WO2017017871A1 - Terminal, base station and methods therefor - Google Patents

Terminal, base station and methods therefor Download PDF

Info

Publication number
WO2017017871A1
WO2017017871A1 PCT/JP2016/002375 JP2016002375W WO2017017871A1 WO 2017017871 A1 WO2017017871 A1 WO 2017017871A1 JP 2016002375 W JP2016002375 W JP 2016002375W WO 2017017871 A1 WO2017017871 A1 WO 2017017871A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal
transmitting terminal
receiving terminal
data channel
Prior art date
Application number
PCT/JP2016/002375
Other languages
French (fr)
Japanese (ja)
Inventor
一志 村岡
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017017871A1 publication Critical patent/WO2017017871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates to direct communication between devices (device-to-device (D2D) communication), and particularly relates to allocation of radio resources for D2D communication.
  • D2D device-to-device
  • D2D communication A form in which a wireless terminal communicates directly with another wireless terminal without going through an infrastructure network such as a base station is called device-to-device (D2D) communication.
  • the D2D communication includes at least one of direct communication (Direct Communication) and direct discovery (Direct Discovery).
  • a plurality of wireless terminals that support D2D communication form a D2D communication group autonomously or according to a network instruction, and communicate with other wireless terminals in the D2D communication group.
  • Proximity-based services defined in 3GPP Release 12 is an example of D2D communication (see, for example, Non-Patent Document 1).
  • ProSe Direct Discovery is a wireless terminal that can execute ProSe (ProSe-enabled User Equipment (UE)) and other ProSe-enabled UEs. -UTRA) It is performed by the discovery procedure using only the technology (technology).
  • ProSe direct discovery may be performed by three or more ProSe-enabled UEs.
  • ProSe direct communication enables the establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the ProSe direct discovery procedure.
  • ProSe direct communication allows ProSe-enabled UEs to communicate with other ProSe-enabled UEs without going through a public land mobile communication network (Public Land Mobile Mobile Network (PLMN)) that includes a base station (eNodeB (eNB)). Allows to communicate directly with.
  • PLMN Public Land Mobile Mobile Network
  • eNB base station
  • ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNB), or wireless technology of Wireless Local Area Network (WLAN) (ie IEEE 802.11 (radio technology) may be used.
  • E-UTRA technology wireless technology
  • WLAN Wireless Local Area Network
  • a wireless link between wireless terminals used for direct communication or direct discovery is referred to as a side link (see, for example, Section 14 of Non-Patent Document 2).
  • Sidelink transmission uses the same frame structure as the Long Term Evolution (LTE) frame structure defined for uplink and downlink, and uses a subset of uplink resources in frequency and time domain.
  • the radio terminal (UE) performs side link transmission using single carrier frequency division multiplexing (Single-Carrier-FDMA (Frequency-Division-Multiple Access), SC-FDMA) similar to the uplink.
  • Single-Carrier-FDMA Frequency-Division-Multiple Access
  • radio resources for side link transmission are allocated to UEs by a radio access network (e.g., Evolved Universal Terrestrial Radio Access Network (E-UTRAN)).
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the UE that has been permitted side link communication by ProSe function performs ProSe direct discovery or ProSe direct communication using radio resources allocated by the radio access network node (e.g., eNB (eNB)).
  • eNB eNB
  • sidelink transmission mode 1 For ProSe direct communication, two resource allocation modes, namely scheduled resource resource allocation and scheduled resource resource allocation and automatic resource resource selection are called “sidelink transmission mode 1" and “sidelink transmission mode 2", respectively. (See Section 14 of Non-Patent Document 2).
  • a UE desires side link transmission
  • the UE requests radio resource allocation for side link transmission from the eNB
  • the eNB assigns resources for side link control and data.
  • Assign to the UE Specifically, the UE sends a scheduling request to the eNB to request an uplink (UL) data transmission resource (Uplink Shared Channel (UL-SCH) resource) and assigns it with an UL grant.
  • UL-SCH Uplink Shared Channel
  • UL-SCH Uplink Shared Channel
  • Send Sidelink Buffer Status Report (Sidelink BSR) to the eNB in the received UL data transmission resource.
  • the eNB determines a side link transmission resource to be allocated to the UE based on the Sidelink BSR, and transmits a side link grant (SL grant) to the UE.
  • SL grant side link grant
  • SL grant is defined as Downlink Control Information (DCI) format 5.
  • DCI Downlink Control Information
  • SL grant (DCI format ⁇ ⁇ 5) includes contents such as Resource for PSCCH, Resource block assignment and hopping allocation, and time resource pattern index.
  • Resource for PSCCH indicates a radio resource for a side link control channel (i.e., Physical Sidelink Control Channel (PSCCH)).
  • Resource block assignment and hopping allocation is a set of frequency resources, ie subcarriers (resource blocks), for transmitting sidelink data channels (ie, Physical Sidelink Shared Channel (PSSCH)) for data transmission on the sidelink Used to determine.
  • Time resource pattern index is used to determine a time resource for transmitting PSSCH, that is, a set of subframes.
  • a resource block means LTE and LTE-Advanced time-frequency resources, and a plurality of OFDM (or SC-FDMA) symbols continuous in the time domain and a plurality of consecutive OFDM symbols in the frequency domain.
  • one resource block includes 12 OFDM (or SC-FDMA) symbols continuous in the time domain and 12 subcarriers in the frequency domain. That is, Resource block assignment and hopping allocation and Time resource pattern index specify a resource block for transmitting PSSCH.
  • the UE that is, the side link transmission terminal determines the PSCCH resource and the PSSCH resource according to SL grant.
  • the UE autonomously selects a resource for side link control (PSCCH) and data (PSSCH) from the resource pool set by the eNB.
  • the eNB may assign a resource pool to be used for autonomous resource selection in the System Information Block (SIB) 18 to the UE.
  • SIB System Information Block
  • the eNB may assign a resource pool to be used for autonomous resource selection to the UE of Radio Resource Control (RRC) _CONNECTED by dedicated RRC signaling. This resource pool may also be available when the UE is RRC_IDLE.
  • RRC Radio Resource Control
  • the transmitting UE When performing direct transmission on the side link, the transmitting UE (D2D transmitting UE) (hereinafter referred to as the transmitting terminal) uses the radio resource area (resource pool) for the side link control channel (ie, PSCCH). Then, scheduling assignment information (Scheduling Assignment) is transmitted.
  • the scheduling allocation information is also called Sidelink, Control, Information, (SCI), format, 0.
  • the scheduling assignment information includes contents such as resource, block, assignment, and hopping, allocation, time, resource, pattern, index, and modulation, and coding, Scheme (MCS).
  • the resource block, assignment, and hopping resource allocation and time resource resource pattern index indicated by the scheduling resource assignment (SCI format 0) and the resource resource block assignment, and hopping resource allocation indicated by the SL resource grant (DCI resource format 5) received from the eNB follow time resource pattern index.
  • the transmitting terminal transmits data on PSSCH using radio resources according to the scheduling allocation information.
  • a receiving UE receives scheduling assignment information from the transmitting terminal on the PSCCH, and receives data on the PSSCH according to the scheduling assignment information.
  • transmission terminal is an expression that focuses on the transmission operation of the wireless terminal, and does not mean a wireless terminal dedicated to transmission.
  • the term “receiving terminal” is an expression that focuses on the receiving operation of the wireless terminal, and does not mean a terminal dedicated to reception. That is, the transmitting terminal can also perform a receiving operation, and the receiving terminal can also perform a transmitting operation.
  • a sidelink control period (sidelink control period), a resource pool for PSCCH, and a resource pool for PSSCH will be described. These are necessary for determining radio resources (i.e., subframes and resources blocks) for transmitting PSCCH and radio resources for transmitting PSSCH.
  • the PSCCH is a side link physical channel used for transmission of side link control information (Sidelink Control Information (SCI)) such as scheduling allocation information.
  • SCI Sidelink Control Information
  • PSSCH is a side link physical channel used for user data transmission (direct transmission).
  • the side link control period is a scheduling period for the side link (see FIG. 1).
  • the side link control period is also referred to as PSCCH period.
  • the transmitting terminal transmits scheduling allocation information (i.e., “SCI format” 0) for each side link control period.
  • the side link control period is 40ms, 60ms, 70ms, 80ms, 120ms, 140ms, 160ms, 240ms, 280ms, or 320ms.
  • the side link control period is 40 subframes, 60 subframes, 70 subframes, 80 subframes, 120 subframes, 140 subframes, 160 subframes, 240 subframes, 280 subframes, or 320 subframes. is there.
  • the transmitting terminal notifies the receiving terminal of the allocation of PSSCH resources every side link control period, that is, at a cycle of 40 ⁇ ms or more.
  • PSSCH resource allocation is specified in units of 6, 7 or 8 subframes (6, 7 or 8 or 8 ms) using time-resource-pattern-index. Therefore, during one side link control period, the same PSSCH resource allocation is used in 6, 7 or 8 subframe periods.
  • the transmitting terminal transmits scheduling allocation information (ie, SCI format 0) in two subframes among L PSCCH subframes included in a resource pool (subframe pool) for PSCCH. Send twice. These two transmissions are performed in two different resource blocks among the M PSCCH_RP RB resource blocks included in the resource pool (resource block pool) for PSCCH .
  • scheduling allocation information ie, SCI format 0
  • the resource pool for PSCCH is set by the eNB to the UE by broadcast (SIB 18) or dedicated signaling (RRC signaling).
  • the resource pool for PSCCH consists of L PSCCH subframes and M PSCCH_RP RB frequency domain resource blocks in the side link control period.
  • the resource pool designation method for PSCCH will be described with reference to FIGS.
  • the resource pool for PSCCH consists of a subframe pool and a resource block pool.
  • FIG. 2 shows a subframe pool for PSCCH
  • FIG. 3 shows a resource block pool for PSCCH.
  • the eNB specifies the length of the side link control period (PSCCH period) (P), as well as the subframe bitmap for PSCCH and its length (N ') to identify the subframe pool for PSCCH. Is specified.
  • the length (N ′) of the subframe bitmap is 4, 8, 12, 16, 30, 40 or 42 bits.
  • the N ′ subframe corresponding to the subframe bitmap is the first N ′ subframe in the side link control period.
  • the subframe bitmap indicates that the subframe corresponding to the bit set to “0” is not used for PSCCH transmission, and the subframe corresponding to the bit set to “1” can be used for PSCCH transmission. Show.
  • the number of subframes (L PSCCH ) included in the PSCCH resource pool within one side link control period is equal to the number specified as 1 in the subframe bitmap.
  • the subframes included in the PSCCH resource pool ie, subframe pool
  • the eNB in order to identify the resource block pool for PSCCH, starts (starts) PhysicalPhysResource Block (PRB) index (S1), and ends (end) PRB index ( Specify S2) and the number of PRBs (M).
  • the eNB specifies a subframe pool for PSSCH by SIB 18 or dedicated signaling (RRC signaling).
  • the side link control period (PSCCH period) associated with the PSCCH resource setting is further associated with the PSSCH resource setting.
  • the UE determines a PSSCH resource pool composed of subframe pools as follows. That is, as shown in FIG. 2, within the side link control period (PSCCH period), each subframe having a subframe index equal to or greater than l PSCCH PSCCH-1 + 1 is a subframe for PSSCH. Belongs to frame pool.
  • the eNB specifies a subframe pool and a resource block pool for PSSCH by SIB 18 or dedicated signaling (RRC signaling).
  • the eNB specifies an offset (O 2 ), a subframe bitmap, and its length (N B ) to specify a subframe pool.
  • the offset (O 2 ) indicates an offset from the subframe index j begin of the first subframe in the side link control period (PSCCH period).
  • the total number of subframes having a subframe index equal to or greater than j begin + O 2 in the PSCCH period is N ′.
  • the length (N B ) of the subframe bitmap is 4, 8, 12, 16, 30, 40 or 42 bits.
  • the subframe bitmap indicates that the subframe corresponding to the bit set to “0” is not used for PSSCH transmission, and the subframe corresponding to the bit set to “1” can be used for PSSCH transmission. Show. In normal cases, the length of the subframe bitmap (N B ) is calculated from the total number of subframes (N ′) having a subframe index equal to or greater than j begin + O 2 within the PSCCH period. small.
  • the UE determines the bitmaps b 0 , b 1 , b 2 , ..., b N′-1 according to the following formula:
  • the resource block pool for PSSCH in the case of Autonomous resource selection (sidelink transmission mode 2) is specified in the same way as the resource block pool for PSCCH. That is, the eNB specifies a start (start) Physical Resource ⁇ Block (PRB) index (S1), an end (end) PRB index (S2), and the number of PRBs (PSB) in order to identify a resource block pool for PSSCH. M) is specified in the PSSCH resource settings.
  • the 3GPP Release 8 and later media access control (MAC) layer employs an incremental redundancy HARQ for downlink and uplink transmissions and basically uses a stop-and-wait (SAW) protocol (mode). To do.
  • SAW stop-and-wait
  • HARQ is a scheme in which forward error correction coding such as turbo coding is combined with a primitive ARQ scheme. That is, in HARQ, user data and Cyclic Redundancy Check (CRC) bits are protected by an error correction code (error correcting code (ECC)).
  • ECC error correcting code
  • the addition of an error correction code increases the probability of successful transmission to HARQ by increasing redundancy, but on the other hand, the ratio of user data in the transmission data decreases (that is, the coding rate decreases).
  • ECC error correcting code
  • the retransmitted data includes additional parity bits different from the initial transmission data (including systematic bits and some parity ⁇ bits obtained by turbo coding).
  • the eNB manages the circular buffer (circular buffer (CB)) that stores the code block after performing turbo coding, sub-block interleaving, and bit collection, and the first transmission.
  • CB circular buffer
  • RV redundancy version
  • RV Redundancy version
  • the eNB selects an RV that is different from the initial transmission for incremental redundancy (IR), thereby transmitting additional parity bits that were not included in the initial transmission.
  • the Stop-and-wait (SAW) protocol is the most basic retransmission protocol. That is, in the case of downlink transmission, when the eNB transmits one downlink transport block, the eNB stops new transmission and waits until receiving HARQ feedback (ie, ACK or NACK) from the UE. And when positive feedback (ACK) is received from UE, eNB transmits a new downlink transport block. On the other hand, when negative feedback (NACK) is received from the UE (or when a predetermined period has elapsed without receiving feedback), the eNB retransmits the transport block.
  • HARQ feedback ie, ACK or NACK
  • NACK negative feedback
  • TTI Transmit Time Interval
  • TTI is defined as a time length (length (of time (time (length)) in which one transport block and an error detection bit group added thereto are transmitted.
  • the transport block is a data unit (i.e., “MAC Protocol Protocol Data Unit (PDU)) passed from the Medium Access Control (MAC) layer to the physical layer.
  • PDU Medium Access Control
  • the entire transport block is used and calculated to calculate error detection bits (bits), eg Cyclic Redundancy Check (CRC) parity bits.
  • the error detection bit group is added to the transport block.
  • Channel coding in the physical layer is performed on the transport block to which the error detection bit group is added. Further, in the physical layer processing of the transmitter, interleaving is performed on the encoded bit sequence generated from one transport block.
  • the receiver needs to receive at least one TTI data (that is, data corresponding to a transport block to which an error detection bit group is added). There is.
  • the length of the TTI is generally equal to the duration of the subframe (i.e., 1 msec in LTE).
  • TTI bundling for uplink transmission.
  • the UE replaces the same transport block with four different redundancy versions in four consecutive TTIs (ie subframes). Send with.
  • the eNB transmits an ACK when the transport block can be successfully decoded based on transmissions in four consecutive TTIs.
  • Four consecutive TTIs used for transmission of the same transport block are called TTI bundles.
  • 3GPP Release 12 employs a technique similar to TTI bundling in PSSCH transmission on the side link (see, for example, Section 14.1 of Non-Patent Document 2 and Section 5.14 of Non-Patent Document 3). . Specifically, the transmitting terminal transmits the same transport block in four subframes (four TTIs) included in a subframe set used for PSSCH transmission within a certain side link control period.
  • 3GPP TS 23.303 V12.4.0 (2015-03), “3rd Generation Partnership Project; Technical Specification Group Services Services and System Aspects Proximity-based Services (ProSe); Stage 2 Release (Release 12), March 2015 3GPP TS 36.213 V12.5.0 (2015-03), “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 12), 2015 3GPP TS 36.321 V12.5.0 (2015-03), “3rd Generation Partnership Project; Technical Specification Group RadioAccess Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release) March 2015
  • radio resource allocation (scheduling) for PSSCH transmission on the side link is performed for each side link control period (PSCCH period). That is, in order to perform data transmission (PSSCH transmission) in a subframe pool for PSSCH within a certain side link control period, the transmitting terminal must be in a subframe pool for PSCCH within the side link control period.
  • the PSCCH carrying scheduling allocation information ie, SCI format 0
  • SCI format 0 the transmitting terminal cannot immediately transmit it, and needs to wait for the next side link control period (PSCCH period) to arrive. Transmission delays due to such PSSCH resource allocation constraints may make it difficult to use side link transmissions for applications that demand stringent delay requirements.
  • This transmission delay may be suppressed by allowing the transmitting terminal to reserve PSSCH resources.
  • the transmitting terminal transmits scheduling allocation information (i.e., SCI format 0) indicating a reserved PSSCH resource in a subframe in a PSCCH subframe pool within a certain side link control period. Then, when transmission data is generated within the side link control period, the transmission terminal transmits this in the reserved PSSCH resource within the side link control period. On the other hand, when transmission data does not occur, the transmitting terminal does not transmit PSSCH in the reserved PSSCH resource within the side link control period.
  • scheduling allocation information i.e., SCI format 0
  • the receiving terminal tries to receive PSSCH in the reserved radio resource, and transmits a negative HARQ feedback (NACK) because the transport block cannot be successfully decoded in the reserved radio resource (subframe) for which PSSCH transmission is not performed. May be sent to the terminal.
  • NACK negative HARQ feedback
  • this useless NACK transmission problem may occur when HARQ feedback is performed from the side link receiving terminal to the side link transmitting terminal. Therefore, this useless NACK transmission problem may occur when a PSSCH resource reservation is granted to a transmitting terminal that performs PSSCH transmission using a technique similar to TTI bundling adopted in 3GPP Release 12. In addition, this wasted NACK transmission problem occurs when a technique similar to TTI bundling is not used, ie when a simple SAW HARQ is performed for sidelink shared channel (SL-SCH) transport block transmission. Can also occur.
  • SL-SCH sidelink shared channel
  • One of the objects to be achieved by the embodiments disclosed herein is to contribute to suppressing unnecessary negative feedback transmission from the receiving terminal to the transmitting terminal in D2D transmission (eg, side link transmission).
  • D2D transmission eg, side link transmission.
  • the receiving terminal includes at least one wireless transceiver and at least one processor.
  • the at least one processor is coupled to the at least one radio transceiver, and a physical layer and medium for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period It is configured to operate as an Access Control (MAC) layer.
  • the at least one processor is configured to receive D2D control information transmitted on a physical control channel from the transmitting terminal within a first D2D control period.
  • the D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show.
  • the at least one processor is configured to perform a negative operation on a transport block associated with the physical data channel when transmission of the physical data channel from the transmitting terminal in the reserved radio resource is not detected in the physical layer. It is configured not to transmit feedback from the MAC layer to the transmitting terminal.
  • a method in a receiving terminal for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period (A) receiving D2D control information transmitted on a physical control channel from a transmitting terminal within a first D2D control period, wherein the D2D control information is one or more radios within the first D2D control period Indicating that the resource is designated as a reserved radio resource from which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal; (B) attempting to receive the physical data channel from the transmitting terminal in the reserved radio resource in a physical layer; and (c) if transmission of the physical data channel is not detected in the physical layer, Do not send negative feedback on the transport block associated with the physical data channel from the Medium Access Control (MAC) layer to the sending terminal, including.
  • D2D device-to-device
  • the transmitting terminal includes at least one wireless transceiver and at least one processor.
  • the at least one processor is coupled to the at least one wireless transceiver and is configured to transmit data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period.
  • the at least one processor is configured to transmit D2D control information to the receiving terminal on a physical control channel within a first D2D control period.
  • the D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show.
  • the designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
  • a method in a transmitting terminal that transmits data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period includes a physical control channel within the first D2D control period. Transmitting D2D control information to the receiving terminal.
  • the D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show.
  • the designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
  • a base station includes a wireless transceiver configured to communicate with a plurality of wireless terminals in a cell, and at least one processor.
  • the at least one processor is configured to control data transmission from the transmitting terminal to the receiving terminal not through the base station according to a periodic device-to-device (D2D) control period.
  • the at least one processor is configured to notify the transmission terminal of permission to reserve resources for the data transmission.
  • the permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated.
  • the transmitting terminal is permitted to designate a reserved radio resource that may transmit a physical data channel from the transmitting terminal to the receiving terminal.
  • the designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
  • a method in a base station is configured to control the data transmission from a transmitting terminal to a receiving terminal according to a periodic device-to-device (D2D) control period without controlling the data transmission via the base station.
  • D2D device-to-device
  • the permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated.
  • the transmitting terminal is permitted to designate a reserved radio resource that may transmit a physical data channel from the transmitting terminal to the receiving terminal.
