 419, etc.) when at the high position HG.
  • This is the position for most effectively preventing the processing liquid (shown by broken line arrows in FIG. 5) scattered after the wafer W from reaching the inner wall of the chamber 20.
  • the desirable height of the high position HG of the mist guard 80 varies depending on the number of rotations of the wafer W and the processing liquid supply conditions (flow rate, etc.) on the surface of the wafer W, and is preferably determined by experiments.
  • the height of the uppermost portion of the mist guard 80 at the high position HG is 60 mm higher than the height of the surface of the wafer W.
  • the appropriate height of the high position HG of the mist guard 80 varies depending on the number of rotations of the wafer W and the supply conditions (flow rate, etc.) of the processing liquid onto the surface of the wafer W. Is preferably determined.
  • FIG. 6 shows the mist guard 80 at the low position LG.
  • the low position LG is a lower limit position that can be taken by the mist guard 80, and at this time, the protrusion 83 of the protruding portion 82 of the mist guard 80 contacts the upper surface of the protruding portion 512 of the exhaust cup 51. That is, the space between the surfaces of the mist guard 80 and the exhaust cup 51 facing each other is isolated from the upper space of the wafer W in the vicinity of the wafer W. Further, when the mist guard 80 is located at the low position LG, a gas flow from the upper space of the wafer W toward an exhaust port (a slit-shaped opening 97 described later) in the peripheral portion of the chamber 20 (solid arrow in FIG. 5). Is not hindered by the mist guard 80.
  • the intermediate position MG of the mist guard 80 is at an intermediate height between the high position HG and the low position LG described above.
  • the mist guard 80 at the intermediate position MG is indicated by a chain line.
  • the overhanging portion 82 of the mist guard 80 is separated upward from the overhanging portion 512 of the exhaust cup 51 (not as much as when in the high position HG). It can be suppressed to some extent that the processing liquid scattered from the inside reaches the inner wall of the chamber 20.
  • the discharge port NP of the nozzle N (at the above-mentioned separated position) is located inside the overhanging portion 82 of the mist guard 80 as shown in FIG.
  • the nozzle N is located at a position higher than the peripheral end, and does not interfere with the mist guard 80 and passes over the mist guard 80 between the upper position in the plane of the wafer W and the above-described standby position. It can move freely.
  • each arm drive mechanism (431, 432, 433) includes an elevating mechanism
  • the nozzle arm (421, 422, 423) is positioned at a high position when the mist guard 80 is positioned at the intermediate position MG.
  • the corresponding nozzle can pass over the mist guard 80 with a sufficient clearance (without fear of interference). That is, by providing the arm drive mechanism with the lifting mechanism, the intermediate position MG of the mist guard 80 can be set relatively high, and the processing liquid supplied to the wafer W when the mist guard 80 is at the intermediate position MG Scattering beyond the mist guard 80 can be suppressed.
  • the nozzle discharge port can be sufficiently brought close to the surface of the wafer W, and the processing on the surface of the wafer W can be performed. Liquid splash can be reduced.
  • the outer peripheral cylindrical portion 81 of the mist guard 80 is passed through a position where the traces of the liquid discharged from the SC2 nozzle 418 and the second DIW nozzle 419 pass when the mist guard 80 is at the high position.
  • a liquid opening 86 is formed.
  • a cylindrical guard pocket 90 for housing the outer circumferential cylindrical portion 81 of the mist guard 80 is provided outside the outer circumferential cylindrical portion 511 of the exhaust cup 51.
  • the guard pocket 90 is defined by an outer peripheral surface of the outer peripheral cylindrical portion 511 of the exhaust cup 51, a cylindrical vertical wall (vertical wall) 91 facing the outer peripheral cylindrical portion 511, and a bottom wall 92.
  • a plurality of outlets 93 are formed in the bottom wall 92 at equal intervals in the circumferential direction (only one is shown in FIG. 3).
  • a discharge pipe 94 discharge line is connected to the discharge port 93.
  • a floor plate 96 that defines the lower limit of the processing space formed in the chamber 20 from the vertical wall 91 that constitutes the guard pocket 90 toward the outside in the horizontal direction is provided.
  • the floor board 96 surrounds the entire circumference of the mist guard 80. That is, the floor plate 96 is provided with an opening (corresponding to the vertical wall 91) having a diameter slightly larger than the outer shape of the outer peripheral cylindrical portion 81 of the mist guard 80, and the mist guard 80 and the cup 50 are accommodated in the opening. Will be.
  • the floor plate 96 extends from the opening to the side wall 20 a of the chamber 20.
  • a part of the floor plate 96 terminates in front of the side wall 20a of the chamber 20, whereby a slit-shaped opening 97 (gap) is formed between the outer end 96a of the floor plate 96 and the side wall 20a of the chamber 20. .
  • An exhaust space 98 for exhausting the atmosphere of the space (processing space) in the chamber 20 is formed below the floor plate 96.
  • the exhaust space 98 is defined by a floor plate 96, wall bodies such as a side wall 20 a and a bottom wall 20 b of the chamber 20, and a vertical wall 91.
  • the chamber 20 has four side walls 20a, and one slit-like opening 97 is provided along each of the three side walls 20a. These three slit-shaped openings 97 are connected to one common exhaust space 98. Since the remaining one side wall 20a is provided with a loading / unloading port 24 with a shutter 25 for loading / unloading the wafer W into / from the chamber 20, the slit-shaped opening 97 is not provided here.
  • an exhaust port 99 is provided in the bottom wall 20 b of the chamber 20 facing the exhaust space 98.
  • An exhaust pipe 100 (exhaust line) is connected to the exhaust port 99.
  • a discharge pipe 94 joins the exhaust pipe 100.
  • a mist trap (gas-liquid separator) 101 and a flow control valve 102 such as a butterfly valve or a damper are interposed in the exhaust pipe 100 on the downstream side of the junction.
  • the downstream end of the exhaust pipe 100 is connected to a duct (not shown) of a factory exhaust system in a reduced pressure atmosphere.
  • the upper surface of the floor plate 96 is gently inclined so that its height decreases as it approaches the side wall 20 a of the chamber 20.
  • the upper surface of the floor board 96 is smooth and flat.
  • the upper surface of the floor plate 96 is substantially free of unevenness except for a portion where the SC2 nozzle 418 and the second DIW nozzle 419 are provided and a portion where necessary sensors and auxiliary equipment are provided.
  • the gas can flow smoothly toward the slit-shaped opening 97 in the vicinity of the floor plate 96. Further, when the inside of the chamber 20 is cleaned during maintenance, the cleaning liquid flows smoothly into the exhaust space 98 through the slit-shaped opening 97.
  • the lower end of the outer peripheral cylindrical portion 81 of the mist guard 80 in the high position is located slightly above the upper end of the guard pocket 90 as shown in FIG.
  • the mist guard 80 is at the high position HG, almost no droplets of the treatment liquid collide with the vicinity of the lower end of the outer peripheral cylindrical portion 81, and most of the droplets are relatively in the mist guard 80. Collide with a high position. For this reason, there is almost no merit which makes the lower end of the outer periphery cylinder part 81 lower than the upper end of the guard pocket 90.
  • the atmosphere (gas, mist, etc.) in the space between the overhang portion 82 of the mist guard 80 and the overhang portion 512 of the exhaust cup 51 is increased.
  • a plurality of, for example, four cleaning liquid nozzles 110 that discharge cleaning liquid, such as DIW, for cleaning the inner surface of the mist guard 80 are formed on the upper surface of the overhanging portion 512 of the exhaust cup 51.
  • the overhang portions 512 are arranged at equal intervals in the circumferential direction.
  • One of the four cleaning liquid nozzles 110 is shown in FIG.
  • the cleaning liquid supplied from the cleaning liquid supply unit is jetted from the cleaning liquid nozzle 110 toward the lower surface of the overhanging portion 82 of the mist guard 80. Since the lower surface of the overhanging portion 82 is inclined so as to become higher inward in the radial direction of the mist guard 80, the sprayed cleaning liquid proceeds obliquely upward along the lower surface of the overhanging portion 82. At this time, since the projection 83 is in contact with the upper surface of the overhanging portion 512 of the exhaust cup 51, the cleaning liquid does not advance beyond the projection 83.
  • the cleaning liquid sprayed from the cleaning liquid nozzle 110 fills the space between the surfaces of the exhaust cup 51 and the mist guard 80 facing each other.
  • the upper surface 516 of the overhanging portion 512 is inclined so as to become higher inward in the radial direction, so that the cleaning liquid flows down toward the guard pocket 90. Due to the flow of the cleaning liquid, the surfaces of the exhaust cup 51 and the mist guard 80 facing each other are cleaned.
  • the cleaning liquid is discharged from the guard pocket 90 through the discharge pipe 94, flows into the mist trap 101, and flows out to the factory waste liquid system through the drain pipe connected to the mist trap 101.
  • a cleaning liquid nozzle for automatically cleaning the inside and the vicinity of the cup 50 can be provided, but these are not mentioned in this specification.
  • the following operation sequence is automatically executed under the control of the control device 4 by the process recipe and the control program stored in the storage unit 19 of the control device 4 (control unit).
  • the arm of the substrate transfer device 17 loads the wafer W into the chamber 20 (processing container) through the loading / unloading port 24, and the wafer W is held by the holding unit 31 of the substrate holding mechanism 30. After the arm of the substrate transfer device 17 is withdrawn from the chamber, the shutter 25 is closed. When the wafer W is loaded, the mist guard 80 is positioned at a low position. Thereafter, a series of processes are performed on the wafer W.
  • a DHF cleaning process, a DIW rinsing process, an SC1 cleaning process, a DIW rinsing process, an IPA replacement process, and a drying process are sequentially performed on the wafer W will be described.
  • the second nozzle arm 422 pivots (see arrow M2 in FIG. 3), and the DHF nozzle 413, the first DIW nozzle 414, and the IPA nozzle 415 are in the low position LG (see FIG. 4C). ) And above the central portion of the wafer W (see FIG. 9A). Next, the mist guard 80 rises and is positioned at the high position HG (see FIGS. 4A and 5). Next, the wafer W starts to rotate. The rotation of the wafer W continues until a series of processes for the wafer W are accommodated. DHF is supplied from the DHF nozzle 413 to the center of the rotating wafer W. The DHF flows on the surface of the wafer W toward the peripheral edge of the wafer W by centrifugal force, the entire surface of the wafer W is covered with the DHF liquid film, and the surface of the wafer W is processed by DHF.
  • processing liquid in this case, DHF scattered from the wafer W passes between the first and second rotating cups 53 and 54 and flows obliquely downward. Thereafter, the processing liquid is supplied to the liquid passages 525a, 525b, and 525c according to the positions of the first and second movable cup elements 522 and 523, which are predetermined according to the type (acidic, alkaline, organic) of the processing liquid. Flows into one (the one with the inlet open), then flows into one of the liquid reservoirs 522a, 522b, and 522c, and is discarded into the factory waste liquid system through one of the drain lines 523a, 523b, and 523c. . Note that the flow of the processing liquid is common in all processes in which the processing liquid is supplied to the surface of the wafer W, and therefore redundant description in the subsequent processes is omitted.
  • a part of the processing liquid scattered from the wafer W tries to go over the overhanging portion 512 of the exhaust cup 51 toward the side wall 20 a of the chamber 20.
  • Most of the droplets of such treatment liquid collide with the inner surface of the mist guard 80 at a high position and are captured. For this reason, adhesion of a droplet of the processing liquid to the side wall 20a of the chamber 20 is prevented or suppressed to a minimum.
  • the liquid captured by the mist guard 80 either adheres to the inner surface of the mist guard 80 or flows downward on the inner surface of the mist guard 80 by gravity.
  • the FFU 21 enters the internal space of the chamber 20, that is, the processing space. Clean air is blowing downwards. This flow of clean air is rectified by the rectifying plate 22 and travels toward the wafer W.
  • the inside of the exhaust passage 551 is exhausted through the exhaust duct 553, whereby the tip of the overhanging portion 512 of the exhaust cup 51 and the drain cup 52 are exhausted.
  • the atmosphere in the space above the wafer W in the vicinity of the wafer W is sucked from the gap between the tip of the overhanging portion 521b (see the solid line arrow in FIG. 5).
  • the exhaust flow rate through the exhaust duct 553 is kept constant until the wafer W is loaded into the chamber 20 and then unloaded. Accordingly, the clean air supplied from the FFU 21 is supplied to the space above the wafer W, while the atmosphere in the space above the wafer W is drawn into the exhaust passage 551. Thereby, the atmosphere in the space above the wafer W in the vicinity of the wafer W is maintained clean.
  • the liquid passages 525a, 525b, and 525c are not exhausted (suctioned). That is, the gas that flows into the cup 50 from the space above the wafer W near the wafer W does not flow into the liquid passages 525a, 525b, and 525c, but flows into the exhaust passage 551.
  • the liquid passages 525a, 525b, and 525c cannot have the same cross-sectional shape, and the flow passage resistances of the liquid passages 525a, 525b, and 525c are different from each other.
  • a droplet that flows downward due to gravity on the inner surface of the mist guard 80 falls into the guard pocket 90, flows through the discharge pipe 94 and the exhaust pipe 100, and is discharged from the drain 103 of the mist trap 101 to a factory waste liquid system (not shown).
  • DIW rinse process (first time)
  • the discharge of DIW from the first DIW nozzle 414 is started while the mist guard 80 is maintained at the high position HG, and immediately after that, the discharge of DHF from the DHF nozzle 413 is stopped.
  • DIW DIW rinse process
  • DIW that has not been misted is discharged from the AS nozzle 412.
  • the discharge of DIW from the first DIW nozzle 414 is stopped.
  • the mist guard 80 is raised and positioned at the high position HG.
  • the second nozzle arm 422 is positioned at the low position LN (see FIG. 4A).
  • the surface of the wafer W is overlapped.
  • the liquid film of DIW partially disappears, so that a part of the surface of the wafer W can be prevented from being exposed to the air atmosphere (causing the generation of water marks and particles).
  • the DIW discharge start timing from the AS nozzle 412 and the DIW discharge stop timing from the first DIW nozzle 414 are arbitrary.
  • the mist guard 80 when the mist guard 80 is located at the intermediate position MG, the droplet scattering blocking function of the mist guard 80 is lower than when it is located at the high position HG. For this reason, in order to reduce the amount of droplets scattered from the wafer W, the height of the droplets, etc., the rotational speed of the wafer W is decreased and / or the discharge flow rate of DIW from the AS nozzle 412 and the first DIW nozzle 414 is reduced. Decrease (in the range where the surface exposure of the wafer W does not occur), and shorten the time during which the AS nozzle 412 and the first DIW nozzle 414 simultaneously discharge DIW as much as possible (the liquid discharged from different nozzles is the wafer). It is preferable to take measures such as splashing easily upon collision on W).
  • DIW rinse process (second time)
  • the discharge of DIW from the AS nozzle 412 is started while the mist guard 80 is maintained at the high position HG, and immediately after that, the discharge of SC1 from the SC1 nozzle 411 is stopped.
  • the SC1 and the reaction product remaining on the wafer W are washed away.
  • the nozzle arm is replaced. While continuing to discharge DIW from the AS nozzle 412 (the discharge flow rate may be reduced in a range where the DIW liquid film breakage on the surface of the wafer W may not occur), the mist guard 80 is lowered and positioned at the intermediate position MG. Further, the nozzle arms 421 and 422 are raised and positioned at the high position HN (see FIG. 4B). Next, the second nozzle arm 422 is swung so that the first DIW nozzle 414 is positioned directly above the center of the wafer W.
  • the discharge of IPA from the IPA nozzle 415 is started, and immediately after that, the discharge of DIW from the first DIW nozzle 414 is stopped.
  • the mist guard 80 is lowered and positioned at the low position LG.
  • the supplied IPA replaces DIW on the surface of the wafer W, and the surface of the wafer W is covered with a liquid film of IPA.
  • the third nozzle arm 423 is turned to position the first nitrogen gas nozzle 416 directly above the center of the wafer W.
  • the second nozzle arm 422 is directed toward the home position (toward the peripheral edge of the wafer W while continuing to discharge IPA from the IPA nozzle 415).
  • Start moving When the first nitrogen gas nozzle 416 is positioned immediately above the center of the wafer W, discharge of nitrogen gas from the first nitrogen gas nozzle 416 is started.
  • the discharge of the nitrogen gas from the second nitrogen gas nozzle 417 is started, and the third nozzle arm 423 is moved toward the home position (toward the peripheral edge of the wafer W) (see FIG. 9F). .
  • the collision position of the IPA discharged from the IPA nozzle 415 on the surface of the wafer W is maintained radially outside the collision position of the nitrogen gas discharged from the second nitrogen gas nozzle 417 on the surface of the wafer W.
  • the turning motion of the first nozzle arm 421 and the third nozzle arm 423 is controlled.
  • the nitrogen gas discharged from the second nitrogen gas nozzle 417 pushes the IPA liquid film in the wafer peripheral direction, and the circular dry region formed on the surface of the wafer W gradually spreads from the central portion toward the peripheral portion. go.
  • the entire surface of the wafer W is dried when the second nitrogen gas nozzle 417 passes the periphery of the wafer W.
  • the drying process is completed.
  • the nozzle arms 421 and 423 return to their home positions and wait there.
  • the mist guard 80 is located at the low position LG. Therefore, the gas flow from the space above the wafer W toward the slit-shaped opening 97 is not hindered by the mist guard 80. This prevents or reduces the mist or vapor of DIW scattered in the previous process in the space above the wafer W. For this reason, the space above the wafer W can be maintained at a low humidity, and the drying efficiency can be improved. Even if IPA scatters and adheres to the side wall 20a of the chamber 20, the highly volatile IPA evaporates in a short time and is exhausted to the outside of the chamber 20, so that the atmosphere inside the chamber 20 is adversely affected. Absent.
  • the cleaning process is performed on the mist guard 80 located at the low position LG according to the procedure described above with reference to FIG.
  • the chemical component adhering to (the wafer W side surface) is removed.
  • the processed wafer W is carried out of the chamber 20 by the reverse procedure of loading.
  • the SC2 liquid is supplied from the SC2 nozzle 418 to the center of the wafer W with the mist guard 80 at the high position HG.
  • the operation sequence may include a step of performing a rinse process by supplying DIW from the second DIW nozzle 419 to the central portion of the wafer W after the cleaning.
  • the mist guard 80 that can be moved up and down, the chemical component or moisture that is scattered by the raised mist guard 80 is shielded, so that the chemical component or moisture can be contained in the inner wall surface of the chamber 20 or the chamber. It can prevent efficiently adhering to an internal apparatus. Moreover, since the mist guard 80 has the overhang
  • the lower end portion of the outer peripheral cylindrical portion 81 of the mist guard 80 at the high position HG is outside the guard pocket 90, but it may be inside.
  • a ventilation opening 87 can be provided at the lower end portion of the outer peripheral cylindrical portion 81.
  • a plurality of ventilation openings 87 extending along the circumferential direction of the mist guard 80 are provided at intervals in the circumferential direction of the mist guard 80.
  • the exhaust cup 51 is the outermost stationary cup-shaped component constituting the cup 50, but is not limited to this.
  • the exhaust cup 51 may be removed from the cup 50, and the drain cup 52 may be an outermost stationary cup-shaped component constituting the cup 50.
