WO2017004374A1 - Integrated hybrid heart valves - Google Patents

Integrated hybrid heart valves Download PDF

Info

Publication number
WO2017004374A1
WO2017004374A1 PCT/US2016/040396 US2016040396W WO2017004374A1 WO 2017004374 A1 WO2017004374 A1 WO 2017004374A1 US 2016040396 W US2016040396 W US 2016040396W WO 2017004374 A1 WO2017004374 A1 WO 2017004374A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
heart valve
prosthetic heart
frame
stent frame
Prior art date
Application number
PCT/US2016/040396
Other languages
French (fr)
Inventor
Brian S. Conklin
Qinggang Zeng
Myron Howanec, Jr.
Grace M. KIM
Original Assignee
Edwards Lifesciences Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Lifesciences Corporation filed Critical Edwards Lifesciences Corporation
Priority to CN201680047630.1A priority Critical patent/CN107920894B/en
Priority to EP16818788.8A priority patent/EP3316823B1/en
Priority to CA2990733A priority patent/CA2990733C/en
Priority to CR20170597A priority patent/CR20170597A/en
Publication of WO2017004374A1 publication Critical patent/WO2017004374A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0057Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof stretchable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/001Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0048Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in mechanical expandability, e.g. in mechanical, self- or balloon expandability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0097Visible markings, e.g. indicia