  • the designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the second, fourth, or sixth aspect described above when read by the computer.
  • LTE-Advanced ProSe specified in 3GPP Release 12
  • these embodiments are not limited to LTE-Advanced and its improvements, and may be applied to D2D communication in other mobile communication networks or systems.
  • FIG. 4 shows configuration examples of wireless communication systems according to some embodiments including this embodiment.
  • Each of the wireless terminals (UE) 1A and 1B includes at least one wireless transceiver, performs cellular communication (101 or 102) with the base station (eNB) 2, and also has a direct interface between terminals (eg, PC5 interface or Side link) 103 is configured to perform D2D communication.
  • the D2D communication includes at least direct communication (ProSe Direct Communication) and may further include direct discovery (eg, ProSe Direct Discovery).
  • the eNB 2 manages the cell 21 and can perform cellular communication (101 and 102) with each of the plurality of UEs 1 using cellular communication technology (eg, Evolved Universal Terrestrial Radio Access (E-UTRA) technology).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • FIG. 5 a situation in which a plurality of UEs 1 ⁇ / b> A and 1 ⁇ / b> B are located in the same cell 21 is illustrated for simplification of explanation, but such an arrangement is merely an example.
  • UE1A may be located in one cell of two adjacent cells managed by different eNB2, and UE1B may be located in the other cell.
  • at least one of UE1A and UE1B may be located outside the coverage by one or a plurality of eNBs 2.
  • the transmitting terminal eg, UE1A
  • the receiving terminal eg, UE1B
  • a periodic D2D control period ie, side link control period (PSCCH period)
  • the side link control period includes a subframe pool for PSCCH (first subframe pool) and a subframe pool for PSSCH (second subframe pool).
  • the subframe pool for PSCCH consists of L PSCCH subframes that can be used for transmission of side link control information (SCI) including scheduling allocation information (ie, SCI format 0).
  • the subframe pool for PSSCH is composed of L PSSCH subframes that can be used for data transmission (PSSCH transmission) according to scheduling allocation information (ie, SCI format 0).
  • the transmitting terminal eg, UE1A transmits side link control information (SCI) to the receiving terminal (eg, UE1B) on the physical control channel (ie, PSCCH) within a certain sidelink control period.
  • SCI side link control information
  • the side link control information ie, scheduling assignment information (SCI format 0)
  • SCI format 0 scheduling assignment information
  • the transmitting terminal may or may not transmit PSSCH in the reserved radio resource.
  • the transmitting terminal eg, UE1A
  • receives side link control information SCI format 0
  • side link control information SCI format 0
  • the data may be transmitted to the receiving terminal on the PSSCH in any reserved radio resource.
  • the reserved radio resource is designated as a receiving terminal within a certain side link control period, but no transmission data addressed to the receiving terminal is generated during the side link control period, the transmitting terminal The PSSCH may not be transmitted in any of the reserved radio resources.
  • a technique similar to TTI bundling may be employed for transmission of SL-SCH transport blocks in PSSCH, similar to 3GPP Release 12.
  • the transmitting terminal uses the same transport in four subframes (four TTIs) included in a subframe set used for PSSCH transmission within a certain side link control period.
  • a block may be sent.
  • the transmitting terminal may specify reserved radio resources in units of four TTIs (four subframes).
  • a simple SAW-HARQ may be employed for transmission of SL-SCH transport blocks on PSSCH.
  • the transmitting terminal may specify reserved radio resources in units of one TTI (one subframe).
  • the MAC layer of the receiving terminal (eg, UE1B) transmits PSCCH from the transmitting terminal (eg, UE1A) in all of one or a plurality of reserved radio resources corresponding to transmission of one SL-SCH transport block.
  • a negative HARQ feedback (NACK) related to the SL-SCH transport block is not transmitted to the transmitting terminal.
  • the MAC layer of the receiving terminal does not detect PSSCH transmission from the transmitting terminal in the physical layer in all of one or a plurality of reserved radio resources corresponding to transmission of one SL-SCH transport block. In this case, it is considered that the corresponding SL-SCH transport block has not been transmitted.
  • the designation of the reserved radio resource in the side link control information by the transmitting terminal is the PSSCH transmission from the transmitting terminal to the receiving terminal in all of one or a plurality of reserved radio resources corresponding to the transmission of one SL-SCH transport block.
  • the receiving terminal is controlled not to transmit the negative HARQ feedback (NACK) related to the SL-SCH transport block.
  • NACK negative HARQ feedback
  • the MAC layer of the receiving terminal is the SL-SCH transport received on the PSSCH, although PSSCH transmission from the transmitting terminal (eg, UE1A) is detected in the physical layer of the receiving terminal. If the block is not decoded successfully, negative HARQ feedback (NACK) may be transmitted to the transmitting terminal. On the other hand, when the received SL-SCH transport block is successfully decoded, the MAC layer of the receiving terminal (eg, UE1B) may send a positive HARQ feedback (ACK) to the transmitting terminal. .
  • the transmitting terminal clearly indicates to the receiving terminal that one or more radio resources are designated as reserved radio resources for PSSCH transmission. Therefore, if no PSSCH transmission is detected in the reserved radio resource, the receiving terminal determines that PSSCH transmission by the transmitting terminal has not been performed, and suppresses NACK transmission related to PSSCH transmission in the reserved radio resource. Therefore, according to the present embodiment, resource reservation for PSSCH transmission can not only reduce data transmission delay due to scheduling for each side link control period (PSCCH period), but also wasteful NACK transmission by the receiving terminal. Can be prevented from increasing.
  • PSCCH period side link control period
  • the transmitting terminal may autonomously determine whether to make a resource reservation for PSSCH transmission. For example, in the case of autonomous resource selection (sidelink transmission ⁇ mode 2), the transmitting terminal may autonomously determine a reserved radio resource for PSSCH transmission from the resource pool for PSSCH.
  • autonomous resource selection sidelink transmission ⁇ mode 2
  • the transmitting terminal may autonomously determine a reserved radio resource for PSSCH transmission from the resource pool for PSSCH.
  • the transmission terminal may be instructed from the eNB 2 whether or not resource reservation for PSSCH transmission is permitted.
  • the eNB 2 indicates whether or not resource reservation for PSSCH transmission is permitted in PSCCH resource setting or PSSCH resource setting in SIB18 or RRC signaling. May be notified.
  • Scheduled resource allocation (sidelink transmission mode 1), eNB2 notifies the transmitting terminal whether or not resource reservation for PSSCH transmission is permitted in sidelink scheduling grant (DCI format 5) Good.
  • the transmission terminal may determine whether or not resource reservation is necessary, and may transmit a resource reservation permission request to the eNB 2 together with the Sidelink BSR.
  • the receiving terminal may determine whether PSSCH transmission by the transmitting terminal on the reserved radio resource has been detected in the physical layer based on the received power of the reserved radio resource. Specifically, the receiving terminal may determine that PSSCH transmission by the transmitting terminal has not been detected when the reception power of the reserved radio resource is below a predetermined threshold. Conversely, the receiving terminal may determine that PSSCH transmission by the transmitting terminal has been detected when the reception power of the reserved radio resource exceeds a predetermined threshold.
  • FIG. 5 is a diagram illustrating an example of transmission of PSCCH and PSSCH according to the present embodiment.
  • FIG. 5 also shows an example of transmission of HARQ feedback (ACK / NACK) from the receiving terminal to the transmitting terminal.
  • the transmitting terminal eg, UE1A
  • the side link control information 522 and 523 transmitted in the jth side link control period 501 indicates that the radio resources 531 to 534 in the PSSCH subframe pool 512 in the jth side link control period 501 To be designated as a reserved radio resource.
  • the transmitting terminal (e.g., UE 1A) transmits the PSSCH in the radio resource 533 among the four reserved radio resources 531 to 534, and does not transmit the PSSCH in the radio resources 531 532, and 524.
  • the receiving terminal (e.g., UE 1B) attempts to receive PSSCH from the transmitting terminal in all four reserved radio resources 531 to 534.
  • the receiving terminal detects PSSCH transmission from the transmitting terminal in the radio resource 533, and transmits positive or negative HARQ feedback (ACK / NACK) regarding the decoding result of the SL-SCH resource block transmitted by the PSSCH to the transmitting terminal.
  • the receiving terminal since the PSSCH transmission from the transmitting terminal is not detected in the radio resources 531, 532, and 524, the receiving terminal does not transmit negative HARQ feedback regarding the transport block associated with these PSSCH transmissions.
  • the PSCCH resource in the next (j + 1) th side link control period is used for transmission of HARQ feedback (ACK / NACK) for PSSCH transmission in the jth side link control period.
  • the PSCCH resource in the next (j + 1) th side link control period is used for transmission of HARQ feedback (ACK / NACK) for PSSCH transmission in the jth side link control period.
  • four reserved radio resources 531 to 534 are associated with four HARQ feedback radio resources 541 to 544.
  • the receiving terminal transmits HARQ feedback in the radio resource 543 associated with the radio resource 533 where the PSSCH transmission is actually performed, but the radio resource associated with the radio resources 531, 532, and 534 where the PSSCH transmission is not performed. 541, 542 and 544 do not transmit HARQ feedback. Thereby, it is possible to suppress transmission of useless HARQ feedback related to PSSCH transmission that was not actually performed from the receiving terminal to the transmitting terminal.
  • the arrangement of the side link radio resources 541 to 544 for HARQ feedback shown in FIG. 5 is merely an example.
  • the radio resources 541 to 544 for HARQ feedback may be selected from the PSSCH resource pool 514.
  • a radio resource region (resource pool) for HARQ feedback transmission may be defined within the side link control period independently of the resource pool for PSCCH and PSSCH.
  • the transmitting terminal may include an information element for explicitly designating the side link radio resource for HARQ feedback in the side link control information (SCI format 0) for scheduling assignment.
  • SCI format 0 side link control information
  • this implementation is performed in the same manner as the HARQ feedback transmission scheme in PUCCHPUformat 1a, 1b and 3.
  • Time domain spreading using orthogonal spreading codes may be applied to the HARQ feedback transmission according to the form.
  • the radio resource for HARQ feedback specified by the transmitting terminal may include a spreading code in addition to the subframe and the resource block.
  • the location of the side link radio resource for HARQ feedback transmission may be defined in association with the radio resource location to which side link control information 521 and 522 indicating scheduling assignment is transmitted. .
  • the receiving terminal can derive the radio resource position where HARQ feedback transmission should be performed from the radio resource position from the radio resource position where the side link control information 521 and 522 are transmitted.
  • Subframes and resource blocks may be used for HARQ feedback transmission.
  • the location of the side link radio resource for HARQ feedback transmission may be defined in association with the location of the radio resource used for PSSCH transmission. Accordingly, the receiving terminal can derive the radio resource position where HARQ feedback transmission should be performed from the radio resource position from the position of the radio resource used for PSSCH transmission. For example, HARQ feedback may be transmitted in radio resources (subframes or subframes and resource blocks) after a predetermined subframe from radio resources 533 used for PSSCH transmission.
  • FIG. 6 is a flowchart showing an example of operation (process 600) of the transmission terminal (e.g., UE1A) according to this embodiment.
  • the transmitting terminal transmits side link control information (SCI) indicating one or a plurality of reserved PSSCH resources to the receiving terminal (e.g., UE1B) in the jth side link control period (PSCCH period).
  • SCI side link control information
  • the transmitting terminal sets a PSSCH carrying 1 SL-SCH transport block including the transmission data to 1 Or, it is transmitted in any or all of a plurality of reserved PSSCH resources.
  • FIG. 7 is a flowchart showing an example (processing 700) of the operation of the receiving terminal (e.g., UE1B) according to the present embodiment.
  • the receiving terminal receives side link control information (SCI) indicating one or a plurality of reserved PSSCH resources from the transmitting terminal (e.g., UE1A) in the jth side link control period (PSCCH period).
  • SCI side link control information
  • the receiving terminal attempts to receive PSSCH in each reserved PSSCH resource within the jth side link control period (PSCCH period).
  • the receiving terminal When the PSSCH is received from the transmitting terminal using at least one of one or a plurality of reserved PSSCH resources corresponding to transmission of one SL-SCH transport block (YES in block 703), the receiving terminal transmits the MAC layer of the receiving terminal. Sends positive or negative HARQ feedback to the sending terminal depending on whether the transport block is successfully decoded.
  • the receiving terminal No (negative) HARQ feedback is sent for these one or more reserved radio resources. In other words, in this case, the receiving terminal considers that these one or more reserved radio resources are not used for PSSCH transmission.
  • the transmitting terminal may autonomously determine whether or not to perform resource reservation for PSSCH transmission.
  • the transmitting terminal may be configured to determine whether to make a resource reservation for PSSCH transmission according to a delay requirement required by the application program.
  • the transmission terminal may perform resource reservation for PSSCH transmission when an application that requests strict delay requirements (low delay) is activated or executed in the transmission terminal.
  • wasteful HARQ feedback related to PSSCH transmission that was not actually performed is transmitted from the receiving terminal to the transmitting terminal while ensuring a state where transmission from the transmitting terminal to the receiving terminal can be performed as soon as transmission data of the application is generated. This can be suppressed.
  • FIG. 8 is a flowchart showing an example (process 800) of the operation of the transmission terminal according to the present embodiment.
  • the transmitting terminal determines whether to make a resource reservation according to the delay requirement required by the application program.
  • the transmission terminal transmits side link control information (SCI) indicating one or a plurality of reserved PSSCH resources to the reception terminal in each side link control period.
  • SCI side link control information
  • the transmitting terminal may be configured to determine whether or not to designate a reserved radio resource according to an instruction from the eNB 2. For example, even if the number of side link transmissions (or the number of side link transmission terminals) performed in the cell 21 of the eNB2 exceeds a predetermined value, the transmission terminal specifies the reserved radio resource according to the instruction from the eNB2. Good. In other words, when the number of side link transmissions performed in the cell 21 exceeds a predetermined value, the eNB 2 may transmit a notification indicating that resource reservation for PSSCH transmission is permitted to the transmission terminal.
  • the number of NACK transmissions may increase according to the number of side link transmissions, and when multiple transmission terminals may perform NACK transmission with the same resource, The possibility of collision between NACKs increases.
  • the eNB 2 causes the transmission terminal to perform resource reservation, thereby suppressing unnecessary NACK transmission and reducing collisions between NACKs.
  • the eNB 2 may include the resource reservation permission notification in the PSCCH resource setting or the PSSCH resource setting in the SIB18 or RRC signaling, and the resource reservation permission notification may be included in the side link scheduling grant (DCI). It may be included in format IV5).
  • FIG. 9 is a flowchart showing an example of operation of the eNB 2 (processing 900) according to the present embodiment.
  • the eNB 2 detects that the number of side link transmissions (D2D transmissions) performed in the cell 21 exceeds a predetermined value.
  • the eNB2 notifies the transmitting terminal that the use of resource reservation for PSSCH transmission is permitted.
  • a modification of the side link transmission described in the first embodiment will be described. Specifically, a procedure for dynamically determining the number of HARQ feedback radio resources associated with a plurality of reserved radio resources for PSSCH transmission will be described.
  • a configuration example of the wireless communication system according to the present embodiment is the same as that shown in FIG.
  • the transmitting terminal (eg, UE1A) according to the present embodiment transmits positive or negative HARQ feedback related to the decoding result of the SL-SCH transport block transmitted in the reserved radio resource from the receiving terminal (eg, UE1B) to the transmitting terminal. Therefore, the number of radio resources reserved for this purpose is configured to be adjusted according to the frequency of occurrence of transmission data in the transmission terminal. More specifically, the transmitting terminal may ensure the number of HARQ feedback transmission resources that is equal to or close to the number of reserved radio resources as the transmission data generation frequency increases. On the other hand, the transmission terminal needs to secure a smaller number of HARQ feedback transmission resources compared to the number of reserved radio resources as the transmission data generation frequency decreases.
  • four reserved radio resources 531 to 534 are designated in the j-th side link control period 501 and four HARQ feedback radio resources 541 to 544 corresponding to these four reserved radio resources 531 to 534 are designated. Is secured. However, for example, when an application with strict delay requirements but not high data generation frequency is executed at the transmitting terminal, it is necessary to specify a large number of reserved radio resources. Of these reserved radio resources, the actual PSSCH There may be only one or several resources used for transmission. In such a case, assuming that PSSCH transmission is performed with all reserved radio resources, securing radio resources for HQRQ feedback may lead to waste of radio resources.
  • the transmitting terminal is set at a constant interval (for example, 2 msec).
  • a constant interval for example, 2 msec.
  • a large number of reserved radio resources are specified, but only one or two radio resources may be secured as radio resources for HARQ feedback associated with these reserved radio resources. According to such an operation, waste of radio resources can be suppressed while dynamically securing a necessary number of radio resources for HARQ feedback.
  • multiple HARQ Fordback radio resources according to the transmission order of SL-SCH transport blocks The order of use may be determined. That is, the receiving terminal transmits a plurality of HARQ feedbacks related to the received plurality of SL-SCH transport blocks in a plurality of HARQ radio resources determined based on the transmission order (reception order) of the plurality of SL-SCH transport blocks. do it.
  • FIG. 10 is a block diagram illustrating a configuration example of UE1.
  • UE1 as the transmission terminal and UE1 as the reception terminal described above may have the configuration shown in FIG.
  • the Radio-Frequency (RF) transceiver 1001 performs analog RF signal processing in order to communicate with the eNB 2.
  • Analog RF signal processing performed by the RF transceiver 1001 includes frequency up-conversion, frequency down-conversion, and amplification.
  • RF transceiver 1001 is coupled to antenna 1002 and baseband processor 1003.
  • the RF transceiver 1001 receives modulation symbol data (or OFDM symbol data) from the baseband processor 1003, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1002. Further, the RF transceiver 1001 generates a baseband received signal based on the received RF signal received by the antenna 1002 and supplies this to the baseband processor 1003.
  • the baseband processor 1003 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) ⁇ transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding.
  • E modulation (symbol mapping) / demodulation
  • IFFT Inverse Fast Fourier Transform
  • control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
  • the digital baseband signal processing by the baseband processor 1003 includes signal processing of Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can.
  • the control plane processing by the baseband processor 1003 may include Non-Access ⁇ Stratum (NAS) protocol, RRC protocol, and MAC CE processing.
  • NAS Non-Access ⁇ Stratum
  • the baseband processor 1003 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)).
  • DSP Digital Signal Processor
  • protocol stack processor eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)
  • CPU Central Processing Unit
  • MPU Micro Processing Unit.
  • a protocol stack processor that performs control plane processing may be shared with an application processor 1004 described later.
  • Application processor 1004 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1004 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1004 is a system software program (Operating System (OS)) read from the memory 1006 or a memory (not shown) and various application programs (for example, call application, web browser, mailer, camera operation application, music playback)
  • OS Operating System
  • application programs for example, call application, web browser, mailer, camera operation application, music playback
  • Various functions of UE1 are realized by executing (application).
  • the baseband processor 1003 and the application processor 1004 may be integrated on a single chip, as indicated by the dashed line (1005) in FIG.
  • the baseband processor 1003 and the application processor 1004 may be implemented as one System on Chip (SoC) device 1005.
  • SoC System on Chip
  • An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
  • the memory 1006 is a volatile memory, a nonvolatile memory, or a combination thereof.
  • the memory 1006 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • the memory 1006 may include an external memory device accessible from the baseband processor 1003, the application processor 1004, and the SoC 1005.
  • the memory 1006 may include a built-in memory device integrated within the baseband processor 1003, the application processor 1004, or the SoC 1005. Further, the memory 1006 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1006 may store a software module (computer program) including an instruction group and data for performing processing by the UE 1 described in the above-described plurality of embodiments.
  • the baseband processor 1003 or the application processor 1004 may be configured to perform the processing of the UE 1 described in the above-described embodiment by reading the software module from the memory 1006 and executing the software module.
  • FIG. 11 is a block diagram illustrating a configuration example of the base station (eNB) 2 according to the above-described embodiment.
  • the base station 2 includes an RF transceiver 1101, a network interface 1103, a processor 1104, and a memory 1105.
  • the RF transceiver 1101 performs analog RF signal processing to communicate with the wireless terminal 1.
  • the RF transceiver 1101 may include multiple transceivers.
  • RF transceiver 1101 is coupled to antenna 1102 and processor 1104.
  • the RF transceiver 1101 receives modulation symbol data (or OFDM symbol data) from the processor 1104, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1102. Further, the RF transceiver 1101 generates a baseband received signal based on the received RF signal received by the antenna 1102 and supplies this to the processor 1104.
  • the network interface 1103 is used to communicate with network nodes (e.g., Mobility Management Entity (MME) and Serving Gateway (S-GW)).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the network interface 1103 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1104 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • the digital baseband signal processing by the processor 1104 may include signal processing of a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the control plane processing by the processor 1104 may include S1 protocol, RRC protocol, and MAC-CE processing.
  • the processor 1104 may include a plurality of processors.
  • the processor 1104 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • DSP digital baseband signal processing
  • protocol stack processor e.g., CPU or MPU
  • the memory 1105 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof.
  • Memory 1105 may include storage located remotely from processor 1104. In this case, the processor 1104 may access the memory 1105 via the network interface 1103 or an I / O interface not shown.