  • a mist guard 80 is provided adjacent to the outside of the drainage cup 52.
  • the positional relationship between the drain cup 52 and the mist guard 80 in this case can be understood by considering the exhaust cup 51 as the drain cup (52) in FIG.
  • the pipes constituting the drain lines 523a, 523b, and 523c are connected to a factory exhaust system (or a suction device such as a suction pump or an ejector) to serve as an exhaust line.
  • a gas-liquid separation device such as a mist trap is provided in the exhaust line, and the liquid separated by the mist trap is discarded, for example, into a factory waste liquid system.
  • FIG. 11 another embodiment of the cleaning process for the mist guard 80 will be described.
  • the same members as those already described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and redundant description is omitted.
  • the mist guard 80A shown in FIG. 11 is different from the mist guard 80 shown in FIG. 8 in that a ring-shaped (annular) gap forming portion 823 (portion protruding downward) is provided on the lower surface of the overhang portion 82. Is different.
  • the gap forming portion 823 extends radially inward from the inner peripheral surface of the outer peripheral cylindrical portion 81 of the mist guard 80A.
  • a gap G1 between the lower surface of the gap forming portion 823 and the upper surface of the overhanging portion 512 of the exhaust cup 51 opposite thereto is provided as the gap forming portion 823 of the mist guard 80A. It is narrower than the gap G2 between the non-exposed portion (inward in the radial direction from the gap G1) and the upper surface of the overhanging portion 512 of the exhaust cup 51 facing this.
  • the size of the gap G1 is preferably set to a value that is large enough to allow the cleaning liquid to be described later to spread over the entire area of the gap G1, but small enough that the cleaning liquid does not easily flow out of the gap G1, for example, 0 .About 1 to 0.5 mm.
  • the gap forming portion 823 continuously extends in the circumferential direction over the entire circumference of the overhang portion 82 of the mist guard 80A.
  • a plurality of radial grooves 824 for guiding the cleaning liquid supplied from the cleaning liquid nozzle 110 to the gap G2 are formed on the lower surface of the gap forming portion 823.
  • the gap between the groove bottom surface (the upper surface of the groove) of the radial groove 824 and the upper surface of the overhanging portion 512 of the exhaust cup 51 facing the groove is wider than the gap G1.
  • the radial groove 824 extends inward in the radial direction and communicates with the gap G2.
  • the same number of radial grooves 824 as the cleaning liquid nozzles 110 are provided.
  • the cleaning liquid nozzle 110 is provided in the overhanging portion 512 at a position facing the radial groove 824 and supplies the cleaning liquid toward the radial groove 824.
  • the radial groove 824 does not have to extend strictly in the radial direction, and may extend at an angle with respect to the radial direction.
  • a circumferential groove (circumferential groove) 825 extending in the circumferential direction over the entire circumference of the mist guard 80A is formed on the lower surface of the ring-shaped gap forming portion 823.
  • the circumferential groove 825 intersects all the radial grooves 824 and communicates with all the radial grooves 824.
  • the circumferential position of the circumferential groove 825 is radially inward of the cleaning liquid nozzle 110.
  • the mist guard 80A is positioned at the above-described low position LG as shown in FIG. 11, and DIW as the cleaning liquid is discharged from the cleaning liquid nozzle 110.
  • the cleaning liquid discharged from each cleaning liquid nozzle 110 flows into the gap G ⁇ b> 2 through the corresponding radial groove 824.
  • the flow rate of the cleaning liquid discharged from the cleaning liquid nozzle 110 is larger than the flow rate of the cleaning liquid flowing out into the guard pocket 90 through the gap G1.
  • the gap G2 can be filled with the cleaning liquid over the entire circumference.
  • the cleaning liquid is in contact with the lower surface of the projection 83 and the overhang portion 512.
  • the lower surface of the protrusion 83 may not be in contact with the upper surface of the overhanging portion 512.
  • the flow rate of the cleaning liquid discharged from the cleaning liquid nozzle 110 is the flow rate of the cleaning liquid flowing out into the guard pocket 90 through the gap G1 and the cleaning liquid flowing out from the gap between the protrusion 83 and the upper surface of the overhanging portion 512. What is necessary is just to increase more than the sum total of flow volume.
  • the cleaning liquid flowing in the radial groove 824 flows into the circumferential groove 825 and spreads in the circumferential direction.
  • the cleaning liquid diffuses into the narrow gap G1.
  • the entire space (that is, the gap G1 + G2) between the lower surface of the overhanging portion 82 of the mist guard 80A and the upper surface of the overhanging portion 512 of the exhaust cup 51 is filled with the cleaning liquid.
  • the cleaning liquid dissolves adhering substances such as a chemical solution and a reaction product adhering to the lower surface of the overhang portion 82 and the upper surface of the overhang portion 512. Deposits dissolved in the cleaning liquid are discharged into the guard pocket 90 together with the cleaning liquid. In this manner, the surface of the mist guard 80A (the surface on the wafer W side) can be cleaned.
  • the cleaning liquid in the space between the lower surface of the overhanging portion 82 of the mist guard 80A and the upper surface of the overhanging portion 512 of the exhaust cup 51 is removed from the overhanging portion 512 that is an inclined surface. It flows into the guard pocket 90 along the upper surface. This completes the cleaning.
  • the above washing operation may be repeated.
  • the space between the lower surface of the overhanging portion 82 of the mist guard 80A and the upper surface of the overhanging portion 512 of the exhaust cup 51 can be filled with the cleaning liquid evenly.
  • the entire surface of the surface to be cleaned on the lower surface of the overhang portion 82 and the upper surface of the overhang portion 512 can be cleaned without unevenness.
  • the gap forming portion 823 is formed with the radial groove 824, but the radial groove 824 may not be provided.
  • the cleaning liquid nozzle 110B is provided in the projecting portion 512 of the exhaust cup 51 at a position radially inward of the gap forming portion 823B of the mist guard 80B.
  • the gap G2 can be filled with the cleaning liquid over the entire circumference by the cleaning liquid supplied from the cleaning liquid nozzle 110B.
  • the gap G1 between the lower surface of the gap forming portion 823 and the upper surface of the overhanging portion 512 can be filled with the cleaning liquid over the entire circumference. Deposits dissolved in the cleaning liquid are discharged into the guard pocket 90B together with the cleaning liquid. In this manner, the surface of the mist guard 80B (the surface on the wafer W side) can be cleaned.
  • a cover 60 is provided around the SC2 nozzle 418 shown in FIG.
  • the cover 60 is fixed to the floor board 96.
  • An opening 62 is formed in the front surface 61 of the cover 60 facing the mist guard 80A.
  • the SC2 liquid processing liquid
  • a shielding member 88 is provided on the outermost cylindrical portion of the mist guard 80A, that is, on the outermost peripheral portion of the upper surface of the overhang portion 82.
  • the shielding member 88 may be a member that cannot be integrated with the mist guard 80A, or may be a member that is manufactured separately from the mist guard 80A and then fixed to the mist guard 80A.
  • the shielding member 88 opens a narrow gap (for example, about 1 to 2 mm) from the portion of the front surface 61 of the cover 60 where the opening 62 is not formed. Facing each other.
  • the cover 60 and the shielding member 88 may be integrated. In this case, the cover 60 and the shielding member 88 move up and down in conjunction with the mist guard 80A. In this case, the gap 63 provided to prevent interference between the cover 60 and the shielding member 88 when the mist guard 80A is raised and lowered is not necessary. For this reason, it can prevent more reliably that the vapor
  • SC2 liquid processing liquid
  • ⁇ 64 (liquid guide member) is provided below the discharge port of the SC2 nozzle 418.
  • the SC2 liquid dripping from the discharge port of the SC2 nozzle 418 flows into the guard pocket 90 through the ridge 64. For this reason, it is possible to prevent the floor plate 96 from being contaminated by the SC2 liquid dripping from the SC2 nozzle 418 or the SC2 dripping from the floor plate 96 from being evaporated and diffused into the chamber 20.
  • the substrate to be processed is a semiconductor wafer, but is not limited to this, and may be another substrate, for example, a glass substrate for a liquid crystal display, a ceramic substrate, or the like.

Abstract

Provided is a substrate processing device comprising: a fixed cup body (51) that surrounds a substrate holding section (31) and is relatively immovable with respect to a processing container for receiving a processing liquid or a mist of the processing liquid which has been supplied to a substrate; a mist guard (80); and a guard lifting mechanism (84) for lifting and lowering the mist guard. The mist guard is provided to the outer side of the fixed cup body so as to surround the fixed cup body, and blocks liquid which splashes over and outward from the fixed cup body. The mist guard has a tubular tube part (81) and an overhanging section (82) which overhangs from the upper end of the tube part toward the side of the fixed cup body.

Description

基板処理装置、基板処理方法および記憶媒体Substrate processing apparatus, substrate processing method, and storage medium
 本発明は、回転する基板に処理液を供給することにより基板に液処理を施す技術に関する。 The present invention relates to a technique for performing liquid processing on a substrate by supplying the processing liquid to a rotating substrate.
 半導体装置の製造工程には、薬液洗浄処理またはウエットエッチング処理等の液処理が含まれる。このような液処理を半導体ウエハ等の基板に施す液処理装置として、チャンバと呼ばれる処理容器内に基板を保持する保持部と、半導体ウエハ等の基板を回転させる回転機構と、回転する基板に処理液を供給するノズルと、振り切られた処理液を受けるカップと、を備えたものが知られている。 The manufacturing process of a semiconductor device includes liquid processing such as chemical cleaning processing or wet etching processing. As a liquid processing apparatus that performs such liquid processing on a substrate such as a semiconductor wafer, a holding unit that holds the substrate in a processing container called a chamber, a rotating mechanism that rotates the substrate such as a semiconductor wafer, and processing on the rotating substrate A device is known that includes a nozzle that supplies a liquid and a cup that receives the shaken processing liquid.
 基板に供給された処理液の多くはカップにより回収されるが、ミスト化した処理液の一部がカップの外側に飛散する。この飛散した処理液がチャンバの内壁に付着すると、基板周囲に処理液特に薬液由来の雰囲気が形成され、この雰囲気中の薬液成分が液処理中の基板に付着して基板を汚染してしまうことがある。また、チャンバの内壁に水分が付着していると、基板の周囲の湿度が上昇し、基板の乾燥処理に悪影響が生じてしまうことも考えられる。 Most of the processing liquid supplied to the substrate is collected by the cup, but a part of the misted processing liquid scatters outside the cup. When the scattered processing liquid adheres to the inner wall of the chamber, an atmosphere derived from the processing liquid, especially chemical liquid, is formed around the substrate, and chemical liquid components in the atmosphere adhere to the substrate during liquid processing and contaminate the substrate. There is. In addition, if moisture adheres to the inner wall of the chamber, the humidity around the substrate increases, which may adversely affect the drying process of the substrate.
 従って、基板からカップ外に飛散した処理液がチャンバ内壁に付着することを可能な限り防止することが望ましい。 Therefore, it is desirable to prevent the processing liquid scattered from the substrate to the outside of the cup from adhering to the inner wall of the chamber as much as possible.
特開2008-53690号公報JP 2008-53690 A
 本発明は、基板からカップ外に飛散した処理液がチャンバ内壁に付着することを防止することができる技術を提供するものである。 The present invention provides a technique capable of preventing the processing liquid scattered from the substrate outside the cup from adhering to the inner wall of the chamber.
 本発明の一実施形態によれば、基板を保持する基板保持部と、前記基板保持部に保持された基板に処理液を吐出する少なくとも1つの処理液ノズルと、前記基板保持部と前記処理液ノズルを収容する処理容器と、前記基板保持部の周囲に配置され基板に供給された少なくとも処理液または処理液のミストを受ける前記処理容器に対して相対的に不動な固定カップ体と、前記固定カップ体を囲むように前記固定カップ体の外側に設けられ、前記固定カップ体の上方を越えて外方に飛散する液を遮断するミストガードと、前記ミストガードを第1ガード高さと前記第1ガード高さより低い第2ガード高さに昇降させる昇降機構と、を備え、前記ミストガードが、筒状の筒部と、前記筒部の上部から前記筒部の内側に向かって前記固定カップ体の上方に張り出す張出部とを有する、基板処理装置が提供される。 According to an embodiment of the present invention, a substrate holding unit that holds a substrate, at least one processing liquid nozzle that discharges a processing liquid to the substrate held by the substrate holding unit, the substrate holding unit, and the processing liquid A processing container that accommodates a nozzle; a fixed cup body that is arranged around the substrate holding portion and that is relatively immovable with respect to the processing container that receives at least the processing liquid supplied to the substrate or the mist of the processing liquid; and the fixing A mist guard that is provided outside the fixed cup body so as to surround the cup body, and that blocks liquid that splashes outward beyond the upper portion of the fixed cup body; An elevating mechanism that elevates and lowers to a second guard height lower than the guard height, wherein the mist guard includes a cylindrical tube portion, and an upper portion of the tube portion toward the inside of the tube portion of the fixed cup body. And a projecting portion projecting toward the substrate processing apparatus is provided.
 本発明の他の実施形態によれば、基板を保持する基板保持部と、前記基板保持部に保持された基板の上面に処理液を吐出する少なくとも1つの処理液ノズルと、前記基板保持部と前記処理液ノズルを収容する処理容器と、前記基板保持部の周囲に配置され基板に供給された処理液または処理液のミストを受ける前記処理容器に対して相対的に不動な固定カップ体と、前記固定カップ体を囲むように前記固定カップ体の外側に設けられ、前記固定カップ体の上方を越えて外方に飛散する液を遮断するミストガードと、前記ミストガードを昇降させる昇降機構と、を備え、前記ミストガードが、筒状の筒部と、前記筒部の上端から前記固定カップ体の側に向かって張り出す張出部とを有する、基板処理装置を用い、前記ミストガードを第1ガード高さに位置させた状態で、前記ノズルから前記基板保持部により保持されている基板に処理液を供給する工程と、前記ミストガードを前記第1ガード高さより低い第2ガード高さに位置させた状態で、前記基板を乾燥させる工程と、を備えた基板処理方法が提供される。 According to another embodiment of the present invention, a substrate holding unit that holds a substrate, at least one processing liquid nozzle that discharges a processing liquid onto an upper surface of the substrate held by the substrate holding unit, and the substrate holding unit, A processing container that accommodates the processing liquid nozzle, a fixed cup body that is relatively fixed to the processing container that is disposed around the substrate holding unit and that receives the processing liquid supplied to the substrate or the mist of the processing liquid; A mist guard that is provided outside the fixed cup body so as to surround the fixed cup body, blocks liquid that splashes outward beyond the fixed cup body, and an elevating mechanism that raises and lowers the mist guard; The mist guard includes a cylindrical tube portion, and a projecting portion that protrudes from an upper end of the tube portion toward the fixed cup body. 1 gar A step of supplying the processing liquid from the nozzle to the substrate held by the substrate holding portion in a state where the nozzle is positioned at a height; and the mist guard is positioned at a second guard height lower than the first guard height. And a step of drying the substrate in a state where the substrate is processed.
 本発明のさらに他の実施形態によれば、コンピュータプログラムが格納された記憶媒体であって、前記コンピュータプログラムが基板処理装置の制御装置をなすコンピュータにより実行されたときに、当該コンピュータが前記基板処理装置の動作を制御して、上記の基板処理方法を実行させる記憶媒体が提供される。 According to still another embodiment of the present invention, when a computer program is stored in a storage medium, and the computer program is executed by a computer constituting a control device of the substrate processing apparatus, the computer processes the substrate processing. There is provided a storage medium for controlling the operation of the apparatus to execute the above substrate processing method.
 上記本発明の実施形態によれば、張出部を有するミストガードを設けることにより、カップを越えて飛散した処理液が処理容器の内壁に付着することを防止することができる。 According to the embodiment of the present invention, by providing the mist guard having the overhanging portion, it is possible to prevent the processing liquid scattered over the cup from adhering to the inner wall of the processing container.
発明の一実施形態に係る基板処理システムの概略構成を示す平面図である。It is a top view which shows schematic structure of the substrate processing system which concerns on one Embodiment of invention. 処理ユニットの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a processing unit. 処理ユニットの構成を示す平面図である。It is a top view which shows the structure of a processing unit. ミストガードとノズルアームの動きを説明するための概略図である。It is the schematic for demonstrating a motion of a mist guard and a nozzle arm. ミストガードが高位置および中間位置にあるときのガスおよび液滴の動きを説明するための説明図である。It is explanatory drawing for demonstrating the motion of gas and a droplet when a mist guard exists in a high position and an intermediate position. ミストガードが低位置にあるときのガスおよび液滴の動きを説明するための説明図である。It is explanatory drawing for demonstrating the motion of gas and a droplet when a mist guard is in a low position. ミストガードに設けた通液開口について説明する概略縦断面図である。It is a schematic longitudinal cross-sectional view explaining the liquid flow opening provided in the mist guard. ミストガードの洗浄機構について説明する部分縦断面図である。It is a fragmentary longitudinal cross-section explaining the washing | cleaning mechanism of a mist guard. ノズルアームの動きを説明するための平面図である。It is a top view for demonstrating a motion of a nozzle arm. ミストガードに設けた通気開口について説明する概略縦断面図である。It is a schematic longitudinal cross-sectional view explaining the ventilation opening provided in the mist guard. 固定ノズルカバー及びミストガードの変形例を備えた実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows embodiment provided with the modified example of the fixed nozzle cover and the mist guard. ミストガードの他の変形例を備えた実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows embodiment provided with the other modification of a mist guard.
 図1は、本実施形態に係る基板処理システムの概略構成を示す図である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。 FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to the present embodiment. In the following, in order to clarify the positional relationship, the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 1, the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3. The carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚のウエハWを水平状態で収容する複数のキャリアCが載置される。 The loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of carriers C that accommodate a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いてキャリアCと受渡部14との間でウエハWの搬送を行う。 The transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside. The substrate transfer device 13 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transfer unit 12. The processing station 3 includes a transport unit 15 and a plurality of processing units 16. The plurality of processing units 16 are provided side by side on the transport unit 15.
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いて受渡部14と処理ユニット16との間でウエハWの搬送を行う。 The transfer unit 15 includes a substrate transfer device 17 inside. The substrate transfer device 17 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
 処理ユニット16は、基板搬送装置17によって搬送されるウエハWに対して所定の基板処理を行う。 The processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。 Further, the substrate processing system 1 includes a control device 4. The control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19. The storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1. The control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium. Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウエハWを取り出し、取り出したウエハWを受渡部14に載置する。受渡部14に載置されたウエハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。 In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14. The wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
 処理ユニット16へ搬入されたウエハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウエハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。 The wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier platform 11 by the substrate transfer device 13.
 次に、処理ユニット16の構成について図2を参照して説明する。図2は、処理ユニット16の概略構成を示す図である。図2に示すように、処理ユニット16は、チャンバ20と、基板保持機構30と、処理流体供給部40と、カップ50とを備える。処理流体供給部40は、ウエハWに対して処理流体を供給する。 Next, the configuration of the processing unit 16 will be described with reference to FIG. FIG. 2 is a diagram showing a schematic configuration of the processing unit 16. As shown in FIG. 2, the processing unit 16 includes a chamber 20, a substrate holding mechanism 30, a processing fluid supply unit 40, and a cup 50. The processing fluid supply unit 40 supplies a processing fluid to the wafer W.