Definitions

  • the present disclosure relates to a hybrid heart valve for heart valve replacement, and more particularly to modifications to simplify the construction of hybrid heart valves.
  • the heart is a hollow muscular organ having four pumping chambers separated by four heart valves: aortic, mitral (or bicuspid), tricuspid, and pulmonary.
  • Heart valves are comprised of a dense fibrous ring known as the annulus, and leaflets or cusps attached to the annulus.
  • Heart valve disease is a widespread condition in which one or more of the valves of the heart fails to function properly.
  • the damaged leaflets are typically excised and the annulus sculpted to receive a replacement prosthetic valve.
  • tissue-type valves a whole xenograft valve (e.g. , porcine) or a plurality of xenograft leaflets (e.g. , bovine pericardium) can provide fluid occluding surfaces.
  • a whole xenograft valve e.g. , porcine
  • a plurality of xenograft leaflets e.g. , bovine pericardium
  • flexible leaflet valve refers to both natural and artificial "tissue-type” valves.
  • tissue-type valve two or more flexible leaflets are mounted within a peripheral support structure that usually includes posts or commissures extending in the outflow direction to mimic natural fibrous commissures in the native annulus.
  • the metallic or polymeric "support frame,” sometimes called a “wireform” or “stent,” has a plurality (typically three) of large radius cusps supporting the cusp region of the flexible leaflets (e.g. , either a whole xenograft valve or three separate leaflets).
  • each pair of adjacent cusps converge somewhat asymptotically to form upstanding commissures that terminate in tips, each extending in the opposite direction as the arcuate cusps and having a relatively smaller radius.
  • Components of the valve are usually assembled with one or more biocompatible fabrics (e.g. , polyester, for example, Dacron® polyethylene terephthalate (PET)) coverings, and a fabric -covered sewing ring is provided on the inflow end of the peripheral support structure.
  • biocompatible fabrics e.g. , polyester, for example, Dacron® polyethylene terephthalate (PET)
  • the application discloses a hybrid prosthetic heart valve (and methods for making the same) having a stent frame positioned at the inflow end of the prosthetic heart valve configured to plastically expand into a substantially flared shape when subjected to a dilation force that is by itself insufficient to cause expansion of the main support structure.
  • the stent frame is positioned upstream or on the inflow end of the entire valve portion.
  • the application also discloses a hybrid prosthetic heart valve configured to receive a prosthetic heart valve, such as a catheter-deployed (transcatheter) prosthetic heart valve, therein - e.g. , it is adapted for valve-in- valve (ViV) procedures.
  • a prosthetic heart valve such as a catheter-deployed (transcatheter) prosthetic heart valve
  • An exemplary hybrid prosthetic heart valve having an inflow end and an outflow end, and comprises a valve member including a plurality of flexible leaflets configured to ensure one-way blood flow therethrough.
  • a generally tubular expandable inflow stent frame having a radially-expandable inflow end and an outflow end is secured to and projects from an inflow end of the valve member.
  • the outflow end of the stent frame undulates with peaks and valleys, and the outflow end includes integrated commissure posts to which the leaflets attach.
  • the outflow end of the stent frame has a circumferential structure defining a nominal diameter that enables physiological functioning of the valve member when implanted.
  • the circumferential structure is radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame substantially larger than forces associated with normal physiological use. And the circumferential structure has limited radially compressibility of between about 7-20% of the nominal diameter to reduce the size of the outflow end during delivery of the heart valve.
  • a further hybrid prosthetic heart valve disclosed herein and adapted for post- implant expansion has an inflow end and an outflow end with a valve member and an inflow stent frame.
  • the valve member includes an undulating wireform supporting a plurality of flexible leaflets configured to ensure one-way blood flow therethrough.
  • the stent frame is plastically-expandable with a radially-expandable inflow end and an outflow end secured to an inflow end of the wireform.
  • the stent frame projects from the inflow end of the wireform and the outflow end undulates with peaks and valleys corresponding to the wireform.
  • the outflow end further includes integrated commissure posts to which the leaflets attach, and defines an implant circumference that is non- compressible in normal physiological use and has a nominal diameter.
  • the stent frame outflow end permits expansion from the nominal diameter to a second diameter larger than the nominal diameter upon application of an outward dilatory force from within the outflow end substantially larger than forces associated with normal physiological use.
  • Another hybrid prosthetic heart valve disclosed herein comprises a valve member including an undulating wireform supporting a plurality of flexible leaflets configured to ensure one-way blood flow therethrough.
  • a plastically-expandable inflow stent frame having a radially-expandable inflow end and an outflow end is secured to an inflow end of the wireform.
  • the stent frame projects from the inflow end of the wireform and the outflow end undulates with peaks and valleys corresponding to the wireform.
  • the outflow end includes integrated commissure posts to which the leaflets attach outside of the wireform, and the outflow end comprises a circumferential structure defining a nominal diameter that enables functioning of the valve member.
  • the circumferential structure is radially compressible to a smaller contracted diameter to enable compression of the outflow end during delivery of the heart valve, and radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame substantially larger than forces associated with normal physiological use.
  • Figure 1A is an exploded view of an inner structural band subassembly of a prior art prosthetic heart valve, and Figure IB shows the band subassembly having been covered with cloth and exploded over a peripheral sealing ring;
  • Figure 1C shows the cloth-covered band subassembly joined with the peripheral sealing ring also covered in cloth, while Figure ID is a vertical sectional view through a cusp region thereof;
  • Figure 2A is a perspective view of a flexible leaflet subassembly for use in the prior art prosthetic heart valve, and Figure 2B shows an undulating wireform used for support thereof;
  • Figure 2C is a perspective view of a subassembly of the undulating wireform covered in fabric, and Figure 2D is a detailed sectional view of a cusp portion thereof;
  • Figure 2E shows a leaflet and wireform subassembly for prior art prosthetic heart valves
  • Figure 3 is a perspective view of a finished prior art prosthetic heart valve including the combination of the subassemblies shown in Figures 1C and 2E;
  • Figures 4A and 4B are inflow and outflow perspective views, respectively, of a prosthetic heart valve as in Figure 3 before coupling with an inflow anchoring skirt to form a hybrid prosthetic heart valve;
  • Figure 5 is an exploded assembly view of a portion of a cloth-covered anchoring skirt for coupling to the heart valve;
  • Figure 6 is an exploded assembly view of the portion of the cloth-covered anchoring skirt shown in Figure 5 and a lower sealing flange secured thereto to form the inflow anchoring skirt;
  • Figure 7A shows the valve member above the cloth-covered anchoring skirt and schematically shows one method of coupling the two elements
  • Figure 7B illustrates an inner plastically-expandable stent frame of the anchoring skirt and the pattern of coupling sutures passed therethrough;
  • Figure 8A is a side view of a hybrid prosthetic heart valve of the present application, while Figure 8B shows an anchoring skirt therefor with a valve member in phantom, and Figure 8C is a perspective view of the prosthetic heart valve with portions cutaway to reveal internal structural leaflet supports;
  • Figures 9A-9C are perspective views of an exemplary anchoring skirt for use in the hybrid prosthetic heart valve of Figures 8A-8C;
  • Figure 10A is an exploded perspective view of components of an alternative hybrid prosthetic heart valve, while Figure 10B shows an exemplary leaflet and wireform subassembly and an anchoring skirt and commissure post subassembly for the hybrid prosthetic heart valve;
  • Figures IOC and 10D show details of separate commissure posts
  • Figure 11 is another exploded perspective view of subassemblies of the alternative hybrid prosthetic heart valve
  • Figure 12 shows the relative positions of the anchoring skirt and commissure post subassembly and wireform for the alternative hybrid prosthetic heart valve, and Figures 12A-12D are further detailed views thereof;
  • Figure 13 is a perspective view of the finished hybrid prosthetic heart valve;
  • Figures 14A and 14B are perspective views of a hybrid prosthetic heart valve built using the methods of Figures 15-16;
  • Figures 15A and 15B show steps for covering an anchoring frame member with cloth in the disclosed method of hybrid valve construction
  • Figures 16A and 16B show methods of attachment of a suture permeable sealing ring to the anchoring frame member
  • Figure 17 is a perspective view of a separate commissure post, and Figure 18 is the commissure post covered with cloth;
  • Figures 19A and 19B are elevational views of an exemplary integrated frame member of the present application.
  • Figure 20 is an alternative commissure post
  • Figure 21 is a tubular legs of fabric used to cover the separate commissure posts
  • Figures 22A and 22B are perspective views of a cloth-covered commissure post secured to an outflow edge of a cloth-covered anchoring frame member
  • Figure 23 illustrates alternative commissure posts, and Figure 24 shows one alternative commissure post secured to an outflow edge of a cloth-covered anchoring frame member;
  • Figures 25A-25D are perspective, elevational, and flat plan views of an exemplary integrated frame member for use in the hybrid prosthetic heart valves disclosed herein;
  • Figures 26A-26D are several views of an alternative integrated frame member much like that shown in Figures 25A-25D but with commissure posts that are separated from a lower expandable frame;
  • Figures 27A and 27B are perspective and elevational views of a still further integrated frame member of the present application that is non-collapsible and non- expandable;
  • Figures 28A and 28B are perspective and elevational views of another integrated frame member with separate commissure posts;
  • Figure 29 is a perspective view of an alternative integrated frame member having an expandable frame connected to a polymer band that forms commissure posts;
  • Figures 30A and 30B are elevational and perspective views of an exemplary expandable frame for use in the frame member of Figure 29;
  • Figure 31 is an elevational view of an integrated frame member similar to that shown in Figure 29 with the polymer band overlapping an upper edge of the expandable frame.
  • the prosthetic heart valves disclosed herein are "hybrid” in that they include a prosthetic valve member with a relatively stable diameter, and a lower expandable frame structure to help in anchoring the valve in place. Most prior valves have either a wholly non-compressible/non-expandable valve member or a wholly expandable frame structure that incorporates a valve therein.
  • One specific commercial prosthetic heart valve that is constructed in a hybrid manner is the Edwards Intuity® valve system from Edwards Lifesciences of Irvine, CA.
  • the hybrid Edwards Intuity® valve system comprises a surgical non-compressible/non-expandable valve member (e.g. , Edwards Magna Ease® valve) having bioprosthetic (e.g. , bovine pericardial) leaflets coupled to a stainless steel expandable frame structure on its inflow end.
  • Figures 1-7 illustrate a number of steps in the construction of an exemplary hybrid prosthetic heart valve 20.
  • Figure 1A is an exploded view of an inner structural band subassembly 40
  • Figure IB shows the band subassembly having been covered with cloth and exploded over a peripheral sealing ring.
  • the inner structural band subassembly 40 includes an inner polymer band 42 having three upstanding posts 44 and a scalloped lower ring 46, and an outer more rigid band 48 having a scalloped shape to conform to the lower ring 46.
  • the band subassembly 40 is formed by positioning the polymer band 42 within the rigid band 48 and securing them together with sutures through aligned holes, for example.
  • Figure IB is a perspective view of the assembled band subassembly 40 covered in cloth exploded from a sewing ring 62.
  • the two structural bands 42, 48 are the same heights in the cusp region and encompassed by a fabric cover 64 that is rolled into a peripheral tab 66.
  • the sewing ring 62 comprises an inner suture permeable member 68 having a frustoconical form and encompassed by a second fabric cover 70.
  • Two fabric covers 64, 70 are sewn together at a lower junction point 72 to form the cloth-covered assembly of Figure 1C, while Figure ID shows details through a cusp portion thereof.
  • Figure 2A is a perspective view of a flexible leaflet subassembly and Figure 2B shows an undulating wireform used for support thereof.
  • Figure 2C is a perspective view of a cloth-covered wireform subassembly 50
  • Figure 2D is a detailed sectional view of a cusp portion of the wireform 50 showing an inner wire member 52 covered with fabric that defines a tubular portion 54 and an outwardly projecting flap 56.
  • the wireform 50 defines three upstanding commissure posts 58 and three downwardly convex cusps 60. This is a standard shape for tri-leaflet heart valves and mimics the peripheral edges of the three native aortic leaflets.
  • the shape of the wireform 50 coincides with the upper edge of the band subassembly 40, and defines the outflow edge of the prosthetic valve 20.
  • the wireform subassembly 50 is then joined together with the flexible leaflet subassembly, as seen in Figure 2E.
  • Figure 3 is a perspective view of a finished valve member including the combination of the subassemblies shown in Figures 1C and 2E.
  • FIGs 4 A and 4B are inflow and outflow perspective views, respectively, of the surgical heart valve member 24 before coupling with an inflow anchoring skirt to form the hybrid heart valve 20.
  • three flexible leaflets 74 are secured along the undulating wireform 50 and then to the combination of the band subassembly 40 and sewing ring 62 shown in Figure 1C.
  • each of the three leaflets includes outwardly projecting tabs that pass through the inverted U-shaped commissure posts 58 and wrap around the cloth- covered commissure posts 75 (see Figure 1C) of the band subassembly 40. The entire structure at the commissures is covered with a secondary fabric to form the valve commissures 35 as seen in Figure 7 A.
  • the sewing ring 62 that surrounds the inflow end thereof. As will be seen, the sewing ring 62 is used to attach the anchoring skirt 26 to the valve member 24. Moreover, the sewing ring 62 presents an outward flange that contacts an atrial side of the annulus, while the anchoring skirt 26 expands and contracts the opposite, ventricular side of the annulus, therefore securing the heart valve 20 to the annulus from both sides.
  • the presence of the sewing ring 62 provides an opportunity for the surgeon to use conventional sutures to secure the heart valve 20 to the annulus as a contingency.
  • the preferred sewing ring 62 defines a relatively planar upper or outflow face and an undulating lower face. Cusps of the valve structure abut the sewing ring upper face opposite locations where the lower face defines peaks. Conversely, the valve commissure posts align with locations where the sewing ring lower face defines troughs.
  • the undulating shape of the lower face advantageously matches the anatomical contours of the aortic side of the annulus AA, that is, the supra-annular shelf.
  • the ring 62 preferably comprises a suture-permeable material such as rolled synthetic fabric or a silicone inner core covered by a synthetic fabric. In the latter case, the silicone may be molded to define the contour of the lower face and the fabric cover conforms thereover.
  • FIG. 5 is an exploded assembly view of a portion of a cloth-covered anchoring skirt for coupling to the valve member
  • Figure 6 is an exploded assembly view of the portion of the cloth-covered anchoring skirt shown in Figure 5 and a lower sealing flange secured thereto to form the inflow anchoring skirt.
  • the size of the anchoring skirt 26 will vary depending on the overall size of the heart valve 20. Therefore the following discussion applies to all sizes of valve components, with the dimensions scaled accordingly.
  • the general function of the anchoring skirt 26 is to provide the means to attach the prosthetic valve member 24 to the native aortic root.
  • the anchoring skirt 26 may be a pre-crimped, tapered, 316L stainless steel balloon-expandable stent, desirably covered by a polyester fabric to help seal against paravalvular leakage and to promote tissue ingrowth once implanted within the annulus.
  • the anchoring skirt 26 transitions between the tapered, constricted shape of Figure 5B to a flared, expanded shape.
  • the anchoring skirt 26 comprises an inner stent frame 80, a fabric covering 82, and a bandlike lower sealing flange 84.
  • the stent frame 80 assembles within a tubular section of fabric 82, which is then drawn taut around the stent frame, inside and out, and sewn thereto to form the intermediate cloth-covered frame 88 in Figure 5.
  • the stent frame 80 is desirably tubular, though later the frame will be crimped to a conical shape as see in Figure 7B for example.
  • a particular sequence for attaching the tubular section of fabric 82 around the stent frame 80 includes providing longitudinal suture markers (not shown) at 120° locations around the fabric to enable registration with similarly circumferentially-spaced, commissure features on the stent frame. After surrounding the stent frame 80 with the fabric 82, a series of longitudinal sutures at each of the three 120° locations secure the two components together.
  • the tubular section of fabric 82 comprises polytetrafluoroethylene (PTFE) cloth, although other biocompatible fabrics may be used.
  • PTFE polytetrafluoroethylene
  • Figure 7A shows the valve member above the cloth-covered anchoring skirt and schematically shows one method of couple the two elements using sutures.
  • Figure 7B illustrates the inner plastically-expandable stent frame 80 with cloth covering removed to indicate a preferred pattern of coupling sutures passed therethrough.
  • the anchoring skirt 26 preferably attaches to the sewing ring 62 during the manufacturing process in a way that preserves the integrity of the ring and prevents reduction of the valve's effective orifice area (EOA). Desirably, the anchoring skirt 26 will be continuously sutured to the ring 62 in a manner that maintains the contours of the ring.
  • EOA effective orifice area
  • sutures may be passed through apertures or eyelets 92 arrayed along the upper or first end 86 of the inner stent frame 80.
  • Other connection solutions include prongs or hooks extending inward from the stent, ties, hook-and-loop fasteners (e.g. , Velcro® fasteners), snaps, adhesives, etc.
  • the anchoring skirt 26 may be more rigidly connected to rigid components within the prosthetic valve member 24.
  • the aforementioned hybrid valve system does not have expandability during a valve-in- valve (ViV) procedure due to both the relatively rigid band subassembly 40 as well as the anchoring stent frame 80.
  • ViV valve-in- valve
  • Some attempts at making prosthetic valves expandable for ViV are known, but the resulting valve is expensive and difficult to build. Consequently, the present application discloses a number of configurations of hybrid valves and methods of making that simplify the assembly and result in a ViV-adapted hybrid valve.
  • Figures 8A-8C illustrate a hybrid prosthetic heart valve 170 of the present application, which includes an upper valve member 172 coupled to a cloth-covered anchoring skirt 174.
  • Figure 8B shows the valve member 172 in phantom to illustrate the contours of an expandable frame 176 of the anchoring skirt 174
  • Figure 8C is a perspective view of the entire heart valve 170 with portions at one commissure post 178 cutaway to reveal internal structural leaflet supports.
  • the valve member 172 of the hybrid prosthetic heart valve 170 shares some structural aspects with the prior art valve member illustrated in Figure 3.
  • Three flexible leaflets 182 are supported by the commissure posts 178 and cusps 180 and extend across a generally cylindrical flow orifice defined there within.
  • the leaflets 182 are attached to an up and down undulating typically metallic wireform 184 via a cloth covering.
  • the upstanding posts 186 rise up adjacent to and just outside of the commissures of the wireform 184, and outer tabs 188 of the leaflets 182 extend underneath the wireform, wrap around the posts, and are secured thereto with sutures.
  • the heart valve 170 also includes a highly compliant sealing ring 190 extending outward therefrom at approximately the interface between the valve member was 172 and the anchoring 174.
  • the sealing ring 190 as well as the expandable frame 176 are covered with a fabric 192 that helps prevent leakage around the outside of the valve once implanted.
  • the sealing ring 190 is also suture -permeable and may be used to secure the valve in place in the native annulus.
  • Figures 9A-9C illustrate details of the exemplary expandable frame 176 for use in the hybrid prosthetic heart valve 170 of Figures 8A-8C.
  • the lower frame 176 is shown in perspective and includes a plurality of circumferential row struts connected by a series of spaced axial column struts.
  • an upper or outflow row strut 200 extends continuously around a periphery of the frame 176, and preferably follows a gently undulating path so as to match a similar shape of the underside of the upper valve member 172 ( Figure 8B).
  • three peaks 204 along the upper row strut 200 correspond to the locations of the commissures 178 of the valve 170.
  • the lower frame 176 attaches to an inflow end of the upper valve member 172, and preferably directly to or to fabric covering the internal support frame.
  • the lower frame 176 is initially generally tubular and expands to be somewhat conical with the free end farthest from the upper valve member 172 expanding outward but the end closest remaining the same diameter.
  • the upper row strut 200 includes a plurality of eyeholes 202 evenly spaced apart and located just below the top edge thereof that are useful for securing the frame 176 to the fabric of the underside of the valve member 172.
  • a series of axial column struts 206 depend downward from the upper row strut 200, and specifically from each of the eyeholes 202, and connect the upper row strut to two lower row struts 208.
  • the lower row struts 208 circumscribe the frame 176 in zig-zag patterns, with an inverted "V" shape between each two adjacent column struts 206.
  • the lower row struts 208 preferably traverse horizontally around the frame, and the length of the column struts 206 thus varies with the undulating upper row strut 200.
  • the lower frame 176 in particular the inflow end thereof, may be plastically expanded, such as by balloon expansion, and may be formed of a plastically expandable material, for example, stainless steel or cobalt-chromium (e.g. , Elgiloy® alloy).
  • the lower frame 176 may be self-expanding, such as being formed from nitinol.
  • the upper row strut 200 is generally ring-like without capacity for compression or expansion.
