WO2017010592A1 - Large-area vanadium oxide semiconductor thin-film growth type pid control sputtering system - Google Patents

Large-area vanadium oxide semiconductor thin-film growth type pid control sputtering system Download PDF

Info

Publication number
WO2017010592A1
WO2017010592A1 PCT/KR2015/007386 KR2015007386W WO2017010592A1 WO 2017010592 A1 WO2017010592 A1 WO 2017010592A1 KR 2015007386 W KR2015007386 W KR 2015007386W WO 2017010592 A1 WO2017010592 A1 WO 2017010592A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
thin film
gun
oxide semiconductor
film growth
Prior art date
Application number
PCT/KR2015/007386
Other languages
French (fr)
Korean (ko)
Inventor
한석길
Original Assignee
(주)테라리더
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)테라리더 filed Critical (주)테라리더
Publication of WO2017010592A1 publication Critical patent/WO2017010592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a large area VO 2 (Vanadium oxide) oxide semiconductor thin film growth-type Proportional Integral Derivative Feedback (PID) controlled sputtering system (hereinafter referred to as APS), and more particularly, to a PID-controlled sputtering gun and a PID.
  • APS Proportional Integral Derivative Feedback
  • the present invention relates to a large-area VO 2 oxide semiconductor thin film growth type PID-controlled sputtering system capable of improving the quality of oxide VO 2 thin films and producing reproducible and large-area thin films by constructing a structure capable of maintaining the temperature of the controlled thin film.
  • VO 2 and oxide semiconductor sputters are largely composed of a sputtering gun for plasma generation and a heater, a vacuum chamber, a gas supply device, and a vacuum pump to raise the temperature for growing the thin film to grow a large area and mass production oxide thin film.
  • the sputtering gun generates a plasma when an electrical signal is applied from the outside, and synthesizes a desired composition material and a thin film by using the plasma.
  • plasma generation of the VO 2 oxide semiconductor sputter is composed of a first generation device capable of generating plasma using a DC or RF power source, and the plasma device is generally a structure that can be applied using a magnet and an electric field.
  • the heater part can raise the substrate temperature for VO 2 thin film growth, third, the high vacuum chamber for making a vacuum, and fourth, the gas supply device for controlling the atmosphere.
  • a VO 2 oxide semiconductor sputter is as follows. 1 is a VO 2 oxide semiconductor sputter according to the prior art, the configuration is a configuration diagram of a plasma generating device, a thin film growth heater, a chamber, a gas supply line.
  • a conventional VO 2 oxide semiconductor sputter is composed of a sputtering gun 101, a vacuum 102, a heater 103, a gas supply device 106, and a substrate 104.
  • the sputter gun 101 serves to create a plasma of a desired material by using an electrical signal
  • the sputtering gun is a non-conductive part that can be electromagnetically separated from the structure to create a magnetic field and an electric field using a fixed magnet, It consists of a cooling line that can lower the temperature.
  • the heater serves to raise the temperature of the substrate for thin film growth.
  • the conventional VO 2 oxide semiconductor sputter is a structure in which a sputter gun that generates plasma generation, a heater site capable of synthesizing a desired material by raising a temperature, and an external gas application device for reaction are operated in combination.
  • the plasma generating sputtering gun 101, the metal heater 104, and the gas supply device 106 are configured to operate independently of each other.
  • the conventional thin film growth method is a method of synthesizing a material using a plasma after securing the internal environment to the desired conditions, the conventional sputtering process is difficult to improve the reproducibility when the growth conditions such as VO 2 oxide semiconductor is very sensitive material .
  • each structure operates independently, which causes various problems in manufacturing a VO 2 oxide semiconductor.
  • the junction between substrate and heater is not perfect, and VO 2 thin film is not synthesized.
  • the conventional VO 2 oxide semiconductor sputter means that the thin film growth has a limited function in reproducibility and mass production.
  • the present invention has been made to solve the problems as described above, by configuring a digital drive circuit for the opening and closing of the component and temperature control, automatic PID control of the cooling water control according to the temperature change of plasma power in the conventional sputtering gun
  • the purpose of the feedback operation is to provide a system capable of reproducible thin film growth by stabilizing the surrounding sensitive environment during thin film growth.
  • the object of the present invention is to configure a heater and an ultra-fine absolute gas amount control line of a laminated structure for improving the reproducibility of thin film growth using the APS, the contact surface and the heat flow.
  • the above object is a large-area VO 2 oxide semiconductor thin film growth type PID controlled sputtering system comprising a PID controlled sputtering gun, a PID temperature controlled thin film growth heater, an ultra fine flow gas supply line, and a thin film substrate, wherein the sputtering gun is coupled to one end of the sputtering gun.
  • a temperature sensor configured to measure a temperature of the sputtering gun;
  • a flow rate sensor coupled to one end of the sputtering gun and detecting a flow of coolant to prevent heating of the sputtering gun;
  • a valve coupled to the other end of the sputtering gun to control a flow of cooling water; It is achieved by a large-area VO 2 oxide semiconductor thin film growth type PID control sputtering system comprising a digital drive circuit for receiving a signal from the temperature sensor and the flow rate measurement sensor to control the sputtering gun and the valve.
  • the sputtering gun includes a ceramic heater, a heat transfer substrate structure optimized by precision surface treatment, and a 0.1SCCM-class precision gas supply line structure to enable large-area VO 2 oxide semiconductor thin film growth, and the heat transfer substrate structure Is preferably a structure in which the temperature distribution variation is minimized.
  • the sputter gun is a large-area plasma generating sputter gun, uniform heat distribution generated during plasma generation, the sputter gun is optimized for plasma stability through the temperature sensor and the flow control sensor, thereby It is desirable to be able to improve the reproducibility and the quality.
  • the APS configuration according to the present invention has the following effects.
  • the quality of the VO 2 thin film is improved and the growth conditions are very stable compared with the conventional method. Further, even under the same conditions, the granular structure and the thin film quality having a high density are irregularly produced, but the thin film quality having a very reproducible structure can be ensured. As a result, not only the current density of the VO 2 thin film can be increased but also the effect of making the transition temperature change constant can be secured.
  • the effect of the present invention is expected to be utilized for the purpose of securing the stability and reproducibility of the base device by designing the individual PID sensor in the device used in the existing PVD (PHYSICAL VAPOR DEPOSITION).
  • FIG. 1 is a block diagram of a VO 2 oxide semiconductor sputter according to the prior art
  • FIG. 2 is a block diagram of a VO 2 oxide semiconductor thin film growth type PID control sputtering system
  • FIG. 3 is a block diagram of a PID controlled sputtering gun according to an embodiment of the present invention
  • FIG. 4 is a block diagram of a PID control ceramic heater according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a large-area VO 2 oxide semiconductor thin film growth type PID control sputter gun
  • FIG. 6 is an SEM image of a thin film according to an embodiment of the present invention.
  • a VO 2 oxide semiconductor thin film growth type PID control sputtering system according to an exemplary embodiment of the present invention will be described in detail with reference to the drawings.
  • FIGS. 3 and 4 are configuration diagrams of a sputter gun and a heater according to an embodiment of the present invention.
  • a VO 2 oxide semiconductor thin film growth type PID control sputtering system according to the present invention was constructed.
  • the sputtering system structure includes a PID-controlled sputtering gun 201, a PID-controlled thin film growth heater 203, an ultra-fine flow gas supply line 206, and a thin film substrate 204. It is to solve the problem of improving the reproducibility and the sputtering growth quality, which is a core problem of the conventional VO 2 oxide semiconductor thin film growth sputtering.
  • the sputtering gun 201 of the APS is equipped with a temperature sensor for measuring temperature in the conventional sputtering gun 208 and the flow rate measuring sensor 207 for preventing the heating of the sputtering gun 201
  • the valve 209 is configured at the rear end to control the coolant flow
  • the digital drive circuit 210 is configured to open and close the components and control the temperature.
  • the automatic PID feedback operation of cooling water control according to plasma power and temperature change is provided, thereby stabilizing an environment sensitive to thin film growth, thereby providing a system capable of reproducible thin film growth.
  • a thin film growth heater 203 for increasing reproducibility of thin film growth a heater having a stacked structure, and an ultra-fine absolute gas amount control line for smoothness of the contact surface and heat flow were configured.
  • FIG. 3 it is basically divided into an electromagnetic component for generating plasma and an insulator portion for electrically blocking.
  • the electromagnetic component of the sputtering gun is composed of a permanent magnet 301 in the middle of the N pole and an outside of the S pole.
  • the sputtering gun has a structure in which the paramagnets are coupled for the compactness of the magnetic flux.
  • a cooling water flow path 303 for preventing demagnetization of permanent magnets is constructed.
  • Conventional sputter guns consist only of magnets, cooling lines and electric lines.
  • the sputter gun of the present invention is characterized in that the temperature sensor 305 and the flow measurement sensor 306 in addition to the above configuration, the PID feedback control of the actual temperature of the actual sputter gun constant by sensing the coolant flow measurement and temperature It consists of.
  • a signal per revolution is output in a PWM [PULSE WIDTH MODULATION] method by using a MEMS Hall sensor, which is a precision sensor flowmeter.
  • the surface is basically composed of a high-temperature ceramic plate 401 such as SiC, SiO 2 , SiN, Al 2 O 3, and the like. Nichrome wire is used.
  • the heater 402 is based on the ceramic plate 401, by making a cover suitable for the size of the substrate 403 on the substrate 403 to contact the surface with a constant weight, thereby making the heat transfer to the substrate 403 constant
  • the contact area is composed of a structure that minimizes the occurrence of contact failure due to thermal deformation.
  • the temperature sensor 404 is mounted at the position as close as possible to the substrate 403 to accurately measure the temperature, thereby increasing the reproducibility of the product using the APS.
  • the PID driver converts the signal of the sputtering gun into an analog-digital signal and performs a digital display with a computer.
  • a large area sputter gun is comprised.
  • the plasma generating sputter gun has the same structure as the above sputter gun, and the difference is that the temperature generating condition and the flow rate measuring sensors 501, 502, and 503 are arranged at each position so that the condition of the plasma generating gun is constant on the entire surface. If, due to the abnormality of the flow of the cooling water or the change of the electromagnetic power can be directly confirmed the symptoms of the plasma abnormality, it was configured to implement a reproducible sputter gun.
  • system safety management may be easier than that of the conventional sputtering gun.
  • FIG. 6 the SEM image using the APS is constructed.
  • a particulate configuration occurs as shown in FIG. 6 (a).
  • Fig. 6 (b) the result as shown in Fig. 6 (b) is well generated.
  • it is easy to secure production reproducibility and it is possible to minimize changes caused by the environment (temperature, humidity, etc.) around the system, and the system can be easily managed.
  • the I-V characteristic of the two-terminal element made using APS is comprised.
  • the current transition according to the voltage showed typical characteristics, and the transition characteristics were characterized by the reproducibility of change characteristics up to 4.5 [10 OHM ⁇ 1MOHM].
  • the XRD pattern of the VO 2 thin film made using APS is measured. As expected, it shows that the thin film grows in only one direction.
  • the present invention relates to a large area VO 2 (Vanadium oxide) oxide semiconductor thin film growth-type Proportional Integral Derivative Feedback (PID) controlled sputtering system (hereinafter referred to as APS), and more particularly, to a PID-controlled sputtering gun and a PID.
  • VO 2 Vehicle oxide
  • PID-controlled sputtering gun and a PID a PID-controlled sputtering gun and a PID.

Abstract

The present invention relates to a large-area VO2 semiconductor thin-film growth type PID control sputtering system comprising: a PID control type sputtering gun; a PID temperature control type thin-film growth heater; an ultrafine flow rate gas supply line; and a thin-film substrate. The system further comprises: a temperature sensor, coupled to one end of the sputtering gun, for measuring the temperature of the sputtering gun; a flow rate measurement sensor, coupled to one end of the sputtering gun, for detecting flow of a coolant in order to prevent heating of the sputtering gun; a valve, coupled to the other end of the sputtering gun, for controlling the flow of the coolant; and a digital drive circuit which receives a signal from the temperature sensor and the flow rate measurement sensor so as to control the sputtering gun and the valve. Accordingly, because of having a PID feedback structure, the quality of a VO2 thin-film is very stable in terms of growth conditions compared to high quality growth conditions and conventional methods. Further, compared to conventional technologies in which the quality of a thin-film having a particle-type structure and high density is inconsistently produced even under the same conditions, the present invention can secure the quality of a thin-film having a very highly reproducible structure. Therefore, by means of such a result, it is possible to have an effect of increasing the current density of a VO2 thin-film and also enabling the transition temperature variance to be consistent. In addition, it is expected that the effect of the present invention may be utilized for the purpose of achieving stability and reproducibility of a base apparatus by designing, in the form of an individual PID sensor, the base apparatus in apparatuses used in a conventional physical vapor deposition (PVD).

Description

대면적 산화바나듐 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템Large Area Vanadium Oxide Semiconductor Thin Film Growth Type PID Control Sputtering System
본 발명은 대면적 VO2(Vanadium oxide) 산화물 반도체 박막성장형 PID(Proportional Integral Derivative Feedback) 제어 스퍼터링 시스템(Adaptive PID controlled sputtering system, APS 이하 칭함)에 관한 것으로서, 더욱 상세하게는 PID 제어형 스퍼터링 건과 PID 제어형 박막의 온도를 유지할 수 있는 구조로 구성함으로써, 산화물 VO2 박막의 품질을 높이고, 재현성과 대면적 박막을 만들 수 있는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템에 관한 것이다.The present invention relates to a large area VO 2 (Vanadium oxide) oxide semiconductor thin film growth-type Proportional Integral Derivative Feedback (PID) controlled sputtering system (hereinafter referred to as APS), and more particularly, to a PID-controlled sputtering gun and a PID. The present invention relates to a large-area VO 2 oxide semiconductor thin film growth type PID-controlled sputtering system capable of improving the quality of oxide VO 2 thin films and producing reproducible and large-area thin films by constructing a structure capable of maintaining the temperature of the controlled thin film.
일반적으로 VO2 및 산화물 반도체 스퍼터는 대면적 및 양산형 산화물 박막을 성장하기 위해 플라즈마 발생을 위한 스퍼터링 건과 박막 성장을 위한 온도를 올릴 수 있는 히터, 진공챔버, 가스공급 장치, 진공펌프로 크게 구성되며, 상기 스퍼터링 건은 외부에서 전기적 신호를 인가하면 플라즈마를 생성되며, 이 플라즈마를 이용해서 원하는 조성 물질 합성 및 박막을 만들어 낼 수 있는 것이다.In general, VO 2 and oxide semiconductor sputters are largely composed of a sputtering gun for plasma generation and a heater, a vacuum chamber, a gas supply device, and a vacuum pump to raise the temperature for growing the thin film to grow a large area and mass production oxide thin film. The sputtering gun generates a plasma when an electrical signal is applied from the outside, and synthesizes a desired composition material and a thin film by using the plasma.
일반적으로 상기 VO2 산화물 반도체 스퍼터의 플라즈마 발생은 첫째, DC 또는 RF 전원을 이용해서 플라즈마를 만들 수 있는 발생 장치로 구성되어 있으며, 이 플라즈마 장치는 일반적으로 자석과 전기장을 이용하여 가할 수 있는 구조이다. 둘째, VO2 박막 성장을 위한 기판(substrate) 온도를 올릴 수 있는 히터 부분, 셋째, 진공을 만들기 위한 고 진공챔버, 넷째, 분위기 조절을 위한 가스 공급 장치 부위로 나누어져 구성 되어 진다.In general, plasma generation of the VO 2 oxide semiconductor sputter is composed of a first generation device capable of generating plasma using a DC or RF power source, and the plasma device is generally a structure that can be applied using a magnet and an electric field. . Second, the heater part can raise the substrate temperature for VO 2 thin film growth, third, the high vacuum chamber for making a vacuum, and fourth, the gas supply device for controlling the atmosphere.
종래의 VO2 산화물 반도체 스퍼터 구성을 살펴보면 다음과 같다. 도 1은 종래 기술에 대한 VO2 산화물 반도체 스퍼터이며, 구성은 플라즈마 발생 장치와 박막 성장 히터, 챔버, 가스 공급라인의 구성도이다. Looking at the configuration of a conventional VO 2 oxide semiconductor sputter is as follows. 1 is a VO 2 oxide semiconductor sputter according to the prior art, the configuration is a configuration diagram of a plasma generating device, a thin film growth heater, a chamber, a gas supply line.
도 1에 도시한 바와 같이, 종래의 VO2 산화물 반도체 스퍼터는 스퍼터링 건(101), 진공(102), 히터(103), 가스 공급장치(106), 기판(104)로 구성된다. As shown in FIG. 1, a conventional VO 2 oxide semiconductor sputter is composed of a sputtering gun 101, a vacuum 102, a heater 103, a gas supply device 106, and a substrate 104.
상기 종래 기술에 따른 VO2 산화물 반도체 스퍼터의 각 구성 요소의 역할 및 동작을 살펴보면 다음과 같다. Looking at the role and operation of each component of the VO 2 oxide semiconductor sputter according to the prior art as follows.
상기 스퍼터 건(101)은 전기적 신호를 이용해서 원하는 물질의 플라즈마를 만들어 내는 역할을 하며, 상기 스퍼터링 건은 고정 자석을 이용한 자기장 및 전기장을 만들 수 있는 구조물과 전자기적으로 분리할 수 있는 부도체부, 온도를 낮출 수 있는 냉각라인으로 구성된다. The sputter gun 101 serves to create a plasma of a desired material by using an electrical signal, the sputtering gun is a non-conductive part that can be electromagnetically separated from the structure to create a magnetic field and an electric field using a fixed magnet, It consists of a cooling line that can lower the temperature.
상기 히터는 박막성장을 위해 기판의 온도를 올릴 수 있는 역할을 한다. The heater serves to raise the temperature of the substrate for thin film growth.
이상 살펴본 바를 보면, 종래의 VO2 산화물 반도체 스퍼터는 플라즈마 발생을 만들어 내는 스퍼터 건과 온도를 올려 원하는 물질을 합성할 수 있는 히터 부위, 반응을 위한 외부 가스 인가 장치를 복합적으로 운영하는 구조로서, 종래 플라즈마 발생 스퍼터링 건(101)과 금속형히터(104) 부위와 가스 공급 장치(106)는 각각 독립적으로 동작하게 끔 구성되어 있다. As described above, the conventional VO 2 oxide semiconductor sputter is a structure in which a sputter gun that generates plasma generation, a heater site capable of synthesizing a desired material by raising a temperature, and an external gas application device for reaction are operated in combination. The plasma generating sputtering gun 101, the metal heater 104, and the gas supply device 106 are configured to operate independently of each other.
상기 종래 박막 성장 방식은 내부 환경을 원하는 조건으로 확보한 후, 플라즈마를 이용해서 물질 합성하는 방법이므로, VO2 산화물 반도체와 같은 성장조건이 매우 민감한 소재인 경우 종래 스퍼터 공정은 재현성을 높이기 힘든 상황이다. Since the conventional thin film growth method is a method of synthesizing a material using a plasma after securing the internal environment to the desired conditions, the conventional sputtering process is difficult to improve the reproducibility when the growth conditions such as VO 2 oxide semiconductor is very sensitive material .
상기 종래 방식을 통해 성장을 할 경우는 각 구조체가 각각 독립적인 동작 함으로서, VO2 산화물 반도체 제작 시 여러 가지 문제점을 발생시키고 있다. 첫째, 기판과 히터와 접합이 완벽하지 않으며, VO2 박막이 합성이 되지 않는 점, 둘째, 성장 조건이 주변 환경에 변화에 따른 재현성 낮은 박막 성장 조건, 셋째, 박막성장 결과가 알갱이(GRAIN)이 많이 생성되어, 높은 전류 밀도를 얻기 곤란한 점, 넷째, 임계전이 저항 변화 특성이 재현성 낮은 점을 들 수 있다.In the case of growth through the conventional method, each structure operates independently, which causes various problems in manufacturing a VO 2 oxide semiconductor. First, the junction between substrate and heater is not perfect, and VO 2 thin film is not synthesized. Second, the thin film growth condition with low reproducibility due to the change of growth conditions in the surrounding environment. Many are produced and it is difficult to obtain a high current density, and fourth, the critical transition resistance change characteristic is low reproducibility.
결과적으로 상기 종래의 VO2 산화물 반도체 스퍼터는 박막 성장에 있어서, 재현성 및 양산성에 제한적인 기능을 가지고 있음을 의미한다.As a result, the conventional VO 2 oxide semiconductor sputter means that the thin film growth has a limited function in reproducibility and mass production.
따라서 본 발명은 상기 종래와 같은 문제점을 해결하기 위해 안출한 것으로서, 상기 부품의 개폐 및 온도 조절을 위한 디지털 드라이브 회로를 구성하여, 종래의 스퍼터링 건에 플라즈마 전력을 온도 변화에 따라 냉각수 조절을 자동 PID 피드백 동작을 함으로써, 박막 성장 시 주변 민감한 환경을 안정화함으로써, 재현성 있는 박막 성장을 할 수 있는 시스템을 제공하는데 그 목적이 있다. Accordingly, the present invention has been made to solve the problems as described above, by configuring a digital drive circuit for the opening and closing of the component and temperature control, automatic PID control of the cooling water control according to the temperature change of plasma power in the conventional sputtering gun The purpose of the feedback operation is to provide a system capable of reproducible thin film growth by stabilizing the surrounding sensitive environment during thin film growth.
또한, 상기 APS를 이용한 박막 성장의 재현성을 높이기 위한 세라믹 히터와 접촉면과 열 흐름의 원할성을 위해 적층형 구조의 히터 및 초미세 절대 가스량 조절 라인으로 구성에 그 목적이 있다.In addition, the object of the present invention is to configure a heater and an ultra-fine absolute gas amount control line of a laminated structure for improving the reproducibility of thin film growth using the APS, the contact surface and the heat flow.
상기한 목적은, PID 제어형 스퍼터링 건, PID 온도 제어형 박막 성장 히터, 초미세 유량 가스 공급라인 및 박막 기판을 포함하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템에 있어서, 상기 스퍼터링 건의 일단에 결합되어 상기 스퍼터링 건의 온도를 측정하는 온도 센서와; 상기 스퍼터링 건의 일단에 결합되어 상기 스퍼터링 건의 가열 방지를 위해 냉각수의 흐름 감지하는 유량 측정 센서와; 상기 스퍼터링 건의 타단에 결합되어 냉각수의 흐름을 제어하는 밸브와; 상기 온도센서 및 상기 유량 측정 센서로부터 신호를 받아 상기 스퍼터링 건 및 상기 밸브를 제어하는 디지털 드라이브 회로를 포함하는 것을 특징으로 하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템에 의해 달성된다.The above object is a large-area VO 2 oxide semiconductor thin film growth type PID controlled sputtering system comprising a PID controlled sputtering gun, a PID temperature controlled thin film growth heater, an ultra fine flow gas supply line, and a thin film substrate, wherein the sputtering gun is coupled to one end of the sputtering gun. A temperature sensor configured to measure a temperature of the sputtering gun; A flow rate sensor coupled to one end of the sputtering gun and detecting a flow of coolant to prevent heating of the sputtering gun; A valve coupled to the other end of the sputtering gun to control a flow of cooling water; It is achieved by a large-area VO 2 oxide semiconductor thin film growth type PID control sputtering system comprising a digital drive circuit for receiving a signal from the temperature sensor and the flow rate measurement sensor to control the sputtering gun and the valve.
여기서, 상기 스퍼터링 건은 대면적 VO2 산화물 반도체 박막 성장이 가능하도록 세라믹 히터와, 정밀 면 처리를 통해 최적화된 열전달형 기판구조 및 0.1SCCM 급 정밀 가스 공급 라인 구조를 포함하며, 상기 열전달형 기판구조는 온도 분포 편차가 최소화되는 구조인 것이 바람직하다.Here, the sputtering gun includes a ceramic heater, a heat transfer substrate structure optimized by precision surface treatment, and a 0.1SCCM-class precision gas supply line structure to enable large-area VO 2 oxide semiconductor thin film growth, and the heat transfer substrate structure Is preferably a structure in which the temperature distribution variation is minimized.
또한, 상기 스퍼터 건은 대면적 플라즈마 발생 스퍼터 건이며, 플라즈마 발생시 발생하는 열 분포를 균일하게 하며, 상기 스퍼터 건은 상기 온도 센서 및 상기 유량 제어 센서를 통해 플라즈마 안정도가 최적화 되며, 이를 통해 박막성장의 재현성 및 특성의 고품질화가 가능한 것이 바람직하다.In addition, the sputter gun is a large-area plasma generating sputter gun, uniform heat distribution generated during plasma generation, the sputter gun is optimized for plasma stability through the temperature sensor and the flow control sensor, thereby It is desirable to be able to improve the reproducibility and the quality.
본 발명에 따른 상기 APS 구성은 다음과 같은 효과가 있다. PID 피드백 구조로 구성함으로써, VO2박막 품질이 고품질화 성장 조건과 종래 방식에 비해 성장 조건이 매우 안정화 된 점이다. 또한 종래에는 동일 조건 하에서도, 입자형 구조와 밀도가 높은 박막 질이 불규칙하게 제작되는 반면에 매우 재현성 높은 구조의 박막 질을 확보할 수 있다. 이 결과에 의해 VO2박막의 전류밀도를 높일 수 있을 뿐만 아니라 전이 온도 변화폭도 일정하게 할 수 있는 효과를 확보 할 수 있다.The APS configuration according to the present invention has the following effects. By constructing the PID feedback structure, the quality of the VO 2 thin film is improved and the growth conditions are very stable compared with the conventional method. Further, even under the same conditions, the granular structure and the thin film quality having a high density are irregularly produced, but the thin film quality having a very reproducible structure can be ensured. As a result, not only the current density of the VO 2 thin film can be increased but also the effect of making the transition temperature change constant can be secured.
또한 본 발명의 효과는 기존 PVD(PHYSICAL VAPOR DEPOSITION)에서 사용하고 있는 장치들에도 개별 PID 센서 형태로 설계 함으로써 기반 장치의 안정성 및 재현성을 확보를 위한 목적으로 활용될 것이라 기대된다. In addition, the effect of the present invention is expected to be utilized for the purpose of securing the stability and reproducibility of the base device by designing the individual PID sensor in the device used in the existing PVD (PHYSICAL VAPOR DEPOSITION).
도 1은 종래 기술에 따른 VO2 산화물 반도체 스퍼터의 구성도1 is a block diagram of a VO 2 oxide semiconductor sputter according to the prior art
도 2는 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템 의 구성도2 is a block diagram of a VO 2 oxide semiconductor thin film growth type PID control sputtering system
도 3는 본 발명의 실시 예에 따른 PID 제어형 스퍼터링 건의 구성도3 is a block diagram of a PID controlled sputtering gun according to an embodiment of the present invention
도 4는 본 발명의 실시 예에 따른 PID 제어형 세라믹 히터의 구성도4 is a block diagram of a PID control ceramic heater according to an embodiment of the present invention
도 5는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터 건 구성도5 is a block diagram of a large-area VO 2 oxide semiconductor thin film growth type PID control sputter gun
도 6는 본 발명의 일 실시 예에 따른 박막의 SEM 이미지6 is an SEM image of a thin film according to an embodiment of the present invention.
도 7는 본 발명의 일 실시 예에 따른 VO2 박막의 온도 전이 특성7 is a temperature transition characteristic of the VO 2 thin film according to an embodiment of the present invention
도 8는 본 발명의 일 실시 예에 따른 VO2 박막의 XRD 특성8 is an XRD characteristic of the VO 2 thin film according to an embodiment of the present invention
도면을 참조하여 본 발명의 일 실기 예에 따른 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템을 상세히 설명하기로 한다.A VO 2 oxide semiconductor thin film growth type PID control sputtering system according to an exemplary embodiment of the present invention will be described in detail with reference to the drawings.
도 2는 본 발명의 일 실시 예에 따른 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템의 구성도 이고 도 3과 4는 본 발명의 일 실시 예에 따른 스퍼터 건과 히터 구성도이다.2 is a configuration diagram of a VO 2 oxide semiconductor thin film growth type PID control sputtering system according to an embodiment of the present invention, and FIGS. 3 and 4 are configuration diagrams of a sputter gun and a heater according to an embodiment of the present invention.
본 발명에 따른 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템를 구성하였다. 상기 스퍼터링 시스템 구조는 도 2에 도시된 바와 같이 PID제어형 스퍼터링 건(201), PID제어형 박막 성장 히터(203), 및 초미세 유량 가스 공급라인(206), 박막 기판(204)을 기본 구성하였다. 종래의 VO2 산화물 반도체 박막성장 스퍼터의 핵심 문제점인 재현성 및 스퍼터링 성장 품질을 높이는 것을 해결하는데 있다. A VO 2 oxide semiconductor thin film growth type PID control sputtering system according to the present invention was constructed. As shown in FIG. 2, the sputtering system structure includes a PID-controlled sputtering gun 201, a PID-controlled thin film growth heater 203, an ultra-fine flow gas supply line 206, and a thin film substrate 204. It is to solve the problem of improving the reproducibility and the sputtering growth quality, which is a core problem of the conventional VO 2 oxide semiconductor thin film growth sputtering.
또한 종래의 스퍼터 시스템에 비해, 상기 APS의 스퍼터링 건(201)은 종래의 스퍼터링 건에서 온도 측정을 위한 온도 센서 장착(208) 및 상기 스퍼터링 건(201)의 가열 방지를 위한 유량 측정 센서(207)를 스퍼터링 건(201)에 앞 단에 각각 구성시키고, 반면에 후단에는 냉각수 흐름 제어를 위해 밸브(209)를 구성하였고, 상기 부품의 개폐 및 온도 조절을 위한 디지털 드라이브 회로(210)를 구성하여, 종래의 스퍼터링 건에 플라즈마 전력 및 온도 변화에 따라 냉각수 조절을 자동 PID 피드백 동작을 함으로써, 박막 성장시 주변 민감한 환경을 안정화함으로써, 재현성 있는 박막 성장을 할 수 있는 시스템을 제공할 수 있다. In addition, compared to the conventional sputtering system, the sputtering gun 201 of the APS is equipped with a temperature sensor for measuring temperature in the conventional sputtering gun 208 and the flow rate measuring sensor 207 for preventing the heating of the sputtering gun 201 Are respectively configured at the front end of the sputtering gun 201, while the valve 209 is configured at the rear end to control the coolant flow, and the digital drive circuit 210 is configured to open and close the components and control the temperature. In the conventional sputtering gun, the automatic PID feedback operation of cooling water control according to plasma power and temperature change is provided, thereby stabilizing an environment sensitive to thin film growth, thereby providing a system capable of reproducible thin film growth.
상기 APS를 이용하여 박막 성장의 재현성을 높이기 위한 박막 성장 히터(203)와 접촉면과 열 흐름의 원할성을 위해 적층형 구조의 히터 및 초미세 절대 가스량 조절 라인으로 구성하였다.Using the APS, a thin film growth heater 203 for increasing reproducibility of thin film growth, a heater having a stacked structure, and an ultra-fine absolute gas amount control line for smoothness of the contact surface and heat flow were configured.
먼저, 본 발명의 일 실시 예에 따른 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템을 살펴보면, 도 3에 도시한 바와 같이 기본적으로 플라즈마 발생을 위한 전자기적 구성와 전기적으로 차단하기 위한 부도체 부위로 나누어진다.First, referring to the VO 2 oxide semiconductor thin film growth type PID control sputtering system according to an embodiment of the present invention, as shown in FIG. 3, it is basically divided into an electromagnetic component for generating plasma and an insulator portion for electrically blocking.
상기 스퍼터링 건의 전자기적 구성부는 영구자석(301) 구성은 가운데가 N극이고 외부는 S극으로 구성하였고, 자속의 밀집을 위해서 상자석체를 결합하는 구조로 구성되어 있고, 외부는 0V 즉 접지로 연결되어 있는 구조에서, 영구자석의 탈자를 방지하기 위한 냉각수 흐름 경로(303)를 구성하였다.  The electromagnetic component of the sputtering gun is composed of a permanent magnet 301 in the middle of the N pole and an outside of the S pole. The sputtering gun has a structure in which the paramagnets are coupled for the compactness of the magnetic flux. In this structure, a cooling water flow path 303 for preventing demagnetization of permanent magnets is constructed.
종래의 스퍼터 건의 구성은 자석부 및 냉각 라인 그리고 전기선으로만 구성되어 있다. 본 발명의 스퍼터 건은 상기 구성에서 추가적으로 온도 센서(305)와 유량 측정 센서(306)를 장착한 것이 특징이고, 냉각수 흐름 측정 및 온도를 감지함으로써 실제 스퍼터 건의 내부 온도를 일정하게 PID 피드백 제어하는 구조로 구성 되어 있다.Conventional sputter guns consist only of magnets, cooling lines and electric lines. The sputter gun of the present invention is characterized in that the temperature sensor 305 and the flow measurement sensor 306 in addition to the above configuration, the PID feedback control of the actual temperature of the actual sputter gun constant by sensing the coolant flow measurement and temperature It consists of.
상기 PID 제어형 스퍼터 건은 유량이 1리터/분 이하에서도 동작을 해야 하므로 정밀한 센서의 유량계인 MEMS 홀센서를 사용함으로써 회전당 신호가 PWM[PULSE WIDTH MODULATION]방식으로 출력되게 구성 하였다.Since the PID-controlled sputter gun has to operate at a flow rate of 1 liter / min or less, a signal per revolution is output in a PWM [PULSE WIDTH MODULATION] method by using a MEMS Hall sensor, which is a precision sensor flowmeter.
도 4에 도시한 바와 같이 기본적으로 박막의 온도를 올리기 위해 표면은 SiC, SiO2,SiN, Al2O3 등과 같은 고온용 세라믹판(401)으로 구성되어 있으며, 히터(402) 소재는 세라믹 또는 니크롬선을 사용한다. 종래 구조에 기판을 세라믹 위에 올려놓게 되면, 열전달이 정확하게 안되어서, 최적의 박막 조건을 확보하기 곤란하다. 상기 히터(402)는 세라믹판(401)을 기저로 하고, 기판(403) 위에 기판(403)의 크기에 맞는 덮개를 만들어서 일정한 무게로 표면에 접촉함으로서, 기판(403)에 열전달이 일정하게 할 뿐만 아니라, 접촉 면적이 열변형에 의해 접촉 불량이 발생하는 것을 최소화 하는 구조로 구성되어 있다. 그리고 정확한 온도 측정을 위해 기판(403)에 최대한 근접한 위치에 온도 센서(404)를 장착하여 APS 이용한 생산품의 재현성을 높이는 구조이다.As shown in FIG. 4, in order to increase the temperature of the thin film, the surface is basically composed of a high-temperature ceramic plate 401 such as SiC, SiO 2 , SiN, Al 2 O 3, and the like. Nichrome wire is used. When the substrate is placed on the ceramic in the conventional structure, heat transfer is not accurate and it is difficult to secure the optimum thin film condition. The heater 402 is based on the ceramic plate 401, by making a cover suitable for the size of the substrate 403 on the substrate 403 to contact the surface with a constant weight, thereby making the heat transfer to the substrate 403 constant In addition, the contact area is composed of a structure that minimizes the occurrence of contact failure due to thermal deformation. In addition, the temperature sensor 404 is mounted at the position as close as possible to the substrate 403 to accurately measure the temperature, thereby increasing the reproducibility of the product using the APS.
상기 PID 드라이버는 상기 스퍼터링 건의 신호를 아날로그-디지털 신호로 변환해서 컴퓨터 등으로 디지털 디스플레이 하는 역할을 한다. The PID driver converts the signal of the sputtering gun into an analog-digital signal and performs a digital display with a computer.
도 5에 도시한 바와 같이 대면적 스퍼터 건을 구성한 것이다. 기본적으로 플라즈마 발생 스퍼터 건은 상기의 스퍼터 건과 동일한 구조를 가지고 있으며, 차이점은 각 위치 별로 온도 센서와 유량 측정센서(501, 502, 503)를 배치함으로써 전면적에 플라즈마 발생건의 조건을 일정하게 하는 구조이며, 만약, 냉각수의 흐름의 이상 또는 전자기적 전력의 변화로 인해 플라즈마 이상 증후를 직접 확인을 할수 있어서, 재현성 있는 스퍼터 건을 구현할 수 있도록 구성하였다.As shown in FIG. 5, a large area sputter gun is comprised. Basically, the plasma generating sputter gun has the same structure as the above sputter gun, and the difference is that the temperature generating condition and the flow rate measuring sensors 501, 502, and 503 are arranged at each position so that the condition of the plasma generating gun is constant on the entire surface. If, due to the abnormality of the flow of the cooling water or the change of the electromagnetic power can be directly confirmed the symptoms of the plasma abnormality, it was configured to implement a reproducible sputter gun.
여기서 제어 장치를 최종 단에 구성함에 따라 종래의 스퍼터링 건보다 시스템 안전 관리가 용이하게 구성할 수 있다.In this case, as the control device is configured at the final stage, system safety management may be easier than that of the conventional sputtering gun.
도 6에 도시한 바와 같이 APS를 이용한 SEM 이미지를 구성한 것이다. 도 6에는 종래의 방식으로 박막 성장을 하였을 경우, 도 6(a)와 같이 입자형 구성이 발생 한다. 물론 최적의 조건을 확보를 한 후에, 입자형 구조가 아닌 도 6(b)와 같은 박막 층을 확보 가능하지만, 재현성이 낮아서, 동일 조건에서 제작 시에도 불규칙하게 입자형 구성이 되어 양질의 박막 확보가 곤란하다. 본 APS로 성장한 경우, 도 6(b)와 같은 결과물이 잘생성되어진다. 또한 생산 재현성 확보가 용이할 뿐만아니라, 시스템 주변 환경(온도, 습도 등)에 의한 변화를 최소화를 할 수 있고, 시스템 관리가 용이한 구조로 되어 진다.As shown in FIG. 6, the SEM image using the APS is constructed. In FIG. 6, when the thin film is grown in a conventional manner, a particulate configuration occurs as shown in FIG. 6 (a). Of course, after securing the optimum conditions, it is possible to secure a thin film layer as shown in FIG. Is difficult. When grown to this APS, the result as shown in Fig. 6 (b) is well generated. In addition, it is easy to secure production reproducibility, and it is possible to minimize changes caused by the environment (temperature, humidity, etc.) around the system, and the system can be easily managed.
도 7에 도시한 바와 같이 APS를 이용해서 만들어진 이단자 소자의 I-V 특성을 구성한 것이다. 전압에 따른 전류 천이가 전형적인 특성을 보였으며, 전이 특성도 4.5급[10 OHM ~ 1MOHM]까지 변화 특성에 대한 재현성을 높일 수 있는 것이 특징이다.As shown in FIG. 7, the I-V characteristic of the two-terminal element made using APS is comprised. The current transition according to the voltage showed typical characteristics, and the transition characteristics were characterized by the reproducibility of change characteristics up to 4.5 [10 OHM ~ 1MOHM].
도 8에 도시한 바와 같이 APS를 이용해서 만들어진 VO2 박막의 XRD 패턴을 측정한 결과이다. 예측한 바와 같이 박막이 한 방향으로만 성장한 것을 잘 나타내고 있다. As shown in FIG. 8, the XRD pattern of the VO 2 thin film made using APS is measured. As expected, it shows that the thin film grows in only one direction.
본 발명은 대면적 VO2(Vanadium oxide) 산화물 반도체 박막성장형 PID(Proportional Integral Derivative Feedback) 제어 스퍼터링 시스템(Adaptive PID controlled sputtering system, APS 이하 칭함)에 관한 것으로서, 더욱 상세하게는 PID 제어형 스퍼터링 건과 PID 제어형 박막의 온도를 유지할 수 있는 구조로 구성함으로써, 산화물 VO2 박막의 품질을 높이고, 재현성과 대면적 박막을 만들 수 있는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템 분야에 이용가능하다.The present invention relates to a large area VO 2 (Vanadium oxide) oxide semiconductor thin film growth-type Proportional Integral Derivative Feedback (PID) controlled sputtering system (hereinafter referred to as APS), and more particularly, to a PID-controlled sputtering gun and a PID. By constructing a structure that can maintain the temperature of the controlled thin film, the quality of the oxide VO 2 thin film can be improved, and it can be used in the field of large-area VO 2 oxide semiconductor thin film growth type PID control sputtering system that can produce a reproducible and large area thin film.

Claims (5)

  1. PID 제어형 스퍼터링 건, PID 온도 제어형 박막 성장 히터, 초미세 유량 가스 공급라인 및 박막 기판을 포함하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템에 있어서,A large-area VO 2 oxide semiconductor thin film growth type PID controlled sputtering system comprising a PID controlled sputtering gun, a PID temperature controlled thin film growth heater, an ultra fine flow gas supply line, and a thin film substrate,
    상기 스퍼터링 건의 일단에 결합되어 상기 스퍼터링 건의 온도를 측정하는 온도 센서와;A temperature sensor coupled to one end of the sputtering gun and measuring a temperature of the sputtering gun;
    상기 스퍼터링 건의 일단에 결합되어 상기 스퍼터링 건의 가열 방지를 위해 냉각수의 흐름 감지하는 유량 측정 센서와;A flow rate sensor coupled to one end of the sputtering gun and detecting a flow of coolant to prevent heating of the sputtering gun;
    상기 스퍼터링 건의 타단에 결합되어 냉각수의 흐름을 제어하는 밸브와;A valve coupled to the other end of the sputtering gun to control a flow of cooling water;
    상기 온도센서 및 상기 유량 측정 센서로부터 신호를 받아 상기 스퍼터링 건 및 상기 밸브를 제어하는 디지털 드라이브 회로를 포함하는 것을 특징으로 하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템.The temperature sensor, and a large area VO 2 thin film oxide semiconductor sputtering Growth PID control system receives a signal from the flow rate sensor comprising: a digital drive circuit for controlling the sputtering gun and the valve.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 스퍼터링 건은 대면적 VO2 산화물 반도체 박막 성장이 가능하도록 세라믹 히터와, 정밀 면 처리를 통해 최적화된 열전달형 기판구조 및 0.1SCCM 급 정밀 가스 공급 라인 구조를 포함하는 것을 특징으로 하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템.The sputtering gun large area VO 2 for oxide area characterized in that the semiconductor thin films is possible includes a ceramic heater, and a precision surface processing a heat transfer type substrate structure and 0.1SCCM grade precision gas feed line structure optimized to VO 2 Oxide Semiconductor Thin Film Growth Type PID Control Sputtering System.
  3. 제 2항에 있어서,The method of claim 2,
    상기 열전달형 기판구조는 온도 분포 편차가 최소화되는 구조인 것을 특징으로 하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템.The heat transfer type substrate structure is a large-area VO 2 oxide semiconductor thin film growth type PID control sputtering system, characterized in that the structure of the temperature distribution variation is minimized.
  4. 제1항에 있어서,The method of claim 1,
    상기 스퍼터 건은 대면적 플라즈마 발생 스퍼터 건이며, 플라즈마 발생시 발생하는 열 분포를 균일하게 하는 것을 특징으로 하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템.The sputter gun is a large-area plasma generating sputter gun, and the large-area VO 2 oxide semiconductor thin film growth type PID control sputtering system, characterized in that to uniformize the heat distribution generated during plasma generation.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 스퍼터 건은 상기 온도 센서 및 상기 유량 제어 센서를 통해 플라즈마 안정도가 최적화 되며, 이를 통해 박막성장의 재현성 및 특성의 고품질화가 가능한 것을 특징으로 하는 대면적 VO2 산화물 반도체 박막성장형 PID 제어 스퍼터링 시스템.The sputter gun is optimized for plasma stability through the temperature sensor and the flow control sensor, through which the large-area VO 2 oxide semiconductor thin film growth type PID control sputtering system, characterized in that it is possible to improve the reproducibility and characteristics of the thin film growth.
PCT/KR2015/007386 2015-07-14 2015-07-16 Large-area vanadium oxide semiconductor thin-film growth type pid control sputtering system WO2017010592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0099776 2015-07-14
KR1020150099776A KR20170008917A (en) 2015-07-14 2015-07-14 An adaptive PID controlled sputtering system for the large area VO2 and oxide semiconductor thin film growth