 チャンバ20は、基板保持機構30と処理流体供給部40とカップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。FFU21の吹き出し口の真下に多数の穴(図示せず)が形成された整流板22が設けられ、チャンバ20内の空間を流れるダウンフローガスの分布を最適化している。 The chamber 20 accommodates the substrate holding mechanism 30, the processing fluid supply unit 40, and the cup 50. An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20. The FFU 21 forms a down flow in the chamber 20. A rectifying plate 22 having a large number of holes (not shown) formed immediately below the outlet of the FFU 21 is provided to optimize the distribution of the downflow gas flowing through the space in the chamber 20.
 基板保持機構30は、保持部(基板保持部)31と、回転軸32と、駆動部33とを備える。保持部31は、ウエハWを水平に保持することができる。駆動部33は、回転軸32を介して保持部31を回転させ、これにより、保持部31に保持されたウエハWを鉛直方向軸線周りに回転させる。 The substrate holding mechanism 30 includes a holding unit (substrate holding unit) 31, a rotating shaft 32, and a driving unit 33. The holding unit 31 can hold the wafer W horizontally. The drive unit 33 rotates the holding unit 31 via the rotation shaft 32, thereby rotating the wafer W held by the holding unit 31 around the vertical axis.
 保持部31は、円盤状のベースプレート31aと、ベースプレート31aに設けられたウエハWを保持する複数の保持要素31bと、処理ユニット16へのウエハWの搬出入時に保持要素31bから離れたウエハWの下面を支持するリフトピン31cを有する。保持要素31bは、ウエハWの周縁部を保持/解放できるベースプレート31aに取り付けられた可動の保持爪、または、ベースプレート31aに固定された保持ピン等から構成することができる。 The holding unit 31 includes a disk-shaped base plate 31a, a plurality of holding elements 31b that hold the wafer W provided on the base plate 31a, and the wafer W that is separated from the holding element 31b when the wafer W is loaded into and unloaded from the processing unit 16. It has the lift pin 31c which supports a lower surface. The holding element 31b can be configured by a movable holding claw attached to the base plate 31a capable of holding / releasing the peripheral edge of the wafer W, a holding pin fixed to the base plate 31a, or the like.
 リフトピン31cは、ベースプレート31aの上面に形成された凹所に格納されるリング状のリフトピンプレート31dに固定されている。リフトピンプレート31dは図示しない昇降機構により上昇し、ウエハWを持ち上げることができる。チャンバ20内に侵入してきた基板搬送装置17のアームと、上昇したリフトピンプレート31dとの間でウエハWの受け渡しを行うことができる。 The lift pin 31c is fixed to a ring-shaped lift pin plate 31d stored in a recess formed on the upper surface of the base plate 31a. The lift pin plate 31d can be lifted by a lifting mechanism (not shown) to lift the wafer W. The wafer W can be transferred between the arm of the substrate transfer device 17 that has entered the chamber 20 and the lift pin plate 31d that has been lifted.
 以下にカップ(カップ組立体)50について詳述する。カップ50は、ウエハWから飛散する処理液を回収するとともに、ウエハW周囲の気流を制御する役割を持つ。カップ50は、保持部31を取り囲むように配置されており、(幾何学的な意味において)概ね回転体の形状を有している。カップ50は、複数の構成要素から構成されている。カップ50は、最も外側にある不動の(固定された)排気カップ51と、その内側にある処理液案内用の排液カップ52とを有する。 The cup (cup assembly) 50 will be described in detail below. The cup 50 has a role of controlling the airflow around the wafer W while collecting the processing liquid scattered from the wafer W. The cup 50 is arrange | positioned so that the holding | maintenance part 31 may be surrounded, and has the shape of a rotary body in a geometrical meaning in general. The cup 50 is composed of a plurality of components. The cup 50 has a stationary (fixed) exhaust cup 51 on the outermost side, and a drainage cup 52 for guiding a processing liquid on the inner side.
 また、第1回転カップ53及び第2回転カップ54が、保持部31のベースプレート31aに取り付けられており、ベースプレート31aと一緒に回転する。第1回転カップ53及び第2回転カップ54は、ウエハWの表面(上面)に供給された後にウエハWから外方に飛散する液を受け止めて、斜め下方(半径方向外向きかつ下方に)案内する。第2回転カップ54は、ウエハWの裏面(下面)に供給された後にウエハWから外方に飛散する液を案内する機能も有している。また、第1回転カップ53及び第2回転カップ54は、ウエハW周囲の気流を制御する機能も有している。 Further, the first rotating cup 53 and the second rotating cup 54 are attached to the base plate 31a of the holding unit 31 and rotate together with the base plate 31a. The first rotating cup 53 and the second rotating cup 54 receive the liquid splashed outward from the wafer W after being supplied to the surface (upper surface) of the wafer W, and are guided obliquely downward (radially outward and downward). To do. The second rotating cup 54 also has a function of guiding the liquid splashed outward from the wafer W after being supplied to the back surface (lower surface) of the wafer W. The first rotating cup 53 and the second rotating cup 54 also have a function of controlling the airflow around the wafer W.
 排液カップ52は、排液カップ本体521と、第1可動カップ要素522(第1可動カップ体)と、第2可動カップ要素523(第2可動カップ体)とを有している。排液カップ本体521は、概ね鉛直方向に延びる外周筒部521aと、張出部521bと、底部521cと、内周部521dとを有している。張出部521bは、外周筒部521aの上端部から、ウエハW側に向かって延びている。底部521cから2つの凸部521e,521fが上方に延びている。 The drain cup 52 includes a drain cup body 521, a first movable cup element 522 (first movable cup body), and a second movable cup element 523 (second movable cup body). The drain cup main body 521 has an outer peripheral cylindrical portion 521a that extends in a substantially vertical direction, an overhang portion 521b, a bottom portion 521c, and an inner peripheral portion 521d. The overhanging portion 521b extends from the upper end portion of the outer peripheral cylindrical portion 521a toward the wafer W side. Two convex portions 521e and 521f extend upward from the bottom portion 521c.
 外周筒部521aと凸部521eとの間、凸部521eと凸部521fとの間、並びに凸部521fと内周部521dとの間に、酸性液、アルカリ性液、有機液をそれぞれ受けるための液溜まり522a,522b,522cがそれぞれ画定されている。液溜まり522a,522b,522cは、各々に接続された排液ライン523a,523b,523cを介して、酸性液用(DR1)、アルカリ性液用(DR2)、有機液用(DR3)の工場廃液系にそれぞれ接続されている。 For receiving an acidic liquid, an alkaline liquid, and an organic liquid between the outer peripheral cylindrical portion 521a and the convex portion 521e, between the convex portion 521e and the convex portion 521f, and between the convex portion 521f and the inner peripheral portion 521d, respectively. Liquid reservoirs 522a, 522b, and 522c are defined respectively. The liquid reservoirs 522a, 522b, and 522c are factory waste liquid systems for acidic liquid (DR1), alkaline liquid (DR2), and organic liquid (DR3) through drain lines 523a, 523b, and 523c connected to the liquid reservoirs 522a, 522b, and 522c, respectively. Are connected to each.
 凸部521e,521fに第1可動カップ要素522、第2可動カップ要素523がそれぞれ上下動自在に嵌合している。第1可動カップ要素522及び第2可動カップ要素523は、図示しない昇降機構により昇降する。第1可動カップ要素522及び第2可動カップ要素523の位置を変更することにより、ウエハWから外方に飛散した後に第1回転カップ53及び第2回転カップ54に案内された処理液を、それぞれ対応する液溜まり(522a,522b,522cのうちのいずれか一つ)に導くことができる。 The first movable cup element 522 and the second movable cup element 523 are fitted to the convex portions 521e and 521f so as to be movable up and down. The first movable cup element 522 and the second movable cup element 523 are moved up and down by a lifting mechanism (not shown). By changing the positions of the first movable cup element 522 and the second movable cup element 523, the processing liquid guided to the first rotary cup 53 and the second rotary cup 54 after splashing outward from the wafer W, respectively, It can be led to the corresponding liquid reservoir (any one of 522a, 522b, 522c).
 排気カップ51は、外周筒部511と、張出部512と、底部513と、内周部514とを有している。排気カップ51と排液カップ本体521との互いに対面する表面の間に、排気通路551が形成されている。排気カップ51の底部513には排気口552が設けられ、この排気口552に排気ダクト(排気路)553が接続されている。排気ダクト553は減圧雰囲気の工場排気系の工場排気ダクト(図示せず)に接続されている(C-EXH)。排気ダクト553にはバタフライ弁またはダンパ等の流量制御弁554が介設されている。流量制御弁554の開度を調節することにより、排気通路551を介して吸引されるガスの流量を調節することができる。なお、排気ダクト553に、エジェクタまたは排気ポンプ等の排気を促進する機器を介設してもよい。 The exhaust cup 51 has an outer peripheral cylindrical portion 511, an overhanging portion 512, a bottom portion 513, and an inner peripheral portion 514. An exhaust passage 551 is formed between the surfaces of the exhaust cup 51 and the drain cup main body 521 facing each other. An exhaust port 552 is provided at the bottom 513 of the exhaust cup 51, and an exhaust duct (exhaust passage) 553 is connected to the exhaust port 552. The exhaust duct 553 is connected to a factory exhaust duct (not shown) of the factory exhaust system in a reduced pressure atmosphere (C-EXH). The exhaust duct 553 is provided with a flow control valve 554 such as a butterfly valve or a damper. By adjusting the opening degree of the flow control valve 554, the flow rate of the gas sucked through the exhaust passage 551 can be adjusted. Note that a device that promotes exhaustion, such as an ejector or an exhaust pump, may be interposed in the exhaust duct 553.
 次に、処理流体供給部40について説明する。処理流体供給部40は、処理流体(液体または気体)を供給する複数のノズルを有する。これらの複数のノズルには、図3に示すように、SC1液を吐出するSC1ノズル411、DIW(純水)の液滴と窒素ガスとを含む二流体を吐出するASノズル412、DHF(希フッ酸)を吐出するDHFノズル413、純水(DIW)を吐出する第1DIWノズル414、暖められたIPA(イソプロピルアルコール)を吐出するIPAノズル415、窒素ガスを鉛直方向下方に向けて吐出する第1窒素ガスノズル416、窒素ガスを斜め下方に向けて吐出する第2窒素ガスノズル417、SC2液を吐出するSC2ノズル418、及び純水(DIW)を吐出する第2DIWノズル419が含まれる。 Next, the processing fluid supply unit 40 will be described. The processing fluid supply unit 40 has a plurality of nozzles that supply a processing fluid (liquid or gas). As shown in FIG. 3, these nozzles include an SC1 nozzle 411 that discharges SC1 liquid, an AS nozzle 412 that discharges two fluids including DIW (pure water) droplets and nitrogen gas, DHF (rare) A DHF nozzle 413 that discharges hydrofluoric acid), a first DIW nozzle 414 that discharges pure water (DIW), an IPA nozzle 415 that discharges warmed IPA (isopropyl alcohol), and a first nozzle that discharges nitrogen gas downward in the vertical direction. 1 nitrogen gas nozzle 416, second nitrogen gas nozzle 417 that discharges nitrogen gas obliquely downward, SC2 nozzle 418 that discharges SC2 liquid, and second DIW nozzle 419 that discharges pure water (DIW).
 ASノズル412は、窒素ガスの流れにDIWを合流させることによりDIWをミスト化させ、このミスト化したDIWと窒素ガスとを含む二流体を吐出する。ASノズル412に窒素ガスを供給しないでDIWのみを供給することにより、ASノズル412からミスト化されていないDIWのみを吐出させることができる。IPAノズル415から、DIWと相溶性があり、DIWより揮発性が高く、かつ、DIWより表面張力の低いDIW以外の溶剤を吐出することもできる。 The AS nozzle 412 makes DIW mist by merging DIW into the flow of nitrogen gas, and discharges two fluids containing the mist of DIW and nitrogen gas. By supplying only DIW without supplying nitrogen gas to the AS nozzle 412, it is possible to discharge only DIW that has not been made mist from the AS nozzle 412. From the IPA nozzle 415, solvents other than DIW that are compatible with DIW, higher in volatility than DIW, and lower in surface tension than DIW can be discharged.
 SC1ノズル411及びASノズル412は第1ノズルアーム421に保持されている。DHFノズル413、第1DIWノズル414及びIPAノズル415は、第2ノズルアームに保持されている。第1窒素ガスノズル416及び第2窒素ガスノズル417は第3ノズルアームに保持されている。第1~第3ノズルアーム421,422,423は各々に備えられたアーム駆動機構431,432,433により、鉛直軸線周りに旋回することができ、かつ、鉛直方向に昇降することができる。各アーム駆動機構431,432,433は、例えば上記旋回機能を実現するための旋回駆動機構として回転モータ(図示せず)、上記昇降機能を実現するための昇降機構(アーム昇降機構)としてエアシリンダ(図示せず)を備えることができる。 The SC1 nozzle 411 and the AS nozzle 412 are held by the first nozzle arm 421. The DHF nozzle 413, the first DIW nozzle 414, and the IPA nozzle 415 are held by the second nozzle arm. The first nitrogen gas nozzle 416 and the second nitrogen gas nozzle 417 are held by the third nozzle arm. The first to third nozzle arms 421, 422, and 423 can be swung around the vertical axis by the arm driving mechanisms 431, 432, and 433 provided therein, and can be moved up and down in the vertical direction. Each arm drive mechanism 431, 432, 433 is, for example, a rotary motor (not shown) as a turning drive mechanism for realizing the turning function, and an air cylinder as an raising / lowering mechanism (arm lifting mechanism) for realizing the lifting function. (Not shown).
 アーム駆動機構431により第1ノズルアーム421を旋回させることにより、SC1ノズル411及びASノズル412を、カップ50外方の待機場所441と、ウエハWの中心部Wcの真上の位置との間の任意の位置に位置させることができる(図3の矢印M1を参照)。アーム駆動機構432により第2ノズルアーム422を旋回させることにより、DHFノズル413、第1DIWノズル414及びIPAノズル415を、カップ50外方の待機場所442と、ウエハWの中心部Wcの真上の位置との間の任意の位置に位置させることができる(図3の矢印M2を参照)。アーム駆動機構433により第3ノズルアーム423を旋回させることにより、第1窒素ガスノズル416及び第2窒素ガスノズル417を、カップ50外方のホーム待機場所443と、ウエハWの中心部Wcの真上の位置との間の任意の位置に位置させることができる(図3の矢印M3を参照)。 By turning the first nozzle arm 421 by the arm driving mechanism 431, the SC1 nozzle 411 and the AS nozzle 412 are moved between the standby place 441 outside the cup 50 and the position directly above the center portion Wc of the wafer W. It can be located at any position (see arrow M1 in FIG. 3). By rotating the second nozzle arm 422 by the arm driving mechanism 432, the DHF nozzle 413, the first DIW nozzle 414 and the IPA nozzle 415 are moved directly above the standby position 442 outside the cup 50 and the center portion Wc of the wafer W. It can be located at any position between the positions (see arrow M2 in FIG. 3). By turning the third nozzle arm 423 by the arm driving mechanism 433, the first nitrogen gas nozzle 416 and the second nitrogen gas nozzle 417 are moved directly above the home standby place 443 outside the cup 50 and the center portion Wc of the wafer W. It can be located at any position between the positions (see arrow M3 in FIG. 3).
 本明細書において、説明の便宜上、待機場所(441,442,443)の真上を、対応するノズル(411~417)のホームポジション、対応するノズル(411~417)がホームポジションにあるときの対応するノズルアーム(421,422,423)の位置をそのノズルアームのホームポジションとも言う。 In the present specification, for convenience of explanation, the home position of the corresponding nozzle (411 to 417) and the corresponding nozzle (411 to 417) are at the home position directly above the standby places (441, 442, 443). The position of the corresponding nozzle arm (421, 422, 423) is also referred to as the home position of the nozzle arm.
 アーム駆動機構431,432,433に備えられたアーム昇降機構により、各ノズルアーム(421,422,423)を高位置HN(第1(第3)アーム高さ)と低位置LN(第2(第4)アーム高さ)との間で移動させることができ(図4参照)、これに伴い、該当するノズルアームに担持されたノズルを、ウエハWに近接した近接位置と近接位置よりもウエハWから離れた離間位置との間で移動させることができる。 The arm raising / lowering mechanism provided in the arm driving mechanism 431, 432, 433 allows each nozzle arm (421, 422, 423) to move to a high position HN (first (third) arm height) and a low position LN (second ( 4) the arm height) (see FIG. 4), and accordingly, the nozzle carried by the corresponding nozzle arm is moved closer to the wafer W than the wafer W and closer to the wafer. It is possible to move between the separated positions away from W.
 SC2ノズル418及び第2DIWノズル419は不動の固定ノズルであり、後述する床板96の上に固定されている。SC2ノズル418及び第2DIWノズル419は、予め定められた流量で液を吐出することにより、これらのノズル418,419から吐出された液が放物線を描いて飛んでウエハWの中心部Wcに落ちるように設置されている。 The SC2 nozzle 418 and the second DIW nozzle 419 are fixed stationary nozzles and are fixed on a floor plate 96 described later. The SC2 nozzle 418 and the second DIW nozzle 419 discharge liquid at a predetermined flow rate so that the liquid discharged from these nozzles 418 and 419 flies in a parabola and falls to the center Wc of the wafer W. Is installed.
 回転軸32の内部を円筒体450が上下方向に延びている。円筒体420は、回転軸32が回転しても回転しないように設置されている。円筒体420の内部には、1つまたは複数の処理流体供給路451(図2では1つだけ示す)が上下方向に延びている。処理流体供給路451の上端開口が処理流体を供給するための下面ノズル452をとなる。この下面ノズル452からは、ウエハWの裏面(下面)に、例えば、リンス液またはパージ液としてのDIW、乾燥ガスまたはパージガスとしての窒素ガスを供給することができる。以下の説明においては、この下面ノズル452についての言及はしない。 The cylindrical body 450 extends in the vertical direction inside the rotary shaft 32. The cylindrical body 420 is installed so as not to rotate even if the rotary shaft 32 rotates. Inside the cylindrical body 420, one or a plurality of processing fluid supply paths 451 (only one is shown in FIG. 2) extend in the vertical direction. The upper end opening of the processing fluid supply path 451 becomes a lower surface nozzle 452 for supplying the processing fluid. From the lower surface nozzle 452, for example, DIW as a rinsing liquid or a purge liquid, or a nitrogen gas as a dry gas or a purge gas can be supplied to the rear surface (lower surface) of the wafer W. In the following description, the lower surface nozzle 452 is not referred to.
 各ノズル(411~419)には、対応する処理流体供給源(例えばSC1、DHF等を貯留する薬液供給タンク、工場用力として提供される純水、窒素ガス等の供給元等の各種供給部のいずれか(図示せず))から、対応する処理流体供給機構(図示せず)を介して、上記の処理流体のいずれかが供給される。処理流体供給機構は、各ノズル(411~419)と対応する処理流体供給源とを接続する供給ラインと、この供給ラインに介設された開閉弁、流量制御弁等の流量制御機器等から構成することができる。 Each nozzle (411 to 419) has a corresponding processing fluid supply source (for example, a chemical supply tank for storing SC1, DHF, etc., a supply source of pure water, nitrogen gas, etc. provided as factory power) Any one of the above processing fluids is supplied from any one (not shown) via a corresponding processing fluid supply mechanism (not shown). The processing fluid supply mechanism includes a supply line that connects each nozzle (411 to 419) and a corresponding processing fluid supply source, and a flow control device such as an on-off valve and a flow control valve provided in the supply line. can do.