  • a series of spaced notches 210 are provided that permit expansion and contraction.
  • circumferential segments of the strut 250 are interrupted by the V-shaped notches 210 that permits a limited amount of expansion, perhaps 3 mm in diameter, to accommodate a supplemental expandable valve to be inserted and expanded therein.
  • the upper row strut 200 (outflow end) of the frame 176 defines a nominal diameter seen in Figure 9 A that enables functioning of the valve member 172.
  • the upper row strut 200 is radially compressible from the nominal diameter to a smaller contracted diameter to enable compression of the outflow end of the frame 176 during delivery of the heart valve.
  • the upper row strut 200 is also radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame such as in a valve- in- valve procedure.
  • the preferred embodiment of the hybrid prosthetic heart valve 170 is configured for surgical delivery, which differs from transcatheter or transapical delivery.
  • prosthetic heart valves are formed of structures and materials that enable substantial compression of the valve into a relatively small diameter profile, to enable delivery through the vasculature (e.g. , transcatheter) or directly into the heart through an introducer (e.g. , transapical).
  • the hybrid prosthetic heart valve 170 is typically delivered via open heart surgery or a less invasive version thereof, such as through a mid-thoracotomy.
  • Surgical delivery of heart valves requires that the heart be stopped and the patient be placed on cardiopulmonary bypass, while transcatheter and transapical procedures may be done on a beating heart. Therefore, the hybrid prosthetic heart valves 170 disclosed herein are only compressible to a limited degree, to enable a smaller delivery profile, but not totally compressible.
  • the modified frame 176 can be collapsed to a predetermined minimum diameter for delivery and expanded to a pre-determined maximum diameter during a valve-in- valve procedure. More specifically, the upper row strut 200 of the illustrated frame 176 may be collapsed by 2 mm relative to the nominal diameter for ease of delivery by compressing the V-shaped notches 210 as indicated. Because the notches 210 can only be compressed until the two corners meet, the frame 176 can only be collapsed by a predetermined amount.
  • the exemplary frame 176 is specifically designed to be collapsible to ease insertion through small incisions when the valve is implanted and for ease of seating in the annulus.
  • the amount of collapse could be as large as about 40-50% by diameter, but would more preferably be about 2-3 mm, or between about 7-20% for heart valves having nominal operating diameters between about 19-29 mm.
  • a compression of 2 mm in diameter, for example, corresponds to a change in circumference of about 6.28 mm.
  • the stent frame is divided into 18 segments around its circumference by the axial column struts 206. Therefore, by placing an initial gap of 0.35 mm (6.28 mm/18) in each segment, the frame can collapse by 2 mm in diameter before adjacent segments make contact and hence prevent further compression.
  • Figure 9C discloses that the upper row strut 200 of the illustrated frame 176 may be subsequently expanded by up to 3 mm relative to a nominal diameter during a valve-in- valve procedure. Because of the configuration of the upper row of struts, the outflow portion of the frame cannot be expanded more than 3 mm. That is, the V-shaped notches 210 eventually straighten out, which prevents further expansion. Desirably, the frame is designed to expand 3 mm in diameter beyond its nominal diameter. The nominal diameter is defined when the notches 210 are V-shaped, prior to either contraction or expansion. Similar to the gaps for limiting compression, the 3 mm in expansion corresponds to an about 9.42 mm (3 mm x ⁇ ) change in circumference.
  • the expansion of the stent frame would be limited by the expansion- limiting struts at the point where they became straight across the gap between adjacent frame segments.
  • valve-type indicators 212 are integrated into the frame 176 at locations around its circumference, such as three valve size indicators.
  • the valve size indicators 212 comprise small plate-like tags inscribed with the numerical valve size in mm, for example 21 mm in the illustrated embodiment. The use of any alphanumeric characters and/or symbols that signify size or other feature of the valve are contemplated.
  • the frame 176 may be laser cut from a tubular blank, with the plate-like size indicators 212 left connected to one more of the struts. As shown, the size indicators 212 are located just below the peaks 204 of the undulating upper row strut 200, connected between the corresponding eyehole 252 and the descending column strut 206.
  • valve size numerals are sufficiently large to be visualized with X-ray, Transesophageal Echocardiogram (TEE), or other imaging modality.
  • TEE Transesophageal Echocardiogram
  • the valve size numerals are from about 1.5 mm to about 2 mm in height, for example, about 1.75 mm in height.
  • FIG 10A is an exploded perspective view of components of an alternative hybrid prosthetic heart valve 300.
  • the alternative heart valve 300 does away with an internal stent or support frame previously shown as the composite bands 120, 140 in Figure 7, for example.
  • the composite band structure was the primary source of circumferential rigidity to the heart valves in which they were employed, and thus an expansion structure enabled valve-in-valve procedures.
  • the alternative hybrid heart valve 300 includes a lower compressible/expandable frame 302, as before, separate commissure posts 304 that are secured to the frame, and an undulating wireform 306 supporting flexible leaflets 308, also as before.
  • Figure 10B shows a subassembly 310 including the wireform 306 juxtaposed with the three leaflets 308, and an "integrated" subassembly 312 of the expandable frame 302 with the commissure posts 304 attached thereto.
  • Each of the flexible leaflets 308 has two tabs 309, and pairs of tabs on adjacent leaflets are shown projecting through (under) the inverted V-shaped commissures of the wireform 306. These pairs of tabs 309 then wrap around one of the upstanding commissure posts 304 of the subassembly 312, which are located adjacent to and radially outward from the wireform commissures.
  • the subassemblies 310, 312 are eventually covered with biocompatible fabric such as polyester, and the pairs of tabs 309 and commissure posts 304 are secured to each other with a cloth covering (see Figure 13).
  • the subassembly 312 integrates the frame and commissure posts, while as described below, an "integrated" frame may mean that the commissure posts are integrally formed of the same homogeneous material as the rest of the stent frame. Integrated in this sense meaning the two components are securely attached together prior to assembly with the wireform/leaflet subassembly 310, either by securing the two parts or forming them at the same time from the same material.
  • a hybrid heart valve with an "integrated" frame means that the frame provides both the expandable skirt frame as well as commissure posts to which the leaflets attach, without any additional structural bands, such as the metal band 94 seen in Figure 1A. With this configuration, the number of parts in the valve is reduced, which reduces assembly time and expense.
  • FIGs IOC and 10D illustrate a commissure post 304 from an outer and an inner perspective, respectively.
  • a lower end of each of the commissure posts 304 includes a concave ledge 314 that matches the contour of one of the peaks 316 in the undulating upper row of struts 318 of the expandable frame.
  • an outer plate 320 below each of the concave ledges 314 of the commissure posts 304 extends downward on the outside of the expandable frame 302.
  • Sutures 322 secure the commissure posts 304 to the frame 302 via suture holes 324 that align with eyeholes 326 at the peaks 316 of the undulating upper row strut 318.
  • This shape matching followed by covering with fabric provides a relatively stable arrangement of the commissure posts 304 in the integrated frame subassembly 312.
  • FIG 11 is another exploded perspective view of subassemblies of the alternative hybrid prosthetic heart valve 300.
  • the wireform in the subassembly 310 of the wireform and leaflets has been covered with fabric, and features an outwardly projecting flap 330.
  • the fabric flap 330 is used to secure the
  • FIG. 12 is a perspective view of the finished hybrid prosthetic heart valve 300 entirely covered with fabric.
  • a preferred construction sequence involves attaching the sealing ring 332 to the expandable frame 302, along with three cloth- covered commissure posts 304, then attaching this assembly to the wireform/leaflet subassembly 310 during final assembly.
  • the commissure posts 304 disclosed have specific features that interface with the frame 304 to add stability to the posts in all directions. That is, the specific surfaces 314, 320 that mate with the corresponding peaks 316 on the frame 302 as well as the holes 324 that allow the posts to attach with sutures 322 to the frame provide excellent stability in all directions for subsequent covering with fabric.
  • the commissure posts 304 could be molded from polyester or some other biocompatible material into the shape shown here, or even produced using 3D printing.
  • a hybrid valve 340 built using the disclosed methods is shown in Figures 14A and 14B with all but flexible leaflets 342 covered with cloth.
  • the improved valve construction disclosed herein eliminates a separate stent subassembly by combining the functions of that assembly (supporting the leaflets from underneath as well as from the sides in the commissure area, and attachment of the sewing ring insert) with the stent frame assembly.
  • the main components of the hybrid valve 340 include a wireform 344 having alternating cusps and commissures that supports the leaflets 342, a lower expandable frame 346 integrated with commissure posts 348, and preferably a sealing ring 350 around the periphery of the cusps of the wireform 344.
  • Figure 15A shows the first step in the disclosed method of hybrid valve construction.
  • a piece of PTFE tubular cloth 352 is first partially inverted and placed over the generally tubular stent frame 346 from the bottom, thus covering the inside, outside, and bottom of the frame. Subsequently, the cloth 352 is sewn to the frame 346 through frame holes and around a top circumferential row of struts 354 using an in-and-out stitch with double PTFE thread.
  • Figure 15B shows the cloth 352 pulled back on the inside and outside after sewing is complete, thereby exposing the top of the stent frame 346. More particularly, the top circumferential row of struts 354 is left partly exposed; at least three peaks intermediate three valleys of the undulating row.
  • Figure 16A shows the stent frame 346 covered in the cloth 352 and with a sewing ring insert 356 placed adjacent the top row of struts 354.
  • the cloth layers below the sewing ring 356 have been rough cut, which is acceptable as they are subsequently covered in an outer layer of cloth, thus eliminating the need to "finish" the PTFE cloth in that area.
  • An alternative method would be to fold those layers and finish them on either the top or bottom of the sewing ring.
  • the sewing ring insert 356 has been stitched to the top of the stent frame 346 in 6 locations to give it a desired scalloped shape. Six locations would be a minimum to define the high (commissures) and low (cusp centers) points of its desired shape. It could be attached at more locations to better define its shape.
  • the PTFE cloth 352 from the inside of the stent frame 346 has been inverted over the sewing ring insert 356 and formed by hand to follow the scalloped shape of the insert. Subsequent to conforming the cloth to the insert as shown, both the inner and outer layers of cloth are sewn together (between the stent frame and the insert).
  • the next step is to cover three polymer (e.g. PET) commissure tip inserts 360, shown in Figure 17, with cloth 361, as shown in Figure 18. Because these inserts 360 are simple 2D parts, they could potentially be sewn on a machine, or "socks" could be knitted to fit over them. Another option could be to use a different cloth, such as PET-based cloth, which could be laser cut and fused to make the covers for the inserts.
  • Figures 19A and 19B shows how the inserts 360 sit with respect to the stent frame 346 and outside of the commissures 362 of a wireform 364. The cloth is not shown in the sketch.
  • the inserts 360 sit directly over the peaks of the upper row of struts 354 of the stent frame 346.
  • the tip inserts 360 and stent frame 346 could be sewn together through holes 366 in the stent frame and a lower hole 368 in the inserts, through their respective layers of cloth. This provides a high degree of vertical stability to the commissures of the assembly.
  • Figures 19A and 19B show two different patterns for the holes 368 in the inserts 360, two or three toward the lower end, while Figures 17 and 18 show a single hole. Of course, other arrangements are contemplated.
  • Final assembly would include stitches from below the sewing ring insert 356 (see Figure 16A) through its hinge point, through the leaflets and wireform cloth, then down through all layers as an in-and- out stitch.
  • One method of creating commissure inserts uses a polyester (or other material) tip piece 364, similar to that used in the Carpentier-Edwards Model 2700 heart valve, as shown in Figure 20.
  • the tip piece would have at least one hole 365 in the bottom to facilitate attachment to the expandable stent frame after cloth covering, as well as other holes for securing the cloth, and securing the insert to the wireform cloth.
  • Figure 21 shows an example of a PET tubular cloth 366, which could be used to cover the component shown in Figure 20.
  • the ends of the tube can be knitted closed, as is done on prior art annuloplasty rings, or fused closed with ultrasonic, laser, or heat methods. With one end closed, the piece 364 from Figure 20 can be inserted from an open end. The cloth 366 can then be folded over to form multiple layers on one side tip piece for subsequent leaflet attachment.
  • FIGs 22A and 22B show a commissure insert 368 made in the fashion attached to a cloth-covered expandable stent frame described above. Three such commissure inserts would be attached to the cloth-covered stent frame, which would then be ready for final assembly with the wireform- leaflet assembly.
  • a second method of making commissure inserts uses a non-woven fabric such as Reemay® spunbonded polyester.
  • Figure 23 shows solid fabric inserts 370 made in this manner.
  • the inserts 370 can simply be die (or laser, etc.) cut from non-woven fabric sheet of the desired thickness and porosity. These inserts 370 would be immediately ready to attach to the cloth- covered stent frame 372 as shown in Figure 24.
  • they could be made from a composite that had, for example, a very dense and stiff layer that could face the inside of the valve to add support and minimize leakage, and a less dense layer on the outside that would be easy to stitch to during final valve assembly.
  • the composite could contain a layer of polyester sheet, either inserted into a pocket cut into a single, thick section of fabric, or as a layer in a composite structure.
  • Figures 25-31 illustrate alternative integrated anchoring skirt and commissure post subassemblies.
  • the subassembly 312 shown in Figure 10B eliminates the need for annular structural bands, which bands provide stability and rigidity but which impede the ability of the valve to expand post- implant.
  • Each of the alternative subassemblies shown in Figures 25-31 also eliminate the need for the structural bands, and further integrate the anchoring skirt and the commissure posts.
  • FIG. 25A shows a still further assembly 400 of the structural components of a hybrid prosthetic heart valve having an integrated frame member 402 much like those described above but formed of a single piece.
  • a schematic wireform 404 is shown situated on top of the frame member 402 in Figure 25A, with flexible leaflets and a cloth cover not shown and representing a wireform/leaflet subassembly such as shown at 310 in Figure 11.
  • the schematic wireform 404 is shown with an outwardly extending sewing flange 406, which may be formed by joined lengths of two fabric tabs that wrap around and cover the wireform.
  • the frame member 402 serves as the supportive component for the wireform, leaflets and sealing ring. Further, when covered with cloth, the frame member 402 provides an effective seal against paravalvular leaking (PVL) and circumferential stability to the valve.
  • PVL paravalvular leaking
  • the integrated frame member 402 which is also shown in Figures 25B-25D, comprises a lower expandable skirt portion 410, an upper annulus band 412, and leaflet support posts 414.
  • the skirt portion 410 comprises a number of chevron patterned or V- shaped struts that can be easily crimped and then expanded.
  • the annulus band 412 provides real estate for the attachment of a sealing ring (not shown), and preferably includes a series of holes around its circumference through which to pass sutures connecting the sealing ring.
  • the integrated frame member 402 includes multiple cuts that enable post-implant expansion and may be laser-cut from a suitable metal such as Elgiloy and electro-polished.
  • the frame member 402 is desirably formed from a tubular blank of a suitable material, and has a generally circular inflow or lower edge and an undulating outflow or upper edge. More particularly, the upper edge defines three arcuate cusp portions 416 intermediate three upstanding commissure posts 418. The undulating upper edge is shaped to closely fit underneath the wireform 406. After assembling the frame member 402 with the rest of the heart valve components, the skirt portion 410 is typically crimped in a generally conical manner such that its lower edge has a smaller diameter than its upper edge.
  • Compression/expansion sections 420 along the annulus band 412 are also added to enable a limited collapse of the frame member 402 during delivery.
  • the compression/expansion sections 420 comprise slits formed in the upper edge of the frame member 402 that have spaces enabling a limited compression, and also permit expansion.
  • solid segments 422 spaced around the annulus band 412 are connected by thin inverted U-shaped bridges 424.
  • the frame member 402 further includes a number of slits in the region of the commissures 418 to facilitate expansion in general flexibility of the frame member.
  • An elongated central slit 426 extends nearly the entire height of each of the commissures 418.
  • Regions of expandable circumferential struts 428 are positioned within the skirt portion 410 axially aligned with both the compression/expansion sections 420 and the central slits 426.
  • short arcuate slits 430 are formed at the base of each of the commissure posts 418, generally following a truncated undulating line joining the cusp portions 416. These slits 430 reduce the radial stiffness of the posts 418 such that most of the physiological load absorbed by the flexible leaflets is transferred to the wireform 406, rather than to the posts.
  • the three commissure posts may be made of three separate pieces, preferably using polymeric material, such that when connected with the underlining metal frame with sutures, there will not be metal to metal contact.
  • Figures 26A-26D illustrate an alternative frame member 440 that is configured about the same as the frame member 402, but has separate commissure posts 442.
  • the frame member 440 is shown situated just below a wireform assembly 441 in Figure 26A.
  • the annulus band region 444 and the inflow strut region 446 are exactly same as that of the frame member 402.
  • the only difference is separate commissure posts 442 preferably made of plastic material that will be sewn together with the frame member 440 using sutures 448 before being covered with cloth.
  • a pair of attachment holes 450 is desirably formed in each of the commissure posts 442 for this purpose.
  • the crimpable and expandable frame member 440 without commissure posts is laser-cut and electropolished.
  • FIGs 27A-27B show an assembly 460 of the structural components of a hybrid prosthetic heart valve including an integrated frame member 462 with a lower expandable skirt portion 464, an upper annulus band 466, and leaflet support posts 468.
  • the annulus band 466 provides real estate for the attachment of a sealing ring (not shown).
  • the integrated frame member 462 may be laser-cut from a suitable metal tube such as Elgiloy and electro-polished.
  • a wireform 470 such as in the subassembly 310 in Figure 11, is illustrated just above the undulating upper end of the frame member 462, with flexible leaflets and a cloth cover not shown for clarity.
  • the frame member 462 has an outflow or upper edge 472 without capacity for either compression or expansion. That is, a plurality of solid segments 474 spaced around the annulus band 462 are connected by small solid bridges 476. Each of the solid segments 474 preferably has a through hole 478 for use in an attaching a sewing ring around the periphery thereof.
  • Figure 28A shows another assembly 480 of the structural components of a prosthetic heart valve including a non-compressible, non-expandable integrated frame member 482 much like the one in Figures 27A-27B, but with separated commissure posts 484. Several suture holes 486 in the commissure posts are also added to help secure the commissure posts 484 to an annulus band 488 of the frame member 482, much like is shown in Figure 26A.
  • Figure 25A is a fully integrated frame member 402, with concerns over stiffened commissure posts.
  • the frame member 442 shown in Figure 26A alleviated that concern with three separate commissure posts 442, but those require sewing together with the expandable frame, which increases the time and steps when assembling the valve.
  • the embodiments shown in Figures 29 and 31 are also contemplated.
  • Figure 29 shows an assembly 500 that includes an expandable frame 502 much like the frame 176 described above with respect to Figure 9A.
  • the frame 502 is secured via sutures to a stent band 504 with upstanding commissures 506 to form an integrated frame member.
  • This stent band 504 is essentially the inner band 95 from Figure 1A, with suture holes 505 around its circumference to enable secure attachment to the top row of struts of the frame 502.
  • An upper row of struts 508 includes regularly spaced compressible/expandable segments 510 to enable pre-implant compression, and post-implant expansion during a valve-in- valve procedure.
  • the assembly 500 is again crimpable and expandable.
  • the stent band 504 is formed of a polymer (e.g. , polyester) material that is breakable when in expansion force is applied within the valve. This makes the whole valve expandable for valve-in- valve applicable. Because of the polymer commissures 506, the valve load carrying characteristics will be exactly the same as the existing commercial valve platform, thus hydrodynamic performance and durability of the valve shall be the same as the existing commercial valve as well.
  • the relative position of the polyester band and the expandable frame can be assembled as illustrated in Figure 29, with the stent band 504 positioned immediately above the frame member 502. Conversely, as seen in Figure 31 , the stent band 504 may be located partly radially within the frame 502, in an overlapping manner. This aligns the series of through holes 505 in the stent band 504 with eyeholes 512 provided in the frame 502, which greatly facilitates assembly, thus reducing time and expense.
  • commissure posts, the sewing ring section, as well as the chevron patterned strut section are expandable such that they expand uniformly without distorting the wireform.
  • Expandable hybrid prosthetic heart valves permit valve-in- valve procedures, improving valve performance.

