WO2017008244A1 - Curable compositions for one drop fill sealant application - Google Patents

Curable compositions for one drop fill sealant application Download PDF

Info

Publication number
WO2017008244A1
WO2017008244A1 PCT/CN2015/083966 CN2015083966W WO2017008244A1 WO 2017008244 A1 WO2017008244 A1 WO 2017008244A1 CN 2015083966 W CN2015083966 W CN 2015083966W WO 2017008244 A1 WO2017008244 A1 WO 2017008244A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
linear
branched
cycloalkylenes
group
Prior art date
Application number
PCT/CN2015/083966
Other languages
French (fr)
Inventor
Laxmisha M. Sridhar
Baoshan GAO
Jing Zhou
Original Assignee
Henkel IP & Holding GmbH
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel IP & Holding GmbH, Henkel Ag & Co. Kgaa filed Critical Henkel IP & Holding GmbH
Priority to JP2018501230A priority Critical patent/JP2018529791A/en
Priority to EP15897972.4A priority patent/EP3322745A4/en
Priority to CN201580082914.XA priority patent/CN108602935A/en
Priority to KR1020187002233A priority patent/KR20180030846A/en
Priority to PCT/CN2015/083966 priority patent/WO2017008244A1/en
Priority to TW105122091A priority patent/TW201710384A/en
Publication of WO2017008244A1 publication Critical patent/WO2017008244A1/en
Priority to US15/871,056 priority patent/US20180136499A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/124Unsaturated polyimide precursors the unsaturated precursors containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/404Imides, e.g. cyclic imides substituted imides comprising oxygen other than the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Definitions