 処理液ノズル(SC1ノズル411、ASノズル412、DHFノズル413、第1DIWノズル414、SC2ノズル418、第2DIWノズル419等)から回転するウエハWに供給された処理液は、処理液のウエハW表面への衝突により(2つ以上のノズルから同時に液がウエハW表面に供給された場合には液同士の衝突にもより)、あるいは、ウエハから遠心力により振り切られることにより、微小な液滴となって飛散する。この飛散した液滴がチャンバ20の内壁面あるいはチャンバ20内の装置構成部品に付着すると、背景技術で述べたような問題が生じうる。 The processing liquid supplied to the rotating wafer W from the processing liquid nozzle (SC1 nozzle 411, AS nozzle 412, DHF nozzle 413, first DIW nozzle 414, SC2 nozzle 418, second DIW nozzle 419, etc.) is the surface of the wafer W of the processing liquid. (If liquid is supplied to the surface of the wafer W from two or more nozzles simultaneously) or by shaking off the wafer by centrifugal force, Become scattered. If the scattered droplets adhere to the inner wall surface of the chamber 20 or the apparatus components in the chamber 20, the problems described in the background art may occur.
 飛散した処理液がチャンバ20の内壁面に到達することを防止するか、少なくとも大幅に抑制するために、カップ50のさらに外側にミストガード80が設けられている。 A mist guard 80 is provided on the outer side of the cup 50 in order to prevent or at least greatly suppress the scattered processing liquid from reaching the inner wall surface of the chamber 20.
 ミストガード80は、外周筒部(筒部)81と、この外周筒部81の上端部から外周筒部81の(半径方向)内側に向かって延びて排気カップ51の上方に張り出す張出部82とを有している。張出部82の先端部の下面には、下方に向けて突出する突起83が設けられている。 The mist guard 80 includes an outer peripheral cylindrical portion (cylindrical portion) 81 and an overhang portion that extends from the upper end portion of the outer peripheral cylindrical portion 81 toward the inner side of the outer peripheral cylindrical portion 81 (in the radial direction) and protrudes above the exhaust cup 51. 82. A protrusion 83 protruding downward is provided on the lower surface of the tip of the overhang 82.
 ミストガード80は、昇降機構84(ガード昇降機構)(図3を参照)により昇降させられて、三つの異なる高さ位置、すなわち高位置HG(第1ガード高さ)(図2では一点鎖線で示す)、低位置LG(第2ガード高さ)(図2では実線で示す)及び中間位置MG(第3ガード高さ)(図2では二点鎖線で示す)をとることができる(図4も参照)。昇降機構84は、図3に概略的に示すように、例えば三位置のエアシリンダ84aにより構成することができる。ミストガード80は、外周筒部81から外側に張り出すフランジ部85を有しており、このフランジ部85に、その下方にあるエアシリンダ84aのロッド84bが接続され、ロッド84bの進退に伴いミストガード80が昇降する。昇降機構は84は、回転モータにより駆動される直動機構、あるいはリニアモータにより構成してもよい。この場合、ミストガード80を任意の高さ位置に固定することができる。 The mist guard 80 is moved up and down by an elevating mechanism 84 (guard elevating mechanism) (see FIG. 3), and three different height positions, that is, a high position HG (first guard height) (in FIG. 2, a one-dot chain line) ), A low position LG (second guard height) (shown by a solid line in FIG. 2) and an intermediate position MG (third guard height) (shown by a two-dot chain line in FIG. 2). See also). As shown schematically in FIG. 3, the elevating mechanism 84 can be constituted by, for example, three-position air cylinders 84 a. The mist guard 80 has a flange portion 85 that protrudes outward from the outer peripheral cylindrical portion 81. The rod portion 84b of the air cylinder 84a below the flange portion 85 is connected to the mist guard 80 as the rod 84b advances and retreats. The guard 80 moves up and down. The elevating mechanism 84 may be constituted by a linear motion mechanism driven by a rotary motor or a linear motor. In this case, the mist guard 80 can be fixed at an arbitrary height position.
 図5には、高位置HGにあるミストガード80が示されている。ミストガード80は、高位置HGにあるときに、ノズル(SC1ノズル411、ASノズル412、DHFノズル413、第1DIWノズル414、SC2ノズル418、第2DIWノズル419等)から回転するウエハWに供給された後にウエハWから飛散する処理液(図5では破線矢印で示してある)がチャンバ20の内壁に到達することを最も効果的に防止するための位置である。ミストガード80の高位置HGの望ましい高さは、ウエハW回転数、ウエハW表面上への処理液供給条件(流量等)により異なるので、実験により定めるのがよい。一例として、高位置HGにあるミストガード80の最上部の高さは、ウエハWの表面の高さより60mm高い。ミストガード80が高位置HGに位置しているときには、図4(a)に示すように、前述した近接位置にあるノズル(ノズル411~417のいずれかに対応する。図4では参照符号Nを付した。)の吐出口(図4では参照符号NPを付した)がミストガード80の張出部82の内周端よりも低い位置に位置し、かつ、当該ノズルNに対応するノズルアーム(421,422,423のいずれかに対応する。図4では参照符号Aを付した。)は張出部82より上方に位置する。なお、ミストガード80の高位置HGの適切な高さは、ウエハW回転数、ウエハW表面上への処理液供給条件(流量等)により異なるので、それら条件に応じて高位置HGの高さを決定することが好ましい。 FIG. 5 shows the mist guard 80 at the high position HG. The mist guard 80 is supplied to the rotating wafer W from the nozzles (the SC1 nozzle 411, the AS nozzle 412, the DHF nozzle 413, the first DIW nozzle 414, the SC2 nozzle 418, the second DIW nozzle 419, etc.) when at the high position HG. This is the position for most effectively preventing the processing liquid (shown by broken line arrows in FIG. 5) scattered after the wafer W from reaching the inner wall of the chamber 20. The desirable height of the high position HG of the mist guard 80 varies depending on the number of rotations of the wafer W and the processing liquid supply conditions (flow rate, etc.) on the surface of the wafer W, and is preferably determined by experiments. As an example, the height of the uppermost portion of the mist guard 80 at the high position HG is 60 mm higher than the height of the surface of the wafer W. When the mist guard 80 is positioned at the high position HG, as shown in FIG. 4A, it corresponds to any of the nozzles (nozzles 411 to 417) located at the above-mentioned proximity positions. In FIG. The discharge port (indicated by reference numeral NP in FIG. 4) is located at a position lower than the inner peripheral end of the overhang portion 82 of the mist guard 80, and the nozzle arm ( Corresponds to any one of 421, 422, and 423. In FIG. Note that the appropriate height of the high position HG of the mist guard 80 varies depending on the number of rotations of the wafer W and the supply conditions (flow rate, etc.) of the processing liquid onto the surface of the wafer W. Is preferably determined.
 図6には、低位置LGにあるミストガード80が示されている。低位置LGは、ミストガード80がとりうる下限位置であり、このときミストガード80の張出部82の突起83が、排気カップ51の張出部512の上面に接する。つまり、ミストガード80と排気カップ51の互いに対面する表面の間の空間が、ウエハW近傍のウエハWの上方空間から隔離される。また、ミストガード80が低位置LGに位置しているときには、ウエハWの上方空間からチャンバ20の周縁部にある排気口(後述するスリット状開口97)に向かうガスの流れ(図5では実線矢印で示す)がミストガード80により妨げられなくなる。 FIG. 6 shows the mist guard 80 at the low position LG. The low position LG is a lower limit position that can be taken by the mist guard 80, and at this time, the protrusion 83 of the protruding portion 82 of the mist guard 80 contacts the upper surface of the protruding portion 512 of the exhaust cup 51. That is, the space between the surfaces of the mist guard 80 and the exhaust cup 51 facing each other is isolated from the upper space of the wafer W in the vicinity of the wafer W. Further, when the mist guard 80 is located at the low position LG, a gas flow from the upper space of the wafer W toward an exhaust port (a slit-shaped opening 97 described later) in the peripheral portion of the chamber 20 (solid arrow in FIG. 5). Is not hindered by the mist guard 80.
 ミストガード80の中間位置MGは、前述した高位置HGと低位置LGとの中間の高さにある。図5には、中間位置MGにあるミストガード80が鎖線で示されている。ミストガード80が中間位置MGに位置しているときには、ミストガード80の張出部82が排気カップ51の張出部512から上方に離れ、(高位置HGにあるときほどではないが)ウエハWから飛散する処理液がチャンバ20の内壁に到達することをある程度抑制することができる。また、ミストガード80が中間位置MGに位置しているときには、図4(b)に示すようにノズルN(前述した離間位置にある)の吐出口NPがミストガード80の張出部82の内周端よりも高い位置に位置し、ノズルNは、ミストガード80と干渉することなく、ミストガード80の上方を越えて、ウエハWの面内の上方の位置と上述した待機位置との間を自在に移動することができる。 The intermediate position MG of the mist guard 80 is at an intermediate height between the high position HG and the low position LG described above. In FIG. 5, the mist guard 80 at the intermediate position MG is indicated by a chain line. When the mist guard 80 is located at the intermediate position MG, the overhanging portion 82 of the mist guard 80 is separated upward from the overhanging portion 512 of the exhaust cup 51 (not as much as when in the high position HG). It can be suppressed to some extent that the processing liquid scattered from the inside reaches the inner wall of the chamber 20. Further, when the mist guard 80 is located at the intermediate position MG, the discharge port NP of the nozzle N (at the above-mentioned separated position) is located inside the overhanging portion 82 of the mist guard 80 as shown in FIG. The nozzle N is located at a position higher than the peripheral end, and does not interfere with the mist guard 80 and passes over the mist guard 80 between the upper position in the plane of the wafer W and the above-described standby position. It can move freely.
 前述したように、各アーム駆動機構(431,432,433)は昇降機構を含んでいるため、ミストガード80を中間位置MGに位置させたときにノズルアーム(421,422,423)を高位置HNに上昇させて、対応するノズルがミストガード80の上方をより十分なクリアランスをもって(干渉の恐れなく)通過することができるようにすることができる。つまり、アーム駆動機構に昇降機構を設けることにより、ミストガード80の中間位置MGを比較的高く設定することができ、ミストガード80が中間位置MGにあるときにウエハWに供給された処理液がミストガード80を越えて飛散することを抑制することができる。また、ミストガード80が高位置HGにありノズルからウエハWに処理液が供給されているときのノズルの吐出口をウエハWの表面に十分に近づけることができ、ウエハWの表面上での処理液の液はねを低減することができる。 As described above, since each arm drive mechanism (431, 432, 433) includes an elevating mechanism, the nozzle arm (421, 422, 423) is positioned at a high position when the mist guard 80 is positioned at the intermediate position MG. By raising to HN, the corresponding nozzle can pass over the mist guard 80 with a sufficient clearance (without fear of interference). That is, by providing the arm drive mechanism with the lifting mechanism, the intermediate position MG of the mist guard 80 can be set relatively high, and the processing liquid supplied to the wafer W when the mist guard 80 is at the intermediate position MG Scattering beyond the mist guard 80 can be suppressed. Further, when the mist guard 80 is at the high position HG and the processing liquid is being supplied from the nozzle to the wafer W, the nozzle discharge port can be sufficiently brought close to the surface of the wafer W, and the processing on the surface of the wafer W can be performed. Liquid splash can be reduced.
 なお、ミストガード80を中間位置MGに位置させたときにノズルアーム(421,422,423)を高位置HNに上昇させることは上記の通り好ましいのであるが、低位置LNに維持し続けても構わない。 Although it is preferable to raise the nozzle arm (421, 422, 423) to the high position HN when the mist guard 80 is positioned at the intermediate position MG, as described above, even if the nozzle position is kept at the low position LN. I do not care.
 図7に示すように、ミストガード80の外周筒部81には、ミストガード80が高位置にあるときにSC2ノズル418及び第2DIWノズル419から吐出された液の飛跡が通過する位置に、通液開口86が形成されている。 As shown in FIG. 7, the outer peripheral cylindrical portion 81 of the mist guard 80 is passed through a position where the traces of the liquid discharged from the SC2 nozzle 418 and the second DIW nozzle 419 pass when the mist guard 80 is at the high position. A liquid opening 86 is formed.
 図2に示すように、排気カップ51の外周筒部511の外側に、ミストガード80の外周筒部81を収容する円筒状のガードポケット90(ミストガード収容部)が設けられている。ガードポケット90は、排気カップ51の外周筒部511の外周面と、外周筒部511に対面する円筒状の鉛直壁(縦壁)91と、底壁92により画定されている。底壁92には、円周方向に等間隔に複数の排出口93が形成されている(図3には1つだけ示す)。排出口93には排出管94(排出ライン)が接続されている。 As shown in FIG. 2, a cylindrical guard pocket 90 (mist guard housing portion) for housing the outer circumferential cylindrical portion 81 of the mist guard 80 is provided outside the outer circumferential cylindrical portion 511 of the exhaust cup 51. The guard pocket 90 is defined by an outer peripheral surface of the outer peripheral cylindrical portion 511 of the exhaust cup 51, a cylindrical vertical wall (vertical wall) 91 facing the outer peripheral cylindrical portion 511, and a bottom wall 92. A plurality of outlets 93 are formed in the bottom wall 92 at equal intervals in the circumferential direction (only one is shown in FIG. 3). A discharge pipe 94 (discharge line) is connected to the discharge port 93.
 ガードポケット90を構成する鉛直壁91から概ね水平方向外側に向けてチャンバ20内に形成される処理空間の下限を画定する床板96が設けられている。床板96は、ミストガード80の全周を囲んでいる。つまり、床板96にはミストガード80の外周筒部81の外形よりやや大きな直径を有する開口(鉛直壁91に対応)が設けられており、この開口内にミストガード80およびカップ50が収容されていることになる。床板96は、上記開口から、チャンバ20の側壁20aに至るまで延びている。 A floor plate 96 that defines the lower limit of the processing space formed in the chamber 20 from the vertical wall 91 that constitutes the guard pocket 90 toward the outside in the horizontal direction is provided. The floor board 96 surrounds the entire circumference of the mist guard 80. That is, the floor plate 96 is provided with an opening (corresponding to the vertical wall 91) having a diameter slightly larger than the outer shape of the outer peripheral cylindrical portion 81 of the mist guard 80, and the mist guard 80 and the cup 50 are accommodated in the opening. Will be. The floor plate 96 extends from the opening to the side wall 20 a of the chamber 20.
 床板96の一部は、チャンバ20の側壁20aの手前で終端しており、これにより、床板96の外側端96aとチャンバ20の側壁20aとの間にスリット状開口97(隙間)が形成される。床板96の下方には、チャンバ20内の空間(処理空間)の雰囲気を排気するための排気空間98が形成されている。排気空間98は、床板96、チャンバ20の側壁20a、底壁20b等の壁体、及び鉛直壁91により画定されている。 A part of the floor plate 96 terminates in front of the side wall 20a of the chamber 20, whereby a slit-shaped opening 97 (gap) is formed between the outer end 96a of the floor plate 96 and the side wall 20a of the chamber 20. . An exhaust space 98 for exhausting the atmosphere of the space (processing space) in the chamber 20 is formed below the floor plate 96. The exhaust space 98 is defined by a floor plate 96, wall bodies such as a side wall 20 a and a bottom wall 20 b of the chamber 20, and a vertical wall 91.
 図3に示すように、チャンバ20は4つの側壁20aを有しており、そのうちの3つに沿ってそれぞれ1ずつスリット状開口97が設けられている。これらの3つのスリット状開口97は共通の1つの排気空間98に接続されている。残りの1つの側壁20aには、ウエハWをチャンバ20内に搬出入するためのシャッタ25付きの搬出入口24が設けられているので、ここには、スリット状開口97は設けられていない。 As shown in FIG. 3, the chamber 20 has four side walls 20a, and one slit-like opening 97 is provided along each of the three side walls 20a. These three slit-shaped openings 97 are connected to one common exhaust space 98. Since the remaining one side wall 20a is provided with a loading / unloading port 24 with a shutter 25 for loading / unloading the wafer W into / from the chamber 20, the slit-shaped opening 97 is not provided here.
 図2に示すように、排気空間98に面するチャンバ20の底壁20bには、排気口99が設けられている。排気口99には、排気管100(排気ライン)が接続されている。排気管100には、排出管94が合流している。合流点の下流側において、排気管100には、ミストトラップ(気液分離部)101およびバタフライ弁またはダンパ等の流量制御弁102が介設されている。排気管100の下流端は、減圧雰囲気の工場排気系のダクト(図示せず)に接続されている。流量制御弁102の開度を調節することにより、排気空間98及びガードポケット90内の減圧の度合いを調整することができ、その結果、チャンバ20内の空間から排気空間98内に引き込まれるガスの流量、並びにウエハWの上方の空間からガードポケット90内に引き込まれるガスの流量を調節することができる。 As shown in FIG. 2, an exhaust port 99 is provided in the bottom wall 20 b of the chamber 20 facing the exhaust space 98. An exhaust pipe 100 (exhaust line) is connected to the exhaust port 99. A discharge pipe 94 joins the exhaust pipe 100. A mist trap (gas-liquid separator) 101 and a flow control valve 102 such as a butterfly valve or a damper are interposed in the exhaust pipe 100 on the downstream side of the junction. The downstream end of the exhaust pipe 100 is connected to a duct (not shown) of a factory exhaust system in a reduced pressure atmosphere. By adjusting the opening degree of the flow control valve 102, the degree of decompression in the exhaust space 98 and the guard pocket 90 can be adjusted. As a result, the amount of gas drawn into the exhaust space 98 from the space in the chamber 20 can be adjusted. The flow rate and the flow rate of the gas drawn into the guard pocket 90 from the space above the wafer W can be adjusted.
 床板96の上面は、チャンバ20の側壁20aに近づくに従って高さが低くなるように緩やかに傾斜している。床板96の上面は平滑かつ平坦である。前述したように、床板96の上面には、SC2ノズル418及び第2DIWノズル419が設けられている部分並びに必要なセンサ類及び補機類が設けられている部分を除き、実質的に凹凸は無く、床板96近傍をガスが円滑にスリット状開口97に向けて流れることができる。また、メンテナンス時にチャンバ20内を洗浄したときに、スリット状開口97を介して洗浄液がスムーズに排気空間98に流れ込むようになっている。 The upper surface of the floor plate 96 is gently inclined so that its height decreases as it approaches the side wall 20 a of the chamber 20. The upper surface of the floor board 96 is smooth and flat. As described above, the upper surface of the floor plate 96 is substantially free of unevenness except for a portion where the SC2 nozzle 418 and the second DIW nozzle 419 are provided and a portion where necessary sensors and auxiliary equipment are provided. The gas can flow smoothly toward the slit-shaped opening 97 in the vicinity of the floor plate 96. Further, when the inside of the chamber 20 is cleaned during maintenance, the cleaning liquid flows smoothly into the exhaust space 98 through the slit-shaped opening 97.