Abstract

A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander. An inflow stent frame is expandable for anchoring the valve in place, and may have an outflow end that is collapsible to a limited degree for delivery and expandable post-implant to facilitate a valve-in-valve (ViV) procedure. The hybrid heart valves eliminate earlier structural bands, which both reduces manufacturing time and facilitates a ViV procedure.

Description

INTEGRATED HYBRID HEART VALVES
[0001] This application claims the benefit of U.S. Application No. 62/188,465, filed July 2, 2015, the entire disclosure of which is incorporated by reference. This application is related to a U.S. patent application filed June 30, 2015, titled "HYBRID HEART VALVES ADAPTED FOR POST-IMPLANT EXPANSION", the entire disclosure of which is incorporated by reference.
[0002] The present disclosure relates to a hybrid heart valve for heart valve replacement, and more particularly to modifications to simplify the construction of hybrid heart valves.
[0003] The heart is a hollow muscular organ having four pumping chambers separated by four heart valves: aortic, mitral (or bicuspid), tricuspid, and pulmonary. Heart valves are comprised of a dense fibrous ring known as the annulus, and leaflets or cusps attached to the annulus.
[0004] Heart valve disease is a widespread condition in which one or more of the valves of the heart fails to function properly. In a traditional valve replacement operation, the damaged leaflets are typically excised and the annulus sculpted to receive a replacement prosthetic valve.
[0005] In tissue-type valves, a whole xenograft valve (e.g. , porcine) or a plurality of xenograft leaflets (e.g. , bovine pericardium) can provide fluid occluding surfaces.
Synthetic leaflets have been proposed, and thus the term "flexible leaflet valve" refers to both natural and artificial "tissue-type" valves. In a typical tissue-type valve, two or more flexible leaflets are mounted within a peripheral support structure that usually includes posts or commissures extending in the outflow direction to mimic natural fibrous commissures in the native annulus. The metallic or polymeric "support frame," sometimes called a "wireform" or "stent," has a plurality (typically three) of large radius cusps supporting the cusp region of the flexible leaflets (e.g. , either a whole xenograft valve or three separate leaflets). The ends of each pair of adjacent cusps converge somewhat asymptotically to form upstanding commissures that terminate in tips, each extending in the opposite direction as the arcuate cusps and having a relatively smaller radius. Components of the valve are usually assembled with one or more biocompatible fabrics (e.g. , polyester, for example, Dacron® polyethylene terephthalate (PET)) coverings, and a fabric -covered sewing ring is provided on the inflow end of the peripheral support structure.
[0006] There is a need for a prosthetic valve that can be surgically implanted in a body channel in a more efficient procedure so as to reduce the time required on extracorporeal circulation. One solution especially for aortic valve replacement is provided by the Edwards Intuity® valve system available from Edwards Lifesciences of Irvine, CA. Aspects of the Edwards Intuity® valve system are disclosed in U.S. Patent No. 8,641,757 to Pintor, et al. The Edwards Intuity® valve is a hybrid of a surgical valve and a plastically-expandable stent that helps secure the valve in place in a shorter amount of time.
[0007] Despite certain advances in this area, there remains a need for a simplified prosthetic heart valve that facilitates implant and simplifies manufacturing techniques.
[0008] The application discloses a hybrid prosthetic heart valve (and methods for making the same) having a stent frame positioned at the inflow end of the prosthetic heart valve configured to plastically expand into a substantially flared shape when subjected to a dilation force that is by itself insufficient to cause expansion of the main support structure. The stent frame is positioned upstream or on the inflow end of the entire valve portion. The application also discloses a hybrid prosthetic heart valve configured to receive a prosthetic heart valve, such as a catheter-deployed (transcatheter) prosthetic heart valve, therein - e.g. , it is adapted for valve-in- valve (ViV) procedures.
[0009] An exemplary hybrid prosthetic heart valve having an inflow end and an outflow end, and comprises a valve member including a plurality of flexible leaflets configured to ensure one-way blood flow therethrough. A generally tubular expandable inflow stent frame having a radially-expandable inflow end and an outflow end is secured to and projects from an inflow end of the valve member. The outflow end of the stent frame undulates with peaks and valleys, and the outflow end includes integrated commissure posts to which the leaflets attach. The outflow end of the stent frame has a circumferential structure defining a nominal diameter that enables physiological functioning of the valve member when implanted. The circumferential structure is radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame substantially larger than forces associated with normal physiological use. And the circumferential structure has limited radially compressibility of between about 7-20% of the nominal diameter to reduce the size of the outflow end during delivery of the heart valve.
[0010] A further hybrid prosthetic heart valve disclosed herein and adapted for post- implant expansion has an inflow end and an outflow end with a valve member and an inflow stent frame. The valve member includes an undulating wireform supporting a plurality of flexible leaflets configured to ensure one-way blood flow therethrough. The stent frame is plastically-expandable with a radially-expandable inflow end and an outflow end secured to an inflow end of the wireform. The stent frame projects from the inflow end of the wireform and the outflow end undulates with peaks and valleys corresponding to the wireform. The outflow end further includes integrated commissure posts to which the leaflets attach, and defines an implant circumference that is non- compressible in normal physiological use and has a nominal diameter. The stent frame outflow end permits expansion from the nominal diameter to a second diameter larger than the nominal diameter upon application of an outward dilatory force from within the outflow end substantially larger than forces associated with normal physiological use.
[0011] Another hybrid prosthetic heart valve disclosed herein comprises a valve member including an undulating wireform supporting a plurality of flexible leaflets configured to ensure one-way blood flow therethrough. A plastically-expandable inflow stent frame having a radially-expandable inflow end and an outflow end is secured to an inflow end of the wireform. The stent frame projects from the inflow end of the wireform and the outflow end undulates with peaks and valleys corresponding to the wireform. The outflow end includes integrated commissure posts to which the leaflets attach outside of the wireform, and the outflow end comprises a circumferential structure defining a nominal diameter that enables functioning of the valve member. The circumferential structure is radially compressible to a smaller contracted diameter to enable compression of the outflow end during delivery of the heart valve, and radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame substantially larger than forces associated with normal physiological use.
[0012] Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings that illustrate, by way of example, the principles of the invention.
[0013] Figure 1A is an exploded view of an inner structural band subassembly of a prior art prosthetic heart valve, and Figure IB shows the band subassembly having been covered with cloth and exploded over a peripheral sealing ring;
[0014] Figure 1C shows the cloth-covered band subassembly joined with the peripheral sealing ring also covered in cloth, while Figure ID is a vertical sectional view through a cusp region thereof;
[0015] Figure 2A is a perspective view of a flexible leaflet subassembly for use in the prior art prosthetic heart valve, and Figure 2B shows an undulating wireform used for support thereof;
[0016] Figure 2C is a perspective view of a subassembly of the undulating wireform covered in fabric, and Figure 2D is a detailed sectional view of a cusp portion thereof;
[0017] Figure 2E shows a leaflet and wireform subassembly for prior art prosthetic heart valves;
[0018] Figure 3 is a perspective view of a finished prior art prosthetic heart valve including the combination of the subassemblies shown in Figures 1C and 2E;
[0019] Figures 4A and 4B are inflow and outflow perspective views, respectively, of a prosthetic heart valve as in Figure 3 before coupling with an inflow anchoring skirt to form a hybrid prosthetic heart valve; [0020] Figure 5 is an exploded assembly view of a portion of a cloth-covered anchoring skirt for coupling to the heart valve;
[0021] Figure 6 is an exploded assembly view of the portion of the cloth-covered anchoring skirt shown in Figure 5 and a lower sealing flange secured thereto to form the inflow anchoring skirt;
[0022] Figure 7A shows the valve member above the cloth-covered anchoring skirt and schematically shows one method of coupling the two elements, while Figure 7B illustrates an inner plastically-expandable stent frame of the anchoring skirt and the pattern of coupling sutures passed therethrough;
[0023] Figure 8A is a side view of a hybrid prosthetic heart valve of the present application, while Figure 8B shows an anchoring skirt therefor with a valve member in phantom, and Figure 8C is a perspective view of the prosthetic heart valve with portions cutaway to reveal internal structural leaflet supports;
[0024] Figures 9A-9C are perspective views of an exemplary anchoring skirt for use in the hybrid prosthetic heart valve of Figures 8A-8C;
[0025] Figure 10A is an exploded perspective view of components of an alternative hybrid prosthetic heart valve, while Figure 10B shows an exemplary leaflet and wireform subassembly and an anchoring skirt and commissure post subassembly for the hybrid prosthetic heart valve;
[0026] Figures IOC and 10D show details of separate commissure posts;
[0027] Figure 11 is another exploded perspective view of subassemblies of the alternative hybrid prosthetic heart valve;
[0028] Figure 12 shows the relative positions of the anchoring skirt and commissure post subassembly and wireform for the alternative hybrid prosthetic heart valve, and Figures 12A-12D are further detailed views thereof;
[0029] Figure 13 is a perspective view of the finished hybrid prosthetic heart valve; [0030] Figures 14A and 14B are perspective views of a hybrid prosthetic heart valve built using the methods of Figures 15-16;
[0031] Figures 15A and 15B show steps for covering an anchoring frame member with cloth in the disclosed method of hybrid valve construction;
[0032] Figures 16A and 16B show methods of attachment of a suture permeable sealing ring to the anchoring frame member;
[0033] Figure 17 is a perspective view of a separate commissure post, and Figure 18 is the commissure post covered with cloth;
[0034] Figures 19A and 19B are elevational views of an exemplary integrated frame member of the present application;
[0035] Figure 20 is an alternative commissure post;
[0036] Figure 21 is a tubular legs of fabric used to cover the separate commissure posts;
[0037] Figures 22A and 22B are perspective views of a cloth-covered commissure post secured to an outflow edge of a cloth-covered anchoring frame member;
[0038] Figure 23 illustrates alternative commissure posts, and Figure 24 shows one alternative commissure post secured to an outflow edge of a cloth-covered anchoring frame member;
[0039] Figures 25A-25D are perspective, elevational, and flat plan views of an exemplary integrated frame member for use in the hybrid prosthetic heart valves disclosed herein;
[0040] Figures 26A-26D are several views of an alternative integrated frame member much like that shown in Figures 25A-25D but with commissure posts that are separated from a lower expandable frame;
[0041] Figures 27A and 27B are perspective and elevational views of a still further integrated frame member of the present application that is non-collapsible and non- expandable; [0042] Figures 28A and 28B are perspective and elevational views of another integrated frame member with separate commissure posts;
[0043] Figure 29 is a perspective view of an alternative integrated frame member having an expandable frame connected to a polymer band that forms commissure posts;
[0044] Figures 30A and 30B are elevational and perspective views of an exemplary expandable frame for use in the frame member of Figure 29; and
[0045] Figure 31 is an elevational view of an integrated frame member similar to that shown in Figure 29 with the polymer band overlapping an upper edge of the expandable frame.
[0046] The prosthetic heart valves disclosed herein are "hybrid" in that they include a prosthetic valve member with a relatively stable diameter, and a lower expandable frame structure to help in anchoring the valve in place. Most prior valves have either a wholly non-compressible/non-expandable valve member or a wholly expandable frame structure that incorporates a valve therein. One specific commercial prosthetic heart valve that is constructed in a hybrid manner is the Edwards Intuity® valve system from Edwards Lifesciences of Irvine, CA. The hybrid Edwards Intuity® valve system comprises a surgical non-compressible/non-expandable valve member (e.g. , Edwards Magna Ease® valve) having bioprosthetic (e.g. , bovine pericardial) leaflets coupled to a stainless steel expandable frame structure on its inflow end.
[0047] Figures 1-7 illustrate a number of steps in the construction of an exemplary hybrid prosthetic heart valve 20.
[0048] Figure 1A is an exploded view of an inner structural band subassembly 40, and Figure IB shows the band subassembly having been covered with cloth and exploded over a peripheral sealing ring. The inner structural band subassembly 40 includes an inner polymer band 42 having three upstanding posts 44 and a scalloped lower ring 46, and an outer more rigid band 48 having a scalloped shape to conform to the lower ring 46. The band subassembly 40 is formed by positioning the polymer band 42 within the rigid band 48 and securing them together with sutures through aligned holes, for example.
[0049] Figure IB is a perspective view of the assembled band subassembly 40 covered in cloth exploded from a sewing ring 62. The two structural bands 42, 48 are the same heights in the cusp region and encompassed by a fabric cover 64 that is rolled into a peripheral tab 66. The sewing ring 62 comprises an inner suture permeable member 68 having a frustoconical form and encompassed by a second fabric cover 70. Two fabric covers 64, 70 are sewn together at a lower junction point 72 to form the cloth-covered assembly of Figure 1C, while Figure ID shows details through a cusp portion thereof.
[0050] Figure 2A is a perspective view of a flexible leaflet subassembly and Figure 2B shows an undulating wireform used for support thereof. Figure 2C is a perspective view of a cloth-covered wireform subassembly 50, and Figure 2D is a detailed sectional view of a cusp portion of the wireform 50 showing an inner wire member 52 covered with fabric that defines a tubular portion 54 and an outwardly projecting flap 56. The wireform 50 defines three upstanding commissure posts 58 and three downwardly convex cusps 60. This is a standard shape for tri-leaflet heart valves and mimics the peripheral edges of the three native aortic leaflets. The shape of the wireform 50 coincides with the upper edge of the band subassembly 40, and defines the outflow edge of the prosthetic valve 20. The wireform subassembly 50 is then joined together with the flexible leaflet subassembly, as seen in Figure 2E.
[0051] Figure 3 is a perspective view of a finished valve member including the combination of the subassemblies shown in Figures 1C and 2E.
[0052] Figures 4 A and 4B are inflow and outflow perspective views, respectively, of the surgical heart valve member 24 before coupling with an inflow anchoring skirt to form the hybrid heart valve 20. Although construction details are not shown, three flexible leaflets 74 are secured along the undulating wireform 50 and then to the combination of the band subassembly 40 and sewing ring 62 shown in Figure 1C. In a preferred embodiment, each of the three leaflets includes outwardly projecting tabs that pass through the inverted U-shaped commissure posts 58 and wrap around the cloth- covered commissure posts 75 (see Figure 1C) of the band subassembly 40. The entire structure at the commissures is covered with a secondary fabric to form the valve commissures 35 as seen in Figure 7 A.
[0053] One feature of the valve member 24 that is considered particularly important is the sewing ring 62 that surrounds the inflow end thereof. As will be seen, the sewing ring 62 is used to attach the anchoring skirt 26 to the valve member 24. Moreover, the sewing ring 62 presents an outward flange that contacts an atrial side of the annulus, while the anchoring skirt 26 expands and contracts the opposite, ventricular side of the annulus, therefore securing the heart valve 20 to the annulus from both sides.
Furthermore, the presence of the sewing ring 62 provides an opportunity for the surgeon to use conventional sutures to secure the heart valve 20 to the annulus as a contingency.
[0054] The preferred sewing ring 62 defines a relatively planar upper or outflow face and an undulating lower face. Cusps of the valve structure abut the sewing ring upper face opposite locations where the lower face defines peaks. Conversely, the valve commissure posts align with locations where the sewing ring lower face defines troughs. The undulating shape of the lower face advantageously matches the anatomical contours of the aortic side of the annulus AA, that is, the supra-annular shelf. The ring 62 preferably comprises a suture-permeable material such as rolled synthetic fabric or a silicone inner core covered by a synthetic fabric. In the latter case, the silicone may be molded to define the contour of the lower face and the fabric cover conforms thereover.
[0055] Now with reference to Figures 5 and 6, assembly of the cloth-covered anchoring skirt 26 will be described. Figure 5 is an exploded assembly view of a portion of a cloth-covered anchoring skirt for coupling to the valve member, and Figure 6 is an exploded assembly view of the portion of the cloth-covered anchoring skirt shown in Figure 5 and a lower sealing flange secured thereto to form the inflow anchoring skirt. It should first be noted that the size of the anchoring skirt 26 will vary depending on the overall size of the heart valve 20. Therefore the following discussion applies to all sizes of valve components, with the dimensions scaled accordingly. [0056] The general function of the anchoring skirt 26 is to provide the means to attach the prosthetic valve member 24 to the native aortic root. The anchoring skirt 26 may be a pre-crimped, tapered, 316L stainless steel balloon-expandable stent, desirably covered by a polyester fabric to help seal against paravalvular leakage and to promote tissue ingrowth once implanted within the annulus. The anchoring skirt 26 transitions between the tapered, constricted shape of Figure 5B to a flared, expanded shape. The anchoring skirt 26 comprises an inner stent frame 80, a fabric covering 82, and a bandlike lower sealing flange 84. The stent frame 80 assembles within a tubular section of fabric 82, which is then drawn taut around the stent frame, inside and out, and sewn thereto to form the intermediate cloth-covered frame 88 in Figure 5. During this assembly process, the stent frame 80 is desirably tubular, though later the frame will be crimped to a conical shape as see in Figure 7B for example. A particular sequence for attaching the tubular section of fabric 82 around the stent frame 80 includes providing longitudinal suture markers (not shown) at 120° locations around the fabric to enable registration with similarly circumferentially-spaced, commissure features on the stent frame. After surrounding the stent frame 80 with the fabric 82, a series of longitudinal sutures at each of the three 120° locations secure the two components together.
Furthermore, a series of stitches are provided along the undulating upper end 86 of the stent frame 80 to complete the fabric enclosure. In one embodiment, the tubular section of fabric 82 comprises polytetrafluoroethylene (PTFE) cloth, although other biocompatible fabrics may be used. Subsequently, the lower sealing flange 84 shown in Figure 6 is attached circumferentially around a lower edge of the intermediate cloth- covered frame 88.
[0057] Figure 7A shows the valve member above the cloth-covered anchoring skirt and schematically shows one method of couple the two elements using sutures. Figure 7B illustrates the inner plastically-expandable stent frame 80 with cloth covering removed to indicate a preferred pattern of coupling sutures passed therethrough. The anchoring skirt 26 preferably attaches to the sewing ring 62 during the manufacturing process in a way that preserves the integrity of the ring and prevents reduction of the valve's effective orifice area (EOA). Desirably, the anchoring skirt 26 will be continuously sutured to the ring 62 in a manner that maintains the contours of the ring. In this regard, sutures may be passed through apertures or eyelets 92 arrayed along the upper or first end 86 of the inner stent frame 80. Other connection solutions include prongs or hooks extending inward from the stent, ties, hook-and-loop fasteners (e.g. , Velcro® fasteners), snaps, adhesives, etc. Alternatively, the anchoring skirt 26 may be more rigidly connected to rigid components within the prosthetic valve member 24.
[0058] The construction steps described above in Figures 1-7 are relatively detailed and time-consuming. Current hybrid valves such as described above take 11-12 hours total to build. This includes building a valve member, as in Figures 1-3, which takes approximately 7.5 hours, and then covering the stent frame 80 with cloth and attaching it to the valve member, which combined take another 3-4 hours of time. It would therefore be desirable to reduce the labor hours to build such a valve.
[0059] Moreover, the aforementioned hybrid valve system does not have expandability during a valve-in- valve (ViV) procedure due to both the relatively rigid band subassembly 40 as well as the anchoring stent frame 80. Some attempts at making prosthetic valves expandable for ViV are known, but the resulting valve is expensive and difficult to build. Consequently, the present application discloses a number of configurations of hybrid valves and methods of making that simplify the assembly and result in a ViV-adapted hybrid valve.
[0060] Figures 8A-8C illustrate a hybrid prosthetic heart valve 170 of the present application, which includes an upper valve member 172 coupled to a cloth-covered anchoring skirt 174. Figure 8B shows the valve member 172 in phantom to illustrate the contours of an expandable frame 176 of the anchoring skirt 174, and Figure 8C is a perspective view of the entire heart valve 170 with portions at one commissure post 178 cutaway to reveal internal structural leaflet supports.
[0061] The valve member 172 of the hybrid prosthetic heart valve 170 shares some structural aspects with the prior art valve member illustrated in Figure 3. In particular, there are three upstanding commissure posts 178 alternating with three arcuate cusps 180 curving in an inflow direction. Three flexible leaflets 182 are supported by the commissure posts 178 and cusps 180 and extend across a generally cylindrical flow orifice defined there within. The leaflets 182 are attached to an up and down undulating typically metallic wireform 184 via a cloth covering. As with earlier valve constructions, the upstanding posts 186 rise up adjacent to and just outside of the commissures of the wireform 184, and outer tabs 188 of the leaflets 182 extend underneath the wireform, wrap around the posts, and are secured thereto with sutures.
[0062] In the illustrated embodiment, the heart valve 170 also includes a highly compliant sealing ring 190 extending outward therefrom at approximately the interface between the valve member was 172 and the anchoring 174. The sealing ring 190 as well as the expandable frame 176 are covered with a fabric 192 that helps prevent leakage around the outside of the valve once implanted. Furthermore, the sealing ring 190 is also suture -permeable and may be used to secure the valve in place in the native annulus.
[0063] Figures 9A-9C illustrate details of the exemplary expandable frame 176 for use in the hybrid prosthetic heart valve 170 of Figures 8A-8C.
[0064] With specific reference to Figure 9 A, the lower frame 176 is shown in perspective and includes a plurality of circumferential row struts connected by a series of spaced axial column struts. Specifically, an upper or outflow row strut 200 extends continuously around a periphery of the frame 176, and preferably follows a gently undulating path so as to match a similar shape of the underside of the upper valve member 172 (Figure 8B). As seen in Figure 9 A, three peaks 204 along the upper row strut 200 correspond to the locations of the commissures 178 of the valve 170. In general, the lower frame 176 attaches to an inflow end of the upper valve member 172, and preferably directly to or to fabric covering the internal support frame. The lower frame 176 is initially generally tubular and expands to be somewhat conical with the free end farthest from the upper valve member 172 expanding outward but the end closest remaining the same diameter.
[0065] The upper row strut 200 includes a plurality of eyeholes 202 evenly spaced apart and located just below the top edge thereof that are useful for securing the frame 176 to the fabric of the underside of the valve member 172. A series of axial column struts 206 depend downward from the upper row strut 200, and specifically from each of the eyeholes 202, and connect the upper row strut to two lower row struts 208. The lower row struts 208 circumscribe the frame 176 in zig-zag patterns, with an inverted "V" shape between each two adjacent column struts 206. The lower row struts 208 preferably traverse horizontally around the frame, and the length of the column struts 206 thus varies with the undulating upper row strut 200.
[0066] As mentioned above, the lower frame 176, in particular the inflow end thereof, may be plastically expanded, such as by balloon expansion, and may be formed of a plastically expandable material, for example, stainless steel or cobalt-chromium (e.g. , Elgiloy® alloy). Alternatively, the lower frame 176 may be self-expanding, such as being formed from nitinol. In a conventional Edwards Intuity® valve, the upper row strut 200 is generally ring-like without capacity for compression or expansion. In the illustrated frame 176, on the other hand, a series of spaced notches 210 are provided that permit expansion and contraction. That is, circumferential segments of the strut 250 are interrupted by the V-shaped notches 210 that permits a limited amount of expansion, perhaps 3 mm in diameter, to accommodate a supplemental expandable valve to be inserted and expanded therein. More particularly, the upper row strut 200 (outflow end) of the frame 176 defines a nominal diameter seen in Figure 9 A that enables functioning of the valve member 172. The upper row strut 200 is radially compressible from the nominal diameter to a smaller contracted diameter to enable compression of the outflow end of the frame 176 during delivery of the heart valve. The upper row strut 200 is also radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame such as in a valve- in- valve procedure.
[0067] It should be understood that the preferred embodiment of the hybrid prosthetic heart valve 170 is configured for surgical delivery, which differs from transcatheter or transapical delivery. In the latter cases, prosthetic heart valves are formed of structures and materials that enable substantial compression of the valve into a relatively small diameter profile, to enable delivery through the vasculature (e.g. , transcatheter) or directly into the heart through an introducer (e.g. , transapical). The hybrid prosthetic heart valve 170, on the other hand, is typically delivered via open heart surgery or a less invasive version thereof, such as through a mid-thoracotomy. "Surgical" delivery of heart valves requires that the heart be stopped and the patient be placed on cardiopulmonary bypass, while transcatheter and transapical procedures may be done on a beating heart. Therefore, the hybrid prosthetic heart valves 170 disclosed herein are only compressible to a limited degree, to enable a smaller delivery profile, but not totally compressible.
[0068] As shown in Figure 9B, the modified frame 176 can be collapsed to a predetermined minimum diameter for delivery and expanded to a pre-determined maximum diameter during a valve-in- valve procedure. More specifically, the upper row strut 200 of the illustrated frame 176 may be collapsed by 2 mm relative to the nominal diameter for ease of delivery by compressing the V-shaped notches 210 as indicated. Because the notches 210 can only be compressed until the two corners meet, the frame 176 can only be collapsed by a predetermined amount. The exemplary frame 176 is specifically designed to be collapsible to ease insertion through small incisions when the valve is implanted and for ease of seating in the annulus. The amount of collapse could be as large as about 40-50% by diameter, but would more preferably be about 2-3 mm, or between about 7-20% for heart valves having nominal operating diameters between about 19-29 mm. A compression of 2 mm in diameter, for example, corresponds to a change in circumference of about 6.28 mm. The stent frame is divided into 18 segments around its circumference by the axial column struts 206. Therefore, by placing an initial gap of 0.35 mm (6.28 mm/18) in each segment, the frame can collapse by 2 mm in diameter before adjacent segments make contact and hence prevent further compression.
[0069] Figure 9C discloses that the upper row strut 200 of the illustrated frame 176 may be subsequently expanded by up to 3 mm relative to a nominal diameter during a valve-in- valve procedure. Because of the configuration of the upper row of struts, the outflow portion of the frame cannot be expanded more than 3 mm. That is, the V-shaped notches 210 eventually straighten out, which prevents further expansion. Desirably, the frame is designed to expand 3 mm in diameter beyond its nominal diameter. The nominal diameter is defined when the notches 210 are V-shaped, prior to either contraction or expansion. Similar to the gaps for limiting compression, the 3 mm in expansion corresponds to an about 9.42 mm (3 mm x π) change in circumference. Therefore, each of the 18 segments limits expansion to 9.42 mm/18 = about 0.52 mm. In this example, the length of the "V" shaped struts connecting each segment are thus 0.52 mm + 0.35 mm (from the compression gaps) = 0.87 mm. During a valve-in- valve expansion, the expansion of the stent frame would be limited by the expansion- limiting struts at the point where they became straight across the gap between adjacent frame segments.
[0070] If it is not desired to have the frame collapsible but expansion is still desired, the gaps could be reduced to the practical limit of laser cutting, for example, about 25 μιη. With 18 gaps of 25 μιη, the total amount of compression would be (18 x 25 μιη / π) = 0.143 mm (about 0.006").
[0071] In contrast, some earlier designs simply removed the upper row of struts that defines the outflow diameter of the frame. Such a frame configuration had no built-in way to limit the maximum expansion of the valve during a valve-in-valve procedure. Additionally, there could be an advantage to having hybrid valves that are collapsed by a limited amount, for example, about 2-3 mm, for easier insertion. While a frame without an upper row of struts could be collapsed, there is no built-in limit the amount of compression. It might be desirable to have the maximum compression amount limited as disclosed herein for consistency and for preventing physicians from trying to collapse the valve more than it can safely be collapsed.
[0072] In addition, a number of valve-type indicators 212 are integrated into the frame 176 at locations around its circumference, such as three valve size indicators. In the illustrated embodiment, the valve size indicators 212 comprise small plate-like tags inscribed with the numerical valve size in mm, for example 21 mm in the illustrated embodiment. The use of any alphanumeric characters and/or symbols that signify size or other feature of the valve are contemplated. The frame 176 may be laser cut from a tubular blank, with the plate-like size indicators 212 left connected to one more of the struts. As shown, the size indicators 212 are located just below the peaks 204 of the undulating upper row strut 200, connected between the corresponding eyehole 252 and the descending column strut 206. There are thus three size indicators 212 spaced about 120° apart around the frame 176. This location provides additional space between the upper row strut 200 and the adjacent lower row strut 208. The inscribed or cutout valve size numerals are sufficiently large to be visualized with X-ray, Transesophageal Echocardiogram (TEE), or other imaging modality. In one embodiment, the valve size numerals are from about 1.5 mm to about 2 mm in height, for example, about 1.75 mm in height.
[0073] Figure 10A is an exploded perspective view of components of an alternative hybrid prosthetic heart valve 300. The alternative heart valve 300 does away with an internal stent or support frame previously shown as the composite bands 120, 140 in Figure 7, for example. The composite band structure was the primary source of circumferential rigidity to the heart valves in which they were employed, and thus an expansion structure enabled valve-in-valve procedures. The alternative hybrid heart valve 300 includes a lower compressible/expandable frame 302, as before, separate commissure posts 304 that are secured to the frame, and an undulating wireform 306 supporting flexible leaflets 308, also as before.
[0074] Figure 10B shows a subassembly 310 including the wireform 306 juxtaposed with the three leaflets 308, and an "integrated" subassembly 312 of the expandable frame 302 with the commissure posts 304 attached thereto. Each of the flexible leaflets 308 has two tabs 309, and pairs of tabs on adjacent leaflets are shown projecting through (under) the inverted V-shaped commissures of the wireform 306. These pairs of tabs 309 then wrap around one of the upstanding commissure posts 304 of the subassembly 312, which are located adjacent to and radially outward from the wireform commissures. The subassemblies 310, 312 are eventually covered with biocompatible fabric such as polyester, and the pairs of tabs 309 and commissure posts 304 are secured to each other with a cloth covering (see Figure 13). [0075] Due to the attachment of the commissure posts 304 to the frame 302 the subassembly 312 integrates the frame and commissure posts, while as described below, an "integrated" frame may mean that the commissure posts are integrally formed of the same homogeneous material as the rest of the stent frame. Integrated in this sense meaning the two components are securely attached together prior to assembly with the wireform/leaflet subassembly 310, either by securing the two parts or forming them at the same time from the same material. Furthermore, a hybrid heart valve with an "integrated" frame means that the frame provides both the expandable skirt frame as well as commissure posts to which the leaflets attach, without any additional structural bands, such as the metal band 94 seen in Figure 1A. With this configuration, the number of parts in the valve is reduced, which reduces assembly time and expense.
[0076] Figures IOC and 10D illustrate a commissure post 304 from an outer and an inner perspective, respectively. A lower end of each of the commissure posts 304 includes a concave ledge 314 that matches the contour of one of the peaks 316 in the undulating upper row of struts 318 of the expandable frame. As seen in Figure 10B, an outer plate 320 below each of the concave ledges 314 of the commissure posts 304 extends downward on the outside of the expandable frame 302. Sutures 322 secure the commissure posts 304 to the frame 302 via suture holes 324 that align with eyeholes 326 at the peaks 316 of the undulating upper row strut 318. This shape matching followed by covering with fabric provides a relatively stable arrangement of the commissure posts 304 in the integrated frame subassembly 312.
[0077] Figure 11 is another exploded perspective view of subassemblies of the alternative hybrid prosthetic heart valve 300. In this view, the wireform in the subassembly 310 of the wireform and leaflets has been covered with fabric, and features an outwardly projecting flap 330. The fabric flap 330 is used to secure the
wireform/leaflet subassembly 310 to the subassembly 312 of the expandable frame 302 and commissure posts 304. Furthermore, a suture-permeable sealing ring 332 may be attached such as by sewing at the juxtaposition between the two subassemblies 310, 312. [0078] The relative positions of the wireform 306 and the frame/commissure post subassembly 312 is seen in Figure 12, and also in further detail in Figures 12A-12D, with the commissure posts 304 immediately outside of the commissures of the wireform 306. Finally, Figure 13 is a perspective view of the finished hybrid prosthetic heart valve 300 entirely covered with fabric.
[0079] The removal of the aforementioned stent bands and attachment (integration) of the commissure posts 304 directly to the frame 302 greatly simplifies construction, reduces labor hours, lowers the radial profile of the valve by ~ 1.6 mm, and allows for expansion during a valve-in-valve procedure. A preferred construction sequence involves attaching the sealing ring 332 to the expandable frame 302, along with three cloth- covered commissure posts 304, then attaching this assembly to the wireform/leaflet subassembly 310 during final assembly.
[0080] The commissure posts 304 disclosed have specific features that interface with the frame 304 to add stability to the posts in all directions. That is, the specific surfaces 314, 320 that mate with the corresponding peaks 316 on the frame 302 as well as the holes 324 that allow the posts to attach with sutures 322 to the frame provide excellent stability in all directions for subsequent covering with fabric. The commissure posts 304 could be molded from polyester or some other biocompatible material into the shape shown here, or even produced using 3D printing.
[0081] A hybrid valve 340 built using the disclosed methods is shown in Figures 14A and 14B with all but flexible leaflets 342 covered with cloth. The improved valve construction disclosed herein eliminates a separate stent subassembly by combining the functions of that assembly (supporting the leaflets from underneath as well as from the sides in the commissure area, and attachment of the sewing ring insert) with the stent frame assembly. As will be explained, the main components of the hybrid valve 340 include a wireform 344 having alternating cusps and commissures that supports the leaflets 342, a lower expandable frame 346 integrated with commissure posts 348, and preferably a sealing ring 350 around the periphery of the cusps of the wireform 344. Several steps in the assembly process will now be described. [0082] Figure 15A shows the first step in the disclosed method of hybrid valve construction. A piece of PTFE tubular cloth 352 is first partially inverted and placed over the generally tubular stent frame 346 from the bottom, thus covering the inside, outside, and bottom of the frame. Subsequently, the cloth 352 is sewn to the frame 346 through frame holes and around a top circumferential row of struts 354 using an in-and-out stitch with double PTFE thread. Figure 15B shows the cloth 352 pulled back on the inside and outside after sewing is complete, thereby exposing the top of the stent frame 346. More particularly, the top circumferential row of struts 354 is left partly exposed; at least three peaks intermediate three valleys of the undulating row.
[0083] Figure 16A shows the stent frame 346 covered in the cloth 352 and with a sewing ring insert 356 placed adjacent the top row of struts 354. The cloth layers below the sewing ring 356 have been rough cut, which is acceptable as they are subsequently covered in an outer layer of cloth, thus eliminating the need to "finish" the PTFE cloth in that area. An alternative method would be to fold those layers and finish them on either the top or bottom of the sewing ring.
[0084] In Figure 16B, the sewing ring insert 356 has been stitched to the top of the stent frame 346 in 6 locations to give it a desired scalloped shape. Six locations would be a minimum to define the high (commissures) and low (cusp centers) points of its desired shape. It could be attached at more locations to better define its shape. The PTFE cloth 352 from the inside of the stent frame 346 has been inverted over the sewing ring insert 356 and formed by hand to follow the scalloped shape of the insert. Subsequent to conforming the cloth to the insert as shown, both the inner and outer layers of cloth are sewn together (between the stent frame and the insert).
[0085] After the sewing ring formation as shown in Figure 16B, the next step is to cover three polymer (e.g. PET) commissure tip inserts 360, shown in Figure 17, with cloth 361, as shown in Figure 18. Because these inserts 360 are simple 2D parts, they could potentially be sewn on a machine, or "socks" could be knitted to fit over them. Another option could be to use a different cloth, such as PET-based cloth, which could be laser cut and fused to make the covers for the inserts. [0086] Figures 19A and 19B shows how the inserts 360 sit with respect to the stent frame 346 and outside of the commissures 362 of a wireform 364. The cloth is not shown in the sketch. The inserts 360 sit directly over the peaks of the upper row of struts 354 of the stent frame 346. The tip inserts 360 and stent frame 346 could be sewn together through holes 366 in the stent frame and a lower hole 368 in the inserts, through their respective layers of cloth. This provides a high degree of vertical stability to the commissures of the assembly. Figures 19A and 19B show two different patterns for the holes 368 in the inserts 360, two or three toward the lower end, while Figures 17 and 18 show a single hole. Of course, other arrangements are contemplated.
[0087] After the cloth-covered commissure inserts 360 are attached to the stent frame/sewing ring assembly, final assembly would be performed. Final assembly would include stitches from below the sewing ring insert 356 (see Figure 16A) through its hinge point, through the leaflets and wireform cloth, then down through all layers as an in-and- out stitch.
[0088] One method of creating commissure inserts uses a polyester (or other material) tip piece 364, similar to that used in the Carpentier-Edwards Model 2700 heart valve, as shown in Figure 20. The tip piece would have at least one hole 365 in the bottom to facilitate attachment to the expandable stent frame after cloth covering, as well as other holes for securing the cloth, and securing the insert to the wireform cloth.
[0089] Figure 21 shows an example of a PET tubular cloth 366, which could be used to cover the component shown in Figure 20. The ends of the tube can be knitted closed, as is done on prior art annuloplasty rings, or fused closed with ultrasonic, laser, or heat methods. With one end closed, the piece 364 from Figure 20 can be inserted from an open end. The cloth 366 can then be folded over to form multiple layers on one side tip piece for subsequent leaflet attachment.
[0090] Figures 22A and 22B show a commissure insert 368 made in the fashion attached to a cloth-covered expandable stent frame described above. Three such commissure inserts would be attached to the cloth-covered stent frame, which would then be ready for final assembly with the wireform- leaflet assembly. A second method of making commissure inserts uses a non-woven fabric such as Reemay® spunbonded polyester.
[0091] Figure 23 shows solid fabric inserts 370 made in this manner. The inserts 370 can simply be die (or laser, etc.) cut from non-woven fabric sheet of the desired thickness and porosity. These inserts 370 would be immediately ready to attach to the cloth- covered stent frame 372 as shown in Figure 24. As an alternative to making them from a homogenous sheet, they could be made from a composite that had, for example, a very dense and stiff layer that could face the inside of the valve to add support and minimize leakage, and a less dense layer on the outside that would be easy to stitch to during final valve assembly. For even more stiffness, the composite could contain a layer of polyester sheet, either inserted into a pocket cut into a single, thick section of fabric, or as a layer in a composite structure.
[0092] Figures 25-31 illustrate alternative integrated anchoring skirt and commissure post subassemblies. As described above with respect to Figures 10-13, the subassembly 312 shown in Figure 10B eliminates the need for annular structural bands, which bands provide stability and rigidity but which impede the ability of the valve to expand post- implant. Each of the alternative subassemblies shown in Figures 25-31 also eliminate the need for the structural bands, and further integrate the anchoring skirt and the commissure posts.
[0093] Figure 25A shows a still further assembly 400 of the structural components of a hybrid prosthetic heart valve having an integrated frame member 402 much like those described above but formed of a single piece. A schematic wireform 404 is shown situated on top of the frame member 402 in Figure 25A, with flexible leaflets and a cloth cover not shown and representing a wireform/leaflet subassembly such as shown at 310 in Figure 11. The schematic wireform 404 is shown with an outwardly extending sewing flange 406, which may be formed by joined lengths of two fabric tabs that wrap around and cover the wireform. When covered with cloth, the frame member 402 serves as the supportive component for the wireform, leaflets and sealing ring. Further, when covered with cloth, the frame member 402 provides an effective seal against paravalvular leaking (PVL) and circumferential stability to the valve.
[0094] The integrated frame member 402, which is also shown in Figures 25B-25D, comprises a lower expandable skirt portion 410, an upper annulus band 412, and leaflet support posts 414. The skirt portion 410 comprises a number of chevron patterned or V- shaped struts that can be easily crimped and then expanded. The annulus band 412 provides real estate for the attachment of a sealing ring (not shown), and preferably includes a series of holes around its circumference through which to pass sutures connecting the sealing ring. The integrated frame member 402 includes multiple cuts that enable post-implant expansion and may be laser-cut from a suitable metal such as Elgiloy and electro-polished.
[0095] The frame member 402 is desirably formed from a tubular blank of a suitable material, and has a generally circular inflow or lower edge and an undulating outflow or upper edge. More particularly, the upper edge defines three arcuate cusp portions 416 intermediate three upstanding commissure posts 418. The undulating upper edge is shaped to closely fit underneath the wireform 406. After assembling the frame member 402 with the rest of the heart valve components, the skirt portion 410 is typically crimped in a generally conical manner such that its lower edge has a smaller diameter than its upper edge.
[0096] Compression/expansion sections 420 along the annulus band 412 are also added to enable a limited collapse of the frame member 402 during delivery. The compression/expansion sections 420 comprise slits formed in the upper edge of the frame member 402 that have spaces enabling a limited compression, and also permit expansion. In a preferred embodiment, solid segments 422 spaced around the annulus band 412 are connected by thin inverted U-shaped bridges 424.
[0097] As seen in Figure 25D, the frame member 402 further includes a number of slits in the region of the commissures 418 to facilitate expansion in general flexibility of the frame member. An elongated central slit 426 extends nearly the entire height of each of the commissures 418. Regions of expandable circumferential struts 428 are positioned within the skirt portion 410 axially aligned with both the compression/expansion sections 420 and the central slits 426. When an outward radial force is applied from within the heart valve having the frame member 402, the annulus band 412 permits expansion because of both the sections 420 and slits 426. Additionally, short arcuate slits 430 are formed at the base of each of the commissure posts 418, generally following a truncated undulating line joining the cusp portions 416. These slits 430 reduce the radial stiffness of the posts 418 such that most of the physiological load absorbed by the flexible leaflets is transferred to the wireform 406, rather than to the posts.
[0098] Despite the arcuate slits 430 in the frame member 402 of Figures 25A-25D, there are concerns that such an integrated frame design will stiffen the wireform commissure post area, thus altering the load carry mechanism of proven valve platforms. To alleviate such concerns, the three commissure posts may be made of three separate pieces, preferably using polymeric material, such that when connected with the underlining metal frame with sutures, there will not be metal to metal contact.
[0099] For instance, Figures 26A-26D illustrate an alternative frame member 440 that is configured about the same as the frame member 402, but has separate commissure posts 442. The frame member 440 is shown situated just below a wireform assembly 441 in Figure 26A. As seen in Figures 26C-26D, the annulus band region 444 and the inflow strut region 446 are exactly same as that of the frame member 402. The only difference is separate commissure posts 442 preferably made of plastic material that will be sewn together with the frame member 440 using sutures 448 before being covered with cloth. A pair of attachment holes 450 is desirably formed in each of the commissure posts 442 for this purpose. As before, the crimpable and expandable frame member 440 without commissure posts is laser-cut and electropolished.
[0100] Although the ability to compress and expand the frame members may be an advantage, the present application also contemplates integrated frame members for a hybrid prosthetic heart valves that are not either expandable or compressible. Figures 27A-27B show an assembly 460 of the structural components of a hybrid prosthetic heart valve including an integrated frame member 462 with a lower expandable skirt portion 464, an upper annulus band 466, and leaflet support posts 468. The annulus band 466 provides real estate for the attachment of a sealing ring (not shown). As before, the integrated frame member 462 may be laser-cut from a suitable metal tube such as Elgiloy and electro-polished. A wireform 470, such as in the subassembly 310 in Figure 11, is illustrated just above the undulating upper end of the frame member 462, with flexible leaflets and a cloth cover not shown for clarity.
[0101] As seen best in Figure 27B, the frame member 462 has an outflow or upper edge 472 without capacity for either compression or expansion. That is, a plurality of solid segments 474 spaced around the annulus band 462 are connected by small solid bridges 476. Each of the solid segments 474 preferably has a through hole 478 for use in an attaching a sewing ring around the periphery thereof.
[0102] Figure 28A shows another assembly 480 of the structural components of a prosthetic heart valve including a non-compressible, non-expandable integrated frame member 482 much like the one in Figures 27A-27B, but with separated commissure posts 484. Several suture holes 486 in the commissure posts are also added to help secure the commissure posts 484 to an annulus band 488 of the frame member 482, much like is shown in Figure 26A.
[0103] Figure 25A is a fully integrated frame member 402, with concerns over stiffened commissure posts. The frame member 442 shown in Figure 26A alleviated that concern with three separate commissure posts 442, but those require sewing together with the expandable frame, which increases the time and steps when assembling the valve. In order to preserve the same load bearing characteristics of the existing commercial valve platforms, while still having a relative easy valve assembly procedure, the embodiments shown in Figures 29 and 31 are also contemplated.
[0104] Figure 29 shows an assembly 500 that includes an expandable frame 502 much like the frame 176 described above with respect to Figure 9A. The frame 502 is secured via sutures to a stent band 504 with upstanding commissures 506 to form an integrated frame member. This stent band 504 is essentially the inner band 95 from Figure 1A, with suture holes 505 around its circumference to enable secure attachment to the top row of struts of the frame 502. An upper row of struts 508 includes regularly spaced compressible/expandable segments 510 to enable pre-implant compression, and post-implant expansion during a valve-in- valve procedure.
[0105] The assembly 500 is again crimpable and expandable. The stent band 504 is formed of a polymer (e.g. , polyester) material that is breakable when in expansion force is applied within the valve. This makes the whole valve expandable for valve-in- valve applicable. Because of the polymer commissures 506, the valve load carrying characteristics will be exactly the same as the existing commercial valve platform, thus hydrodynamic performance and durability of the valve shall be the same as the existing commercial valve as well. The relative position of the polyester band and the expandable frame can be assembled as illustrated in Figure 29, with the stent band 504 positioned immediately above the frame member 502. Conversely, as seen in Figure 31 , the stent band 504 may be located partly radially within the frame 502, in an overlapping manner. This aligns the series of through holes 505 in the stent band 504 with eyeholes 512 provided in the frame 502, which greatly facilitates assembly, thus reducing time and expense.
Some improvements over existing designs:
[0106] 1. Integrate the metal stiffener band, the stent frame and/or the polyester band together.
[0107] 2. The commissure posts, the sewing ring section, as well as the chevron patterned strut section are expandable such that they expand uniformly without distorting the wireform.
[0108] 3. Reduce the radial stiffness compared with the current heart valve frames so that a transcatheter valve balloon/frame can push the new valve open at least about 2 mm.
[0109] 4. Integrated commissure posts for holding the leaflet tabs impose reduced or minimal forces on the leaflet, with most of the forces transferred to the wireform [0110] 5. No leakage path through the commissure post areas or the sewing ring attachment area.
[0111] 6. Ease of locating and sewing/clipping/inserting the sewing ring on the frame.
[0112] 7. During the crimping, expansion, and other manufacturing steps, the frame does not buckle/remains stable, especially at the commissure posts.
[0113] 8. Crimpability at the annulus region reduces the profile of the valve during valve insertion.
Some advantages:
[0114] 1. Expandable hybrid prosthetic heart valves permit valve-in- valve procedures, improving valve performance.
[0115] 2. Integrated design simplifies assembly, reducing labor and material costs.
[0116] 3. Crimping the valve reduces its profile, which improves visibility during valve insertion and deployment, enhancing the user' s experience.
[0117] While the disclosure references particular embodiments, it will understood that various changes and additional variations may be made and equivalents may be substituted for elements thereof without departing from the scope or the inventive concept thereof. In addition, many modifications may be made to adapt a particular situation or device to the teachings herein without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed herein, but includes all embodiments falling within the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A hybrid prosthetic heart valve having an inflow end and an outflow end, comprising:
a valve member including a plurality of flexible leaflets configured to ensure oneway blood flow therethrough; and
a generally tubular expandable inflow stent frame having a radially-expandable inflow end and an outflow end secured to and projecting from an inflow end of the valve member, wherein the outflow end of the stent frame undulates with peaks and valleys, and further wherein the outflow end includes integrated commissure posts to which the leaflets attach, the outflow end of the stent frame including a circumferential structure defining a nominal diameter that enables physiological functioning of the valve member when implanted, the circumferential structure being radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame substantially larger than forces associated with normal physiological use, and wherein the circumferential structure has limited radially compressibility of between about 7-20% of the nominal diameter to reduce the size of the outflow end during delivery of the heart valve.
2. The prosthetic heart valve of claim 1, wherein the stent frame includes a plurality of circumferential row struts connected by a series of spaced axial column struts, and the circumferential structure is an outflow row strut that extends continuously around a periphery of the stent frame having peaks and valleys, and the outflow row strut has a series of spaced V-shaped notches that permit limited expansion and contraction.
3. The prosthetic heart valve of claim 1, wherein the stent frame outflow end has a plurality of expandable sections spaced between each two commissure posts that permit the post-implant expansion.
4. The prosthetic heart valve of any of claims 1-3, further including a unique identifier on the stent frame visible from outside the body after implant that identifies the stent frame as having an expandable outflow end.
5. The prosthetic heart valve of any of claims 1-4, wherein the integrated commissure posts are separate elements secured with sutures to the stent frame outflow end.
6. The prosthetic heart valve of claim 5, wherein the commissure posts each includes a portion that extends down below and to the outside of the circumferential structure and has a through hole that aligns with an eyehole in the stent frame and the commissure post is secured to the stent frame with a suture through the aligned through hole and eyehole.
7. The prosthetic heart valve of claim 6, wherein the commissure posts attached above the peaks of the circumferential structure.
8. The prosthetic heart valve of claim 7, wherein the stent frame includes a plurality of circumferential row struts connected by a series of spaced axial column struts, and the circumferential structure is an outflow row strut that extends continuously around a periphery of the stent frame having peaks and valleys, and the outflow row strut has a series of spaced V-shaped notches that permit limited expansion and contraction.
9. The prosthetic heart valve of any of claims 1-3, wherein the integrated commissure posts are integrally formed of the same homogeneous material as the rest of the stent frame.
10. The prosthetic heart valve of any of claims 1-10, wherein the stent frame is configured to expand below each of the commissure posts upon application of the outward dilatory force, the circumferential structure being radially compressible to a smaller contracted diameter to enable compression of the outflow end during delivery of the heart valve.
11. The prosthetic heart valve of claim 10, wherein the stent frame has a series of axial slits around the circumferential structure that permit expansion of the outflow end upon application of the outward dilatory force.
12. The prosthetic heart valve of any of claims 1-11, wherein the stent frame is plastically expandable.
13. The prosthetic heart valve of any of claims 1-12, wherein the valve member also includes an undulating wireform with alternating cusps and commissures to which the flexible leaflets attach, and wherein each adjacent pair of flexible leaflets has outward tabs that come together and are passed radially outward through one of the wireform commissures and attach to one of the integrated commissure posts.
PCT/US2016/040396 2015-07-02 2016-06-30 Integrated hybrid heart valves WO2017004374A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680047630.1A CN107920894B (en) 2015-07-02 2016-06-30 Integrated hybrid heart valve
EP16818788.8A EP3316823B1 (en) 2015-07-02 2016-06-30 Integrated hybrid heart valves
CA2990733A CA2990733C (en) 2015-07-02 2016-06-30 Integrated hybrid heart valves
CR20170597A CR20170597A (en) 2015-07-02 2016-06-30 INTEGRATED HYBRID HEART VALVES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562188465P 2015-07-02 2015-07-02
US62/188,465 2015-07-02

Publications (1)

Publication Number Publication Date
WO2017004374A1 true WO2017004374A1 (en) 2017-01-05

Family

ID=57609601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/040396 WO2017004374A1 (en) 2015-07-02 2016-06-30 Integrated hybrid heart valves

Country Status (6)

Country Link
US (3) US10456246B2 (en)
EP (1) EP3316823B1 (en)
CN (1) CN107920894B (en)
CA (1) CA2990733C (en)
CR (1) CR20170597A (en)
WO (1) WO2017004374A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020160141A1 (en) * 2019-01-30 2020-08-06 Edwards Lifesciences Corporation Heart valve sealing assemblies
WO2022084313A1 (en) * 2020-10-22 2022-04-28 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Textile-functionalized, implantable valve prostheses

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
EP3307207A1 (en) * 2015-06-12 2018-04-18 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
WO2017004374A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Integrated hybrid heart valves
US10080653B2 (en) * 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
EP3407835A4 (en) 2016-01-29 2019-06-26 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
CA3042588A1 (en) 2016-11-21 2018-05-24 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
CA3065329A1 (en) * 2017-06-21 2018-12-27 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
WO2019147846A2 (en) 2018-01-25 2019-08-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
CA3097896A1 (en) * 2018-04-30 2019-11-07 Edwards Lifesciences Corporation Advanced sheath patterns
EP3787530A1 (en) 2018-05-03 2021-03-10 Medtronic Vascular, Inc. Tip assemblies, systems, and methods for fracturing a frame of a deployed prosthesis
US20200069415A1 (en) * 2018-08-30 2020-03-05 Edwards Lifesciences Corporation Systems and methods for sizing and implanting prosthetic heart valves
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
WO2020093172A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US10653522B1 (en) 2018-12-20 2020-05-19 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valve prosthesis
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
CN113543750A (en) 2019-03-05 2021-10-22 维迪内股份有限公司 Tricuspid valve regurgitation control apparatus for orthogonal transcatheter heart valve prosthesis
US10631983B1 (en) 2019-03-14 2020-04-28 Vdyne, Inc. Distal subannular anchoring tab for side-delivered transcatheter valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US10758346B1 (en) 2019-03-14 2020-09-01 Vdyne, Inc. A2 clip for side-delivered transcatheter mitral valve prosthesis
CA3135753C (en) 2019-04-01 2023-10-24 Neovasc Tiara Inc. Controllably deployable prosthetic valve
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
CN114072106A (en) 2019-05-04 2022-02-18 维迪内股份有限公司 Cinching device and method for deploying a laterally delivered prosthetic heart valve in a native annulus
CN114025813A (en) 2019-05-20 2022-02-08 内奥瓦斯克迪亚拉公司 Introducer with hemostatic mechanism
US11311376B2 (en) 2019-06-20 2022-04-26 Neovase Tiara Inc. Low profile prosthetic mitral valve
JP2022544707A (en) 2019-08-20 2022-10-20 ブイダイン,インコーポレイテッド Devices and methods for delivery and retrieval of laterally deliverable transcatheter valve prostheses
WO2021040996A1 (en) 2019-08-26 2021-03-04 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11382741B2 (en) * 2019-12-18 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Devices and methods for surgical valve expansion
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
CN116459040A (en) * 2021-12-31 2023-07-21 吉林启明皓月生物科技有限公司 Artificial valve
WO2023168270A2 (en) * 2022-03-01 2023-09-07 Arizona Board Of Regents On Behalf Of The University Of Arizona Polymeric heart valve system and methods of making and using thereof
US11701224B1 (en) * 2022-06-28 2023-07-18 Seven Summits Medical, Inc. Prosthetic heart valve for multiple positions and applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143386A1 (en) * 2001-03-29 2002-10-03 Davila Luis A. Radiopacity intraluminal medical device
US20090192591A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Markers for Prosthetic Heart Valves
US20100331972A1 (en) 2009-06-26 2010-12-30 Edwards Lifesciences Corporation Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods
WO2012047644A2 (en) * 2010-09-27 2012-04-12 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
WO2013096854A2 (en) * 2011-12-23 2013-06-27 Abiomed, Inc. Heart valve prosthesis with open stent
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves

Family Cites Families (389)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143742A (en) 1963-03-19 1964-08-11 Surgitool Inc Prosthetic sutureless heart valve
US3320972A (en) 1964-04-16 1967-05-23 Roy F High Prosthetic tricuspid valve and method of and device for fabricating same
US3371352A (en) 1965-01-19 1968-03-05 Edwards Lab Inc Heart valve for quick implantation having provision for ingrowth of tissue
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
GB1172990A (en) 1965-12-11 1969-12-03 Valery Ivanovich Shumakov Cardiac Valve Prosthesis and Instrument for Mounting and Fixing it in Position
US3574865A (en) 1968-08-08 1971-04-13 Michigan Instr Inc Prosthetic sutureless heart valve
NL143127B (en) 1969-02-04 1974-09-16 Rhone Poulenc Sa REINFORCEMENT DEVICE FOR A DEFECTIVE HEART VALVE.
US3628535A (en) 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3686740A (en) 1970-06-19 1972-08-29 Donald P Shiley Method of assemblying a sutureless heart valve
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
US3839741A (en) 1972-11-17 1974-10-08 J Haller Heart valve and retaining means therefor
FR2306671A1 (en) 1975-04-11 1976-11-05 Rhone Poulenc Ind VALVULAR IMPLANT
US3997923A (en) 1975-04-28 1976-12-21 St. Jude Medical, Inc. Heart valve prosthesis and suturing assembly and method of implanting a heart valve prosthesis in a heart
US4340091A (en) 1975-05-07 1982-07-20 Albany International Corp. Elastomeric sheet materials for heart valve and other prosthetic implants
FR2298313A1 (en) 1975-06-23 1976-08-20 Usifroid LINEAR REDUCER FOR VALVULOPLASTY
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
AR206762A1 (en) 1976-01-01 1976-08-13 Pisanu A LOW PROFILE BIOPROTHESIS DERIVED FROM PORCINE HETEROLOGICAL AORTIC VALVE
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4084268A (en) 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
US4078468A (en) 1976-10-21 1978-03-14 Simon Civitello Apparatus for extending a lower range of a stringed musical instrument
US4164046A (en) 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
DK229077A (en) 1977-05-25 1978-11-26 Biocoating Aps HEARTBALL PROSTHET AND PROCEDURE FOR MANUFACTURING IT
US4172295A (en) 1978-01-27 1979-10-30 Shiley Scientific, Inc. Tri-cuspid three-tissue prosthetic heart valve
AR221872A1 (en) 1979-03-16 1981-03-31 Liotta Domingo S IMPROVEMENTS IN IMPANTABLE HEART VALVES
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4388735A (en) 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
EP0125393B1 (en) 1980-11-03 1987-12-09 Shiley Incorporated Prosthetic heart valve
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4364126A (en) 1981-07-28 1982-12-21 Vascor, Inc. Heart valve with removable cusp protector band
US4501030A (en) 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4865600A (en) 1981-08-25 1989-09-12 Baxter International Inc. Mitral valve holder
US4451936A (en) 1981-12-21 1984-06-05 American Hospital Supply Corporation Supra-annular aortic valve
DE3365190D1 (en) 1982-01-20 1986-09-18 Martin Morris Black Artificial heart valves
DE3230858C2 (en) 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
US4680031A (en) 1982-11-29 1987-07-14 Tascon Medical Technology Corporation Heart valve prosthesis
SU1116573A1 (en) 1983-01-07 1985-07-15 Предприятие П/Я А-1619 Bioprosthesis of heart valve
GB8300636D0 (en) 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4506394A (en) 1983-01-13 1985-03-26 Molrose Management, Ltd. Cardiac valve prosthesis holder
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
AR229309A1 (en) 1983-04-20 1983-07-15 Barone Hector Daniel MOUNT FOR CARDIAC VALVES
IL74460A (en) 1983-09-02 1990-01-18 Istec Ind & Technologies Ltd Surgical implement particularly useful for suturing prosthetic valves
DE8327414U1 (en) 1983-09-23 1984-02-02 Reichart, Bruno, Prof. Dr. HEART VALVE PROSTHESIS
US4626255A (en) 1983-09-23 1986-12-02 Christian Weinhold Heart valve bioprothesis
US4629459A (en) 1983-12-28 1986-12-16 Shiley Inc. Alternate stent covering for tissue valves
GB8424582D0 (en) 1984-09-28 1984-11-07 Univ Glasgow Heart valve prosthesis
NL8500538A (en) 1985-02-26 1986-09-16 Stichting Tech Wetenschapp HEART VALVE PROSTHESIS, METHOD FOR MANUFACTURING A HEART VALVE PROSTHESIS AND MOLD USED THEREIN
US4888009A (en) 1985-04-05 1989-12-19 Abiomed, Inc. Prosthetic heart valve
DE3541478A1 (en) 1985-11-23 1987-05-27 Beiersdorf Ag HEART VALVE PROSTHESIS AND METHOD FOR THE PRODUCTION THEREOF
US4790843A (en) 1986-06-16 1988-12-13 Baxter Travenol Laboratories, Inc. Prosthetic heart valve assembly
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
US4725274A (en) 1986-10-24 1988-02-16 Baxter Travenol Laboratories, Inc. Prosthetic heart valve
US4914097A (en) 1987-02-25 1990-04-03 Mitsubishi Kasei Corporation N-indanyl carboxamide derivative and agricultural/horticultural fungicide containing the derivative as active ingredient
SU1697790A1 (en) 1987-03-02 1991-12-15 Сибирский физико-технический институт им.В.Д.Кузнецова при Томском государственном университете им.В.В.Куйбышева Heart valve prosthesis with mechanical fixing
US4851000A (en) 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
IT1218951B (en) 1988-01-12 1990-04-24 Mario Morea PROSTHETIC DEVICE FOR SURGICAL CORRECTION OF TRICUSPIDAL INSUFFICENCE
US5010892A (en) 1988-05-04 1991-04-30 Triangle Research And Development Corp. Body lumen measuring instrument
US4960424A (en) 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
EP0595791B1 (en) 1989-02-13 1999-06-30 Baxter International Inc. Anuloplasty ring prosthesis
US5290300A (en) 1989-07-31 1994-03-01 Baxter International Inc. Flexible suture guide and holder
US5041130A (en) 1989-07-31 1991-08-20 Baxter International Inc. Flexible annuloplasty ring and holder
US5697375A (en) 1989-09-18 1997-12-16 The Research Foundation Of State University Of New York Method and apparatus utilizing heart sounds for determining pressures associated with the left atrium
US4993428A (en) 1990-02-12 1991-02-19 Microstrain Company Method of and means for implanting a pressure and force sensing apparatus
US5147391A (en) 1990-04-11 1992-09-15 Carbomedics, Inc. Bioprosthetic heart valve with semi-permeable commissure posts and deformable leaflets
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5064431A (en) 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5489298A (en) 1991-01-24 1996-02-06 Autogenics Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5755782A (en) 1991-01-24 1998-05-26 Autogenics Stents for autologous tissue heart valve
ES2028611A6 (en) 1991-02-07 1992-07-01 Garcia Gonzalez Moro Jose Beni Artificial heart valve.
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
BR9205978A (en) 1991-05-08 1994-07-26 Nika Health Products Ltd Process and apparatus for the production of a heart valve prosthesis
DE583341T1 (en) 1991-05-08 1994-10-06 Nika Health Products Ltd Support body for a prosthetic heart valve.
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5704361A (en) 1991-11-08 1998-01-06 Mayo Foundation For Medical Education And Research Volumetric image ultrasound transducer underfluid catheter system
US5201880A (en) 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5306296A (en) 1992-08-21 1994-04-26 Medtronic, Inc. Annuloplasty and suture rings
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
CA2127701C (en) 1992-01-27 1999-06-15 John T. M. Wright Annuloplasty and suture rings
US5258021A (en) 1992-01-27 1993-11-02 Duran Carlos G Sigmoid valve annuloplasty ring
US5258023A (en) 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
GB9206449D0 (en) 1992-03-25 1992-05-06 Univ Leeds Artificial heart valve
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5316016A (en) 1992-07-07 1994-05-31 Scimed Life Systems, Inc. Imaging balloon catheter and methods for use and manufacture
DE4222610A1 (en) 1992-07-10 1994-01-13 Jansen Josef Dr Ing Support housing for flap and closing elements
US5449384A (en) 1992-09-28 1995-09-12 Medtronic, Inc. Dynamic annulus heart valve employing preserved porcine valve leaflets
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
US5814097A (en) 1992-12-03 1998-09-29 Heartport, Inc. Devices and methods for intracardiac procedures
US5682906A (en) 1993-02-22 1997-11-04 Heartport, Inc. Methods of performing intracardiac procedures on an arrested heart
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US6010531A (en) 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
FR2708458B1 (en) 1993-08-03 1995-09-15 Seguin Jacques Prosthetic ring for cardiac surgery.
US5411522A (en) 1993-08-25 1995-05-02 Linvatec Corporation Unitary anchor for soft tissue fixation
US5450860A (en) 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
US5396887A (en) 1993-09-23 1995-03-14 Cardiac Pathways Corporation Apparatus and method for detecting contact pressure
US5425741A (en) 1993-12-17 1995-06-20 Autogenics Tissue cutting die
DE69431122T2 (en) 1993-12-22 2003-03-27 St Jude Medical HEART VALVE HOLDER
US5476510A (en) 1994-04-21 1995-12-19 Medtronic, Inc. Holder for heart valve
EP0705081B1 (en) 1994-04-22 2001-10-17 Medtronic, Inc. Stented bioprosthetic heart valve
GB9408314D0 (en) 1994-04-27 1994-06-15 Cardio Carbon Co Ltd Heart valve prosthesis
US6217610B1 (en) 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US5593435A (en) 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US5573007A (en) 1994-08-08 1996-11-12 Innerspace, Inc. Gas column pressure monitoring catheters
US5533515A (en) 1994-08-11 1996-07-09 Foster-Miller Solid state sphincter myometers
US5545133A (en) 1994-09-16 1996-08-13 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
US5562729A (en) 1994-11-01 1996-10-08 Biocontrol Technology, Inc. Heart valve
US5776187A (en) 1995-02-09 1998-07-07 St. Jude Medical, Inc. Combined holder tool and rotator for a prosthetic heart valve
US5626607A (en) 1995-04-03 1997-05-06 Heartport, Inc. Clamp assembly and method of use
US5752522A (en) 1995-05-04 1998-05-19 Cardiovascular Concepts, Inc. Lesion diameter measurement catheter and method
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
US5578076A (en) 1995-05-24 1996-11-26 St. Jude Medical, Inc. Low profile holder for heart valve prosthesis
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5814098A (en) 1995-06-07 1998-09-29 St. Jude Medical, Inc. Adjustable sizing apparatus
AU6271196A (en) 1995-06-07 1996-12-30 St. Jude Medical Inc. Direct suture orifice for mechanical heart valve
US5865801A (en) 1995-07-18 1999-02-02 Houser; Russell A. Multiple compartmented balloon catheter with external pressure sensing
US5713952A (en) 1995-09-11 1998-02-03 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
US5628789A (en) 1995-09-11 1997-05-13 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
US5695503A (en) 1995-09-14 1997-12-09 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
GB9519194D0 (en) 1995-09-20 1995-11-22 Univ Wales Medicine Anorectal angle measurement
JPH11514546A (en) 1995-11-01 1999-12-14 セント ジュード メディカル,インコーポレイテッド Bioabsorbable annuloplasty prosthesis
WO1997019655A1 (en) 1995-12-01 1997-06-05 Medtronic, Inc. Annuloplasty prosthesis
US5972004A (en) 1996-02-23 1999-10-26 Cardiovascular Technologies, Llc. Wire fasteners for use in minimally invasive surgery and apparatus and methods for handling those fasteners
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US20020068949A1 (en) 1996-02-23 2002-06-06 Williamson Warren P. Extremely long wire fasteners for use in minimally invasive surgery and means and method for handling those fasteners
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US5885228A (en) 1996-05-08 1999-03-23 Heartport, Inc. Valve sizer and method of use
WO1997042871A1 (en) 1996-05-10 1997-11-20 Cardiovascular Concepts, Inc. Lesion diameter measurement catheter and method
SE506299C2 (en) 1996-05-20 1997-12-01 Bertil Oredsson Transducer to detect changes in cross-section of an elongated body cavity
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5766240A (en) 1996-10-28 1998-06-16 Medtronic, Inc. Rotatable suturing ring for prosthetic heart valve
US5848969A (en) 1996-10-28 1998-12-15 Ep Technologies, Inc. Systems and methods for visualizing interior tissue regions using expandable imaging structures
US5919147A (en) 1996-11-01 1999-07-06 Jain; Krishna M. Method and apparatus for measuring the vascular diameter of a vessel
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5924984A (en) 1997-01-30 1999-07-20 University Of Iowa Research Foundation Anorectal probe apparatus having at least one muscular activity sensor
US5908450A (en) 1997-02-28 1999-06-01 Medtronic, Inc. Physiologic mitral valve implantation holding system
US5776189A (en) 1997-03-05 1998-07-07 Khalid; Naqeeb Cardiac valvular support prosthesis
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5833605A (en) 1997-03-28 1998-11-10 Shah; Ajit Apparatus for vascular mapping and methods of use
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
AU9225598A (en) 1997-09-04 1999-03-22 Endocore, Inc. Artificial chordae replacement
US5984959A (en) 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US5921934A (en) 1997-11-25 1999-07-13 Scimed Life Systems, Inc. Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
FR2776912B1 (en) 1998-04-06 2000-08-04 Houari Lofti DEVICE FOR THE OPERATIVE OPERATION OF THE CARDIO-CIRCULATORY APPARATUS OF THE HUMAN OR ANIMAL BODY
US6074418A (en) 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
US6059827A (en) 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
US6143024A (en) 1998-06-04 2000-11-07 Sulzer Carbomedics Inc. Annuloplasty ring having flexible anterior portion
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6106550A (en) 1998-07-10 2000-08-22 Sulzer Carbomedics Inc. Implantable attaching ring
US6159240A (en) 1998-08-31 2000-12-12 Medtronic, Inc. Rigid annuloplasty device that becomes compliant after implantation
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
US6102945A (en) 1998-10-16 2000-08-15 Sulzer Carbomedics, Inc. Separable annuloplasty ring
US6066160A (en) 1998-11-23 2000-05-23 Quickie Llc Passive knotless suture terminator for use in minimally invasive surgery and to facilitate standard tissue securing
WO2000032105A1 (en) 1998-11-25 2000-06-08 Ball Semiconductor, Inc. Monitor for interventional procedures
US6126007A (en) 1998-12-30 2000-10-03 St. Jude Medical, Inc. Tissue valve holder
US6736845B2 (en) * 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19910233A1 (en) 1999-03-09 2000-09-21 Jostra Medizintechnik Ag Anuloplasty prosthesis
ATE484241T1 (en) 1999-04-09 2010-10-15 Evalve Inc METHOD AND DEVICE FOR HEART VALVE REPAIR
US6183512B1 (en) 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
EP1171059B1 (en) 1999-04-23 2005-11-02 St. Jude Medical ATG, Inc. Artificial heart valve attachment apparatus
US6187040B1 (en) 1999-05-03 2001-02-13 John T. M. Wright Mitral and tricuspid annuloplasty rings
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6602289B1 (en) 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US6348068B1 (en) 1999-07-23 2002-02-19 Sulzer Carbomedics Inc. Multi-filament valve stent for a cardisc valvular prosthesis
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US20010041914A1 (en) 1999-11-22 2001-11-15 Frazier Andrew G.C. Tissue patch deployment catheter
CN1243520C (en) 2000-01-14 2006-03-01 维亚科公司 Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
KR20020082217A (en) 2000-01-27 2002-10-30 쓰리에프 쎄러퓨틱스, 인코포레이티드 Prosthetic Heart Valve
PL211860B1 (en) 2000-01-31 2012-07-31 Cook Biotech Inc Valve stent system
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6805711B2 (en) 2000-06-02 2004-10-19 3F Therapeutics, Inc. Expandable medical implant and percutaneous delivery
US6406493B1 (en) 2000-06-02 2002-06-18 Hosheng Tu Expandable annuloplasty ring and methods of use
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
DE10035475A1 (en) 2000-07-21 2002-02-14 Valeo Auto Electric Gmbh Wiper system for a window of a motor vehicle
WO2002019951A1 (en) 2000-09-07 2002-03-14 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US6461382B1 (en) * 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6918917B1 (en) 2000-10-10 2005-07-19 Medtronic, Inc. Minimally invasive annuloplasty procedure and apparatus
US6966925B2 (en) 2000-12-21 2005-11-22 Edwards Lifesciences Corporation Heart valve holder and method for resisting suture looping
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US20050182483A1 (en) 2004-02-11 2005-08-18 Cook Incorporated Percutaneously placed prosthesis with thromboresistant valve portion
US6955689B2 (en) 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
ES2223759T3 (en) 2001-03-27 2005-03-01 William Cook Europe Aps AORTIC GRAFT DEVICE.
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US6800090B2 (en) 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6858039B2 (en) 2002-07-08 2005-02-22 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
ITMI20011012A1 (en) 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7377938B2 (en) 2001-07-19 2008-05-27 The Cleveland Clinic Foundation Prosthetic cardiac value and method for making same
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US6726716B2 (en) 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US7125421B2 (en) 2001-08-31 2006-10-24 Mitral Interventions, Inc. Method and apparatus for valve repair
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US20060020336A1 (en) 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
US6949122B2 (en) 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6805710B2 (en) 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
WO2003105670A2 (en) 2002-01-10 2003-12-24 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7018404B2 (en) 2002-01-24 2006-03-28 St. Jude Medical, Inc. Conduit for aorta or pulmonary artery replacement
US7118595B2 (en) 2002-03-18 2006-10-10 Medtronic, Inc. Flexible annuloplasty prosthesis and holder
US6719786B2 (en) 2002-03-18 2004-04-13 Medtronic, Inc. Flexible annuloplasty prosthesis and holder
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
MXPA04011144A (en) 2002-05-10 2005-08-16 Johnson & Johnson Method of making a medical device having a thin wall tubular membrane over a structural frame.
WO2003105667A2 (en) 2002-06-12 2003-12-24 Mitral Interventions, Inc. Method and apparatus for tissue connection
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
US6966924B2 (en) 2002-08-16 2005-11-22 St. Jude Medical, Inc. Annuloplasty ring holder
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US7175660B2 (en) 2002-08-29 2007-02-13 Mitralsolutions, Inc. Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US7137184B2 (en) * 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US7159593B2 (en) 2003-04-17 2007-01-09 3F Therapeutics, Inc. Methods for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US8221492B2 (en) 2003-04-24 2012-07-17 Cook Medical Technologies Artificial valve prosthesis with improved flow dynamics
BRPI0412362A (en) 2003-07-08 2006-09-05 Ventor Technologies Ltd prosthetic implant devices particularly for transarterial transport in the treatment of aortic stenoses and implantation methods for such devices
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
CA2533353A1 (en) 2003-07-21 2005-02-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
DE10334868B4 (en) 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
EP1659992B1 (en) 2003-07-31 2013-03-27 Cook Medical Technologies LLC Prosthetic valve devices and methods of making such devices
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
EG24012A (en) 2003-09-24 2008-03-23 Wael Mohamed Nabil Lotfy Valved balloon stent
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US20050096738A1 (en) 2003-10-06 2005-05-05 Cali Douglas S. Minimally invasive valve replacement system
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7431726B2 (en) 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
EP2529699B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
AU2003299404A1 (en) 2003-12-23 2005-08-11 Laboratoires Perouse Kit which is intended to be implanted in a conduit
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US7862610B2 (en) 2004-01-23 2011-01-04 James Quintessenza Bicuspid vascular valve and methods for making and implanting same
US7597711B2 (en) 2004-01-26 2009-10-06 Arbor Surgical Technologies, Inc. Heart valve assembly with slidable coupling connections
WO2005072652A1 (en) 2004-01-27 2005-08-11 Med Institute, Inc. Anchoring barb for attachment to a medical prosthesis
WO2005076973A2 (en) 2004-02-05 2005-08-25 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
EP1722711A4 (en) 2004-02-27 2009-12-02 Aortx Inc Prosthetic heart valve delivery systems and methods
NL1025830C2 (en) 2004-03-26 2005-02-22 Eric Berreklouw Prosthesis e.g. heart valve secured in place by ring with shape memory material anchor, includes anchor temperature control system
US20050222674A1 (en) 2004-03-31 2005-10-06 Med Institute, Inc. Endoluminal graft with a prosthetic valve
EP1753374A4 (en) 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
US7294148B2 (en) 2004-04-29 2007-11-13 Edwards Lifesciences Corporation Annuloplasty ring for mitral valve prolapse
ES2407684T3 (en) 2004-05-05 2013-06-13 Direct Flow Medical, Inc. Heart valve without stent with support structure formed on site
US20060122692A1 (en) 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
US7452376B2 (en) 2004-05-14 2008-11-18 St. Jude Medical, Inc. Flexible, non-planar annuloplasty rings
US20050256568A1 (en) 2004-05-14 2005-11-17 St. Jude Medical, Inc. C-shaped heart valve prostheses
US7938856B2 (en) 2004-05-14 2011-05-10 St. Jude Medical, Inc. Heart valve annuloplasty prosthesis sewing cuffs and methods of making same
JP2007537794A (en) 2004-05-14 2007-12-27 セント ジュード メディカル インコーポレイテッド System and method for holding an annuloplasty ring
US20050278022A1 (en) 2004-06-14 2005-12-15 St. Jude Medical, Inc. Annuloplasty prostheses with improved anchoring structures, and related methods
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
EP1768611A4 (en) 2004-07-15 2009-11-18 Micardia Corp Implants and methods for reshaping heart valves
US8034102B2 (en) 2004-07-19 2011-10-11 Coroneo, Inc. Aortic annuloplasty ring
US8012202B2 (en) 2004-07-27 2011-09-06 Alameddine Abdallah K Mitral valve ring for treatment of mitral valve regurgitation
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
FR2874812B1 (en) 2004-09-07 2007-06-15 Perouse Soc Par Actions Simpli INTERCHANGEABLE PROTHETIC VALVE
CA2580053C (en) 2004-09-14 2014-07-08 Edwards Lifesciences Ag. Device and method for treatment of heart valve regurgitation
JP2008514345A (en) 2004-10-02 2008-05-08 クリストフ・ハンス・フーバー Device for treating or replacing a heart valve or surrounding tissue without requiring full cardiopulmonary support
US20060085060A1 (en) 2004-10-15 2006-04-20 Campbell Louis A Methods and apparatus for coupling an allograft tissue valve and graft
US7641687B2 (en) 2004-11-02 2010-01-05 Carbomedics Inc. Attachment of a sewing cuff to a heart valve
WO2006055982A2 (en) 2004-11-22 2006-05-26 Avvrx Ring-shaped valve prosthesis attachment device
US20060122634A1 (en) 2004-12-03 2006-06-08 Ino Takashi H Apparatus and method for delivering fasteners during valve replacement
US7989157B2 (en) 2005-01-11 2011-08-02 Medtronic, Inc. Solution for storing bioprosthetic tissue used in a biological prosthesis
CA2593652A1 (en) 2005-01-21 2006-08-17 Innovia, Llc Stent-valve and deployment catheter for use therewith
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
ES2558534T3 (en) 2005-02-18 2016-02-05 The Cleveland Clinic Foundation Device to replace a heart valve
US7717955B2 (en) * 2005-02-28 2010-05-18 Medtronic, Inc. Conformable prosthesis for implanting two-piece heart valves and methods for using them
US8083793B2 (en) 2005-02-28 2011-12-27 Medtronic, Inc. Two piece heart valves including multiple lobe valves and methods for implanting them
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US8062359B2 (en) * 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
EP2582172A1 (en) 2005-04-19 2013-04-17 Qualcomm Incorporated Connection failure reporting in wireless communcation systems
WO2006113906A1 (en) 2005-04-20 2006-10-26 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US20060271172A1 (en) 2005-05-16 2006-11-30 Hassan Tehrani Minimally Invasive Aortic Valve Replacement
CN101180010B (en) * 2005-05-24 2010-12-01 爱德华兹生命科学公司 Rapid deployment prosthetic heart valve
WO2006130505A2 (en) 2005-05-27 2006-12-07 Arbor Surgical Technologies, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US7238200B2 (en) 2005-06-03 2007-07-03 Arbor Surgical Technologies, Inc. Apparatus and methods for making leaflets and valve prostheses including such leaflets
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20070162111A1 (en) 2005-07-06 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US20070016288A1 (en) 2005-07-13 2007-01-18 Gurskis Donnell W Two-piece percutaneous prosthetic heart valves and methods for making and using them
WO2007025028A1 (en) 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US20070067029A1 (en) 2005-09-16 2007-03-22 Shlomo Gabbay Support apparatus to facilitate implantation of cardiac prosthesis
US20070078510A1 (en) 2005-09-26 2007-04-05 Ryan Timothy R Prosthetic cardiac and venous valves
US20070129794A1 (en) 2005-10-05 2007-06-07 Fidel Realyvasquez Method and apparatus for prosthesis attachment using discrete elements
EP1951154B1 (en) 2005-10-26 2018-01-24 St. Jude Medical, Inc. Saddle-shaped mitral valve annuloplasty prostheses
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
CA2631662C (en) 2005-12-07 2014-08-05 Arbor Surgical Technologies, Inc. Connection systems for two piece prosthetic heart valve assemblies
US20070142907A1 (en) 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
EP2583640B1 (en) 2006-02-16 2022-06-22 Venus MedTech (HangZhou), Inc. Minimally invasive replacement heart valve
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
JP5102279B2 (en) 2006-03-10 2012-12-19 メドトロニック,インコーポレイテッド Artificial valve introducer, method for producing the same and method for using the same
WO2007112029A2 (en) 2006-03-23 2007-10-04 Edrich Health Technologies, Inc. Aortic valve replacement
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US7591848B2 (en) 2006-04-06 2009-09-22 Medtronic Vascular, Inc. Riveted stent valve for percutaneous use
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US20070239269A1 (en) 2006-04-07 2007-10-11 Medtronic Vascular, Inc. Stented Valve Having Dull Struts
US7727276B2 (en) 2006-04-14 2010-06-01 Machiraju Venkat R System and method for heart valve replacement
US20070244546A1 (en) 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
WO2007130880A1 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc Guide shields for multiple component prosthetic heart valve assemblies and apparatus and methods for using them
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US20080021546A1 (en) 2006-07-18 2008-01-24 Tim Patz System for deploying balloon-expandable heart valves
US8348996B2 (en) * 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US7534261B2 (en) 2006-10-02 2009-05-19 Edwards Lifesciences Corporation Sutureless heart valve attachment
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US20080208329A1 (en) 2006-10-20 2008-08-28 Gordon Bishop Handle mechanism to adjust a medical device
US9510943B2 (en) 2007-01-19 2016-12-06 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
EP1958598A1 (en) 2007-02-16 2008-08-20 Universität Zürich Growable tubular support implant
EP2129333B1 (en) 2007-02-16 2019-04-03 Medtronic, Inc Replacement prosthetic heart valves
US20080208327A1 (en) 2007-02-27 2008-08-28 Rowe Stanton J Method and apparatus for replacing a prosthetic valve
US8147504B2 (en) 2007-05-05 2012-04-03 Medtronic, Inc. Apparatus and methods for delivering fasteners during valve replacement
EP2185105A4 (en) 2007-08-10 2011-03-09 Micardia Corp Adjustable annuloplasty ring and activation system
US20090093876A1 (en) 2007-08-31 2009-04-09 Edwards Lifesciences Corporation Recoil inhibitor for prosthetic valve
US20080114452A1 (en) 2007-11-14 2008-05-15 Shlomo Gabbay Prosthesis exhibiting post-implantation size change
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US20090192602A1 (en) 2008-01-25 2009-07-30 Medtronic, Inc. Deformable Sizer and Holder Devices for Minimally Invasive Cardiac Surgery
US7993395B2 (en) 2008-01-25 2011-08-09 Medtronic, Inc. Set of annuloplasty devices with varying anterior-posterior ratios and related methods
EP3005984A1 (en) 2008-02-28 2016-04-13 Medtronic Inc. Prosthetic heart valve systems
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
EP2293740B1 (en) 2008-06-05 2014-08-13 Medtronic, Inc. Connection systems for two piece prosthetic heart valve assemblies and methods for making and using them
EP2334261B1 (en) 2008-07-21 2021-01-13 Jenesis Surgical, LLC Endoluminal support apparatus and method of fabricating it
US8287591B2 (en) 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
EP4321134A2 (en) * 2008-11-21 2024-02-14 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis and method
US8308798B2 (en) * 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US9034034B2 (en) * 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
AU2010266210B2 (en) 2009-07-02 2015-01-22 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US20110022165A1 (en) 2009-07-23 2011-01-27 Edwards Lifesciences Corporation Introducer for prosthetic heart valve
US8869982B2 (en) 2009-12-18 2014-10-28 Edwards Lifesciences Corporation Prosthetic heart valve packaging and deployment system
WO2011111047A2 (en) * 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
WO2011143238A2 (en) * 2010-05-10 2011-11-17 Edwards Lifesciences Corporation Prosthetic heart valve
EP2608742B1 (en) * 2010-08-23 2017-07-12 Edwards Lifesciences Corporation Color-coded prosthetic valve system
AU2011295854B2 (en) * 2010-09-01 2016-07-21 Mvalve Technologies Ltd. Cardiac valve support structure
US9370418B2 (en) * 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
SG11201504768QA (en) * 2012-12-31 2015-07-30 Edwards Lifesciences Corp Surgical heart valves adapted for post implant expansion
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
WO2017004369A1 (en) * 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
WO2017004374A1 (en) * 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Integrated hybrid heart valves
AU2018203053B2 (en) * 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143386A1 (en) * 2001-03-29 2002-10-03 Davila Luis A. Radiopacity intraluminal medical device
US20090192591A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Markers for Prosthetic Heart Valves
US20100331972A1 (en) 2009-06-26 2010-12-30 Edwards Lifesciences Corporation Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods
US8696742B2 (en) * 2009-06-26 2014-04-15 Edwards Lifesciences Corporation Unitary quick-connect prosthetic heart valve deployment methods
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
WO2012047644A2 (en) * 2010-09-27 2012-04-12 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
WO2013096854A2 (en) * 2011-12-23 2013-06-27 Abiomed, Inc. Heart valve prosthesis with open stent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020160141A1 (en) * 2019-01-30 2020-08-06 Edwards Lifesciences Corporation Heart valve sealing assemblies
WO2022084313A1 (en) * 2020-10-22 2022-04-28 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Textile-functionalized, implantable valve prostheses