  • the present invention relates to monomers and oligomers useful as sealants and particularly as one drop fill sealants for liquid crystal applications.
  • the present invention permits assembly of LCD panels without migration of the sealant resin into the liquid crystal or vice versa during LCD assembly and/or curing of the resin.
  • the one drop fill (ODF” ) process is becoming the mainstream process in the assembly of LCD panels in display applications, replacing the conventional vacuum injection technology to meet faster manufacturing process demands.
  • ODF The one drop fill
  • a sealant is dispensed on an electrode-equipped substrate to form a frame of a display element, and liquid crystals are dropped inside the depicted frame.
  • another electrode equipped substrate is joined thereto under vacuum.
  • the sealant undergoes a curing process, either by a combination of UV and thermal or by thermal only process.
  • the ODF method has a few problems in that the sealant material in the uncured state comes into contact with the liquid crystal during the assembly process. This could cause reduction in electro-optical properties of the liquid crystal by resin migration into the liquid crystal or vice versa, or because of ionic impurities that may be present. Hence, design of resin systems for sealant material that show good liquid crystal resistance (less contamination) along with good adhesion and moisture barrier properties has remained a challenge.
  • the present invention relates to unique resins and ODF compositions made therefrom.
  • R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicyclo
  • R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicyclo
  • X 1 and X 2 are 3-10 membered rings independently selected from functionalized or unfunctionalized alicycyclic groups optionally having one or more heteroatoms; n 1 and n 2 are each independently 1-10;
  • R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicyclo
  • R is linked to the ring structures X 1 and X 2 at any position with a proviso that the hydroxyl groups on X 1 and X 2 rings are adjacent to the maleimidoalkanoyl groups.
  • R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicyclo
  • R 1 can be a carbonyl group; an aliphatic or aromatic linker and may contain one or more of ester, ether, hydroxyl or thioether groups;
  • R 2 is a substituent on the aromatic ring, which can be H, halogen, alkyl, alkyl ether, thioether group;
  • X 1 is selected from maleimidoalkanoyl or maleimidoaroyl group.
  • R 1 can be just a bond linking the two aromatic groups; O; carbonyl; or a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicyclo
  • R 2 is an aliphatic or aromatic linker group which may contain one or more of ester, ether, hydroxyl, thioether or carbonate groups;
  • R 3 is a substituent on the aryl group, which may be H, halogen, alkyl, alkyl ether, or thio ether group;
  • X is a polymerizable functionality selected from maleimidoalkanoyl and maleimidoaroyl groups.
  • R is a divalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicyclo
  • R 1 and R 2 are linear or branched aliphatic groups optionally containing heteroatoms
  • n is 1-10, and n 1 and n 2 are each 1-100.
  • the polymers of the present invention are useful in a wide variety of applications including sealing, adhesion and coating.
  • One particularly desirable use is as an ODF sealant for assembling LCD panels.
  • the present invention includes a number of novel materials including resins, oligomers and polymers useful for preparing curable compositions which may be used for ODF sealants.
  • the present invention also includes novel compositions made from the disclosed resins.
  • the term “resins” will include the aforementioned the novel materials, i.e. resins, oligomers and polymers.
  • One aspect of the invention includes a curing resin composition for use as an ODF sealant, which includes resins represented by the general structural formulae shown above.
  • the glycidyl ether/ester compounds useful in synthesizing the inventive hybrid resins described herein is not particularly limited, and examples of the epoxy compounds available in the market include: bisphenol A type epoxy resins such as Epikote 828EL and Epikote 1004 (all manufactured by Japan Epoxy Resin Co., Ltd. ) ; bisphenol F type epoxy resins such as Epikote 806 and Epikote 4004 (all manufactured by Japan Epoxy Resin Co., Ltd. ) ; bisphenol S type epoxy resins such as Epiclon EXA1514 (manufactured by Dainippon Ink and Chemicals Inc.
  • bisphenol A type epoxy resins such as Epikote 828EL and Epikote 1004 (all manufactured by Japan Epoxy Resin Co., Ltd. )
  • bisphenol F type epoxy resins such as Epikote 806 and Epikote 4004 (all manufactured by Japan Epoxy Resin Co., Ltd. )
  • bisphenol S type epoxy resins such as Epiclon EXA1514 (man
  • propyleneoxide-added bisphenol A type epoxy resins such as EP-4000S (manufactured by ADEKA Corporation) ; resorcinol type epoxy resins such as EX-201 (manufactured by Nagase ChemteX Corporation) ; biphenyl type epoxy resins such as Epikote YX-4000H (manufactured by Japan Epoxy Resin Co., Ltd. ) ; sulfide type epoxy resins such as YSLV 50TE (manufactured by Tohto Kasei Co., Ltd. ) ; ether type epoxy resins such as YSLV 80DE (manufactured by Tohto Kasei Co., Ltd.
  • dicyclopentadiene type epoxy resins such as EP-4088S and EP4088L (manufactured by ADEKA Corporation) ; naphthalene type epoxy resins such as SE-80, SE-90, manufactured by Shin A T&C; glycidyl amine type epoxy resins such as Epikote 630 (manufactured by Japan Epoxy Resin Co., Ltd. ) , Epiclon 430 (manufactured by Dainippon Ink and Chemicals Inc. ) and TETRAD-X (manufactured by Mitsubishi Gas Chemical Company Inc. ) ; alkylpolyol type epoxy resins such as ZX-1542 (manufactured by Tohto Kasei Co., Ltd.
  • glycidyl ester compounds such as Denacol EX-147 (manufactured by Nagase ChemteX Corporation) ; bisphenol A type episulfide resins such as Epikote YL-7000 (manufactured by Japan Epoxy Resin Co., Ltd. ) ; and others such as YDC-1312, YSLV-BOXY, YSLV-90CR (all manufactured by Tohto Kasei Co., Ltd. ) , XAC4151 (manufactured by Asahi Kasei Corporation) , Epikote 1031, Epikote 1032 (all manufactured by Japan Epoxy Resin Co., Ltd.
  • EXA-7120 manufactured by Dainippon Ink and Chemicals Inc.
  • TEPIC manufactured by Nissan Chemical Industries, Ltd.
  • Examples of the commercially available phenol novolak type epoxy compound include Epiclon N-740, N-770, N-775 (all manufactured by Dainippon Ink and Chemicals Inc. ) , Epikote 152, Epikote 154 (all manufactured by Japan Epoxy Resin Co., Ltd. ) , and the like.
  • cresol novolak type epoxy compound examples include Epiclon N-660, N-665, N-670, N-673, N-680, N-695, N-665-EXP and N-672-EXP (all manufactured by Dainippon Ink and Chemicals Inc. ) ; an example of the commercially available biphenyl novolak type epoxy compound is NC-3000P (manufactured by Nippon Kayaku Co., Ltd. ) ; examples of the commercially available trisphenol novolak type epoxy compound include EP1032S50 and EP1032H60 (all manufactured by Japan Epoxy Resin Co., Ltd.
  • examples of the commercially available dicyclopentadiene novolak type epoxy compound include XD-1000-L (manufactured by Nippon Kayaku Co., Ltd. ) and HP-7200 (manufactured by Dainippon Ink and Chemicals Inc. )
  • examples of the commercially available bisphenol A type epoxy compound include Epikote 828, Epikote 834, Epikote 1001, Epikote 1004 (all manufactured by Japan Epoxy Resin Co., Ltd. ) , Epiclon 850, Epiclon 860 and Epiclon 4055 (all manufactured by Dainippon Ink and Chemicals Inc.
  • examples of the commercially available bisphenol F type epoxy compound include Epikote 807 (manufactured by Japan Epoxy Resin Co., Ltd. ) and Epiclon 830 (manufactured by Dainippon Ink and Chemicals Inc. ) ; an example of the commercially available 2, 2′-diallyl bisphenol A type epoxy compound is RE-81ONM (manufactured by Nippon Kayaku Co., Ltd. ) ; an example of the commercially available hydrogenated bisphenol type epoxy compound is ST-5080 (manufactured by Tohto Kasei Co., Ltd.
  • examples of the cormmercially available polyoxypropylene bisphenol A type epoxy compound include EP-4000 and EP-4005 (all manufactured by ADEKA Corporation) ; and the like.
  • HP4032 and Epiclon EXA-4700 all manufactured by Dainippon Ink and Chemicals Inc.
  • phenol novolak type epoxy resins such as Epiclon N-770 (manufactured by Dainippon Ink and Chemicals Inc. )
  • orthocresol novolak type epoxy resins such as Epiclon N-670-EXP-S (manufactured by Dainippon Ink and Chemicals Inc.
  • dicyclopentadiene novolak type epoxy resins such as Epiclon HP7200 (manufactured by Dainippon Ink and Chemicals Inc. ) ; biphenyl novolak type epoxy resins such as NC-3000P (manufactured by Nippon Kayaku Co., Ltd. ) ; naphthalene phenol novolak type epoxy resins such as ESN-165S (manufactured by Tohto Kasei Co., Ltd. ) .
  • alicyclic epoxy compounds useful in synthesizing the inventive resins include, without limitation, polyglycidyI ethers of polyhydric alcohols having at least one alicyclic ring and cyclohexene oxide-or cyclopentene oxide containing compounds obtained by epoxidizing cyclohexene ring or cyclopentene ring-containing compounds.