  • the memory 1105 may store a software module (computer program) including an instruction group and data for performing processing by the base station 2 described in the above embodiments.
  • the processor 1104 may be configured to perform the processing of the base station 2 described in the above-described embodiment by reading the software module from the memory 1105 and executing the software module.
  • each of the processors included in the UE 1 and the eNB 2 includes an instruction group for causing a computer to execute the algorithm described with reference to the drawings. Run multiple programs.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the embodiment described above is not limited to LTE-Advanced IV and its improvements, but may be applied to D2D communication in other mobile communication networks or systems.
  • UE 2 eNB 1001 radio frequency (RF) transceiver 1003 baseband processor 1004 application processor 1006 memory 1101 RF transceiver 1104 processor 1105 memory
  • RF radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A reception terminal (1B) receives D2D control information (522, 523) transmitted from a transmission terminal (1A) over a physical control channel (511) during a D2D control period (501). The D2D control information (522, 523) indicates that one or more radio resources during the D2D control period (501) are designated as scheduled radio resources (533-534) via which a physical data channel is possibly to be transmitted. If the transmission of the physical data channel from the transmission terminal (1A) via these scheduled radio resources (533-534) is not detected in the physical layer of the reception terminal (1B), the MAC layer of the reception terminal (1B) transmits no negative feedback to the transmission terminal (1A). This can contribute, for example, to suppression of transmission of unnecessary negative feedbacks from the reception terminal to the transmission terminal in D2D transmissions.

Description

端末及び基地局並びにこれらの方法Terminal, base station and methods thereof
 本開示は、端末間直接通信(device-to-device(D2D)通信)に関し、特にD2D通信のための無線リソースの割り当てに関する。 This disclosure relates to direct communication between devices (device-to-device (D2D) communication), and particularly relates to allocation of radio resources for D2D communication.
 無線端末が基地局等のインフラストラクチャ・ネットワークを介さずに他の無線端末と直接的に通信する形態は、device-to-device(D2D)通信と呼ばれる。D2D通信は、直接通信(Direct Communication)および直接ディスカバリ(Direct Discovery)の少なくとも一方を含む。いくつかの実装において、D2D通信をサポートする複数の無線端末は、自律的に又はネットワークの指示に従ってD2D通信グループを形成し、当該D2D通信グループ内の他の無線端末と通信を行う。 A form in which a wireless terminal communicates directly with another wireless terminal without going through an infrastructure network such as a base station is called device-to-device (D2D) communication. The D2D communication includes at least one of direct communication (Direct Communication) and direct discovery (Direct Discovery). In some implementations, a plurality of wireless terminals that support D2D communication form a D2D communication group autonomously or according to a network instruction, and communicate with other wireless terminals in the D2D communication group.
 3GPP Release 12に規定されたProximity-based services(ProSe)は、D2D通信の一例である(例えば、非特許文献1を参照)。ProSe直接ディスカバリは、ProSeを実行可能な無線端末(ProSe-enabled User Equipment(UE))が他のProSe-enabled UEを、これら2つのUEが有する無線通信技術(例えば、Evolved Universal Terrestrial Radio Access (E-UTRA) technology)の能力だけを用いてディスカバリする手順により行われる。ProSe直接ディスカバリは、3つ以上のProSe-enabled UEsにより行われてもよい。 Proximity-based services (ProSe) defined in 3GPP Release 12 is an example of D2D communication (see, for example, Non-Patent Document 1). ProSe Direct Discovery is a wireless terminal that can execute ProSe (ProSe-enabled User Equipment (UE)) and other ProSe-enabled UEs. -UTRA) It is performed by the discovery procedure using only the technology (technology). ProSe direct discovery may be performed by three or more ProSe-enabled UEs.
 ProSe直接通信は、ProSe直接ディスカバリの手順の後に、直接通信レンジ内に存在する2以上のProSe-enabled UEsの間の通信パスの確立を可能にする。言い換えると、ProSe直接通信は、ProSe-enabled UEが、基地局(eNodeB(eNB))を含む公衆地上移動通信ネットワーク(Public Land Mobile Network (PLMN))を経由せずに、他のProSe-enabled UEと直接的に通信することを可能にする。ProSe直接通信は、基地局(eNB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、Wireless Local Area Network (WLAN)の無線技術(つまり、IEEE 802.11 radio technology)を用いて行われてもよい。 ProSe direct communication enables the establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the ProSe direct discovery procedure. In other words, ProSe direct communication allows ProSe-enabled UEs to communicate with other ProSe-enabled UEs without going through a public land mobile communication network (Public Land Mobile Mobile Network (PLMN)) that includes a base station (eNodeB (eNB)). Allows to communicate directly with. ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNB), or wireless technology of Wireless Local Area Network (WLAN) (ie IEEE 802.11 (radio technology) may be used.
 3GPP Release 12では、直接通信または直接ディスカバリに用いられる無線端末間の無線リンクは、サイドリンク(Sidelink)と呼ばれる(例えば、非特許文献2のセクション14を参照)。サイドリンク送信は、アップリンク及びダウンリンクのために定義されたLong Term Evolution(LTE)フレーム構造と同じフレーム構造を使用し、周波数および時間ドメインにおいてアップリンク・リソースのサブセットを使用する。無線端末(UE)は、アップリンクと同様のシングルキャリア周波数分割多重(Single Carrier FDMA(Frequency Division Multiple Access)、SC-FDMA)を使用してサイドリンク送信を行う。 In 3GPP Release 12, a wireless link between wireless terminals used for direct communication or direct discovery is referred to as a side link (see, for example, Section 14 of Non-Patent Document 2). Sidelink transmission uses the same frame structure as the Long Term Evolution (LTE) frame structure defined for uplink and downlink, and uses a subset of uplink resources in frequency and time domain. The radio terminal (UE) performs side link transmission using single carrier frequency division multiplexing (Single-Carrier-FDMA (Frequency-Division-Multiple Access), SC-FDMA) similar to the uplink.
 3GPP Release 12 ProSeでは、サイドリンク送信のための無線リソースのUEへの割り当ては、無線アクセスネットワーク(e.g., Evolved Universal Terrestrial Radio Access Network(E-UTRAN))によって行われる。ProSe functionによってサイドリンク通信を許可されたUEは、無線アクセスネットワークノード(e.g., eNB(eNB))によって割り当てられた無線リソースを使用してProSe直接ディスカバリ又はProSe直接通信を行う。 In 3GPP Release 12 ProSe, radio resources for side link transmission are allocated to UEs by a radio access network (e.g., Evolved Universal Terrestrial Radio Access Network (E-UTRAN)). The UE that has been permitted side link communication by ProSe function performs ProSe direct discovery or ProSe direct communication using radio resources allocated by the radio access network node (e.g., eNB (eNB)).
 ProSe直接通信に関しては、2つのリソース割り当てモード、つまりscheduled resource allocation 及び autonomous resource selectionが規定されているscheduled resource allocation 及び autonomous resource selection は、それぞれ“sidelink transmission mode 1”及び“sidelink transmission mode 2”と呼ばれる(非特許文献2のセクション14を参照)。 For ProSe direct communication, two resource allocation modes, namely scheduled resource resource allocation and scheduled resource resource allocation and automatic resource resource selection are called "sidelink transmission mode 1" and "sidelink transmission mode 2", respectively. (See Section 14 of Non-Patent Document 2).
 ProSe直接通信のscheduled resource allocationでは、UEがサイドリンク送信を希望する場合、当該UEがサイドリンク送信のための無線リソース割り当てをeNBに要求し、eNBがサイドリンク・コントロール及びデータのためのリソースを当該UEに割り当てる。具体的には、UEは、アップリンク(UL)データ送信リソース(Uplink Shared Channel(UL-SCH)リソース)を要求するためにスケジューリング・リクエストをeNB に送信し、アップリンクグラント(UL grant)で割り当てられたULデータ送信リソースにおいてSidelink Buffer Status Report(Sidelink BSR)をeNBに送信する。eNBは、Sidelink BSRに基づいてUEに割り当てるサイドリンク送信リソースを決定し、サイドリンク・グラント(SL grant)をUEに送信する。 In scheduled resource allocation of ProSe direct communication, when a UE desires side link transmission, the UE requests radio resource allocation for side link transmission from the eNB, and the eNB assigns resources for side link control and data. Assign to the UE. Specifically, the UE sends a scheduling request to the eNB to request an uplink (UL) data transmission resource (Uplink Shared Channel (UL-SCH) resource) and assigns it with an UL grant. Send Sidelink Buffer Status Report (Sidelink BSR) to the eNB in the received UL data transmission resource. The eNB determines a side link transmission resource to be allocated to the UE based on the Sidelink BSR, and transmits a side link grant (SL grant) to the UE.
 SL grantは、Downlink Control Information(DCI) format 5として定義されている。SL grant(DCI format 5)は、Resource for PSCCH、Resource block assignment and hopping allocation、及びtime resource pattern indexなどのコンテンツを含む。Resource for PSCCHは、サイドリンク制御チャネル(i.e., Physical Sidelink Control Channel(PSCCH))用の無線リソースを示す。Resource block assignment and hopping allocationは、サイドリンクでのデータ送信用のサイドリンク・データチャネル(i.e., Physical Sidelink Shared Channel(PSSCH))を送信するための周波数リソース、つまりサブキャリア(リソースブロック)のセット、を決定するために使用される。Time resource pattern indexは、PSSCHを送信するための時間リソース、つまりサブフレームのセット、を決定するために使用される。なお、厳密に述べると、リソースブロックは、LTE及びLTE-Advancedの時間-周波数リソースを意味し、時間ドメインにおいて連続する複数個のOFDM(又はSC-FDMA)シンボルと周波数ドメインにおいて連続する複数個のサブキャリアによって規定されるリソース単位である。Normal cyclic prefixの場合、1リソースブロックは、時間ドメインにおいて連続する12OFDM(又はSC-FDMA)シンボルを含み、周波数ドメインにおいて12サブキャリアを含む。すなわち、Resource block assignment and hopping allocationおよびTime resource pattern indexは、PSSCHを送信するためのリソースブロックを指定する。UE(つまり、サイドリンク送信端末)は、SL grantに従ってPSCCHリソースおよびPSSCHリソースを決める。 SL grant is defined as Downlink Control Information (DCI) format 5. SL grant (DCI format 含 む 5) includes contents such as Resource for PSCCH, Resource block assignment and hopping allocation, and time resource pattern index. Resource for PSCCH indicates a radio resource for a side link control channel (i.e., Physical Sidelink Control Channel (PSCCH)). Resource block assignment and hopping allocation is a set of frequency resources, ie subcarriers (resource blocks), for transmitting sidelink data channels (ie, Physical Sidelink Shared Channel (PSSCH)) for data transmission on the sidelink Used to determine. Time resource pattern index is used to determine a time resource for transmitting PSSCH, that is, a set of subframes. Strictly speaking, a resource block means LTE and LTE-Advanced time-frequency resources, and a plurality of OFDM (or SC-FDMA) symbols continuous in the time domain and a plurality of consecutive OFDM symbols in the frequency domain. A resource unit defined by subcarriers. In the case of Normal cyclic prefix, one resource block includes 12 OFDM (or SC-FDMA) symbols continuous in the time domain and 12 subcarriers in the frequency domain. That is, Resource block assignment and hopping allocation and Time resource pattern index specify a resource block for transmitting PSSCH. The UE (that is, the side link transmission terminal) determines the PSCCH resource and the PSSCH resource according to SL grant.
 一方、ProSe直接通信のautonomous resource selectionでは、UEは、eNBによって設定されたリソースプールの中から、サイドリンク・コントロール(PSCCH)及びデータ(PSSCH)のためのリソースを自律的に選択する。eNBは、System Information Block(SIB)18において、autonomous resource selectionに使用するためのリソースプールをUEに割り当ててもよい。なお、eNBは、Radio Resource Control (RRC)_CONNECTEDのUEに対して、個別(dedicated)RRCシグナリングで、autonomous resource selectionに使用するためのリソースプールを割り当ててもよい。このリソースプールは、UEがRRC_IDLEであるときにも利用可能であってもよい。 On the other hand, in autonomous resource selection of ProSe direct communication, the UE autonomously selects a resource for side link control (PSCCH) and data (PSSCH) from the resource pool set by the eNB. The eNB may assign a resource pool to be used for autonomous resource selection in the System Information Block (SIB) 18 to the UE. Note that the eNB may assign a resource pool to be used for autonomous resource selection to the UE of Radio Resource Control (RRC) _CONNECTED by dedicated RRC signaling. This resource pool may also be available when the UE is RRC_IDLE.
 サイドリンクでの直接送信を行う場合、送信側のUE(D2D transmitting UE)(以下、送信端末とする)は、サイドリンク制御チャネル(i.e., PSCCH)用の無線リソース領域(resource pool)を使って、スケジューリング割当情報(Scheduling Assignment)の送信を行う。スケジューリング割当情報は、Sidelink Control Information (SCI) format 0とも呼ばれる。スケジューリング割当情報は、resource block assignment and hopping allocation、time resource pattern index、及び Modulation and Coding Scheme(MCS)などのコンテンツを含む。上述したscheduled resource allocation の場合、Scheduling Assignment(SCI format 0)が示す Resource block assignment and hopping allocation及びtime resource pattern indexは、eNBから受信したSL grant(DCI format 5)が示すResource block assignment and hopping allocation及びtime resource pattern indexに従う。 When performing direct transmission on the side link, the transmitting UE (D2D transmitting UE) (hereinafter referred to as the transmitting terminal) uses the radio resource area (resource pool) for the side link control channel (ie, PSCCH). Then, scheduling assignment information (Scheduling Assignment) is transmitted. The scheduling allocation information is also called Sidelink, Control, Information, (SCI), format, 0. The scheduling assignment information includes contents such as resource, block, assignment, and hopping, allocation, time, resource, pattern, index, and modulation, and coding, Scheme (MCS). In the case of the scheduled resource allocation described above, the resource block, assignment, and hopping resource allocation and time resource resource pattern index indicated by the scheduling resource assignment (SCI format 0) and the resource resource block assignment, and hopping resource allocation indicated by the SL resource grant (DCI resource format 5) received from the eNB Follow time resource pattern index.
 送信端末は、スケジューリング割当情報に従った無線リソースを使って、PSSCHにおいてデータを送信する。受信側のUE(D2D receiving UE)(以下、受信端末とする)は、送信端末からのスケジューリング割当情報をPSCCHにおいて受信し、そのスケジューリング割当情報に従ってPSSCHにおいてデータを受信する。なお、ここで送信端末との用語は、無線端末の送信動作に着目した表現であって、送信専用の無線端末を意味するものではない。同様に、受信端末との用語は、無線端末の受信動作に着目した表現であり、受信専用の端末を意味するものではない。すなわち、送信端末は受信動作を行うことも可能であり、受信端末は送信動作を行うことも可能である。 The transmitting terminal transmits data on PSSCH using radio resources according to the scheduling allocation information. A receiving UE (D2D receiving UE) (hereinafter referred to as a receiving terminal) receives scheduling assignment information from the transmitting terminal on the PSCCH, and receives data on the PSSCH according to the scheduling assignment information. Here, the term “transmission terminal” is an expression that focuses on the transmission operation of the wireless terminal, and does not mean a wireless terminal dedicated to transmission. Similarly, the term “receiving terminal” is an expression that focuses on the receiving operation of the wireless terminal, and does not mean a terminal dedicated to reception. That is, the transmitting terminal can also perform a receiving operation, and the receiving terminal can also perform a transmitting operation.
 以下では、サイドリンク制御期間(sidelink control period)、PSCCHのためのリソースプール、及びPSSCHのためのリソースプールについて説明する。これらは、PSCCHを送信するための無線リソース(i.e., subframes及びresource blocks)及びPSSCHを送信するための無線リソースを決定するために必要である。既に説明したように、PSCCHは、スケジューリング割当情報などのサイドリンク制御情報(Sidelink Control Information (SCI))の送信に使用されるサイドリンクの物理チャネルである。一方、PSSCHは、ユーザデータ送信(ダイレクト送信)のために使用されるサイドリンクの物理チャネルである。 In the following, a sidelink control period (sidelink control period), a resource pool for PSCCH, and a resource pool for PSSCH will be described. These are necessary for determining radio resources (i.e., subframes and resources blocks) for transmitting PSCCH and radio resources for transmitting PSSCH. As already described, the PSCCH is a side link physical channel used for transmission of side link control information (Sidelink Control Information (SCI)) such as scheduling allocation information. On the other hand, PSSCH is a side link physical channel used for user data transmission (direct transmission).
 サイドリンク制御期間(sidelink control period)は、サイドリンクのためのスケジューリング周期である(図1を参照)。サイドリンク制御期間は、PSCCH periodとも呼ばれる。送信端末は、サイドリンク制御期間毎にスケジューリング割当情報(i.e., SCI format 0)を送信する。3GPP Release 12では、サイドリンク制御期間は、40ms, 60ms, 70ms, 80ms, 120ms, 140ms, 160ms, 240ms, 280ms, 又は320msである。言い換えると、サイドリンク制御期間は、40サブフレーム, 60サブフレーム, 70サブフレーム, 80サブフレーム, 120サブフレーム, 140サブフレーム, 160サブフレーム, 240サブフレーム, 280サブフレーム, 又は320サブフレームである。 The side link control period is a scheduling period for the side link (see FIG. 1). The side link control period is also referred to as PSCCH period. The transmitting terminal transmits scheduling allocation information (i.e., “SCI format” 0) for each side link control period. In 3GPP Release 12, the side link control period is 40ms, 60ms, 70ms, 80ms, 120ms, 140ms, 160ms, 240ms, 280ms, or 320ms. In other words, the side link control period is 40 subframes, 60 subframes, 70 subframes, 80 subframes, 120 subframes, 140 subframes, 160 subframes, 240 subframes, 280 subframes, or 320 subframes. is there.
 したがって、送信端末は、サイドリンク制御期間毎に、つまり40 ms又はそれ以上の周期で、PSSCHリソースの割り当てを受信端末に通知する。ただし、PSSCHリソースの割り当てはtime resource pattern indexを用いて6、7又は8サブフレーム(6, 7, or 8 ms)単位で指定される。したがって、1つのサイドリンク制御期間の間は、6、7又は8サブフレーム周期で同じPSSCHリソースの割り当てが使用される。 Therefore, the transmitting terminal notifies the receiving terminal of the allocation of PSSCH resources every side link control period, that is, at a cycle of 40 μms or more. However, PSSCH resource allocation is specified in units of 6, 7 or 8 subframes (6, 7 or 8 or 8 ms) using time-resource-pattern-index. Therefore, during one side link control period, the same PSSCH resource allocation is used in 6, 7 or 8 subframe periods.
 1つのサイドリンク制御期間において、送信端末は、PSCCHのためのリソースプール(サブフレームプール)に含まれるLPSCCH個のサブフレームのうち2つのサブフレームにおいてスケジューリング割当情報(i.e., SCI format 0)を2回送信する。これら2回の送信は、PSCCHのためのリソースプール(リソースブロックプール)に含まれるMPSCCH_RP RB個のリソースブロックのうち異なる2つのリソースブロックにおいて行われる。 In one side link control period, the transmitting terminal transmits scheduling allocation information (ie, SCI format 0) in two subframes among L PSCCH subframes included in a resource pool (subframe pool) for PSCCH. Send twice. These two transmissions are performed in two different resource blocks among the M PSCCH_RP RB resource blocks included in the resource pool (resource block pool) for PSCCH .
 PSCCHのためのリソースプールは、ブロードキャスト(SIB 18)又は個別シグナリング(RRCシグナリング)でeNBによってUEに設定される。PSCCHのためのリソースプールは、サイドリンク制御期間内のLPSCCH個のサブフレーム及びMPSCCH_RP RB個の周波数ドメイン・リソースブロックから成る。 The resource pool for PSCCH is set by the eNB to the UE by broadcast (SIB 18) or dedicated signaling (RRC signaling). The resource pool for PSCCH consists of L PSCCH subframes and M PSCCH_RP RB frequency domain resource blocks in the side link control period.