Also Published As

Publication number Publication date
US20170000604A1 (en) 2017-01-05
US11654020B2 (en) 2023-05-23
CR20170597A (en) 2018-04-20
CN107920894B (en) 2020-04-28
EP3316823B1 (en) 2020-04-08
US10456246B2 (en) 2019-10-29
CA2990733C (en) 2023-07-18
CA2990733A1 (en) 2017-01-05
CN107920894A (en) 2018-04-17
EP3316823A4 (en) 2019-03-13
US20200060815A1 (en) 2020-02-27
EP3316823A1 (en) 2018-05-09
US20230285145A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US11654020B2 (en) Hybrid heart valves
US11690714B2 (en) Hybrid heart valves adapted for post-implant expansion
US11207178B2 (en) Collapsible-expandable heart valves
JP6679558B2 (en) Valve replacement device
EP1883375B1 (en) Rapid deployment prosthetic heart valve
EP3046512B1 (en) Heart valves with increased effective orifice area
EP2282700B1 (en) Stented heart valve devices
EP2568924B1 (en) Prosthetic heart valve
EP3541327B1 (en) Prosthetic heart valve having leaflet inflow below frame
US20160361160A1 (en) Bowed runners and corresponding valve assemblies for paravalvular leak protection
EP3141219A1 (en) Stented heart valve devices
US20230218390A1 (en) A prosthetic heart valve with improved sealing means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2990733

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: CR2017-000597

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 11201710851S

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016818788

Country of ref document: EP