Publications (1)

Publication Number Publication Date
WO2017010592A1 true WO2017010592A1 (en) 2017-01-19

Family

ID=57757042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007386 WO2017010592A1 (en) 2015-07-14 2015-07-16 Large-area vanadium oxide semiconductor thin-film growth type pid control sputtering system

Country Status (2)

Country Link
KR (1) KR20170008917A (en)
WO (1) WO2017010592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930735A (en) * 2021-10-15 2022-01-14 无锡尚积半导体科技有限公司 Vapor deposition equipment for improving thickness uniformity of vanadium oxide film and vapor deposition method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020016283A (en) * 2000-08-25 2002-03-04 윤종용 Sputtering apparatus
KR101280184B1 (en) * 2004-04-30 2013-07-01 램 리써치 코포레이션 Gas distribution member supplying process gas and rf power for plasma processing
KR101379776B1 (en) * 2013-10-02 2014-04-10 지에스플라텍 주식회사 Plasma torch, and apparatus and method for monitoring of plasma torch
KR20140101610A (en) * 2013-02-12 2014-08-20 삼성디스플레이 주식회사 Deposition apparatus and manufacturing method of organic light emitting display using the same
KR20150056270A (en) * 2013-11-15 2015-05-26 에이피시스템 주식회사 sputter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020016283A (en) * 2000-08-25 2002-03-04 윤종용 Sputtering apparatus
KR101280184B1 (en) * 2004-04-30 2013-07-01 램 리써치 코포레이션 Gas distribution member supplying process gas and rf power for plasma processing
KR20140101610A (en) * 2013-02-12 2014-08-20 삼성디스플레이 주식회사 Deposition apparatus and manufacturing method of organic light emitting display using the same
KR101379776B1 (en) * 2013-10-02 2014-04-10 지에스플라텍 주식회사 Plasma torch, and apparatus and method for monitoring of plasma torch
KR20150056270A (en) * 2013-11-15 2015-05-26 에이피시스템 주식회사 sputter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930735A (en) * 2021-10-15 2022-01-14 无锡尚积半导体科技有限公司 Vapor deposition equipment for improving thickness uniformity of vanadium oxide film and vapor deposition method thereof

Also Published As

Publication number Publication date
KR20170008917A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
EP2390380B1 (en) Sputtering equipment, sputtering method and method for manufacturing an electronic device
US10872748B2 (en) Systems and methods for correcting non-uniformities in plasma processing of substrates
JP2936276B2 (en) Method and apparatus for manufacturing transparent conductive film
CN105793955B (en) Suppressor is generated by the particle of DC bias modulation
TWI662144B (en) A sputtering system, a method of depositing a material on a substrate, and a method of determining an end of lifetime of a sputtering target
JP2010168607A (en) Facing target type sputtering apparatus capable of controlling composition ratio
CN104361967B (en) A kind of method that ion implanting regulates and controls tantalum nitride membrane resistance
CN110468380B (en) Target sputtering device
CN103556122B (en) Self-adaptive magnetic field adjustment type magnetic-controlled sputter coating device and coating method thereof
US20230209661A1 (en) Metrology device, system and method
WO2017010592A1 (en) Large-area vanadium oxide semiconductor thin-film growth type pid control sputtering system
TW201128680A (en) Sputter deposition system and method
CN102471879B (en) Film-forming apparatus
CN203602705U (en) Adaptive magnetic field regulation type magnetron sputtering coating equipment
CN106103787B (en) Process gas segmentation for static reaction sputtering
CN105552216B (en) A kind of method for strengthening extraordinary Hall effect
CN112305470B (en) Annealing method of giant magnetoresistance sensor constructed by giant magnetoresistance structures with different magnetization directions
US20170025258A1 (en) Deposition of thick magnetizable films for magnetic devices
CN100432286C (en) Multipair target thin film sputterying instrument
CN209722286U (en) Physical vapour deposition (PVD) chamber is adjustable magnetic control coil device
KR20190056521A (en) Sputtering apparatus comprising electromagnet
TW434598B (en) Enhancement Hall sensor
KR101144123B1 (en) Variable deposition rate controlled sputtering system based on monitoring the temperature of depositiong process atmosphere
US20160099135A1 (en) Rectangular Hollow Sputter Source and Method of use Thereof
JP3602861B2 (en) Method of forming metal silicide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898353

Country of ref document: EP

Kind code of ref document: A1