  • Specific examples include hydrogenated bisphenol A diglycidyl ether, 3, 4-epoxycyclohexylmethyl 3, 4-epoxycyclohexanecarboxylate, 3, 4-epoxy-1-methyl cyclohexyl-3, 4-epoxy-1-methylcyclohexanecarboxylate, 6-methyl-3, 4-epoxycyclohexylmethyl-6-methyl-3, 4-epoxy-cyclohexanecarboxylate, 3, 4-epoxy-3-methylcyclohexylmethyl 3, 4-epoxy-3-methylcyclohexanecarboxylate, 3, 4-epoxy-5-methylcylcohexylmethyl-3, 4-epoxy-5-methylcyclohexanecarboxylate, 2- (3, 4-epoxycyclohexyl-5, 5-spiro-3, 4-epoxy) cyclohexane-metadioxane, bis (3, 4-epoxycyclohexylmethyl) adipate, 3, 4-epoxy
  • UVR-6100, UVR-6105, UVR-6110, UVR-6128, and UVR-6200 products of Union Carbide Corporation
  • ODF sealant compositions may also include a free radical initiator (thermal or UV generated) and a curing agent. Curing of the ODF compositions may be by thermal or UV mechanisms or both. In embodiments where an epoxide ring is present, a latent epoxy curing agent may also be employed.
  • a free radical initiator thermal or UV generated
  • a curing agent may also be employed.
  • Useful thermal free radical initiators include, for example, organic peroxides and azo compounds that are known in the art. Examples include: azo free radical initiators such as AIBN (azodiisobutyronitrile) , 2, 2′-Azobis (4-methoxy-2, 4-dimethyl valeronitrile) , 2, 2′-Azobis (2, 4-dimethyl valeronitrile) , Dimethyl 2, 2′-azobis (2-ethylpropionate) , 2, 2′-Azobis (2-methylbutyronitrile) , 1, 11-Azobis (cyclohexane-1-carbonitrile) , 2, 2′-Azobis [N- (2-propenyl) -2-methylpropionamide] ; dialkyl peroxide free radical initiators such as 1, 1-di- (butylperoxy-3, 3, 5-trimethyl cyclohexane) ; alkyl perester free radical initiators such as TBPEH (t-butyl
  • organic peroxide free radical initiators include: Dilauroyl peroxide, 2, 2-Di (4, 4-di (tert-butylperoxy) cyclohexyl) propane, Di (tert-butylperoxyisopropyl) benzene, Di (4-tert-butylcyclohexyl) peroxydicarbonate, Dicetyl peroxydicarbonate, Dimyristyl peroxydicarbonate, 2, 3-Dimethyl-2, 3-diphenylbutane, Dicumyl peroxide, Dibenzoyl peroxide, Diisopropyl peroxydicarbonate, tert-Butyl monoperoxymaleate, 2, 5-Dimethyl-2, 5-di (tert-butylperoxy) hexane, tert-Butylperoxy 2-ethylhexyl carbonate, tert-Amyl peroxy-2-ethylhexanoate, tert-Amyl peroxy,
  • the thermal free radical initiator with higher decomposition rate is preferred, as this can generate free radicals more easily at common cure temperature (80-130°C) and give faster cure speed, which can reduce the contact time between liquid resin and liquid crystal, and reduce the liquid crystal contamination.
  • the decomposition rate of initiator is too high, the viscosity stability at room temperature will be influenced, thereby reducing the work life of the sealant.
  • a convenient way of expressing the decomposition rate of an initiator at a specified temperature is in terms of its half-life i.e., the time required to decompose one-half of the peroxide originally present.
  • T1/2 half-life
  • the most reactive (fastest) initiator would be the one with the lowest 10 h T1/2 temperature.
  • the thermal free radical initiator with 10 h T1/2 temperature of 30-80°Cis preferred, and with 10 h T1/2 temperature of 40-70°Cis more preferred.
  • the thermal free radical initiator used in the resin composition is in an amount of usually 0.01 to 3 parts by weight, and preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the inventiveresin in the curable composition of the present invention.
  • Useful UV free radical initiators include Norrish type I cleavage photoinitiators that are commercially available from CIBA and BASF. These photoinitiators are used in the amount 0.1-5wt%, more preferably in about 0.2 to 3wt%in the formulation.
  • Examples of useful epoxy curing agent include but are not limited to the Ajicure series of hardeners available from Ajinomoto Fine-Techno Co., Inc. ; the Amicure series of curing agents available from Air products and the JERCURE TM products available from Mitsubushi Chemical. These curing agents or hardeners or hardeners are used in the amount of about 1%to about 50 %by weight of the total composition, more preferably from about 5%to about 20%by weight of the total composition.
  • the curable composition may optionally contain, as desired, a further component capable of a photopolymerization reaction such as a vinyl ether compound.
  • the curable composition may further comprise additives, resin components and the like to improve or modify properties such as flowability, dispensing or printing property, storage property, curing property and physical property after curing.
  • additives may be contained in the composition as desired, for example, organic or inorganic fillers, thixotropic agents, silane coupling agents, diluents, modifiers, coloring agents such as pigments and dyes, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, leveling agents and the like; however it is not limited to these.
  • the composition preferably comprises an additive selected from the group consisting of organic or inorganic filler, a thixotropic agent, and a silane coupling agent.
  • additives may be present in amounts of about 0.1%to about 50%, more preferably from about 2%to about 10%by weight of the total composition.
  • the filler may include, but is not limited to, inorganic fillers such as silica, diatomaceous earth, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, aluminium hydroxide, magnesium carbonate, barium sulphate, gypsum, calcium silicate, talc, glass bead, sericite activated white earth, bentonite, aluminum nitride, silicon nitride, and the like; meanwhile, organic fillers such as poly (methyl) methacrylate, poly (ethyl) methacrylate, poly (propyl) methacrylate, poly (butyl) methacrylate, butylacrylate-methacrylic acid- (methyl) methacrylate copolymer, polyacrylonitrile, polystyrene, polybutadiene, polypentadiene, polyisoprene, polyisopropylene, and the like. These may be used alone or in combination. These fillers may
  • the thixotropic agent may include, but is not limited to, talc, fume silica, superfine surface-treated calcium carbonate, fine particle alumina, plate-like alumina; layered compounds such as montmorillonite, spicular compounds such as aluminium borate whisker, and the like. Among them, talc, fume silica and fine alumina are particularly desired. These agents may be present ion amounts of about These agents may be present in amounts of about 1%to about 50%, more preferably from 1%to about 30%by weight of the total composition.
  • the silane coupling agent may include, but is not limited to, ⁇ -minopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxyp -ropyltrimethoxylsilane, and the like.
  • the curable composition according to the present invention may be obtained by mixing the aforementioned each component by means of, for example, a mixer such as a stirrer having stirring blades and a three roll mill.
  • the composition is liquid at ambient with the viscosity of 200-400 Pa. s (at 25°C) at 1.5s-1 shear rate, which allows its easy dispensing property.
  • the method comprises the steps of
  • the first substrate and the second substrate used in the present invention are usually transparent glass substrates.
  • transparent electrodes, active matrix elements (such as TFT) , alignment film (s) , a color filter and the like are formed on at least one of the opposed faces of the two substrates. These constitutions may be modified according to the type of the LCD.
  • the manufacturing method according to the present invention may be thought to be applied for any type of the LCD.
  • step (a) the curable composition is applied on the periphery portion of the surface of the first substrate so as to lap around the substrate circumference in a frame shape.
  • the portion where the curable composition is applied in a frame shape is referred as a seal region.
  • the curable composition can be applied by a known method such as screen printing and dispensing.
  • step (b) the liquid crystal is then dropped onto the center region surrounded by the seal region in the frame shape on the surface of the first substrate. This step is preferably conducted under reduced pressure.
  • step (c) said second substrate is then placed over said first substrate, and UV-irradiated in the step (d) .
  • the curable composition cures partially and shows the strength at a level that displacement does not occur by handling, whereby the two substrates are temporally fixed.
  • the radiation time is preferably short, for example not longer than 5 minutes, preferably not longer than 3 minutes, more preferably not longer than 1 minute.
  • step (e) heating the curable composition allows it to achieve the final curing strength, whereby the two substrates are finally bonded.
  • the thermal curing in the step (e) is generally heated at a temperature of 80 to 130°C, and preferably of 100 to 120°C, with the heating time of 30mins to 3 hours, typically 1 hour.
  • Table I below shows inventive ODF formulations 2-4 and control formulation 1 containing commercially available Uvacure 1561, which is partially acrylated BPA diglycidyl ether.
  • Irgacure 651 is a commercially available photoinitiator;
  • A-187 is an adhesion promoter;
  • EH-4357S is an epoxy hardener;
  • SO-E2 is a silica filler.
  • inventive formulations showed similar VHR moisture barrier values (Mocon) and improved corner strength as compared to the control formulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are bismaleimide resins and curable compositions for One Drop Fill sealant applications using such resins, particularly in liquid crystal display assembly applications. The said compositions can be cured by UV, heat or a combination of them.