 高位置にあるミストガード80の外周筒部81の下端は、図5に示すように、ガードポケット90の上端よりやや上方に位置する。発明者の実験によれば、ミストガード80が高位置HGにあるときには、外周筒部81の下端付近には処理液の液滴は殆ど衝突せず、液滴の大半はミストガード80の比較的高い位置に衝突する。このため、外周筒部81の下端をガードポケット90の上端より低くするメリットは殆ど無い。むしろ、外周筒部81の下端をガードポケット90の上端より高くすることにより、ミストガード80の張出部82と排気カップ51の張出部512との間の空間内の雰囲気(ガス、ミストなど)が、スリット状開口97またはガードポケット90内にスムーズに流れ込むようになり、ウエハW上方空間に薬液由来の雰囲気や高湿度雰囲気(ミストを含む)が滞留することをより確実に防止することができるというメリットが得られる。 The lower end of the outer peripheral cylindrical portion 81 of the mist guard 80 in the high position is located slightly above the upper end of the guard pocket 90 as shown in FIG. According to the inventor's experiment, when the mist guard 80 is at the high position HG, almost no droplets of the treatment liquid collide with the vicinity of the lower end of the outer peripheral cylindrical portion 81, and most of the droplets are relatively in the mist guard 80. Collide with a high position. For this reason, there is almost no merit which makes the lower end of the outer periphery cylinder part 81 lower than the upper end of the guard pocket 90. FIG. Rather, by making the lower end of the outer cylindrical portion 81 higher than the upper end of the guard pocket 90, the atmosphere (gas, mist, etc.) in the space between the overhang portion 82 of the mist guard 80 and the overhang portion 512 of the exhaust cup 51 is increased. ) Smoothly flows into the slit-shaped opening 97 or the guard pocket 90, and it is possible to more reliably prevent an atmosphere derived from a chemical solution or a high-humidity atmosphere (including mist) from staying in the space above the wafer W. The advantage that you can do it.
 図8に示すように、排気カップ51の張出部512の上面に、ミストガード80の内面を洗浄するための洗浄液例えばDIWを吐出する複数例えば4つの洗浄液ノズル110(ミストガード洗浄機構)が、張出部512の円周方向に等間隔に配置されている。4つの洗浄液ノズル110のうちの一つが図8に示されている。 As shown in FIG. 8, a plurality of, for example, four cleaning liquid nozzles 110 (mist guard cleaning mechanisms) that discharge cleaning liquid, such as DIW, for cleaning the inner surface of the mist guard 80 are formed on the upper surface of the overhanging portion 512 of the exhaust cup 51. The overhang portions 512 are arranged at equal intervals in the circumferential direction. One of the four cleaning liquid nozzles 110 is shown in FIG.
 ミストガード80が下限位置である低位置LGに位置しているときに、洗浄液供給部から供給された洗浄液が、洗浄液ノズル110からミストガード80の張出部82の下面に向けて噴射される。張出部82の下面は、ミストガード80の半径方向内側にゆくに従って高くなるように傾斜しているので、噴射された洗浄液は張出部82の下面に沿って斜め上方に進む。このとき、突起83と排気カップ51の張出部512の上面とが接しているため、洗浄液は突起83より先へは進まない。このため、洗浄液ノズル110から噴射された洗浄液は、排気カップ51とミストガード80の互いに対面する表面の間の空間を満たす。洗浄液ノズル110からの洗浄液の吐出を止めると、張出部512の上面516は半径方向内側にゆくに従って高くなるように傾斜しているので、洗浄液はガードポケット90に向けて流れ落ちてゆく。上記の洗浄液の流れにより、排気カップ51とミストガード80の互いに対面する表面が洗浄される。洗浄液は、排出管94を介してガードポケット90から排出され、ミストトラップ101に流入し、ミストトラップ101に接続されたドレン管を介して工場廃液系に流出する。 When the mist guard 80 is located at the low position LG, which is the lower limit position, the cleaning liquid supplied from the cleaning liquid supply unit is jetted from the cleaning liquid nozzle 110 toward the lower surface of the overhanging portion 82 of the mist guard 80. Since the lower surface of the overhanging portion 82 is inclined so as to become higher inward in the radial direction of the mist guard 80, the sprayed cleaning liquid proceeds obliquely upward along the lower surface of the overhanging portion 82. At this time, since the projection 83 is in contact with the upper surface of the overhanging portion 512 of the exhaust cup 51, the cleaning liquid does not advance beyond the projection 83. For this reason, the cleaning liquid sprayed from the cleaning liquid nozzle 110 fills the space between the surfaces of the exhaust cup 51 and the mist guard 80 facing each other. When the discharge of the cleaning liquid from the cleaning liquid nozzle 110 is stopped, the upper surface 516 of the overhanging portion 512 is inclined so as to become higher inward in the radial direction, so that the cleaning liquid flows down toward the guard pocket 90. Due to the flow of the cleaning liquid, the surfaces of the exhaust cup 51 and the mist guard 80 facing each other are cleaned. The cleaning liquid is discharged from the guard pocket 90 through the discharge pipe 94, flows into the mist trap 101, and flows out to the factory waste liquid system through the drain pipe connected to the mist trap 101.
 上記洗浄液ノズル110以外にも、カップ50の内部および近傍の部材を自動的に洗浄するための洗浄液ノズルを設けることができるが、本明細書ではそれらには言及しない。 In addition to the cleaning liquid nozzle 110, a cleaning liquid nozzle for automatically cleaning the inside and the vicinity of the cup 50 can be provided, but these are not mentioned in this specification.
 次に、上記処理ユニット16の運転シーケンスの一例について説明する。以下の運転シーケンスは制御装置4(制御部)の記憶部19に記憶されたプロセスレシピ及び制御プログラムにより、制御装置4の制御の下で自動的に実行される。 Next, an example of the operation sequence of the processing unit 16 will be described. The following operation sequence is automatically executed under the control of the control device 4 by the process recipe and the control program stored in the storage unit 19 of the control device 4 (control unit).
 まず、基板搬送装置17のアームが搬出入口24を通してウエハWをチャンバ20(処理容器)内に搬入し、ウエハWは基板保持機構30の保持部31により保持される。基板搬送装置17のアームがチャンバから退出した後、シャッタ25が閉じられる。ウエハWの搬入時には、ミストガード80は低位置に位置している。以下、このウエハWに対して、一連の処理が行われる。ここでは、ウエハWに対して、DHF洗浄工程、DIWリンス工程、SC1洗浄工程、DIWリンス工程、IPA置換工程、乾燥工程が順次行われる場合について説明する。 First, the arm of the substrate transfer device 17 loads the wafer W into the chamber 20 (processing container) through the loading / unloading port 24, and the wafer W is held by the holding unit 31 of the substrate holding mechanism 30. After the arm of the substrate transfer device 17 is withdrawn from the chamber, the shutter 25 is closed. When the wafer W is loaded, the mist guard 80 is positioned at a low position. Thereafter, a series of processes are performed on the wafer W. Here, a case where a DHF cleaning process, a DIW rinsing process, an SC1 cleaning process, a DIW rinsing process, an IPA replacement process, and a drying process are sequentially performed on the wafer W will be described.
 [DHF洗浄工程]
 まず、第2ノズルアーム422が旋回し(図3の矢印M2を参照)、DHFノズル413、第1DIWノズル414及びIPAノズル415が、低位置LGにあるミストガード80(図4(c)を参照)の上方を越えて、ウエハWの中心部の真上に位置する(図9(a)を参照)。次いで、ミストガード80が上昇して高位置HGに位置する(図4(a)、図5を参照)。次いで、ウエハWが回転を開始する。ウエハWの回転はウエハWに対する一連の処理が収容するまでずっと継続する。回転するウエハWの中心部にDHFノズル413からDHFが供給される。DHFは遠心力によりウエハWの表面をウエハWの周縁に向かって流れ、ウエハWの表面全体がDHFの液膜により覆われ、ウエハWの表面がDHFにより処理される。
[DHF cleaning process]
First, the second nozzle arm 422 pivots (see arrow M2 in FIG. 3), and the DHF nozzle 413, the first DIW nozzle 414, and the IPA nozzle 415 are in the low position LG (see FIG. 4C). ) And above the central portion of the wafer W (see FIG. 9A). Next, the mist guard 80 rises and is positioned at the high position HG (see FIGS. 4A and 5). Next, the wafer W starts to rotate. The rotation of the wafer W continues until a series of processes for the wafer W are accommodated. DHF is supplied from the DHF nozzle 413 to the center of the rotating wafer W. The DHF flows on the surface of the wafer W toward the peripheral edge of the wafer W by centrifugal force, the entire surface of the wafer W is covered with the DHF liquid film, and the surface of the wafer W is processed by DHF.
 ウエハWから飛散した処理液(ここではDHF)は、その殆どが第1、第2回転カップ53,54の間を通って斜め下方に向けて流れる。その後、処理液は、処理液の種類(酸性、アルカリ性、有機)に応じて予め定められている第1及び第2可動カップ要素522,523の位置に応じて、液体通路525a,525b,525cのいずれか(入口が開いているもの)に流入し、次いで液溜まり522a,522b,522cのいずれかに流入し、排液ライン523a,523b,523cのいずれかを介して工場廃液系に廃棄される。なお、上記の処理液の流れについては、ウエハWの表面に処理液が供給される工程全てにおいて共通するため、これ以降の工程における重複説明は省略する。 Most of the processing liquid (in this case, DHF) scattered from the wafer W passes between the first and second rotating cups 53 and 54 and flows obliquely downward. Thereafter, the processing liquid is supplied to the liquid passages 525a, 525b, and 525c according to the positions of the first and second movable cup elements 522 and 523, which are predetermined according to the type (acidic, alkaline, organic) of the processing liquid. Flows into one (the one with the inlet open), then flows into one of the liquid reservoirs 522a, 522b, and 522c, and is discarded into the factory waste liquid system through one of the drain lines 523a, 523b, and 523c. . Note that the flow of the processing liquid is common in all processes in which the processing liquid is supplied to the surface of the wafer W, and therefore redundant description in the subsequent processes is omitted.
 ウエハWから飛散した処理液の一部は、排気カップ51の張出部512の上方を越えて、チャンバ20の側壁20aに向かおうとする。このような処理液の液滴の殆どが、高位置にあるミストガード80の内面に衝突し、捕捉される。このため、チャンバ20の側壁20aへの処理液の液滴の付着が防止されるか、あるいは最小限に抑制される。ミストガード80に捕捉された液は、ミストガード80の内面上に付着するか、あるいはミストガード80の内面上を重力により下方に流れてゆく。 A part of the processing liquid scattered from the wafer W tries to go over the overhanging portion 512 of the exhaust cup 51 toward the side wall 20 a of the chamber 20. Most of the droplets of such treatment liquid collide with the inner surface of the mist guard 80 at a high position and are captured. For this reason, adhesion of a droplet of the processing liquid to the side wall 20a of the chamber 20 is prevented or suppressed to a minimum. The liquid captured by the mist guard 80 either adheres to the inner surface of the mist guard 80 or flows downward on the inner surface of the mist guard 80 by gravity.
 遅くともウエハWに対する最初の処理液(ここではDHF)の供給が開始されるときには(通常は、基板処理システム1が通常運転されているときには常時)、FFU21からチャンバ20の内部空間すなわち処理空間内に向けて清浄空気が下向きに吹き出している。この清浄空気の流れは整流板22により整流され、ウエハWに向かう。 At the latest, when the supply of the first processing liquid (here, DHF) to the wafer W is started (usually, when the substrate processing system 1 is normally operated), the FFU 21 enters the internal space of the chamber 20, that is, the processing space. Clean air is blowing downwards. This flow of clean air is rectified by the rectifying plate 22 and travels toward the wafer W.
 遅くともウエハWに対する最初の処理液の供給が開始されるときには、排気ダクト553を介して排気通路551内が排気されており、これにより、排気カップ51の張出部512の先端と排液カップ52の張出部521bの先端との間の隙間から、ウエハW近傍のウエハW上方空間の雰囲気が吸引される(図5の実線矢印を参照)。排気ダクト553を介した排気流量は、ウエハWがチャンバ20内に搬入されてから搬出されるまでずっと一定に維持される。従って、ウエハWの上方の空間にFFU21から供給された清浄空気が供給される一方で、ウエハWの上方の空間内にある雰囲気が排気通路551内に引き込まれる。これにより、ウエハW近傍のウエハW上方空間の雰囲気が清浄に維持される。 At the latest, when the supply of the first processing liquid to the wafer W is started, the inside of the exhaust passage 551 is exhausted through the exhaust duct 553, whereby the tip of the overhanging portion 512 of the exhaust cup 51 and the drain cup 52 are exhausted. The atmosphere in the space above the wafer W in the vicinity of the wafer W is sucked from the gap between the tip of the overhanging portion 521b (see the solid line arrow in FIG. 5). The exhaust flow rate through the exhaust duct 553 is kept constant until the wafer W is loaded into the chamber 20 and then unloaded. Accordingly, the clean air supplied from the FFU 21 is supplied to the space above the wafer W, while the atmosphere in the space above the wafer W is drawn into the exhaust passage 551. Thereby, the atmosphere in the space above the wafer W in the vicinity of the wafer W is maintained clean.
 本実施形態では、液体通路525a,525b,525cは排気(吸引)されていない。つまり、ウエハW近傍のウエハW上方空間からカップ50内に流入するガスは、液体通路525a,525b,525cには流入せずに、全て排気通路551に流入する。液体通路525a,525b,525cの断面形状を互いに同一にすることは不可能であり、液体通路525a,525b,525cの流路抵抗は互いに異なる。液体通路525a,525b,525cを吸引している場合、この流路抵抗の相違を原因として、開放されている液体通路に応じて、ウエハW近傍のウエハW上方空間からカップ50内に流入するガスの流量が異なることになる。本実施形態ではこのような問題が生じず、ウエハW近傍のウエハW上方空間におけるガスの流れが、処理に使用している処理液の種類に関わらず一定に維持される。このことは処理の均一性の向上に寄与する。 In this embodiment, the liquid passages 525a, 525b, and 525c are not exhausted (suctioned). That is, the gas that flows into the cup 50 from the space above the wafer W near the wafer W does not flow into the liquid passages 525a, 525b, and 525c, but flows into the exhaust passage 551. The liquid passages 525a, 525b, and 525c cannot have the same cross-sectional shape, and the flow passage resistances of the liquid passages 525a, 525b, and 525c are different from each other. When the liquid passages 525a, 525b, and 525c are sucked, the gas flowing into the cup 50 from the space above the wafer W in the vicinity of the wafer W depending on the opened liquid passage due to the difference in flow path resistance. The flow rate will be different. In this embodiment, such a problem does not occur, and the gas flow in the upper space of the wafer W in the vicinity of the wafer W is maintained constant regardless of the type of processing liquid used for processing. This contributes to an improvement in processing uniformity.
 遅くともウエハWに対する最初の処理液の供給が開始されるときには、排出管94及び排気管100を介してガードポケット90の内部空間および排気空間98が吸引(排気)されている。この排気は、ウエハWがチャンバ20内に搬入されてから搬出されるまでずっと維持される。この排気により、床板96より上方のミストガード80とチャンバ20の側壁20aとの間の空間、並びにミストガード80の張出部82と排気カップ51の張出部512の間の空間に存在する雰囲気(ガス、ミスト等)が、ガードポケット90内に吸い込まれるか、あるいは、スリット状開口97を介して排気空間98内に吸い込まれる(図5及び図6の実線矢印を参照)。これにより上記の空間に汚染性または高湿度の雰囲気が滞留することを防止することができる。 At the latest, when the supply of the first processing liquid to the wafer W is started, the internal space of the guard pocket 90 and the exhaust space 98 are sucked (exhausted) through the exhaust pipe 94 and the exhaust pipe 100. This evacuation is maintained until the wafer W is loaded into the chamber 20 and then unloaded. By this exhaust, the atmosphere existing in the space between the mist guard 80 above the floor plate 96 and the side wall 20a of the chamber 20 and in the space between the overhanging portion 82 of the mist guard 80 and the overhanging portion 512 of the exhaust cup 51. (Gas, mist, etc.) is sucked into the guard pocket 90 or sucked into the exhaust space 98 through the slit-shaped opening 97 (see solid line arrows in FIGS. 5 and 6). Thereby, it is possible to prevent a pollutant or high humidity atmosphere from staying in the space.
 ミストガード80の内面上を重力により下方に流れる液滴は、ガードポケット90内に落ち、排出管94及び排気管100を通って流れ、ミストトラップ101のドレン103から図示しない工場廃液系に排出される。 A droplet that flows downward due to gravity on the inner surface of the mist guard 80 falls into the guard pocket 90, flows through the discharge pipe 94 and the exhaust pipe 100, and is discharged from the drain 103 of the mist trap 101 to a factory waste liquid system (not shown). The
 [DIWリンス工程(1回目)]
 DHF洗浄工程が終了したら、ミストガード80を高位置HGに維持したまま、第1DIWノズル414からのDIWの吐出を開始するともに、その直後にDHFノズル413からのDHFの吐出を止める。このDIWにより、ウエハW上に残留するDHFと反応生成物が洗い流される。
[DIW rinse process (first time)]
When the DHF cleaning process is completed, the discharge of DIW from the first DIW nozzle 414 is started while the mist guard 80 is maintained at the high position HG, and immediately after that, the discharge of DHF from the DHF nozzle 413 is stopped. By this DIW, DHF and reaction products remaining on the wafer W are washed away.
 [SC1洗浄工程]
 DIWリンス工程からSC1洗浄工程への移行にあたって、まず最初にノズルアームの入れ替え(ノズル入替操作)が行われる(図9(a)~(c)を参照)。第1DIWノズル414からDIWを吐出し続けたまま(ウエハWの表面のDIWの液膜切れが生じない範囲で吐出流量を減少させてもよい)、ミストガード80を下げ中間位置MGに位置させ、さらに、ノズルアーム421,422を上昇させ高位置HNに位置させる(図4(b)を参照)。次いで、第1ノズルアーム421を旋回させ、ASノズル412をウエハWの中心部の真上に位置させる。このとき、第1ノズルアーム421の先端部にあるノズルと第2ノズルアーム422の先端部にあるノズル同士が衝突しないように、SC1ノズル411がウエハWの中心部の真上に到達する直前から、第2ノズルアーム422の第1DIWノズル414からDIWを吐出し続けたままで第2ノズルアーム422の退避旋回、すなわち第2ノズルアーム422のホームポジションに向けた移動を開始する(図9(b)を参照)。また、ASノズル412がウエハWの中心部の真上に到達するやや前の時点で、ASノズル412からDIWの吐出を開始する。なおこのとき、ASノズル412の二流体生成機能を用いずに(すなわち窒素ガスをASノズル412に供給しないで)、ASノズル412からミスト化されていないDIWの吐出を行う。ウエハWの中心部にASノズル412からDIWの供給が開始された後、第1DIWノズル414からのDIWの吐出が停止される。ASノズル412がウエハWの中心部の真上に位置し、第1DIWノズル414がホームポジションに戻ったら(図9(c)を参照)、ミストガード80を上昇させて高位置HGに位置させ、さらに、第2ノズルアーム422を低位置LNに位置させる(図4(a)を参照)。
[SC1 cleaning process]
In the transition from the DIW rinse process to the SC1 cleaning process, first, the nozzle arm is replaced (nozzle replacement operation) (see FIGS. 9A to 9C). While continuing to discharge DIW from the first DIW nozzle 414 (the discharge flow rate may be reduced within the range where DIW liquid film breakage does not occur on the surface of the wafer W), the mist guard 80 is lowered to the intermediate position MG, Further, the nozzle arms 421 and 422 are raised and positioned at the high position HN (see FIG. 4B). Next, the first nozzle arm 421 is turned, and the AS nozzle 412 is positioned directly above the center of the wafer W. At this time, immediately before SC1 nozzle 411 reaches directly above the center of wafer W so that the nozzles at the tip of first nozzle arm 421 and the nozzles at the tip of second nozzle arm 422 do not collide with each other. The second nozzle arm 422 starts to retreat, that is, moves toward the home position of the second nozzle arm 422 while continuing to discharge DIW from the first DIW nozzle 414 of the second nozzle arm 422 (FIG. 9B). See). In addition, when the AS nozzle 412 reaches just above the center of the wafer W, DIW discharge is started from the AS nozzle 412. At this time, without using the two-fluid generation function of the AS nozzle 412 (that is, without supplying nitrogen gas to the AS nozzle 412), DIW that has not been misted is discharged from the AS nozzle 412. After the supply of DIW from the AS nozzle 412 to the center portion of the wafer W is started, the discharge of DIW from the first DIW nozzle 414 is stopped. When the AS nozzle 412 is positioned directly above the center of the wafer W and the first DIW nozzle 414 returns to the home position (see FIG. 9C), the mist guard 80 is raised and positioned at the high position HG. Further, the second nozzle arm 422 is positioned at the low position LN (see FIG. 4A).