 PSCCHのためのリソースプールの指定方法について図2及び図3を用いて説明する。PSCCHのためのリソースプールは、サブフレーム・プールとリソースブロック・プールから成る。図2は、PSCCHのためのサブフレーム・プールを示しており、図3は、PSCCHのためのリソースブロック・プールを示している。 The resource pool designation method for PSCCH will be described with reference to FIGS. The resource pool for PSCCH consists of a subframe pool and a resource block pool. FIG. 2 shows a subframe pool for PSCCH, and FIG. 3 shows a resource block pool for PSCCH.
 eNBは、PSCCHのためのサブフレーム・プールを特定するために、サイドリンク制御期間(PSCCH期間)の長さ(P)、並びにPSCCHのためのサブフレーム・ビットマップ及びその長さ(N’)を指定する。サブフレーム・ビットマップの長さ(N’)は、4、8、12、16、30、40又は42 bitsである。当該サブフレーム・ビットマップに対応するN’サブフレームは、図2に示すように、サイドリンク制御期間内の最初のN’サブフレームである。サブフレーム・ビットマップは、“0”にセットされたビットに対応するサブフレームがPSCCH送信に使用されないことを示し、“1”にセットされたビットに対応するサブフレームがPSCCH送信に使用できることを示す。したがって、1つのサイドリンク制御期間内のPSCCHリソースプールに含まれるサブフレーム数(LPSCCH)は、サブフレーム・ビットマップで値1が指定されている数に等しい。PSCCHリソースプール(つまり、サブフレーム・プール)に含まれるサブフレームは、以下のように表すことができる:
Figure JPOXMLDOC01-appb-M000001
The eNB specifies the length of the side link control period (PSCCH period) (P), as well as the subframe bitmap for PSCCH and its length (N ') to identify the subframe pool for PSCCH. Is specified. The length (N ′) of the subframe bitmap is 4, 8, 12, 16, 30, 40 or 42 bits. As shown in FIG. 2, the N ′ subframe corresponding to the subframe bitmap is the first N ′ subframe in the side link control period. The subframe bitmap indicates that the subframe corresponding to the bit set to “0” is not used for PSCCH transmission, and the subframe corresponding to the bit set to “1” can be used for PSCCH transmission. Show. Therefore, the number of subframes (L PSCCH ) included in the PSCCH resource pool within one side link control period is equal to the number specified as 1 in the subframe bitmap. The subframes included in the PSCCH resource pool (ie, subframe pool) can be expressed as follows:
Figure JPOXMLDOC01-appb-M000001
 一方、図3に示すように、eNBは、PSCCHのためのリソースブロック・プールを特定するために、開始(start)Physical Resource Block(PRB)のインデックス(S1)、終了(end)PRBのインデックス(S2)、及びPRB数(M)を指定する。リソースブロック・プールは、PRBインデックスqが開始インデッククス(S1)以上であり且つS1+Mより小さい(S1 <= q < S1+M)M個のPRBsと、PRBインデックスqがS2-Mより大きく且つ終了インデッククス(S2)以下である(S2-M < q <= S2)M個のPRBsを含む(つまり、合計2M個のPRBs)。すなわち、eNBは、各々がM個のPRBsを含む2つのPRBクラスターをPSCCHのためのリソースブロック・プールに含めることができる。 On the other hand, as shown in FIG. 3, in order to identify the resource block pool for PSCCH, the eNB starts (starts) PhysicalPhysResource Block (PRB) index (S1), and ends (end) PRB index ( Specify S2) and the number of PRBs (M). The resource block pool has PRB index q greater than or equal to the start index (S1) and smaller than S1 + M (S1 <= q <S1 + M) M PRBs, and PRB index q is greater than S2-M In addition, it includes M PRBs that are equal to or less than the end index (S2) (S2-M <q <= S2) (that is, 2M PRBs in total). That is, the eNB can include two PRB clusters each including M PRBs in the resource block pool for the PSCCH.
 次に、PSSCHのためのリソースプールの指定方法について説明する。Scheduled resource allocation(sidelink transmission mode 1)の場合、eNBは、PSSCHのためのサブフレーム・プールをSIB 18又は個別シグナリング(RRCシグナリング)で指定する。PSCCHリソース設定に関連付けられサイドリンク制御期間(PSCCH期間)は、PSSCHリソース設定にもさらに関連付けられる。UEは、サブフレーム・プールから成るPSSCHリソースプールを以下のように決定する。すなわち、図2に示されるように、サイドリンク制御期間(PSCCH期間)内において、lPSCCH PSCCH-1 + 1と同じかこれより大きいサブフレーム・インデックスを持つ各サブフレームは、PSSCHのためのサブフレーム・プールに属する。 Next, a method for specifying a resource pool for PSSCH will be described. In the case of Scheduled resource allocation (sidelink transmission mode 1), the eNB specifies a subframe pool for PSSCH by SIB 18 or dedicated signaling (RRC signaling). The side link control period (PSCCH period) associated with the PSCCH resource setting is further associated with the PSSCH resource setting. The UE determines a PSSCH resource pool composed of subframe pools as follows. That is, as shown in FIG. 2, within the side link control period (PSCCH period), each subframe having a subframe index equal to or greater than l PSCCH PSCCH-1 + 1 is a subframe for PSSCH. Belongs to frame pool.
 一方、autonomous resource selection(sidelink transmission mode 2)の場合、eNBは、PSSCHのためのサブフレーム・プール及びリソースブロック・プールをSIB 18又は個別シグナリング(RRCシグナリング)で指定する。eNBは、サブフレーム・プールを指定するために、オフセット(O2)、並びにサブフレーム・ビットマップ及びその長さ(NB)を指定する。 On the other hand, in the case of autonomous resource selection (sidelink transmission mode 2), the eNB specifies a subframe pool and a resource block pool for PSSCH by SIB 18 or dedicated signaling (RRC signaling). The eNB specifies an offset (O 2 ), a subframe bitmap, and its length (N B ) to specify a subframe pool.
 オフセット(O2)は、サイドリンク制御期間(PSCCH期間)の先頭サブフレームのサブフレーム・インデックスjbeginからのオフセットを示す。ここでは、PSCCH期間内においてjbegin + O2と同じかこれより大きいサブフレーム・インデックスを持つ各サブフレームの総数をN’とする。 The offset (O 2 ) indicates an offset from the subframe index j begin of the first subframe in the side link control period (PSCCH period). Here, the total number of subframes having a subframe index equal to or greater than j begin + O 2 in the PSCCH period is N ′.
 サブフレーム・ビットマップの長さ(NB)は、4、8、12、16、30、40又は42 bitsである。サブフレーム・ビットマップは、“0”にセットされたビットに対応するサブフレームがPSSCH送信に使用されないことを示し、“1”にセットされたビットに対応するサブフレームがPSSCH送信に使用できることを示す。なお、通常の場合、サブフレーム・ビットマップの長さ(NB)は、PSCCH期間内においてjbegin + O2と同じかこれより大きいサブフレーム・インデックスを持つサブフレームの総数(N’)より小さい。したがって、UEは、ビットマップb0, b1, b2, ..., bN’-1を以下の数式に従って決定する:
Figure JPOXMLDOC01-appb-M000002
ここで、a0, a1, a2, ..., aN_B-1は、eNBによりPSSCH設定として指定される長さNBのビットマップである。もしbj = 1であれば、サブフレームljは、PSSCHのためのサブフレーム・プールに属する。
The length (N B ) of the subframe bitmap is 4, 8, 12, 16, 30, 40 or 42 bits. The subframe bitmap indicates that the subframe corresponding to the bit set to “0” is not used for PSSCH transmission, and the subframe corresponding to the bit set to “1” can be used for PSSCH transmission. Show. In normal cases, the length of the subframe bitmap (N B ) is calculated from the total number of subframes (N ′) having a subframe index equal to or greater than j begin + O 2 within the PSCCH period. small. Thus, the UE determines the bitmaps b 0 , b 1 , b 2 , ..., b N′-1 according to the following formula:
Figure JPOXMLDOC01-appb-M000002
Here, a 0, a 1, a 2, ..., a N_B-1 is a bitmap length N B designated as PSSCH set by eNB. If b j = 1, subframe l j belongs to the subframe pool for PSSCH.
 Autonomous resource selection(sidelink transmission mode 2)の場合のPSSCHのためのリソースブロック・プールは、PSCCHのためのリソースブロック・プールと同様に指定される。すなわち、eNBは、PSSCHのためのリソースブロック・プールを特定するために、開始(start)Physical Resource Block(PRB)のインデックス(S1)、終了(end)PRBのインデックス(S2)、及びPRB数(M)をPSSCHリソース設定において指定する。 The resource block pool for PSSCH in the case of Autonomous resource selection (sidelink transmission mode 2) is specified in the same way as the resource block pool for PSCCH. That is, the eNB specifies a start (start) Physical Resource 開始 Block (PRB) index (S1), an end (end) PRB index (S2), and the number of PRBs (PSB) in order to identify a resource block pool for PSSCH. M) is specified in the PSSCH resource settings.
 次に、サイドリンクでのPSSCH送信のためのhybrid automatic repeat request (HARQ)に関して説明する。始めに、3GPP Release 8及びそれ以降で採用されているHARQの概要を説明する。3GPP Release 8及びそれ以降のmedia access control (MAC)レイヤは、ダウンリンク送信及びアップリンク送信のためにincremental redundancy HARQを採用し、stop-and-wait(SAW)プロトコル(モード)を基本的に使用する。 Next, the hybrid “automatic” repeat request (HARQ) for PSSCH transmission on the side link will be described. First, the outline of HARQ adopted in 3GPP Release 8 and later will be described. The 3GPP Release 8 and later media access control (MAC) layer employs an incremental redundancy HARQ for downlink and uplink transmissions and basically uses a stop-and-wait (SAW) protocol (mode). To do.
 よく知られているように、HARQは、ターボ符号化などの前方誤り訂正符号化(forward error correction coding)を原始的なARQ方式(scheme)に組み合わせた方式である。すなわち、HARQでは、ユーザデータ及びCyclic Redundancy Check(CRC)bitsは、誤り訂正コード(error correcting code (ECC))によって保護される。誤り訂正コードの追加は、冗長性を高めることで送信成功確率の増加をHARQにもたらすが、その反面、送信データ内のユーザデータの割合が減少(つまり、符号化率(coding rate)の低下)を招く。 As is well known, HARQ is a scheme in which forward error correction coding such as turbo coding is combined with a primitive ARQ scheme. That is, in HARQ, user data and Cyclic Redundancy Check (CRC) bits are protected by an error correction code (error correcting code (ECC)). The addition of an error correction code increases the probability of successful transmission to HARQ by increasing redundancy, but on the other hand, the ratio of user data in the transmission data decreases (that is, the coding rate decreases). Invite.
 このため、3GPP Release 8及びそれ以降は、incremental redundancy (IR) HARQをサポートしている。Incremental redundancy HARQでは、再送されるデータは、最初の送信データ(ターボ符号化で得られたsystematic bits及び一部のparity bitsを含む)とは異なる追加のparity bitsを含む。例えばダウンリンク送信の場合、eNBは、ターボ符号化、サブブロック・インターリビング、及びビット・コレクションを行った後のコードブロックを格納するサーキュラバッファ(circular buffer (CB))を管理し、最初の送信ではsystematic bitsを送信するためにCBの先頭に対応するオフセット(つまり、redundancy version (RV)=0)を用いる。Redundancy version (RV)は、送信のためにビット(bits)をCBから読み出す際の開始位置を定める。再送信では、eNBは、incremental redundancy (IR)のために最初の送信とは異なるRVを選択し、これにより最初の送信には含まれていなかった追加のparity bitsを送信する。 For this reason, 3GPP Release 8 and later support incremental redundancy (IR) HARQ. In Incremental redundancy HARQ, the retransmitted data includes additional parity bits different from the initial transmission data (including systematic bits and some parity 一部 bits obtained by turbo coding). For example, in the case of downlink transmission, the eNB manages the circular buffer (circular buffer (CB)) that stores the code block after performing turbo coding, sub-block interleaving, and bit collection, and the first transmission. In order to transmit systematic bits, an offset corresponding to the head of CB (that is, redundancy version (RV) = 0) is used. Redundancy version (RV) defines the starting position when reading bits from the CB for transmission. In retransmission, the eNB selects an RV that is different from the initial transmission for incremental redundancy (IR), thereby transmitting additional parity bits that were not included in the initial transmission.
 Stop-and-wait(SAW)プロトコルは、最も基本的な再送プロトコルである。すなわち、ダウンリンク送信の場合、eNBは1つのダウンリンク・トランスポートブロックを送信すると、新たな送信を停止してUEからのHARQフィードバック(つまり、ACK又はNACK)を受信するまで待機する。そして、UEからポジティブ・フィードバック(ACK)を受信した場合、eNBは新たなダウンリンク・トランスポートブロックを送信する。一方、UEからネガティブ・フィードバック(NACK)を受信した場合(又はフィードバックを受信せずに所定期間が経過した場合)、eNBは当該トランスポートブロックを再送信する。 The Stop-and-wait (SAW) protocol is the most basic retransmission protocol. That is, in the case of downlink transmission, when the eNB transmits one downlink transport block, the eNB stops new transmission and waits until receiving HARQ feedback (ie, ACK or NACK) from the UE. And when positive feedback (ACK) is received from UE, eNB transmits a new downlink transport block. On the other hand, when negative feedback (NACK) is received from the UE (or when a predetermined period has elapsed without receiving feedback), the eNB retransmits the transport block.
 しかしながら、単純なSAWプロトコルは、送信機(transmitter(sender))が多くの再送信を試みなければならない貧弱な(poor)無線条件において、レイテンシの増加とシグナリング・オーバヘッドの増加を招く。したがって、Transmit Time Interval(TTI)バンドリングがさらに導入されている。 However, a simple SAW protocol results in increased latency and increased signaling overhead in poor radio conditions where the transmitter (sender) must attempt many retransmissions. Therefore, Transmit Time Interval (TTI) bundling is further introduced.
 なお、TTIは、1つのトランスポートブロック及びこれに付加された誤り検出ビット群の送信が行われる時間長(length of time(time length))として定義される。トランスポートブロックは、Medium Access Control(MAC)レイヤから物理レイヤに渡されるデータユニット(i.e., MAC Protocol Data Unit(PDU))である。送信機(transmitter(sender))の物理レイヤでは、誤り検出ビット群(bits)、例えばCyclic Redundancy Check(CRC)パリティビット群、を計算するために1つのトランスポートブロックの全体が使用され、計算された誤り検出ビット群がトランスポートブロックに付加される。物理レイヤにおける伝送路符号化(channel coding)は、誤り検出ビット群が付加されたトランスポートブロックに対して行われる。さらに、送信機の物理レイヤ処理では、1つのトランスポートブロックから生成された符号化されたビットシーケンスに対してインタリービングが行われる。したがって、受信機(receiver)は、デインタリーブおよびデコードをできるようになるために、少なくとも1つのTTIのデータ(つまり、誤り検出ビット群が付加されたトランスポートブロックに相当するデータ)を受信する必要がある。TTIの長さは、一般的に、サブフレームの継続時間(i.e., LTEでは1 msec)に等しい。 TTI is defined as a time length (length (of time (time (length)) in which one transport block and an error detection bit group added thereto are transmitted. The transport block is a data unit (i.e., “MAC Protocol Protocol Data Unit (PDU)) passed from the Medium Access Control (MAC) layer to the physical layer. In the physical layer of the transmitter (sender), the entire transport block is used and calculated to calculate error detection bits (bits), eg Cyclic Redundancy Check (CRC) parity bits. The error detection bit group is added to the transport block. Channel coding in the physical layer is performed on the transport block to which the error detection bit group is added. Further, in the physical layer processing of the transmitter, interleaving is performed on the encoded bit sequence generated from one transport block. Therefore, in order to be able to perform deinterleaving and decoding, the receiver needs to receive at least one TTI data (that is, data corresponding to a transport block to which an error detection bit group is added). There is. The length of the TTI is generally equal to the duration of the subframe (i.e., 1 msec in LTE).
 3GPP Release 8及びそれ以降は、アップリンク送信にTTIバンドリングを導入している。TTIバンドリングが有効化(enabled(activated))されると、UEは、eNBからのHARQフィードバックを待つ代わりに、4つの連続するTTIs(つまりsubframes)において同一のトランスポートブロックを異なる4つのredundancy versionsとともに送信する。eNBは、4つの連続するTTIでの送信に基づいてトランスポートブロックを上手くデコードできた場合にACKを送信する。同一トランスポートブロックの送信のために使用される4つの連続するTTIは、TTIバンドルと呼ばれる。 3GPP Release 8 and later have introduced TTI bundling for uplink transmission. When TTI bundling is enabled (activated), instead of waiting for HARQ feedback from the eNB, the UE replaces the same transport block with four different redundancy versions in four consecutive TTIs (ie subframes). Send with. The eNB transmits an ACK when the transport block can be successfully decoded based on transmissions in four consecutive TTIs. Four consecutive TTIs used for transmission of the same transport block are called TTI bundles.
 3GPP Release 12は、サイドリンクでのPSSCH送信においてもTTIバンドリングに類似する技術を採用している(例えば、非特許文献2のセクション14.1及び非特許文献3のセクション5.14を参照)。具体的には、送信端末は、あるサイドリンク制御期間内のPSSCH送信に使用されるサブフレーム・セットに含まれる4つのサブフレーム(4つのTTI)において、同一のトランスポートブロックを送信する。 3GPP Release 12 employs a technique similar to TTI bundling in PSSCH transmission on the side link (see, for example, Section 14.1 of Non-Patent Document 2 and Section 5.14 of Non-Patent Document 3). . Specifically, the transmitting terminal transmits the same transport block in four subframes (four TTIs) included in a subframe set used for PSSCH transmission within a certain side link control period.
 上述したように、3GPP Release 12では、サイドリンクでのPSSCH送信のための無線リソースの割り当て(スケジューリング)は、サイドリンク制御期間(PSCCH期間)毎に行われる。すなわち、あるサイドリンク制御期間内のPSSCHのためのサブフレーム・プールにおいてデータ送信(PSSCH送信)を行うためには、送信端末は、当該サイドリンク制御期間内のPSCCHのためのサブフレーム・プールにおいてスケジューリング割当情報(i.e., SCI format 0)を運ぶPSCCHを事前に送信しなければならない。したがって、送信端末は、受信端末宛ての送信データが発生した場合にこれを直ぐに送信することはできず、次のサイドリンク制御期間(PSCCH期間)の到来を待つ必要がある。このようなPSSCHリソース割り当ての制約に起因する送信遅延は、厳しい遅延要件を求めるアプリケーションのためにサイドリンク送信を使用することを困難にするかもしれない。 As described above, in 3GPP Release 12, radio resource allocation (scheduling) for PSSCH transmission on the side link is performed for each side link control period (PSCCH period). That is, in order to perform data transmission (PSSCH transmission) in a subframe pool for PSSCH within a certain side link control period, the transmitting terminal must be in a subframe pool for PSCCH within the side link control period. The PSCCH carrying scheduling allocation information (ie, SCI format 0) must be transmitted in advance. Therefore, when transmission data addressed to the receiving terminal is generated, the transmitting terminal cannot immediately transmit it, and needs to wait for the next side link control period (PSCCH period) to arrive. Transmission delays due to such PSSCH resource allocation constraints may make it difficult to use side link transmissions for applications that demand stringent delay requirements.
 この送信遅延は、送信端末がPSSCHリソースを予約できるようにすることで抑制できるかもしれない。例えば、送信端末は、あるサイドリンク制御期間内のPSCCHサブフレーム・プール内のサブフレームにおいて、予約PSSCHリソースを示すスケジューリング割当情報(i.e., SCI format 0)を送信する。そして、送信端末は、当該サイドリンク制御期間内に送信データが発生した場合、当該サイドリンク制御期間内の予約PSSCHリソースにおいてこれを送信する。一方、送信データが発生しない場合、送信端末は、当該サイドリンク制御期間内の予約PSSCHリソースにおいてPSSCHを送信しない。 This transmission delay may be suppressed by allowing the transmitting terminal to reserve PSSCH resources. For example, the transmitting terminal transmits scheduling allocation information (i.e., SCI format 0) indicating a reserved PSSCH resource in a subframe in a PSCCH subframe pool within a certain side link control period. Then, when transmission data is generated within the side link control period, the transmission terminal transmits this in the reserved PSSCH resource within the side link control period. On the other hand, when transmission data does not occur, the transmitting terminal does not transmit PSSCH in the reserved PSSCH resource within the side link control period.
 しかしながら、送信端末にPSSCHリソースの予約を許可することは、別の問題を引き起こすおそれがある。すなわち、受信端末は、予約無線リソースにおいてPSSCHの受信を試行し、PSSCH送信が行われていない予約無線リソース(サブフレーム)においてトランスポートブロックを上手くデコードできないために、ネガティブHARQフィードバック(NACK)を送信端末に送信するかもしれない。このような無駄なNACK送信は、サイドリンクの無線リソースの浪費を招く。 However, allowing PSSCH resource reservation to the transmitting terminal may cause another problem. That is, the receiving terminal tries to receive PSSCH in the reserved radio resource, and transmits a negative HARQ feedback (NACK) because the transport block cannot be successfully decoded in the reserved radio resource (subframe) for which PSSCH transmission is not performed. May be sent to the terminal. Such wasteful NACK transmission causes waste of side link radio resources.
 なお、上述した無駄なNACK送信の問題は、サイドリンク受信端末からサイドリンク送信端末に対してHARQフィードバックが行われる場合に発生し得ることに留意されるべきである。したがって、この無駄なNACK送信の問題は、3GPP Release 12で採用されているTTIバンドリングに類似する技術を用いたPSSCH送信を実行する送信端末にPSSCHリソース予約を許可する際に発生し得る。これに加えて、この無駄なNACK送信の問題は、TTIバンドリングに類似する技術が使用されない場合、すなわちsidelink shared channel(SL-SCH)トランスポートブロック送信に関して単純なSAW HARQが実行される場合にも発生し得る。 It should be noted that the above-described useless NACK transmission problem may occur when HARQ feedback is performed from the side link receiving terminal to the side link transmitting terminal. Therefore, this useless NACK transmission problem may occur when a PSSCH resource reservation is granted to a transmitting terminal that performs PSSCH transmission using a technique similar to TTI bundling adopted in 3GPP Release 12. In addition, this wasted NACK transmission problem occurs when a technique similar to TTI bundling is not used, ie when a simple SAW HARQ is performed for sidelink shared channel (SL-SCH) transport block transmission. Can also occur.