Description

CURABLE COMPOSITIONS FOR ONE DROP FILL SEALANT APPLICATION BACKGROUND FIELD
The present invention relates to monomers and oligomers useful as sealants and particularly as one drop fill sealants for liquid crystal applications. In particular, the present invention permits assembly of LCD panels without migration of the sealant resin into the liquid crystal or vice versa during LCD assembly and/or curing of the resin.
BRIEF DESCRIPTION OF RELATED TECHNOLOGY
The one drop fill ( “ODF” ) process is becoming the mainstream process in the assembly of LCD panels in display applications, replacing the conventional vacuum injection technology to meet faster manufacturing process demands. In the ODF process, first, a sealant is dispensed on an electrode-equipped substrate to form a frame of a display element, and liquid crystals are dropped inside the depicted frame. In the next step of the assembly, another electrode equipped substrate is joined thereto under vacuum. Then, the sealant undergoes a curing process, either by a combination of UV and thermal or by thermal only process.
The ODF method has a few problems in that the sealant material in the uncured state comes into contact with the liquid crystal during the assembly process. This could cause reduction in electro-optical properties of the liquid crystal by resin migration into the liquid crystal or vice versa, or because of ionic impurities that may be present. Hence, design of resin systems for sealant material that show good liquid crystal resistance (less contamination) along with good adhesion and moisture barrier properties has remained a challenge.
SUMMARY
The present invention relates to unique resins and ODF compositions made therefrom.
In one aspect of the invention there is provided a resin comprising the structure I:
Figure PCTCN2015083966-appb-000001
Wherein
R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; n and n1 are each independently 1-10.
In another aspect of the invention there is included a resin having the structure II:
Figure PCTCN2015083966-appb-000002
Wherein
R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and n1, n2, n3, and n4 are each independently 1-10.
In yet another aspect of the invention there is included a resin having the structure III:
Figure PCTCN2015083966-appb-000003
Wherein
X1 and X2 are 3-10 membered rings independently selected from functionalized or unfunctionalized alicycyclic groups optionally having one or more heteroatoms; n1 and n2 are each independently 1-10;
wherein R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or  heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and
R is linked to the ring structures X1 and X2 at any position with a proviso that the hydroxyl groups on X1 and X2 rings are adjacent to the maleimidoalkanoyl groups.
In still another aspect of the invention there is included a resin having the structure IV:
Figure PCTCN2015083966-appb-000004
Wherein
R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group;
R1 can be a carbonyl group; an aliphatic or aromatic linker and may contain one or more of ester, ether, hydroxyl or thioether groups;
R2 is a substituent on the aromatic ring, which can be H, halogen, alkyl, alkyl ether, thioether group; and
X1 is selected from maleimidoalkanoyl or maleimidoaroyl group.
In another aspect of the invention there is included a resin having the structure V:
Figure PCTCN2015083966-appb-000005
Wherein
R1 can be just a bond linking the two aromatic groups; O; carbonyl; or a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and
R2 is an aliphatic or aromatic linker group which may contain one or more of ester, ether, hydroxyl, thioether or carbonate groups;
R3 is a substituent on the aryl group, which may be H, halogen, alkyl, alkyl ether, or thio ether group; and
X is a polymerizable functionality selected from maleimidoalkanoyl and maleimidoaroyl groups.
In another aspect of the invention there is included a resin having the structure VI:
Figure PCTCN2015083966-appb-000006
Wherein
R is a divalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group;
R1 and R2 are linear or branched aliphatic groups optionally containing heteroatoms;
n is 1-10, and n1 and n2 are each 1-100.
DETAILED DESCRIPTION
The polymers of the present invention are useful in a wide variety of applications including sealing, adhesion and coating. One particularly desirable use is as an ODF sealant for assembling LCD panels.
The present invention includes a number of novel materials including resins, oligomers and polymers useful for preparing curable compositions which may be used for ODF  sealants. The present invention also includes novel compositions made from the disclosed resins. For purposes of this invention, the term “resins” will include the aforementioned the novel materials, i.e. resins, oligomers and polymers.
One aspect of the invention includes a curing resin composition for use as an ODF sealant, which includes resins represented by the general structural formulae shown above.
The glycidyl ether/ester compounds useful in synthesizing the inventive hybrid resins described herein is not particularly limited, and examples of the epoxy compounds available in the market include: bisphenol A type epoxy resins such as Epikote 828EL and Epikote 1004 (all manufactured by Japan Epoxy Resin Co., Ltd. ) ; bisphenol F type epoxy resins such as Epikote 806 and Epikote 4004 (all manufactured by Japan Epoxy Resin Co., Ltd. ) ; bisphenol S type epoxy resins such as Epiclon EXA1514 (manufactured by Dainippon Ink and Chemicals Inc. ) and SE 650 manufactured by Shin A T&C; 2, 2′-diallyl bisphenol A type epoxy resins such as RE-81 ONM (manufactured by Nippon Kayaku Co., Ltd. ) ; hydrogenated bisphenol type epoxy resins such as Epiclon EXA7015 (manufactured by Dainippon Ink and Chemicals Inc. ) ; propyleneoxide-added bisphenol A type epoxy resins such as EP-4000S (manufactured by ADEKA Corporation) ; resorcinol type epoxy resins such as EX-201 (manufactured by Nagase ChemteX Corporation) ; biphenyl type epoxy resins such as Epikote YX-4000H (manufactured by Japan Epoxy Resin Co., Ltd. ) ; sulfide type epoxy resins such as YSLV 50TE (manufactured by Tohto Kasei Co., Ltd. ) ; ether type epoxy resins such as YSLV 80DE (manufactured by Tohto Kasei Co., Ltd. ) ; dicyclopentadiene type epoxy resins such as EP-4088S and EP4088L (manufactured by ADEKA Corporation) ; naphthalene type epoxy resins such as SE-80, SE-90, manufactured by Shin A T&C; glycidyl amine type epoxy resins such as Epikote 630 (manufactured by Japan Epoxy Resin Co., Ltd. ) , Epiclon 430 (manufactured by Dainippon Ink and Chemicals Inc. ) and TETRAD-X (manufactured by Mitsubishi Gas Chemical Company Inc. ) ; alkylpolyol type epoxy resins such as ZX-1542 (manufactured by Tohto Kasei Co., Ltd. ) , Epiclon 726 (manufactured by Dainippon Ink and Chemicals Inc. ) , Epolight 8OMFA (manufactured by Kyoeisha Chemical Co., Ltd. ) and Denacol EX-611 (manufactured by Nagase ChemteX Corporation) ; rubber modified type epoxy resins such as YR-450, YR-207 (all manufactured by Tohto Kasei Co., Ltd. ) and Epolead PB (manufactured by Daicel Chemical Industries, Ltd. ) ; glycidyl ester compounds such as Denacol  EX-147 (manufactured by Nagase ChemteX Corporation) ; bisphenol A type episulfide resins such as Epikote YL-7000 (manufactured by Japan Epoxy Resin Co., Ltd. ) ; and others such as YDC-1312, YSLV-BOXY, YSLV-90CR (all manufactured by Tohto Kasei Co., Ltd. ) , XAC4151 (manufactured by Asahi Kasei Corporation) , Epikote 1031, Epikote 1032 (all manufactured by Japan Epoxy Resin Co., Ltd. ) , EXA-7120 (manufactured by Dainippon Ink and Chemicals Inc. ) , TEPIC (manufactured by Nissan Chemical Industries, Ltd. ) . Examples of the commercially available phenol novolak type epoxy compound include Epiclon N-740, N-770, N-775 (all manufactured by Dainippon Ink and Chemicals Inc. ) , Epikote 152, Epikote 154 (all manufactured by Japan Epoxy Resin Co., Ltd. ) , and the like. Examples of the commercially available cresol novolak type epoxy compound include Epiclon N-660, N-665, N-670, N-673, N-680, N-695, N-665-EXP and N-672-EXP (all manufactured by Dainippon Ink and Chemicals Inc. ) ; an example of the commercially available biphenyl novolak type epoxy compound is NC-3000P (manufactured by Nippon Kayaku Co., Ltd. ) ; examples of the commercially available trisphenol novolak type epoxy compound include EP1032S50 and EP1032H60 (all manufactured by Japan Epoxy Resin Co., Ltd. ) ; examples of the commercially available dicyclopentadiene novolak type epoxy compound include XD-1000-L (manufactured by Nippon Kayaku Co., Ltd. ) and HP-7200 (manufactured by Dainippon Ink and Chemicals Inc. ) ; examples of the commercially available bisphenol A type epoxy compound include Epikote 828, Epikote 834, Epikote 1001, Epikote 1004 (all manufactured by Japan Epoxy Resin Co., Ltd. ) , Epiclon 850, Epiclon 860 and Epiclon 4055 (all manufactured by Dainippon Ink and Chemicals Inc. ) ; examples of the commercially available bisphenol F type epoxy compound include Epikote 807 (manufactured by Japan Epoxy Resin Co., Ltd. ) and Epiclon 830 (manufactured by Dainippon Ink and Chemicals Inc. ) ; an example of the commercially available 2, 2′-diallyl bisphenol A type epoxy compound is RE-81ONM (manufactured by Nippon Kayaku Co., Ltd. ) ; an example of the commercially available hydrogenated bisphenol type epoxy compound is ST-5080 (manufactured by Tohto Kasei Co., Ltd. ) ; examples of the cormmercially available polyoxypropylene bisphenol A type epoxy compound include EP-4000 and EP-4005 (all manufactured by ADEKA Corporation) ; and the like. HP4032 and Epiclon EXA-4700 (all manufactured by Dainippon Ink and Chemicals Inc. ) ; phenol novolak type epoxy resins such as Epiclon N-770 (manufactured by Dainippon Ink and Chemicals Inc. ) ; orthocresol novolak type  epoxy resins such as Epiclon N-670-EXP-S (manufactured by Dainippon Ink and Chemicals Inc. ) ; dicyclopentadiene novolak type epoxy resins such as Epiclon HP7200 (manufactured by Dainippon Ink and Chemicals Inc. ) ; biphenyl novolak type epoxy resins such as NC-3000P (manufactured by Nippon Kayaku Co., Ltd. ) ; naphthalene phenol novolak type epoxy resins such as ESN-165S (manufactured by Tohto Kasei Co., Ltd. ) .
Examples of the alicyclic epoxy compounds useful in synthesizing the inventive resins include, without limitation, polyglycidyI ethers of polyhydric alcohols having at least one alicyclic ring and cyclohexene oxide-or cyclopentene oxide containing compounds obtained by epoxidizing cyclohexene ring or cyclopentene ring-containing compounds. Specific examples include hydrogenated bisphenol A diglycidyl ether, 3, 4-epoxycyclohexylmethyl 3, 4-epoxycyclohexanecarboxylate, 3, 4-epoxy-1-methyl cyclohexyl-3, 4-epoxy-1-methylcyclohexanecarboxylate, 6-methyl-3, 4-epoxycyclohexylmethyl-6-methyl-3, 4-epoxy-cyclohexanecarboxylate, 3, 4-epoxy-3-methylcyclohexylmethyl 3, 4-epoxy-3-methylcyclohexanecarboxylate, 3, 4-epoxy-5-methylcylcohexylmethyl-3, 4-epoxy-5-methylcyclohexanecarboxylate, 2- (3, 4-epoxycyclohexyl-5, 5-spiro-3, 4-epoxy) cyclohexane-metadioxane, bis (3, 4-epoxycyclohexylmethyl) adipate, 3, 4-epoxy-6-methylcyclohexyl carboxylate, methylenebis (3, 4-epoxycyclohexane) , dicyclopentadiene diepoxide, ethylenebis (3, 4-epoxycyclohexanecarboxylate) , dioctylepoxyhexahydrophthalate, and di-2-ethylhexyl epoxyhexahydrophthalate.
Some of the above-mentioned alicyclic epoxy resins are Commercially available in the following products: UVR-6100, UVR-6105, UVR-6110, UVR-6128, and UVR-6200 (products of Union Carbide Corporation) ; CELLOXIDE 2021, CELLOXIDE 2021 P, CELLOXIDE 2081, CELLOXIDE 2083, CELLOXIDE 2085, CELLOXIDE 2000, CELLOXIDE 3000, CYCLMER A200, CYCLMER M100, CYCLMER M101, EPOLEAD GT-301, EPOLEAD GT-302, EPOLEAD 401, EPOLEAD 403, ETHB, and EPOLEADHD 300 (products of Daicel Chemical Industries, Ltd. ) ; KRM-2110, and KRM-2199 (products of ADEKA Corporation) .
In addition to the curable polymers of the present invention, ODF sealant compositions may also include a free radical initiator (thermal or UV generated) and a curing agent. Curing of the ODF compositions may be by thermal or UV mechanisms or both. In  embodiments where an epoxide ring is present, a latent epoxy curing agent may also be employed.
Useful thermal free radical initiators include, for example, organic peroxides and azo compounds that are known in the art. Examples include: azo free radical initiators such as AIBN (azodiisobutyronitrile) , 2, 2′-Azobis (4-methoxy-2, 4-dimethyl valeronitrile) , 2, 2′-Azobis (2, 4-dimethyl valeronitrile) , Dimethyl 2, 2′-azobis (2-ethylpropionate) , 2, 2′-Azobis (2-methylbutyronitrile) , 1, 11-Azobis (cyclohexane-1-carbonitrile) , 2, 2′-Azobis [N- (2-propenyl) -2-methylpropionamide] ; dialkyl peroxide free radical initiators such as 1, 1-di- (butylperoxy-3, 3, 5-trimethyl cyclohexane) ; alkyl perester free radical initiators such as TBPEH (t-butyl per-2-ethylhexanoate) ; diacyl peroxide free radical initiators such as benzoyl peroxide; peroxy dicarbonate radical initiators such as ethyl hexyl percarbonate; ketone peroxide initiators such as methyl ethyl ketone peroxide, bis (t-butyl peroxide) diisopropylbenzene, t-butylperbenzoate, t-butyl peroxy neodecanoate, and combinations thereof.
Further examples of organic peroxide free radical initiators include: Dilauroyl peroxide, 2, 2-Di (4, 4-di (tert-butylperoxy) cyclohexyl) propane, Di (tert-butylperoxyisopropyl) benzene, Di (4-tert-butylcyclohexyl) peroxydicarbonate, Dicetyl peroxydicarbonate, Dimyristyl peroxydicarbonate, 2, 3-Dimethyl-2, 3-diphenylbutane, Dicumyl peroxide, Dibenzoyl peroxide, Diisopropyl peroxydicarbonate, tert-Butyl monoperoxymaleate, 2, 5-Dimethyl-2, 5-di (tert-butylperoxy) hexane, tert-Butylperoxy 2-ethylhexyl carbonate, tert-Amyl peroxy-2-ethylhexanoate, tert-Amyl peroxypivalate, tert-Amylperoxy 2-ethylhexyl carbonate, 2, 5-Dimethyl-2, 5-di (2-ethylhexanoylperoxy) hexane 2, 5-Dimethyl-2, 5-di (tert-butylperoxy) hexpe-3, Di (3-methoxybutyl) peroxydicarbonate, Diisobutyryl peroxide, tert-Butyl peroxy-2-ethylhexanoate (Trigonox 21 S) , 1, 1-Di (tert-butylperoxy) cyclohexane, tert-Butyl peroxyneodecanoate, tert-Butyl peroxypivalate, tert-Butyl peroxyneoheptanoate, tert-Butyl peroxydiethylacetate, 1, 1-Di (tert-butylperoxy) -3, 3, 5-trimethylcyclohexane, 3, 6, 9-Triethyl-3, 6, 9-trimethyl-1, 4, 7-triperoxonane, Di (3, 5, 5-trimethylhexanoyl) peroxide, tert-Butyl peroxy-3, 5, 5-trimethyl hexanoate, 1, 1, 3, 3-Tetramethylbutyl peroxy-2-ethylhexanoate, 1, 1, 3, 3-etramethylbutyl peroxyneodecanoate, tert-Butyl peroxy-3, 5, 5-trimethyl hexanoate, Cumyl peroxyneodecanoate, Di-tert-butyl peroxide, tert-Butylperoxy isopropyl carbonate, tert-Butyl peroxybenzoate, Di (2- ethylhexyl) peroxydicarbonate, tea-Butyl peroxyacetate, Isopropylcumyl hydroperoxide, and tert-Butyl cumyl peroxide.
Normally the thermal free radical initiator with higher decomposition rate is preferred, as this can generate free radicals more easily at common cure temperature (80-130℃) and give faster cure speed, which can reduce the contact time between liquid resin and liquid crystal, and reduce the liquid crystal contamination. On the other hand, ifthe decomposition rate of initiator is too high, the viscosity stability at room temperature will be influenced, thereby reducing the work life of the sealant.
A convenient way of expressing the decomposition rate of an initiator at a specified temperature is in terms of its half-life i.e., the time required to decompose one-half of the peroxide originally present. To compare reactivity of different initiators, the temperature at which each initiator has a half-life (T1/2) of 10 hours is used. The most reactive (fastest) initiator would be the one with the lowest 10 h T1/2 temperature.
In the present invention, the thermal free radical initiator with 10 h T1/2 temperature of 30-80℃is preferred, and with 10 h T1/2 temperature of 40-70℃is more preferred.
To balance the reactivity and viscosity stability of the composition, the thermal free radical initiator used in the resin composition is in an amount of usually 0.01 to 3 parts by weight, and preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the inventiveresin in the curable composition of the present invention.
Useful UV free radical initiators include Norrish type I cleavage photoinitiators that are commercially available from CIBA and BASF. These photoinitiators are used in the amount 0.1-5wt%, more preferably in about 0.2 to 3wt%in the formulation.
Examples of useful epoxy curing agent include but are not limited to the Ajicure series of hardeners available from Ajinomoto Fine-Techno Co., Inc. ; the Amicure series of curing agents available from Air products and the JERCURETM products available from Mitsubushi Chemical. These curing agents or hardeners or hardeners are used in the amount of about 1%to about 50 %by weight of the total composition, more preferably from about 5%to about 20%by weight of the total composition.
The curable composition may optionally contain, as desired, a further component capable of a photopolymerization reaction such as a vinyl ether compound. In addition, the curable composition may further comprise additives, resin components and the like to improve or modify properties such as flowability, dispensing or printing property, storage property, curing property and physical property after curing. Various additives may be contained in the composition as desired, for example, organic or inorganic fillers, thixotropic agents, silane coupling agents, diluents, modifiers, coloring agents such as pigments and dyes, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, leveling agents and the like; however it is not limited to these. In particular, the composition preferably comprises an additive selected from the group consisting of organic or inorganic filler, a thixotropic agent, and a silane coupling agent. These additives may be present in amounts of about 0.1%to about 50%, more preferably from about 2%to about 10%by weight of the total composition.
The filler may include, but is not limited to, inorganic fillers such as silica, diatomaceous earth, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, aluminium hydroxide, magnesium carbonate, barium sulphate, gypsum, calcium silicate, talc, glass bead, sericite activated white earth, bentonite, aluminum nitride, silicon nitride, and the like; meanwhile, organic fillers such as poly (methyl) methacrylate, poly (ethyl) methacrylate, poly (propyl) methacrylate, poly (butyl) methacrylate, butylacrylate-methacrylic acid- (methyl) methacrylate copolymer, polyacrylonitrile, polystyrene, polybutadiene, polypentadiene, polyisoprene, polyisopropylene, and the like. These may be used alone or in combination. These fillers may be present in amounts of about about 1%to about 80%, more preferably from about 5%to about 30%by weight of the total composition.
The thixotropic agent may include, but is not limited to, talc, fume silica, superfine surface-treated calcium carbonate, fine particle alumina, plate-like alumina; layered compounds such as montmorillonite, spicular compounds such as aluminium borate whisker, and the like. Among them, talc, fume silica and fine alumina are particularly desired. These agents may be present ion amounts of about These agents may be present in amounts of about 1%to about 50%, more preferably from 1%to about 30%by weight of the total composition.
The silane coupling agent may include, but is not limited to, γ-minopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxyp -ropyltrimethoxylsilane, and the like.
The curable composition according to the present invention may be obtained by mixing the aforementioned each component by means of, for example, a mixer such as a stirrer having stirring blades and a three roll mill. The composition is liquid at ambient with the viscosity of 200-400 Pa. s (at 25℃) at 1.5s-1 shear rate, which allows its easy dispensing property.
Also provided is a method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, by means of a liquid crystal one-drop-filling process. The method comprises the steps of
(a) applying the curable composition described in the present invention on a sealing region at periphery of a surface of the first substrate;
(b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
(c) overlaying the second substrate on the first substrate;
(d) optionally performing partial curing by UV-irradiating the curable composition, and
(e) performing final curing by heating the curable composition.
The first substrate and the second substrate used in the present invention are usually transparent glass substrates. Generally, transparent electrodes, active matrix elements (such as TFT) , alignment film (s) , a color filter and the like are formed on at least one of the opposed faces of the two substrates. These constitutions may be modified according to the type of the LCD. The manufacturing method according to the present invention may be thought to be applied for any type of the LCD.
In step (a) , the curable composition is applied on the periphery portion of the surface of the first substrate so as to lap around the substrate circumference in a frame shape. The portion where the curable composition is applied in a frame shape is referred as a seal region. The curable composition can be applied by a known method such as screen printing and dispensing.
In step (b) , the liquid crystal is then dropped onto the center region surrounded by the seal region in the frame shape on the surface of the first substrate. This step is preferably conducted under reduced pressure.
In step (c) , said second substrate is then placed over said first substrate, and UV-irradiated in the step (d) . By the UV-irradiation, the curable composition cures partially and shows the strength at a level that displacement does not occur by handling, whereby the two substrates are temporally fixed. Generally, the radiation time is preferably short, for example not longer than 5 minutes, preferably not longer than 3 minutes, more preferably not longer than 1 minute.
In step (e) , heating the curable composition allows it to achieve the final curing strength, whereby the two substrates are finally bonded. The thermal curing in the step (e) is generally heated at a temperature of 80 to 130℃, and preferably of 100 to 120℃, with the heating time of 30mins to 3 hours, typically 1 hour.
By this process, the major part of the LCD panel is completed.
Performance Data For ODF Formulations
Table I below shows inventive ODF formulations 2-4 and control formulation 1 containing commercially available Uvacure 1561, which is partially acrylated BPA diglycidyl ether. Irgacure 651 is a commercially available photoinitiator; A-187 is an adhesion promoter; EH-4357S is an epoxy hardener; SO-E2 is a silica filler. Several inventive formulations showed similar VHR moisture barrier values (Mocon) and improved corner strength as compared to the control formulation.
Figure PCTCN2015083966-appb-000007
Figure PCTCN2015083966-appb-000008

Claims (24)

  1. A resin composition comprising the structure:
    Figure PCTCN2015083966-appb-100001
    Wherein
    R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and n and n1 are each independently 1-10.
  2. A resin composition comprising the structure:
    Figure PCTCN2015083966-appb-100002
    Wherein
    R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and n1, n2, n3, and n4 are each independently 1-10.
  3. A resin composition comprising the structure:
    Figure PCTCN2015083966-appb-100003
    Wherein
    X1 and X2 are 3-10 membered rings independently selected from functionalized or unfunctionalized alicyclic groups optionally having one or more heteroatoms;
    n1 and n2 are each independently 1-10;
    R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes,  tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and
    R is linked to the ring structures X1 and X2 at any position with a proviso that the hydroxylgroups on X1 and X2 rings are adjacent to the maleimidoalkanoyl groups.
  4. A resin composition comprising the structure:
    Figure PCTCN2015083966-appb-100004
    Wherein
    R is a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group;
    R1 is a linker group, which can be a carbonyl group; aliphatic or aromatic and may contain one or more ester, ether, hydroxyl or thioether groups;
    R2 is a substituent on the aromatic ring, which can be H, halogen, alkyl, alkyl ether, thioether group; and
    X1 is selected from maleimidoalkanoyl or maleimidoaroyl group.
  5. A resin composition comprising the structure:
    Figure PCTCN2015083966-appb-100005
    Wherein
    R1 is just a bond linking the two aromatic groups; O; carbonyl; or a multivalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group; and
    R2 is an aliphatic or aromatic linker group which may contain one or more of ester, ether, hydroxyl, thioether or carbonate groups;
    R3 is a substituent on the aryl group, which may be H, halogen, alkyl, alkyl ether, or thio ether group; and
    X is a polymerizable functionality selected from maleimidoalkanoyl and maleimidoaroyl groups.
  6. A resin composition comprising the structure
    Figure PCTCN2015083966-appb-100006
    Wherein
    R is a divalent hydrocarbyl linker selected from linear or branched alkyls, linear or branched cycloalkyls, alkylenes, cycloalkylenes, bicycloalkylenes, tricycloalkylenes, linear or branched alkylenes, linear or branched cycloalkylenes, linear or branched alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene or heterocycloarylenes; the alkyls, cycloalkyls, alkylenes, cycloalkylenes, alkenylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heterocycloalkylene and heterocycloarylenes can optionally contain O or S or hydroxyl group;
    R1 and R2 are each linear or branched aliphatic groups optionally containing heteroatoms; and n is 1-10, andn1 and n2 are each 1-100.
  7. A curable One Drop Fill (ODF) sealant composition comprising the resin structure of claim 1 and a material selected from the group consisting of free radical initiators, curing agents, fillers and combinations thereof.
  8. The ODF sealant composition of claim 7 further comprising a material selected from the group consisting of photoinitiators, thixotropic agents, silane coupling agents, diluents, coloring agents, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, leveling agents, tougheners and combinations thereof.
  9. A curable One Drop Fill (ODF) sealant composition comprising the resin structure of claim 2 and a material selected from the group consisting of free radical initiators, curing agents, fillers and combinations thereof.
  10. The ODF sealant composition of claim 9 further comprising a material selected form the group consisting of photoinitiators, thixotropic agents, silane coupling agents, diluents, coloring agents, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, leveling agents, tougheners and combinations thereof.
  11. A curable One Drop Fill (ODF) sealant composition comprising the resin structure of claim 3 and a material selected from the group consisting of free radical initiators, curing agents, fillers and combinations thereof.
  12. The ODF sealant composition of claim 11 further comprising a material selected form the group consisting of photoinitiators, thixotropic agents, silane coupling agents, diluents, coloring agents, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, tougheners, leveling agents and combinations thereof.
  13. A curable One Drop Fill (ODF) sealant composition comprising the resin structure of claim 4 and a material selected from the group consisting of free radical initiators, curing agents, fillers and combinations thereof.
  14. The ODF sealant composition of claim 13 further comprising a material selected form the group consisting of photoinitiators, thixotropic agents, silane coupling agents, diluents, coloring agents, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, tougheners, leveling agents and combinations thereof.
  15. A curable One Drop Fill (ODF) sealant composition comprising the resin structure of claim 5 and a material selected from the group consisting of free radical initiators, curing agents, fillers and combinations thereof.
  16. The ODF sealant composition of claim 15 further comprising a material selected form the group consisting of photoinitiators, thixotropic agents, silane coupling agents, diluents, coloring agents, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, tougheners, leveling agents and combinations thereof.
  17. A curable One Drop Fill (ODF) sealant composition comprising the resin structure of claim 6 and a material selected from the group consisting of free radical initiators, curing agents, fillers and combinations thereof.
  18. The ODF sealant composition of claim 17 further comprising a material selected form the group consisting of photoinitiators, thixotropic agents, silane coupling agents, diluents, coloring agents, surfactants, preservatives, stabilizers, plasticizers, lubricants, defoamers, tougheners, leveling agents and combinations thereof.
  19. A method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, comprising:
    (a) applying the curable composition of claim 1 on a sealing region at periphery of a surface of the first substrate;
    (b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
    (c) overlaying the second substrate on the first substrate;
    (d) optionally performing partial curing by UV-irradiating the curable composition, and
    (e) performing final curing by heating the curable composition.
  20. A method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, comprising:
    (a) applying the curable composition of claim 2 on a sealing region at periphery of a surface of the first substrate;
    (b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
    (c) overlaying the second substrate on the first substrate;
    (d) optionally performing partial curing by UV-irradiating the curable composition, and
    (e) performing final curing by heating the curable composition.
  21. A method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, comprising:
    (a) applying the curable composition of claim 3 on a sealing region at periphery of a surface of the first substrate;
    (b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
    (c) overlaying the second substrate on the first substrate;
    (d) optionally performing partial curing by UV-irradiating the curable composition, and
    (e) performing final curing by heating the curable composition.
  22. A method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, comprising:
    (a) applying the curable composition of claim 4 on a sealing region at periphery of a surface of the first substrate;
    (b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
    (c) overlaying the second substrate on the first substrate;
    (d) Optionally performing partial curing by UV-irradiating the curable composition, and
    (e) performing final curing by heating the curable composition.
  23. A method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, comprising:
    (a) applying the curable composition of claim 5 on a sealing region at periphery of a surface of the first substrate;
    (b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
    (c) overlaying the second substrate on the first substrate;
    (d) optionally performing partial curing by UV-irradiating the curable composition, and
    (e) performing final curing by heating the curable composition.
  24. A method for manufacturing a liquid crystal display having a liquid crystal layer between a first substrate and a second substrate, comprising:
    (a) applying the curable composition of claim 6 on a sealing region at periphery of a surface of the first substrate;
    (b) dropping liquid crystal on a central area encircled by the sealing region of the surface of the first substrate;
    (c) overlaying the second substrate on the first substrate;
    (d) optionally performing partial curing by UV-irradiating the curable composition, and
    (e) performing final curing by heating the curable composition
PCT/CN2015/083966 2015-07-14 2015-07-14 Curable compositions for one drop fill sealant application WO2017008244A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018501230A JP2018529791A (en) 2015-07-14 2015-07-14 Curable composition for one drop fill sealant applications
EP15897972.4A EP3322745A4 (en) 2015-07-14 2015-07-14 Curable compositions for one drop fill sealant application
CN201580082914.XA CN108602935A (en) 2015-07-14 2015-07-14 Curable compositions for filled type sealant application of instiling
KR1020187002233A KR20180030846A (en) 2015-07-14 2015-07-14 Curable composition for one drop fill sealant field
PCT/CN2015/083966 WO2017008244A1 (en) 2015-07-14 2015-07-14 Curable compositions for one drop fill sealant application
TW105122091A TW201710384A (en) 2015-07-14 2016-07-13 Curable compositions for One Drop Fill sealant application
US15/871,056 US20180136499A1 (en) 2015-07-14 2018-01-14 Curable compositions for one drop fill sealant application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083966 WO2017008244A1 (en) 2015-07-14 2015-07-14 Curable compositions for one drop fill sealant application

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/871,056 Continuation US20180136499A1 (en) 2015-07-14 2018-01-14 Curable compositions for one drop fill sealant application

Publications (1)

Publication Number Publication Date
WO2017008244A1 true WO2017008244A1 (en) 2017-01-19

Family

ID=57756755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083966 WO2017008244A1 (en) 2015-07-14 2015-07-14 Curable compositions for one drop fill sealant application

Country Status (7)

Country Link
US (1) US20180136499A1 (en)
EP (1) EP3322745A4 (en)
JP (1) JP2018529791A (en)
KR (1) KR20180030846A (en)
CN (1) CN108602935A (en)
TW (1) TW201710384A (en)
WO (1) WO2017008244A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116928A1 (en) * 2016-12-20 2018-06-28 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
WO2018213668A1 (en) * 2017-05-18 2018-11-22 Henkel IP & Holding GmbH Curable compositions for one drop sealant applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034708A (en) * 2001-07-24 2003-02-07 Nippon Kayaku Co Ltd Resin composition and its cured material
US6835758B2 (en) * 1998-11-14 2004-12-28 Sun Chemical Corporation Water compatible energy curable compositions containing malemide derivatives
JP2005002015A (en) * 2003-06-10 2005-01-06 Nippon Kayaku Co Ltd Maleimide compound, resin composition containing the same and its cured product
CN101676315A (en) * 2008-06-13 2010-03-24 汉高公司 Sealant for liquid crystal instillation technique and method for manufacturing liquid crystal dispaly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308951A (en) * 2001-04-11 2002-10-23 Nippon Kayaku Co Ltd Resin composition, solder resist resin composition and their cured products
JP2003020403A (en) * 2001-07-10 2003-01-24 Nippon Kayaku Co Ltd Resin composition, solder resist resin composition and cured product thereof
JP2003113221A (en) * 2001-10-05 2003-04-18 Nippon Kayaku Co Ltd Resin composition, solder resist resin composition and their cured products
JP2003212937A (en) * 2002-01-18 2003-07-30 Nippon Kayaku Co Ltd Resin composition and cured article thereof
JP4888095B2 (en) * 2005-12-14 2012-02-29 日本電気株式会社 Strengthening of shape memory resin that can be remolded and has excellent shape recovery ability
JP2018528282A (en) * 2015-07-14 2018-09-27 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Bismaleimide resin for one drop fill sealant applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835758B2 (en) * 1998-11-14 2004-12-28 Sun Chemical Corporation Water compatible energy curable compositions containing malemide derivatives
JP2003034708A (en) * 2001-07-24 2003-02-07 Nippon Kayaku Co Ltd Resin composition and its cured material
JP2005002015A (en) * 2003-06-10 2005-01-06 Nippon Kayaku Co Ltd Maleimide compound, resin composition containing the same and its cured product
CN101676315A (en) * 2008-06-13 2010-03-24 汉高公司 Sealant for liquid crystal instillation technique and method for manufacturing liquid crystal dispaly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3322745A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116928A1 (en) * 2016-12-20 2018-06-28 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
WO2018213668A1 (en) * 2017-05-18 2018-11-22 Henkel IP & Holding GmbH Curable compositions for one drop sealant applications

Also Published As

Publication number Publication date
EP3322745A4 (en) 2019-06-19
EP3322745A1 (en) 2018-05-23
JP2018529791A (en) 2018-10-11
KR20180030846A (en) 2018-03-26
CN108602935A (en) 2018-09-28
US20180136499A1 (en) 2018-05-17
TW201710384A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI420205B (en) Hardening resin composition for liquid crystal sealing and manufacturing method for liquid crystal display panel using the same
US20160355734A1 (en) Curable resin composition for sealing liquid crystal
JP5268235B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5490726B2 (en) Sealant for liquid crystal dropping method
JP4977896B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
US20180134839A1 (en) Monomeric and oligomeric resins for one drop fill sealant application
US20180136499A1 (en) Curable compositions for one drop fill sealant application
US20180134657A1 (en) Bismaleimide resins for one drop fill sealant application
JP5112433B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5592111B2 (en) Manufacturing method of liquid crystal display device
JP6491490B2 (en) Sealant for liquid crystal dropping method
JP2020063444A (en) Monomer and oligomer resin for one drop fill sealant
WO2018213668A1 (en) Curable compositions for one drop sealant applications
WO2018213695A1 (en) Curable compositions for one drop sealant applications
WO2018006414A1 (en) A process of producing a liquid crystal display and a thermoset resin composition used in the same
JP5182834B2 (en) Liquid crystal sealant and liquid crystal display cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018501230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002233

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015897972

Country of ref document: EP