 このようにASノズル412からウエハW中心部付近にDIWを供給している期間と、第1DIWノズル414からウエハW中心部付近にDIWを供給している期間とを重複させることにより、ウエハW表面からDIWの液膜が部分的に消失することによりウエハW表面の一部が大気雰囲気に晒されること(ウオーターマーク、パーティクル発生の原因となる)を防止することができる。この効果を達成可能である限りにおいて、ASノズル412からのDIWの吐出開始タイミングおよび第1DIWノズル414からのDIWの吐出停止タイミングは任意である。 Thus, by overlapping the period in which DIW is supplied from the AS nozzle 412 to the vicinity of the center of the wafer W and the period in which DIW is supplied from the first DIW nozzle 414 to the vicinity of the center of the wafer W, the surface of the wafer W is overlapped. As a result, the liquid film of DIW partially disappears, so that a part of the surface of the wafer W can be prevented from being exposed to the air atmosphere (causing the generation of water marks and particles). As long as this effect can be achieved, the DIW discharge start timing from the AS nozzle 412 and the DIW discharge stop timing from the first DIW nozzle 414 are arbitrary.
 なお、ミストガード80が中間位置MGに位置しているときには、高位置HGに位置しているときと比較して、ミストガード80の液滴飛散遮断機能が低下している。このため、ウエハWからの液滴の飛散量、飛散高さ等を減少させるため、ウエハWの回転速度を減少させること、及び/又はASノズル412及び第1DIWノズル414からのDIWの吐出流量を減少させること(ウエハWの表面露出が生じない範囲で)、ASノズル412と第1DIWノズル414とが同時にDIWを吐出している時間をできるだけ短くすること(別々のノズルから吐出された液がウエハW上で衝突するとスプラッシュが生じやすいため)等の対策を講じることが好ましい。 In addition, when the mist guard 80 is located at the intermediate position MG, the droplet scattering blocking function of the mist guard 80 is lower than when it is located at the high position HG. For this reason, in order to reduce the amount of droplets scattered from the wafer W, the height of the droplets, etc., the rotational speed of the wafer W is decreased and / or the discharge flow rate of DIW from the AS nozzle 412 and the first DIW nozzle 414 is reduced. Decrease (in the range where the surface exposure of the wafer W does not occur), and shorten the time during which the AS nozzle 412 and the first DIW nozzle 414 simultaneously discharge DIW as much as possible (the liquid discharged from different nozzles is the wafer). It is preferable to take measures such as splashing easily upon collision on W).
 次いで、SC1ノズル411からウエハW中心部にSC1の供給を開始し、その直後にASノズル412からのDIWの吐出を停止する。予め定められた時間だけSC1をウエハWに供給することにより、ウエハWにSC1洗浄が施される。このときも、ウエハWから飛散する処理液の液滴は、ミストガード80により捕捉される。SC1洗浄工程を実施しているときの排気動作は、DHF洗浄工程を実施しているときと同じであるので、重複説明は省略する。 Next, supply of SC1 from the SC1 nozzle 411 to the center of the wafer W is started, and immediately after that, the discharge of DIW from the AS nozzle 412 is stopped. By supplying SC1 to the wafer W for a predetermined time, the SC1 cleaning is performed on the wafer W. Also at this time, the droplets of the processing liquid scattered from the wafer W are captured by the mist guard 80. Since the exhaust operation when the SC1 cleaning process is performed is the same as that when the DHF cleaning process is performed, duplicate description is omitted.
 [DIWリンス工程(2回目)]
 SC1洗浄工程が終了したら、ミストガード80を高位置HGに維持したまま、ASノズル412からのDIWの吐出を開始するとともに、その直後にSC1ノズル411からのSC1の吐出を止める。このDIWにより、ウエハW上に残留するSC1と反応生成物が洗い流される。
[DIW rinse process (second time)]
When the SC1 cleaning process is completed, the discharge of DIW from the AS nozzle 412 is started while the mist guard 80 is maintained at the high position HG, and immediately after that, the discharge of SC1 from the SC1 nozzle 411 is stopped. By this DIW, the SC1 and the reaction product remaining on the wafer W are washed away.
 [IPA置換工程]
 DIWリンス工程(2回目)からIPA置換工程への移行にあたって、まず最初に、ノズルアームの入れ替えが行われる。ASノズル412からDIWを吐出し続けたまま(ウエハWの表面のDIWの液膜切れが生じない範囲で吐出流量を減少させてもよい)、ミストガード80を下げ、中間位置MGに位置させ、さらに、ノズルアーム421,422を上昇させ高位置HNに位置させる(図4(b)を参照)。次いで、第2ノズルアーム422を旋回させ、第1DIWノズル414をウエハWの中心部の真上に位置させる。このとき、第1ノズルアーム421の先端部にあるノズルと第2ノズルアーム422の先端部にあるノズル同士が衝突しないように、第1DIWノズル414がウエハWの中心部の真上に到達する直前から、第1ノズルアーム421のASノズル412からDIWを吐出し続けたままで、ノズルアーム421の退避旋回、すなわち第2ノズルアーム421のホームポジションに向けた移動を開始する(図9(d)を参照)。また、第1DIWノズル414がウエハWの中心部の真上に到達するやや前の時点で、第1DIWノズル414からDIWの吐出を開始する。なおこのとき、ウエハWの中心部に第1DIWノズル414からDIWの供給が開始された後、ASノズル412からのDIWの吐出が停止される。
[IPA replacement process]
In the transition from the DIW rinse process (second time) to the IPA replacement process, first, the nozzle arm is replaced. While continuing to discharge DIW from the AS nozzle 412 (the discharge flow rate may be reduced in a range where the DIW liquid film breakage on the surface of the wafer W may not occur), the mist guard 80 is lowered and positioned at the intermediate position MG. Further, the nozzle arms 421 and 422 are raised and positioned at the high position HN (see FIG. 4B). Next, the second nozzle arm 422 is swung so that the first DIW nozzle 414 is positioned directly above the center of the wafer W. At this time, immediately before the first DIW nozzle 414 reaches directly above the center of the wafer W so that the nozzle at the tip of the first nozzle arm 421 and the nozzle at the tip of the second nozzle arm 422 do not collide with each other. Then, while the DIW is continuously being discharged from the AS nozzle 412 of the first nozzle arm 421, the retraction turning of the nozzle arm 421, that is, the movement of the second nozzle arm 421 toward the home position is started (FIG. 9D). reference). Also, when the first DIW nozzle 414 reaches a position just above the center of the wafer W, the DIW discharge from the first DIW nozzle 414 is started. At this time, the supply of DIW from the first DIW nozzle 414 to the central portion of the wafer W is started, and then the discharge of DIW from the AS nozzle 412 is stopped.
 次に、図9(d)の状態で、IPAノズル415からIPAの吐出を開始するとともに、その直後に第1DIWノズル414からのからのDIWの吐出を止める。IPAの吐出開始と同時、あるいはそのやや後に、ミストガード80を下降させ、低位置LGに位置させる。供給されたIPAによりウエハW表面上にあるDIWが置換され、ウエハWの表面がIPAの液膜により覆われる。 Next, in the state of FIG. 9 (d), the discharge of IPA from the IPA nozzle 415 is started, and immediately after that, the discharge of DIW from the first DIW nozzle 414 is stopped. At the same time or slightly after the start of IPA discharge, the mist guard 80 is lowered and positioned at the low position LG. The supplied IPA replaces DIW on the surface of the wafer W, and the surface of the wafer W is covered with a liquid film of IPA.
 [乾燥工程]
 第1ノズルアーム421がホームポジションに戻った後、第3ノズルアーム423を旋回させ、第1窒素ガスノズル416をウエハWの中心部の真上に位置させる。第1窒素ガスノズル416がウエハWの中心部の真上に近づいてきたら、IPAノズル415からIPAの吐出を継続しつつ第2ノズルアーム422をホームポジションに向けて(ウエハWの周縁部に向けて)移動させ始める。第1窒素ガスノズル416がウエハWの中心部の真上に位置したときに第1窒素ガスノズル416から窒素ガスの吐出を開始する。次いで、第2窒素ガスノズル417からの窒素ガスの吐出を開始し、第3ノズルアーム423をホームポジションに向けて(ウエハWの周縁部に向けて)移動させ始める(図9(f)を参照)。
[Drying process]
After the first nozzle arm 421 returns to the home position, the third nozzle arm 423 is turned to position the first nitrogen gas nozzle 416 directly above the center of the wafer W. When the first nitrogen gas nozzle 416 approaches the center of the wafer W, the second nozzle arm 422 is directed toward the home position (toward the peripheral edge of the wafer W while continuing to discharge IPA from the IPA nozzle 415). ) Start moving. When the first nitrogen gas nozzle 416 is positioned immediately above the center of the wafer W, discharge of nitrogen gas from the first nitrogen gas nozzle 416 is started. Next, the discharge of the nitrogen gas from the second nitrogen gas nozzle 417 is started, and the third nozzle arm 423 is moved toward the home position (toward the peripheral edge of the wafer W) (see FIG. 9F). .
 IPAノズル415から吐出されるIPAのウエハW表面上への衝突位置が、第2窒素ガスノズル417から吐出される窒素ガスのウエハW表面上への衝突位置よりもウエハWの半径方向外側に維持されるように、第1ノズルアーム421及び第3ノズルアーム423の旋回運動が制御される。これにより、第2窒素ガスノズル417から吐出した窒素ガスがIPAの液膜をウエハ周縁方向に押しやり、ウエハW表面に形成される円形の乾燥領域が中心部から周縁部に向けて徐々に広がってゆく。IPAノズル415がウエハWの周縁を通過した後、第2窒素ガスノズル417がウエハWの周縁を通過する時点において、ウエハWの表面全域が乾燥する。以上により乾燥工程が終了する。ノズルアーム421、423はそれぞれのホームポジションに戻り、そこで待機する。 The collision position of the IPA discharged from the IPA nozzle 415 on the surface of the wafer W is maintained radially outside the collision position of the nitrogen gas discharged from the second nitrogen gas nozzle 417 on the surface of the wafer W. As described above, the turning motion of the first nozzle arm 421 and the third nozzle arm 423 is controlled. Thus, the nitrogen gas discharged from the second nitrogen gas nozzle 417 pushes the IPA liquid film in the wafer peripheral direction, and the circular dry region formed on the surface of the wafer W gradually spreads from the central portion toward the peripheral portion. go. After the IPA nozzle 415 passes the periphery of the wafer W, the entire surface of the wafer W is dried when the second nitrogen gas nozzle 417 passes the periphery of the wafer W. Thus, the drying process is completed. The nozzle arms 421 and 423 return to their home positions and wait there.
 この乾燥工程においては、ミストガード80が低位置LGに位置している。このため、ウエハWの上方の空間からスリット状開口97に向かうガスの流れがミストガード80により妨げられない。これにより、ウエハWの上方の空間に前工程で飛散したDIWのミストまたは蒸気が滞留することが防止または低減される。このためウエハWの上方の空間を低湿度に維持することができ、乾燥効率を向上させることができる。なお、IPAが飛散してチャンバ20の側壁20aに付着したとしても、高揮発性のIPAは短時間で蒸発してチャンバ20外部に排気されるため、チャンバ20内の雰囲気に悪影響を及ぼすことはない。 In this drying process, the mist guard 80 is located at the low position LG. Therefore, the gas flow from the space above the wafer W toward the slit-shaped opening 97 is not hindered by the mist guard 80. This prevents or reduces the mist or vapor of DIW scattered in the previous process in the space above the wafer W. For this reason, the space above the wafer W can be maintained at a low humidity, and the drying efficiency can be improved. Even if IPA scatters and adheres to the side wall 20a of the chamber 20, the highly volatile IPA evaporates in a short time and is exhausted to the outside of the chamber 20, so that the atmosphere inside the chamber 20 is adversely affected. Absent.
 なお、乾燥工程を実施している間に、先に図8を参照して説明した手順により、低位置LGに位置しているミストガード80に対して洗浄処理が行われ、ミストガード80の表面(ウエハW側の面)に付着している薬液成分が除去される。 During the drying process, the cleaning process is performed on the mist guard 80 located at the low position LG according to the procedure described above with reference to FIG. The chemical component adhering to (the wafer W side surface) is removed.
 乾燥工程の終了後、搬入時と逆の手順により、処理済みのウエハWがチャンバ20の外部に搬出される。 After completion of the drying process, the processed wafer W is carried out of the chamber 20 by the reverse procedure of loading.
 なお、上記の運転シーケンスには含まれなかったが、図7に示すように、ミストガード80を高位置HGにした状態で、SC2ノズル418からウエハWの中心部にSC2液を供給してSC2洗浄を行い、その後に、第2DIWノズル419からウエハWの中心部にDIWを供給してリンス処理を行う工程を運転シーケンスに含めてもよい。 Although not included in the above operation sequence, as shown in FIG. 7, the SC2 liquid is supplied from the SC2 nozzle 418 to the center of the wafer W with the mist guard 80 at the high position HG. The operation sequence may include a step of performing a rinse process by supplying DIW from the second DIW nozzle 419 to the central portion of the wafer W after the cleaning.
 上記の実施形態によれば、昇降可能なミストガード80を設けることにより、上昇したミストガード80により飛散する薬液成分または水分を遮蔽することにより、薬液成分または水分がチャンバ20の内壁面、あるいはチャンバ内機器に付着することを効率良く防止することができる。また、ミストガード80が張出部82を有しているため、上記の遮蔽効果を一層高めることができる。また、ミストガード80を下降させておくことにより、例えば乾燥時にウエハW上方の雰囲気の排気がミストガード80により妨げられないので、乾燥効率を向上させることができる。 According to the above embodiment, by providing the mist guard 80 that can be moved up and down, the chemical component or moisture that is scattered by the raised mist guard 80 is shielded, so that the chemical component or moisture can be contained in the inner wall surface of the chamber 20 or the chamber. It can prevent efficiently adhering to an internal apparatus. Moreover, since the mist guard 80 has the overhang | projection part 82, said shielding effect can be improved further. Further, by lowering the mist guard 80, for example, the exhaust of the atmosphere above the wafer W is not hindered by the mist guard 80 during drying, so that the drying efficiency can be improved.
 上記実施形態においては、高位置HGにあるミストガード80の外周筒部81の下端部はガードポケット90の外にあったが、中にあってもよい。この場合、図10に示すように、外周筒部81の下端部に通気開口87を設けることができる。好ましくは、ミストガード80の周方向に沿って延びる複数の通気開口87が、ミストガード80の周方向に間隔を空けて設けられる。通気開口87を設けることにより、ミストガード80のウエハ側の空間からチャンバ20の側壁20aにガスを通過させてスリット状開口97に流入させることができる。 In the above embodiment, the lower end portion of the outer peripheral cylindrical portion 81 of the mist guard 80 at the high position HG is outside the guard pocket 90, but it may be inside. In this case, as shown in FIG. 10, a ventilation opening 87 can be provided at the lower end portion of the outer peripheral cylindrical portion 81. Preferably, a plurality of ventilation openings 87 extending along the circumferential direction of the mist guard 80 are provided at intervals in the circumferential direction of the mist guard 80. By providing the ventilation opening 87, gas can be passed from the space on the wafer side of the mist guard 80 to the side wall 20 a of the chamber 20 and flow into the slit-shaped opening 97.
 上記実施形態においては、排気カップ51がカップ50を構成する最外周の不動のカップ形構成要素であったが、これには限定されない。カップ50から排気カップ51を取り除き、排液カップ52をカップ50を構成する最外周の不動のカップ形構成要素としてもよい。この場合、排液カップ52の外側に隣接してミストガード80が設けられる。この場合の排液カップ52とミストガード80との位置関係は、図4において、排気カップ51を排液カップ(52)と見なすことにより理解できる。なお、この場合、例えば、排液ライン523a、523b、523cを構成する配管は工場排気系(または吸引ポンプ若しくはエジェクタ等の吸引装置)に接続されて排気ラインとしての役割も持たされる。この場合、排気ラインに、ミストトラップ等の気液分離装置が設けられ、ミストトラップで分離された液体は例えば工場廃液系に廃棄される。 In the above embodiment, the exhaust cup 51 is the outermost stationary cup-shaped component constituting the cup 50, but is not limited to this. The exhaust cup 51 may be removed from the cup 50, and the drain cup 52 may be an outermost stationary cup-shaped component constituting the cup 50. In this case, a mist guard 80 is provided adjacent to the outside of the drainage cup 52. The positional relationship between the drain cup 52 and the mist guard 80 in this case can be understood by considering the exhaust cup 51 as the drain cup (52) in FIG. In this case, for example, the pipes constituting the drain lines 523a, 523b, and 523c are connected to a factory exhaust system (or a suction device such as a suction pump or an ejector) to serve as an exhaust line. In this case, a gas-liquid separation device such as a mist trap is provided in the exhaust line, and the liquid separated by the mist trap is discarded, for example, into a factory waste liquid system.
 図11を参照してミストガード80の洗浄処理について他の実施形態について説明する。図11において、図1~図10を参照して既に説明した部材と同一部材については、同一符号を付し、重複説明は省略する。 Referring to FIG. 11, another embodiment of the cleaning process for the mist guard 80 will be described. In FIG. 11, the same members as those already described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and redundant description is omitted.
 図11に示すミストガード80Aは、図8に示すミストガード80に対して、張出部82の下面にリング状(円環状)の隙間形成部823(下方に突出している部分)を設けた点が異なる。隙間形成部823は、ミストガード80Aの外周筒部81の内周面から半径方向内側に向けて延びている。この隙間形成部823を設けることにより、隙間形成部823の下面とこれと対向する排気カップ51の張出部512の上面との間の隙間G1が、ミストガード80Aの隙間形成部823が設けられていない部分(隙間G1より半径方向内側)とこれと対向する排気カップ51の張出部512の上面との間の隙間G2よりも狭くなっている。 The mist guard 80A shown in FIG. 11 is different from the mist guard 80 shown in FIG. 8 in that a ring-shaped (annular) gap forming portion 823 (portion protruding downward) is provided on the lower surface of the overhang portion 82. Is different. The gap forming portion 823 extends radially inward from the inner peripheral surface of the outer peripheral cylindrical portion 81 of the mist guard 80A. By providing this gap forming portion 823, a gap G1 between the lower surface of the gap forming portion 823 and the upper surface of the overhanging portion 512 of the exhaust cup 51 opposite thereto is provided as the gap forming portion 823 of the mist guard 80A. It is narrower than the gap G2 between the non-exposed portion (inward in the radial direction from the gap G1) and the upper surface of the overhanging portion 512 of the exhaust cup 51 facing this.
 隙間G1の大きさは、隙間G1の全域に後述する洗浄液が広がることができる程度には大きく、しかしながら隙間G1から容易には洗浄液が流出しない程度に小さいような値とすることが好ましく、例えば0.1~0.5mm程度である。 The size of the gap G1 is preferably set to a value that is large enough to allow the cleaning liquid to be described later to spread over the entire area of the gap G1, but small enough that the cleaning liquid does not easily flow out of the gap G1, for example, 0 .About 1 to 0.5 mm.
 隙間形成部823は、ミストガード80Aの張出部82の全周にわたって円周方向に連続的に延びている。隙間形成部823の下面には、洗浄液ノズル110から供給された洗浄液を隙間G2に導くための複数の径方向溝824が形成されている。径方向溝824の溝底面(溝の上端面)とこれに対向する排気カップ51の張出部512の上面との間の隙間は、隙間G1より広い。径方向溝824は、半径方向内側へ向けて延び、隙間G2と連通している。径方向溝824は洗浄液ノズル110と同じ数設けられている。洗浄液ノズル110は、径方向溝824に対向する位置において張出部512に設けられ、径方向溝824に向けて洗浄液を供給する。径方向溝824は、厳密に径方向に延びている必要はなく、径方向に対して角度を成して延びていても構わない。 The gap forming portion 823 continuously extends in the circumferential direction over the entire circumference of the overhang portion 82 of the mist guard 80A. A plurality of radial grooves 824 for guiding the cleaning liquid supplied from the cleaning liquid nozzle 110 to the gap G2 are formed on the lower surface of the gap forming portion 823. The gap between the groove bottom surface (the upper surface of the groove) of the radial groove 824 and the upper surface of the overhanging portion 512 of the exhaust cup 51 facing the groove is wider than the gap G1. The radial groove 824 extends inward in the radial direction and communicates with the gap G2. The same number of radial grooves 824 as the cleaning liquid nozzles 110 are provided. The cleaning liquid nozzle 110 is provided in the overhanging portion 512 at a position facing the radial groove 824 and supplies the cleaning liquid toward the radial groove 824. The radial groove 824 does not have to extend strictly in the radial direction, and may extend at an angle with respect to the radial direction.
 リング状の隙間形成部823の下面には、円周方向にミストガード80Aの全周にわたって延びる円周溝(周方向溝)825が形成されている。この円周溝825は全ての径方向溝824と交差し、全ての径方向溝824と連通している。円周溝825の半径方向位置は、洗浄液ノズル110よりも半径方向内側にある。 A circumferential groove (circumferential groove) 825 extending in the circumferential direction over the entire circumference of the mist guard 80A is formed on the lower surface of the ring-shaped gap forming portion 823. The circumferential groove 825 intersects all the radial grooves 824 and communicates with all the radial grooves 824. The circumferential position of the circumferential groove 825 is radially inward of the cleaning liquid nozzle 110.
 隙間形成部823、径方向溝824、円周溝825を設けたことの効果について以下に説明する。 The effect of providing the gap forming portion 823, the radial groove 824, and the circumferential groove 825 will be described below.
 ミストガード80Aを図11に示すように前述した低位置LGに位置させ、洗浄液ノズル110から洗浄液としてのDIWを吐出させる。各洗浄液ノズル110から吐出された洗浄液は、対応する径方向溝824を通って、隙間G2内に流入する。 The mist guard 80A is positioned at the above-described low position LG as shown in FIG. 11, and DIW as the cleaning liquid is discharged from the cleaning liquid nozzle 110. The cleaning liquid discharged from each cleaning liquid nozzle 110 flows into the gap G <b> 2 through the corresponding radial groove 824.
 このとき、洗浄液ノズル110から吐出される洗浄液の流量は、隙間G1を通ってガードポケット90内に流出する洗浄液の流量よりも多くしている。このため、隙間G2を全周にわたって洗浄液で満たすことができる。このとき、ミストガード80Aの張出部82の内周端にある突起83の下面と排気カップ51の張出部512の上面とが接しているため、洗浄液が突起83の下面と張出部512の上面との間から漏出することは殆ど無い。このため、隙間G2内の周方向全域を均一に洗浄液で満たすことができる。 At this time, the flow rate of the cleaning liquid discharged from the cleaning liquid nozzle 110 is larger than the flow rate of the cleaning liquid flowing out into the guard pocket 90 through the gap G1. For this reason, the gap G2 can be filled with the cleaning liquid over the entire circumference. At this time, since the lower surface of the projection 83 at the inner peripheral end of the overhang portion 82 of the mist guard 80A and the upper surface of the overhang portion 512 of the exhaust cup 51 are in contact with each other, the cleaning liquid is in contact with the lower surface of the projection 83 and the overhang portion 512. There is almost no leakage from between the upper surface of the glass. For this reason, the whole circumferential direction in the gap G2 can be uniformly filled with the cleaning liquid.
 突起83の下面が張出部512の上面に接していなくてもよい。この場合、洗浄液ノズル110から吐出する洗浄液の流量は、隙間G1を通ってガードポケット90内に流出する洗浄液の流量と、突起83と張出部512の上面との間の隙間から流出する洗浄液の流量の合計よりも多くすればよい。 The lower surface of the protrusion 83 may not be in contact with the upper surface of the overhanging portion 512. In this case, the flow rate of the cleaning liquid discharged from the cleaning liquid nozzle 110 is the flow rate of the cleaning liquid flowing out into the guard pocket 90 through the gap G1 and the cleaning liquid flowing out from the gap between the protrusion 83 and the upper surface of the overhanging portion 512. What is necessary is just to increase more than the sum total of flow volume.
 径方向溝824内を流れる洗浄液は円周溝825にも流入して円周方向に広がってゆく。隙間G2、径方向溝824及び円周溝825が洗浄液で満たされると、狭い隙間G1内への洗浄液の拡散も進行してゆく。ミストガード80Aの張出部82の下面と排気カップ51の張出部512の上面との間の空間の全域(すなわち隙間G1+G2)が洗浄液で満たされる。この洗浄液に、張出部82の下面及び張出部512の上面に付着した薬液及び反応生成物等の付着物が溶け込む。洗浄液に溶け込んだ付着物は、洗浄液とともにガードポケット90内へ排出される。このようにして、ミストガード80Aの表面(ウエハW側の面)を洗浄することができる。 The cleaning liquid flowing in the radial groove 824 flows into the circumferential groove 825 and spreads in the circumferential direction. When the gap G2, the radial groove 824, and the circumferential groove 825 are filled with the cleaning liquid, the cleaning liquid diffuses into the narrow gap G1. The entire space (that is, the gap G1 + G2) between the lower surface of the overhanging portion 82 of the mist guard 80A and the upper surface of the overhanging portion 512 of the exhaust cup 51 is filled with the cleaning liquid. The cleaning liquid dissolves adhering substances such as a chemical solution and a reaction product adhering to the lower surface of the overhang portion 82 and the upper surface of the overhang portion 512. Deposits dissolved in the cleaning liquid are discharged into the guard pocket 90 together with the cleaning liquid. In this manner, the surface of the mist guard 80A (the surface on the wafer W side) can be cleaned.
 その後、ミストガード80Aを上昇させると、ミストガード80Aの張出部82の下面と排気カップ51の張出部512の上面との間の空間にある洗浄液が、傾斜面である張出部512の上面に沿ってガードポケット90内に流れ込む。以上により洗浄が終了する。上記の洗浄操作を繰り返し行ってもよい。 After that, when the mist guard 80A is raised, the cleaning liquid in the space between the lower surface of the overhanging portion 82 of the mist guard 80A and the upper surface of the overhanging portion 512 of the exhaust cup 51 is removed from the overhanging portion 512 that is an inclined surface. It flows into the guard pocket 90 along the upper surface. This completes the cleaning. The above washing operation may be repeated.
 図11の実施形態のうちの上述した構成によれば、ミストガード80Aの張出部82の下面と排気カップ51の張出部512の上面との間の空間を満遍なく洗浄液で満たすことができ、張出部82の下面及び張出部512の上面の洗浄対象面の全域をムラ無く洗浄することができる。 According to the above-described configuration in the embodiment of FIG. 11, the space between the lower surface of the overhanging portion 82 of the mist guard 80A and the upper surface of the overhanging portion 512 of the exhaust cup 51 can be filled with the cleaning liquid evenly. The entire surface of the surface to be cleaned on the lower surface of the overhang portion 82 and the upper surface of the overhang portion 512 can be cleaned without unevenness.
 上記実施形態においては、隙間形成部823には、径方向溝824が形成されているが、径方向溝824がなくてもよい。この場合、図12に示すように、洗浄液ノズル110Bが、ミストガード80Bの隙間形成部823Bよりも半径方向内側の位置において排気カップ51の張出部512に設けられる。洗浄液ノズル110Bから供給される洗浄液によって隙間G2を全周にわたって洗浄液で満たすことができる。また、隙間形成部823の下面と張出部512の上面との間の隙間G1も全周にわたって洗浄液で満たすことができる。洗浄液に溶け込んだ付着物は、洗浄液とともにガードポケット90B内へ排出される。このようにして、ミストガード80Bの表面(ウエハW側の面)を洗浄することができる。 In the above embodiment, the gap forming portion 823 is formed with the radial groove 824, but the radial groove 824 may not be provided. In this case, as shown in FIG. 12, the cleaning liquid nozzle 110B is provided in the projecting portion 512 of the exhaust cup 51 at a position radially inward of the gap forming portion 823B of the mist guard 80B. The gap G2 can be filled with the cleaning liquid over the entire circumference by the cleaning liquid supplied from the cleaning liquid nozzle 110B. Further, the gap G1 between the lower surface of the gap forming portion 823 and the upper surface of the overhanging portion 512 can be filled with the cleaning liquid over the entire circumference. Deposits dissolved in the cleaning liquid are discharged into the guard pocket 90B together with the cleaning liquid. In this manner, the surface of the mist guard 80B (the surface on the wafer W side) can be cleaned.
 図11に示すSC2ノズル418すなわち固定ノズルの周囲には、カバー60が設けられている。カバー60は床板96に固定されている。カバー60のミストガード80Aの方を向いた正面61には、開口62が形成されている。この開口62を介して、カバー60に覆われたSC2ノズル418からウエハWに向けてSC2液(処理液)を吐出することができる。 A cover 60 is provided around the SC2 nozzle 418 shown in FIG. The cover 60 is fixed to the floor board 96. An opening 62 is formed in the front surface 61 of the cover 60 facing the mist guard 80A. The SC2 liquid (processing liquid) can be discharged toward the wafer W from the SC2 nozzle 418 covered by the cover 60 through the opening 62.
 ミストガード80Aの外周筒部の最上部すなわち張出部82の上面の最外周部には、遮蔽部材88が設けられている。遮蔽部材88は、ミストガード80Aと一体不可分の部材であってもよいし、ミストガード80Aとは別に製造された後にミストガード80Aに固定された部材であってもよい。ミストガード80Aが低位置LGに位置しているときに、遮蔽部材88は、カバー60の正面61のうちの開口62が形成されていない部分と狭い(例えば1~2mm程度の)隙間63を空けて対向する。 A shielding member 88 is provided on the outermost cylindrical portion of the mist guard 80A, that is, on the outermost peripheral portion of the upper surface of the overhang portion 82. The shielding member 88 may be a member that cannot be integrated with the mist guard 80A, or may be a member that is manufactured separately from the mist guard 80A and then fixed to the mist guard 80A. When the mist guard 80A is located at the low position LG, the shielding member 88 opens a narrow gap (for example, about 1 to 2 mm) from the portion of the front surface 61 of the cover 60 where the opening 62 is not formed. Facing each other.
 狭い隙間63にはガスが流れにくい。このため、SC2ノズル418からのSC2液の吐出が停止しているときにSC2ノズル418の吐出口付近に滞留しているSC2液(処理液)の蒸気がチャンバ20内に拡散すること、並びに、SC2ノズル418からダミーディスペンスを行うときに(固定ノズルであるのでダミーディスペンス時の吐出流量は非常に少ない)SC2液(処理液)の蒸気がチャンバ20内に拡散することを防止することができる。 ¡Gas does not flow easily through the narrow gap 63. For this reason, when the discharge of the SC2 liquid from the SC2 nozzle 418 is stopped, the vapor of the SC2 liquid (processing liquid) staying in the vicinity of the discharge port of the SC2 nozzle 418 diffuses into the chamber 20, and When performing dummy dispensing from the SC2 nozzle 418 (since it is a fixed nozzle, the discharge flow rate during dummy dispensing is very small), it is possible to prevent the SC2 liquid (processing liquid) vapor from diffusing into the chamber 20.
 カバー60と遮蔽部材88を一体化してもよい。この場合、カバー60及び遮蔽部材88はミストガード80Aと連動して昇降する。またこの場合、ミストガード80Aの昇降時にカバー60と遮蔽部材88の干渉を防止するために設けられていた隙間63は必要ない。このため、SC2液(処理液)の蒸気がチャンバ20内に拡散することを防止することをより確実に防止することができる。 The cover 60 and the shielding member 88 may be integrated. In this case, the cover 60 and the shielding member 88 move up and down in conjunction with the mist guard 80A. In this case, the gap 63 provided to prevent interference between the cover 60 and the shielding member 88 when the mist guard 80A is raised and lowered is not necessary. For this reason, it can prevent more reliably that the vapor | steam of SC2 liquid (processing liquid) prevents spreading | diffusion in the chamber 20. FIG.
 SC2ノズル418の吐出口の下方には、樋64(液案内部材)が設けられている。SC2ノズル418の吐出口から垂れ落ちたSC2液は、樋64を介してガードポケット90内に流れ込む。このため、SC2ノズル418から垂れ落ちたSC2液により床板96が汚染されたり、床板96に垂れ落ちたSC2が蒸発してチャンバ20内に拡散することを防止することができる。 樋 64 (liquid guide member) is provided below the discharge port of the SC2 nozzle 418. The SC2 liquid dripping from the discharge port of the SC2 nozzle 418 flows into the guard pocket 90 through the ridge 64. For this reason, it is possible to prevent the floor plate 96 from being contaminated by the SC2 liquid dripping from the SC2 nozzle 418 or the SC2 dripping from the floor plate 96 from being evaporated and diffused into the chamber 20.
 上記各実施形態では、処理対象の基板は半導体ウエハであったが、これに限定されるものではなく、他の基板、例えば液晶ディスプレイ用のガラス基板、セラミック基板等であってもよい。 In each of the above embodiments, the substrate to be processed is a semiconductor wafer, but is not limited to this, and may be another substrate, for example, a glass substrate for a liquid crystal display, a ceramic substrate, or the like.

Claims (20)

  1.  基板を保持する基板保持部と、
     前記基板保持部に保持された基板に処理液を吐出する少なくとも1つの処理液ノズルと、
     前記基板保持部と前記処理液ノズルを収容する処理容器と、
     前記基板保持部の周囲に配置され基板に供給された少なくとも処理液または処理液のミストを受ける、前記処理容器に対して相対的に不動な固定カップ体と、
     前記固定カップ体を囲むように前記固定カップ体の外側に設けられ、前記固定カップ体の上方を越えて外方に飛散する液を遮断するミストガードと、
     前記ミストガードを第1ガード高さと前記第1ガード高さより低い第2ガード高さに昇降させるガード昇降機構と、を備え、
     前記ミストガードが、筒状の筒部と、前記筒部の上部から前記筒部の内側に向かって前記固定カップ体の上方に張り出す張出部とを有する、基板処理装置。
    A substrate holder for holding the substrate;
    At least one processing liquid nozzle that discharges the processing liquid onto the substrate held by the substrate holder;
    A processing container containing the substrate holding part and the processing liquid nozzle;
    A stationary cup body that is arranged around the substrate holding unit and receives at least the processing liquid supplied to the substrate or a mist of the processing liquid, and is relatively stationary with respect to the processing container;
    A mist guard that is provided outside the fixed cup body so as to surround the fixed cup body, and that blocks liquid that splashes outward beyond the upper side of the fixed cup body;
    A guard lifting mechanism that lifts and lowers the mist guard to a first guard height and a second guard height lower than the first guard height,
    The substrate processing apparatus, wherein the mist guard includes a cylindrical tube portion, and an overhang portion that protrudes upward from the upper portion of the tube portion toward the inside of the tube portion.
  2.  前記処理液ノズルから前記基板保持部により保持されている基板に処理液を供給するときに前記ミストガードを前記第1ガード高さに位置させ、前記基板を乾燥させるときに前記ミストガードを前記第2ガード高さに位置させるように前記ガード昇降機構を制御する制御部をさらに備えた、請求項1記載の基板処理装置。 The mist guard is positioned at the first guard height when the processing liquid is supplied from the processing liquid nozzle to the substrate held by the substrate holding portion, and the mist guard is moved to the first guard height when the substrate is dried. The substrate processing apparatus according to claim 1, further comprising a control unit that controls the guard lifting mechanism so as to be positioned at two guard heights.
  3.  前記ミストガードが前記第1ガード高さにあるとき、前記ミストガードと前記固定カップ体の間に気流を形成し、前記ミストガードが前記第2ガード高さにあるとき、前記ミストガードの上方に気流を形成することを特徴とする、請求項2記載の基板処理装置。 When the mist guard is at the first guard height, an air flow is formed between the mist guard and the fixed cup body, and when the mist guard is at the second guard height, the mist guard is above the mist guard. The substrate processing apparatus according to claim 2, wherein an air flow is formed.
  4.  前記ミストガードの外側に、前記処理容器内の処理空間の底部を画定する床板と、前記処理空間内の雰囲気を前記処理空間の外側に排気する排気口と、を備えた、請求項1または3に記載の基板処理装置。 The floor plate which demarcates the bottom part of the processing space in the said processing container in the outer side of the said mist guard, and the exhaust port which exhausts the atmosphere in the said processing space to the outer side of the said processing space were provided. 2. The substrate processing apparatus according to 1.
  5.  前記床板は、前記処理容器の側壁まで延び、前記床板の上面は、前記側壁に近づくに従って高さが低くなるように傾斜している、請求項4記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein the floor board extends to a side wall of the processing container, and an upper surface of the floor board is inclined so as to decrease in height as approaching the side wall.
  6.  前記処理液ノズルとして第1処理液ノズルと第2処理液ノズルが設けられ、
     前記基板処理装置は、前記第1処理液ノズルを保持して前記第1処理液ノズルを移動させる第1ノズルアームと、前記第2処理液ノズルを保持して前記第2処理液ノズルを移動させる第2ノズルアームと、前記基板処理装置の動作を制御する制御部と、をさらに備え、
     前記制御部は、前記第2ノズルアームを駆動して前記第2処理液ノズルを前記基板保持部により保持されている基板の外方の位置から前記基板の上方の位置に進出させるとともに前記第1ノズルアームを駆動して前記第1処理液ノズルを前記基板の上方の位置から前記基板の外方の位置に退避させるノズル入替操作を行うときに、前記ミストガードを前記第1ガード高さと前記第2ガード高さの中間の第3ガード高さに位置させる、請求項1記載の基板処理装置。
    As the processing liquid nozzle, a first processing liquid nozzle and a second processing liquid nozzle are provided,
    The substrate processing apparatus holds the first processing liquid nozzle and moves the first processing liquid nozzle, and holds the second processing liquid nozzle and moves the second processing liquid nozzle. A second nozzle arm, and a controller that controls the operation of the substrate processing apparatus,
    The control unit drives the second nozzle arm to advance the second processing liquid nozzle from a position outside the substrate held by the substrate holding unit to a position above the substrate and the first. When performing a nozzle replacement operation for driving the nozzle arm to retract the first processing liquid nozzle from a position above the substrate to a position outside the substrate, the mist guard is moved to the first guard height and the first guard height. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is positioned at a third guard height intermediate between the two guard heights.
  7.  前記第1ノズルアームを、第1アーム高さと、前記第1アーム高さよりも低い第2アーム高さの間で昇降させる第1アーム昇降機構と、
     前記第2ノズルアームを、第3アーム高さと、前記第3アーム高さよりも低い第4アーム高さの間で昇降させる第2アーム昇降機構と、
     を備え、
     前記制御部は、前記ノズル入替操作を行うときに、前記第1アーム昇降機構を制御して前記第1アーム高さに前記第1ノズルアームを位置させ、前記第2アーム昇降機構を制御して前記第3アーム高さに前記第2ノズルアームを位置させる、請求項6記載の基板処理装置。
    A first arm lifting mechanism for lifting and lowering the first nozzle arm between a first arm height and a second arm height lower than the first arm height;
    A second arm lifting mechanism that lifts and lowers the second nozzle arm between a third arm height and a fourth arm height lower than the third arm height;
    With
    When performing the nozzle replacement operation, the control unit controls the first arm lifting mechanism to position the first nozzle arm at the first arm height, and controls the second arm lifting mechanism. The substrate processing apparatus according to claim 6, wherein the second nozzle arm is positioned at the third arm height.
  8.  前記基板保持部に保持された基板を回転させる回転機構をさらに備え、
     前記制御部は、前記ノズル入替操作を行うときに、前記回転機構を制御して、前記ノズル入替操作を行う前に前記第1処理液ノズルが処理液を基板に吐出しているときよりも基板の回転数を低下させる、請求項6記載の基板処理装置。
    A rotation mechanism for rotating the substrate held by the substrate holding unit;
    The control unit controls the rotating mechanism when performing the nozzle replacement operation, and the substrate is more than when the first processing liquid nozzle discharges the processing liquid onto the substrate before performing the nozzle replacement operation. The substrate processing apparatus according to claim 6, wherein the number of rotations is reduced.
  9.  前記ミストガードの外側から前記基板保持部に保持された基板に処理液を供給する固定ノズルをさらに備え、前記ミストガードが前記第1ガード高さにあるときに前記固定ノズルから吐出された処理液が前記ミストガードを通過して基板に到達することを許容する通液開口が前記ミストガードに形成されている、請求項1記載の基板処理装置。 A fixing nozzle for supplying a processing liquid to the substrate held by the substrate holder from the outside of the mist guard; and the processing liquid discharged from the fixed nozzle when the mist guard is at the first guard height. The substrate processing apparatus according to claim 1, wherein a liquid passage opening that allows the liquid to pass through the mist guard and reach the substrate is formed in the mist guard.
  10.  前記ミストガードの前記筒部を収容するミストガード収容部と、
     前記ミストガード収容部の内部に流れ込む液またはガスを排出する排出部と、
     をさらに備えた、請求項1記載の基板処理装置。
    A mist guard accommodating portion for accommodating the cylindrical portion of the mist guard;
    A discharge section for discharging liquid or gas flowing into the mist guard housing section;
    The substrate processing apparatus according to claim 1, further comprising:
  11.  前記ミストガードの前記固定カップ体を向いた面を洗浄する洗浄機構をさらに備えた、請求項1記載の基板処理装置。 The substrate processing apparatus according to claim 1, further comprising a cleaning mechanism for cleaning a surface of the mist guard facing the fixed cup body.
  12.  前記固定カップ体は、前記基板保持部により保持された基板の中心部側に向かって延びる傾斜上面を有し、この傾斜上面は、前記基板の中心部に近づくに従って高さが高くなるように傾斜し、前記傾斜上面は、前記第2ガード高さにある前記ミストガードの前記張出部の先端部分と接触し、これにより前記ミストガードの前記固定カップ体の側を向いた面に面する空間が、前記基板保持部により保持された基板の上方の空間から隔離される、請求項1記載の基板処理装置。 The fixed cup body has an inclined upper surface extending toward the center portion side of the substrate held by the substrate holding portion, and the inclined upper surface is inclined so that the height increases as it approaches the center portion of the substrate. The inclined upper surface is in contact with the tip portion of the protruding portion of the mist guard at the second guard height, and thereby faces the surface of the mist guard facing the fixed cup body. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is isolated from a space above the substrate held by the substrate holding unit.
  13.  前記洗浄機構は、前記ミストガードが前記第2ガード高さにあるとき、洗浄液を供給することにより前記ミストガードの洗浄を行う、請求項11記載の基板処理装置。 12. The substrate processing apparatus according to claim 11, wherein the cleaning mechanism cleans the mist guard by supplying a cleaning liquid when the mist guard is at the second guard height.
  14.  前記固定カップ体は、筒状の筒部と、前記筒部の上部から前記筒部の内側に向かって張り出す張出部とを有し、
     前記ミストガードの前記張出部の下面に隙間形成部を形成し、前記隙間形成部は、前記隙間形成部の下面と前記固定カップ体の前記張出部の上面との間に第1隙間を形成し、前記ミストガードの前記隙間形成部がない部分と前記固定カップ体の前記張出部の上面との間に第2隙間が形成され、
     前記洗浄機構は、前記第2隙間に洗浄液を供給する洗浄液ノズルを有する
    請求項13記載の基板処理装置。
    The fixed cup body includes a cylindrical tube portion, and an overhang portion that protrudes from the upper portion of the tube portion toward the inside of the tube portion,
    A gap forming portion is formed on a lower surface of the overhang portion of the mist guard, and the gap forming portion has a first gap between a lower surface of the gap forming portion and an upper surface of the overhang portion of the fixed cup body. Forming a second gap between a portion of the mist guard without the gap forming portion and an upper surface of the protruding portion of the fixed cup body,
    The substrate processing apparatus according to claim 13, wherein the cleaning mechanism includes a cleaning liquid nozzle that supplies a cleaning liquid to the second gap.
  15.  前記隙間形成部は、前記ミストガードの前記張出部の全周にわたって延びており、
     前記隙間形成部の下面には、半径方向に延びる径方向溝と、径方向溝と交差し円周方向に延びる円周溝とが形成され、
     前記洗浄液ノズルは、前記径方向溝と対向する位置において前記固定カップ体に設けられ、前記円周溝は、前記洗浄液ノズルの半径方向内側に設けられている
    請求項14記載の基板処理装置。
    The gap forming portion extends over the entire circumference of the protruding portion of the mist guard,
    A radial groove extending in the radial direction and a circumferential groove extending in the circumferential direction intersecting with the radial groove are formed on the lower surface of the gap forming portion,
    The substrate processing apparatus according to claim 14, wherein the cleaning liquid nozzle is provided in the fixed cup body at a position facing the radial groove, and the circumferential groove is provided radially inward of the cleaning liquid nozzle.
  16.  前記固定カップ体は、前記固定カップ体の径方向外側に、前記固定カップ体に対して不動のカップ形構成要素を有し、前記固定カップ体と前記カップ形構成要素との間の空間が排気される、請求項1記載の基板処理装置。 The fixed cup body has a cup-shaped component that is immovable with respect to the fixed cup body on a radially outer side of the fixed cup body, and a space between the fixed cup body and the cup-shaped component is exhausted. The substrate processing apparatus according to claim 1.
  17.  前記ミストガードが前記第1ガード高さに位置しているとき、前記ミストガードの前記筒部の下端は前記床板の上面より高い位置に位置する、請求項4記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein when the mist guard is positioned at the first guard height, a lower end of the cylindrical portion of the mist guard is positioned higher than an upper surface of the floor board.
  18.  基板を保持する基板保持部と、
     前記基板保持部に保持された基板の上面に処理液を吐出する少なくとも1つの処理液ノズルと、
     前記基板保持部と前記処理液ノズルを収容する処理容器と、
     前記基板保持部の周囲に配置され基板に供給された処理液または処理液のミストを受ける、前記処理容器に対して相対的に不動な固定カップ体と、
     前記固定カップ体を囲むように前記固定カップ体の外側に設けられ、前記固定カップ体の上方を越えて外方に飛散する液を遮断するミストガードと、
     前記ミストガードを昇降させるガード昇降機構と、を備え、
     前記ミストガードが、筒状の筒部と、前記筒部の上端から前記固定カップ体の側に向かって張り出す張出部とを有する、基板処理装置を用い、
     前記ミストガードを第1ガード高さに位置させた状態で、前記処理液ノズルから前記基板保持部により保持されている基板に処理液を供給する工程と、
     前記ミストガードを前記第1ガード高さより低い第2ガード高さに位置させた状態で、前記基板を乾燥させる工程と、
    を備えた基板処理方法。
    A substrate holder for holding the substrate;
    At least one processing liquid nozzle that discharges the processing liquid onto the upper surface of the substrate held by the substrate holder;
    A processing container containing the substrate holding part and the processing liquid nozzle;
    A stationary cup body which is disposed around the substrate holding unit and receives a processing liquid supplied to the substrate or a mist of the processing liquid, which is relatively stationary with respect to the processing container;
    A mist guard that is provided outside the fixed cup body so as to surround the fixed cup body, and that blocks liquid that splashes outward beyond the upper side of the fixed cup body;
    A guard lifting mechanism for lifting and lowering the mist guard,
    Using the substrate processing apparatus, wherein the mist guard includes a cylindrical tube portion and an overhang portion that protrudes from the upper end of the tube portion toward the fixed cup body side,
    Supplying the processing liquid from the processing liquid nozzle to the substrate held by the substrate holding portion in a state where the mist guard is positioned at the first guard height;
    Drying the substrate with the mist guard positioned at a second guard height lower than the first guard height;
    A substrate processing method comprising:
  19.  前記処理液ノズルとして第1処理液ノズルと第2処理液ノズルが設けられ、前記基板処理装置は、前記第1処理液ノズルを保持して前記第1処理液ノズルを移動させる第1ノズルアームと、前記第2処理液ノズルを保持して前記第2処理液ノズルを移動させる第2ノズルアームとをさらに備え、
     前記基板処理方法は、前記基板に処理液を供給する工程として、前記第2処理液ノズルを前記基板の上方から退避させた状態で前記基板の上方に位置する前記第1処理液ノズルから前記基板に処理液を供給する工程と、前記第1処理液ノズルを前記基板の上方から退避させた状態で前記基板の上方に位置する前記第2処理液ノズルから前記基板に処理液を供給する工程と、を含み、
     前記第2処理液ノズルを前記基板保持部により保持されている基板の外方の位置から前記基板の上方の位置に進出させるとともに前記第1処理液ノズルを前記基板の上方の位置から前記基板の外方の位置に退避させるノズル入替操作を行うときに、前記ミストガードを前記第1ガード高さと前記第2ガード高さの中間の第3ガード高さに位置させる、請求項18記載の基板処理方法。
    A first processing liquid nozzle and a second processing liquid nozzle are provided as the processing liquid nozzle, and the substrate processing apparatus includes a first nozzle arm that holds the first processing liquid nozzle and moves the first processing liquid nozzle. A second nozzle arm that holds the second processing liquid nozzle and moves the second processing liquid nozzle;
    In the substrate processing method, as the step of supplying a processing liquid to the substrate, the second processing liquid nozzle is retracted from above the substrate and the substrate is moved from the first processing liquid nozzle positioned above the substrate. Supplying the processing liquid to the substrate, and supplying the processing liquid to the substrate from the second processing liquid nozzle located above the substrate in a state where the first processing liquid nozzle is retracted from above the substrate. Including,
    The second processing liquid nozzle is advanced from an outer position of the substrate held by the substrate holding portion to a position above the substrate, and the first processing liquid nozzle is moved from a position above the substrate to the position of the substrate. 19. The substrate processing according to claim 18, wherein the mist guard is positioned at a third guard height intermediate between the first guard height and the second guard height when performing a nozzle replacement operation for retracting to an outer position. Method.
  20.  コンピュータプログラムが格納された記憶媒体であって、前記コンピュータプログラムが基板処理装置の制御装置をなすコンピュータにより実行されたときに、当該コンピュータが前記基板処理装置の動作を制御して、請求項18記載の基板処理方法を実行させる、記憶媒体。 19. A storage medium storing a computer program, wherein the computer controls the operation of the substrate processing apparatus when the computer program is executed by a computer constituting a control apparatus of the substrate processing apparatus. A storage medium for executing the substrate processing method according to claim 1.
PCT/JP2016/072157 2015-07-29 2016-07-28 Substrate processing device, substrate processing method, and storage medium WO2017018481A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/747,921 US11024518B2 (en) 2015-07-29 2016-07-28 Substrate processing apparatus, substrate processing method and recording medium
KR1020187002473A KR102566736B1 (en) 2015-07-29 2016-07-28 Substrate processing apparatus, substrate processing method, and storage medium
CN201680044518.2A CN107851572B (en) 2015-07-29 2016-07-28 Substrate processing apparatus, substrate processing method, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-149916 2015-07-29
JP2015149916 2015-07-29
JP2016122690A JP6740028B2 (en) 2015-07-29 2016-06-21 Substrate processing apparatus, substrate processing method and storage medium
JP2016-122690 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017018481A1 true WO2017018481A1 (en) 2017-02-02

Family

ID=57884517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072157 WO2017018481A1 (en) 2015-07-29 2016-07-28 Substrate processing device, substrate processing method, and storage medium

Country Status (2)

Country Link
CN (1) CN107851572B (en)
WO (1) WO2017018481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129470A (en) * 2017-02-10 2018-08-16 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
CN111446150A (en) * 2019-01-17 2020-07-24 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161415B2 (en) * 2019-01-21 2022-10-26 株式会社ディスコ processing equipment
CN112768378B (en) * 2020-12-31 2023-02-10 上海至纯洁净系统科技股份有限公司 Staggered wafer surface wet cleaning system and cleaning method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159871A (en) * 2006-12-25 2008-07-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2009059895A (en) * 2007-08-31 2009-03-19 Tokyo Electron Ltd Liquid treatment apparatus, liquid treating method, and storage medium
JP2010232528A (en) * 2009-03-27 2010-10-14 Pre-Tech Co Ltd Single wafer cleaning apparatus
JP2014123704A (en) * 2012-11-26 2014-07-03 Tokyo Electron Ltd Substrate cleaning system, substrate cleaning method and storage medium
JP2015041672A (en) * 2013-08-21 2015-03-02 東京エレクトロン株式会社 Substrate cleaning device, substrate cleaning method, and computer-readable storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488506B2 (en) * 2004-08-30 2010-06-23 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP5151629B2 (en) * 2008-04-03 2013-02-27 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning apparatus, developing method, developing apparatus, and storage medium
JP4983885B2 (en) * 2009-10-16 2012-07-25 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
JP5645796B2 (en) * 2011-11-21 2014-12-24 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
JP5967519B2 (en) * 2012-03-08 2016-08-10 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6057334B2 (en) * 2013-03-15 2017-01-11 株式会社Screenホールディングス Substrate processing equipment
JP6250973B2 (en) * 2013-08-08 2017-12-20 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6069140B2 (en) * 2013-09-10 2017-02-01 東京エレクトロン株式会社 Substrate processing system, substrate processing method, and computer readable storage medium storing substrate processing program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159871A (en) * 2006-12-25 2008-07-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2009059895A (en) * 2007-08-31 2009-03-19 Tokyo Electron Ltd Liquid treatment apparatus, liquid treating method, and storage medium
JP2010232528A (en) * 2009-03-27 2010-10-14 Pre-Tech Co Ltd Single wafer cleaning apparatus
JP2014123704A (en) * 2012-11-26 2014-07-03 Tokyo Electron Ltd Substrate cleaning system, substrate cleaning method and storage medium
JP2015041672A (en) * 2013-08-21 2015-03-02 東京エレクトロン株式会社 Substrate cleaning device, substrate cleaning method, and computer-readable storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129470A (en) * 2017-02-10 2018-08-16 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
WO2018146906A1 (en) * 2017-02-10 2018-08-16 株式会社Screenホールディングス Substrate processing device and substrate processing method
KR20190099309A (en) * 2017-02-10 2019-08-26 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
US11114302B2 (en) 2017-02-10 2021-09-07 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
KR102319209B1 (en) * 2017-02-10 2021-10-28 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
CN111446150A (en) * 2019-01-17 2020-07-24 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus
CN111446150B (en) * 2019-01-17 2024-03-01 东京毅力科创株式会社 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
CN107851572A (en) 2018-03-27
CN107851572B (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP6740028B2 (en) Substrate processing apparatus, substrate processing method and storage medium
US8216390B2 (en) Cleaning and drying-preventing method, and cleaning and drying-preventing apparatus
US9307653B2 (en) Substrate cleaning method, substrate cleaning apparatus and storage medium for cleaning substrate
JP6404189B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR101530959B1 (en) Liquid processing apparatus, liquid processing method, and storage medium
WO2017018481A1 (en) Substrate processing device, substrate processing method, and storage medium
KR20030036087A (en) Substrate cleaning apparatus and substrate cleaning method
JP3958594B2 (en) Substrate processing apparatus and substrate processing method
TW201517118A (en) Liquid processing apparatus
JP6665042B2 (en) Substrate processing apparatus, method for cleaning substrate processing apparatus, and storage medium
KR19980018527A (en) Processing equipment
JP5503435B2 (en) Substrate processing apparatus, substrate processing method, program, and computer storage medium
JP2007103956A (en) Substrate treatment device
TWI665723B (en) Substrate treatment device and substrate treatment method
JP6961362B2 (en) Board processing equipment
JP2015170617A (en) Liquid processing apparatus
KR102357066B1 (en) Apparatus for treating substrate
JP4777322B2 (en) Cleaning processing method and cleaning processing apparatus
JP5012931B2 (en) Liquid processing method and liquid processing apparatus
JP2005340381A (en) Substrate treatment device and substrate treatment method
JP6125449B2 (en) Substrate liquid processing apparatus and substrate liquid processing method
JP7360973B2 (en) Development processing equipment and development processing method
JP3295620B2 (en) Processing equipment
JP2002246292A (en) Method of treating with liquid and equipment therefor
JP2001319915A (en) System and method for liquid treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002473

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15747921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830586

Country of ref document: EP

Kind code of ref document: A1