 本明細書に開示される実施形態が達成しようとする目的の1つは、D2D送信(e.g., サイドリンク送信)において受信端末から送信端末への無駄なネガティブ・フィードバックの送信を抑制することに寄与する装置、方法、及びプログラムを提供することである。 One of the objects to be achieved by the embodiments disclosed herein is to contribute to suppressing unnecessary negative feedback transmission from the receiving terminal to the transmitting terminal in D2D transmission (eg, side link transmission). An apparatus, a method, and a program are provided.
 第1の態様では、受信端末は、少なくとも1つの無線トランシーバ、及び少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記少なくとも1つの無線トランシーバに結合され、周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに送信端末からデータを受信するための物理レイヤ及びMedium Access Control(MAC)レイヤとして動作するよう構成されている。前記少なくとも1つのプロセッサは、第1のD2D制御期間内において前記送信端末から物理制御チャネル上で送信されるD2D制御情報を受信するよう構成される。前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示す。さらに、前記少なくとも1つのプロセッサは、前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの送信が前記物理レイヤにおいて検出されなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを前記MACレイヤより前記送信端末に送信しないよう構成される。 In the first aspect, the receiving terminal includes at least one wireless transceiver and at least one processor. The at least one processor is coupled to the at least one radio transceiver, and a physical layer and medium for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period It is configured to operate as an Access Control (MAC) layer. The at least one processor is configured to receive D2D control information transmitted on a physical control channel from the transmitting terminal within a first D2D control period. The D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show. Further, the at least one processor is configured to perform a negative operation on a transport block associated with the physical data channel when transmission of the physical data channel from the transmitting terminal in the reserved radio resource is not detected in the physical layer. It is configured not to transmit feedback from the MAC layer to the transmitting terminal.
 第2の態様では、周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに送信端末からデータを受信する受信端末における方法は、
(a)第1のD2D制御期間内において送信端末から物理制御チャネル上で送信されるD2D制御情報を受信すること、前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示す;
(b)前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの受信を物理レイヤにおいて試行すること;及び
(c)前記物理データチャネルの送信が前記物理レイヤにおいて検出されなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックをMedium Access Control(MAC)レイヤより前記送信端末に送信しないこと、
を含む。
In a second aspect, a method in a receiving terminal for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period,
(A) receiving D2D control information transmitted on a physical control channel from a transmitting terminal within a first D2D control period, wherein the D2D control information is one or more radios within the first D2D control period Indicating that the resource is designated as a reserved radio resource from which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal;
(B) attempting to receive the physical data channel from the transmitting terminal in the reserved radio resource in a physical layer; and (c) if transmission of the physical data channel is not detected in the physical layer, Do not send negative feedback on the transport block associated with the physical data channel from the Medium Access Control (MAC) layer to the sending terminal,
including.
 第3の態様では、送信端末は、少なくとも1つの無線トランシーバ、及び少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記少なくとも1つの無線トランシーバに結合され、周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに受信端末にデータを送信するよう構成される。前記少なくとも1つのプロセッサは、第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信するよう構成される。前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示す。前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する。 In the third aspect, the transmitting terminal includes at least one wireless transceiver and at least one processor. The at least one processor is coupled to the at least one wireless transceiver and is configured to transmit data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period. The at least one processor is configured to transmit D2D control information to the receiving terminal on a physical control channel within a first D2D control period. The D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show. The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
 第4の態様では、周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずにデータを受信端末に送信する送信端末における方法は、第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信することを含む。前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示す。前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する。 In a fourth aspect, a method in a transmitting terminal that transmits data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period includes a physical control channel within the first D2D control period. Transmitting D2D control information to the receiving terminal. The D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show. The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
 第5の態様では、基地局は、セル内の複数の無線端末と通信するよう構成された無線トランシーバ、及び少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、周期的なdevice-to-device(D2D)制御期間に従う送信端末から受信端末への前記基地局を介さないデータ送信を制御するよう構成される。前記少なくとも1つのプロセッサは、前記データ送信のためのリソース予約の許可を前記送信端末に通知するよう構成される。前記許可は、前記送信端末が第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信する際に、前記第1のD2D制御期間内の1又は複数の無線リソースを前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定することを前記送信端末に許可する。前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する。 In a fifth aspect, a base station includes a wireless transceiver configured to communicate with a plurality of wireless terminals in a cell, and at least one processor. The at least one processor is configured to control data transmission from the transmitting terminal to the receiving terminal not through the base station according to a periodic device-to-device (D2D) control period. The at least one processor is configured to notify the transmission terminal of permission to reserve resources for the data transmission. The permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated. The transmitting terminal is permitted to designate a reserved radio resource that may transmit a physical data channel from the transmitting terminal to the receiving terminal. The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
 第6の態様では、基地局における方法は、周期的なdevice-to-device(D2D)制御期間に従う送信端末から受信端末への前記基地局を介さないデータ送信を制御するために、前記データ送信のためのリソース予約の許可を前記送信端末に通知することを含む。前記許可は、前記送信端末が第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信する際に、前記第1のD2D制御期間内の1又は複数の無線リソースを前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定することを前記送信端末に許可する。前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する。 In a sixth aspect, a method in a base station is configured to control the data transmission from a transmitting terminal to a receiving terminal according to a periodic device-to-device (D2D) control period without controlling the data transmission via the base station. For notifying the transmitting terminal of permission to reserve a resource for. The permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated. The transmitting terminal is permitted to designate a reserved radio resource that may transmit a physical data channel from the transmitting terminal to the receiving terminal. The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback.
 第7の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第2、第4、又は第6の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。 In the seventh aspect, the program includes a group of instructions (software code) for causing the computer to perform the method according to the second, fourth, or sixth aspect described above when read by the computer.
 上述の態様によれば、D2D送信(e.g., サイドリンク送信)において受信端末から送信端末への無駄なネガティブ・フィードバックの送信を抑制することに寄与する装置、方法、及びプログラムを提供できる。 According to the above-described aspect, it is possible to provide an apparatus, a method, and a program that contribute to suppressing transmission of useless negative feedback from a receiving terminal to a transmitting terminal in D2D transmission (e.g., side link transmission).
サイドリンク制御期間(PSCCH期間)を示す図である。It is a figure which shows a side link control period (PSCCH period). サイドリンク制御期間内のPSCCHサブフレーム・プールとPSSCHサブフレーム・プールの一例を示す図である。It is a figure which shows an example of the PSCCH sub-frame pool and PSSCH sub-frame pool in a side link control period. サイドリンク制御期間内のPSCCHリソースブロック・プールの一例を示す図である。It is a figure which shows an example of the PSCCH resource block pool in a side link control period. いくつかの実施形態に係る無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system which concerns on some embodiment. 第1の実施形態に係る無線端末(送信端末)によるサイドリンクでのスケジューリング割当情報(PSCCH)及びデータ(PSSCH)の送信を説明するための図である。It is a figure for demonstrating transmission of the scheduling allocation information (PSCCH) and data (PSSCH) by the side link by the radio | wireless terminal (transmission terminal) which concerns on 1st Embodiment. 第1の実施形態に係る無線端末(送信端末)の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the radio | wireless terminal (transmission terminal) which concerns on 1st Embodiment. 第1の実施形態に係る無線端末(送信端末)の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the radio | wireless terminal (transmission terminal) which concerns on 1st Embodiment. 第2の実施形態に係る無線端末(送信端末)の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the radio | wireless terminal (transmission terminal) which concerns on 2nd Embodiment. 第2の実施形態に係る基地局の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the base station which concerns on 2nd Embodiment. いくつかの実施形態に係る無線端末の構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless terminal which concerns on some embodiment. いくつかの実施形態に係る基地局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station which concerns on some embodiment.
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。 Hereinafter, specific embodiments will be described in detail with reference to the drawings. In each drawing, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted as necessary for clarification of the description.
 以下に示される複数の実施形態は、3GPP Release 12(LTE-Advanced)に規定されたProSeの改良を主な対象として説明される。しかしながら、これらの実施形態は、LTE-Advanced 及びその改良に限定されるものではなく、他のモバイル通信ネットワーク又はシステムでのD2D通信に適用されてもよい。 A plurality of embodiments shown below will be described mainly for improvement of ProSe specified in 3GPP Release 12 (LTE-Advanced). However, these embodiments are not limited to LTE-Advanced and its improvements, and may be applied to D2D communication in other mobile communication networks or systems.
<第1の実施形態>
 図4は、本実施形態を含むいくつかの実施形態に係る無線通信システムの構成例を示している。無線端末(UE)1A及び1Bの各々は、少なくとも1つの無線トランシーバを有し、基地局(eNB)2とのセルラー通信(101又は102)を行うとともに、端末間ダイレクトインタフェース(e.g., PC5インタフェース又はサイドリンク)103上でD2D通信を行うよう構成されている。当該D2D通信は、少なくとも直接通信(ProSe Direct Communication)を含み、直接ディスカバリ(e.g., ProSe Direct Discovery)をさらに含んでもよい。eNB2は、セル21を管理し、セルラー通信技術(e.g., Evolved Universal Terrestrial Radio Access (E-UTRA) technology)を用いて複数のUE1の各々とセルラー通信(101及び102)を行うことができる。なお、図5の例では、説明の簡略化のために複数のUE1A及び1Bが同じセル21内に位置している状況を示しているが、このような配置は一例に過ぎない。例えば、UE1Aは、異なるeNB2によって管理される互いに隣接する2つのセルの一方のセル内に位置し、UE1Bは他方のセル内に位置してもよい。あるいは、UE1A及びUE1Bのうち少なくとも一方は、1又は複数のeNB2によるカバレッジの外に位置してもよい。
<First Embodiment>
FIG. 4 shows configuration examples of wireless communication systems according to some embodiments including this embodiment. Each of the wireless terminals (UE) 1A and 1B includes at least one wireless transceiver, performs cellular communication (101 or 102) with the base station (eNB) 2, and also has a direct interface between terminals (eg, PC5 interface or Side link) 103 is configured to perform D2D communication. The D2D communication includes at least direct communication (ProSe Direct Communication) and may further include direct discovery (eg, ProSe Direct Discovery). The eNB 2 manages the cell 21 and can perform cellular communication (101 and 102) with each of the plurality of UEs 1 using cellular communication technology (eg, Evolved Universal Terrestrial Radio Access (E-UTRA) technology). In the example of FIG. 5, a situation in which a plurality of UEs 1 </ b> A and 1 </ b> B are located in the same cell 21 is illustrated for simplification of explanation, but such an arrangement is merely an example. For example, UE1A may be located in one cell of two adjacent cells managed by different eNB2, and UE1B may be located in the other cell. Alternatively, at least one of UE1A and UE1B may be located outside the coverage by one or a plurality of eNBs 2.
 続いて以下では、本実施形態に係るサイドリンクでのPSCCH及びPSSCHの送信について説明する。送信端末(e.g., UE1A)は、周期的なD2D制御期間(i.e., サイドリンク制御期間(PSCCH期間))に従ってeNB2を介さずに受信端末(e.g., UE1B)へのデータ送信を行うよう構成されている。すでに説明したように、サイドリンク制御期間は、PSCCHのためのサブフレーム・プール(第1のサブフレーム・プール)及びPSSCHのためのサブフレーム・プール(第2のサブフレーム・プール)を含む。PSCCHのためのサブフレーム・プールは、スケジューリング割当情報(i.e., SCI format 0)を含むサイドリンク制御情報(SCI)の送信のために使用可能なLPSCCH個のサブフレームから成る。一方、PSSCHのためのサブフレーム・プールは、スケジューリング割当情報(i.e., SCI format 0)に従うデータ送信(PSSCH送信)のために使用可能なLPSSCH個のサブフレームから成る。 Next, transmission of PSCCH and PSSCH on the side link according to the present embodiment will be described below. The transmitting terminal (eg, UE1A) is configured to perform data transmission to the receiving terminal (eg, UE1B) without going through the eNB2 according to a periodic D2D control period (ie, side link control period (PSCCH period)). Yes. As already described, the side link control period includes a subframe pool for PSCCH (first subframe pool) and a subframe pool for PSSCH (second subframe pool). The subframe pool for PSCCH consists of L PSCCH subframes that can be used for transmission of side link control information (SCI) including scheduling allocation information (ie, SCI format 0). On the other hand, the subframe pool for PSSCH is composed of L PSSCH subframes that can be used for data transmission (PSSCH transmission) according to scheduling allocation information (ie, SCI format 0).
 より具体的に述べると、送信端末(e.g., UE1A)は、あるサイドリンク制御期間内において物理制御チャネル(i.e., PSCCH)上でサイドリンク制御情報(SCI)を受信端末(e.g., UE1B)に送信するよう構成されている。当該サイドリンク制御情報(i.e., スケジューリング割当情報(SCI format 0))は、当該サイドリンク制御期間内の1又は複数の無線リソースが当該送信端末によって物理データチャネル(i.e., PSSCH)が送信される可能性のある予約無線リソースに指定されることを示す。 More specifically, the transmitting terminal (eg, UE1A) transmits side link control information (SCI) to the receiving terminal (eg, UE1B) on the physical control channel (ie, PSCCH) within a certain sidelink control period. It is configured to The side link control information (ie, scheduling assignment information (SCI format 0)) is such that one or more radio resources within the side link control period can be transmitted by the transmitting terminal as a physical data channel (ie, PSSCH). This indicates that it is designated as a reserved radio resource with a certain nature.
 送信端末は、予約無線リソースにおいてPSSCHを送信するかもしれないし、送信しないかもしれない。例えば、送信端末(e.g., UE1A)は、あるサイドリンク制御期間内のPSCCHサブフレーム・プール内の1又は複数のサブフレームにおいて予約無線リソースの指定を含むサイドリンク制御情報(SCI format 0)を受信端末(e.g., UE1B)に送信し、当該サイドリンク制御期間において当該受信端末宛ての送信データが発生した場合に当該データをいずれかの予約無線リソースにおいてPSSCH上で当該受信端末に送信してもよい。一方、あるサイドリンク制御期間内で予約無線リソースを受信端末に指定したが、当該サイドリンク制御期間において当該受信端末宛ての送信データが発生しなかった場合、送信端末は、当該サイドリンク制御期間内のいずれの予約無線リソースにおいてもPSSCHを送信しなくてもよい。 The transmitting terminal may or may not transmit PSSCH in the reserved radio resource. For example, the transmitting terminal (eg, UE1A) receives side link control information (SCI format 0) including designation of reserved radio resources in one or a plurality of subframes in a PSCCH subframe pool within a certain sidelink control period. When transmission data addressed to the receiving terminal is generated in the side link control period, the data may be transmitted to the receiving terminal on the PSSCH in any reserved radio resource. . On the other hand, if the reserved radio resource is designated as a receiving terminal within a certain side link control period, but no transmission data addressed to the receiving terminal is generated during the side link control period, the transmitting terminal The PSSCH may not be transmitted in any of the reserved radio resources.
 いくつかの実装において、3GPP Release 12と同様に、PSSCHでのSL-SCHトランスポートブロックの送信のためにTTIバンドリングに類似する技術が採用されてもよい。例えば、送信端末がPSSCH送信を行う場合、送信端末は、あるサイドリンク制御期間内のPSSCH送信に使用されるサブフレーム・セットに含まれる4つのサブフレーム(4つのTTI)において、同一のトランスポートブロックを送信してもよい。この場合、送信端末は、4つのTTI(4つのサブフレーム)単位で予約無線リソースを指定してもよい。 In some implementations, a technique similar to TTI bundling may be employed for transmission of SL-SCH transport blocks in PSSCH, similar to 3GPP Release 12. For example, when a transmitting terminal performs PSSCH transmission, the transmitting terminal uses the same transport in four subframes (four TTIs) included in a subframe set used for PSSCH transmission within a certain side link control period. A block may be sent. In this case, the transmitting terminal may specify reserved radio resources in units of four TTIs (four subframes).
 これに代えて、いくつかの実装において、PSSCHでのSL-SCHトランスポートブロックの送信のために単純なSAW HARQが採用されてもよい。この場合、送信端末は、1つのTTI(1つのサブフレーム)単位で予約無線リソースを指定してもよい。 Alternatively, in some implementations, a simple SAW-HARQ may be employed for transmission of SL-SCH transport blocks on PSSCH. In this case, the transmitting terminal may specify reserved radio resources in units of one TTI (one subframe).
 一方、受信端末(e.g., UE1B)のMACレイヤは、1つのSL-SCHトランスポートブロックの送信に対応する1又は複数の予約無線リソースの全てにおいて送信端末(e.g., UE1A)からのPSCCHの送信が当該受信端末の物理レイヤにおいて検出されなかった場合に、当該SL-SCHトランスポートブロックに関するネガティブHARQフィードバック(NACK)を当該送信端末に送信しないよう構成されている。 On the other hand, the MAC layer of the receiving terminal (eg, UE1B) transmits PSCCH from the transmitting terminal (eg, UE1A) in all of one or a plurality of reserved radio resources corresponding to transmission of one SL-SCH transport block. When it is not detected in the physical layer of the receiving terminal, a negative HARQ feedback (NACK) related to the SL-SCH transport block is not transmitted to the transmitting terminal.
 言い換えると、受信端末(e.g., UE1B)のMACレイヤは、1つのSL-SCHトランスポートブロックの送信に対応する1又は複数の予約無線リソースの全てにおいて送信端末からのPSSCH送信が物理レイヤにおいて検出されない場合、当該のSL-SCHトランスポートブロックの送信が行われなかったとみなす。 In other words, the MAC layer of the receiving terminal (eg, UE1B) does not detect PSSCH transmission from the transmitting terminal in the physical layer in all of one or a plurality of reserved radio resources corresponding to transmission of one SL-SCH transport block. In this case, it is considered that the corresponding SL-SCH transport block has not been transmitted.
 すなわち、送信端末によるサイドリンク制御情報での予約無線リソースの指定は、1つのSL-SCHトランスポートブロックの送信に対応する1又は複数の予約無線リソースの全てにおいて送信端末から受信端末へのPSSCH送信が行われなかった場合に、当該SL-SCHトランスポートブロックに関するネガティブHARQフィードバック(NACK)を送信しないように受信端末を制御する。 That is, the designation of the reserved radio resource in the side link control information by the transmitting terminal is the PSSCH transmission from the transmitting terminal to the receiving terminal in all of one or a plurality of reserved radio resources corresponding to the transmission of one SL-SCH transport block. In the case where the reception terminal is not performed, the receiving terminal is controlled not to transmit the negative HARQ feedback (NACK) related to the SL-SCH transport block.
 なお、受信端末(e.g., UE1B)のMACレイヤは、送信端末(e.g., UE1A)からのPSSCH送信が当該受信端末の物理レイヤにおいて検出されたが、当該PSSCH上で受信されたSL-SCHトランスポートブロックがうまくデコードされない場合に、ネガティブHARQフィードバック(NACK)を当該送信端末に送信してもよい。これとは反対に、受信されたSL-SCHトランスポートブロックがうまくデコードされた場合に、受信端末(e.g., UE1B)のMACレイヤは、ポジティブHARQフィードバック(ACK)を送信端末に送信してもよい。 Note that the MAC layer of the receiving terminal (eg, UE1B) is the SL-SCH transport received on the PSSCH, although PSSCH transmission from the transmitting terminal (eg, UE1A) is detected in the physical layer of the receiving terminal. If the block is not decoded successfully, negative HARQ feedback (NACK) may be transmitted to the transmitting terminal. On the other hand, when the received SL-SCH transport block is successfully decoded, the MAC layer of the receiving terminal (eg, UE1B) may send a positive HARQ feedback (ACK) to the transmitting terminal. .
 以上の説明から理解されるように、本実施形態に係る送信端末は、1又は複数の無線リソースがPSSCH送信のための予約無線リソースに指定されることを受信端末に明示する。したがって、受信端末は、予約無線リソースにおいてPSSCH送信が検出されない場合に、送信端末によるPSSCH送信が行わなかったと判断し、当該予約無線リソースでのPSSCH送信に関するNACK送信を抑止する。したがって、本実施形態よれば、PSSCH送信のためのリソース予約によってサイドリンク制御期間(PSCCH期間)毎のスケジューリングに起因するデータ送信遅延を低減することができるだけでなく、さらに受信端末による無駄なNACK送信が増えることを抑制できる。 As understood from the above description, the transmitting terminal according to the present embodiment clearly indicates to the receiving terminal that one or more radio resources are designated as reserved radio resources for PSSCH transmission. Therefore, if no PSSCH transmission is detected in the reserved radio resource, the receiving terminal determines that PSSCH transmission by the transmitting terminal has not been performed, and suppresses NACK transmission related to PSSCH transmission in the reserved radio resource. Therefore, according to the present embodiment, resource reservation for PSSCH transmission can not only reduce data transmission delay due to scheduling for each side link control period (PSCCH period), but also wasteful NACK transmission by the receiving terminal. Can be prevented from increasing.
 いくつかの実装において、送信端末(e.g., UE1A)は、PSSCH送信のためにリソース予約を行うか否かを自律的に決定してもよい。例えば、autonomous resource selection(sidelink transmission mode 2)の場合、送信端末は、自律的にPSSCH送信のために予約無線リソースをPSSCHのためのリソースプールから決定してもよい。 In some implementations, the transmitting terminal (e.g., UE 1A) may autonomously determine whether to make a resource reservation for PSSCH transmission. For example, in the case of autonomous resource selection (sidelink transmission 送信 mode 2), the transmitting terminal may autonomously determine a reserved radio resource for PSSCH transmission from the resource pool for PSSCH.
 さらに又はこれに代えて、送信端末(e.g., UE1A)は、PSSCH送信のためのリソース予約が許可されるか否かをeNB2から指示されてもよい。例えば、Autonomous resource selection(sidelink transmission mode 2)の場合、eNB2は、SIB 18又はRRCシグナリングでのPSCCHリソース設定又はPSSCHリソース設定において、PSSCH送信のためのリソース予約が許可されるか否かを送信端末に通知してもよい。Scheduled resource allocation(sidelink transmission mode 1)の場合、eNB2は、サイドリンク・スケジューリング・グラント(DCI format 5)において、PSSCH送信のためのリソース予約が許可されるか否かを送信端末に通知してもよい。また、送信端末は、リソース予約の要否を決定し、リソース予約の許可要求をSidelink BSRと共にeNB2に送信してもよい。 Further or alternatively, the transmission terminal (e.g., UE 1A) may be instructed from the eNB 2 whether or not resource reservation for PSSCH transmission is permitted. For example, in the case of Autonomous resource selection (sidelink transmission mode 2), the eNB 2 indicates whether or not resource reservation for PSSCH transmission is permitted in PSCCH resource setting or PSSCH resource setting in SIB18 or RRC signaling. May be notified. In the case of Scheduled resource allocation (sidelink transmission mode 1), eNB2 notifies the transmitting terminal whether or not resource reservation for PSSCH transmission is permitted in sidelink scheduling grant (DCI format 5) Good. Further, the transmission terminal may determine whether or not resource reservation is necessary, and may transmit a resource reservation permission request to the eNB 2 together with the Sidelink BSR.
 いくつかの実装において、受信端末は、予約無線リソースでの送信端末によるPSSCH送信が物理レイヤにおいて検出されたか否かを、予約無線リソースの受信電力に基づいて判定してもよい。具体的には、受信端末は、予約無線リソースの受信電力が所定の閾値を下回る場合に送信端末によるPSSCH送信が検出されていないと判定してもよい。これと反対に、受信端末は、予約無線リソースの受信電力が所定の閾値を超える場合に送信端末によるPSSCH送信が検出されたと判定してもよい。 In some implementations, the receiving terminal may determine whether PSSCH transmission by the transmitting terminal on the reserved radio resource has been detected in the physical layer based on the received power of the reserved radio resource. Specifically, the receiving terminal may determine that PSSCH transmission by the transmitting terminal has not been detected when the reception power of the reserved radio resource is below a predetermined threshold. Conversely, the receiving terminal may determine that PSSCH transmission by the transmitting terminal has been detected when the reception power of the reserved radio resource exceeds a predetermined threshold.
 図5は、本実施形態に係るPSCCH及びPSSCHの送信の一例を示す図である。図5は、さらに、受信端末から送信端末へのHARQフィードバック(ACK/NACK)の送信の例も示している。図5の例では、送信端末(e.g., UE1A)は、第j番目のサイドリンク制御期間(PSCCH期間)501内のPSCCHサブフレーム・プール511内の2つのサブフレームにおいてサイドリンク制御情報をPSCCH上で送信する(522及び523)。第j番目のサイドリンク制御期間501において送信されるサイドリンク制御情報522及び523は、第j番目のサイドリンク制御期間501内のPSSCHサブフレーム・プール512内の無線リソース531~534がPSSCH送信のための予約無線リソースに指定されることを示す。 FIG. 5 is a diagram illustrating an example of transmission of PSCCH and PSSCH according to the present embodiment. FIG. 5 also shows an example of transmission of HARQ feedback (ACK / NACK) from the receiving terminal to the transmitting terminal. In the example of FIG. 5, the transmitting terminal (eg, UE1A) transmits the side link control information on the PSCCH in two subframes in the PSCCH subframe pool 511 in the jth side link control period (PSCCH period) 501. (522 and 523). The side link control information 522 and 523 transmitted in the jth side link control period 501 indicates that the radio resources 531 to 534 in the PSSCH subframe pool 512 in the jth side link control period 501 To be designated as a reserved radio resource.
 図5の例では、送信端末(e.g., UE1A)は、4つの予約無線リソース531~534のうち、無線リソース533においてPSSCHを送信し、無線リソース531、532及び524ではPSSCHを送信しない。受信端末(e.g., UE1B)は、4つの予約無線リソース531~534の全てにおいて送信端末からのPSSCHの受信を試みる。受信端末は、無線リソース533において送信端末からのPSSCH送信を検出とともに、当該PSSCHで送信されたSL-SCHリソースブロックのデコード結果に関するポジティブ又はネガティブHARQフィードバック(ACK/NACK)を送信端末に送信する。一方、受信端末は、無線リソース531、532及び524において送信端末からのPSSCH送信が検出されないため、これらのPSSCH送信に関連付けられたトランスポートブロックに関するネガティブHARQフィードバックを送信しない。 In the example of FIG. 5, the transmitting terminal (e.g., UE 1A) transmits the PSSCH in the radio resource 533 among the four reserved radio resources 531 to 534, and does not transmit the PSSCH in the radio resources 531 532, and 524. The receiving terminal (e.g., UE 1B) attempts to receive PSSCH from the transmitting terminal in all four reserved radio resources 531 to 534. The receiving terminal detects PSSCH transmission from the transmitting terminal in the radio resource 533, and transmits positive or negative HARQ feedback (ACK / NACK) regarding the decoding result of the SL-SCH resource block transmitted by the PSSCH to the transmitting terminal. On the other hand, since the PSSCH transmission from the transmitting terminal is not detected in the radio resources 531, 532, and 524, the receiving terminal does not transmit negative HARQ feedback regarding the transport block associated with these PSSCH transmissions.
 図5の例では、第j番目のサイドリンク制御期間でのPSSCH送信に対するHARQフィードバック(ACK/NACK)の送信のために、次の第(j+1)番目のサイドリンク制御期間のPSCCHリソースが使用される。図5の例では、4つの予約無線リソース531~534は、4つのHARQフィードバック用の無線リソース541~544に関連付けられている。受信端末は、PSSCH送信が実際に行われた無線リソース533に関連付けられた無線リソース543においてHARQフィードバックを送信するが、PSSCH送信が行われなかった無線リソース531、532及び534に関連付けられた無線リソース541、542及び544ではHARQフィードバックを送信しない。これにより、実際には行われなかったPSSCH送信に関する無駄なHARQフィードバックが受信端末から送信端末に送信されることを抑制できる。 In the example of FIG. 5, for transmission of HARQ feedback (ACK / NACK) for PSSCH transmission in the jth side link control period, the PSCCH resource in the next (j + 1) th side link control period is used. In the example of FIG. 5, four reserved radio resources 531 to 534 are associated with four HARQ feedback radio resources 541 to 544. The receiving terminal transmits HARQ feedback in the radio resource 543 associated with the radio resource 533 where the PSSCH transmission is actually performed, but the radio resource associated with the radio resources 531, 532, and 534 where the PSSCH transmission is not performed. 541, 542 and 544 do not transmit HARQ feedback. Thereby, it is possible to suppress transmission of useless HARQ feedback related to PSSCH transmission that was not actually performed from the receiving terminal to the transmitting terminal.
 なお、図5に示されたHARQフィードバック用のサイドリンク無線リソース541~544の配置は一例に過ぎない。例えば、HARQフィードバック用の無線リソース541~544は、PSSCHリソースプール514から選択されてもよい。あるいは、HARQフィードバック送信のための無線リソース領域(リソースプール)がPSCCH及びPSSCHのためのリソースプールとは独立にサイドリンク制御期間内に定義されてもよい。 Note that the arrangement of the side link radio resources 541 to 544 for HARQ feedback shown in FIG. 5 is merely an example. For example, the radio resources 541 to 544 for HARQ feedback may be selected from the PSSCH resource pool 514. Alternatively, a radio resource region (resource pool) for HARQ feedback transmission may be defined within the side link control period independently of the resource pool for PSCCH and PSSCH.
 いくつかの実装において、送信端末は、HARQフィードバック用のサイドリンク無線リソースを明示的に指定するための情報要素をスケジューリング割当のためのサイドリンク制御情報(SCI format 0)に含めてもよい。なお、1つの無線リソース(リソースブロック)において複数のUE1(受信端末)が同時にHARQフィードバックを送信できるようにするために、PUCCH format 1a、1b及び3でのHARQフィードバック送信スキームと同様に、本実施形態に係るHARQフィードバック送信に直交拡散コード(orthogonal spreading codes)を用いた時間ドメイン拡散が適用されてもよい。この場合、送信端末によって指定されるHARQフィードバック用の無線リソースは、サブフレーム及びリソースブロックに加えて拡散コードを含んでもよい。 In some implementations, the transmitting terminal may include an information element for explicitly designating the side link radio resource for HARQ feedback in the side link control information (SCI format 0) for scheduling assignment. In order to allow multiple UEs 1 (receiving terminals) to simultaneously transmit HARQ feedback in one radio resource (resource block), this implementation is performed in the same manner as the HARQ feedback transmission scheme in PUCCHPUformat 1a, 1b and 3. Time domain spreading using orthogonal spreading codes may be applied to the HARQ feedback transmission according to the form. In this case, the radio resource for HARQ feedback specified by the transmitting terminal may include a spreading code in addition to the subframe and the resource block.
 これに代えて、いくつかの実装において、HARQフィードバック送信用のサイドリンク無線リソースの位置は、スケジューリング割り当てを示すサイドリンク制御情報521及び522が送信される無線リソース位置と関連付けて定義されてもよい。これにより、受信端末は、無線リソース位置からHARQフィードバック送信を行うべき無線リソース位置を、サイドリンク制御情報521及び522が送信された無線リソース位置から導出できる。例えば、サイドリンク制御情報521及び522の送信に使用された第j番目のサイドリンク制御期間のPSCCHリソースプール内のサブフレーム及びリソースブロックに対応する第(j+1)番目のサイドリンク制御期間のサブフレーム及びリソースブロックがHARQフィードバック送信のために使用されてもよい。 Alternatively, in some implementations, the location of the side link radio resource for HARQ feedback transmission may be defined in association with the radio resource location to which side link control information 521 and 522 indicating scheduling assignment is transmitted. . Thereby, the receiving terminal can derive the radio resource position where HARQ feedback transmission should be performed from the radio resource position from the radio resource position where the side link control information 521 and 522 are transmitted. For example, the (j + 1) th side link control period corresponding to the subframe and the resource block in the PSCCH resource pool of the jth side link control period used for transmission of the side link control information 521 and 522 Subframes and resource blocks may be used for HARQ feedback transmission.
 これに代えて、いくつかの実装において、HARQフィードバック送信用のサイドリンク無線リソースの位置は、PSSCH送信に使用される無線リソースの位置と関連付けて定義されてもよい。これにより、受信端末は、無線リソース位置からHARQフィードバック送信を行うべき無線リソース位置を、PSSCH送信に使用された無線リソースの位置から導出できる。例えば、PSSCH送信に使用された無線リソース533から所定サブフレーム後の無線リソース(サブフレーム若しくはサブフレーム及びリソースブロック)においてHARQフィードバックが送信されてもよい。 Alternatively, in some implementations, the location of the side link radio resource for HARQ feedback transmission may be defined in association with the location of the radio resource used for PSSCH transmission. Accordingly, the receiving terminal can derive the radio resource position where HARQ feedback transmission should be performed from the radio resource position from the position of the radio resource used for PSSCH transmission. For example, HARQ feedback may be transmitted in radio resources (subframes or subframes and resource blocks) after a predetermined subframe from radio resources 533 used for PSSCH transmission.
 図6は、本実施形態に係る送信端末(e.g., UE1A)の動作の一例(処理600)を示すフローチャートである。ブロック601では、送信端末は、第j番目のサイドリンク制御期間(PSCCH期間)において、1又は複数の予約PSSCHリソースを示すサイドリンク制御情報(SCI)を受信端末(e.g., UE1B)に送信する。ブロック602では、送信端末は、第j番目のサイドリンク制御期間(PSCCH期間)において当該受信端末宛ての送信データが発生した場合、当該送信データを包含するSL-SCHトランスポートブロックを運ぶPSSCHを1又は複数の予約PSSCHリソースのいずれか又は全てにおいて送信する。 FIG. 6 is a flowchart showing an example of operation (process 600) of the transmission terminal (e.g., UE1A) according to this embodiment. In block 601, the transmitting terminal transmits side link control information (SCI) indicating one or a plurality of reserved PSSCH resources to the receiving terminal (e.g., UE1B) in the jth side link control period (PSCCH period). In block 602, when transmission data addressed to the receiving terminal is generated in the jth side link control period (PSCCH period), the transmitting terminal sets a PSSCH carrying 1 SL-SCH transport block including the transmission data to 1 Or, it is transmitted in any or all of a plurality of reserved PSSCH resources.
 図7は、本実施形態に係る受信端末(e.g., UE1B)の動作の一例(処理700)を示すフローチャートである。ブロック701では、受信端末は、第j番目のサイドリンク制御期間(PSCCH期間)において、1又は複数の予約PSSCHリソースを示すサイドリンク制御情報(SCI)を送信端末(e.g., UE1A)から受信する。ブロック702では、受信端末は、第j番目のサイドリンク制御期間(PSCCH期間)内の各予約PSSCHリソースにおいて、PSSCHの受信を試みる。 FIG. 7 is a flowchart showing an example (processing 700) of the operation of the receiving terminal (e.g., UE1B) according to the present embodiment. In block 701, the receiving terminal receives side link control information (SCI) indicating one or a plurality of reserved PSSCH resources from the transmitting terminal (e.g., UE1A) in the jth side link control period (PSCCH period). In block 702, the receiving terminal attempts to receive PSSCH in each reserved PSSCH resource within the jth side link control period (PSCCH period).
 1つのSL-SCHトランスポートブロックの送信に対応する1又は複数の予約PSSCHリソースのうち少なくとも1つで送信端末からPSSCHを受信した場合(ブロック703でYES)、受信端末は、受信端末のMACレイヤがトランスポートブロックを上手くデコードできたか否かに応じて、ポジティブ又はネガティブHARQフィードバックを送信端末に送信する。 When the PSSCH is received from the transmitting terminal using at least one of one or a plurality of reserved PSSCH resources corresponding to transmission of one SL-SCH transport block (YES in block 703), the receiving terminal transmits the MAC layer of the receiving terminal. Sends positive or negative HARQ feedback to the sending terminal depending on whether the transport block is successfully decoded.
 これに対して、1つのSL-SCHトランスポートブロックの送信に対応する1又は複数の予約PSSCHリソースの全てにおいて送信端末からのPSSCH送信を検出できなかった場合(ブロック703でNO)、受信端末は、これら1又は複数の予約無線リソースに関して(ネガティブ)HARQフィードバックを送信しない。言い換えると、この場合に、受信端末は、これら1又は複数の予約無線リソースがPSSCH送信のために使用されなかったとみなす。 On the other hand, when PSSCH transmission from the transmitting terminal cannot be detected in all of one or a plurality of reserved PSSCH resources corresponding to transmission of one SL-SCH transport block (NO in block 703), the receiving terminal No (negative) HARQ feedback is sent for these one or more reserved radio resources. In other words, in this case, the receiving terminal considers that these one or more reserved radio resources are not used for PSSCH transmission.
<第2の実施形態>
 本実施形態では、第1の実施形態で説明されたサイドリンク送信の変形例が説明される。具体的には、送信端末がPSSCH送信ためのリソース予約を行うか否かを動的に変更するための手順が説明される。本実施形態に係る無線通信システムの構成例は図4と同様である。
<Second Embodiment>
In the present embodiment, a modification of the side link transmission described in the first embodiment will be described. Specifically, a procedure for dynamically changing whether or not the transmission terminal performs resource reservation for PSSCH transmission is described. A configuration example of the wireless communication system according to the present embodiment is the same as that shown in FIG.
 すでに説明したように、送信端末(e.g., UE1A)は、PSSCH送信のためにリソース予約を行うか否かを自律的に決定してもよい。いくつかの実装において、送信端末は、アプリケーションプログラムが必要とする遅延要件に応じてPSSCH送信ためのリソース予約を行うか否かを決定するよう構成されてもよい。具体的には、送信端末は、厳しい遅延要件(低遅延)を要求するアプリケーションが送信端末において起動又は実行されている場合に、PSSCH送信ためのリソース予約を行ってもよい。これにより、当該アプリケーションの送信データが発生したら直ぐに送信端末から受信端末に送信できる状態を確保しながら、実際には行われなかったPSSCH送信に関する無駄なHARQフィードバックが受信端末から送信端末に送信されることを抑制できる。 As already described, the transmitting terminal (e.g., UE 1A) may autonomously determine whether or not to perform resource reservation for PSSCH transmission. In some implementations, the transmitting terminal may be configured to determine whether to make a resource reservation for PSSCH transmission according to a delay requirement required by the application program. Specifically, the transmission terminal may perform resource reservation for PSSCH transmission when an application that requests strict delay requirements (low delay) is activated or executed in the transmission terminal. As a result, wasteful HARQ feedback related to PSSCH transmission that was not actually performed is transmitted from the receiving terminal to the transmitting terminal while ensuring a state where transmission from the transmitting terminal to the receiving terminal can be performed as soon as transmission data of the application is generated. This can be suppressed.
 図8は、本実施形態に係る送信端末の動作の一例(処理800)を示すフローチャートである。ブロック801では、送信端末は、アプリケーションプログラムが必要とする遅延要件に応じてリソース予約を行うか否かを決定する。そして、送信端末は、リソース予約の実行を決定した場合に、各サイドリンク制御期間において、1又は複数の予約PSSCHリソースを示すサイドリンク制御情報(SCI)を受信端末に送信する。 FIG. 8 is a flowchart showing an example (process 800) of the operation of the transmission terminal according to the present embodiment. In block 801, the transmitting terminal determines whether to make a resource reservation according to the delay requirement required by the application program. When the transmission terminal determines to execute resource reservation, the transmission terminal transmits side link control information (SCI) indicating one or a plurality of reserved PSSCH resources to the reception terminal in each side link control period.
 あるいは、いくつかの実装において、送信端末(e.g., UE1A)は、eNB2からの指示にしたがって予約無線リソースの指定を行うか否かを決定するよう構成されてもよい。例えば、送信端末は、eNB2のセル21内で行われるサイドリンク送信の数(又はサイドリンク送信端末の数)が所定値を超える場合に、eNB2からの指示にしたがって予約無線リソースを指定してもよい。言い換えると、eNB2は、セル21内で行われるサイドリンク送信の数が所定値を超える場合に、PSSCH送信のためのリソース予約が許可されることを示す通知を送信端末に送信してもよい。リソース予約を行わない場合には、サイドリンク送信の数に応じてNACKの送信数が増加する可能性があり、複数の送信端末が同一のリソースでNACK送信を行う可能性がある場合には、NACK同士の衝突の可能性が増加する。これに対して、サイドリンクの送信数が多い場合にeNB2が送信端末にリソース予約を実行させることで、不要なNACKの送信を抑制させ、NACK同士の衝突を低減できる。すでに説明したように、eNB2は、リソース予約の許可通知をSIB 18又はRRCシグナリングでのPSCCHリソース設定又はPSSCHリソース設定に含めてもよいし、リソース予約の許可通知をサイドリンク・スケジューリング・グラント(DCI format 5)に含めてもよい。 Alternatively, in some implementations, the transmitting terminal (e.g., UE 1A) may be configured to determine whether or not to designate a reserved radio resource according to an instruction from the eNB 2. For example, even if the number of side link transmissions (or the number of side link transmission terminals) performed in the cell 21 of the eNB2 exceeds a predetermined value, the transmission terminal specifies the reserved radio resource according to the instruction from the eNB2. Good. In other words, when the number of side link transmissions performed in the cell 21 exceeds a predetermined value, the eNB 2 may transmit a notification indicating that resource reservation for PSSCH transmission is permitted to the transmission terminal. When resource reservation is not performed, the number of NACK transmissions may increase according to the number of side link transmissions, and when multiple transmission terminals may perform NACK transmission with the same resource, The possibility of collision between NACKs increases. On the other hand, when the transmission number of the side link is large, the eNB 2 causes the transmission terminal to perform resource reservation, thereby suppressing unnecessary NACK transmission and reducing collisions between NACKs. As described above, the eNB 2 may include the resource reservation permission notification in the PSCCH resource setting or the PSSCH resource setting in the SIB18 or RRC signaling, and the resource reservation permission notification may be included in the side link scheduling grant (DCI). It may be included in format IV5).
 図9は、本実施形態に係るeNB2の動作の一例(処理900)を示すフローチャートである。ブロック901では、eNB2は、セル21内で行われるサイドリンク送信(D2D送信)の数が所定値を超えることを検出する。ブロック902では、eNB2は、PSSCH送信のためのリソース予約の使用が許可されることを送信端末に通知する。 FIG. 9 is a flowchart showing an example of operation of the eNB 2 (processing 900) according to the present embodiment. In block 901, the eNB 2 detects that the number of side link transmissions (D2D transmissions) performed in the cell 21 exceeds a predetermined value. In block 902, the eNB2 notifies the transmitting terminal that the use of resource reservation for PSSCH transmission is permitted.
<第3の実施形態>
 本実施形態では、第1の実施形態で説明されたサイドリンク送信の変形例が説明される。具体的には、PSSCH送信のための複数の予約無線リソースに関連付けられるHARQフィードバック用の無線リソースの数を動的に決定する手順が説明される。本実施形態に係る無線通信システムの構成例は図4と同様である。
<Third Embodiment>
In the present embodiment, a modification of the side link transmission described in the first embodiment will be described. Specifically, a procedure for dynamically determining the number of HARQ feedback radio resources associated with a plurality of reserved radio resources for PSSCH transmission will be described. A configuration example of the wireless communication system according to the present embodiment is the same as that shown in FIG.
 本実施形態に係る送信端末(e.g., UE1A)は、予約無線リソースにおいて送信されるSL-SCHトランスポートブロックのデコード結果に関するポジティブ又はネガティブHARQフィードバックを受信端末(e.g., UE1B)から送信端末に送信するために確保される無線リソースの数を、送信端末における送信データの発生頻度に応じて調整するよう構成されている。より具体的に述べると、送信端末は、送信データの発生頻度が大きいほど、予約無線リソース数と同じかこれに近い数のHARQフィードバック送信用リソースを確保すればよい。これとは反対に、送信端末は、送信データの発生頻度が小さいほど、予約無線リソース数に比べて少ない数のHARQフィードバック送信用リソースを確保すればよい。 The transmitting terminal (eg, UE1A) according to the present embodiment transmits positive or negative HARQ feedback related to the decoding result of the SL-SCH transport block transmitted in the reserved radio resource from the receiving terminal (eg, UE1B) to the transmitting terminal. Therefore, the number of radio resources reserved for this purpose is configured to be adjusted according to the frequency of occurrence of transmission data in the transmission terminal. More specifically, the transmitting terminal may ensure the number of HARQ feedback transmission resources that is equal to or close to the number of reserved radio resources as the transmission data generation frequency increases. On the other hand, the transmission terminal needs to secure a smaller number of HARQ feedback transmission resources compared to the number of reserved radio resources as the transmission data generation frequency decreases.
 具体例を用いて説明する。図5の例では、第j番目のサイドリンク制御期間501において4つの予約無線リソース531~534が指定され、これら4つの予約無線リソース531~534に対応する4つのHARQフィードバック用無線リソース541~544が確保されている。しかしながら、例えば、遅延要件は厳しいがデータ発生頻度が高くないアプリケーションが送信端末にて実行される場合、数多くの予約無線リソースの指定が必要とされるが、これらの予約無線リソースのうち実際のPSSCH送信に使用されるリソースは1つ又はいくつかのみであるかもしれない。このようなケースにおいて全ての予約無線リソースでPSSCH送信が行われることを想定してHQRQフィードバック用無線リソースを確保することは無線リソースの浪費を招くおそれがある。 This will be explained using a specific example. In the example of FIG. 5, four reserved radio resources 531 to 534 are designated in the j-th side link control period 501 and four HARQ feedback radio resources 541 to 544 corresponding to these four reserved radio resources 531 to 534 are designated. Is secured. However, for example, when an application with strict delay requirements but not high data generation frequency is executed at the transmitting terminal, it is necessary to specify a large number of reserved radio resources. Of these reserved radio resources, the actual PSSCH There may be only one or several resources used for transmission. In such a case, assuming that PSSCH transmission is performed with all reserved radio resources, securing radio resources for HQRQ feedback may lead to waste of radio resources.
 したがって、例えば、遅延要件は厳しいがサイドリンク制御期間当たりのデータ発生頻度が約1回(1TTI又は1サブフレーム)であるアプリケーションが実行される場合、送信端末は、一定間隔(例えば2 msec)で数多くの予約無線リソースを指定するが、これらの予約無線リソースに関連付けられるHARQフィードバック用の無線リソースとして1又は2つの無線リソースのみを確保してもよい。このような動作によれば、必要な数のHARQフィードバック用の無線リソースを動的に確保しつつ、無線リソースの浪費を抑制できる。 Therefore, for example, when an application is executed in which the delay requirement is strict but the frequency of data generation per side link control period is about once (1 TTI or 1 subframe), the transmitting terminal is set at a constant interval (for example, 2 msec). A large number of reserved radio resources are specified, but only one or two radio resources may be secured as radio resources for HARQ feedback associated with these reserved radio resources. According to such an operation, waste of radio resources can be suppressed while dynamically securing a necessary number of radio resources for HARQ feedback.
 なお、複数の予約無線リソースにおいて複数のSL-SCHトランスポートブロックの送信(つまり、複数回のPSSCH送信)が発生する場合、SL-SCHトランスポートブロックの送信順序に従って複数のHARQフォードバック用無線リソースの使用順序が決定されてもよい。すなわち、受信端末は、受信した複数のSL-SCHトランスポートブロックに関する複数のHARQフィードバックをこれら複数のSL-SCHトランスポートブロックの送信順序(受信順序)に基づいて定まる複数のHARQ用無線リソースにおいて送信すればよい。 When multiple SL-SCH transport block transmissions (that is, multiple PSSCH transmissions) occur in multiple reserved radio resources, multiple HARQ Fordback radio resources according to the transmission order of SL-SCH transport blocks The order of use may be determined. That is, the receiving terminal transmits a plurality of HARQ feedbacks related to the received plurality of SL-SCH transport blocks in a plurality of HARQ radio resources determined based on the transmission order (reception order) of the plurality of SL-SCH transport blocks. do it.
 最後に、上述の複数の実施形態に係るUE1の構成例について説明する。図10は、UE1の構成例を示すブロック図である。上述した送信端末としてのUE1及び受信端末としてのUE1はいずれも図10に示される構成を有してもよい。Radio Frequency(RF)トランシーバ1001は、eNB2と通信するためにアナログRF信号処理を行う。RFトランシーバ1001により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1001は、アンテナ1002及びベースバンドプロセッサ1003と結合される。すなわち、RFトランシーバ1001は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1003から受信し、送信RF信号を生成し、送信RF信号をアンテナ1002に供給する。また、RFトランシーバ1001は、アンテナ1002によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1003に供給する。 Finally, a configuration example of the UE 1 according to the above-described plurality of embodiments will be described. FIG. 10 is a block diagram illustrating a configuration example of UE1. Both UE1 as the transmission terminal and UE1 as the reception terminal described above may have the configuration shown in FIG. The Radio-Frequency (RF) transceiver 1001 performs analog RF signal processing in order to communicate with the eNB 2. Analog RF signal processing performed by the RF transceiver 1001 includes frequency up-conversion, frequency down-conversion, and amplification. RF transceiver 1001 is coupled to antenna 1002 and baseband processor 1003. That is, the RF transceiver 1001 receives modulation symbol data (or OFDM symbol data) from the baseband processor 1003, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1002. Further, the RF transceiver 1001 generates a baseband received signal based on the received RF signal received by the antenna 1002 and supplies this to the baseband processor 1003.
 ベースバンドプロセッサ1003は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。 The baseband processor 1003 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication. Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) 生成 transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding. , (E) modulation (symbol mapping) / demodulation, and (f) generation of OFDM symbol data (baseband OFDM signal) by Inverse Fast Fourier Transform (IFFT). On the other hand, control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
 例えば、LTEおよびLTE-Advancedの場合、ベースバンドプロセッサ1003によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1003によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。 For example, in the case of LTE and LTE-Advanced, the digital baseband signal processing by the baseband processor 1003 includes signal processing of Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can. The control plane processing by the baseband processor 1003 may include Non-Access 処理 Stratum (NAS) protocol, RRC protocol, and MAC CE processing.
 ベースバンドプロセッサ1003は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)、又はMicro Processing Unit(MPU))を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1004と共通化されてもよい。 The baseband processor 1003 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)). In this case, a protocol stack processor that performs control plane processing may be shared with an application processor 1004 described later.
 アプリケーションプロセッサ1004は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1004は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1004は、メモリ1006又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、UE1の各種機能を実現する。 Application processor 1004 is also called a CPU, MPU, microprocessor, or processor core. The application processor 1004 may include a plurality of processors (a plurality of processor cores). The application processor 1004 is a system software program (Operating System (OS)) read from the memory 1006 or a memory (not shown) and various application programs (for example, call application, web browser, mailer, camera operation application, music playback) Various functions of UE1 are realized by executing (application).
 いくつかの実装において、図10に破線(1005)で示されているように、ベースバンドプロセッサ1003及びアプリケーションプロセッサ1004は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1003及びアプリケーションプロセッサ1004は、1つのSystem on Chip(SoC)デバイス1005として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。 In some implementations, the baseband processor 1003 and the application processor 1004 may be integrated on a single chip, as indicated by the dashed line (1005) in FIG. In other words, the baseband processor 1003 and the application processor 1004 may be implemented as one System on Chip (SoC) device 1005. An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
 メモリ1006は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1006は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1006は、ベースバンドプロセッサ1003、アプリケーションプロセッサ1004、及びSoC1005からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1006は、ベースバンドプロセッサ1003内、アプリケーションプロセッサ1004内、又はSoC1005内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1006は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。 The memory 1006 is a volatile memory, a nonvolatile memory, or a combination thereof. The memory 1006 may include a plurality of physically independent memory devices. The volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof. The non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof. For example, the memory 1006 may include an external memory device accessible from the baseband processor 1003, the application processor 1004, and the SoC 1005. The memory 1006 may include a built-in memory device integrated within the baseband processor 1003, the application processor 1004, or the SoC 1005. Further, the memory 1006 may include a memory in a Universal Integrated Circuit Card (UICC).
 メモリ1006は、上述の複数の実施形態で説明されたUE1による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、ベースバンドプロセッサ1003又はアプリケーションプロセッサ1004は、当該ソフトウェアモジュールをメモリ1006から読み出して実行することで、上述の実施形態で説明されたUE1の処理を行うよう構成されてもよい。 The memory 1006 may store a software module (computer program) including an instruction group and data for performing processing by the UE 1 described in the above-described plurality of embodiments. In some implementations, the baseband processor 1003 or the application processor 1004 may be configured to perform the processing of the UE 1 described in the above-described embodiment by reading the software module from the memory 1006 and executing the software module.
 図11は、上述の実施形態に係る基地局(eNB)2の構成例を示すブロック図である。図11を参照すると、基地局2は、RFトランシーバ1101、ネットワークインターフェース1103、プロセッサ1104、及びメモリ1105を含む。RFトランシーバ1101は、無線端末1と通信するためにアナログRF信号処理を行う。RFトランシーバ1101は、複数のトランシーバを含んでもよい。RFトランシーバ1101は、アンテナ1102及びプロセッサ1104と結合される。RFトランシーバ1101は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ1104から受信し、送信RF信号を生成し、送信RF信号をアンテナ1102に供給する。また、RFトランシーバ1101は、アンテナ1102によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1104に供給する。 FIG. 11 is a block diagram illustrating a configuration example of the base station (eNB) 2 according to the above-described embodiment. Referring to FIG. 11, the base station 2 includes an RF transceiver 1101, a network interface 1103, a processor 1104, and a memory 1105. The RF transceiver 1101 performs analog RF signal processing to communicate with the wireless terminal 1. The RF transceiver 1101 may include multiple transceivers. RF transceiver 1101 is coupled to antenna 1102 and processor 1104. The RF transceiver 1101 receives modulation symbol data (or OFDM symbol data) from the processor 1104, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1102. Further, the RF transceiver 1101 generates a baseband received signal based on the received RF signal received by the antenna 1102 and supplies this to the processor 1104.
 ネットワークインターフェース1103は、ネットワークノード(e.g., Mobility Management Entity (MME)およびServing Gateway (S-GW))と通信するために使用される。ネットワークインターフェース1103は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。 The network interface 1103 is used to communicate with network nodes (e.g., Mobility Management Entity (MME) and Serving Gateway (S-GW)). The network interface 1103 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
 プロセッサ1104は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1104によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、プロセッサ1104によるコントロールプレーン処理は、S1プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。 The processor 1104 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication. For example, in the case of LTE and LTE-Advanced, the digital baseband signal processing by the processor 1104 may include signal processing of a PDCP layer, an RLC layer, a MAC layer, and a PHY layer. Further, the control plane processing by the processor 1104 may include S1 protocol, RRC protocol, and MAC-CE processing.
 プロセッサ1104は、複数のプロセッサを含んでもよい。例えば、プロセッサ1104は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。 The processor 1104 may include a plurality of processors. For example, the processor 1104 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
 メモリ1105は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。メモリ1105は、プロセッサ1104から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1104は、ネットワークインターフェース1103又は図示されていないI/Oインタフェースを介してメモリ1105にアクセスしてもよい。 The memory 1105 is configured by a combination of a volatile memory and a nonvolatile memory. The volatile memory is, for example, SRAM or DRAM or a combination thereof. The non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof. Memory 1105 may include storage located remotely from processor 1104. In this case, the processor 1104 may access the memory 1105 via the network interface 1103 or an I / O interface not shown.
 メモリ1105は、上述の複数の実施形態で説明された基地局2による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ1104は、当該ソフトウェアモジュールをメモリ1105から読み出して実行することで、上述の実施形態で説明された基地局2の処理を行うよう構成されてもよい。 The memory 1105 may store a software module (computer program) including an instruction group and data for performing processing by the base station 2 described in the above embodiments. In some implementations, the processor 1104 may be configured to perform the processing of the base station 2 described in the above-described embodiment by reading the software module from the memory 1105 and executing the software module.
 図10及び図11を用いて説明したように、上述の実施形態に係るUE1及びeNB2が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 As described with reference to FIGS. 10 and 11, each of the processors included in the UE 1 and the eNB 2 according to the above-described embodiment includes an instruction group for causing a computer to execute the algorithm described with reference to the drawings. Run multiple programs. The program can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)). The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
<その他の実施形態>
 上述の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。
<Other embodiments>
The above-described embodiments may be implemented independently or may be implemented in combination as appropriate.
 上述の実施形態は、LTE-Advanced 及びその改良に限定されるものではなく、他のモバイル通信ネットワーク又はシステムでのD2D通信に適用されてもよい。 The embodiment described above is not limited to LTE-Advanced IV and its improvements, but may be applied to D2D communication in other mobile communication networks or systems.
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。 Furthermore, the above-described embodiments are merely examples relating to application of the technical idea obtained by the present inventors. That is, the technical idea is not limited to the above-described embodiment, and various changes can be made.
 この出願は、2015年7月29日に出願された日本出願特願2015-149321を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-149321 filed on July 29, 2015, the entire disclosure of which is incorporated herein.
1 UE
2 eNB
1001 radio frequency(RF)トランシーバ
1003 ベースバンドプロセッサ
1004 アプリケーションプロセッサ
1006 メモリ
1101 RFトランシーバ
1104 プロセッサ
1105 メモリ
1 UE
2 eNB
1001 radio frequency (RF) transceiver 1003 baseband processor 1004 application processor 1006 memory 1101 RF transceiver 1104 processor 1105 memory

Claims (26)

  1.  受信端末であって、
     少なくとも1つの無線トランシーバと、
     前記少なくとも1つの無線トランシーバに結合され、周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに送信端末からデータを受信するための物理レイヤ及びMedium Access Control(MAC)レイヤとして動作するよう構成された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、第1のD2D制御期間内において前記送信端末から物理制御チャネル上で送信されるD2D制御情報を受信するよう構成され、前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示し、
     前記少なくとも1つのプロセッサは、前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの送信が前記物理レイヤにおいて検出されなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを前記MACレイヤより前記送信端末に送信しないよう構成されている、
    受信端末。
    A receiving terminal,
    At least one wireless transceiver;
    As a physical layer and a medium access control (MAC) layer coupled to the at least one wireless transceiver, for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period At least one processor configured to operate;
    With
    The at least one processor is configured to receive D2D control information transmitted on the physical control channel from the transmitting terminal within a first D2D control period, and the D2D control information is the first D2D control period. One or more of the radio resources are designated as reserved radio resources from which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal;
    The at least one processor may provide negative feedback regarding a transport block associated with the physical data channel when transmission of the physical data channel from the transmitting terminal on the reserved radio resource is not detected in the physical layer. Is configured not to transmit to the transmitting terminal from the MAC layer,
    Receiving terminal.
  2.  前記少なくとも1つのプロセッサは、前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの送信が前記物理レイヤにおいて検出されたが、前記物理データチャネル上で受信された前記トランスポートブロックが前記MACレイヤにおいてうまくデコードされない場合に、前記ネガティブ・フィードバックを前記送信端末に送信するよう構成されている、
    請求項1に記載の受信端末。
    The at least one processor has detected transmission of the physical data channel from the transmitting terminal in the reserved radio resource in the physical layer, but the transport block received on the physical data channel is the MAC layer Configured to transmit the negative feedback to the transmitting terminal if not successfully decoded at
    The receiving terminal according to claim 1.
  3.  前記少なくとも1つのプロセッサは、前記物理データチャネルの送信が前記物理レイヤにおいて検出されたか否かを前記1又は複数の無線リソースの受信電力に基づいて判定するよう構成されている、
    請求項1又は2に記載の受信端末。
    The at least one processor is configured to determine whether transmission of the physical data channel is detected in the physical layer based on received power of the one or more radio resources;
    The receiving terminal according to claim 1 or 2.
  4.  前記少なくとも1つのプロセッサは、前記受信電力が所定値を下回る場合に、前記物理データチャネルの送信が前記物理レイヤにおいて検出されていないと判定するよう構成されている、
    請求項3に記載の受信端末。
    The at least one processor is configured to determine that transmission of the physical data channel is not detected in the physical layer when the received power is below a predetermined value;
    The receiving terminal according to claim 3.
  5.  各D2D制御期間は、前記物理制御チャネルの送信のために使用可能な複数のサブフレームから成る第1のサブフレーム・プールと、前記物理制御チャネル上で送信される前記D2D制御情報に従う前記物理データチャネルの送信のために使用可能な複数のサブフレームから成る第2のサブフレーム・プールを含む、
    請求項1~4のいずれか1項に記載の受信端末。
    Each D2D control period includes a first subframe pool composed of a plurality of subframes usable for transmission of the physical control channel, and the physical data according to the D2D control information transmitted on the physical control channel. Including a second subframe pool of subframes usable for transmission of the channel;
    The receiving terminal according to any one of claims 1 to 4.
  6.  周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに送信端末からデータを受信する受信端末における方法であって、
     第1のD2D制御期間内において送信端末から物理制御チャネル上で送信されるD2D制御情報を受信すること、前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示す;
     前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの受信を物理レイヤにおいて試行すること;及び
     前記物理データチャネルの送信が前記物理レイヤにおいて検出されなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックをMedium Access Control(MAC)レイヤより前記送信端末に送信しないこと、
    を備える方法。
    A method in a receiving terminal for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period,
    Receiving D2D control information transmitted on a physical control channel from a transmitting terminal within a first D2D control period; the D2D control information includes one or more radio resources within the first D2D control period; Indicates that a physical data channel is designated as a reserved radio resource that may be transmitted from the transmitting terminal to the receiving terminal;
    Attempting to receive at the physical layer the physical data channel from the transmitting terminal on the reserved radio resource; and if transmission of the physical data channel is not detected at the physical layer, associated with the physical data channel. Do not send negative feedback on the transport block from the Medium Access Control (MAC) layer to the sending terminal,
    A method comprising:
  7.  前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの送信が前記物理レイヤにおいて検出されたが、前記物理データチャネル上で受信された前記トランスポートブロックが前記MACレイヤにおいてうまくデコードされない場合に、前記ネガティブ・フィードバックを前記送信端末に送信することをさらに備える、
    請求項6に記載の方法。
    When transmission of the physical data channel from the transmitting terminal in the reserved radio resource is detected in the physical layer, but the transport block received on the physical data channel is not successfully decoded in the MAC layer, Further comprising transmitting the negative feedback to the transmitting terminal;
    The method of claim 6.
  8.  前記物理データチャネルの送信が前記物理レイヤにおいて検出されたか否かを前記1又は複数の無線リソースの受信電力に基づいて判定することをさらに備える、
    請求項6又は7に記載の方法。
    Further comprising determining whether transmission of the physical data channel is detected in the physical layer based on received power of the one or more radio resources;
    The method according to claim 6 or 7.
  9.  周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに送信端末からデータを受信する受信端末における方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、
     第1のD2D制御期間内において送信端末から物理制御チャネル上で送信されるD2D制御情報を受信すること、前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示す;
     前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの受信を物理レイヤにおいて試行すること;及び
     前記物理データチャネルの送信が前記物理レイヤにおいて検出されなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックをMedium Access Control(MAC)レイヤより前記送信端末に送信しないこと、
    を備える、
    非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a program for causing a computer to perform a method in a receiving terminal for receiving data from a transmitting terminal without going through a base station according to a periodic device-to-device (D2D) control period There,
    The method
    Receiving D2D control information transmitted on a physical control channel from a transmitting terminal within a first D2D control period; the D2D control information includes one or more radio resources within the first D2D control period; Indicates that a physical data channel is designated as a reserved radio resource that may be transmitted from the transmitting terminal to the receiving terminal;
    Attempting to receive at the physical layer the physical data channel from the transmitting terminal on the reserved radio resource; and if transmission of the physical data channel is not detected at the physical layer, associated with the physical data channel. Do not send negative feedback on the transport block from the Medium Access Control (MAC) layer to the sending terminal,
    Comprising
    A non-transitory computer readable medium.
  10.  送信端末であって、
     少なくとも1つの無線トランシーバと、
     前記少なくとも1つの無線トランシーバに結合され、周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずに受信端末にデータを送信するよう構成された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信するよう構成され、
     前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示し、
     前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する、
    送信端末。
    A sending terminal,
    At least one wireless transceiver;
    At least one processor coupled to the at least one wireless transceiver and configured to transmit data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period;
    With
    The at least one processor is configured to transmit D2D control information to the receiving terminal on a physical control channel within a first D2D control period;
    The D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show
    The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback,
    Sending terminal.
  11.  前記D2D制御情報による前記予約無線リソースの指定は、前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの送信が行われたが、前記物理データチャネル上で受信された前記トランスポートブロックが前記受信端末においてうまくデコードされない場合に、前記ネガティブ・フィードバックを前記送信端末に送信するように前記受信端末を制御する、
    請求項10に記載の送信端末。
    In the designation of the reserved radio resource by the D2D control information, the physical data channel is transmitted from the transmitting terminal in the reserved radio resource, but the transport block received on the physical data channel is Controlling the receiving terminal to transmit the negative feedback to the transmitting terminal if not successfully decoded at the receiving terminal;
    The transmission terminal according to claim 10.
  12.  前記少なくとも1つのプロセッサは、アプリケーションプログラムが必要とする遅延要件に応じて前記予約無線リソースの指定を行うか否かを決定するよう構成されている、
    請求項10又は11に記載の送信端末。
    The at least one processor is configured to determine whether to designate the reserved radio resource according to a delay requirement required by an application program;
    The transmission terminal according to claim 10 or 11.
  13.  前記少なくとも1つのプロセッサは、前記基地局からの指示にしたがって前記予約無線リソースの指定を行うか否かを決定するよう構成されている、
    請求項10~12のいずれか1項に記載の送信端末。
    The at least one processor is configured to determine whether to designate the reserved radio resource according to an instruction from the base station;
    The transmitting terminal according to any one of claims 10 to 12.
  14.  前記少なくとも1つのプロセッサは、前記基地局のセル内で行われるD2D送信の数が所定値を超える場合に、前記基地局からの指示にしたがって前記予約無線リソースを指定するよう構成されている、
    請求項10~12のいずれか1項に記載の送信端末。
    The at least one processor is configured to specify the reserved radio resource according to an instruction from the base station when the number of D2D transmissions performed in a cell of the base station exceeds a predetermined value.
    The transmitting terminal according to any one of claims 10 to 12.
  15.  前記予約無線リソースは、複数の無線リソースを含み、
     前記少なくとも1つのプロセッサは、前記予約無線リソースにおいて送信されるトランスポートブロックに関するポジティブ又はネガティブ・フィードバックを前記受信端末から前記送信端末に送信するために確保される無線リソースの数を、前記送信端末における送信データの発生頻度に応じて調整するよう構成されている、
    請求項10~14のいずれか1項に記載の送信端末。
    The reserved radio resource includes a plurality of radio resources,
    The at least one processor determines the number of radio resources reserved for transmitting positive or negative feedback regarding a transport block transmitted in the reserved radio resource from the receiving terminal to the transmitting terminal. It is configured to adjust according to the frequency of transmission data,
    The transmitting terminal according to any one of claims 10 to 14.
  16.  周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずにデータを受信端末に送信する送信端末における方法であって、
     第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信することを備え、
     前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示し、
     前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する、
    方法。
    A method in a transmitting terminal for transmitting data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period,
    Transmitting D2D control information to the receiving terminal on a physical control channel within a first D2D control period;
    The D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show
    The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback,
    Method.
  17.  前記D2D制御情報による前記予約無線リソースの指定は、前記予約無線リソースにおける前記送信端末からの前記物理データチャネルの送信が行われたが、前記物理データチャネル上で受信された前記トランスポートブロックが前記受信端末においてうまくデコードされない場合に、前記ネガティブ・フィードバックを前記送信端末に送信するように前記受信端末を制御する、
    請求項16に記載の方法。
    In the designation of the reserved radio resource by the D2D control information, the physical data channel is transmitted from the transmitting terminal in the reserved radio resource, but the transport block received on the physical data channel is Controlling the receiving terminal to transmit the negative feedback to the transmitting terminal if not successfully decoded at the receiving terminal;
    The method of claim 16.
  18.  アプリケーションプログラムが必要とする遅延要件に応じて前記予約無線リソースの指定を行うか否かを決定することをさらに備える、
    請求項16又は17記載の方法。
    Further comprising determining whether to designate the reserved radio resource according to a delay requirement required by the application program,
    18. A method according to claim 16 or 17.
  19.  前記基地局からの指示にしたがって前記予約無線リソースの指定を行うか否かを決定することをさらに備える、
    請求項16~18のいずれか1項に記載の方法。
    Further comprising determining whether to designate the reserved radio resource according to an instruction from the base station,
    The method according to any one of claims 16 to 18.
  20.  前記基地局のセル内で行われるD2D送信の数が所定値を超える場合に、前記基地局からの指示にしたがって前記予約無線リソースを指定することをさらに備える、
    請求項16~18のいずれか1項に記載の方法。
    When the number of D2D transmissions performed in the cell of the base station exceeds a predetermined value, further comprising designating the reserved radio resource according to an instruction from the base station,
    The method according to any one of claims 16 to 18.
  21.  前記予約無線リソースは、複数の無線リソースを含み、
     前記方法は、前記予約無線リソースにおいて送信されるトランスポートブロックに関するポジティブ又はネガティブ・フィードバックを前記受信端末から前記送信端末に送信するために確保される無線リソースの数を、前記送信端末における送信データの発生頻度に応じて調整することをさらに備える、
    請求項16~20のいずれか1項に記載の方法。
    The reserved radio resource includes a plurality of radio resources,
    In the method, the number of radio resources reserved for transmitting positive or negative feedback related to a transport block transmitted in the reserved radio resource from the receiving terminal to the transmitting terminal is determined by the number of transmission data in the transmitting terminal. Further comprising adjusting according to the frequency of occurrence,
    The method according to any one of claims 16 to 20.
  22.  周期的なdevice-to-device(D2D)制御期間に従って基地局を介さずにデータを受信端末に送信する送信端末における方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信することを備え、
     前記D2D制御情報は、前記第1のD2D制御期間内の1又は複数の無線リソースが前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定されることを示し、
     前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する、
    非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a program for causing a computer to perform a method in a transmitting terminal that transmits data to a receiving terminal without going through a base station according to a periodic device-to-device (D2D) control period There,
    The method comprises transmitting D2D control information to the receiving terminal on a physical control channel within a first D2D control period;
    The D2D control information indicates that one or a plurality of radio resources within the first D2D control period are designated as reserved radio resources with which a physical data channel may be transmitted from the transmitting terminal to the receiving terminal. Show
    The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback,
    A non-transitory computer readable medium.
  23.  基地局であって、
     セル内の複数の無線端末と通信するよう構成された無線トランシーバと、
     周期的なdevice-to-device(D2D)制御期間に従う送信端末から受信端末への前記基地局を介さないデータ送信を制御するよう構成された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、前記データ送信のためのリソース予約の許可を前記送信端末に通知するよう構成され、
     前記許可は、前記送信端末が第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信する際に、前記第1のD2D制御期間内の1又は複数の無線リソースを前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定することを前記送信端末に許可し、
     前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する、
    基地局。
    A base station,
    A wireless transceiver configured to communicate with a plurality of wireless terminals in the cell;
    At least one processor configured to control data transmission through the base station from a transmitting terminal to a receiving terminal according to a periodic device-to-device (D2D) control period;
    With
    The at least one processor is configured to notify the transmitting terminal of resource reservation permission for the data transmission;
    The permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated. Allowing the transmitting terminal to designate a reserved radio resource from which the physical data channel may be transmitted from the transmitting terminal to the receiving terminal;
    The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback,
    base station.
  24.  前記少なくとも1つのプロセッサは、前記セル内で行われるD2D送信の数が所定値を超える場合に前記リソース予約の許可を前記送信端末に通知するよう構成されている、
    請求項23に記載の基地局。
    The at least one processor is configured to notify the transmission terminal of permission of the resource reservation when the number of D2D transmissions performed in the cell exceeds a predetermined value;
    The base station according to claim 23.
  25.  基地局における方法であって、
     周期的なdevice-to-device(D2D)制御期間に従う送信端末から受信端末への前記基地局を介さないデータ送信を制御するために、前記データ送信のためのリソース予約の許可を前記送信端末に通知することを備え、
     前記許可は、前記送信端末が第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信する際に、前記第1のD2D制御期間内の1又は複数の無線リソースを前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定することを前記送信端末に許可し、
     前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する、
    方法。
    A method in a base station,
    In order to control data transmission from the transmitting terminal to the receiving terminal according to a periodic device-to-device (D2D) control period, the resource reservation permission for the data transmission is given to the transmitting terminal. Prepared to notify,
    The permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated. Allowing the transmitting terminal to designate a reserved radio resource from which the physical data channel may be transmitted from the transmitting terminal to the receiving terminal;
    The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback,
    Method.
  26.  基地局における方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、周期的なdevice-to-device(D2D)制御期間に従う送信端末から受信端末への前記基地局を介さないデータ送信を制御するために、前記データ送信のためのリソース予約の許可を前記送信端末に通知することを備え、
     前記許可は、前記送信端末が第1のD2D制御期間内において物理制御チャネル上でD2D制御情報を前記受信端末に送信する際に、前記第1のD2D制御期間内の1又は複数の無線リソースを前記送信端末から前記受信端末に物理データチャネルが送信される可能性のある予約無線リソースに指定することを前記送信端末に許可し、
     前記D2D制御情報による前記予約無線リソースの指定は、前記受信端末への前記物理データチャネルの送信が前記予約無線リソースにおいて行われなかった場合に、前記物理データチャネルに関連付けられたトランスポートブロックに関するネガティブ・フィードバックを送信しないように前記受信端末を制御する、
    非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a program for causing a computer to perform a method in a base station,
    The method permits permission of resource reservation for the data transmission in order to control data transmission from the transmitting terminal to the receiving terminal not via the base station according to a periodic device-to-device (D2D) control period. Notifying the transmitting terminal,
    The permission means that when the transmitting terminal transmits D2D control information to the receiving terminal on a physical control channel within a first D2D control period, one or a plurality of radio resources within the first D2D control period are allocated. Allowing the transmitting terminal to designate a reserved radio resource from which the physical data channel may be transmitted from the transmitting terminal to the receiving terminal;
    The designation of the reserved radio resource by the D2D control information is negative for the transport block associated with the physical data channel when transmission of the physical data channel to the receiving terminal is not performed in the reserved radio resource. Control the receiving terminal not to send feedback,
    A non-transitory computer readable medium.
PCT/JP2016/002375 2015-07-29 2016-05-16 Terminal, base station and methods therefor WO2017017871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149321 2015-07-29
JP2015-149321 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017017871A1 true WO2017017871A1 (en) 2017-02-02

Family

ID=57885505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002375 WO2017017871A1 (en) 2015-07-29 2016-05-16 Terminal, base station and methods therefor

Country Status (1)

Country Link
WO (1) WO2017017871A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100496A (en) * 2017-03-31 2019-08-06 Lg电子株式会社 Signal is sent by terminal in a wireless communication system with the equipment of the method and use this method that communicate for V2X
WO2020022845A1 (en) * 2018-07-26 2020-01-30 엘지전자 주식회사 Method and apparatus for transmitting signal by sidelink terminal in wireless communication system
EP3609252A1 (en) * 2018-08-10 2020-02-12 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment and method with improved critical communication notification in wireless communications
CN110890942A (en) * 2018-09-07 2020-03-17 维沃移动通信有限公司 Side link information feedback method and terminal
CN111865485A (en) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 HARQ feedback method and UE executing the same
CN111865504A (en) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 Method for bypassing communication, receiving device and transmitting device
JP2021508205A (en) * 2017-12-27 2021-02-25 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission methods and devices, computer storage media
CN112640546A (en) * 2018-08-10 2021-04-09 弗劳恩霍夫应用研究促进协会 User equipment and method with improved critical communication notification in wireless communications
CN113678493A (en) * 2019-03-04 2021-11-19 Lg电子株式会社 Method and apparatus for measuring sidelink channel in wireless communication system
CN113767667A (en) * 2019-04-30 2021-12-07 株式会社Ntt都科摩 Communication apparatus and communication method
CN113924802A (en) * 2019-06-11 2022-01-11 株式会社Ntt都科摩 User device
CN114205056A (en) * 2019-08-12 2022-03-18 维沃移动通信有限公司 Information sending and receiving method, terminal and control node
CN114208083A (en) * 2019-06-27 2022-03-18 Lg 电子株式会社 Method and device for releasing sidelink retransmission resource in NR V2X
CN114402555A (en) * 2019-09-30 2022-04-26 华为技术有限公司 HARQ information indication method, communication device and communication system
CN114424638A (en) * 2019-09-27 2022-04-29 株式会社Ntt都科摩 Terminal and communication method
CN114451067A (en) * 2019-09-27 2022-05-06 株式会社Ntt都科摩 Terminal and communication method
CN114586412A (en) * 2019-10-04 2022-06-03 高通股份有限公司 Resource reservation and release in sidelink
CN114600553A (en) * 2019-11-01 2022-06-07 株式会社Ntt都科摩 Terminal and communication method
WO2024087116A1 (en) * 2022-10-27 2024-05-02 华为技术有限公司 Communication method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001797A1 (en) * 2013-07-05 2015-01-08 日本電気株式会社 Base station device, wireless communication system, inter-cell interference control method, and recording medium
JP2015012405A (en) * 2013-06-27 2015-01-19 京セラ株式会社 User terminal, processor, and base station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012405A (en) * 2013-06-27 2015-01-19 京セラ株式会社 User terminal, processor, and base station
WO2015001797A1 (en) * 2013-07-05 2015-01-08 日本電気株式会社 Base station device, wireless communication system, inter-cell interference control method, and recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA NETWORKS: "Discussion on interruption requirements for ProSe Direct Communication", 3GPP TSG-RAN WG4#74BIS R4-151917, April 2015 (2015-04-01), XP050939114, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/ WG4_Radio/TSGR4_74bis/Docs/R4-151917.zip> *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100496A (en) * 2017-03-31 2019-08-06 Lg电子株式会社 Signal is sent by terminal in a wireless communication system with the equipment of the method and use this method that communicate for V2X
JP2021508205A (en) * 2017-12-27 2021-02-25 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission methods and devices, computer storage media
JP7246396B2 (en) 2017-12-27 2023-03-27 オッポ広東移動通信有限公司 DATA TRANSMISSION METHOD AND DEVICE, COMPUTER STORAGE MEDIUM
WO2020022845A1 (en) * 2018-07-26 2020-01-30 엘지전자 주식회사 Method and apparatus for transmitting signal by sidelink terminal in wireless communication system
US11671941B2 (en) 2018-07-26 2023-06-06 Lg Electronics Inc. Method and apparatus for transmitting signal by sidelink terminal in wireless communication system
JP2021534650A (en) * 2018-08-10 2021-12-09 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. User devices and methods with improved critical communication notifications in wireless communication
EP3609252A1 (en) * 2018-08-10 2020-02-12 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment and method with improved critical communication notification in wireless communications
WO2020030767A1 (en) * 2018-08-10 2020-02-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment and method with improved critical communication notification in wireless communications
JP7401523B2 (en) 2018-08-10 2023-12-19 コーニンクレッカ フィリップス エヌ ヴェ User equipment and method with improved critical communication notification in wireless communications
CN112640546A (en) * 2018-08-10 2021-04-09 弗劳恩霍夫应用研究促进协会 User equipment and method with improved critical communication notification in wireless communications
US20210160822A1 (en) * 2018-08-10 2021-05-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment and method with improved critical communication notification in wireless communications
CN110890942B (en) * 2018-09-07 2023-09-12 维沃移动通信有限公司 Side link information feedback method and terminal
CN110890942A (en) * 2018-09-07 2020-03-17 维沃移动通信有限公司 Side link information feedback method and terminal
CN113678493B (en) * 2019-03-04 2023-06-13 Lg电子株式会社 Method and apparatus for measuring sidelink channel in wireless communication system
CN113678493A (en) * 2019-03-04 2021-11-19 Lg电子株式会社 Method and apparatus for measuring sidelink channel in wireless communication system
CN111865504B (en) * 2019-04-30 2024-08-02 北京三星通信技术研究有限公司 Method for bypass communication, receiving device and transmitting device
US12058649B2 (en) 2019-04-30 2024-08-06 Samsung Electronics Co., Ltd. Method, reception device and transmission device for sidelink communication
CN113767667A (en) * 2019-04-30 2021-12-07 株式会社Ntt都科摩 Communication apparatus and communication method
US12028171B2 (en) 2019-04-30 2024-07-02 Samsung Electronics Co., Ltd. Method and apparatus for providing HARQ feedback in wireless communication system
CN111865504A (en) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 Method for bypassing communication, receiving device and transmitting device
CN111865485A (en) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 HARQ feedback method and UE executing the same
CN113924802A (en) * 2019-06-11 2022-01-11 株式会社Ntt都科摩 User device
CN114208083A (en) * 2019-06-27 2022-03-18 Lg 电子株式会社 Method and device for releasing sidelink retransmission resource in NR V2X
CN114208083B (en) * 2019-06-27 2024-02-02 Lg 电子株式会社 Method and equipment for releasing secondary link retransmission resources in NR V2X
CN114205056A (en) * 2019-08-12 2022-03-18 维沃移动通信有限公司 Information sending and receiving method, terminal and control node
CN114424638A (en) * 2019-09-27 2022-04-29 株式会社Ntt都科摩 Terminal and communication method
CN114451067B (en) * 2019-09-27 2024-01-09 株式会社Ntt都科摩 Terminal and communication method
CN114451067A (en) * 2019-09-27 2022-05-06 株式会社Ntt都科摩 Terminal and communication method
CN114402555A (en) * 2019-09-30 2022-04-26 华为技术有限公司 HARQ information indication method, communication device and communication system
CN114586412A (en) * 2019-10-04 2022-06-03 高通股份有限公司 Resource reservation and release in sidelink
CN114600553B (en) * 2019-11-01 2023-12-22 株式会社Ntt都科摩 Terminal and communication method
CN114600553A (en) * 2019-11-01 2022-06-07 株式会社Ntt都科摩 Terminal and communication method
WO2024087116A1 (en) * 2022-10-27 2024-05-02 华为技术有限公司 Communication method and apparatus

Similar Documents

Publication Publication Date Title
WO2017017871A1 (en) Terminal, base station and methods therefor
US20220321191A1 (en) Method and apparatus for sidelink communication
RU2731035C1 (en) Method and apparatus for improving efficiency of feedback of hybrid automatic repeat request (harq) of enhanced mobile broadband communication (embb) in traffic conditions with low delay
JP7124261B2 (en) Method and apparatus for uplink transmission
US10595166B2 (en) Systems and methods for processing time reduction signaling
JP5009410B2 (en) Mobile station apparatus, radio communication method, and integrated circuit
CN112910601B (en) FOUNTAIN HARQ for reliable low-latency communication
JP6523578B1 (en) HARQ-ACK multiplexing in PUSCH
KR101370726B1 (en) Method and apparatus for contention-based uplink data transmission
JP2020074634A (en) Wireless station, wireless terminal, and method used by the same
US8489105B2 (en) Radio base stations, radio communication devices, methods for controlling a radio base station and methods for controlling a radio communication device
TWI498027B (en) Method of handling resource assignment and related communication device
WO2016142978A1 (en) Wireless station, wireless terminal device and method for these
US20180048447A1 (en) User equipments, base stations and methods
KR20180125478A (en) Techniques for communicating in an extended uplink pilot time slot
EP2656678B1 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
JP2015188265A (en) Method and apparatus for selecting and reselecting uplink primary carrier
WO2020022522A1 (en) Base stations and methods
KR20160018288A (en) Method and apparatus for transmission/reception of signals in wireless communicaton system supporting device to device communication
US11540254B2 (en) Apparatus and method for allocating resources in wireless communication system
WO2014173351A1 (en) Uplink control information sending method, and user equipment and base station
JP2022543671A (en) Signal transmission method, device and system
KR20170088853A (en) Techniques for reducing latency in a wireless communication system
JP2023520705A (en) Data transmission method, device and communication system
EP3831144B1 (en) Apparatus and method for allocating resources in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP