WO2017002773A1 - Knocking determination device and knocking determination method - Google Patents

Knocking determination device and knocking determination method Download PDF

Info

Publication number
WO2017002773A1
WO2017002773A1 PCT/JP2016/069058 JP2016069058W WO2017002773A1 WO 2017002773 A1 WO2017002773 A1 WO 2017002773A1 JP 2016069058 W JP2016069058 W JP 2016069058W WO 2017002773 A1 WO2017002773 A1 WO 2017002773A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
determination
knocking
target
signals
Prior art date
Application number
PCT/JP2016/069058
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 笠原
政祥 大▲高▼
優 志村
克行 末吉
太一 池田
莉紗 ▲高▼橋
道夫 村瀬
志強 翁
Original Assignee
株式会社小野測器
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015129604A external-priority patent/JP6420213B2/en
Priority claimed from JP2015167261A external-priority patent/JP6542073B2/en
Application filed by 株式会社小野測器 filed Critical 株式会社小野測器
Publication of WO2017002773A1 publication Critical patent/WO2017002773A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines

Definitions

  • the present invention relates to a knocking determination device that determines knocking that occurs in an internal combustion engine, and a knocking determination method.
  • the ignition timing in an internal combustion engine such as a gasoline engine is advanced as much as possible within a range of crank angles where knocking does not occur, in order to improve output torque. Therefore, in the process of adapting the ignition timing to the crank angle in the process of designing or adjusting the engine, it is determined by the knocking determination device whether knocking is occurring or not.
  • An example of such a knocking determination device is described in Patent Document 1.
  • the knocking determination device described in Patent Document 1 calculates a cross-correlation value between an output signal from a pressure sensor that detects an in-cylinder pressure and an output signal from a microphone that detects a sound emitted by an engine, and knocks the cross-correlation value. We handle as strength of.
  • the knocking determination device described in Patent Document 1 it is possible to determine the presence or absence of knocking without the person separately hearing the knocking sound.
  • the magnitude of the knocking noise and the background noise which differ depending on the operating conditions of the internal combustion engine such as the change in rotational speed, lowers the determination accuracy as to whether knocking occurs or not. There is a fear. Therefore, it is desirable for the above-described knocking determination device to be able to suitably perform knocking determination under various conditions.
  • An object of the present invention is to provide a knocking determination device and a knocking determination method capable of suitably performing a knocking determination under various conditions.
  • a knocking determination device that solves the above problems determines the presence or absence of knocking on the basis of an acquisition signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, and selects a determination signal for determining the presence or absence of knocking from the acquisition signal.
  • a target signal selection unit for selecting a plurality of target signals based on a condition determined from the acquired signal based on the relationship with the determination signal, and calculating values based on the spectra of the plurality of target signals
  • a second calculation unit that calculates a value based on the spectrum of the determination signal; and a determination unit that determines whether the determination signal is a signal indicating knocking, the determination unit Estimating statistical parameters from values based on the spectra of the plurality of target signals, and using the statistical parameters to estimate values based on the spectra of the respective target signals Normalize with multi-dimensional variations of values to obtain normalized values, and using the statistical parameters, normalize values based on the spectrum of the determination signal with multi-dimensional variations to obtain normalized values, It is determined that the determination signal is a signal indicating knocking based on the fact that the degree of divergence between a set of normalized values for a plurality of target signals and the normalized value of the determination signal is large.
  • a knocking determination device that solves the above problems determines the presence or absence of knocking on the basis of an acquisition signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, and selects a determination signal for determining the presence or absence of knocking from the acquisition signal.
  • a target signal selector for selecting a target signal based on a condition determined from the acquired signal in relation to the determination signal; and a calculator for calculating a value based on a spectrum of the determination signal;
  • a determination unit configured to determine whether the determination signal is a signal indicating knocking; and an update unit configured to update a statistical parameter based on a value based on a spectrum of the target signal, the determination unit including the statistic A value based on the spectrum of the determination signal is normalized with variations in multiple dimensions using parameters to obtain a normalized value, and a predetermined determination value Configured to determine that the determination signal based on the degree of divergence between the values after the normalization is large is a signal indicating the knocking.
  • the knocking determination method for solving the above problems is executed by a knocking determination device that determines the presence or absence of knocking based on an acquired signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, and the knocking determination device determines from the acquired signal Selecting a determination signal for determining the presence or absence of knocking, selecting the plurality of target signals from the acquired signal based on a condition determined in relation to the determination signal, the knocking determination device, and the knocking determination device.
  • the determination apparatus calculates values based on the spectra of the plurality of target signals, the knocking determination apparatus calculates values based on the spectrum of the determination signal, and the knocking determination apparatus determines the determination signal.
  • the determining comprising: Estimating a statistical parameter from values based on the spectra of a plurality of target signals, normalizing the values based on the spectra of the respective target signals with variations in the same multidimensional value using the statistical parameters and calculating the normalized values Obtaining, using the statistical parameter, normalizing the value based on the spectrum of the determination signal with variations in multiple dimensions to obtain a normalized value, and the normalized value of the plurality of target signals It includes determining that the determination signal is a signal indicating knocking based on the fact that the degree of divergence between the set and the normalized value of the determination signal is large.
  • the block diagram which shows an example of a connection aspect with various apparatuses when a knocking determination apparatus measures knocking of an engine about 1st Embodiment which actualized the knocking determination apparatus.
  • the block diagram which shows schematic structure of the knocking determination apparatus of embodiment of FIG.
  • the schematic diagram shown about the outline of the acquisition signal processed by the knocking determination apparatus of embodiment of FIG. 1, an object signal, and the determination signal.
  • the flowchart which shows each processing process in order of implementation about the data collection process which the knocking determination apparatus of embodiment of FIG. 1 performs.
  • the flowchart which shows each processing process in order of implementation about the determination value calculation process which the knocking determination apparatus of embodiment of FIG. 1 performs.
  • FIG. 10 is a schematic view showing an outline of a determination signal to be processed by the knocking determination apparatus of the embodiment of FIG.
  • FIG. 20 is a schematic view showing an outline of update of information performed by the knocking determination device of the embodiment of FIG. 19; The flowchart which shows each processing process in order of implementation about the update process of the statistical parameter which the knocking determination apparatus of embodiment of FIG.
  • FIG. 23 is a schematic view showing an outline of an acquisition signal, an object signal, a determination signal, and a rejection signal processed by the knocking determination device of the embodiment of FIG.
  • (A) is a figure which shows typically the relationship of a target signal and a determination signal about other embodiment of a knocking determination apparatus, Comprising: The figure which shows about the case where a target signal is temporally after a determination signal, b) is a figure which shows typically the relationship of a target signal and a determination signal about the further another embodiment of a knocking determination apparatus, and is a figure shown about the case where a target signal has time back and front with respect to a determination signal.
  • the block diagram which shows schematic structure which acquires the signal which shows the in-pipe pressure of an engine, and the physical quantity of acceleration about the further another embodiment which materialized the knocking determination apparatus.
  • the block diagram which shows schematic structure of a knocking determination apparatus about further another embodiment which materialized the knocking determination apparatus.
  • FIGS. 1 to 8 a first embodiment of the knocking determination device and the knocking determination method will be described with reference to FIGS. 1 to 8.
  • a test such as adjustment of the advance amount of ignition timing or a confirmation test of the adjusted ignition timing is performed.
  • a knocking determination device is used in these tests of ignition timing, and the knocking determination method is implemented by the knocking determination device.
  • the engine 1 to be tested is mounted on a vehicle 3.
  • the engine 1 of test object may be used in the state which is not mounted in the vehicle 3, for example, a single state.
  • An engine ECU 2 that controls driving of the engine 1 is connected to the engine 1.
  • the engine ECU 2 is an engine control unit, and includes a CPU, a ROM, a RAM, other storage devices, and the like.
  • the engine ECU 2 controls the drive of the engine 1 while acquiring various information necessary for the drive control of the engine 1 from the outside of the engine ECU 2 by performing arithmetic processing on programs stored in the ROM and other storage devices by the CPU. .
  • the engine ECU 2 has, as an operating condition under which the engine 1 is in test operation, a normal operating condition under which knocking does not occur in the engine 1 and a test operating condition under which the engine 1 is operating.
  • the engine 1 is operated under test operation conditions.
  • knocking is a phenomenon in which a pressure fluctuation (shock wave) caused by abnormal combustion generated in a cylinder of the engine 1 is amplified by the natural frequency of the cylinder and a large vibration occurs in the engine 1. That is, vibration based on pressure fluctuation generated at the time of fuel combustion in the cylinder occurs in the engine 1, and this vibration can be acquired as a physical quantity.
  • a sound pressure sensor 4 is installed near the engine 1.
  • the sound pressure sensor 4 detects a sound generated from the engine 1 and outputs a sound pressure signal based on the detected sound to the data acquisition device 5. More specifically, the sound pressure sensor 4 detects a sound pressure which is an example of a physical quantity based on a pressure fluctuation generated in the engine 1 and generates a sound pressure signal indicating the magnitude of the detected sound pressure. Therefore, when the engine 1 is not knocking, the sound pressure signal output from the sound pressure sensor 4 does not include the sound generated based on the knocking. On the other hand, when knocking is occurring in the engine 1, the sound pressure signal output from the sound pressure sensor 4 is a sound generated based on the knocking, and the sound having a correlation with the knocking is included.
  • the engine ECU 2 outputs angle information indicating the current rotation angle of the engine 1 to the data acquisition device 5.
  • the angle information includes, for example, a rotation pulse and a crank angle pulse.
  • the rotation pulse is a signal that is output at an angle at which the rotation angle of the crankshaft is defined as the origin, and for example, one pulse is output each time the crankshaft rotates once.
  • the crank angle pulse is a signal that is output each time the rotation angle of the crankshaft advances by a unit angle, and for example, when one pulse is output every one degree, four steps of suction, compression, combustion and exhaust are In a four-stroke engine, which is a cycle, 720 pulses are output during two rotations of the crankshaft during one cycle.
  • the angle from the origin sensor that detects the origin of the rotational angle of the crankshaft without passing through the engine ECU 2 or the angle sensor that detects the rotational angle of the crankshaft Information may be output to the data collection device 5.
  • the data acquisition device 5 receives the sound pressure signal from the sound pressure sensor 4 and performs A / D conversion. Further, the data acquisition device 5 acquires current angle information from the engine ECU 2 at the timing when the sound pressure signal is input. Then, the data acquisition device 5 acquires a sound pressure signal for one cycle of the engine 1 based on the angle information, and uses this as an acquisition signal. Therefore, the data acquisition device 5 generates 1500 acquisition signals per minute if the rotational speed is 3000 r / min and the number corresponds to the rotational speed of the engine 1 per unit time. In addition, angular information acquired together with each sound pressure signal is associated with some or all of the acquired signals. Then, the data acquisition device 5 outputs the acquisition signal associated with the angle information to the knocking determination device 10. Note that the data collection device 5 may temporarily hold the generated acquisition signal or temporarily store it, and then output it to the knocking determination device 10. In addition, the data collection device 5 may associate time information with the acquired signal.
  • the data collection device 5 As shown in FIG. 3, assuming that “unit time / rotational speed of engine 1” is a sampling interval d, the data collection device 5 generates “predetermined period / sampling interval d” number of acquisition signals in a predetermined period. Do. For example, when the number of data required for the knocking determination process to be performed later is m, the predetermined period required for the data collection device 5 to generate the required number m of data is “sampling interval d ⁇ required number m”. It is calculated.
  • the knocking determination device 10 receives an acquisition signal and angle information from the data acquisition device 5.
  • the knocking determination device 10 executes an operation for determining whether the determination signal is a signal indicating knocking or not based on the target signal selected from the acquisition signal and the determination signal selected from the acquisition signal, and the calculation result Is output to the monitor 6 or the like.
  • the knocking determination device 10 is configured of a CPU, a ROM, a RAM, other storage devices, and the like.
  • the knocking determination device 10 is a processor or processing circuit that performs arithmetic processing related to knocking determination processing by performing arithmetic processing of a program stored in a ROM or a storage device with a CPU.
  • the knocking determination device 10 may be a personal computer (PC) or the like having a program for executing the knocking detection method.
  • the knocking determination device 10 acquires an acquisition signal output from the data acquisition device 5 and angle information associated with the acquisition signal.
  • the acquired signal corresponds to a physical quantity based on pressure fluctuation generated in each cylinder of the engine 1 per cycle.
  • the acquired signal includes a spectrum (frequency component) in a partial section or a whole section in one cycle.
  • the knocking noise is mainly included in the section including the ignition timing in one cycle, and the knocking noise appears as a feature amount in the spectrum.
  • the knocking determination device 10 acquires an acquisition signal including a sound pressure signal for one cycle of the engine 1 from the data acquisition device 5 at each sampling interval d, and holds the acquired signal. Further, the knocking determination device 10 determines the latest acquired signal as a determination signal for performing the knocking determination. In response to the determination of the determination signal, the knocking determination device 10 selects, as target signals, the necessary number m of acquisition signals acquired earlier than the determination signal and starting with signals that are closer in time to the determination signal.
  • knocking determination device 10 uses a plurality of target signals from “immediately before signal” to “oldest signal” as a reference for comparison, compares this with the determination signal, and determines whether the determination signal is a signal indicating knocking or not Determine
  • the knocking determination device 10 includes a storage unit 20 that holds acquisition signals and the like, a management unit 60 that causes the storage unit 20 to hold signals necessary for knocking determination processing, and a knocking determination process from the storage unit 20. And a signal selection unit 30 for selecting a signal necessary for the In addition, knocking determination device 10 determines whether spectrum calculation unit 40 that calculates the spectrum of the acquired signal, bispectrum calculation unit 41 that calculates the bispectrum of the acquired signal, and whether the determination signal is a signal that indicates knocking. And a determination unit 50.
  • the storage unit 20 is configured by part or all of a storage device constituting the knocking determination device 10, and can store and delete acquisition signals, angle information, and the like.
  • the storage unit 20 includes an acquisition signal area 201 which is a storage area related to an acquisition signal input by the knocking determination device 10 and a target signal area 202 which is a storage area related to a plurality of target signals used as comparison targets in knocking determination. It is provided. Further, the storage unit 20 is used as a determination signal area 203 which is a storage area related to a determination signal for which it is determined whether or not it is a signal indicating knocking, and a reference for determining whether it is a signal indicating knocking or not.
  • a determination value area 204 which is a storage area related to the determination value, is provided.
  • the acquisition signal area 201 holds the acquisition signal input by the knocking determination device 10.
  • the target signal area 202 holds information on a plurality of target signals selected from the acquired signals. For example, the number of target signals held in the target signal region 202 is the required number m or more required for the knocking determination process.
  • the determination signal area 203 holds information on the determination signal selected from the acquired signal for performing the knocking determination.
  • the determination value area 204 holds information on a determination value used to determine the presence or absence of knocking.
  • the management unit 60 associates the time information with the acquisition signal input by the knocking determination device 10, and stores the time information in the storage unit 20.
  • the management unit 60 determines and processes addition or non-existence of an acquisition signal as a determination signal to a target signal, and a data organizing unit that arranges acquisition signals and the like stored in the storage unit 20. And 63.
  • the learning addition unit 62 does not add an acquisition signal corresponding to the determination signal to the target signal. That is, the determination signal is not included in the target signal.
  • the determination unit 50 determines that the signal is not a signal indicating knocking, an acquisition signal corresponding to the determination signal is added to the target signal. That is, the determination signal is included in the target signal.
  • the learning addition unit 62 sets the latest acquired signal as the target signal when the acquired signal is newly input even if the latest acquired signal is not selected as the determination signal, for example, before the knocking determination process is started. I will add it. Therefore, among the acquisition signals prior to the determination signal, an acquisition signal that is closer in time to the determination signal is prepared as the target signal.
  • the learning addition unit 62 causes the target signal region 202 to hold the target signal in the required number m or more required for the knocking determination process.
  • the number of target signals to be held may not be set by the number, but may be set by the sampling interval d and the period.
  • the data organizing unit 63 organizes the acquired signal, the target signal, the determination signal, and the determination value stored in the storage unit 20 according to the defined conditions. For example, for the acquisition signal, the target signal, and the determination signal, the old acquisition signal, the target signal, or the determination signal exceeding the holding period is deleted. Also, for example, for the acquisition signal, the target signal, and the determination signal, the old acquisition signal, the target signal, or the determination signal exceeding the number of holdings is deleted. Furthermore, for example, when a new determination value is stored in the storage unit 20, the old determination value is deleted.
  • the signal selection unit 30 selects the target signal or the determination signal from the acquired signal based on the selection condition 31 for selecting the target signal and the determination signal.
  • the selection condition 31 includes a condition for selecting a determination signal and a condition for selecting a target signal.
  • the signal selection unit 30 selects the latest signal of the acquired signals as a determination signal whose presence or absence of knocking is determined based on the condition for selecting the determination signal (determination signal selection step). Further, based on the condition for selecting the target signal of the selection condition 31, the signal selection unit 30 corresponds to an acquisition signal closer to the determination signal in time among the acquisition signals prior to the determination signal from the target signal of the storage unit 20.
  • the necessary number of signals are selected (target signal selection step). The necessary number is set, for example, in order to appropriately perform the knocking determination process. This required number is, for example, the number required to calculate the Mahalanobis distance.
  • a condition for acquiring the target signal from within a predetermined time range prior to the determination signal is also set. Normally, if the determination signal is closer in time, the operating condition of the engine 1 is less likely to change from the operating condition when the determination signal is obtained, and conversely, the operating condition of the engine 1 increases in time Is more likely to change from the operating condition when the determination signal is obtained. Therefore, a range in which the possibility of change from the operating condition is suppressed to a low level is set as a predetermined time range.
  • the determination signal selection unit includes the signal selection unit 30, and the target signal selection unit includes the signal selection unit 30 and the learning addition unit 62 of the management unit 60.
  • the signal selection unit 30 determines an angle range in which knocking may occur from the target signal or the determination signal, and within the determined angle range (cut-out angle range) of the sound pressure signal included in the target signal or the determination signal.
  • a signal cutting out unit 32 for cutting out a sound pressure signal is provided.
  • the signal cut-out unit 32 specifies and cuts out the determined cut-out angle range based on the fact that the length of the target signal or the determination signal is one cycle.
  • the cutting angle range is defined as a sound pressure signal within an angle range of about 90 degrees from the vicinity of an ignition position or TDC (Top Dead Center) specified from the start position of the target signal or the determination signal.
  • TDC Top Dead Center
  • the spectrum calculation unit 40 performs discrete Fourier transform on the target signal or the determination signal extracted by the signal extraction unit 32 in the time frequency domain to calculate a frequency component (spectrum).
  • the discrete Fourier transform is performed, for example, by fast Fourier transform (FFT) that calculates discrete Fourier transform at high speed.
  • FFT fast Fourier transform
  • the bispectrum calculation unit 41 calculates a bispectrum as a value based on a spectrum from the frequency component calculated by the spectrum calculation unit 40.
  • the sound pressure signal cut out by the signal cutting out unit 32 at time t is x (t).
  • a Fourier coefficient X (f) having the frequency f as a variable is calculated.
  • the bispectrum B (f 1 , f 2 ) based on the Fourier coefficient X (f) is expressed by the following equation (1).
  • the bispectrum B (f 1 , f 2 ) is the cube of the spectrum.
  • f 1 and f 2 represent frequencies, and * represents complex conjugate.
  • the first calculation unit and the second calculation unit are configured by the spectrum calculation unit 40 and the bispectrum calculation unit 41. Further, each of the first calculation step and the second calculation step is composed of a spectrum calculation process and a bispectrum calculation process.
  • the determination unit 50 determines whether the determination signal is a signal indicating knocking.
  • Knocking is a kind of resonance phenomenon in a cylinder, and when knocking occurs, a shock wave is generated in the cylinder, and the vibration or sound generated from the engine due to the shock wave is a plurality of natural frequencies of the cylinder.
  • the components of (resonance frequency) and their harmonic components (especially double frequency components) are included.
  • the natural frequency (resonance frequency) f p, q of the cylinder of the engine is expressed by the following equation (2).
  • C is the velocity of sound
  • D is the bore diameter
  • p and q are vibration modes
  • ⁇ p and q are constants in vibration mode (p, q).
  • P 1,0 1.841.
  • the entire frequency region of the acquired signal may be targeted.
  • knocking occurs according to the natural frequency of the engine cylinder of each vibration mode determined according to the engine 1, a sound resulting from knocking occurs in the natural frequency or its harmonics. Therefore, the presence or absence of knocking is appropriately determined by monitoring the natural frequency of each vibration mode and the periphery thereof and the harmonics thereof.
  • the range of the spectrum or bispectrum is narrowed down to a predetermined frequency range including the natural frequency of the engine of each vibration mode determined according to the engine 1 to improve comparison accuracy or calculation load.
  • Mitigation is planned. For example, for one acquired signal, a spectrum or five vibration modes of (1, 0), (2, 0), (0, 1), (3, 0), and (1, 1) are taken into consideration.
  • a spectrum or five vibration modes of (1, 0), (2, 0), (0, 1), (3, 0), and (1, 1) are taken into consideration.
  • the determination unit 50 includes a statistical parameter calculation unit 51 that calculates an average and a variance-covariance matrix of a plurality of target signals, and a normalization unit 52 that normalizes the target signal and the determination signal using the calculated statistical parameters. .
  • the determination unit 50 calculates a determination value for knocking determination based on the normalized target signal, and a comparison unit that compares the determination value for knocking determination with the normalized determination signal. And 54.
  • the determination unit 50 normalizes the bispectrum B (f 1 , f 2 ) calculated by the bispectrum calculation unit 41.
  • the statistical parameter calculation unit 51 assumes that the bispectral variation of all target signals is a multidimensional probability distribution, and estimates the average and the variance covariance due to the bispectral variations of all target signals as statistical parameters ( calculate.
  • the statistical parameter calculation unit 51 calculates statistical parameters from the frequency range in which the feature amount (frequency component of the bispectrum) of each vibration mode in the bispectrum occurs. For example, the statistical parameter calculation unit 51 calculates an absolute value from the feature amount of each vibration mode calculated for each of the plurality of target signals, and calculates an average value and a variance-covariance matrix for the plurality of target signals.
  • the variance-covariance matrix is a matrix in which covariances, which are average values of products of deviations from the averages of the frequency components of the bispectrum, are arranged.
  • the normalization unit 52 calculates the Mahalanobis distance for the target signal and the bispectrum of the determination signal.
  • normalization is performed in multiple dimensions by calculating the Mahalanobis distance. Since the variance-covariance matrix used to calculate the Mahalanobis distance is a matrix in which covariances, which are the average value of products of deviations from the average of each frequency component of the bispectrum, are arranged, calculating the Mahalanobis distance is multidimensional. Normalization is performed at.
  • the dispersion of the intensity of each frequency of the spectrum of the target signal or judgment signal is compared with the dispersion (multidimensional) of the intensity of each frequency contained in the spectrum of the signal according to the dispersion-covariance matrix used to calculate the Mahalanobis distance And will be normalized.
  • the normalization unit 52 calculates the Mahalanobis distance using the average value and the variance-covariance matrix of a plurality of target signals for all of the bispectrum of the plurality of target signals. Thereby, the Mahalanobis distance for all of the bispectrum of a plurality of target signals is calculated. That is, variation in the intensity of the spectrum of the target signal with respect to the statistical parameter is calculated. Then, based on these calculated Mahalanobis distances, a determination value used for knocking determination is calculated.
  • the normalization unit 52 calculates the Mahalanobis distance for the bispectrum of the determination signal using an average value and a variance-covariance matrix for a plurality of target signals.
  • a value obtained by normalizing the frequency range included in the spectrum of the target signal or the determination signal can be obtained as a value obtained by normalizing with variations in multiple dimensions.
  • the frequency range included is normalized, there is a possibility that the knocking noise included in the determination signal may be extracted even if the vibration mode is not specified or slightly deviated. Therefore, normalization improves the possibility of determining whether the determination signal is a signal indicating knocking.
  • the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the normalized set obtained from the bispectrum of the target signal and the normalized value obtained from the bispectrum of the determination signal.
  • the normalized set obtained from the bispectrum of a plurality of target signals is a set of Mahalanobis distances calculated for the bispectrum of each target signal.
  • the normalized value obtained from the bispectrum of the determination signal is the value of the Mahalanobis distance calculated for the bispectrum of the determination signal. That is, the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the set of Mahalanobis distances based on the plurality of target signals and the value of the Mahalanobis distance based on the determination signal.
  • the determination value calculation unit 53 calculates a determination value so as to have a margin for each of the Mahalanobis distances obtained for a plurality of target signals. For example, the determination value is determined as a value obtained by adding a predetermined value to an average value or a maximum value of a set of Mahalanobis distances, or a value obtained by multiplying a predetermined magnification, and a margin is calculated for the calculated Mahalanobis distance. Have. The determination value thus calculated is used to determine whether the determination signal is a signal indicating knocking.
  • the comparison unit 54 compares the Mahalanobis distance based on the determination signal with the determination value calculated by the determination value calculation unit 53 to determine whether the determination signal is a signal indicating knocking. If the value of the Mahalanobis distance based on the determination signal is larger than the determination value, the comparison unit 54 determines that the degree of deviation from the set of Mahalanobis distances based on each target signal is high, and the determination signal is a signal indicating knocking Determine Conversely, if the value of the Mahalanobis distance based on the determination signal is equal to or less than the determination value, the comparison unit 54 determines that the degree of deviation from the set of Mahalanobis distances based on each target signal is small, and the determination signal indicates knocking. Determine that it is not.
  • the knocking determination process exemplifies a case where the operating condition of the engine 1 is maintained constant.
  • Operating conditions include conditions related to engine control such as changes in rotational speed of the engine 1 and engine mechanism (for example, valve opening / closing timing), ignition timing, EGR (Exhaust Gas Recirculation) amount changes, and external conditions such as load conditions. included.
  • engine control such as changes in rotational speed of the engine 1 and engine mechanism (for example, valve opening / closing timing), ignition timing, EGR (Exhaust Gas Recirculation) amount changes, and external conditions such as load conditions.
  • this embodiment can be used also when driving
  • the data acquisition process is performed in response to the acquisition signal being output from the data acquisition device 5.
  • the knocking determination device 10 inputs the acquired acquisition signal (step S 10), and the management unit 60 inputs the time to the acquisition signal.
  • the acquired signal area 201 of the storage unit 20 is stored so as to be in time order (step S12).
  • the time to be associated here may be any one that can specify the relative order with respect to other acquired signals and the relative time difference.
  • the acquisition signal may be in a mode in which the time, a counter value, a code linked to the time, or the like may be associated or acquisition information may be arranged at a predetermined position of a list having an area for each sampling interval d. It is also good.
  • the management unit 60 adds the previously stored acquisition signal as the immediately preceding target signal.
  • the data organizing unit 63 of the knocking determination device 10 organizes the data of the storage unit 20 (step S13), and ends the data collection process. Data organization deletes the oldest acquired signal in time when the capacity (number) of the acquired signal, the target signal, and the determination signal stored in the storage unit 20 exceeds a predetermined capacity (maximum number) respectively. Perform processing etc.
  • the determination value calculation process by the knocking determination device 10 is performed in response to selection of the determination signal.
  • the knocking determination device 10 acquires the latest acquisition signal by selecting it as a determination signal by the signal selection unit 30 (step S20). The time is acquired (step S21). The time of the determination signal is obtained from the time associated with the determination signal. Subsequently, the knocking determination device 10 selects a plurality of target signals that match the selection condition based on the relationship with the time of the determination signal in the signal selection unit 30 (step S22).
  • knocking determination device 10 calculates the spectrum of each target signal in spectrum calculation unit 40 (step S23). The calculated spectrum is held in the storage unit 20, for example, the target signal area 202. Further, the knocking determination device 10 calculates the bispectrum from the spectrum of each target signal in the bispectrum calculation unit 41 (step S24). The bispectrum calculation unit 41 calculates the bispectrum of the target signal from the spectrum of each target signal held in the storage unit 20, and holds the calculated bispectrum of each target signal in the target signal region 202 of the storage unit 20. .
  • the statistical parameter calculation unit 51 extracts mode-specific feature quantities from the bispectrum of each target signal (step S25). That is, the frequency range corresponding to the vibration mode of the cylinder of the engine 1 is extracted from the bispectrum of each target signal.
  • the knocking determination device 10 calculates statistical parameters by the statistical parameter calculation unit 51 (step S26).
  • the statistical parameter includes an average ( ⁇ ) calculated from bispectrum of a plurality of target signals and a variance-covariance matrix ( ⁇ ), and the mean and the variance-covariance matrix are calculated for each vibration mode.
  • the calculated statistical parameters are stored in the determination value area 204 of the storage unit 20.
  • the normalization unit 52 normalizes each target signal based on the statistical parameters calculated in step S26 (step S27). More specifically, the Mahalanobis distance of each target signal is normalized by calculation for each vibration mode.
  • the determination value calculation unit 53 determines the determination value for each mode (step S28), and ends the determination value calculation process.
  • the Mahalanobis distance calculated based on this statistical parameter is an index indicating the similarity to a signal not indicating knocking. Therefore, the Mahalanobis distance of the signal not indicating knocking is obtained as a small value, and the Mahalanobis distance of the signal indicating knocking is obtained as a large value.
  • the Mahalanobis distance corresponds to the frequency range corresponding to the vibration mode, the probability that the increase of the value is caused by the loud sound caused by knocking becomes high. Therefore, it is possible to determine whether or not the determination signal is a signal indicating knocking by using the determination value for each vibration mode defined here.
  • determination processing determination step of knocking determination by knocking determination apparatus 10 will be described with reference to FIG.
  • This determination process is performed subsequent to the determination value calculation process.
  • knocking determination device 10 obtains the determination signal selected by signal selection unit 30 (step S30), and obtains the time of the determination signal (step S31). ).
  • the knocking determination device 10 calculates the spectrum of the determination signal by the spectrum calculation unit 40 (step S32). The calculated spectrum is held in the determination signal area 203 of the storage unit 20. Further, the knocking determination device 10 calculates the bispectrum from the spectrum of the determination signal in the bispectrum calculation unit 41 (step S33).
  • the bispectrum of the calculated determination signal is held in the determination signal area 203 of the storage unit 20.
  • the knocking determination device 10 extracts the mode-specific feature amount from the bispectrum of the determination signal in the normalization unit 52 (step S34). That is, the frequency range corresponding to the vibration mode is extracted from the bispectrum of the determination signal. Then, the knocking determination device 10 normalizes the determination signal in the normalization unit 52 using the statistical parameter calculated in the determination value calculation process (step S26) (step S35). More specifically, the mean ( ⁇ ) and the variance covariance matrix ( ⁇ ) are selected from the storage unit 20 for each vibration mode, and the Mahalanobis of the determination signal is selected based on the selected mean ( ⁇ ) and the variance covariance matrix ( ⁇ ).
  • the knocking determination device 10 obtains the determination value for each vibration mode from the storage unit 20 by the comparison unit 54 (step S36), and compares the Mahalanobis distance of the determination signal with the determination value for each mode by the comparison unit 54 (step S37). ). That is, the Mahalanobis distance of each vibration mode of the determination signal is compared with the determination value of the corresponding vibration mode. Then, if the Mahalanobis distance of the determination signal is less than the determination value of the compared vibration mode, it is determined that knocking has not occurred in the vibration mode, and conversely, if it is larger than the determination value of the compared vibration mode It is determined that knocking has occurred in the vibration mode.
  • knocking determination device 10 outputs the determination result (step S38), and ends the determination value calculation process.
  • the determination result to be output is, for example, whether or not knocking has occurred, and a vibration mode in which knocking has occurred or has not occurred. Thereby, the convenience concerning adjustment of the engine 1 is improved.
  • the knocking determination device 10 selects the input acquisition signal as the next determination signal.
  • the management unit 60 adds the determination signal so far to the target signal as the previous signal.
  • the management unit 60 counts the number of required signals more than m, for example, when one is added, the oldest target of the increased number of target signals. Remove the signal from the signal of interest. In this way, the required number m of target signals from the immediately preceding signal to the oldest signal are selected.
  • the time difference from the acquisition time of the latest signal to the acquisition time of the oldest signal is also maintained at “sampling period d ⁇ m necessary number”.
  • the management unit 60 adds the previously acquired acquisition signal to the target signal, and updates the target signal by removing the oldest signal of the target signal. Note that the update of the target signal may be performed in response to the new acquisition signal being input to the knocking determination device 10, even if a new determination signal is not selected.
  • the selected determination signal is a signal indicating knocking
  • This learning process is performed following the end of the knocking determination of the determination signal.
  • the management unit 60 of the knocking determination device 10 acquires the determination result of the determination signal (step S40), and determines whether the determination result is no knocking (step S41). If it is not determined that knocking has not occurred (NO in step S41), the learning addition unit 62 does not add the determination signal to the target signal (step S44). Then, the learning process is ended.
  • step S41 if it is determined that knocking is not present (YES in step S41), the learning addition unit 62 of the knocking determination device 10 adds the determination signal to the target signal (step S42). Then, the data organizing unit 63 of the knocking determination device 10 organizes data (step S43), and ends the learning process.
  • the acquisition signal corresponding to the determination signal determined to be a signal indicating knocking or not is a signal indicating knocking
  • the acquisition signal is not included in the target signal, so the signal indicating knocking is included.
  • the accuracy of the knocking determination can be further enhanced by comparing the determination signal with the target signal.
  • the target signal to be compared with the determination signal whose presence or absence of knocking is determined is selected based on the condition determined by the relationship with the determination signal (for example, the relationship in time or the operating condition). That is, by selecting based on the relationship with the determination signal, the target signal can be selected as one suitable for comparison with the determination signal. Thereby, knocking determination can be suitably performed under various conditions.
  • values based on the spectrum of each target signal are normalized with variations in multiple dimensions of the same value.
  • the above statistical parameters are used to normalize values based on the spectrum of the determination signal with variations in multiple dimensions to obtain normalized values.
  • the degree of divergence between the set of normalized values of the plurality of target signals and the normalized value of the determination signal is determined. That is, it is determined that the determination signal is a signal indicating knocking because the degree of deviation is large.
  • there is a Mahalanobis distance as an example of a value obtained by normalizing with variations in multiple dimensions.
  • the bispectrum in which the feature quantity at the frequency appears largely is used to determine whether the determination signal is a signal indicating knocking or not. Thereby, the presence or absence of knocking can be determined.
  • Knocking is a kind of resonance phenomenon in a cylinder. When knocking occurs, a shock wave is generated in the cylinder, and the vibration or sound emitted from the engine is a component of multiple natural frequencies (resonance frequencies) of the cylinder. And their harmonic components (especially double frequency components). Since the bispectrum is a feature that reflects the co-occurrence relation of frequency components, the possibility of extraction of knocking included in the spectrum is increased.
  • the determination accuracy of knocking can be improved by making the determination based on the natural frequency of the cylinder of the engine 1 where knocking appears in the determination of whether the determination signal is a signal indicating knocking or not.
  • the target signal is selected from the acquired signal acquired at a point close to the time when the determination signal is obtained. That is, an acquisition signal that is temporally distant from the acquisition time of the determination signal is not selected as the target signal.
  • an acquisition signal having a high possibility that the operating condition of the internal combustion engine does not change or the change is small because it is close in time to the acquisition time of the determination signal is selected as the target signal, and the knocking determination accuracy is improved. It is possible.
  • a predetermined number of target signals are selected from a plurality of acquired signals obtained within a predetermined period from the acquisition time of the determination signal. That is, by setting the time interval between the acquisition time of the determination signal and the acquisition time of the target signal within a predetermined period, the operating condition of the internal combustion engine when the determination signal and the target signal are respectively acquired does not change. Or, the change is likely to be small. It is possible to more appropriately determine whether the determination signal is a signal indicating knocking or not by comparing with the target signal.
  • the acquisition signal corresponding to the determination signal determined to indicate knocking is not included in the target signal in subsequent selection, the relative difference between the determination signal indicating knocking and the target signal is increased, and the target signal It is determined with higher accuracy whether the determination signal is a signal indicating knocking or not by the comparison of.
  • FIGS. 9 to 15 a second embodiment of the knocking determination device and the knocking determination method will be described with reference to FIGS. 9 to 15.
  • the knocking determination apparatus and the knocking determination method according to this embodiment are different from the first embodiment in that the knocking determination process is performed based on a target signal acquired in advance for each operating condition.
  • differences from the first embodiment will be mainly described.
  • the same reference numerals are given to the same configuration, and the description is omitted.
  • the knocking determination device 10 of the present embodiment shown in FIG. 9 performs the knocking determination process of the determination signal after preparing the prior signal in the data collection process for acquiring the prior signal.
  • the knocking determination device 10 holds a predetermined number of advance signals for each rotational speed. For example, the rotational speed is divided into 1000 to 5000 [r / min] every 100 [r / min], and the predetermined number of advance signals for each rotational speed is R 1000 to R 5000, respectively. Then, when the rotation speed of the determination signal is 3000 [r / min], a signal of 3000 [r / min] which is the same rotation speed as the prior signal is selected as the target signal.
  • the knocking determination device 10 shown in FIG. 9 obtains an acquisition signal, angle information, and various current operating conditions of the engine 1 from the data collection device 5.
  • the data acquisition device 5 associates the acquired information with the angle information and the current various operating conditions of the engine 1 output by the engine ECU 2 and outputs the information to the knocking determination device 10.
  • the data acquisition device 5 associates angle information and operating conditions with the sound pressure signal of part or all of the acquired signal.
  • the various operating conditions include conditions that affect the sound generated from the engine 1, for example, rotational speed, engine mechanism change (e.g., valve opening and closing timing), EGR amount change, operation mode, load condition, and the like.
  • the management unit 60 of the knocking determination device 10 includes a pre-addition unit 61, a learning processing unit 64, and a data organizing unit 65, and the storage unit 20 includes an a priori signal area 211 and a target signal area 212 for holding a prior signal. And are provided.
  • the knocking determination device 10 uses the prior signal held in the prior signal region 211 for the knocking determination process on the determination signal.
  • the pre-addition unit 61 is a data collection process performed in advance of the knocking determination process, in which acquisition signals acquired in advance from the engine 1 under each of the operating conditions operated under a plurality of operating conditions under the condition that knocking does not occur , And stored in the prior signal area 211.
  • the learning processing unit 64 adds the determination signal to the prior signal region 211 of the acquisition signal acquired in advance under the operating condition of the determination signal.
  • the data organizing unit 65 performs data organizing such as deleting each of the advance signal, the target signal, the determination signal, and the determination value based on a predetermined condition.
  • the prior signal area 211 holds the previously acquired prior signal as one or more prior signals classified for each driving condition.
  • the target signal area 212 holds the target signal selected from the prior signals that are the same as or similar to the operating conditions of the determination signal each time the determination signal is selected. Subsequently, the data collection process by the knocking determination device 10 will be described with reference to FIG.
  • the knocking determination device 10 acquires sound pressure signals and angle information of the engine 1 operated under a plurality of operating conditions in which the rotational speed is changed under normal operating conditions in which knocking does not occur during operation in preparation for determination. This acquisition takes place until prior signals of the type and number of operating conditions for which acquisition is required are obtained.
  • the operating condition to be changed is the rotational speed is exemplified, but the type of the operating condition to be changed may be other than the rotational speed.
  • the knocking determination device 10 sets an operating condition (rotational speed) of an acquisition signal to be acquired (step S50).
  • the operating condition (rotational speed) set by the knocking determination device 10 is shared by the engine ECU 2 so that the advance signal necessary for the knocking determination process can be appropriately acquired.
  • the knocking determination device 10 acquires the acquisition signal by the advance addition unit 61 (step S51), and acquires the operating condition (rotational speed) associated with the acquisition signal (step S52).
  • the knocking determination device 10 classifies the acquired signal according to the operating condition (rotational speed) by the preliminary adding unit 61 (step S53), and causes the preliminary signal area 211 to hold the signal as the preliminary signal for each operating condition (rotational speed) (step S54).
  • the advance addition unit 61 determines whether or not the acquisition signal is acquired under the same operating condition (step S55).
  • the prior signal of the set operating condition rotational speed
  • it is determined that acquisition is further necessary it is determined that acquisition is further necessary, and when the predetermined number is reached, it is determined that further acquisition is not necessary. Be done.
  • the knocking determination device 10 returns the process to step S51 and executes the subsequent steps.
  • knocking determination device 10 determines whether to change the operating condition (rotational speed) (step S56).
  • step S56 when there is an operating condition (rotational speed) for which the prior signal has not been acquired, it is determined that the operating condition (rotational speed) is changed, and there is no operating condition (rotational speed) for which the prior signal is not acquired. It is determined that the condition (rotational speed) is not changed.
  • step S56 when it is determined that the operating condition (rotational speed) is to be changed (YES in step S56), knocking determination device 10 returns the process to step S50, and no advance signal is acquired for the operating condition (rotational speed) Set the operating condition (rotational speed) and execute the subsequent steps.
  • step S57 when it is determined that the operating condition (rotational speed) is not changed (NO in step S56), a predetermined number of advance signals are held for each operating condition (rotational speed), and knocking determination device 10 performs data organization
  • step S57 ends the data collection process.
  • the knocking determination device 10 acquires an acquisition signal when the engine 1 is operated under the normal operation condition, for each rotational speed.
  • a predetermined number for example, R 1000
  • R1100 to R5000 are acquired and held in the prior signal area 211 as an a priori signal with the rotational speed as the operation condition.
  • a predetermined number of acquisition signals for example, R1100 to R5000, are acquired every 100 [r / min] up to a rotational speed of 1100 to 5000 [r / min], and the advance signal is used as a prior signal with the rotational speed as the operating condition.
  • the signal area 211 is held.
  • knocking determination device 10 acquires an acquisition signal when engine 1 is operated under the test operation condition, selects the acquired acquisition signal as a determination signal, and performs knocking determination on the selected determination signal. Do the processing.
  • determination value calculation processing by knocking determination device 10 will be described with reference to FIG. 12.
  • the determination value calculation process is performed each time selection of a determination signal is performed.
  • the signal selection unit 30 acquires the latest acquisition signal as a determination signal (step S60), and the operating condition of the determination signal (rotation The speed is acquired (step S61).
  • the operating condition (rotational speed) of the determination signal is obtained from the operating condition associated with the determination signal.
  • the knocking determination device 10 selects a plurality of target signals conforming to the selection condition 33 based on the relationship with the operation condition of the determination signal in the signal selection unit 30 (step S62). That is, a plurality of target signals that match the selection condition 33 which is the operating condition of the determination signal are selected.
  • the signal selecting unit 30 similarly has the rotational speed as the operating condition of 3000 [r / min] according to the selection condition 33.
  • the necessary number m of pre-signals are acquired, and these are set as a plurality of target signals.
  • the required number m of advance signals can not be acquired under the same operation condition as the determination signal, the advance signal under the same operation condition as the operation condition of the determination signal is also acquired.
  • the similar range is different by 100 [r / min] in the range (2900 to 3100 [r / min]
  • the preliminary signal is supplemented, and if it is not enough, a necessary number m of preliminary signals are acquired in a similar wider range of operating conditions.
  • knocking determination device 10 calculates the spectrum of each target signal by spectrum calculation unit 40 (step S23) and causes storage unit 20 to hold the spectrum, and bispectral calculation unit 41 makes each target The bispectrum is calculated from the spectrum of the signal (step S24) and stored in the storage unit 20.
  • the statistical parameter calculation unit 51 extracts the feature quantity classified by mode from the bispectrum of each target signal (step S25), and the statistical parameter calculation unit 51 calculates statistical parameters (step S26). Hold.
  • the normalization unit 52 normalizes each target signal (calculates the Mahalanobis distance) based on the calculated statistical parameters (step S27), and the determination value calculation unit 53 determines mode-specific determination values (step S28), The determination value calculation process ends.
  • step S70 determines whether the determination value calculation process is performed subsequent to the determination value calculation process.
  • step S71 determines whether the determination value calculation process is performed subsequent to the determination value calculation process. Since the determination process is performed subsequent to the determination value calculation process, the processes of steps S70 and S71 are replaced with the processes performed in step S60 and step S61 of the determination value calculation process. In addition, when there is no need to re-execute the determination value calculation process such as no change in the operating conditions, the determination process may be performed without performing the determination value calculation process.
  • step S60 and step S61 of the determination value calculation process since the process of step S60 and step S61 of the determination value calculation process is not performed, the process of step S70 and step S71 is performed in the determination process to acquire a determination signal. In addition, it is preferable to use the operating condition of the determination signal acquired in the determination process for determining whether the determination based on the target signal is appropriate.
  • knocking determination apparatus 10 calculates the spectrum of the determination signal by spectrum calculation unit 40 (step S 32) and causes storage unit 20 to hold the spectrum, and bispectrum calculation unit 41 calculates the spectrum of the determination signal
  • the bispectrum is calculated (step S33) and stored in the storage unit 20.
  • the normalization unit 52 extracts feature quantities classified by mode from the bispectrum of the determination signal (step S34), and the normalization unit 52 normalizes the determination signal using the statistical parameters calculated in the determination value calculation process (step S26). (Calculation of the Mahalanobis distance) is performed (step S35).
  • the comparison unit 54 acquires the determination value for each vibration mode from the storage unit 20 (step S36), and the comparison unit 54 compares the Mahalanobis distance of the determination signal with the determination value for each mode (step S37). Then, the determination result is output (step S38), and the determination value calculation process is ended.
  • the knocking determination device 10 adds a determination signal determined to be not a signal indicating knocking in the knocking determination process to the prior signal held in the prior signal area 211.
  • the learning processing unit 64 determines the determination signal of the operation condition (rotational speed) 3000 [r / min] determined not to be the signal indicating knocking by the determination unit 50 as the prior signal of the rotational speed 3000 [r / min]. Add as.
  • the learning processing unit 64 adds a determination signal of the operating condition (rotational speed) 3050 [r / min] determined not to be a signal indicating knocking by the determination unit 50 as a priori signal.
  • the rotational speed 3050 [r / min] is selected as the new operating condition (rotational speed). Is added, and the rotational speed 3050 [r / min] of this added operating condition (rotational speed) is added as a prior signal.
  • step S40 the knocking determination device 10 causes the learning processing unit 64 to obtain the determination result of the determination signal (step S40), and determines whether the determination result is no knocking (step S41). If it is not determined that knocking has not occurred (NO in step S41), the learning processing unit 64 does not add the determination signal to the prior signal (step S441). Then, the learning process is ended.
  • step S41 if it is determined that knocking is not present (YES in step S41), the knocking determination device 10 adds the determination signal to the advance signal in the learning processing unit 64 (step S421). Then, the knocking determination device 10 causes the data organizing unit 63 to organize data (step S431), and ends the learning process.
  • the learning process is expected to increase the accuracy of the target signal selected from the prior signals by increasing the number of prior signals for the operating conditions, and the determination signal to be compared with the selected target signal.
  • the determination accuracy of the knocking determination can be improved.
  • the effects described in (2) and (6) of the first embodiment in addition to the effects described in (2) and (6) of the first embodiment, the effects described below can be exhibited.
  • the target signal to be compared with the determination signal whose presence or absence of knocking is determined is selected based on the condition determined by the relationship with the determination signal (the relationship in the operating condition). That is, by selecting the target signal based on the relationship with the determination signal, the target signal can be selected as one suitable for comparison with the determination signal. Thereby, knocking determination can be suitably performed under various conditions.
  • signals having operating conditions highly relevant to the operating conditions of the determination signal are acquired as target signals, and these are compared with the determination signal.
  • the target signal having the operating condition close to the operating condition at the time of acquisition is selected, and the knocking determination is suitably performed.
  • the relevance of the operating conditions can be determined by the rotational speed of the engine 1. Since the rotational speed of the engine 1 also affects the magnitude and frequency of the sound generated in the engine 1, the determination accuracy of knocking can be improved by comparing the acquired signal with a target signal having a similar rotational speed of the engine 1.
  • the prior signal Since the determination signal in which knocking has not occurred is added to the prior signal, the prior signal can be enhanced to improve the determination accuracy of knocking. Also, the advance signal may be added with an advance signal of a new operating condition.
  • the third embodiment of the knocking determination device and the knocking determination method will be described below with reference to FIGS. 16 to 18.
  • the knocking determination apparatus and the knocking determination method according to this embodiment are different from the first and second embodiments in that the knocking determination process is performed by normalizing the spectrum without calculating the bispectrum.
  • differences from the first embodiment will be mainly described, and the same reference numerals are given to the same configurations, and the description will be omitted.
  • the knocking determination device 10 will be described with reference to FIG.
  • the knocking determination device 10 includes the storage unit 20, the management unit 60, the signal selection unit 30, the spectrum calculation unit 40, and the determination unit 50, as in the first embodiment, while the bispectral calculation is performed.
  • the unit 41 is not provided.
  • the first calculation unit and the second calculation unit are configured by the spectrum calculation unit 40.
  • the determination unit 50 normalizes the spectrum calculated by the spectrum calculation unit 40 as a value based on the spectrum. That is, assuming that the dispersion of spectra of all target signals is a multidimensional probability distribution, the statistical parameter calculation unit 51 estimates (calculates an average and a variance covariance due to the dispersion of spectra of all target signals as statistical parameters (calculation ). At this time, the statistical parameter calculation unit 51 calculates statistical parameters from a frequency range in which a feature amount (frequency component of spectrum) in each vibration mode in the spectrum is generated.
  • the normalization unit 52 calculates the Mahalanobis distance for the spectrum of the target signal or the determination signal.
  • the variance-covariance matrix used to calculate the Mahalanobis distance is a matrix in which covariances, which are the mean value of products of deviations from the average of each frequency component of the spectrum, are arrayed, so calculating the Mahalanobis distance is multidimensional. Normalization is performed at.
  • the normalization unit 52 calculates the Mahalanobis distance for all of the spectra of the plurality of target signals. Then, based on these calculated Mahalanobis distances, a determination value used for knocking determination is calculated.
  • the normalization unit 52 calculates the Mahalanobis distance with respect to the determination signal with respect to the spectrum of the determination signal. Furthermore, the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the normalized set obtained from the spectrum of the target signal and the normalized value obtained from the spectrum of the determination signal. .
  • the normalized set obtained from the spectra of a plurality of target signals is a set of Mahalanobis distances calculated for the spectra of each target signal.
  • the normalized value obtained from the spectrum of the determination signal is the value of the Mahalanobis distance calculated for the spectrum of the determination signal.
  • the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the set of Mahalanobis distances based on the plurality of target signals and the value of the Mahalanobis distance based on the determination signal.
  • the determination value calculation unit 53 calculates a determination value so as to have a margin for the Mahalanobis distance obtained based on a plurality of target signals.
  • the comparison unit 54 determines whether the determination signal is a signal indicating knocking or not based on comparing the Mahalanobis distance based on the spectrum of the determination signal with the determination value calculated by the determination value calculation unit 53. .
  • the determination value calculation process of the present embodiment is different from the determination value calculation process of the first embodiment only in that the procedure of the bispectrum calculation (step S24) is removed.
  • the knocking determination device 10 selects and acquires the latest acquisition signal as a determination signal in the signal selection unit 30 (step S20) Time is acquired (step S21). Subsequently, the signal selection unit 30 selects a plurality of target signals that match the selection condition based on the relationship with the time of the determination signal (step S22), and calculates the spectrum of each selected target signal (step S23).
  • the knocking determination device 10 uses the statistical parameter calculation unit 51 to extract the mode-specific feature quantities from the spectrum of each target signal (step S25), and calculate the frequency range corresponding to the vibration mode of the engine 1 from the spectrum of each target signal.
  • Statistical parameters are calculated (step S26).
  • the normalization unit 52 normalizes each target signal based on the statistical parameters calculated in step S26 (step S27), and the determination value calculation unit 53 compares the Mahalanobis distance of each target signal for each vibration mode by mode.
  • the determination value is determined (step S28), and the determination value calculation process ends.
  • the determination process by the knocking determination apparatus 10 will be described with reference to FIG. This determination process is performed subsequent to the determination value calculation process.
  • the determination process of the present embodiment is different from the determination process of the first embodiment only in that the procedure of the bispectrum calculation (step S33) is removed.
  • knocking determination device 10 obtains the determination signal selected by signal selection unit 30 (step S30), and obtains the time of the determination signal (step S30) Step S31). Then, the spectrum calculation unit 40 calculates the spectrum of the determination signal (step S32).
  • the normalization unit 52 extracts mode characteristic quantities from the spectrum of the determination signal (step S34), and normalizes the spectrum of the determination signal using statistical parameters corresponding to the frequency range corresponding to the vibration mode of the engine 1 Perform (step S35).
  • the comparison unit 54 acquires the determination value for each vibration mode from the storage unit 20 (step S36), and compares the Mahalanobis distance of the determination signal with the determination value for each mode (step S37). Then, the determination result is output (step S38), and the determination value calculation process is ended.
  • the determination signal is a signal indicating knocking or not based on the normalized value of the spectrum of the target signal and the normalized value of the spectrum of the determination signal.
  • the fourth embodiment of the knocking determination device and the knocking determination method will be described below with reference to FIGS. 19 to 21.
  • the knocking determination apparatus and the knocking determination method according to this embodiment are different from the first to third embodiments in that statistical parameters are updated without being sequentially calculated from a target signal.
  • differences from the first embodiment will be mainly described, and the same reference numerals are given to the same configurations, and the description will be omitted.
  • the knocking determination device 10 will be described with reference to FIG. As shown in FIG. 19, the knocking determination device 10 includes a storage unit 20, a signal selection unit 30, a spectrum calculation unit 40, a bispectrum calculation unit 41, and a determination unit 50.
  • the storage unit 20 is provided with an acquisition signal area 201, a determination signal area 203, a determination value area 204, and a statistical parameter area 213 which is a storage area related to statistical parameters used for knocking determination.
  • the statistical parameter area 213 holds the statistical parameter calculated by the determination unit 50 and also holds the initial value of the statistical parameter.
  • the initial value of the statistical parameter a value set in advance, a value calculated in the mode described in the first to third embodiments, and the like can be mentioned.
  • the signal selection unit 30 includes a signal extraction unit 32.
  • the signal selection unit 30 selects, based on the condition for selecting the determination signal, the latest signal among the acquired signals as a determination signal for which the presence or absence of knocking is determined.
  • the determination unit 50 includes a statistical parameter calculation unit 51A as a target signal selection unit and an update unit, a normalization unit 52 as a calculation unit, a determination value acquisition unit 53A, and a comparison unit 54 as a determination unit.
  • the statistical parameter calculation unit 51A assumes that the variation of the bispectrum of all the target signals is a multidimensional probability distribution, and averages the variation of the bispectrum of all the target signals. And the variance / covariance as statistical parameters. In the present embodiment, the statistical parameter calculation unit 51A does not actually calculate using all target signals, but calculates statistical parameters by a method equivalent to calculation using all target signals.
  • the statistical parameter calculation unit 51A will be described with reference to FIG.
  • the immediately preceding signal is present in the past closest to the determination signal, and a plurality of target signals are present in the past relative to the immediately preceding signal.
  • the previous statistical parameters average, variance covariance
  • the spectrum of the immediately preceding signal is calculated, and the calculated spectrum of the immediately preceding signal is input to the statistical parameter calculation unit 51A.
  • the predetermined condition is that the signal corresponds to the position immediately before the determination signal in terms of the determination signal.
  • the statistical parameter calculation unit 51A updates the statistical parameter with the spectrum of the immediately preceding signal input. That is, the statistical parameter calculation unit 51A updates the statistical parameter to obtain a new statistical parameter by reflecting the value obtained from the spectrum of the previous signal on the corresponding parameter of the statistical parameter (average, variance covariance) Do the processing. For example, the statistical parameter calculation unit 51A gives a weight of “ ⁇ ” to the value obtained from the spectrum of the immediately preceding signal, gives a weight of “1- ⁇ ” to the value of the old statistical parameter (average), Perform update processing.
  • the new statistical parameter is such that the contribution of the immediately preceding signal is greater than the contribution of the statistical parameter.
  • the degree of contribution to the statistical parameter becomes smaller as the previous signal is the largest and the past signal.
  • the normalization unit 52 calculates the Mahalanobis distance for the bispectrum of the determination signal. That is, at the time of determination processing, the normalization unit 52 calculates the Mahalanobis distance for the bispectrum of the determination signal based on the statistical parameter.
  • the determination value acquisition unit 53A acquires a determination value to be compared with the calculated Mahalanobis distance from the determination value area 204 of the storage unit 20.
  • the comparison unit 54 determines whether or not the determination signal is a signal indicating knocking, on the basis of comparing the Mahalanobis distance based on the determination signal with the determination value acquired by the determination value acquisition unit 53A.
  • the statistical parameter update process will be described with reference to FIG. This update process is performed following the end of the knocking determination of the determination signal.
  • the parameter calculation unit 51A of the knocking determination device 10 acquires the determination result of the determination signal (step S40), and determines whether the determination result is no knocking (step S41). If it is determined that knocking is present (NO in step S41), the parameter calculation unit 51A does not update statistical parameters (step S46). On the other hand, if it is determined that knocking is not present (YES in step S41), the parameter calculation unit 51A updates the statistical parameter (step S45). Then, the statistical parameter update process is ended.
  • the following effects can be achieved. (13)
  • the statistical parameter itself By updating the statistical parameter itself, it is possible to reduce the number of past acquired signals and target signals required for calculating the statistical parameter. That is, it is possible to reduce the time and effort required to manage and select the target signal. For example, proper maintenance of a predetermined number of signals may be unnecessary.
  • the processing load can be reduced, for example, by reducing the process of calculating statistical parameters from the target signal.
  • step S37 of the determination process it is determined whether knocking has occurred by comparison with the Mahalanobis distance calculated as the determination value. However, even if it is determined whether or not knocking has occurred by comparing the Mahalanobis distance calculated based on the determination signal with a value determined merely to determine an abnormal value without performing the comparison in step S37. Good.
  • multidimensional probability distribution assumed the occurrence probability that assumed other multidimensional probability distributions, such as mixing Gaussian distribution, It may be determined whether knocking is occurring or not.
  • the value obtained by taking the logarithm of the probability density function is taken as the anomalous degree.
  • calculation of the variance-covariance matrix in the statistical parameters may be performed by a minimum-covariance-determination (MCD) method.
  • MCD minimum-covariance-determination
  • the case where the acquisition signal corresponding to the determination signal determined not to be the signal indicating knocking is added to the target signal is illustrated.
  • the present invention is not limited to this, and regardless of the knocking determination result, an acquired signal corresponding to the determination signal may be added to the target signal. If a signal indicating knocking is added to the target signal, the accuracy of the knocking determination may decrease, but if the other target signal is not a signal indicating knocking, the target signal indicates knocking from the determination signal. In some cases the signal can be determined.
  • the present invention is not limited to this, and the determination signal or the acquisition signal may be added to the advance signal regardless of the knocking determination result. Also in this case, the knocking determination process may be performed based on the advance signal, as described above.
  • the knocking determination device 10 changes the rotational speed of the engine 1 by 100 [r / min], and holds a predetermined number of advance signals for each rotational speed.
  • the present invention is not limited to this, and the knocking determination device may sweep-change the rotational speed of the engine to acquire and hold the advance signal.
  • the signal selection unit selects a predetermined number of signals whose rotational speed is close to the determination signal as the target signal.
  • the rotational speed of the engine may be changed in one direction of the low speed direction or the high speed direction, or may be changed to repeat the low speed direction and the high speed direction. Even with such advance signals, it is possible to select the required number of advance signals corresponding to the rotational speed close to the determination signal as target signals.
  • the present invention is not limited to this, and regardless of the knocking determination result, the acquisition signal corresponding to the determination signal may not be added to the advance signal. Even in this case, the knocking determination process can be performed based on the existing advance signal.
  • the present invention is not limited to this, and the spectrum or bispectrum of the determination signal or the target signal may be calculated in advance and held in the storage unit. As a result, it is possible to adjust the timing of calculating the spectrum or the bispectrum to share the load of the arithmetic processing.
  • the storage unit 20 may be provided with an acquisition signal spectrum area 205 for holding the spectrum of the acquisition signal.
  • the spectrum acquisition of the target signal (step S221) is performed instead of the target signal selection (step S22) and the spectrum calculation (step S23) of the first embodiment.
  • the signal selection unit 30 selects a target signal that matches the selection condition based on the relationship with the time of the determination signal, and the spectrum corresponding to the selected target signal is acquired from the acquired signal spectrum region 205 of the storage unit 20. It may be selected.
  • the acquisition signal before a determination signal is selected in order close in time to a determination signal, and it is set as several object signal.
  • the present invention is not limited to this, and the target signal may be selected to skip, for example, so as not to include a part of the acquired signal in the target signal.
  • a part of the acquisition signal may not be adopted as the rejection signal to the target signal, and the past acquisition signals may be adopted as the target signal by the number of rejection signals.
  • the time difference between the acquisition time of the determination signal and the acquisition time of the oldest signal is “sampling interval d ⁇ (n target signals + n rejection signals k)”, but this time difference can be selected as the target signal If it is within the time range, a plurality of target signals can be selected with a part of the acquired signal as a rejection signal.
  • the rejection signal is an acquisition signal that can be relatively easily determined to be abnormal, such as a signal that includes noise that is likely to adversely affect knocking determination. This suppresses the selection of an inappropriate acquisition signal as the target signal, and the knocking determination accuracy is maintained.
  • the present invention is not limited to this, and the determination signal may be arbitrarily selected from acquired acquisition signals. Even in this case, the knocking determination process can be performed on the determination signal by selecting the target signal before the determination signal. In addition, it is possible to perform knocking determination processing on past data and the like of the acquired signal.
  • a plurality of target signals may be selected from acquisition signals temporally after the determination signal, or even if a plurality of target signals are selected from acquisition signals temporally before and after the determination signal. Good.
  • knocking determination processing is to be performed later based on log data of the acquired signal, etc., it is possible to select a target signal to be used for knocking determination processing from before the determination signal in time. It can be selected later in time, or can be selected in time before or after the determination signal.
  • the necessary number m of target signals may be selected from the acquired signals after the determination signal is selected.
  • the time difference from the acquisition time of the determination signal to the acquisition time of the latest signal is “sampling interval d ⁇ m required number”.
  • this time difference is within the time range selectable as the target signal, A plurality of target signals can be selected from acquired signals of Then, the target signal is prepared as an acquisition signal closer in time to the determination signal among the acquisition signals after the determination signal.
  • a signal obtained after the determination signal can be used for determination. For example, if the acquisition signal acquired before the determination signal is not suitable for comparison with the determination signal, the acquisition signal acquired after the determination signal can be used. This makes it possible to more suitably determine whether the determination signal is a signal indicating knocking.
  • a required number m of target signals may be selected from acquired signals before and after the determination signal.
  • the time difference between the acquisition times of the target signal and the acquisition time of the determination signal can be reduced by selecting the target signals in order from the smallest absolute value of the time difference from the acquisition time of the determination signal to the acquisition time of the latest signal.
  • the maximum value of the time difference is the time difference when acquiring the target signal from the acquisition time earlier than the acquisition time of the determination signal, and acquisition of the determination signal
  • the operation condition is similar when the target signal is obtained, which is shorter than any of the time differences when acquiring the target signal from the acquisition time after the time, and the operation signal when the determination signal is obtained is similar. The possibilities are even greater.
  • the target signal is prepared as an acquisition signal that is closer in time to the determination signal among the acquisition signals before and after the determination signal.
  • the possibility that the maximum value of the time difference is within the time range selectable as the target signal is also increased, the possibility of appropriately performing the knocking determination process is also increased.
  • the time difference between the acquisition time of the target signal and the acquisition time of the determination signal can be further shortened, the operating condition and the determination signal when the target signal is obtained are obtained.
  • the possibility that the operating conditions at the time are the same is further enhanced, and the accuracy in determining whether the determination signal is a signal indicating knocking can be improved.
  • the knocking determination process is performed in consideration of the frequency range in which the feature amount (frequency component of the spectrum) of each vibration mode in the bispectrum or spectrum occurs is exemplified.
  • the present invention is not limited to this, and the knocking determination process may be performed in consideration of the entire frequency band of a bispectrum or spectrum or a predetermined frequency range arbitrarily determined.
  • a sound pressure signal is acquired by the sound pressure sensor 4 as a sound which is a vibration of air, based on the physical quantity based on the pressure fluctuation which generate
  • the present invention is not limited to this, and the physical quantity based on pressure fluctuation generated in the internal combustion engine is not limited to the sound which is a signal of air, and may be a physical quantity correlating to knocking. It may be acceleration (vibration) of the internal combustion engine.
  • the engine 1 may be provided with an in-cylinder pressure sensor 7, and a signal related to the pressure from the in-cylinder pressure sensor 7 may be input to the data acquisition device 5 to generate an acquisition signal.
  • an acceleration sensor 8 may be provided in the engine 1 and a signal related to the acceleration from the acceleration sensor 8 may be input to the data acquisition device 5 to generate an acquisition signal. That is, various physical quantities obtained from the engine 1 can be used for the knocking determination process.
  • the present invention is not limited to this, and may have both a configuration in which an acquisition signal that is temporally close to the determination signal is a target signal, and a configuration in which a preliminary signal whose driving condition is close to the determination signal is a target signal. Then, depending on the operating conditions of the engine 1, a determination method may be selected in which the determination of the knocking determination process can be performed with high accuracy.
  • the knocking determination device 10 includes the learning addition unit 62 and the first data organizing unit 63 in the management unit 60, and the pre-addition unit 61, the learning processing unit 64, and the second data organizing unit And 65.
  • the storage unit 20 includes an acquisition signal area 201, a first target signal area 202, a determination signal area 203, and a determination value area 204, and also includes an a priori signal area 211 and a second target signal area 212.
  • the signal selection unit 30 includes the selection condition 31, the signal extraction unit 32, and the determination method selection unit 35.
  • the knocking determination device 10 causes the advance addition unit 61 to hold the advance signal in the advance signal area 211, causes the learning processing unit 64 to learn, and causes the second data organizing unit 65 to organize.
  • the management unit 60 causes the acquisition signal area 201 to hold the acquisition signal for the target signal selected according to the temporal condition, and causes the learning addition unit 62 to add the determination signal to the target signal.
  • the first data organizing unit 63 organizes the signals and the like.
  • the first target signal area 202 holds the first target signal
  • the second target signal area 212 holds the second target signal.
  • the first data organizing unit 63 organizes data on the first target signal
  • the second data organizing unit 65 organizes data on the second target signal.
  • the determination method selection unit 35 of the signal selection unit 30 performs the knocking determination process with the first target signal selected from the acquired signal based on the temporal condition based on the method selection condition. It is determined whether to perform with the second target signal selected from the prior signals. More specifically, the selection based on the temporal condition is the first selection, and the condition determined in relation to the determination signal is close to the time when the determination signal is obtained and within a predetermined period from the determination signal. This is a condition for selecting a plurality of target signals from the condition for selecting a predetermined number of signals from a certain acquired signal.
  • the selection based on the operating condition is the second selection, and the condition determined by the relationship with the determination signal is set as the operating condition highly relevant to at least one condition of the operating condition corresponding to the determination signal, This is a condition for selecting a plurality of target signals from the prior signals.
  • the determination based on the target signal by the second selection when the operating condition changes or greatly changes, the determination based on the target signal by the second selection is performed, and the determination based on the target signal by the first selection is performed otherwise It is a condition. According to this, the second selection is performed while the operating condition of the engine 1 is changing, and the acquired signal in the changing operating condition is the target signal, and the knocking determination accuracy that may occur when the first selection is adopted Can be prevented.
  • another example of the method selection condition is that the determination based on the target signal by the first selection is performed when there is no prior signal or there is a shortage, and the determination based on the target signal by the second selection otherwise. Is a condition to According to this, it is possible to prevent the lowering of the knocking determination accuracy caused by the lack of the advance signal.
  • the operating condition of the engine 1 causes a change in the pressure fluctuation generated in the engine 1, and the tendency of the value indicating the physical quantity contained in the acquired signal indicating the physical quantity based on this also changes significantly. Therefore, if the operating conditions of the engine 1 are largely different between the target signal and the determination signal, it is appropriately determined whether the determination signal is a signal indicating knocking even if the comparison is based on the target signal and the determination signal. It is difficult to do.
  • the signal to be compared with the determination signal is the first selection (temporal condition) for the determination signal, and the second selection It is switched to one of (corresponding operating conditions). Thereby, it is determined whether the determination signal is a signal indicating knocking or not based on the target signal selected in consideration of the operating condition of the engine 1.
  • the second selection may be selected when the operating condition of the engine 1 largely changes within a predetermined period from the time when the acquisition signal is acquired. That is, when it is not appropriate to use the target signal according to the first selection due to fluctuation of the operating condition of the engine 1 to determine whether the acquired signal is a signal indicating knocking, the target signal according to the second selection Can be used to properly determine knocking.
  • temporally to a determination signal as object signal, and the structure which makes an object signal a prior signal whose operation condition is close to a determination signal is object
  • the present invention is not limited to this, and an acquisition signal that is temporally close to the determination signal and a prior signal whose operation condition is close to the determination signal may be selected and used as the target signal.
  • the first selection and the second selection are both selected, and the number of selection of acquisition signals temporally close to the determination signal is set as the first allocation number
  • the selection number of the prior signals whose operating conditions are close to the signal may be set as the second allocation number, and these may be combined and selected as the target signal.
  • the sum of the first allocation number and the second allocation number may be set to be the required number which is the number of data necessary for the knocking determination process.
  • the ratio between the first allocation number and the second allocation number may be half or half, or an appropriate ratio may be set based on experience, experiments, theory, or the like.
  • the signal selection unit 30 selects the condition determined by the relationship with the determination signal from the acquired signal that is close to the time when the determination signal is obtained and within a predetermined period from the determination signal, for the first allocation number. And, a second assignment number is selected from the advance signals associated with the highly relevant operating conditions to at least one of the operating conditions corresponding to the determination signal. Then, the signal selection unit 30 selects a combination of the selected acquisition signal of the first allocation number and the advance signal of the second allocation number as a plurality of target signals. Based on the plurality of target signals thus selected, it is determined whether or not knocking of the determination signal has occurred.
  • the operating conditions of the engine 1 controlled under many conditions may be difficult to predict its change.
  • both the acquired signal in which the determination signal is selected based on the temporal condition with respect to the determination signal, and the advance signal selected in accordance with the corresponding operating condition are combined. It is compared with the signal of interest. This makes it possible to more suitably determine whether the determination signal is a signal indicating knocking or not by comparison with a target signal that is a highly flexible signal with respect to fluctuations in the operating conditions of the engine 1.
  • the target signal becomes the noise that is generated by the operation of the engine 1 at that time, the fluctuation of the operation at that time It is selected in the form that includes Then, knocking determination is performed based on the target signal on which such fluctuation is reflected.
  • the signal used for determination may be constrained to a past signal, or securing of the number of appropriate data that can be used for determination can not be guaranteed. is there.
  • the acquisition signal selected based on the operating condition is not only a signal close to the operating condition but also a signal in the direction in which the operating condition changes from now on, so the operating condition changes from the current condition. Knocking determination can be performed in consideration of the manner in which the vehicle is moving. Note that the fluctuation of the sound occurring in the engine 1 and the fluctuation of the sound of the prior signal may be largely different. That is, by mixing the acquisition signal selected based on the temporal condition and the acquisition signal selected based on the operating condition, the advantage in the determination based on each signal is taken advantage of, and the determination based on each signal It also compensates for weaknesses.

Abstract

Provided is a knocking determination device that determines the presence or absence of knocking. The knocking determination device is provided with: a determination signal selecting unit that selects a determination signal from among obtained signals; a target signal selecting unit that selects a plurality of target signals from among the obtained signals; and a determination unit that determines whether the determination signal is a signal that represents knocking. The determination unit is configured so as to: estimate a statistical parameter from values based on the spectra of the plurality of target signals; obtain normalized values by normalizing values based on the spectra of the target signals using the statistical parameter for variations in multiple dimensions of the same values; obtain a normalized value by normalizing a value based on the spectrum of the determination signal using the statistical parameter for variations in multiple dimensions; and determine that the determination signal is a signal that represents knocking on the basis of the degree of separation being large between the set of the normalized values for the plurality of target signals and the normalized value for the determination signal.

Description

ノッキング判定装置及びノッキング判定方法Knocking determination apparatus and knocking determination method
 本発明は、内燃機関に生じるノッキングを判定するノッキング判定装置、及び、ノッキング判定方法に関する。 The present invention relates to a knocking determination device that determines knocking that occurs in an internal combustion engine, and a knocking determination method.
 ガソリンエンジンなどの内燃機関における点火時期は、出力トルクの向上を目的として、ノックキングが発生しないクランク角度の範囲内において可能な限り進角されることが一般的である。そこで、エンジンを設計したり、調整したりする過程で点火時期をクランク角度に適合させる工程では、ノックキングが発生しているか否かがノッキング判定装置によって判定される。こうしたノッキング判定装置の一例が特許文献1に記載されている。 Generally, the ignition timing in an internal combustion engine such as a gasoline engine is advanced as much as possible within a range of crank angles where knocking does not occur, in order to improve output torque. Therefore, in the process of adapting the ignition timing to the crank angle in the process of designing or adjusting the engine, it is determined by the knocking determination device whether knocking is occurring or not. An example of such a knocking determination device is described in Patent Document 1.
 特許文献1に記載のノッキング判定装置は、筒内圧を検出する圧力センサからの出力信号と、エンジンが発する音を検出するマイクからの出力信号との相互相関値を計算し、相互相関値をノッキングの強度として取り扱っている。 The knocking determination device described in Patent Document 1 calculates a cross-correlation value between an output signal from a pressure sensor that detects an in-cylinder pressure and an output signal from a microphone that detects a sound emitted by an engine, and knocks the cross-correlation value. We handle as strength of.
特開2003-314349号公報JP 2003-314349 A
 特許文献1に記載のノッキング判定装置によれば、人がノック音を聞き分けなくともノッキングの有無を判定することができるようになる。しかしながら、特許文献1に記載のノッキング判定装置では、回転速度の変化などの内燃機関の運転条件により異なるノッキング音や背景雑音の大きさが、ノッキングが発生しているか否かの判定精度を低下させるおそれがある。そこで、上述したノッキング判定装置には、様々な条件下でノッキング判定を好適に行うことができるようにすることが望まれている。 According to the knocking determination device described in Patent Document 1, it is possible to determine the presence or absence of knocking without the person separately hearing the knocking sound. However, in the knocking determination device described in Patent Document 1, the magnitude of the knocking noise and the background noise, which differ depending on the operating conditions of the internal combustion engine such as the change in rotational speed, lowers the determination accuracy as to whether knocking occurs or not. There is a fear. Therefore, it is desirable for the above-described knocking determination device to be able to suitably perform knocking determination under various conditions.
 本発明の目的は、様々な条件下でノッキング判定を好適に行うことを可能にしたノッキング判定装置及びノッキング判定方法を提供することにある。 An object of the present invention is to provide a knocking determination device and a knocking determination method capable of suitably performing a knocking determination under various conditions.
 上記課題を解決するノッキング判定装置は、内燃機関に発生する圧力変動に基づく物理量を示す取得信号に基づいてノッキングの有無を判定し、前記取得信号から、ノッキングの有無が判定される判定信号を選択する判定信号選択部と、前記取得信号から、前記判定信号との関係で定まる条件に基づいて複数の対象信号を選択する対象信号選択部と、前記複数の対象信号のスペクトルに基づく値をそれぞれ算出する第1算出部と、前記判定信号のスペクトルに基づく値を算出する第2算出部と、前記判定信号がノッキングを示す信号であるか否かの判定を行う判定部とを備え、前記判定部は、前記複数の対象信号のスペクトルに基づく値から統計パラメータを推定し、前記統計パラメータを用いて前記各対象信号のスペクトルに基づく値を同値の多次元におけるばらつきで正規化して正規化後の値を得、前記統計パラメータを用いて前記判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得、前記複数の対象信号についての正規化後の値の集合と前記判定信号についての正規化後の値との乖離の度合いが大きいことに基づいて前記判定信号がノッキングを示す信号である旨を判定するように構成される。 A knocking determination device that solves the above problems determines the presence or absence of knocking on the basis of an acquisition signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, and selects a determination signal for determining the presence or absence of knocking from the acquisition signal. A target signal selection unit for selecting a plurality of target signals based on a condition determined from the acquired signal based on the relationship with the determination signal, and calculating values based on the spectra of the plurality of target signals A second calculation unit that calculates a value based on the spectrum of the determination signal; and a determination unit that determines whether the determination signal is a signal indicating knocking, the determination unit Estimating statistical parameters from values based on the spectra of the plurality of target signals, and using the statistical parameters to estimate values based on the spectra of the respective target signals Normalize with multi-dimensional variations of values to obtain normalized values, and using the statistical parameters, normalize values based on the spectrum of the determination signal with multi-dimensional variations to obtain normalized values, It is determined that the determination signal is a signal indicating knocking based on the fact that the degree of divergence between a set of normalized values for a plurality of target signals and the normalized value of the determination signal is large. Configured
 上記課題を解決するノッキング判定装置は、内燃機関に発生する圧力変動に基づく物理量を示す取得信号に基づいてノッキングの有無を判定し、前記取得信号から、ノッキングの有無が判定される判定信号を選択する判定信号選択部と、前記取得信号から、前記判定信号との関係で定まる条件に基づいて対象信号を選択する対象信号選択部と、前記判定信号のスペクトルに基づく値を算出する算出部と、前記判定信号がノッキングを示す信号であるか否かの判定を行う判定部と、前記対象信号のスペクトルに基づく値に基づいて統計パラメータを更新する更新部とを備え、前記判定部は、前記統計パラメータを用いて前記判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得るとともに、所定の判定値と前記正規化後の値との乖離の度合いが大きいことに基づいて前記判定信号がノッキングを示す信号である旨を判定するように構成される。 A knocking determination device that solves the above problems determines the presence or absence of knocking on the basis of an acquisition signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, and selects a determination signal for determining the presence or absence of knocking from the acquisition signal. A target signal selector for selecting a target signal based on a condition determined from the acquired signal in relation to the determination signal; and a calculator for calculating a value based on a spectrum of the determination signal; A determination unit configured to determine whether the determination signal is a signal indicating knocking; and an update unit configured to update a statistical parameter based on a value based on a spectrum of the target signal, the determination unit including the statistic A value based on the spectrum of the determination signal is normalized with variations in multiple dimensions using parameters to obtain a normalized value, and a predetermined determination value Configured to determine that the determination signal based on the degree of divergence between the values after the normalization is large is a signal indicating the knocking.
 上記課題を解決するノッキング判定方法は、内燃機関に発生する圧力変動に基づく物理量を示す取得信号に基づいてノッキングの有無を判定するノッキング判定装置で実行され、前記ノッキング判定装置が、前記取得信号から、ノッキングの有無を判定する判定信号を選択することと、前記ノッキング判定装置が、前記取得信号から、前記判定信号との関係で定まる条件に基づいて複数の対象信号を選択することと、前記ノッキング判定装置が、前記複数の対象信号のスペクトルに基づく値をそれぞれ算出することと、前記ノッキング判定装置が、前記判定信号のスペクトルに基づく値を算出することと、前記ノッキング判定装置が、前記判定信号がノッキングを示す信号であるか否かの判定を行うことと、を含み、前記判定することは、前記複数の対象信号のスペクトルに基づく値から統計パラメータを推定すること、前記統計パラメータを用いて前記各対象信号のスペクトルに基づく値を同値の多次元におけるばらつきで正規化して正規化後の値を得ること、前記統計パラメータを用いて前記判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得ること、及び、前記複数の対象信号についての正規化後の値の集合と前記判定信号についての正規化後の値との乖離の度合いが大きいことに基づいて前記判定信号がノッキングを示す信号である旨を判定することを含む。 The knocking determination method for solving the above problems is executed by a knocking determination device that determines the presence or absence of knocking based on an acquired signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, and the knocking determination device determines from the acquired signal Selecting a determination signal for determining the presence or absence of knocking, selecting the plurality of target signals from the acquired signal based on a condition determined in relation to the determination signal, the knocking determination device, and the knocking determination device. The determination apparatus calculates values based on the spectra of the plurality of target signals, the knocking determination apparatus calculates values based on the spectrum of the determination signal, and the knocking determination apparatus determines the determination signal. Performing a determination as to whether or not the signal is indicative of knocking, the determining comprising: Estimating a statistical parameter from values based on the spectra of a plurality of target signals, normalizing the values based on the spectra of the respective target signals with variations in the same multidimensional value using the statistical parameters and calculating the normalized values Obtaining, using the statistical parameter, normalizing the value based on the spectrum of the determination signal with variations in multiple dimensions to obtain a normalized value, and the normalized value of the plurality of target signals It includes determining that the determination signal is a signal indicating knocking based on the fact that the degree of divergence between the set and the normalized value of the determination signal is large.
ノッキング判定装置を具体化した第1の実施形態について、ノッキング判定装置によりエンジンのノッキングを測定するときの各種機器との接続態様の一例を示すブロック図。The block diagram which shows an example of a connection aspect with various apparatuses when a knocking determination apparatus measures knocking of an engine about 1st Embodiment which actualized the knocking determination apparatus. 図1の実施形態のノッキング判定装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the knocking determination apparatus of embodiment of FIG. 図1の実施形態のノッキング判定装置で処理する取得信号、対象信号、及び判定信号の概略について示す模式図。The schematic diagram shown about the outline of the acquisition signal processed by the knocking determination apparatus of embodiment of FIG. 1, an object signal, and the determination signal. 図1の実施形態のノッキング判定装置が行うデータ収集処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the data collection process which the knocking determination apparatus of embodiment of FIG. 1 performs. 図1の実施形態のノッキング判定装置が行う判定値算出処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination value calculation process which the knocking determination apparatus of embodiment of FIG. 1 performs. 図1の実施形態のノッキング判定装置が行う判定処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination processing which the knocking determination apparatus of embodiment of FIG. 1 performs. 図1の実施形態のノッキング判定装置が行う情報の更新についての概略を模式的に示す模式図。The schematic diagram which shows typically the outline about the update about the information which the knocking determination apparatus of embodiment of FIG. 1 performs. 図1の実施形態のノッキング判定装置が行う対象信号の学習処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the learning process of the object signal which the knocking determination apparatus of embodiment of FIG. 1 performs. ノッキング判定装置を具体化した第2の実施形態について、ノッキング判定装置の概略構成を示すブロック図。The block diagram which shows schematic structure of a knocking determination apparatus about 2nd Embodiment which actualized the knocking determination apparatus. 図9の実施形態のノッキング判定装置で処理する判定信号と事前信号との概略について示す模式図。FIG. 10 is a schematic view showing an outline of a determination signal to be processed by the knocking determination apparatus of the embodiment of FIG. 9 and an advance signal; 図9の実施形態のノッキング判定装置が行うデータ収集処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the data collection process which the knocking determination apparatus of embodiment of FIG. 9 performs. 図9の実施形態のノッキング判定装置が行う判定値算出処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination value calculation process which the knocking determination apparatus of embodiment of FIG. 9 performs. 図9の実施形態のノッキング判定装置が行う判定処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination processing which the knocking determination apparatus of embodiment of FIG. 9 performs. 図9の実施形態のノッキング判定装置が行う情報の更新についての概略について示す模式図。The schematic diagram shown about the outline about the update of the information which the knocking determination apparatus of embodiment of FIG. 9 performs. 図9の実施形態のノッキング判定装置が行う事前信号の学習処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the learning process of the prior signal which the knocking determination apparatus of embodiment of FIG. 9 performs. ノッキング判定装置を具体化した第3の実施形態について、ノッキング判定装置の概略構成を示すブロック図。The block diagram which shows schematic structure of a knocking determination apparatus about 3rd Embodiment which actualized the knocking determination apparatus. 図16の実施形態のノッキング判定装置が行う判定値算出処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination value calculation process which the knocking determination apparatus of embodiment of FIG. 16 performs. 図16の実施形態のノッキング判定装置が行う判定処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination processing which the knocking determination apparatus of embodiment of FIG. 16 performs. ノッキング判定装置を具体化した第4の実施形態について、ノッキング判定装置の概略構成を示すブロック図。The block diagram which shows schematic structure of a knocking determination apparatus about 4th Embodiment which actualized the knocking determination apparatus. 図19の実施形態のノッキング判定装置が行う情報の更新について概略について示す模式図。FIG. 20 is a schematic view showing an outline of update of information performed by the knocking determination device of the embodiment of FIG. 19; 図19の実施形態のノッキング判定装置が行う統計パラメータの更新処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the update process of the statistical parameter which the knocking determination apparatus of embodiment of FIG. 19 performs. ノッキング判定装置を具体化したその他の実施形態について、ノッキング判定装置の記憶部にスペクトルが保持される例を示すブロック図。The block diagram which shows the example by which the spectrum is hold | maintained at the memory | storage part of the knocking determination apparatus about other embodiment which materialized the knocking determination apparatus. 図22の実施形態のノッキング判定装置が行う判定値算出処理について各処理工程を実施の順に示すフローチャート。The flowchart which shows each processing process in order of implementation about the determination value calculation process which the knocking determination apparatus of embodiment of FIG. 22 performs. 図22の実施形態のノッキング判定装置で処理する取得信号、対象信号、判定信号、及び不採用信号の概略について示す模式図。FIG. 23 is a schematic view showing an outline of an acquisition signal, an object signal, a determination signal, and a rejection signal processed by the knocking determination device of the embodiment of FIG. 22; (a)はノッキング判定装置の他の実施形態について対象信号と判定信号との関係を模式的に示す図であって、対象信号が判定信号よりも時間的に後である場合について示す図、(b)はノッキング判定装置のさらなる他の実施形態について対象信号と判定信号との関係を模式的に示す図であって、対象信号が判定信号に対して時間的に前後ともにある場合について示す図。(A) is a figure which shows typically the relationship of a target signal and a determination signal about other embodiment of a knocking determination apparatus, Comprising: The figure which shows about the case where a target signal is temporally after a determination signal, b) is a figure which shows typically the relationship of a target signal and a determination signal about the further another embodiment of a knocking determination apparatus, and is a figure shown about the case where a target signal has time back and front with respect to a determination signal. ノッキング判定装置を具体化したさらに他の実施形態について、エンジンの筒内圧や加速度の物理量を示す信号を取得する概略構成を示すブロック図。The block diagram which shows schematic structure which acquires the signal which shows the in-pipe pressure of an engine, and the physical quantity of acceleration about the further another embodiment which materialized the knocking determination apparatus. ノッキング判定装置を具体化したまたさらに他の実施形態について、ノッキング判定装置の概略構成を示すブロック図。The block diagram which shows schematic structure of a knocking determination apparatus about further another embodiment which materialized the knocking determination apparatus.
 (第1の実施形態)
 以下、図1~図8を参照して、ノッキング判定装置及びノッキング判定方法の第1の実施形態について説明する。内燃機関の一例である車両用のエンジン1の試験では、例えば点火タイミングの進角量の調整等の試験もしくは調整された点火タイミングの確認試験が行われる。これらの点火タイミングの試験においてノッキング判定装置が用いられ、また、ノッキング判定装置によってノッキング判定方法が実施される。
First Embodiment
Hereinafter, a first embodiment of the knocking determination device and the knocking determination method will be described with reference to FIGS. 1 to 8. In the test of the engine 1 for a vehicle, which is an example of an internal combustion engine, a test such as adjustment of the advance amount of ignition timing or a confirmation test of the adjusted ignition timing is performed. A knocking determination device is used in these tests of ignition timing, and the knocking determination method is implemented by the knocking determination device.
 図1に示すように、試験対象のエンジン1は、車両3に搭載されている。なお、試験対象のエンジン1は、車両3に搭載されない状態、例えば単独の状態で用いられてもよい。エンジン1には、エンジン1の駆動を制御するエンジンECU2が接続されている。エンジンECU2は、エンジンコントロールユニットであって、CPU、ROM、RAM、その他の記憶装置等で構成されている。エンジンECU2は、ROMやその他の記憶装置に記憶されたプログラムをCPUで演算処理することで、エンジン1の駆動制御に必要な各種情報をエンジンECU2の外部から取得しながらエンジン1の駆動を制御する。エンジンECU2は、エンジン1を試験運転する条件である運転条件として、エンジン1にノッキングが発生しない運転条件である通常運転条件と、通常運転条件以外の運転条件である試験運転条件とを有している。なお、本実施形態では、エンジン1は試験運転条件で運転される。ここで、ノッキングとは、エンジン1の気筒内において発生した異常燃焼が生じさせる圧力変動(衝撃波)が気筒の固有振動数で増幅されてエンジン1に大きな振動が発生する現象である。つまり、エンジン1には気筒内での燃料燃焼の際に発生する圧力変動に基づく振動が生じ、この振動を物理量として取得することができる。 As shown in FIG. 1, the engine 1 to be tested is mounted on a vehicle 3. In addition, the engine 1 of test object may be used in the state which is not mounted in the vehicle 3, for example, a single state. An engine ECU 2 that controls driving of the engine 1 is connected to the engine 1. The engine ECU 2 is an engine control unit, and includes a CPU, a ROM, a RAM, other storage devices, and the like. The engine ECU 2 controls the drive of the engine 1 while acquiring various information necessary for the drive control of the engine 1 from the outside of the engine ECU 2 by performing arithmetic processing on programs stored in the ROM and other storage devices by the CPU. . The engine ECU 2 has, as an operating condition under which the engine 1 is in test operation, a normal operating condition under which knocking does not occur in the engine 1 and a test operating condition under which the engine 1 is operating. There is. In the present embodiment, the engine 1 is operated under test operation conditions. Here, knocking is a phenomenon in which a pressure fluctuation (shock wave) caused by abnormal combustion generated in a cylinder of the engine 1 is amplified by the natural frequency of the cylinder and a large vibration occurs in the engine 1. That is, vibration based on pressure fluctuation generated at the time of fuel combustion in the cylinder occurs in the engine 1, and this vibration can be acquired as a physical quantity.
 エンジン1の近くには、音圧センサ4が設置されている。音圧センサ4は、エンジン1から発生する音を検出し、この検出した音に基づく音圧信号をデータ収集装置5に出力する。詳述すると、音圧センサ4は、エンジン1に発生する圧力変動に基づく物理量の一例である音圧を検出し、検出された音圧の大きさを示す音圧信号を生成する。よって、エンジン1にノッキングが発生していないとき、音圧センサ4から出力される音圧信号にはノッキングに基づいて発生した音は含まれない。一方、エンジン1にノッキングが発生しているとき、音圧センサ4から出力される音圧信号にはノッキングに基づいて発生した音であり、ノッキングに相関のある音が含まれている。 A sound pressure sensor 4 is installed near the engine 1. The sound pressure sensor 4 detects a sound generated from the engine 1 and outputs a sound pressure signal based on the detected sound to the data acquisition device 5. More specifically, the sound pressure sensor 4 detects a sound pressure which is an example of a physical quantity based on a pressure fluctuation generated in the engine 1 and generates a sound pressure signal indicating the magnitude of the detected sound pressure. Therefore, when the engine 1 is not knocking, the sound pressure signal output from the sound pressure sensor 4 does not include the sound generated based on the knocking. On the other hand, when knocking is occurring in the engine 1, the sound pressure signal output from the sound pressure sensor 4 is a sound generated based on the knocking, and the sound having a correlation with the knocking is included.
 また、エンジンECU2は、エンジン1の現在の回転角度を表す角度情報をデータ収集装置5に出力する。角度情報には、例えば回転パルスとクランク角度パルスとが含まれる。回転パルスは、クランク軸の回転角度が原点として定められた角度で出力される信号であって、例えば、クランク軸が1回転するごとに1パルス出力される。クランク角度パルスは、クランク軸の回転角度が単位角度進むごとに出力される信号であって、例えば、1度毎に1パルスが出力される場合、吸入、圧縮、燃焼及び排気の4工程を1サイクルとする4ストロークエンジンにおいて1サイクルにクランク軸が回転する2回転の間に720パルス出力される。なお、角度情報がデータ収集装置5に出力されるのであれば、エンジンECU2を介さず、クランク軸の回転角度の原点を検出する原点センサや、クランク軸の回転角度を検出する角度センサからの角度情報がデータ収集装置5に出力されてもよい。 In addition, the engine ECU 2 outputs angle information indicating the current rotation angle of the engine 1 to the data acquisition device 5. The angle information includes, for example, a rotation pulse and a crank angle pulse. The rotation pulse is a signal that is output at an angle at which the rotation angle of the crankshaft is defined as the origin, and for example, one pulse is output each time the crankshaft rotates once. The crank angle pulse is a signal that is output each time the rotation angle of the crankshaft advances by a unit angle, and for example, when one pulse is output every one degree, four steps of suction, compression, combustion and exhaust are In a four-stroke engine, which is a cycle, 720 pulses are output during two rotations of the crankshaft during one cycle. If the angle information is output to the data acquisition device 5, the angle from the origin sensor that detects the origin of the rotational angle of the crankshaft without passing through the engine ECU 2 or the angle sensor that detects the rotational angle of the crankshaft Information may be output to the data collection device 5.
 データ収集装置5は、音圧センサ4からの音圧信号を入力してA/D変換する。また、データ収集装置5は、音圧信号を入力するタイミングで、エンジンECU2から現在の角度情報を取得する。そして、データ収集装置5は、角度情報に基づいてエンジン1の1サイクル分の音圧信号を取得して、これを取得信号とする。よって、データ収集装置5は、単位時間当たりのエンジン1の回転速度に応じた数、回転速度が3000[r/min]であれば一分間に1500個の取得信号を生成する。また、一部または全部の取得信号に各音圧信号とともに取得した角度情報を関連付ける。そして、データ収集装置5は、角度情報が関連付けられた取得信号をノッキング判定装置10に出力する。なお、データ収集装置5は、生成した取得信号を一時的に保持したり、一旦蓄えたりしてからノッキング判定装置10に出力してもよい。また、データ収集装置5は、取得信号に時刻情報を関連付けてもよい。 The data acquisition device 5 receives the sound pressure signal from the sound pressure sensor 4 and performs A / D conversion. Further, the data acquisition device 5 acquires current angle information from the engine ECU 2 at the timing when the sound pressure signal is input. Then, the data acquisition device 5 acquires a sound pressure signal for one cycle of the engine 1 based on the angle information, and uses this as an acquisition signal. Therefore, the data acquisition device 5 generates 1500 acquisition signals per minute if the rotational speed is 3000 r / min and the number corresponds to the rotational speed of the engine 1 per unit time. In addition, angular information acquired together with each sound pressure signal is associated with some or all of the acquired signals. Then, the data acquisition device 5 outputs the acquisition signal associated with the angle information to the knocking determination device 10. Note that the data collection device 5 may temporarily hold the generated acquisition signal or temporarily store it, and then output it to the knocking determination device 10. In addition, the data collection device 5 may associate time information with the acquired signal.
 図3に示すように、データ収集装置5は、「単位時間/エンジン1の回転速度」をサンプリング間隔dとすると、所定の期間中に「所定の期間/サンプリング間隔d」個の取得信号を生成する。例えば、後で行うノッキング判定処理に必要なデータ数がm個であるとき、データ収集装置5が必要数m個のデータの生成に要する所定の期間は「サンプリング間隔d×必要数m個」として算出される。 As shown in FIG. 3, assuming that “unit time / rotational speed of engine 1” is a sampling interval d, the data collection device 5 generates “predetermined period / sampling interval d” number of acquisition signals in a predetermined period. Do. For example, when the number of data required for the knocking determination process to be performed later is m, the predetermined period required for the data collection device 5 to generate the required number m of data is “sampling interval d × required number m”. It is calculated.
 図1に示すように、ノッキング判定装置10は、データ収集装置5から取得信号と角度情報とを入力する。ノッキング判定装置10は、取得信号から選択した対象信号、及び取得信号から選択した判定信号に基づいて判定信号がノッキングを示す信号であるか否かを判定するための演算を実行し、その演算結果をモニタ6等に出力する。 As shown in FIG. 1, the knocking determination device 10 receives an acquisition signal and angle information from the data acquisition device 5. The knocking determination device 10 executes an operation for determining whether the determination signal is a signal indicating knocking or not based on the target signal selected from the acquisition signal and the determination signal selected from the acquisition signal, and the calculation result Is output to the monitor 6 or the like.
 次に、ノッキング判定装置10について説明する。
 図2に示すように、ノッキング判定装置10は、CPU、ROM、RAM、その他の記憶装置等で構成されている。ノッキング判定装置10は、ROMや記憶装置に記憶されているプログラムをCPUで演算処理することにより、ノッキング判定処理に関する演算処理を実行するプロセッサ又は処理回路である。なお、ノッキング判定装置10は、ノッキング検出方法を実行するプログラムを有するパーソナルコンピュータ(PC)等であってもよい。
Next, the knocking determination device 10 will be described.
As shown in FIG. 2, the knocking determination device 10 is configured of a CPU, a ROM, a RAM, other storage devices, and the like. The knocking determination device 10 is a processor or processing circuit that performs arithmetic processing related to knocking determination processing by performing arithmetic processing of a program stored in a ROM or a storage device with a CPU. The knocking determination device 10 may be a personal computer (PC) or the like having a program for executing the knocking detection method.
 ノッキング判定装置10は、データ収集装置5から出力される取得信号と、その取得信号に関連付けられた角度情報を取得する。取得信号は、エンジン1の気筒内に1サイクルごとに発生する圧力変動に基づく物理量に相当する。取得信号には、1サイクル中の一部区間又は全区間にスペクトル(周波数成分)が含まれている。なお、ノッキング音は主に、1サイクルのうち点火時期を含む区間に含まれ、また、ノッキング音はスペクトルに特徴量として現れる。 The knocking determination device 10 acquires an acquisition signal output from the data acquisition device 5 and angle information associated with the acquisition signal. The acquired signal corresponds to a physical quantity based on pressure fluctuation generated in each cylinder of the engine 1 per cycle. The acquired signal includes a spectrum (frequency component) in a partial section or a whole section in one cycle. The knocking noise is mainly included in the section including the ignition timing in one cycle, and the knocking noise appears as a feature amount in the spectrum.
 まず、図3を参照して、ノッキング判定における取得信号、対象信号、及び判定信号の関係を説明する。
 ノッキング判定装置10は、サンプリング間隔d毎に、エンジン1の1サイクル分の音圧信号を含む取得信号をデータ収集装置5から取得して保持する。また、ノッキング判定装置10は、最新の取得信号をノッキング判定を行う判定信号に定める。ノッキング判定装置10は、判定信号が定まることに応じて、判定信号より前に取得された取得信号であって、判定信号に時間的に近い信号から順に必要数m個を対象信号として選択する。よって、複数の対象信号は、判定信号の1つ前の「直前信号」から、必要数m個分だけ過去の「最古信号」までを対象信号として取得する。判定信号の取得時刻から「最古信号」の取得時刻までの時間差は、「サンプリング間隔d×必要数m個」となる。エンジン1が運転されている状態であれ、判定信号の取得時刻から「最古信号」の取得時刻までの時間差が短ければ、その時間差の間に運転条件に変化が生じる可能性は低い。よって判定信号の取得時刻から「最古信号」の取得時刻までの時間差を適切な範囲で短くすることでエンジン1の運転条件が変化する可能性の高まりが抑えられる。そこで、ノッキング判定装置10は、「直前信号」から「最古信号」までの複数の対象信号を比較の基準とし、これを判定信号と比較し、判定信号がノッキングを示す信号であるか否かを判定する。
First, with reference to FIG. 3, the relationship between the acquired signal, the target signal, and the determination signal in the knocking determination will be described.
The knocking determination device 10 acquires an acquisition signal including a sound pressure signal for one cycle of the engine 1 from the data acquisition device 5 at each sampling interval d, and holds the acquired signal. Further, the knocking determination device 10 determines the latest acquired signal as a determination signal for performing the knocking determination. In response to the determination of the determination signal, the knocking determination device 10 selects, as target signals, the necessary number m of acquisition signals acquired earlier than the determination signal and starting with signals that are closer in time to the determination signal. Therefore, a plurality of target signals are acquired as target signals from the “previous signal” immediately before the determination signal to the “oldest signal” of the past by the required number m. The time difference from the acquisition time of the determination signal to the acquisition time of the “oldest signal” is “sampling interval d × m necessary number”. Even if the engine 1 is in operation, if the time difference from the acquisition time of the determination signal to the acquisition time of the “oldest signal” is short, there is a low possibility that the operating conditions will change during the time difference. Therefore, by shortening the time difference from the acquisition time of the determination signal to the acquisition time of the "oldest signal" in an appropriate range, the increase of the possibility that the operating condition of the engine 1 changes can be suppressed. Therefore, knocking determination device 10 uses a plurality of target signals from “immediately before signal” to “oldest signal” as a reference for comparison, compares this with the determination signal, and determines whether the determination signal is a signal indicating knocking or not Determine
 図2に示すように、ノッキング判定装置10は、取得信号などを保持する記憶部20と、ノッキング判定処理に必要な信号を記憶部20に保持させる管理部60と、記憶部20からノッキング判定処理に必要な信号を選択する信号選択部30とを備える。また、ノッキング判定装置10は、取得信号のスペクトルを算出するスペクトル算出部40と、取得信号のバイスペクトルを算出するバイスペクトル算出部41と、判定信号がノッキングを示す信号であるか否かを判定する判定部50とを備えている。 As shown in FIG. 2, the knocking determination device 10 includes a storage unit 20 that holds acquisition signals and the like, a management unit 60 that causes the storage unit 20 to hold signals necessary for knocking determination processing, and a knocking determination process from the storage unit 20. And a signal selection unit 30 for selecting a signal necessary for the In addition, knocking determination device 10 determines whether spectrum calculation unit 40 that calculates the spectrum of the acquired signal, bispectrum calculation unit 41 that calculates the bispectrum of the acquired signal, and whether the determination signal is a signal that indicates knocking. And a determination unit 50.
 記憶部20は、ノッキング判定装置10を構成する記憶装置の一部または全部から構成され、取得信号や角度情報などの記憶、削除ができる。記憶部20には、ノッキング判定装置10が入力した取得信号に関する記憶領域である取得信号領域201と、ノッキング判定において比較の対象として用いられる複数の対象信号に関する記憶領域である対象信号領域202とが設けられている。また、記憶部20には、ノッキングを示す信号であるか否かが判定される判定信号に関する記憶領域である判定信号領域203と、ノッキングを示す信号であるか否かの判定の基準に用いられる判定値に関する記憶領域である判定値領域204とが設けられている。 The storage unit 20 is configured by part or all of a storage device constituting the knocking determination device 10, and can store and delete acquisition signals, angle information, and the like. The storage unit 20 includes an acquisition signal area 201 which is a storage area related to an acquisition signal input by the knocking determination device 10 and a target signal area 202 which is a storage area related to a plurality of target signals used as comparison targets in knocking determination. It is provided. Further, the storage unit 20 is used as a determination signal area 203 which is a storage area related to a determination signal for which it is determined whether or not it is a signal indicating knocking, and a reference for determining whether it is a signal indicating knocking or not. A determination value area 204, which is a storage area related to the determination value, is provided.
 取得信号領域201には、ノッキング判定装置10が入力した取得信号が保持される。対象信号領域202には、取得信号から選択された複数の対象信号に関する情報が保持される。例えば、対象信号領域202に保持される対象信号の数は、ノッキング判定処理に必要とされる必要数m個以上である。判定信号領域203には、ノッキング判定を行う取得信号から選択された判定信号に関する情報が保持される。判定値領域204には、ノッキングの有無の判定に用いられる判定値に関する情報が保持される。 The acquisition signal area 201 holds the acquisition signal input by the knocking determination device 10. The target signal area 202 holds information on a plurality of target signals selected from the acquired signals. For example, the number of target signals held in the target signal region 202 is the required number m or more required for the knocking determination process. The determination signal area 203 holds information on the determination signal selected from the acquired signal for performing the knocking determination. The determination value area 204 holds information on a determination value used to determine the presence or absence of knocking.
 管理部60は、ノッキング判定装置10が入力した取得信号に時刻情報を関連付けて記憶部20に記憶させる。
 管理部60は、判定信号となっている取得信号の対象信号への追加の可否を判定し処理する学習追加部62と、記憶部20に記憶されている取得信号等の整理を行うデータ整理部63とを備える。
The management unit 60 associates the time information with the acquisition signal input by the knocking determination device 10, and stores the time information in the storage unit 20.
The management unit 60 determines and processes addition or non-existence of an acquisition signal as a determination signal to a target signal, and a data organizing unit that arranges acquisition signals and the like stored in the storage unit 20. And 63.
 学習追加部62は、ノッキング判定処理の結果として判定部50がノッキングを示す信号であると判定した判定信号が入力されると、この判定信号に対応する取得信号を対象信号に追加させない。つまり、この判定信号を対象信号に含ませない。一方、判定部50がノッキングを示す信号ではないと判定した判定信号が入力されると、この判定信号に対応する取得信号を対象信号に追加させる。つまり、この判定信号を対象信号に含ませる。 When the determination signal determined by the determination unit 50 as a signal indicating knocking is input as a result of the knocking determination process, the learning addition unit 62 does not add an acquisition signal corresponding to the determination signal to the target signal. That is, the determination signal is not included in the target signal. On the other hand, when the determination unit 50 determines that the signal is not a signal indicating knocking, an acquisition signal corresponding to the determination signal is added to the target signal. That is, the determination signal is included in the target signal.
 また、学習追加部62は、ノッキング判定処理が開始される前など、最新の取得信号が判定信号に選択されなくとも、新たに取得信号が入力されると、前記最新の取得信号を対象信号に追加させる。よって、判定信号より以前の取得信号のうち判定信号に時間的に近い取得信号が対象信号として準備される。 In addition, the learning addition unit 62 sets the latest acquired signal as the target signal when the acquired signal is newly input even if the latest acquired signal is not selected as the determination signal, for example, before the knocking determination process is started. I will add it. Therefore, among the acquisition signals prior to the determination signal, an acquisition signal that is closer in time to the determination signal is prepared as the target signal.
 また、学習追加部62は、対象信号領域202に対象信号をノッキング判定処理に必要とされる必要数m個以上保持させる。なお、保持させる対象信号の数は、数による設定ではなく、サンプリング間隔dと期間とで設定されてもよい。 In addition, the learning addition unit 62 causes the target signal region 202 to hold the target signal in the required number m or more required for the knocking determination process. The number of target signals to be held may not be set by the number, but may be set by the sampling interval d and the period.
 データ整理部63は、記憶部20に記憶されている取得信号、対象信号、判定信号、及び判定値を、定められた条件に応じて整理する。例えば、取得信号、対象信号及び判定信号は、それぞれ保持する期間を越える古い取得信号、対象信号又は判定信号が削除される。また例えば、取得信号、対象信号及び判定信号は、それぞれ保持数を越える古い取得信号、対象信号又は判定信号が削除される。さらに例えば、記憶部20に新たな判定値が記憶されると、古い判定値が削除される。 The data organizing unit 63 organizes the acquired signal, the target signal, the determination signal, and the determination value stored in the storage unit 20 according to the defined conditions. For example, for the acquisition signal, the target signal, and the determination signal, the old acquisition signal, the target signal, or the determination signal exceeding the holding period is deleted. Also, for example, for the acquisition signal, the target signal, and the determination signal, the old acquisition signal, the target signal, or the determination signal exceeding the number of holdings is deleted. Furthermore, for example, when a new determination value is stored in the storage unit 20, the old determination value is deleted.
 信号選択部30は、対象信号及び判定信号を選択する選択条件31に基づいて、取得信号から対象信号や判定信号を選択する。選択条件31には、判定信号を選択する条件や対象信号を選択する条件が含まれている。信号選択部30は、判定信号を選択する条件に基づいて、取得信号のうち最新の信号をノッキングの有無が判定される判定信号として選択する(判定信号選択工程)。また信号選択部30は、選択条件31の対象信号を選択する条件に基づいて、記憶部20の対象信号から判定信号より前の取得信号のうち判定信号に時間的に近い取得信号に対応する対象信号を必要数選択する(対象信号選択工程)。必要数は、例えば、ノッキング判定処理を適切に行うために必要数が設定される。この必要数は、例えば、マハラノビス距離の算出に必要とされる数である。 The signal selection unit 30 selects the target signal or the determination signal from the acquired signal based on the selection condition 31 for selecting the target signal and the determination signal. The selection condition 31 includes a condition for selecting a determination signal and a condition for selecting a target signal. The signal selection unit 30 selects the latest signal of the acquired signals as a determination signal whose presence or absence of knocking is determined based on the condition for selecting the determination signal (determination signal selection step). Further, based on the condition for selecting the target signal of the selection condition 31, the signal selection unit 30 corresponds to an acquisition signal closer to the determination signal in time among the acquisition signals prior to the determination signal from the target signal of the storage unit 20. The necessary number of signals are selected (target signal selection step). The necessary number is set, for example, in order to appropriately perform the knocking determination process. This required number is, for example, the number required to calculate the Mahalanobis distance.
 また、対象信号を選択する条件には、対象信号を、判定信号より前の所定の時間範囲内から取得する条件も設定されている。通常、判定信号に時間的に近ければ、エンジン1の運転条件は判定信号が得られたときの運転条件から変化している可能性は小さく、逆に、時間的に離れるほどエンジン1の運転条件は判定信号が得られたときの運転状態から変化している可能性が高くなる。そこで、運転条件から変化している可能性が小さく抑えられる範囲を所定の時間範囲内として設定する。対象信号を判定信号より前の取得信号から選択することにより、現在の運転条件の下で、判定信号がノッキング信号を示す信号であるか否かを判定することができる。 Further, as the condition for selecting the target signal, a condition for acquiring the target signal from within a predetermined time range prior to the determination signal is also set. Normally, if the determination signal is closer in time, the operating condition of the engine 1 is less likely to change from the operating condition when the determination signal is obtained, and conversely, the operating condition of the engine 1 increases in time Is more likely to change from the operating condition when the determination signal is obtained. Therefore, a range in which the possibility of change from the operating condition is suppressed to a low level is set as a predetermined time range. By selecting the target signal from the acquisition signals prior to the determination signal, it is possible to determine whether the determination signal is a signal indicating a knocking signal under the current operating conditions.
 本実施形態では、判定信号選択部は、信号選択部30より構成され、対象信号選択部は、信号選択部30及び管理部60の学習追加部62より構成される。
 信号選択部30は、対象信号や判定信号からノッキングが発生し得る角度範囲を決定し、対象信号や判定信号に含まれる音圧信号のうちの決定された角度範囲(切出角度範囲)内の音圧信号を切り出す信号切出部32を備える。信号切出部32は、決められた切出角度範囲を、対象信号や判定信号の長さが1サイクル分であることに基づいて特定して切り出す。切出角度範囲は、対象信号や判定信号の開始位置から特定される点火位置やTDC(Top Dead Center)付近から約90度の角度範囲内の音圧信号として定められる。本実施形態では、点火タイミングが変更されても切出角度範囲は固定されたままであるが、点火タイミングの変更に応じて切出角度範囲を変更してもよい。
In the present embodiment, the determination signal selection unit includes the signal selection unit 30, and the target signal selection unit includes the signal selection unit 30 and the learning addition unit 62 of the management unit 60.
The signal selection unit 30 determines an angle range in which knocking may occur from the target signal or the determination signal, and within the determined angle range (cut-out angle range) of the sound pressure signal included in the target signal or the determination signal. A signal cutting out unit 32 for cutting out a sound pressure signal is provided. The signal cut-out unit 32 specifies and cuts out the determined cut-out angle range based on the fact that the length of the target signal or the determination signal is one cycle. The cutting angle range is defined as a sound pressure signal within an angle range of about 90 degrees from the vicinity of an ignition position or TDC (Top Dead Center) specified from the start position of the target signal or the determination signal. In this embodiment, although the cutting angle range remains fixed even if the ignition timing is changed, the cutting angle range may be changed according to the change of the ignition timing.
 スペクトル算出部40は、信号切出部32により切出された対象信号や判定信号に対して時間周波数領域で離散フーリエ変換を行い、周波数成分(スペクトル)を算出する。離散フーリエ変換は、例えば、離散フーリエ変換を高速に計算する高速フーリエ変換(FFT:Fast Fourier Transform)により行われる。 The spectrum calculation unit 40 performs discrete Fourier transform on the target signal or the determination signal extracted by the signal extraction unit 32 in the time frequency domain to calculate a frequency component (spectrum). The discrete Fourier transform is performed, for example, by fast Fourier transform (FFT) that calculates discrete Fourier transform at high speed.
 バイスペクトル算出部41は、スペクトル算出部40が算出した周波数成分からスペクトルに基づく値としてのバイスペクトルを算出する。ここで、時刻tにおける信号切出部32が切り出した音圧信号をx(t)とする。この音圧信号x(t)にFFT処理を施すと、周波数fを変数とするフーリエ係数X(f)が算出される。このフーリエ係数X(f)に基づくバイスペクトルB(f,f)は下記の式(1)で示される。バイスペクトルB(f,f)は、スペクトルの3乗積である。 The bispectrum calculation unit 41 calculates a bispectrum as a value based on a spectrum from the frequency component calculated by the spectrum calculation unit 40. Here, it is assumed that the sound pressure signal cut out by the signal cutting out unit 32 at time t is x (t). When the sound pressure signal x (t) is subjected to FFT processing, a Fourier coefficient X (f) having the frequency f as a variable is calculated. The bispectrum B (f 1 , f 2 ) based on the Fourier coefficient X (f) is expressed by the following equation (1). The bispectrum B (f 1 , f 2 ) is the cube of the spectrum.
Figure JPOXMLDOC01-appb-M000001
 ここで、f,fは周波数、*は複素共役を表している。
Figure JPOXMLDOC01-appb-M000001
Here, f 1 and f 2 represent frequencies, and * represents complex conjugate.
 本実施形態では、第1算出部と第2算出部とはスペクトル算出部40及びバイスペクトル算出部41より構成される。また、第1算出工程及び第2算出工程のいずれも、スペクトル算出処理及びバイスペクトル算出処理より構成される。 In the present embodiment, the first calculation unit and the second calculation unit are configured by the spectrum calculation unit 40 and the bispectrum calculation unit 41. Further, each of the first calculation step and the second calculation step is composed of a spectrum calculation process and a bispectrum calculation process.
 判定部50は、判定信号がノッキングを示す信号であるか否かを判定する。
 ノッキングは、気筒内の一種の共振現象であり、ノッキングが発生すると気筒内に衝撃波が発生し、その衝撃波に起因してエンジンから発せられる振動や音には、その気筒の、複数の固有振動数(共振周波数)の成分とそれらの高調波成分(特に2倍の周波数成分)が含まれる。バイスペクトルでf=fのバイスペクトルは、各周波数における2次の調和成分の大きさを反映している。
The determination unit 50 determines whether the determination signal is a signal indicating knocking.
Knocking is a kind of resonance phenomenon in a cylinder, and when knocking occurs, a shock wave is generated in the cylinder, and the vibration or sound generated from the engine due to the shock wave is a plurality of natural frequencies of the cylinder. The components of (resonance frequency) and their harmonic components (especially double frequency components) are included. The bispectrum of f 1 = f 2 in the bispectrum reflects the magnitude of the second-order harmonic component at each frequency.
 エンジンの気筒の固有振動数(共振周波数)fp,qは、下記の式(2)で示される。 The natural frequency (resonance frequency) f p, q of the cylinder of the engine is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 ただし、Cは音速、Dはボア径、p,qは振動モード、Ρp,qは振動モード(p,q)における定数である。例えば、振動モード(p,q)が(1,0)モードのときP1,0=1.841である。ノッキング判定処理では取得信号の全周波数領域を対象にしてもよい。しかし、ノッキングは、エンジン1に応じて定まる各振動モードのエンジンの気筒の固有振動数に応じて生じるものであるから、固有振動数もしくはその高調波にノッキングに起因する音が生じる。そこで、各振動モードの固有振動数とその周辺や高調波とその周辺を監視することでノッキングの有無の判定が適切になされる。つまり、ノッキング判定処理を行う際、エンジン1に応じて定まる各振動モードのエンジンの固有振動数を含む所定の周波数範囲に、スペクトルやバイスペクトルの範囲を絞り込むことで比較精度の向上や演算負荷の軽減が図られる。例えば、1つの取得信号に対して、(1,0)、(2,0)、(0,1)、(3,0)、(1,1)の5つの振動モードを考慮してスペクトルやバイスペクトルの周波数範囲を絞り込むことで比較精度の向上や演算負荷の軽減を図ることができる。
Figure JPOXMLDOC01-appb-M000002
Where C is the velocity of sound, D is the bore diameter, p and q are vibration modes, and Ρ p and q are constants in vibration mode (p, q). For example, when the vibration mode (p, q) is (1, 0) mode, P 1,0 = 1.841. In the knocking determination process, the entire frequency region of the acquired signal may be targeted. However, since knocking occurs according to the natural frequency of the engine cylinder of each vibration mode determined according to the engine 1, a sound resulting from knocking occurs in the natural frequency or its harmonics. Therefore, the presence or absence of knocking is appropriately determined by monitoring the natural frequency of each vibration mode and the periphery thereof and the harmonics thereof. That is, when performing the knocking determination process, the range of the spectrum or bispectrum is narrowed down to a predetermined frequency range including the natural frequency of the engine of each vibration mode determined according to the engine 1 to improve comparison accuracy or calculation load. Mitigation is planned. For example, for one acquired signal, a spectrum or five vibration modes of (1, 0), (2, 0), (0, 1), (3, 0), and (1, 1) are taken into consideration. By narrowing the frequency range of the bispectrum, it is possible to improve the comparison accuracy and reduce the calculation load.
 判定部50は、複数の対象信号の平均と分散共分散行列を算出する統計パラメータ算出部51と、算出された統計パラメータを用いて対象信号や判定信号を正規化する正規化部52とを備える。また、判定部50は、正規化された対象信号に基づいてノッキング判定用の判定値を算出する判定値算出部53と、ノッキング判定用の判定値と正規化した判定信号とを比較する比較部54とを備える。 The determination unit 50 includes a statistical parameter calculation unit 51 that calculates an average and a variance-covariance matrix of a plurality of target signals, and a normalization unit 52 that normalizes the target signal and the determination signal using the calculated statistical parameters. . In addition, the determination unit 50 calculates a determination value for knocking determination based on the normalized target signal, and a comparison unit that compares the determination value for knocking determination with the normalized determination signal. And 54.
 まず、判定部50は、バイスペクトル算出部41で算出されたバイスペクトルB(f,f)を正規化する。
 統計パラメータ算出部51は、全ての対象信号のバイスペクトルのばらつきが多次元確率分布であると仮定して、全ての対象信号のバイスペクトルのばらつきによる平均と分散共分散とを統計パラメータとして推定(算出)する。このとき、統計パラメータ算出部51は、統計パラメータを、バイスペクトルのうち振動モード別の特徴量(バイスペクトルの周波数成分)が生じる周波数域から算出する。統計パラメータ算出部51は、例えば、複数の対象信号の各々で算出した振動モード別の特徴量から絶対値を算出し、複数の対象信号に対する平均値及び分散共分散行列を算出する。この平均値及び分散共分散行列を使用することで、複数の対象信号に対するマハラノビス距離を算出することができる。分散共分散行列は、バイスペクトルの各周波数成分の平均からの偏差の積の平均値である共分散を配列した行列である。
First, the determination unit 50 normalizes the bispectrum B (f 1 , f 2 ) calculated by the bispectrum calculation unit 41.
The statistical parameter calculation unit 51 assumes that the bispectral variation of all target signals is a multidimensional probability distribution, and estimates the average and the variance covariance due to the bispectral variations of all target signals as statistical parameters ( calculate. At this time, the statistical parameter calculation unit 51 calculates statistical parameters from the frequency range in which the feature amount (frequency component of the bispectrum) of each vibration mode in the bispectrum occurs. For example, the statistical parameter calculation unit 51 calculates an absolute value from the feature amount of each vibration mode calculated for each of the plurality of target signals, and calculates an average value and a variance-covariance matrix for the plurality of target signals. By using this average value and the variance covariance matrix, it is possible to calculate the Mahalanobis distances for a plurality of target signals. The variance-covariance matrix is a matrix in which covariances, which are average values of products of deviations from the averages of the frequency components of the bispectrum, are arranged.
 正規化部52は、対象信号や判定信号のバイスペクトルについてマハラノビス距離を算出する。ここで、マハラノビス距離を算出することで多次元において正規化が行われる。マハラノビス距離の算出に用いられる分散共分散行列は、バイスペクトルの各周波数成分の平均からの偏差の積の平均値である共分散を配列した行列であるから、マハラノビス距離を算出することによって多次元において正規化が行われる。詳述すると、マハラノビス距離の算出に用いる分散共分散行列によって、対象信号や判定信号のスペクトルの各周波数の強度のばらつきがその信号のスペクトルに含まれる各周波数の強度のばらつき(多次元)と比較されて正規化されることとなる。 The normalization unit 52 calculates the Mahalanobis distance for the target signal and the bispectrum of the determination signal. Here, normalization is performed in multiple dimensions by calculating the Mahalanobis distance. Since the variance-covariance matrix used to calculate the Mahalanobis distance is a matrix in which covariances, which are the average value of products of deviations from the average of each frequency component of the bispectrum, are arranged, calculating the Mahalanobis distance is multidimensional. Normalization is performed at. More specifically, the dispersion of the intensity of each frequency of the spectrum of the target signal or judgment signal is compared with the dispersion (multidimensional) of the intensity of each frequency contained in the spectrum of the signal according to the dispersion-covariance matrix used to calculate the Mahalanobis distance And will be normalized.
 正規化部52は、判定値算出処理時は、複数の対象信号のバイスペクトルの全てで複数の対象信号の平均値及び分散共分散行列を用いマハラノビス距離を算出する。これにより、複数の対象信号のバイスペクトルの全てに対するマハラノビス距離が算出される。つまり、統計パラメータに対する対象信号のスペクトルの強度のばらつきが算出される。そして、これら算出されたマハラノビス距離に基づいて、ノッキング判定に用いる判定値が算出される。 At the time of determination value calculation processing, the normalization unit 52 calculates the Mahalanobis distance using the average value and the variance-covariance matrix of a plurality of target signals for all of the bispectrum of the plurality of target signals. Thereby, the Mahalanobis distance for all of the bispectrum of a plurality of target signals is calculated. That is, variation in the intensity of the spectrum of the target signal with respect to the statistical parameter is calculated. Then, based on these calculated Mahalanobis distances, a determination value used for knocking determination is calculated.
 正規化部52は、判定処理時には、判定信号のバイスペクトルについて、複数の対象信号に対する平均値及び分散共分散行列を用いてマハラノビス距離を算出する。
 こうして、多次元におけるばらつきで正規化して得た値として、対象信号や判定信号のスペクトルに含まれる周波数域を正規化した値が得られる。また、含まれる周波数域を正規化することから、振動モードが特定されていない、もしくは、多少ずれていたとしても、判定信号に含まれるノッキング音が抽出される可能性がある。よって、正規化により、判定信号がノッキングを示す信号であるか否かを判定できる可能性の向上が図られる。
At the time of determination processing, the normalization unit 52 calculates the Mahalanobis distance for the bispectrum of the determination signal using an average value and a variance-covariance matrix for a plurality of target signals.
Thus, a value obtained by normalizing the frequency range included in the spectrum of the target signal or the determination signal can be obtained as a value obtained by normalizing with variations in multiple dimensions. In addition, since the frequency range included is normalized, there is a possibility that the knocking noise included in the determination signal may be extracted even if the vibration mode is not specified or slightly deviated. Therefore, normalization improves the possibility of determining whether the determination signal is a signal indicating knocking.
 判定値算出部53は、対象信号のバイスペクトルから得られた正規化後の集合と、判定信号のバイスペクトルから得られた正規化後の値との乖離の度合いを判定する判定値を算出する。ここで、複数の対象信号のバイスペクトルから得られた正規化後の集合は、各対象信号のバイスペクトルについて算出したマハラノビス距離の集合である。また、判定信号のバイスペクトルから得られた正規化後の値は、判定信号のバイスペクトルについて算出したマハラノビス距離の値である。すなわち、判定値算出部53は、複数の対象信号に基づく各マハラノビス距離の集合と、判定信号に基づくマハラノビス距離の値との乖離の度合いを判定する判定値を算出する。 The determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the normalized set obtained from the bispectrum of the target signal and the normalized value obtained from the bispectrum of the determination signal. . Here, the normalized set obtained from the bispectrum of a plurality of target signals is a set of Mahalanobis distances calculated for the bispectrum of each target signal. Also, the normalized value obtained from the bispectrum of the determination signal is the value of the Mahalanobis distance calculated for the bispectrum of the determination signal. That is, the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the set of Mahalanobis distances based on the plurality of target signals and the value of the Mahalanobis distance based on the determination signal.
 判定値算出部53は、複数の対象信号に対して得られた各マハラノビス距離に対してマージンを有するように判定値を算出する。例えば、判定値は、マハラノビス距離の集合の平均値や最大値などに対して、所定値を加算した値や、所定の倍率をかけた値として決定され、算出されたマハラノビス距離に対してマージンを有する。こうして算出された判定値が、判定信号がノッキングを示す信号であるか否かの判定に用いられる。 The determination value calculation unit 53 calculates a determination value so as to have a margin for each of the Mahalanobis distances obtained for a plurality of target signals. For example, the determination value is determined as a value obtained by adding a predetermined value to an average value or a maximum value of a set of Mahalanobis distances, or a value obtained by multiplying a predetermined magnification, and a margin is calculated for the calculated Mahalanobis distance. Have. The determination value thus calculated is used to determine whether the determination signal is a signal indicating knocking.
 比較部54は、判定信号に基づくマハラノビス距離を判定値算出部53で算出された判定値と比較することで、判定信号がノッキングを示す信号であるか否かを判定する。比較部54は、判定信号に基づくマハラノビス距離の値が判定値よりも大きければ、各対象信号に基づくマハラノビス距離の集合に対する乖離の度合いが大きいと判定し、判定信号がノッキングを示す信号である旨を判定する。逆に、比較部54は、判定信号に基づくマハラノビス距離の値が判定値以下であれば、各対象信号に基づくマハラノビス距離の集合に対する乖離の度合いが小さいと判定し、判定信号がノッキングを示す信号ではない旨を判定する。 The comparison unit 54 compares the Mahalanobis distance based on the determination signal with the determination value calculated by the determination value calculation unit 53 to determine whether the determination signal is a signal indicating knocking. If the value of the Mahalanobis distance based on the determination signal is larger than the determination value, the comparison unit 54 determines that the degree of deviation from the set of Mahalanobis distances based on each target signal is high, and the determination signal is a signal indicating knocking Determine Conversely, if the value of the Mahalanobis distance based on the determination signal is equal to or less than the determination value, the comparison unit 54 determines that the degree of deviation from the set of Mahalanobis distances based on each target signal is small, and the determination signal indicates knocking. Determine that it is not.
 次に、図4~図6を参照して、ノッキング判定装置10によるノッキング判定処理について説明する。ノッキング判定処理では、エンジン1の運転条件が一定に保たれて運転されている場合について例示する。運転条件には、エンジン1の回転速度やエンジン機構の変化(例えばバルブ開閉タイミング)、点火タイミング、EGR(Exhaust Gas Recirculation)量変化などのエンジン制御に関する条件、及び、負荷条件などの外的条件が含まれる。例えば、エンジン1の回転速度は、判定信号が得られたときと、複数の対象信号が得られたときとで同じであることが望ましい。なお、本実施形態は、判定精度が低下するおそれはあるが、運転条件が緩やかに変化する場合にも用いることができる。つまり、対象信号の得られたときの回転速度が多少異なっていたとしても、ノッキングの音を含んでいる判定信号を判定可能な範囲の相違であればよい。また、エンジン1から検出されるノッキング以外の音について、相違が小さく抑えられている範囲での相違であれば運転条件の変化は許容される。 Next, the knocking determination process by the knocking determination device 10 will be described with reference to FIGS. 4 to 6. The knocking determination process exemplifies a case where the operating condition of the engine 1 is maintained constant. Operating conditions include conditions related to engine control such as changes in rotational speed of the engine 1 and engine mechanism (for example, valve opening / closing timing), ignition timing, EGR (Exhaust Gas Recirculation) amount changes, and external conditions such as load conditions. included. For example, it is desirable that the rotational speed of the engine 1 be the same when the determination signal is obtained and when a plurality of target signals are obtained. In addition, although there exists a possibility that determination accuracy may fall, this embodiment can be used also when driving | running conditions change gently. That is, even if the rotational speed at the time of obtaining the target signal is somewhat different, it may be a difference within the range where the determination signal including the knocking sound can be determined. In addition, with respect to sounds other than knocking detected from the engine 1, changes in operating conditions are permitted as long as the difference is in the range where the difference is suppressed to a small degree.
 まず、図4を参照して、ノッキング判定装置10によるデータ収集処理について説明する。このデータ収集処理は、データ収集装置5から取得信号が出力されることに応じて行われる。 First, with reference to FIG. 4, data collection processing by the knocking determination device 10 will be described. The data acquisition process is performed in response to the acquisition signal being output from the data acquisition device 5.
 図4に示すように、ノッキング判定装置10は、データ収集装置5から取得信号が出力されると、その出力された取得信号を入力する(ステップS10)とともに、管理部60で取得信号に時刻を関連付けて(ステップS11)、記憶部20の取得信号領域201に時刻順になるように記憶させる(ステップS12)。ここで関連付けられる時刻は、他の取得信号との間の相対順序、及び、相対時間差を特定できるものであればよい。例えば、取得信号には、時刻、カウンター値、時刻に結び付けられる符号などが関連付けられる態様でもよいし、サンプリング間隔d毎の領域を有するリストの所定の位置に取得情報が配置される態様であってもよい。なお管理部60は、前回記憶させた取得信号が判定信号として選択されていないとき、前回記憶させた取得信号を直前の対象信号として追加させる。 As shown in FIG. 4, when the acquisition signal is output from the data collection device 5, the knocking determination device 10 inputs the acquired acquisition signal (step S 10), and the management unit 60 inputs the time to the acquisition signal. In association (step S11), the acquired signal area 201 of the storage unit 20 is stored so as to be in time order (step S12). The time to be associated here may be any one that can specify the relative order with respect to other acquired signals and the relative time difference. For example, the acquisition signal may be in a mode in which the time, a counter value, a code linked to the time, or the like may be associated or acquisition information may be arranged at a predetermined position of a list having an area for each sampling interval d. It is also good. When the previously stored acquisition signal is not selected as the determination signal, the management unit 60 adds the previously stored acquisition signal as the immediately preceding target signal.
 そして、ノッキング判定装置10のデータ整理部63は、記憶部20のデータ整理を行い(ステップS13)、データ収集処理を終了する。データ整理は、記憶部20に記憶されている取得信号、対象信号、判定信号の容量(個数)がそれぞれ予め定められた容量(最大数)を越える場合、時間的に最も古い取得信号を削除する処理などを行う。 Then, the data organizing unit 63 of the knocking determination device 10 organizes the data of the storage unit 20 (step S13), and ends the data collection process. Data organization deletes the oldest acquired signal in time when the capacity (number) of the acquired signal, the target signal, and the determination signal stored in the storage unit 20 exceeds a predetermined capacity (maximum number) respectively. Perform processing etc.
 続いて、図5を参照して、ノッキング判定装置10による判定値算出処理について説明する。この判定値算出処理は、判定信号の選択が行われることに応じて行われる。
 図5に示すように、判定値算出処理が開始されると、ノッキング判定装置10は、信号選択部30で最新の取得信号を判定信号として選択することで取得し(ステップS20)、判定信号の時刻を取得する(ステップS21)。判定信号の時刻は、判定信号に関連付けられた時刻から取得される。続いて、ノッキング判定装置10は信号選択部30で判定信号の時刻との関係に基づく選択条件に適合する複数の対象信号を選択する(ステップS22)。つまり、判定信号との関係が判定信号の時刻との関係に基づく選択条件に適する複数の対象信号が選択される。複数の対象信号が選択されると、ノッキング判定装置10はスペクトル算出部40で、各対象信号のスペクトルを算出する(ステップS23)。算出したスペクトルは記憶部20、例えば対象信号領域202に保持される。また、ノッキング判定装置10はバイスペクトル算出部41で、各対象信号のスペクトルからバイスペクトルを算出する(ステップS24)。バイスペクトル算出部41は、記憶部20に保持された各対象信号のスペクトルから対象信号のバイスペクトルをそれぞれ算出し、算出した各対象信号のバイスペクトルを記憶部20の対象信号領域202に保持する。ノッキング判定装置10は、統計パラメータ算出部51で各対象信号のバイスペクトルからモード別特徴量を抽出する(ステップS25)。すなわち、各対象信号のバイスペクトルからエンジン1の気筒の振動モードに対応する周波数範囲が抽出される。次に、ノッキング判定装置10は、統計パラメータ算出部51で統計パラメータを算出する(ステップS26)。統計パラメータは、複数の対象信号のバイスペクトルから算出される平均(μ)と分散共分散行列(Σ)とからなり、これら平均と分散共分散行列とが振動モード別に算出される。算出された統計パラメータは、記憶部20の判定値領域204に記憶される。ノッキング判定装置10は、ステップS26で算出された統計パラメータに基づいて正規化部52で各対象信号の正規化を行う(ステップS27)。詳述すると、振動モードごとに、各対象信号のマハラノビス距離が算出されることで正規化される。ノッキング判定装置10は、判定値算出部53でモード別判定値を決定し(ステップS28)、判定値算出処理を終了する。
Subsequently, the determination value calculation process by the knocking determination device 10 will be described with reference to FIG. The determination value calculation process is performed in response to selection of the determination signal.
As shown in FIG. 5, when the determination value calculation process is started, the knocking determination device 10 acquires the latest acquisition signal by selecting it as a determination signal by the signal selection unit 30 (step S20). The time is acquired (step S21). The time of the determination signal is obtained from the time associated with the determination signal. Subsequently, the knocking determination device 10 selects a plurality of target signals that match the selection condition based on the relationship with the time of the determination signal in the signal selection unit 30 (step S22). That is, a plurality of target signals suitable for the selection condition based on the relationship with the determination signal based on the relationship with the time of the determination signal are selected. When a plurality of target signals are selected, knocking determination device 10 calculates the spectrum of each target signal in spectrum calculation unit 40 (step S23). The calculated spectrum is held in the storage unit 20, for example, the target signal area 202. Further, the knocking determination device 10 calculates the bispectrum from the spectrum of each target signal in the bispectrum calculation unit 41 (step S24). The bispectrum calculation unit 41 calculates the bispectrum of the target signal from the spectrum of each target signal held in the storage unit 20, and holds the calculated bispectrum of each target signal in the target signal region 202 of the storage unit 20. . In the knocking determination device 10, the statistical parameter calculation unit 51 extracts mode-specific feature quantities from the bispectrum of each target signal (step S25). That is, the frequency range corresponding to the vibration mode of the cylinder of the engine 1 is extracted from the bispectrum of each target signal. Next, the knocking determination device 10 calculates statistical parameters by the statistical parameter calculation unit 51 (step S26). The statistical parameter includes an average (μ) calculated from bispectrum of a plurality of target signals and a variance-covariance matrix (Σ), and the mean and the variance-covariance matrix are calculated for each vibration mode. The calculated statistical parameters are stored in the determination value area 204 of the storage unit 20. In the knocking determination device 10, the normalization unit 52 normalizes each target signal based on the statistical parameters calculated in step S26 (step S27). More specifically, the Mahalanobis distance of each target signal is normalized by calculation for each vibration mode. In the knocking determination device 10, the determination value calculation unit 53 determines the determination value for each mode (step S28), and ends the determination value calculation process.
 統計パラメータを算出した各対象信号にノッキングを示す信号が含まれないか、または、少なければこの統計パラメータに基づき算出されるマハラノビス距離はノッキングを示さない信号への類似度を示す指標となる。よって、ノッキングを示さない信号のマハラノビス距離は小さい値として得られ、ノッキングを示す信号のマハラノビス距離は大きな値として得られることになる。また、振動モードに対応する周波数範囲に対応するマハラノビス距離であれば、その値の増加がノッキングにより生じた大きな音に起因する蓋然性が高くなる。よって、ここで定められた振動モード別の判定値を用いることで判定信号がノッキングを示す信号であるか否かを判定することができるようになる。 If each target signal for which the statistical parameter is calculated does not contain a signal indicating knocking or if it is small, the Mahalanobis distance calculated based on this statistical parameter is an index indicating the similarity to a signal not indicating knocking. Therefore, the Mahalanobis distance of the signal not indicating knocking is obtained as a small value, and the Mahalanobis distance of the signal indicating knocking is obtained as a large value. In addition, if the Mahalanobis distance corresponds to the frequency range corresponding to the vibration mode, the probability that the increase of the value is caused by the loud sound caused by knocking becomes high. Therefore, it is possible to determine whether or not the determination signal is a signal indicating knocking by using the determination value for each vibration mode defined here.
 続いて、図6を参照して、ノッキング判定装置10によるノッキング判定の判定処理(判定工程)について説明する。この判定処理は、判定値算出処理に続いて実行される。
 図6に示すように、判定処理が開始されると、ノッキング判定装置10は、信号選択部30によって選択された判定信号を取得し(ステップS30)、その判定信号の時刻を取得する(ステップS31)。判定信号が取得されると、ノッキング判定装置10は、スペクトル算出部40で判定信号のスペクトルを算出する(ステップS32)。算出したスペクトルは記憶部20の判定信号領域203に保持される。また、ノッキング判定装置10は、バイスペクトル算出部41で判定信号のスペクトルからバイスペクトルを算出する(ステップS33)。算出した判定信号のバイスペクトルは、記憶部20の判定信号領域203に保持される。ノッキング判定装置10は、正規化部52で判定信号のバイスペクトルからモード別特徴量を抽出する(ステップS34)。すなわち、判定信号のバイスペクトルから振動モードに対応する周波数範囲が抽出される。そして、ノッキング判定装置10は、判定値算出処理(ステップS26)で算出された統計パラメータを用いて正規化部52で判定信号の正規化を行う(ステップS35)。詳述すると、振動モードごとに記憶部20から平均(μ)と分散共分散行列(Σ)を選択し、選択した平均(μ)と分散共分散行列(Σ)とに基づいて判定信号のマハラノビス距離が算出されることで正規化される。ノッキング判定装置10は、比較部54で記憶部20から振動モード別の判定値を取得する(ステップS36)とともに、比較部54で判定信号のマハラノビス距離とモード別判定値とを比較する(ステップS37)。つまり、判定信号の各振動モードのマハラノビス距離が、対応する振動モードの判定値と比較される。そして、判定信号のマハラノビス距離が、比較した振動モードの判定値以下であればその振動モードでのノッキングは生じていない旨が判定され、逆に、比較した振動モードの判定値よりも大きければその振動モードでのノッキングが生じている旨が判定される。そして、ノッキング判定装置10は、判定結果を出力して(ステップS38)、判定値算出処理を終了する。出力される判定結果は、例えば、ノッキングが生じているか否かと、ノッキングが生じている、又は、生じていない振動モードである。これにより、エンジン1の調整にかかる利便性の向上が図られる。
Subsequently, determination processing (determination step) of knocking determination by knocking determination apparatus 10 will be described with reference to FIG. This determination process is performed subsequent to the determination value calculation process.
As shown in FIG. 6, when the determination process is started, knocking determination device 10 obtains the determination signal selected by signal selection unit 30 (step S30), and obtains the time of the determination signal (step S31). ). When the determination signal is acquired, the knocking determination device 10 calculates the spectrum of the determination signal by the spectrum calculation unit 40 (step S32). The calculated spectrum is held in the determination signal area 203 of the storage unit 20. Further, the knocking determination device 10 calculates the bispectrum from the spectrum of the determination signal in the bispectrum calculation unit 41 (step S33). The bispectrum of the calculated determination signal is held in the determination signal area 203 of the storage unit 20. The knocking determination device 10 extracts the mode-specific feature amount from the bispectrum of the determination signal in the normalization unit 52 (step S34). That is, the frequency range corresponding to the vibration mode is extracted from the bispectrum of the determination signal. Then, the knocking determination device 10 normalizes the determination signal in the normalization unit 52 using the statistical parameter calculated in the determination value calculation process (step S26) (step S35). More specifically, the mean (μ) and the variance covariance matrix (Σ) are selected from the storage unit 20 for each vibration mode, and the Mahalanobis of the determination signal is selected based on the selected mean (μ) and the variance covariance matrix (Σ). It is normalized by calculating the distance. The knocking determination device 10 obtains the determination value for each vibration mode from the storage unit 20 by the comparison unit 54 (step S36), and compares the Mahalanobis distance of the determination signal with the determination value for each mode by the comparison unit 54 (step S37). ). That is, the Mahalanobis distance of each vibration mode of the determination signal is compared with the determination value of the corresponding vibration mode. Then, if the Mahalanobis distance of the determination signal is less than the determination value of the compared vibration mode, it is determined that knocking has not occurred in the vibration mode, and conversely, if it is larger than the determination value of the compared vibration mode It is determined that knocking has occurred in the vibration mode. Then, knocking determination device 10 outputs the determination result (step S38), and ends the determination value calculation process. The determination result to be output is, for example, whether or not knocking has occurred, and a vibration mode in which knocking has occurred or has not occurred. Thereby, the convenience concerning adjustment of the engine 1 is improved.
 次に、図7と図8を参照して、ノッキング判定装置10における対象信号の更新について説明する。
 まず、図7を参照して、ノッキング判定装置10による対象信号の更新の概略について説明する。
Next, with reference to FIGS. 7 and 8, updating of the target signal in the knocking determination device 10 will be described.
First, with reference to FIG. 7, the outline of the update of the target signal by the knocking determination device 10 will be described.
 ノッキング判定装置10は、順次最新の取得信号が入力されると、その入力された取得信号が次の判定信号として選択される。管理部60は、最新の取得信号が入力されると、それまでの判定信号を直前信号として対象信号に追加する。一方、管理部60は、対象信号が増加して必要数m個を超えるとき、必要数m個を超える数、例えば1つ追加されたときは、多くなった対象信号のうちの最古の対象信号を対象信号から除去する。こうして対象信号が、直前信号から最古信号までの必要数m個だけ選択される。また、最新信号の取得時刻から最古信号の取得時刻までの時間差も「サンプリング期間d×必要数m個」に維持される。 When the latest acquisition signal is sequentially input, the knocking determination device 10 selects the input acquisition signal as the next determination signal. When the latest acquisition signal is input, the management unit 60 adds the determination signal so far to the target signal as the previous signal. On the other hand, when the number of target signals increases and exceeds the required number m, the management unit 60 counts the number of required signals more than m, for example, when one is added, the oldest target of the increased number of target signals. Remove the signal from the signal of interest. In this way, the required number m of target signals from the immediately preceding signal to the oldest signal are selected. In addition, the time difference from the acquisition time of the latest signal to the acquisition time of the oldest signal is also maintained at “sampling period d × m necessary number”.
 つまり、管理部60は、新たに判定信号が選択されることに応じて、前回入力された取得信号を対象信号に追加し、対象信号の最古信号を除去することで対象信号を更新する。なお、対象信号の更新は、新しい判定信号が選択されなくても、ノッキング判定装置10に新しい取得信号が入力されることに応じて行ってもよい。 That is, in response to a new determination signal being selected, the management unit 60 adds the previously acquired acquisition signal to the target signal, and updates the target signal by removing the oldest signal of the target signal. Note that the update of the target signal may be performed in response to the new acquisition signal being input to the knocking determination device 10, even if a new determination signal is not selected.
 図8を参照して、選択された判定信号がノッキングを示す信号であったとき、この判定信号が対象信号に追加されない学習処理について説明する。この学習処理は、判定信号のノッキング判定の終了に続いて実行される。 With reference to FIG. 8, when the selected determination signal is a signal indicating knocking, a learning process in which this determination signal is not added to the target signal will be described. This learning process is performed following the end of the knocking determination of the determination signal.
 学習処理が開始されると、ノッキング判定装置10の管理部60は判定信号の判定結果を取得し(ステップS40)、判定結果がノッキング無しであるか否かを判断する(ステップS41)。ノッキング無しと判断されなかった場合(ステップS41でNO)、学習追加部62は、その判定信号を対象信号に追加しない(ステップS44)。そして学習処理が終了される。 When the learning process is started, the management unit 60 of the knocking determination device 10 acquires the determination result of the determination signal (step S40), and determines whether the determination result is no knocking (step S41). If it is not determined that knocking has not occurred (NO in step S41), the learning addition unit 62 does not add the determination signal to the target signal (step S44). Then, the learning process is ended.
 一方、ノッキング無しと判断された場合(ステップS41でYES)、ノッキング判定装置10の学習追加部62は、その判定信号を対象信号に追加する(ステップS42)。そして、ノッキング判定装置10のデータ整理部63は、データ整理を行い(ステップS43)、学習処理を終了する。 On the other hand, if it is determined that knocking is not present (YES in step S41), the learning addition unit 62 of the knocking determination device 10 adds the determination signal to the target signal (step S42). Then, the data organizing unit 63 of the knocking determination device 10 organizes data (step S43), and ends the learning process.
 これにより、ノッキングを示す信号であるか否かが判定された判定信号に対応する取得信号がノッキングを示す信号である場合、その取得信号が対象信号に含まれないため、ノッキングを示す信号が含まれない可能性が高まる。そして、こうした対象信号に対して判定信号を比較することでノッキング判定の精度が一層高められる。 Thereby, when the acquisition signal corresponding to the determination signal determined to be a signal indicating knocking or not is a signal indicating knocking, the acquisition signal is not included in the target signal, so the signal indicating knocking is included. The possibility of not being Then, the accuracy of the knocking determination can be further enhanced by comparing the determination signal with the target signal.
 以上説明したように、本実施形態によれば、以下に記載の効果を奏することができる。
 (1)ノッキングの有無が判定される判定信号と比較される対象信号が、判定信号との関係(例えば、時間的な関係や運転条件における関係)で定まる条件に基づいて選択される。つまり、判定信号との関係に基づき選択することで、対象信号を判定信号との比較に適したものとして選択することができる。これにより、様々な条件下でノッキング判定を好適に行うことができる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) The target signal to be compared with the determination signal whose presence or absence of knocking is determined is selected based on the condition determined by the relationship with the determination signal (for example, the relationship in time or the operating condition). That is, by selecting based on the relationship with the determination signal, the target signal can be selected as one suitable for comparison with the determination signal. Thereby, knocking determination can be suitably performed under various conditions.
 そして、各対象信号(音や振動など)のスペクトルに基づく値から求めた統計パラメータ(平均・分散共分散行列)を用いて、各対象信号のスペクトルに基づく値を同値の多次元におけるばらつきで正規化して正規化後の値を得るとともに、前記の統計パラメータを用いて判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得る。そして、複数の対象信号についての正規化後の値の集合と判定信号についての正規化後の値との乖離の度合が判定される。つまり、乖離度合いが大きいことで判定信号がノッキングを示す信号であると判定される。なお、多次元におけるばらつきで正規化して得た値の一例として、マハラノビス距離がある。 Then, using statistical parameters (average and variance-covariance matrix) determined from values based on the spectrum of each target signal (such as sound and vibration), values based on the spectrum of each target signal are normalized with variations in multiple dimensions of the same value. To obtain normalized values, and the above statistical parameters are used to normalize values based on the spectrum of the determination signal with variations in multiple dimensions to obtain normalized values. Then, the degree of divergence between the set of normalized values of the plurality of target signals and the normalized value of the determination signal is determined. That is, it is determined that the determination signal is a signal indicating knocking because the degree of deviation is large. In addition, there is a Mahalanobis distance as an example of a value obtained by normalizing with variations in multiple dimensions.
 (2)判定信号がノッキングを示す信号か否かの判定に、周波数における特徴量が大きく表れるバイスペクトルを用いる。これにより、ノッキングの有無を判定することができる。ノッキングは、気筒内の一種の共振現象であり、ノッキングが発生すると気筒内に衝撃波が発生し、エンジンから発せられる振動や音には、その気筒の、複数の固有振動数(共振周波数)の成分とそれらの高調波成分(特に2倍の周波数成分)が含まれる。バイスペクトルは周波数成分の共起関係を反映した特徴量であることから、スペクトルに含まれるノッキングが抽出される可能性が高められる。 (2) The bispectrum in which the feature quantity at the frequency appears largely is used to determine whether the determination signal is a signal indicating knocking or not. Thereby, the presence or absence of knocking can be determined. Knocking is a kind of resonance phenomenon in a cylinder. When knocking occurs, a shock wave is generated in the cylinder, and the vibration or sound emitted from the engine is a component of multiple natural frequencies (resonance frequencies) of the cylinder. And their harmonic components (especially double frequency components). Since the bispectrum is a feature that reflects the co-occurrence relation of frequency components, the possibility of extraction of knocking included in the spectrum is increased.
 また、判定信号がノッキングを示す信号か否かの判定に、ノッキングが現れるエンジン1の気筒の固有振動数を加味して判定することでノッキングの判定精度の向上が図られる。 Further, the determination accuracy of knocking can be improved by making the determination based on the natural frequency of the cylinder of the engine 1 where knocking appears in the determination of whether the determination signal is a signal indicating knocking or not.
 (3)判定信号の得られた時刻に近い時点で取得された取得信号から対象信号が選択される。すなわち、判定信号の取得時刻から時間的に離れている取得信号が対象信号に選択されない。これにより、判定信号の取得時刻から時間的に近いため内燃機関の運転条件が変化していない、又は、変化が小さい可能性の高い取得信号が対象信号として選択され、ノッキングの判定精度の向上が図られる。 (3) The target signal is selected from the acquired signal acquired at a point close to the time when the determination signal is obtained. That is, an acquisition signal that is temporally distant from the acquisition time of the determination signal is not selected as the target signal. As a result, an acquisition signal having a high possibility that the operating condition of the internal combustion engine does not change or the change is small because it is close in time to the acquisition time of the determination signal is selected as the target signal, and the knocking determination accuracy is improved. It is possible.
 また、判定信号の取得時刻から所定の期間内に得られた複数の取得信号から対象信号を所定数選択する。すなわち、判定信号の取得時刻と対象信号の取得時刻との時間間隔を所定の期間内に定めることで、判定信号と対象信号とがそれぞれ取得されたときの内燃機関の運転条件が変化していない、又は、変化が小さい可能性が高い。この対象信号と比較することで判定信号がノッキングを示す信号であるか否かがより適切に判定でできる。 Further, a predetermined number of target signals are selected from a plurality of acquired signals obtained within a predetermined period from the acquisition time of the determination signal. That is, by setting the time interval between the acquisition time of the determination signal and the acquisition time of the target signal within a predetermined period, the operating condition of the internal combustion engine when the determination signal and the target signal are respectively acquired does not change. Or, the change is likely to be small. It is possible to more appropriately determine whether the determination signal is a signal indicating knocking or not by comparing with the target signal.
 (4)判定信号が取得される時点で既に対象信号となる取得信号が取得されているため判定信号がノッキングを示す信号であるか否かの判定を直ちに行う、例えば、ノッキング判定処理をリアルタイムに実行することができる。つまり、判定信号を選択してから判定信号がノッキングを示す信号であるか否かの判定までの時間を短くできる。 (4) Since an acquisition signal to be a target signal is already acquired at the time when the determination signal is acquired, it is immediately determined whether the determination signal is a signal indicating knocking, for example, knocking determination processing in real time It can be done. That is, the time from the selection of the determination signal to the determination as to whether or not the determination signal is a signal indicating knocking can be shortened.
 (5)ノッキングを示すと判定された判定信号に対応する取得信号がそれ以後の選択で対象信号に含まれないため、ノッキングを示す判定信号と対象信号との相対差が大きくなり、対象信号との比較により判定信号がノッキングを示す信号であるか否かがより高い精度で判定される。 (5) Since the acquisition signal corresponding to the determination signal determined to indicate knocking is not included in the target signal in subsequent selection, the relative difference between the determination signal indicating knocking and the target signal is increased, and the target signal It is determined with higher accuracy whether the determination signal is a signal indicating knocking or not by the comparison of.
 (6)判定信号に基づく正規化した値と比較される、複数の対象信号に基づく正規化した値が大きな値となるように、つまりマージンを含むように補正されるため、ノッキングの判定にかかる感度の調整や、精度の向上が図られる。 (6) Since the normalized values based on a plurality of target signals, which are compared with the normalized values based on the determination signal, are corrected to be large values, that is, to include the margin, it takes a determination of knocking Adjustment of sensitivity and improvement of accuracy can be achieved.
 (第2の実施形態)
 以下、図9~図15を参照して、ノッキング判定装置及びノッキング判定方法の第2の実施形態について説明する。この実施形態のノッキング判定装置及びノッキング判定方法は、運転条件毎に事前に取得した対象信号に基づいてノッキング判定処理を行う点が上記第1の実施形態と相違する。以下、第1の実施形態との相違点を中心に説明する。また、説明の便宜上、同様の構成については同じ符号を付し、説明を割愛する。
Second Embodiment
Hereinafter, a second embodiment of the knocking determination device and the knocking determination method will be described with reference to FIGS. 9 to 15. The knocking determination apparatus and the knocking determination method according to this embodiment are different from the first embodiment in that the knocking determination process is performed based on a target signal acquired in advance for each operating condition. Hereinafter, differences from the first embodiment will be mainly described. In addition, for convenience of explanation, the same reference numerals are given to the same configuration, and the description is omitted.
 図9に示す、本実施形態のノッキング判定装置10は、事前信号を取得するデータ収集処理にて事前信号を準備した後に、判定信号のノッキング判定処理を行う。
 まず、図10を参照して、ノッキング判定における事前信号と判定信号との関係について説明する。ノッキング判定装置10は、事前信号を回転速度ごとに所定個数ずつ保持している。例えば、回転速度を1000~5000[r/min]間で100[r/min]ごとに区切り、回転速度毎の事前信号の所定の個数をそれぞれR1000~R5000個とする。そして、判定信号の回転速度が3000[r/min]であるとき、事前信号で同じ回転速度である3000[r/min]の信号が対象信号として選択される。このとき、同じ回転速度の対象信号の数が必要数m個に不足する場合、回転速度が類似する(近い)範囲に含まれる信号(例えば、2900[r/min]や3100[r/min]における信号)も対象信号に選択される。
The knocking determination device 10 of the present embodiment shown in FIG. 9 performs the knocking determination process of the determination signal after preparing the prior signal in the data collection process for acquiring the prior signal.
First, with reference to FIG. 10, the relationship between the advance signal and the determination signal in knocking determination will be described. The knocking determination device 10 holds a predetermined number of advance signals for each rotational speed. For example, the rotational speed is divided into 1000 to 5000 [r / min] every 100 [r / min], and the predetermined number of advance signals for each rotational speed is R 1000 to R 5000, respectively. Then, when the rotation speed of the determination signal is 3000 [r / min], a signal of 3000 [r / min] which is the same rotation speed as the prior signal is selected as the target signal. At this time, when the number of target signals of the same rotation speed is insufficient to the required number m, signals included in a range where the rotation speed is similar (close) (for example, 2900 [r / min] or 3100 [r / min] Signal) is also selected as the target signal.
 図9に示す、ノッキング判定装置10は、データ収集装置5から取得信号、角度情報、及びエンジン1の現在の各種運転条件を取得する。データ収集装置5は、取得信号に、角度情報とエンジンECU2が出力したエンジン1の現在の各種運転条件とを関連付けてノッキング判定装置10に出力する。データ収集装置5は、取得信号の一部または全部の音圧信号に、角度情報及び運転条件を関連付ける。各種運転条件には、エンジン1から発生する音に影響を及ぼす条件、例えば、回転速度、エンジン機構の変化(例えば、バルブ開閉タイミング)、EGR量変化、運転モード、負荷条件などが含まれる。 The knocking determination device 10 shown in FIG. 9 obtains an acquisition signal, angle information, and various current operating conditions of the engine 1 from the data collection device 5. The data acquisition device 5 associates the acquired information with the angle information and the current various operating conditions of the engine 1 output by the engine ECU 2 and outputs the information to the knocking determination device 10. The data acquisition device 5 associates angle information and operating conditions with the sound pressure signal of part or all of the acquired signal. The various operating conditions include conditions that affect the sound generated from the engine 1, for example, rotational speed, engine mechanism change (e.g., valve opening and closing timing), EGR amount change, operation mode, load condition, and the like.
 ノッキング判定装置10の管理部60には、事前追加部61と学習処理部64とデータ整理部65とが備えられ、記憶部20には、事前信号を保持する事前信号領域211と対象信号領域212とが備えられる。ノッキング判定装置10は、判定信号に対するノッキング判定処理に事前信号領域211に保持された事前信号を用いる。 The management unit 60 of the knocking determination device 10 includes a pre-addition unit 61, a learning processing unit 64, and a data organizing unit 65, and the storage unit 20 includes an a priori signal area 211 and a target signal area 212 for holding a prior signal. And are provided. The knocking determination device 10 uses the prior signal held in the prior signal region 211 for the knocking determination process on the determination signal.
 事前追加部61は、ノッキング判定処理の事前に行うデータ収集処理で、ノッキングが発生しない条件の複数の運転条件で運転された各運転条件下でエンジン1から予め取得された取得信号を運転条件ごとに分類し、事前信号領域211に保存する。 The pre-addition unit 61 is a data collection process performed in advance of the knocking determination process, in which acquisition signals acquired in advance from the engine 1 under each of the operating conditions operated under a plurality of operating conditions under the condition that knocking does not occur , And stored in the prior signal area 211.
 学習処理部64は、判定信号がノッキングを示す信号ではないと判定されたとき、その判定信号を、その判定信号の運転条件下で予め取得された取得信号の事前信号領域211に追加する。 When it is determined that the determination signal is not a signal indicating knocking, the learning processing unit 64 adds the determination signal to the prior signal region 211 of the acquisition signal acquired in advance under the operating condition of the determination signal.
 データ整理部65は、事前信号、対象信号、判定信号、及び判定値それぞれを所定の条件に基づいて、削除するなどのデータ整理を行う。
 事前信号領域211は、予め取得した事前信号を運転条件ごとに分類された1又は複数の事前信号として保持する。
The data organizing unit 65 performs data organizing such as deleting each of the advance signal, the target signal, the determination signal, and the determination value based on a predetermined condition.
The prior signal area 211 holds the previously acquired prior signal as one or more prior signals classified for each driving condition.
 対象信号領域212は、判定信号が選択される都度、判定信号の運転条件に同じ、もしくは類似する事前信号から選択された対象信号が保持される。
 続いて、図11を参照して、ノッキング判定装置10によるデータ収集処理について説明する。ノッキング判定装置10は、判定準備において運転中にノッキングが発生しない通常運転条件で回転速度が変更された複数の運転条件で運転されたエンジン1の音圧信号及び角度情報を取得する。この取得は、事前に取得が必要とされる運転条件の種類及び数の事前信号が得られるまで行われる。なお、本実施形態では、変更される運転条件が回転速度の場合について例示するが、変更される運転条件の種類は回転速度以外でもよい。
The target signal area 212 holds the target signal selected from the prior signals that are the same as or similar to the operating conditions of the determination signal each time the determination signal is selected.
Subsequently, the data collection process by the knocking determination device 10 will be described with reference to FIG. The knocking determination device 10 acquires sound pressure signals and angle information of the engine 1 operated under a plurality of operating conditions in which the rotational speed is changed under normal operating conditions in which knocking does not occur during operation in preparation for determination. This acquisition takes place until prior signals of the type and number of operating conditions for which acquisition is required are obtained. In the present embodiment, the case where the operating condition to be changed is the rotational speed is exemplified, but the type of the operating condition to be changed may be other than the rotational speed.
 データ収集処理が開始されると、ノッキング判定装置10は、取得する取得信号の運転条件(回転速度)を設定する(ステップS50)。ノッキング判定装置10で設定される運転条件(回転速度)は、エンジンECU2にも共有されることで、ノッキング判定処理に必要な事前信号が適切に取得できる。ノッキング判定装置10は事前追加部61で取得信号を取得して(ステップS51)、取得信号に関連付けられている運転条件(回転速度)を取得する(ステップS52)。ノッキング判定装置10は事前追加部61で取得信号を運転条件(回転速度)で分類し(ステップS53)、事前信号領域211に運転条件(回転速度)ごとに事前信号として保持させる(ステップS54)。ノッキング判定装置10は事前追加部61で、同じ運転条件で取得信号を取得するか否かを判定する(ステップS55)。ここでは、設定した運転条件(回転速度)の事前信号が予め準備する所定数に達していない場合、さらに取得が必要と判定され、同所定数に達している場合、さらなる取得は必要ないと判定される。ここで、同じ運転条件(回転速度)で取得が必要であると判定されると(ステップS55でYES)、ノッキング判定装置10は処理をステップS51に戻して、以降のステップを実行する。 When the data collection process is started, the knocking determination device 10 sets an operating condition (rotational speed) of an acquisition signal to be acquired (step S50). The operating condition (rotational speed) set by the knocking determination device 10 is shared by the engine ECU 2 so that the advance signal necessary for the knocking determination process can be appropriately acquired. The knocking determination device 10 acquires the acquisition signal by the advance addition unit 61 (step S51), and acquires the operating condition (rotational speed) associated with the acquisition signal (step S52). The knocking determination device 10 classifies the acquired signal according to the operating condition (rotational speed) by the preliminary adding unit 61 (step S53), and causes the preliminary signal area 211 to hold the signal as the preliminary signal for each operating condition (rotational speed) (step S54). In the knocking determination device 10, the advance addition unit 61 determines whether or not the acquisition signal is acquired under the same operating condition (step S55). Here, when the prior signal of the set operating condition (rotational speed) does not reach the predetermined number prepared in advance, it is determined that acquisition is further necessary, and when the predetermined number is reached, it is determined that further acquisition is not necessary. Be done. Here, when it is determined that acquisition is necessary under the same operating condition (rotational speed) (YES in step S55), the knocking determination device 10 returns the process to step S51 and executes the subsequent steps.
 一方、同じ運転条件(回転速度)でさらなる取得は必要ないと判定されると(ステップS55でNO)、ノッキング判定装置10は、運転条件(回転速度)を変更するか否かを判定する(ステップS56)。ここでは、事前信号を取得していない運転条件(回転速度)がある場合、運転条件(回転速度)を変更すると判定され、事前信号を取得していない運転条件(回転速度)がない場合、運転条件(回転速度)を変更しないと判定される。ここで、運転条件(回転速度)を変更すると判定されると(ステップS56でYES)、ノッキング判定装置10は処理をステップS50に戻して、運転条件(回転速度)を事前信号が取得されていない運転条件(回転速度)に設定して以降のステップを実行する。その一方、運転条件(回転速度)を変更しないと判定されると(ステップS56でNO)、各運転条件(回転速度)について所定数の事前信号が保持され、ノッキング判定装置10は、データ整理を行い(ステップS57)データ収集処理を終了する。 On the other hand, when it is determined that no further acquisition is necessary under the same operating condition (rotational speed) (NO in step S55), knocking determination device 10 determines whether to change the operating condition (rotational speed) (step S56). Here, when there is an operating condition (rotational speed) for which the prior signal has not been acquired, it is determined that the operating condition (rotational speed) is changed, and there is no operating condition (rotational speed) for which the prior signal is not acquired. It is determined that the condition (rotational speed) is not changed. Here, when it is determined that the operating condition (rotational speed) is to be changed (YES in step S56), knocking determination device 10 returns the process to step S50, and no advance signal is acquired for the operating condition (rotational speed) Set the operating condition (rotational speed) and execute the subsequent steps. On the other hand, when it is determined that the operating condition (rotational speed) is not changed (NO in step S56), a predetermined number of advance signals are held for each operating condition (rotational speed), and knocking determination device 10 performs data organization The operation (step S57) ends the data collection process.
 これにより、ノッキング判定装置10は、エンジン1を通常運転条件で運転したときの取得信号を回転速度毎に取得する。例えば、回転速度が1000[r/min]のときの取得信号を所定の個数、例えばR1000個を取得し、回転速度を運転条件とした事前信号として事前信号領域211に保持する。同様に、回転速度が1100~5000[r/min]まで100[r/min]毎に取得信号を所定の個数、例えばR1100~R5000個を取得し、回転速度を運転条件とした事前信号として事前信号領域211に保持する。 Thereby, the knocking determination device 10 acquires an acquisition signal when the engine 1 is operated under the normal operation condition, for each rotational speed. For example, a predetermined number, for example, R 1000, of acquired signals when the rotational speed is 1000 [r / min] is acquired and held in the prior signal area 211 as an a priori signal with the rotational speed as the operation condition. Similarly, a predetermined number of acquisition signals, for example, R1100 to R5000, are acquired every 100 [r / min] up to a rotational speed of 1100 to 5000 [r / min], and the advance signal is used as a prior signal with the rotational speed as the operating condition. The signal area 211 is held.
 事前信号が保持されると、ノッキング判定装置10は、エンジン1を試験運転条件で運転したときの取得信号を取得し、この取得した取得信号を判定信号として選択し、選択した判定信号のノッキング判定処理を行う。 When the prior signal is held, knocking determination device 10 acquires an acquisition signal when engine 1 is operated under the test operation condition, selects the acquired acquisition signal as a determination signal, and performs knocking determination on the selected determination signal. Do the processing.
 まず、図12を参照して、ノッキング判定装置10による判定値算出処理について説明する。この判定値算出処理は、判定信号の選択が行われる都度行われる。
 図12に示すように、ノッキング判定装置10は、判定値算出処理が開始されると、信号選択部30で最新の取得信号を判定信号として取得し(ステップS60)、判定信号の運転条件(回転速度)を取得する(ステップS61)。判定信号の運転条件(回転速度)は、判定信号に関連付けられた運転条件から取得される。続いて、ノッキング判定装置10は信号選択部30で、判定信号の運転条件との関係に基づく選択条件33に適合する複数の対象信号を選択する(ステップS62)。つまり、判定信号の運転条件である選択条件33に適合する複数の対象信号が選択される。
First, determination value calculation processing by knocking determination device 10 will be described with reference to FIG. 12. The determination value calculation process is performed each time selection of a determination signal is performed.
As shown in FIG. 12, when the knocking determination device 10 starts the determination value calculation process, the signal selection unit 30 acquires the latest acquisition signal as a determination signal (step S60), and the operating condition of the determination signal (rotation The speed is acquired (step S61). The operating condition (rotational speed) of the determination signal is obtained from the operating condition associated with the determination signal. Subsequently, the knocking determination device 10 selects a plurality of target signals conforming to the selection condition 33 based on the relationship with the operation condition of the determination signal in the signal selection unit 30 (step S62). That is, a plurality of target signals that match the selection condition 33 which is the operating condition of the determination signal are selected.
 例えば、信号選択部30は、判定信号の運転条件としての回転速度が3000[r/min]であるとすると、選択条件33に従って、運転条件としての回転速度が同じく3000[r/min]である事前信号を必要数m個だけ取得し、これを複数の対象信号とする。なお、判定信号と同じ運転条件で事前信号を必要数m個だけ取得できないときは、判定信号の運転条件と類似する運転条件における事前信号も取得される。例えば、回転速度3000[r/min]である事前信号が必要数m個に満たない場合、類似する範囲を回転速度が100[r/min]相違する範囲(2900~3100[r/min]の間)として事前信号を補充し、それでも足りなければ、運転条件の類似するさらに広い範囲において必要数m個の事前信号が取得される。 For example, assuming that the rotational speed as the operating condition of the determination signal is 3000 [r / min], the signal selecting unit 30 similarly has the rotational speed as the operating condition of 3000 [r / min] according to the selection condition 33. The necessary number m of pre-signals are acquired, and these are set as a plurality of target signals. When the required number m of advance signals can not be acquired under the same operation condition as the determination signal, the advance signal under the same operation condition as the operation condition of the determination signal is also acquired. For example, in the case where the number of prior signals having a rotational speed of 3000 [r / min] does not meet the required number of m, the similar range is different by 100 [r / min] in the range (2900 to 3100 [r / min] In the meantime, the preliminary signal is supplemented, and if it is not enough, a necessary number m of preliminary signals are acquired in a similar wider range of operating conditions.
 これ以降の処理手順は第1の実施形態と同様である。すなわち、複数の対象信号が選択されると、ノッキング判定装置10は、スペクトル算出部40で各対象信号のスペクトルを算出し(ステップS23)記憶部20に保持させ、バイスペクトル算出部41で各対象信号のスペクトルからバイスペクトルを算出し(ステップS24)記憶部20に保持させる。ノッキング判定装置10は、統計パラメータ算出部51で各対象信号のバイスペクトルからモード別特徴量を抽出し(ステップS25)、統計パラメータ算出部51で統計パラメータを算出し(ステップS26)記憶部20に保持する。算出された統計パラメータに基づいて正規化部52で各対象信号の正規化(マハラノビス距離の算出)を行い(ステップS27)、判定値算出部53でモード別判定値を決定し(ステップS28)、判定値算出処理を終了する。 The subsequent processing procedure is the same as that of the first embodiment. That is, when a plurality of target signals are selected, knocking determination device 10 calculates the spectrum of each target signal by spectrum calculation unit 40 (step S23) and causes storage unit 20 to hold the spectrum, and bispectral calculation unit 41 makes each target The bispectrum is calculated from the spectrum of the signal (step S24) and stored in the storage unit 20. In the knocking determination device 10, the statistical parameter calculation unit 51 extracts the feature quantity classified by mode from the bispectrum of each target signal (step S25), and the statistical parameter calculation unit 51 calculates statistical parameters (step S26). Hold. The normalization unit 52 normalizes each target signal (calculates the Mahalanobis distance) based on the calculated statistical parameters (step S27), and the determination value calculation unit 53 determines mode-specific determination values (step S28), The determination value calculation process ends.
 続いて、図13を参照して、ノッキング判定装置10による判定処理について説明する。この判定処理は、判定値算出処理に続いて実行される。
 図13に示すように、ノッキング判定装置10は、判定処理が開始されると、信号選択部30によって選択された判定信号を取得し(ステップS70)、判定信号の運転条件(回転速度)を取得する(ステップS71)。判定処理が判定値算出処理に続いて実行されるため、上記ステップS70及びステップS71の処理は、判定値算出処理のステップS60及びステップS61で行われた処理で代替される。なお、運転条件に変化がないなど判定値算出処理を再実行する必要がないとき、判定値算出処理を行わずに判定処理を行ってもよい。その場合、判定値算出処理のステップS60及びステップS61の処理が実行されないため、判定処理でステップS70及びステップS71の処理を実行して判定信号を取得する。また、判定処理で取得した判定信号の運転条件を、対象信号で判定するのが妥当であるかの適合性判断に用いるとよい。
Subsequently, determination processing by the knocking determination device 10 will be described with reference to FIG. This determination process is performed subsequent to the determination value calculation process.
As shown in FIG. 13, when the determination processing is started, knocking determination device 10 obtains the determination signal selected by signal selection unit 30 (step S70), and obtains the operating condition (rotational speed) of the determination signal. (Step S71). Since the determination process is performed subsequent to the determination value calculation process, the processes of steps S70 and S71 are replaced with the processes performed in step S60 and step S61 of the determination value calculation process. In addition, when there is no need to re-execute the determination value calculation process such as no change in the operating conditions, the determination process may be performed without performing the determination value calculation process. In that case, since the process of step S60 and step S61 of the determination value calculation process is not performed, the process of step S70 and step S71 is performed in the determination process to acquire a determination signal. In addition, it is preferable to use the operating condition of the determination signal acquired in the determination process for determining whether the determination based on the target signal is appropriate.
 これ以降の処理手順は第1の実施形態と同様である。すなわち、判定信号が選択されると、ノッキング判定装置10は、スペクトル算出部40で判定信号のスペクトルを算出し(ステップS32)記憶部20に保持させ、バイスペクトル算出部41で判定信号のスペクトルからバイスペクトルを算出し(ステップS33)記憶部20に保持させる。正規化部52で判定信号のバイスペクトルからモード別特徴量を抽出し(ステップS34)、判定値算出処理(ステップS26)で算出された統計パラメータを用いて正規化部52で判定信号の正規化(マハラノビス距離の算出)を行う(ステップS35)。比較部54で記憶部20から振動モード別の判定値を取得し(ステップS36)、比較部54で判定信号のマハラノビス距離とモード別判定値とを比較する(ステップS37)。そして、判定結果を出力して(ステップS38)、判定値算出処理を終了する。 The subsequent processing procedure is the same as that of the first embodiment. That is, when the determination signal is selected, knocking determination apparatus 10 calculates the spectrum of the determination signal by spectrum calculation unit 40 (step S 32) and causes storage unit 20 to hold the spectrum, and bispectrum calculation unit 41 calculates the spectrum of the determination signal The bispectrum is calculated (step S33) and stored in the storage unit 20. The normalization unit 52 extracts feature quantities classified by mode from the bispectrum of the determination signal (step S34), and the normalization unit 52 normalizes the determination signal using the statistical parameters calculated in the determination value calculation process (step S26). (Calculation of the Mahalanobis distance) is performed (step S35). The comparison unit 54 acquires the determination value for each vibration mode from the storage unit 20 (step S36), and the comparison unit 54 compares the Mahalanobis distance of the determination signal with the determination value for each mode (step S37). Then, the determination result is output (step S38), and the determination value calculation process is ended.
 次に、図14と図15を参照して、ノッキング判定装置10における事前信号の学習処理について説明する。
 まず、図14を参照して、ノッキング判定装置10による事前信号の更新の概略について説明する。ノッキング判定装置10は、事前信号領域211に保持されている事前信号に、ノッキング判定処理でノッキングを示す信号でないと判定された判定信号を追加する。例えば、学習処理部64は、判定部50でノッキングを示す信号ではないと判定された運転条件(回転速度)3000[r/min]の判定信号を、回転速度3000[r/min]の事前信号として追加する。また例えば、学習処理部64は、判定部50でノッキングを示す信号ではないと判定された運転条件(回転速度)3050[r/min]の判定信号を事前信号として追加する。このとき、事前信号領域211には運転条件(回転速度)3050[r/min]の事前信号が保持されていないので、新たな運転条件(回転速度)の種類として回転速度3050[r/min]を追加し、この追加した運転条件(回転速度)の回転速度3050[r/min]を事前信号として追加する。
Next, with reference to FIG. 14 and FIG. 15, the learning processing of the advance signal in the knocking determination device 10 will be described.
First, with reference to FIG. 14, an outline of the updating of the advance signal by the knocking determination device 10 will be described. The knocking determination device 10 adds a determination signal determined to be not a signal indicating knocking in the knocking determination process to the prior signal held in the prior signal area 211. For example, the learning processing unit 64 determines the determination signal of the operation condition (rotational speed) 3000 [r / min] determined not to be the signal indicating knocking by the determination unit 50 as the prior signal of the rotational speed 3000 [r / min]. Add as. Further, for example, the learning processing unit 64 adds a determination signal of the operating condition (rotational speed) 3050 [r / min] determined not to be a signal indicating knocking by the determination unit 50 as a priori signal. At this time, since the prior signal of the operating condition (rotational speed) 3050 [r / min] is not held in the prior signal area 211, the rotational speed 3050 [r / min] is selected as the new operating condition (rotational speed). Is added, and the rotational speed 3050 [r / min] of this added operating condition (rotational speed) is added as a prior signal.
 図15を参照して、判定信号を事前信号領域211に追加する学習処理の手順について説明する。この学習処理は、判定信号のノッキング判定処理が終了すると行われる。
 学習処理が開始されると、ノッキング判定装置10は学習処理部64で、判定信号の判定結果を取得し(ステップS40)、判定結果がノッキング無しであるか否かを判断する(ステップS41)。ノッキング無しと判断されなかった場合(ステップS41でNO)、学習処理部64は、その判定信号を事前信号に追加しない(ステップS441)。そして学習処理が終了される。
The procedure of the learning process for adding the determination signal to the prior signal area 211 will be described with reference to FIG. This learning process is performed when the knocking determination process of the determination signal ends.
When the learning process is started, the knocking determination device 10 causes the learning processing unit 64 to obtain the determination result of the determination signal (step S40), and determines whether the determination result is no knocking (step S41). If it is not determined that knocking has not occurred (NO in step S41), the learning processing unit 64 does not add the determination signal to the prior signal (step S441). Then, the learning process is ended.
 一方、ノッキング無しと判断された場合(ステップS41でYES)、ノッキング判定装置10は学習処理部64で、その判定信号を事前信号に追加する(ステップS421)。そして、ノッキング判定装置10はデータ整理部63で、データ整理を行い(ステップS431)、学習処理を終了する。 On the other hand, if it is determined that knocking is not present (YES in step S41), the knocking determination device 10 adds the determination signal to the advance signal in the learning processing unit 64 (step S421). Then, the knocking determination device 10 causes the data organizing unit 63 to organize data (step S431), and ends the learning process.
 このように、学習処理により、運転条件に対する事前信号の数が増加することで、事前信号から選択される対象信号の精度が高まることが期待され、選択された対象信号に比較される判定信号に対するノッキング判定の判定精度の向上が図られる。 In this manner, the learning process is expected to increase the accuracy of the target signal selected from the prior signals by increasing the number of prior signals for the operating conditions, and the determination signal to be compared with the selected target signal. The determination accuracy of the knocking determination can be improved.
 また学習処理により、新たな運転条件(回転速度)の種類が追加されることで、判定信号がより運転条件の類似する事前信号と比較される可能性が高まるため、ノッキング判定の判定精度の向上が図られる。 In addition, by adding a new type of operating condition (rotational speed) by learning processing, the possibility that the determination signal is compared with the prior signal that is more similar to the operating condition is increased, so the determination accuracy of knocking determination is improved. Is taken.
 以上説明したように、本実施形態によれば、第1の実施形態の(2)及び(6)に記載の効果に加え、以下に記載の効果を奏することができる。
 (7)ノッキングの有無が判定される判定信号と比較される対象信号が、判定信号との関係(運転条件における関係)で定まる条件に基づいて選択される。つまり、判定信号との関係に基づき対象信号を選択することにより、対象信号を判定信号との比較に適したものとして選択することができる。これにより、様々な条件下でノッキング判定を好適に行うことができる。
As described above, according to the present embodiment, in addition to the effects described in (2) and (6) of the first embodiment, the effects described below can be exhibited.
(7) The target signal to be compared with the determination signal whose presence or absence of knocking is determined is selected based on the condition determined by the relationship with the determination signal (the relationship in the operating condition). That is, by selecting the target signal based on the relationship with the determination signal, the target signal can be selected as one suitable for comparison with the determination signal. Thereby, knocking determination can be suitably performed under various conditions.
 (8)判定信号が取得される時点で既に対象信号となる事前信号が取得されているため判定信号がノッキングを示す信号であるか否かの判定を直ちに行う、例えば、ノッキング判定処理をリアルタイムに実行することができる。つまり、判定信号を選択してから判定信号がノッキングを示す信号であるか否かの判定までの時間を短くできる。 (8) Since the prior signal to be the target signal has already been acquired when the determination signal is acquired, it is immediately determined whether the determination signal is a signal indicating knocking, for example, knocking determination processing in real time It can be done. That is, the time from the selection of the determination signal to the determination as to whether or not the determination signal is a signal indicating knocking can be shortened.
 (9)取得信号がノッキングを含まないとして複数の運転条件で予め取得されているから、判定信号がノッキングを示す信号であるか否かの判定に適切な運転条件の対象信号を取得することができる。 (9) Since the acquisition signal is acquired in advance under a plurality of operating conditions as not including knocking, it is possible to acquire a target signal of the operating condition suitable for determining whether the determination signal is a signal indicating knocking or not. it can.
 また、判定信号の運転条件に関連性の高い運転条件を有する信号が対象信号として取得されて、これらが判定信号と比較される。これにより、運転条件が逐次変化するなかで取得された判定信号について、その取得時の運転条件に近い運転条件を備える対象信号が選択されてノッキングの判定が好適に行われる。 Also, signals having operating conditions highly relevant to the operating conditions of the determination signal are acquired as target signals, and these are compared with the determination signal. As a result, for the determination signal acquired while the operating condition changes sequentially, the target signal having the operating condition close to the operating condition at the time of acquisition is selected, and the knocking determination is suitably performed.
 (10)エンジン1の回転速度によって運転条件の関連性が判定できる。エンジン1の回転速度はエンジン1に生じる音の大きさや周波数にも影響することから、エンジン1の回転速度が近い対象信号と取得信号とを比較することでノッキングの判定精度の向上が図られる。 (10) The relevance of the operating conditions can be determined by the rotational speed of the engine 1. Since the rotational speed of the engine 1 also affects the magnitude and frequency of the sound generated in the engine 1, the determination accuracy of knocking can be improved by comparing the acquired signal with a target signal having a similar rotational speed of the engine 1.
 (11)ノッキングが生じていない判定信号が事前信号に追加されるため、事前信号の充実が図られてノッキングの判定精度の向上が図られる。また、事前信号に、新たな運転条件の事前信号を追加することもできる。 (11) Since the determination signal in which knocking has not occurred is added to the prior signal, the prior signal can be enhanced to improve the determination accuracy of knocking. Also, the advance signal may be added with an advance signal of a new operating condition.
 (第3の実施形態)
 以下、図16~図18を参照して、ノッキング判定装置及びノッキング判定方法の第3の実施形態について説明する。この実施形態のノッキング判定装置及びノッキング判定方法は、バイスペクトルを算出せずに、スペクトルを正規化してノッキング判定処理を行う点が上記第1や第2の実施形態と相違する。以下、説明の便宜上、第1の実施形態との相違点を中心に説明し、同様の構成については同じ符号を付し、説明を割愛する。
Third Embodiment
The third embodiment of the knocking determination device and the knocking determination method will be described below with reference to FIGS. 16 to 18. The knocking determination apparatus and the knocking determination method according to this embodiment are different from the first and second embodiments in that the knocking determination process is performed by normalizing the spectrum without calculating the bispectrum. Hereinafter, for convenience of explanation, differences from the first embodiment will be mainly described, and the same reference numerals are given to the same configurations, and the description will be omitted.
 図16を参照して、ノッキング判定装置10について説明する。
 ノッキング判定装置10は、第1の実施形態と同様に、記憶部20と、管理部60と、信号選択部30と、スペクトル算出部40と、判定部50とを備えている一方、バイスペクトル算出部41を備えていない。本実施形態では、第1算出部と第2算出部とはスペクトル算出部40より構成される。
The knocking determination device 10 will be described with reference to FIG.
The knocking determination device 10 includes the storage unit 20, the management unit 60, the signal selection unit 30, the spectrum calculation unit 40, and the determination unit 50, as in the first embodiment, while the bispectral calculation is performed. The unit 41 is not provided. In the present embodiment, the first calculation unit and the second calculation unit are configured by the spectrum calculation unit 40.
 よって、判定部50は、スペクトル算出部40で算出されたスペクトルをスペクトルに基づく値として正規化する。
 すなわち、統計パラメータ算出部51は、全ての対象信号のスペクトルのばらつきが多次元確率分布であると仮定して、全ての対象信号のスペクトルのばらつきによる平均と分散共分散を統計パラメータとして推定(算出)する。このとき、統計パラメータ算出部51は、統計パラメータを、スペクトルのうち振動モード別の特徴量(スペクトルの周波数成分)が生じる周波数域から算出する。
Therefore, the determination unit 50 normalizes the spectrum calculated by the spectrum calculation unit 40 as a value based on the spectrum.
That is, assuming that the dispersion of spectra of all target signals is a multidimensional probability distribution, the statistical parameter calculation unit 51 estimates (calculates an average and a variance covariance due to the dispersion of spectra of all target signals as statistical parameters (calculation ). At this time, the statistical parameter calculation unit 51 calculates statistical parameters from a frequency range in which a feature amount (frequency component of spectrum) in each vibration mode in the spectrum is generated.
 また、正規化部52は、対象信号や判定信号のスペクトルについてマハラノビス距離を算出する。マハラノビス距離の算出に用いられる分散共分散行列は、スペクトルの各周波数成分の平均からの偏差の積の平均値である共分散を配列した行列であることから、マハラノビス距離を算出することで多次元において正規化が行われる。 In addition, the normalization unit 52 calculates the Mahalanobis distance for the spectrum of the target signal or the determination signal. The variance-covariance matrix used to calculate the Mahalanobis distance is a matrix in which covariances, which are the mean value of products of deviations from the average of each frequency component of the spectrum, are arrayed, so calculating the Mahalanobis distance is multidimensional. Normalization is performed at.
 正規化部52は、判定値算出処理時は、複数の対象信号のスペクトルの全てについてマハラノビス距離を算出する。そして、これら算出されたマハラノビス距離に基づいて、ノッキング判定に用いる判定値が算出される。 At the time of determination value calculation processing, the normalization unit 52 calculates the Mahalanobis distance for all of the spectra of the plurality of target signals. Then, based on these calculated Mahalanobis distances, a determination value used for knocking determination is calculated.
 正規化部52は、判定処理時には、判定信号のスペクトルについて、判定信号に対するマハラノビス距離を算出する。
 さらに、判定値算出部53は、対象信号のスペクトルから得られた正規化後の集合と、判定信号のスペクトルから得られた正規化後の値との乖離の度合いを判定する判定値を算出する。ここで、複数の対象信号のスペクトルから得られた正規化後の集合は、各対象信号のスペクトルについて算出したマハラノビス距離の集合である。また、判定信号のスペクトルから得られた正規化後の値は、判定信号のスペクトルについて算出したマハラノビス距離の値である。すなわち、判定値算出部53は、複数の対象信号に基づく各マハラノビス距離の集合と、判定信号に基づくマハラノビス距離の値との乖離の度合いを判定する判定値を算出する。判定値算出部53は、複数の対象信号に基づいて得られたマハラノビス距離に対してマージンを有するように判定値を算出する。
At the time of determination processing, the normalization unit 52 calculates the Mahalanobis distance with respect to the determination signal with respect to the spectrum of the determination signal.
Furthermore, the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the normalized set obtained from the spectrum of the target signal and the normalized value obtained from the spectrum of the determination signal. . Here, the normalized set obtained from the spectra of a plurality of target signals is a set of Mahalanobis distances calculated for the spectra of each target signal. Also, the normalized value obtained from the spectrum of the determination signal is the value of the Mahalanobis distance calculated for the spectrum of the determination signal. That is, the determination value calculation unit 53 calculates a determination value that determines the degree of divergence between the set of Mahalanobis distances based on the plurality of target signals and the value of the Mahalanobis distance based on the determination signal. The determination value calculation unit 53 calculates a determination value so as to have a margin for the Mahalanobis distance obtained based on a plurality of target signals.
 また、比較部54は、判定信号のスペクトルに基づくマハラノビス距離を判定値算出部53で算出された判定値と比較することに基づいて、判定信号がノッキングを示す信号であるか否かを判定する。 Further, the comparison unit 54 determines whether the determination signal is a signal indicating knocking or not based on comparing the Mahalanobis distance based on the spectrum of the determination signal with the determination value calculated by the determination value calculation unit 53. .
 このように、対象信号のスペクトルを正規化した値、及び判定信号のスペクトルを正規化した値によっても、判定信号がノッキングを示す信号であるか否かが判定される。
 次に、図17を参照して、ノッキング判定装置10による判定値算出処理について説明する。なお、本実施形態の判定値算出処理は、第1の実施形態の判定値算出処理に対して、バイスペクトル算出(ステップS24)の手順が除かれた点のみが相違する。
As described above, whether or not the determination signal is a signal indicating knocking is also determined by the value obtained by normalizing the spectrum of the target signal and the value obtained by normalizing the spectrum of the determination signal.
Next, with reference to FIG. 17, the determination value calculation process by the knocking determination device 10 will be described. The determination value calculation process of the present embodiment is different from the determination value calculation process of the first embodiment only in that the procedure of the bispectrum calculation (step S24) is removed.
 すなわち、図17に示すように、判定値算出処理が開始されると、ノッキング判定装置10は信号選択部30で、最新の取得信号を判定信号として選択し取得するとともに(ステップS20)、判定信号の時刻を取得する(ステップS21)。続いて、信号選択部30で、判定信号の時刻との関係に基づく選択条件に適合する複数の対象信号を選択し(ステップS22)、選択した各対象信号のスペクトルを算出する(ステップS23)。 That is, as shown in FIG. 17, when the determination value calculation process is started, the knocking determination device 10 selects and acquires the latest acquisition signal as a determination signal in the signal selection unit 30 (step S20) Time is acquired (step S21). Subsequently, the signal selection unit 30 selects a plurality of target signals that match the selection condition based on the relationship with the time of the determination signal (step S22), and calculates the spectrum of each selected target signal (step S23).
 そして、ノッキング判定装置10は統計パラメータ算出部51で、各対象信号のスペクトルからモード別特徴量を抽出して(ステップS25)、各対象信号のスペクトルからエンジン1の振動モードに対応する周波数範囲に対する統計パラメータを算出する(ステップS26)。正規化部52で、ステップS26で算出された統計パラメータに基づいて各対象信号の正規化を行い(ステップS27)、判定値算出部53で、振動モードごとの各対象信号のマハラノビス距離からモード別判定値を決定し(ステップS28)、判定値算出処理が終了する。 Then, the knocking determination device 10 uses the statistical parameter calculation unit 51 to extract the mode-specific feature quantities from the spectrum of each target signal (step S25), and calculate the frequency range corresponding to the vibration mode of the engine 1 from the spectrum of each target signal. Statistical parameters are calculated (step S26). The normalization unit 52 normalizes each target signal based on the statistical parameters calculated in step S26 (step S27), and the determination value calculation unit 53 compares the Mahalanobis distance of each target signal for each vibration mode by mode. The determination value is determined (step S28), and the determination value calculation process ends.
 続いて、図18を参照して、ノッキング判定装置10による判定処理について説明する。この判定処理は、判定値算出処理に続いて実行される。なお、本実施形態の判定処理は、第1の実施形態の判定処理に対して、バイスペクトル算出(ステップS33)の手順が除かれた点のみが相違する。 Subsequently, the determination process by the knocking determination apparatus 10 will be described with reference to FIG. This determination process is performed subsequent to the determination value calculation process. The determination process of the present embodiment is different from the determination process of the first embodiment only in that the procedure of the bispectrum calculation (step S33) is removed.
 すなわち、図18に示すように、判定処理が開始されると、ノッキング判定装置10は、信号選択部30によって選択された前記判定信号を取得し(ステップS30)、判定信号の時刻を取得する(ステップS31)。そしてスペクトル算出部40で、判定信号のスペクトルを算出する(ステップS32)。正規化部52で、判定信号のスペクトルからモード別特徴量を抽出して(ステップS34)、エンジン1の振動モードに対応する周波数範囲に対応する統計パラメータを用いて判定信号のスペクトルの正規化を行う(ステップS35)。比較部54で、記憶部20から振動モード別の判定値を取得する(ステップS36)とともに、判定信号のマハラノビス距離とモード別判定値とを比較する(ステップS37)。そして、判定結果を出力して(ステップS38)、判定値算出処理を終了する。 That is, as shown in FIG. 18, when the determination process is started, knocking determination device 10 obtains the determination signal selected by signal selection unit 30 (step S30), and obtains the time of the determination signal (step S30) Step S31). Then, the spectrum calculation unit 40 calculates the spectrum of the determination signal (step S32). The normalization unit 52 extracts mode characteristic quantities from the spectrum of the determination signal (step S34), and normalizes the spectrum of the determination signal using statistical parameters corresponding to the frequency range corresponding to the vibration mode of the engine 1 Perform (step S35). The comparison unit 54 acquires the determination value for each vibration mode from the storage unit 20 (step S36), and compares the Mahalanobis distance of the determination signal with the determination value for each mode (step S37). Then, the determination result is output (step S38), and the determination value calculation process is ended.
 こうして、対象信号のスペクトルを正規化した値、及び判定信号のスペクトルを正規化した値によっても、判定信号がノッキングを示す信号であるか否かが判定される。
 以上説明したように、本実施形態によれば、第1及び第2の実施形態の(1)、(3)~(6)に記載の効果に加え、以下の効果を奏することができる。
In this way, it is also determined whether the determination signal is a signal indicating knocking or not based on the normalized value of the spectrum of the target signal and the normalized value of the spectrum of the determination signal.
As described above, according to the present embodiment, in addition to the effects described in (1) and (3) to (6) of the first and second embodiments, the following effects can be achieved.
 (12)バイスペクトルの算出処理を行わないことにより、処理負荷の増大が抑えられるためリアルタイム性の確保が容易になる。
 (第4の実施形態)
 以下、図19~図21を参照して、ノッキング判定装置及びノッキング判定方法の第4の実施形態について説明する。この実施形態のノッキング判定装置及びノッキング判定方法は、統計パラメータを対象信号から逐次計算することなく更新させる点が上記第1~3の実施形態と相違する。以下、説明の便宜上、第1の実施形態との相違点を中心に説明し、同様の構成については同じ符号を付し、説明を割愛する。
(12) By not performing the bispectral calculation process, an increase in the processing load can be suppressed, and it becomes easy to ensure real-time property.
Fourth Embodiment
The fourth embodiment of the knocking determination device and the knocking determination method will be described below with reference to FIGS. 19 to 21. The knocking determination apparatus and the knocking determination method according to this embodiment are different from the first to third embodiments in that statistical parameters are updated without being sequentially calculated from a target signal. Hereinafter, for convenience of explanation, differences from the first embodiment will be mainly described, and the same reference numerals are given to the same configurations, and the description will be omitted.
 図19を参照して、ノッキング判定装置10について説明する。
 図19に示すように、ノッキング判定装置10は、記憶部20と、信号選択部30と、スペクトル算出部40と、バイスペクトル算出部41と、判定部50とを備えている。
The knocking determination device 10 will be described with reference to FIG.
As shown in FIG. 19, the knocking determination device 10 includes a storage unit 20, a signal selection unit 30, a spectrum calculation unit 40, a bispectrum calculation unit 41, and a determination unit 50.
 記憶部20には、取得信号領域201と、判定信号領域203と、判定値領域204と、ノッキング判定に用いられる統計パラメータに関する記憶領域である統計パラメータ領域213とが設けられている。 The storage unit 20 is provided with an acquisition signal area 201, a determination signal area 203, a determination value area 204, and a statistical parameter area 213 which is a storage area related to statistical parameters used for knocking determination.
 統計パラメータ領域213には、判定部50で算出される統計パラメータが保持されるとともに、統計パラメータの初期値も保持される。統計パラメータの初期値としては、予め設定された値や、第1~3の実施形態に記載された態様で算出された値などが挙げられる。 The statistical parameter area 213 holds the statistical parameter calculated by the determination unit 50 and also holds the initial value of the statistical parameter. As the initial value of the statistical parameter, a value set in advance, a value calculated in the mode described in the first to third embodiments, and the like can be mentioned.
 信号選択部30は、信号切出部32を備える。信号選択部30は、判定信号を選択する条件に基づいて、取得信号のうち最新の信号をノッキングの有無が判定される判定信号として選択する。 The signal selection unit 30 includes a signal extraction unit 32. The signal selection unit 30 selects, based on the condition for selecting the determination signal, the latest signal among the acquired signals as a determination signal for which the presence or absence of knocking is determined.
 判定部50は、対象信号選択部及び更新部としての統計パラメータ算出部51Aと、算出部としての正規化部52と、判定値取得部53Aと、判定部としての比較部54とを備える。 The determination unit 50 includes a statistical parameter calculation unit 51A as a target signal selection unit and an update unit, a normalization unit 52 as a calculation unit, a determination value acquisition unit 53A, and a comparison unit 54 as a determination unit.
 統計パラメータ算出部51Aは、第1の実施形態に記載するように、全ての対象信号のバイスペクトルのばらつきが多次元確率分布であると仮定して、全ての対象信号のバイスペクトルのばらつきによる平均と分散共分散とを統計パラメータとして推定(算出)する。本実施形態では、統計パラメータ算出部51Aは、実際に全ての対象信号を用いて演算を行うのではなく、全ての対象信号を用いて演算したことと等価になる方法により統計パラメータを算出する。 The statistical parameter calculation unit 51A, as described in the first embodiment, assumes that the variation of the bispectrum of all the target signals is a multidimensional probability distribution, and averages the variation of the bispectrum of all the target signals. And the variance / covariance as statistical parameters. In the present embodiment, the statistical parameter calculation unit 51A does not actually calculate using all target signals, but calculates statistical parameters by a method equivalent to calculation using all target signals.
 図20を参照して、統計パラメータ算出部51Aについて説明する。ここで、判定信号に一番近い過去に直前信号が存在し、直前信号よりも過去に複数の対象信号が存在するものとする。まず、複数の対象信号から取得された各スペクトルに基づいて前回の統計パラメータ(平均、分散共分散)が算出されているものとする。これの複数の対象信号に、所定の条件にある新たな直前信号が加えられるとき、直前信号のスペクトルが算出され、この算出された直前信号のスペクトルが統計パラメータ算出部51Aに入力される。所定の条件とは、判定信号との関係で言えば、判定信号の直前に対応する信号であることである。 The statistical parameter calculation unit 51A will be described with reference to FIG. Here, it is assumed that the immediately preceding signal is present in the past closest to the determination signal, and a plurality of target signals are present in the past relative to the immediately preceding signal. First, it is assumed that the previous statistical parameters (average, variance covariance) are calculated based on each spectrum acquired from a plurality of target signals. When a new immediately preceding signal under predetermined conditions is added to the plurality of target signals, the spectrum of the immediately preceding signal is calculated, and the calculated spectrum of the immediately preceding signal is input to the statistical parameter calculation unit 51A. The predetermined condition is that the signal corresponds to the position immediately before the determination signal in terms of the determination signal.
 統計パラメータ算出部51Aは、入力された直前信号のスペクトルで統計パラメータを更新する。すなわち、統計パラメータ算出部51Aは、直前信号のスペクトルから得られる値を、統計パラメータ(平均、分散共分散)の対応するパラメータに反映させて、統計パラメータを更新して新たな統計パラメータを得る更新処理を行う。例えば、統計パラメータ算出部51Aは、直前信号のスペクトルから得られる値には「α」の重みを与え、古い統計パラメータ(平均)の値には「1-α」の重みを与えて、平均の更新処理を行う。これにより、新たな統計パラメータは、直前信号の寄与度が統計パラメータの寄与度よりも大きいものになる。こうした統計パラメータの更新処理が繰り返されることで、統計パラメータへの寄与度は、直前信号が一番大きく、過去の信号になるほど順に小さくなる。 The statistical parameter calculation unit 51A updates the statistical parameter with the spectrum of the immediately preceding signal input. That is, the statistical parameter calculation unit 51A updates the statistical parameter to obtain a new statistical parameter by reflecting the value obtained from the spectrum of the previous signal on the corresponding parameter of the statistical parameter (average, variance covariance) Do the processing. For example, the statistical parameter calculation unit 51A gives a weight of “α” to the value obtained from the spectrum of the immediately preceding signal, gives a weight of “1-α” to the value of the old statistical parameter (average), Perform update processing. Thus, the new statistical parameter is such that the contribution of the immediately preceding signal is greater than the contribution of the statistical parameter. As the statistical parameter updating process is repeated, the degree of contribution to the statistical parameter becomes smaller as the previous signal is the largest and the past signal.
 正規化部52は、判定信号のバイスペクトルについてマハラノビス距離を算出する。すなわち、正規化部52は、判定処理時には、統計パラメータに基づいて判定信号のバイスペクトルについてのマハラノビス距離を算出する。 The normalization unit 52 calculates the Mahalanobis distance for the bispectrum of the determination signal. That is, at the time of determination processing, the normalization unit 52 calculates the Mahalanobis distance for the bispectrum of the determination signal based on the statistical parameter.
 判定値取得部53Aは、算出されたマハラノビス距離と比較する判定値を記憶部20の判定値領域204から取得する。
 比較部54は、判定信号に基づくマハラノビス距離を判定値取得部53Aで取得された判定値と比較することに基づいて、判定信号がノッキングを示す信号であるか否かを判定する。
The determination value acquisition unit 53A acquires a determination value to be compared with the calculated Mahalanobis distance from the determination value area 204 of the storage unit 20.
The comparison unit 54 determines whether or not the determination signal is a signal indicating knocking, on the basis of comparing the Mahalanobis distance based on the determination signal with the determination value acquired by the determination value acquisition unit 53A.
 図21を参照して、統計パラメータの更新処理について説明する。この更新処理は、判定信号のノッキング判定の終了に続いて実行される。
 更新処理が開始されると、ノッキング判定装置10のパラメータ算出部51Aは、判定信号の判定結果を取得し(ステップS40)、判定結果がノッキング無しであるか否かを判断する(ステップS41)。ノッキング有りと判断された場合(ステップS41でNO)、パラメータ算出部51Aは、統計パラメータを更新しない(ステップS46)。一方、ノッキング無しと判断された場合(ステップS41でYES)、パラメータ算出部51Aは、統計パラメータを更新する(ステップS45)。そして、統計パラメータの更新処理は終了される。
The statistical parameter update process will be described with reference to FIG. This update process is performed following the end of the knocking determination of the determination signal.
When the update process is started, the parameter calculation unit 51A of the knocking determination device 10 acquires the determination result of the determination signal (step S40), and determines whether the determination result is no knocking (step S41). If it is determined that knocking is present (NO in step S41), the parameter calculation unit 51A does not update statistical parameters (step S46). On the other hand, if it is determined that knocking is not present (YES in step S41), the parameter calculation unit 51A updates the statistical parameter (step S45). Then, the statistical parameter update process is ended.
 以上説明したように、本実施形態によれば、第1の実施形態の(1)~(6)に記載の効果に加え、以下の効果を奏することができる。
 (13)統計パラメータ自身を更新させることで、統計パラメータの算出に必要な過去の取得信号や対象信号の保持数を減らすことができる。つまり、対象信号の管理や選択にかかる手間を減らすことができる。例えば所定数の信号の適切な維持管理を不要にすることもできる。また、過去に算出された統計パラメータを利用するため、対象信号からの統計パラメータを算出する処理を軽減させるなど、処理負荷の軽減も図られる。
As described above, according to the present embodiment, in addition to the effects described in (1) to (6) of the first embodiment, the following effects can be achieved.
(13) By updating the statistical parameter itself, it is possible to reduce the number of past acquired signals and target signals required for calculating the statistical parameter. That is, it is possible to reduce the time and effort required to manage and select the target signal. For example, proper maintenance of a predetermined number of signals may be unnecessary. In addition, since the statistical parameters calculated in the past are used, the processing load can be reduced, for example, by reducing the process of calculating statistical parameters from the target signal.
 (14)統計パラメータを更新するときの重みを調整することで、ノッキング判定に係る応答性や安定性、精度などを調整することができる。
 (その他の実施形態)
 なお、上記各実施形態は、これを適宜変更した以下の形態にて実施することもできる。
(14) By adjusting the weight at the time of updating the statistical parameter, it is possible to adjust the responsiveness, stability, accuracy and the like related to knocking determination.
(Other embodiments)
In addition, said each embodiment can also be implemented with the following forms which changed this suitably.
 ・上記各実施形態では、判定処理のステップS37において、判定値として算出されたマハラノビス距離と比較することによってノッキングが発生しているか否かを判定した。しかしながら、ステップS37の比較を行わず、判定信号に基づいて算出されたマハラノビス距離を単に異常値を判定するために定めた値と比較することによってノッキングが発生しているか否かを判定してもよい。 In the above-described embodiments, in step S37 of the determination process, it is determined whether knocking has occurred by comparison with the Mahalanobis distance calculated as the determination value. However, even if it is determined whether or not knocking has occurred by comparing the Mahalanobis distance calculated based on the determination signal with a value determined merely to determine an abnormal value without performing the comparison in step S37. Good.
 ・上記各実施形態では、多次元確率分布であると仮定してマハラノビス距離を求める場合について例示したが、多次元確率分布を混合ガウス分布等の他の多次元確立分布を仮定してその生起確率によってノッキングが発生しているか否かを判定してもよい。なお、他の多次元確率分布のときは、確率密度関数の対数をとった値を異常度とする。 -In each said embodiment, although illustrated about the case where a Mahalanobis distance is calculated | required on the assumption that it is multidimensional probability distribution, multidimensional probability distribution assumed the occurrence probability that assumed other multidimensional probability distributions, such as mixing Gaussian distribution, It may be determined whether knocking is occurring or not. In the case of other multidimensional probability distributions, the value obtained by taking the logarithm of the probability density function is taken as the anomalous degree.
 ・上記第1~3の実施形態において、統計パラメータにおける分散共分散行列の算出を、MCD(Minimum-Covariance-Determination)法によって行ってもよい。 In the first to third embodiments, calculation of the variance-covariance matrix in the statistical parameters may be performed by a minimum-covariance-determination (MCD) method.
 ・上記第1の実施形態では、ノッキングを示す信号ではないと判定された判定信号に対応する取得信号が対象信号に追加される場合について例示した。しかしこれに限らず、ノッキング判定結果に係わらず、判定信号に対応する取得信号を対象信号に追加してもよい。ノッキングを示す信号が対象信号に追加されるとノッキング判定の精度が低下するおそれがあるが、他の対象信号がノッキングを示す信号ではなければ、この対象信号を用いても判定信号からノッキングを示す信号を判定することができる場合もある。 In the first embodiment, the case where the acquisition signal corresponding to the determination signal determined not to be the signal indicating knocking is added to the target signal is illustrated. However, the present invention is not limited to this, and regardless of the knocking determination result, an acquired signal corresponding to the determination signal may be added to the target signal. If a signal indicating knocking is added to the target signal, the accuracy of the knocking determination may decrease, but if the other target signal is not a signal indicating knocking, the target signal indicates knocking from the determination signal. In some cases the signal can be determined.
 ・上記第2の実施形態では、ノッキングを示す信号ではないと判定された判定信号に対応する取得信号が事前信号に追加される場合について例示した。しかしこれに限らず、ノッキング判定結果に係わらず、判定信号や取得信号を事前信号に追加してもよい。この場合も上記と同様に、事前信号に基づいてノッキング判定処理を行うことができる場合がある。 In the second embodiment, the case where the acquired signal corresponding to the determination signal determined not to be the signal indicating knocking is added to the prior signal is illustrated. However, the present invention is not limited to this, and the determination signal or the acquisition signal may be added to the advance signal regardless of the knocking determination result. Also in this case, the knocking determination process may be performed based on the advance signal, as described above.
 ・上記第2の実施形態では、ノッキング判定装置10は、エンジン1の回転速度を100[r/min]ずつ変化させ、事前信号を回転速度ごとに所定個数ずつ保持する場合について例示した。しかしこれに限らず、ノッキング判定装置は、エンジンの回転速度をスイープ変化させ、事前信号を取得し保持してもよい。この場合、信号選択部は、判定信号に回転速度が近い所定個数の信号を対象信号として選択する。また、エンジンの回転速度は、低速方向もしくは高速方向の一方向に変化させてもよいし、低速方向と高速方向とを繰り返すように変化させてもよい。こうした事前信号でも、判定信号に近い回転速度に対応する事前信号を必要数だけ対象信号として選択することができる。 In the second embodiment, the knocking determination device 10 changes the rotational speed of the engine 1 by 100 [r / min], and holds a predetermined number of advance signals for each rotational speed. However, the present invention is not limited to this, and the knocking determination device may sweep-change the rotational speed of the engine to acquire and hold the advance signal. In this case, the signal selection unit selects a predetermined number of signals whose rotational speed is close to the determination signal as the target signal. Further, the rotational speed of the engine may be changed in one direction of the low speed direction or the high speed direction, or may be changed to repeat the low speed direction and the high speed direction. Even with such advance signals, it is possible to select the required number of advance signals corresponding to the rotational speed close to the determination signal as target signals.
 ・上記第2の実施形態では、ノッキングを示す信号ではないと判定された判定信号に対応する取得信号が事前信号に追加される場合について例示した。しかしこれに限らず、ノッキング判定結果に係わらず、判定信号に対応する取得信号を事前信号に追加しなくてもよい。この場合であれ、既存の事前信号に基づいてノッキング判定処理を行うことができる。 In the second embodiment, the case where the acquired signal corresponding to the determination signal determined not to be the signal indicating knocking is added to the prior signal is illustrated. However, the present invention is not limited to this, and regardless of the knocking determination result, the acquisition signal corresponding to the determination signal may not be added to the advance signal. Even in this case, the knocking determination process can be performed based on the existing advance signal.
 ・上記各実施形態は、判定信号や対象信号のスペクトルやバイスペクトルを判定値算出処理や判定処理の都度算出する場合について例示した。しかしこれに限らず、判定信号や対象信号のスペクトルやバイスペクトルを予め算出し、これを記憶部に保持していてもよい。これにより、スペクトルやバイスペクトルを算出するタイミングを調整して演算処理の負荷分担をさせることができる。 In each of the above embodiments, the case where the determination signal or the spectrum or bispectrum of the target signal is calculated each time the determination value calculation process or the determination process is illustrated. However, the present invention is not limited to this, and the spectrum or bispectrum of the determination signal or the target signal may be calculated in advance and held in the storage unit. As a result, it is possible to adjust the timing of calculating the spectrum or the bispectrum to share the load of the arithmetic processing.
 例えば、図22に示すように、記憶部20に、取得信号のスペクトルを保持させる取得信号スペクトル領域205を設けてもよい。
 このとき、図23に示すように、判定値算出処理では、第1の実施形態の対象信号選択(ステップS22)及びスペクトル算出(ステップS23)に代えて、対象信号のスペクトル取得(ステップS221)が実行される。詳述すると、信号選択部30は、判定信号の時刻との関係に基づく選択条件に適合する対象信号を選択し、この選択した対象信号に対応するスペクトルを記憶部20の取得信号スペクトル領域205から選択するようにしてもよい。
For example, as shown in FIG. 22, the storage unit 20 may be provided with an acquisition signal spectrum area 205 for holding the spectrum of the acquisition signal.
At this time, as shown in FIG. 23, in the determination value calculation process, the spectrum acquisition of the target signal (step S221) is performed instead of the target signal selection (step S22) and the spectrum calculation (step S23) of the first embodiment. To be executed. More specifically, the signal selection unit 30 selects a target signal that matches the selection condition based on the relationship with the time of the determination signal, and the spectrum corresponding to the selected target signal is acquired from the acquired signal spectrum region 205 of the storage unit 20. It may be selected.
 ・上記第1及び第3の実施形態では、判定信号より前の取得信号を、判定信号に時間的に近い順に選択して複数の対象信号とする場合について例示した。しかしこれに限らず、取得信号の一部を対象信号に含めないように、例えばスキップするように対象信号を選択してもよい。 -In the said, 1st and 3rd embodiment, it illustrated about the case where the acquisition signal before a determination signal is selected in order close in time to a determination signal, and it is set as several object signal. However, the present invention is not limited to this, and the target signal may be selected to skip, for example, so as not to include a part of the acquired signal in the target signal.
 図24に示すように、取得信号の一部を不採用信号として対象信号へ採用せず、不採用信号の数だけ、過去の取得信号を対象信号に採用してもよい。この場合、判定信号の取得時刻と最古信号の取得時刻との時間差が「サンプリング間隔d×(対象信号n個+不採用信号k個)」となるが、この時間差が対象信号として選択可能な時間範囲にあれば取得信号の一部を不採用信号として複数の対象信号を選択することができる。なお、不採用信号は、ノッキング判定に悪影響を及ぼすことが明らかな雑音を含む信号など、異常であることが比較的容易に判断できる取得信号である。これにより、不適切な取得信号が対象信号に選択されることが抑制され、ノッキング判定精度が維持される。 As shown in FIG. 24, a part of the acquisition signal may not be adopted as the rejection signal to the target signal, and the past acquisition signals may be adopted as the target signal by the number of rejection signals. In this case, the time difference between the acquisition time of the determination signal and the acquisition time of the oldest signal is “sampling interval d × (n target signals + n rejection signals k)”, but this time difference can be selected as the target signal If it is within the time range, a plurality of target signals can be selected with a part of the acquired signal as a rejection signal. Note that the rejection signal is an acquisition signal that can be relatively easily determined to be abnormal, such as a signal that includes noise that is likely to adversely affect knocking determination. This suppresses the selection of an inappropriate acquisition signal as the target signal, and the knocking determination accuracy is maintained.
 ・上記第1及び第3の実施形態では、取得信号のうち最新の信号が判定信号として選択される場合について例示した。しかしこれに限らず、判定信号は、取得済みの取得信号から任意に選択されてもよい。この場合であれ、対象信号を判定信号の前から選択すれば判定信号に対してノッキング判定処理を行うことができる。また、取得信号の過去データなどに対してノッキング判定処理を行うことが可能となる。 -In the said, 1st and 3rd embodiment, it illustrated about the case where the newest signal is selected as a determination signal among acquisition signals. However, the present invention is not limited to this, and the determination signal may be arbitrarily selected from acquired acquisition signals. Even in this case, the knocking determination process can be performed on the determination signal by selecting the target signal before the determination signal. In addition, it is possible to perform knocking determination processing on past data and the like of the acquired signal.
 ・上記第1及び第3の実施形態では、判定信号より時間的に前の取得信号を複数の対象信号とする場合について例示した。しかしこれに限らず、判定信号よりも時間的に後の取得信号から複数の対象信号を選択してもよいし、判定信号の時間的に前後の取得信号から複数の対象信号を選択してもよい。特に、取得信号のログデータなどに基づいて、後からノッキング判定処理を行うような場合、ノッキング判定処理に使う対象信号を、判定信号より時間的に前から選択することもできるし、判定信号より時間的に後から選択することもできるし、判定信号の時間的に前後から選択することもできる。 -In the said, 1st and 3rd embodiment, it illustrated about the case where the acquisition signal of time earlier than a determination signal is made into a several object signal. However, the present invention is not limited to this, a plurality of target signals may be selected from acquisition signals temporally after the determination signal, or even if a plurality of target signals are selected from acquisition signals temporally before and after the determination signal. Good. In particular, when knocking determination processing is to be performed later based on log data of the acquired signal, etc., it is possible to select a target signal to be used for knocking determination processing from before the determination signal in time. It can be selected later in time, or can be selected in time before or after the determination signal.
 例えば、図25(a)に示すように、判定信号が選択された後の取得信号から必要数m個の対象信号を選択するようにしてもよい。このとき、判定信号の取得時刻から最新信号の取得時刻までの時間差が「サンプリング間隔d×必要数m個」となるが、この時間差が対象信号として選択可能な時間範囲にあれば判定信号より後の取得信号から複数の対象信号を選択することができる。そして、対象信号は、判定信号より以後の取得信号のうち判定信号に時間的に近い取得信号として準備される。 For example, as shown in FIG. 25A, the necessary number m of target signals may be selected from the acquired signals after the determination signal is selected. At this time, the time difference from the acquisition time of the determination signal to the acquisition time of the latest signal is “sampling interval d × m required number”. However, if this time difference is within the time range selectable as the target signal, A plurality of target signals can be selected from acquired signals of Then, the target signal is prepared as an acquisition signal closer in time to the determination signal among the acquisition signals after the determination signal.
 このような構成によれば、判定信号よりも後に得られた信号を判定に用いることができる。例えば、判定信号より前に取得された取得信号が判定信号との比較に適していない場合、判定信号の後に取得された取得信号を用いることができる。これにより、判定信号がノッキングを示す信号であるか否かの判定をより好適に行うことができる。 According to such a configuration, a signal obtained after the determination signal can be used for determination. For example, if the acquisition signal acquired before the determination signal is not suitable for comparison with the determination signal, the acquisition signal acquired after the determination signal can be used. This makes it possible to more suitably determine whether the determination signal is a signal indicating knocking.
 また例えば、図25(b)に示すように、判定信号の前後の取得信号から必要数m個の対象信号を選択してもよい。このとき、判定信号の取得時刻から最新信号の取得時刻までの時間差の絶対値が小さいものから順に対象信号として選択することで、判定信号の取得時刻に対する対象信号の取得時刻の時間差を小さくできる。例えば、判定信号の取得時刻から最新信号の取得時刻までの時間差の最大値は「サンプリング間隔d×前選択数m1個」又は「サンプリング間隔d×後選択数m2個」となる(但し、必要数m個=前選択数m1個+後選択数m2個)。判定信号の前後に取得信号が存在する場合であれば、ここでの時間差の最大値は、判定信号の取得時刻より前の取得時刻から対象信号を取得する場合の時間差、及び、判定信号の取得時刻より後の取得時刻から対象信号を取得する場合の時間差のいずれよりも短い時間となり、判定信号が得られたときの運転条件に対象信号が得られたときの運転条件が同様、類似である可能性が一層高まる。そして、対象信号は、判定信号の前後の取得信号のうち判定信号に時間的に近い取得信号として準備される。また、時間差の最大値が対象信号として選択可能な時間範囲となる可能性も高まるため、ノッキング判定処理が適切に行える可能性も高まる。 Further, for example, as shown in FIG. 25B, a required number m of target signals may be selected from acquired signals before and after the determination signal. At this time, the time difference between the acquisition times of the target signal and the acquisition time of the determination signal can be reduced by selecting the target signals in order from the smallest absolute value of the time difference from the acquisition time of the determination signal to the acquisition time of the latest signal. For example, the maximum value of the time difference from the acquisition time of the determination signal to the acquisition time of the latest signal is “sampling interval d × preselection number m1” or “sampling interval d × post selection number m2” (however, the required number m = pre-selection number m1 + post-selection number m2). If there is an acquisition signal before and after the determination signal, the maximum value of the time difference here is the time difference when acquiring the target signal from the acquisition time earlier than the acquisition time of the determination signal, and acquisition of the determination signal The operation condition is similar when the target signal is obtained, which is shorter than any of the time differences when acquiring the target signal from the acquisition time after the time, and the operation signal when the determination signal is obtained is similar. The possibilities are even greater. Then, the target signal is prepared as an acquisition signal that is closer in time to the determination signal among the acquisition signals before and after the determination signal. In addition, since the possibility that the maximum value of the time difference is within the time range selectable as the target signal is also increased, the possibility of appropriately performing the knocking determination process is also increased.
 このような構成によれば、対象信号の取得時刻と判定信号の取得時刻との間の時間差をより短くすることができることから、対象信号が得られたときの運転条件と判定信号が得られたときの運転条件が同様である可能性がより高められ、判定信号がノッキングを示す信号であるか否かの判定の精度向上が図られる。 According to such a configuration, since the time difference between the acquisition time of the target signal and the acquisition time of the determination signal can be further shortened, the operating condition and the determination signal when the target signal is obtained are obtained. The possibility that the operating conditions at the time are the same is further enhanced, and the accuracy in determining whether the determination signal is a signal indicating knocking can be improved.
 ・上記各実施形態では、バイスペクトルやスペクトルのうち振動モード別の特徴量(スペクトルの周波数成分)が生じる周波数域を考慮してノッキングの判定処理が行われる場合について例示した。しかしこれに限らず、バイスペクトルやスペクトルの全周波数帯や任意に定めた所定の周波数域を考慮してノッキング判定処理を行ってもよい。 In each of the above embodiments, the case where the knocking determination process is performed in consideration of the frequency range in which the feature amount (frequency component of the spectrum) of each vibration mode in the bispectrum or spectrum occurs is exemplified. However, the present invention is not limited to this, and the knocking determination process may be performed in consideration of the entire frequency band of a bispectrum or spectrum or a predetermined frequency range arbitrarily determined.
 ・上記各実施形態では、エンジン1に発生する圧力変動に基づく物理量を空気の振動である音として音圧センサ4によって音圧信号を取得する場合について例示した。しかしこれに限らず、内燃機関に発生する圧力変動に基づく物理量は、空気の信号である音に限られるものではなく、ノッキングに相関のある物理量であればよく、内燃機関の筒内圧であってもよいし、内燃機関の加速度(振動)であってもよい。 -In each said embodiment, it illustrated about the case where a sound pressure signal is acquired by the sound pressure sensor 4 as a sound which is a vibration of air, based on the physical quantity based on the pressure fluctuation which generate | occur | produces in the engine 1. FIG. However, the present invention is not limited to this, and the physical quantity based on pressure fluctuation generated in the internal combustion engine is not limited to the sound which is a signal of air, and may be a physical quantity correlating to knocking. It may be acceleration (vibration) of the internal combustion engine.
 例えば、図26に示すように、エンジン1に筒内圧センサ7を設け、この筒内圧センサ7からの圧力に関する信号をデータ収集装置5に入力して取得信号を生成させてもよい。また、エンジン1に加速度センサ8を設け、この加速度センサ8からの加速度に関する信号をデータ収集装置5に入力して取得信号を生成させてもよい。つまり、エンジン1から得られる様々な物理量をノッキング判定処理に用いることができる。 For example, as shown in FIG. 26, the engine 1 may be provided with an in-cylinder pressure sensor 7, and a signal related to the pressure from the in-cylinder pressure sensor 7 may be input to the data acquisition device 5 to generate an acquisition signal. Further, an acceleration sensor 8 may be provided in the engine 1 and a signal related to the acceleration from the acceleration sensor 8 may be input to the data acquisition device 5 to generate an acquisition signal. That is, various physical quantities obtained from the engine 1 can be used for the knocking determination process.
 ・上記各実施形態では、判定信号に時間的に近い取得信号を対象信号とする構成、及び、判定信号に運転条件が近い事前信号を対象信号とする構成のいずれか一方を備える場合について説明した。しかしこれに限らず、判定信号に時間的に近い取得信号を対象信号とする構成、及び、判定信号に運転条件が近い事前信号を対象信号とする構成の両方を備えてもよい。そして、エンジン1の運転条件に応じて、ノッキング判定処理の判定を高い精度で行える判定方法を選択するようにしてもよい。 -In each above-mentioned embodiment, a case where an acquisition signal close in time to the determination signal is a target signal, and a case in which a preliminary signal whose operation condition is close to the determination signal is a target signal have been described. . However, the present invention is not limited to this, and may have both a configuration in which an acquisition signal that is temporally close to the determination signal is a target signal, and a configuration in which a preliminary signal whose driving condition is close to the determination signal is a target signal. Then, depending on the operating conditions of the engine 1, a determination method may be selected in which the determination of the knocking determination process can be performed with high accuracy.
 例えば、図27に示すように、ノッキング判定装置10は、管理部60に学習追加部62と第1データ整理部63とを備えるとともに、事前追加部61と学習処理部64と第2データ整理部65とを備える。また、記憶部20に取得信号領域201と第1対象信号領域202と判定信号領域203と判定値領域204とを備えるとともに、事前信号領域211と第2対象信号領域212とを備える。さらに、信号選択部30に選択条件31と信号切出部32と判定方法選択部35とを備える。これにより、ノッキング判定装置10は、事前信号については、事前追加部61により事前信号領域211に保持させ、学習処理部64により学習させ、第2データ整理部65により整理させる。また、ノッキング判定装置10は、時間的条件により選択される対象信号については、管理部60が取得信号を取得信号領域201に保持させ、学習追加部62により判定信号を対象信号に追加させ、取得信号等を第1データ整理部63により整理させる。なお、第1対象信号領域202には、第1の対象信号が保持され、第2対象信号領域212には第2の対象信号が保持される。また、第1データ整理部63は第1の対象信号に関するデータ整理を行い、第2データ整理部65は第2の対象信号に関するデータ整理を行う。 For example, as shown in FIG. 27, the knocking determination device 10 includes the learning addition unit 62 and the first data organizing unit 63 in the management unit 60, and the pre-addition unit 61, the learning processing unit 64, and the second data organizing unit And 65. In addition, the storage unit 20 includes an acquisition signal area 201, a first target signal area 202, a determination signal area 203, and a determination value area 204, and also includes an a priori signal area 211 and a second target signal area 212. Furthermore, the signal selection unit 30 includes the selection condition 31, the signal extraction unit 32, and the determination method selection unit 35. Thereby, the knocking determination device 10 causes the advance addition unit 61 to hold the advance signal in the advance signal area 211, causes the learning processing unit 64 to learn, and causes the second data organizing unit 65 to organize. In the knocking determination apparatus 10, the management unit 60 causes the acquisition signal area 201 to hold the acquisition signal for the target signal selected according to the temporal condition, and causes the learning addition unit 62 to add the determination signal to the target signal. The first data organizing unit 63 organizes the signals and the like. The first target signal area 202 holds the first target signal, and the second target signal area 212 holds the second target signal. The first data organizing unit 63 organizes data on the first target signal, and the second data organizing unit 65 organizes data on the second target signal.
 そして、信号選択部30の判定方法選択部35は、方法選択条件に基づき、ノッキング判定処理を、時間的条件に基づいた取得信号から選択した第1の対象信号で行うか、運転条件に基づいた事前信号から選択した第2の対象信号で行うかを判断する。詳述すると、時間的条件に基づく選択は、第1の選択であって、判定信号との関係で定まる条件を、判定信号の得られた時刻に近く、かつ、判定信号から所定の期間内にある取得信号から所定数の信号を選択する条件から複数の対象信号を選択する条件である。また、運転条件に基づく選択は、第2の選択であって、判定信号との関係で定まる条件を、判定信号に対応する運転条件の少なくとも1つの条件に対して関連性の高い運転条件とし、事前信号から複数の対象信号を選択する条件である。 Then, based on the operation condition, the determination method selection unit 35 of the signal selection unit 30 performs the knocking determination process with the first target signal selected from the acquired signal based on the temporal condition based on the method selection condition. It is determined whether to perform with the second target signal selected from the prior signals. More specifically, the selection based on the temporal condition is the first selection, and the condition determined in relation to the determination signal is close to the time when the determination signal is obtained and within a predetermined period from the determination signal. This is a condition for selecting a plurality of target signals from the condition for selecting a predetermined number of signals from a certain acquired signal. Further, the selection based on the operating condition is the second selection, and the condition determined by the relationship with the determination signal is set as the operating condition highly relevant to at least one condition of the operating condition corresponding to the determination signal, This is a condition for selecting a plurality of target signals from the prior signals.
 方法選択条件の一例は、運転条件が変化している、又は、大きく変化したときには、第2の選択による対象信号に基づく判定を行い、それ以外では第1の選択による対象信号に基づく判定を行う条件である。これによれば、エンジン1の運転条件が変化中は第2の選択を行い、運転条件が変化中の取得信号を対象信号とし、第1の選択を採用したときに生じるおそれのあるノッキング判定精度の低下を防ぐことができるようになる。また、方法選択条件の他の一例は、事前信号のない、又は、不足しているときには、第1の選択による対象信号に基づく判定を行い、それ以外では第2の選択による対象信号に基づく判定を行う条件である。これによれば、事前信号の不足により生じるノッキング判定精度の低下を防ぐことができる。 As an example of the method selection condition, when the operating condition changes or greatly changes, the determination based on the target signal by the second selection is performed, and the determination based on the target signal by the first selection is performed otherwise It is a condition. According to this, the second selection is performed while the operating condition of the engine 1 is changing, and the acquired signal in the changing operating condition is the target signal, and the knocking determination accuracy that may occur when the first selection is adopted Can be prevented. In addition, another example of the method selection condition is that the determination based on the target signal by the first selection is performed when there is no prior signal or there is a shortage, and the determination based on the target signal by the second selection otherwise. Is a condition to According to this, it is possible to prevent the lowering of the knocking determination accuracy caused by the lack of the advance signal.
 エンジン1の運転条件は、エンジン1に発生する圧力変動に変化を生じさせ、これに基づく物理量を示す取得信号に含まれる物理量を示す値の傾向も大きく変化する。そのため、対象信号と判定信号との間でエンジン1の運転条件が大きく相違すると、対象信号と判定信号とに基づく比較をしても判定信号がノッキングを示す信号であるか否かを適切に判断することは難しい。これに対し、この構成によれば、エンジン1の運転条件に応じて、判定信号と比較される信号が判定信号に対して第1の選択(時間的な条件下)、及び、第2の選択(対応する運転条件下)のいずれか一方に切り替えられる。これにより、エンジン1の運転条件を考慮して選択される対象信号により判定信号がノッキングを示す信号か否かが判断される。 The operating condition of the engine 1 causes a change in the pressure fluctuation generated in the engine 1, and the tendency of the value indicating the physical quantity contained in the acquired signal indicating the physical quantity based on this also changes significantly. Therefore, if the operating conditions of the engine 1 are largely different between the target signal and the determination signal, it is appropriately determined whether the determination signal is a signal indicating knocking even if the comparison is based on the target signal and the determination signal. It is difficult to do. On the other hand, according to this configuration, according to the operating conditions of the engine 1, the signal to be compared with the determination signal is the first selection (temporal condition) for the determination signal, and the second selection It is switched to one of (corresponding operating conditions). Thereby, it is determined whether the determination signal is a signal indicating knocking or not based on the target signal selected in consideration of the operating condition of the engine 1.
 また、取得信号が取得された時刻から所定期間内にエンジン1の運転条件が大きく変化するときには第2の選択を選択してもよい。すなわち、取得信号がノッキングを示す信号か否かの判定に、エンジン1の運転条件の変動により第1の選択による対象信号を用いることが適切ではないとき、同判定に第2の選択による対象信号を用いてノッキングを適切に判定することができる。 Alternatively, the second selection may be selected when the operating condition of the engine 1 largely changes within a predetermined period from the time when the acquisition signal is acquired. That is, when it is not appropriate to use the target signal according to the first selection due to fluctuation of the operating condition of the engine 1 to determine whether the acquired signal is a signal indicating knocking, the target signal according to the second selection Can be used to properly determine knocking.
 ・上記その他の実施形態では、判定信号に時間的に近い取得信号を対象信号とする構成、及び、判定信号に運転条件が近い事前信号を対象信号とする構成の両方を備え、エンジン1の運転条件に応じて、ノッキング判定処理の判定を高い精度で行える判定方法を選択する場合について例示した。しかしこれに限らず、判定信号に時間的に近い取得信号と、判定信号に運転条件が近い事前信号とを合わせて選択して対象信号としてもよい。例えば、上記その他の実施形態において第1の選択と、第2の選択とが両方選択される態様とするとともに、判定信号に時間的に近い取得信号の選択数を第1の割当数とし、判定信号に運転条件が近い事前信号の選択数を第2の割当数とし、これらを合わせて対象信号として選択するようにしてもよい。このとき、第1の割当数と第2の割当数との合計がノッキング判定処理に必要なデータ数である必要数になるように設定されればよい。なお、第1の割当数と第2の割当数との割合については、半々としてもよいし、経験や実験、理論などに基づいて適切な比率が設定されてもよい。 -In said other embodiment, the structure which makes an object signal an acquisition signal close | temporally to a determination signal as object signal, and the structure which makes an object signal a prior signal whose operation condition is close to a determination signal is object, The case where the determination method which can perform determination of a knocking determination process with high precision was selected according to conditions was illustrated. However, the present invention is not limited to this, and an acquisition signal that is temporally close to the determination signal and a prior signal whose operation condition is close to the determination signal may be selected and used as the target signal. For example, in the above other embodiments, the first selection and the second selection are both selected, and the number of selection of acquisition signals temporally close to the determination signal is set as the first allocation number, The selection number of the prior signals whose operating conditions are close to the signal may be set as the second allocation number, and these may be combined and selected as the target signal. At this time, the sum of the first allocation number and the second allocation number may be set to be the required number which is the number of data necessary for the knocking determination process. The ratio between the first allocation number and the second allocation number may be half or half, or an appropriate ratio may be set based on experience, experiments, theory, or the like.
 例えば、便宜的に図27を用いて説明する。信号選択部30は、判定信号との関係で定まる条件を、判定信号の得られた時刻に近く、かつ、判定信号から所定の期間内にある取得信号から第1の割当数だけ選択すること、及び、判定信号に対応する運転条件の少なくとも1つの条件に対して関連性の高い運転条件に対応付けられる事前信号から第2の割当数だけ選択する。そして、信号選択部30は、選択された第1の割当数の取得信号と第2の割当数の事前信号とを合わせたものを複数の対象信号として選択する。こうして選択された複数の対象信号に基づいて、判定信号のノッキングの発生の有無が判定される。 For example, this will be described using FIG. 27 for the sake of convenience. The signal selection unit 30 selects the condition determined by the relationship with the determination signal from the acquired signal that is close to the time when the determination signal is obtained and within a predetermined period from the determination signal, for the first allocation number. And, a second assignment number is selected from the advance signals associated with the highly relevant operating conditions to at least one of the operating conditions corresponding to the determination signal. Then, the signal selection unit 30 selects a combination of the selected acquisition signal of the first allocation number and the advance signal of the second allocation number as a plurality of target signals. Based on the plurality of target signals thus selected, it is determined whether or not knocking of the determination signal has occurred.
 多数の条件の下に制御されるエンジン1の運転条件は、その変化を予測することが難しいこともある。これに対し、この構成によれば、判定信号が、判定信号に対して時間的な条件に基づいて選択される取得信号、及び、対応する運転条件に基づいて選択される事前信号の両方が合わせられた対象信号と比較される。これにより、エンジン1の運転条件の変動に対する柔軟性の高い信号となる対象信号との比較によって判定信号がノッキングを示す信号か否かの判断がより好適になされる。 The operating conditions of the engine 1 controlled under many conditions may be difficult to predict its change. On the other hand, according to this configuration, both the acquired signal in which the determination signal is selected based on the temporal condition with respect to the determination signal, and the advance signal selected in accordance with the corresponding operating condition are combined. It is compared with the signal of interest. This makes it possible to more suitably determine whether the determination signal is a signal indicating knocking or not by comparison with a target signal that is a highly flexible signal with respect to fluctuations in the operating conditions of the engine 1.
 柔軟性の高い信号であることを説明すると、時間的な条件に基づいて選択される取得信号からは、対象信号が、そのときエンジン1の運転で生じている音を、そのときの運転の揺らぎを含むかたちで選択される。そして、このような揺らぎが反映された対象信号に基づいてノッキング判定が行われるようになる。なお、リアルタイムで処理するときには、判定信号を取得後直ちに判定するために、判定に用いる信号が過去の信号に制約されることや、判定に利用できる適切なデータの数の確保が保証できない場合もある。他方、運転条件に基づいて選択される取得信号は、運転条件に近い信号はもちろん、これから運転条件が変化する方向への信号も事前に準備されていることから、運転条件が現在の条件から変化していく態様まで考慮してノッキング判定が行えるようになる。なお、いまエンジン1に生じている音の揺らぎと事前信号の音の揺らぎとが大きく異なっている場合もある。すなわち、時間的な条件に基づいて選択される取得信号と運転条件に基づいて選択される取得信号とが混合されることで、各信号に基づく判定における利点が生かされ、各信号に基づく判定の弱点も補われるようになる。 If it is explained that it is a signal with high flexibility, from the acquired signal selected based on the temporal condition, the target signal becomes the noise that is generated by the operation of the engine 1 at that time, the fluctuation of the operation at that time It is selected in the form that includes Then, knocking determination is performed based on the target signal on which such fluctuation is reflected. In addition, when processing in real time, in order to make a determination immediately after acquisition of a determination signal, the signal used for determination may be constrained to a past signal, or securing of the number of appropriate data that can be used for determination can not be guaranteed. is there. On the other hand, the acquisition signal selected based on the operating condition is not only a signal close to the operating condition but also a signal in the direction in which the operating condition changes from now on, so the operating condition changes from the current condition. Knocking determination can be performed in consideration of the manner in which the vehicle is moving. Note that the fluctuation of the sound occurring in the engine 1 and the fluctuation of the sound of the prior signal may be largely different. That is, by mixing the acquisition signal selected based on the temporal condition and the acquisition signal selected based on the operating condition, the advantage in the determination based on each signal is taken advantage of, and the determination based on each signal It also compensates for weaknesses.

Claims (18)

  1.  内燃機関に発生する圧力変動に基づく物理量を示す取得信号に基づいてノッキングの有無を判定するノッキング判定装置であって、
     前記取得信号から、ノッキングの有無が判定される判定信号を選択する判定信号選択部と、
     前記取得信号から、前記判定信号との関係で定まる条件に基づいて複数の対象信号を選択する対象信号選択部と、
     前記複数の対象信号のスペクトルに基づく値をそれぞれ算出する第1算出部と、
     前記判定信号のスペクトルに基づく値を算出する第2算出部と、
     前記判定信号がノッキングを示す信号であるか否かの判定を行う判定部とを備え、
     前記判定部は、
      前記複数の対象信号のスペクトルに基づく値から統計パラメータを推定し、
      前記統計パラメータを用いて前記各対象信号のスペクトルに基づく値を同値の多次元におけるばらつきで正規化して正規化後の値を得、
      前記統計パラメータを用いて前記判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得、
      前記複数の対象信号についての正規化後の値の集合と前記判定信号についての正規化後の値との乖離の度合いが大きいことに基づいて前記判定信号がノッキングを示す信号である旨を判定する
     ように構成される、ノッキング判定装置。
    A knocking determination device that determines the presence or absence of knocking based on an acquired signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, comprising:
    A determination signal selection unit configured to select a determination signal for determining the presence or absence of knocking from the acquired signal;
    A target signal selection unit that selects a plurality of target signals from the acquired signal based on conditions determined in relation to the determination signal;
    A first calculator configured to calculate values based on the spectra of the plurality of target signals;
    A second calculator configured to calculate a value based on the spectrum of the determination signal;
    And a determination unit that determines whether the determination signal is a signal indicating knocking,
    The determination unit is
    Estimating statistical parameters from values based on the spectra of the plurality of target signals;
    Normalizing the value based on the spectrum of each of the target signals using the statistical parameter with the variation in the same value in multiple dimensions to obtain a normalized value,
    Normalizing the value based on the spectrum of the determination signal with variations in multiple dimensions using the statistical parameter to obtain a normalized value,
    It is determined that the determination signal is a signal indicating knocking based on the fact that the degree of divergence between a set of normalized values for the plurality of target signals and the normalized value for the determination signal is large. As configured, the knocking determination device.
  2.  前記各対象信号のスペクトルに基づく値は、前記各対象信号のスペクトルに基づいて算出されたバイスペクトルの値であり、前記判定信号のスペクトルに基づく値は、前記判定信号のスペクトルに基づいて算出されたバイスペクトルの値である
     請求項1に記載のノッキング判定装置。
    The value based on the spectrum of each target signal is a bispectral value calculated based on the spectrum of each target signal, and the value based on the spectrum of the determination signal is calculated based on the spectrum of the determination signal The knocking determination device according to claim 1, which is a value of the bispectrum.
  3.  前記判定部は、前記各対象信号のスペクトルに基づく値として、前記内燃機関における気筒の固有振動数を加味した周波数範囲の値を用いるとともに、前記判定信号のスペクトルに基づく値として、前記内燃機関における気筒の固有振動数を加味した周波数範囲の値を用いるように構成される
     請求項1又は2に記載のノッキング判定装置。
    The determination unit uses, as a value based on the spectrum of each of the target signals, a value of a frequency range that takes into account the natural frequency of a cylinder in the internal combustion engine, and as a value based on the spectrum of the determination signal in the internal combustion engine The knocking determination device according to claim 1, wherein the knocking determination device is configured to use a value of a frequency range that takes into account a natural frequency of a cylinder.
  4.  前記対象信号選択部は、前記判定信号の得られた時刻の近くで、かつ、前記判定信号の得られた時刻から所定の期間内に得られた複数の取得信号のうち所定数の取得信号を、前記複数の対象信号として選択するように構成される
     請求項1~3のいずれか一項に記載のノッキング判定装置。
    The target signal selection unit is configured to obtain a predetermined number of acquisition signals among a plurality of acquisition signals obtained within a predetermined period from a time when the determination signal is obtained, near the time when the determination signal is obtained. The knocking determination device according to any one of claims 1 to 3, configured to be selected as the plurality of target signals.
  5.  前記対象信号は、前記判定信号が得られた時刻よりも前に得られた信号である
     請求項4に記載のノッキング判定装置。
    The knocking determination device according to claim 4, wherein the target signal is a signal obtained before a time when the determination signal is obtained.
  6.  前記対象信号は、前記判定信号が得られた時刻の前後に得られた信号である
     請求項4に記載のノッキング判定装置。
    The knocking determination device according to claim 4, wherein the target signal is a signal obtained before and after a time when the determination signal is obtained.
  7.  前記対象信号は、前記判定信号が得られた時刻よりも後に得られた信号である
     請求項4に記載のノッキング判定装置。
    The knocking determination device according to claim 4, wherein the target signal is a signal obtained after a time when the determination signal is obtained.
  8.  前記対象信号選択部は、前記判定部で前記判定信号がノッキングを示す信号であると判定されたときは、前記判定信号に対応する取得信号を前記対象信号に含めないように構成される
     請求項1~7のいずれか一項に記載のノッキング判定装置。
    The target signal selection unit is configured not to include an acquisition signal corresponding to the determination signal in the target signal when the determination unit determines that the determination signal is a signal indicating knocking. The knocking determination device according to any one of 1 to 7.
  9.  前記取得信号は、ノッキングが発生しない条件を含む複数の運転条件で前記内燃機関が運転されたときに前記内燃機関から予め取得された複数の事前信号を含み、
     前記対象信号選択部は、前記複数の運転条件のうち、前記判定信号に対応する少なくとも1つの運転条件に対して関連性の高い運転条件下で得られた前記事前信号から複数の対象信号を選択するように構成される
     請求項1~3のいずれか一項に記載のノッキング判定装置。
    The acquisition signal includes a plurality of advance signals previously acquired from the internal combustion engine when the internal combustion engine is operated under a plurality of operating conditions including a condition in which knocking does not occur.
    The target signal selection unit selects a plurality of target signals from the prior signals obtained under operating conditions highly relevant to at least one of the plurality of operating conditions corresponding to the determination signal. The knocking determination device according to any one of claims 1 to 3, which is configured to select.
  10.  前記運転条件は内燃機関の回転速度である
     請求項9に記載のノッキング判定装置。
    The knocking determination device according to claim 9, wherein the operating condition is a rotational speed of an internal combustion engine.
  11.  前記判定部でノッキングを示す信号ではないと判定された前記判定信号を前記事前信号に追加する学習処理部をさらに備える
     請求項9又は10に記載のノッキング判定装置。
    The knocking determination apparatus according to claim 9, further comprising a learning processing unit that adds the determination signal that is determined not to be a signal indicating knocking by the determination unit to the prior signal.
  12.  前記取得信号は、ノッキングが発生しない条件を含む複数の運転条件で前記内燃機関が運転されたときに前記内燃機関から予め取得された複数の事前信号を含み、
     前記対象信号選択部は、前記判定信号の得られた時刻の近くで、かつ、前記判定信号の得られた時刻から所定の期間内に得られた複数の取得信号から第1の割当数の取得信号を選択するとともに、前記複数の運転条件のうち、前記判定信号に対応する少なくとも1つの運転条件に対して関連性の高い運転条件下で得られた前記事前信号から第2の割当数の事前信号を選択し、これら選択された前記第1の割当数の取得信号と前記第2の割当数の事前信号とを前記複数の対象信号として用いるように構成される
     請求項1~3のいずれか一項に記載のノッキング判定装置。
    The acquisition signal includes a plurality of advance signals previously acquired from the internal combustion engine when the internal combustion engine is operated under a plurality of operating conditions including a condition in which knocking does not occur.
    The target signal selection unit acquires a first allocation number from a plurality of acquisition signals obtained within a predetermined period from a time when the determination signal is obtained, near the time when the determination signal is obtained. Among the plurality of operating conditions, a second allocation number of the second allocated number from the prior signal obtained under the operating condition highly relevant to at least one operating condition corresponding to the determination signal, as well as selecting the signal. The system according to any one of claims 1 to 3, wherein a prior signal is selected, and the acquisition signal of the selected first assignment number and the prior signal of the second assignment number are used as the plurality of target signals. The knocking determination device according to any one of the preceding claims.
  13.  前記取得信号は、ノッキングが発生しない条件を含む複数の運転条件で前記内燃機関が運転されたときに前記内燃機関から予め取得された複数の事前信号を含み、
     前記対象信号選択部は、前記判定信号の得られた時刻の近くで、かつ、前記判定信号の得られた時刻から所定の期間内に得られた複数の取得信号から前記複数の対象信号を選択する第1の選択処理と、前記複数の運転条件のうち、前記判定信号に対応する少なくとも1つの運転条件に対して関連性の高い運転条件下で得られた前記事前信号から複数の対象信号を選択する第2の選択処理とを択一的に実行するように構成され、
     前記対象信号選択部は、前記内燃機関の運転条件に応じて、前記第1の選択処理及び第2の選択処理のいずれか一方を選択して実行するように構成される
     請求項1~3のいずれか一項に記載のノッキング判定装置。
    The acquisition signal includes a plurality of advance signals previously acquired from the internal combustion engine when the internal combustion engine is operated under a plurality of operating conditions including a condition in which knocking does not occur.
    The target signal selection unit selects the plurality of target signals from a plurality of acquisition signals obtained within a predetermined period from a time when the determination signal is obtained, near the time when the determination signal is obtained. Among the plurality of operating conditions, a plurality of target signals are obtained from the prior signals obtained under operating conditions highly relevant to at least one of the plurality of operating conditions corresponding to the determination signal. Configured to perform alternatively the second selection process of selecting
    The target signal selection unit is configured to select and execute any one of the first selection process and the second selection process according to the operating condition of the internal combustion engine. The knocking determination device according to any one of the preceding claims.
  14.  前記対象信号選択部は、前記判定信号の取得された時刻から所定期間内に前記内燃機関の運転条件が大きく変化することに応じて前記第2の選択処理を選択して実行するとともに、前記第2の選択処理を選択しないとき前記第1の選択処理を選択して実行するように構成される
     請求項13に記載のノッキング判定装置。
    The target signal selection unit selects and executes the second selection process in response to a large change in the operating condition of the internal combustion engine within a predetermined period from the time when the determination signal is acquired. The knocking determination device according to claim 13, configured to select and execute the first selection process when the second selection process is not selected.
  15.  前記判定部は、前記各対象信号についての正規化後の値を大きくするように補正し、その補正された正規化後の値の集合と前記判定信号についての正規化後の値とを比較するように構成される
     請求項1~14のいずれか一項に記載のノッキング判定装置。
    The determination unit corrects the value after normalization for each of the target signals to be large, and compares the corrected set of normalized values with the value after normalization for the determination signal. The knocking determination device according to any one of claims 1 to 14, which is configured as follows.
  16.  内燃機関に発生する圧力変動に基づく物理量を示す取得信号に基づいてノッキングの有無を判定するノッキング判定装置であって、
     前記取得信号から、ノッキングの有無が判定される判定信号を選択する判定信号選択部と、
     前記取得信号から、前記判定信号との関係で定まる条件に基づいて対象信号を選択する対象信号選択部と、
     前記判定信号のスペクトルに基づく値を算出する算出部と、
     前記判定信号がノッキングを示す信号であるか否かの判定を行う判定部と、
     前記対象信号のスペクトルに基づく値に基づいて統計パラメータを更新する更新部とを備え、
     前記判定部は、前記統計パラメータを用いて前記判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得るとともに、所定の判定値と前記正規化後の値との乖離の度合いが大きいことに基づいて前記判定信号がノッキングを示す信号である旨を判定するように構成される
     ノッキング判定装置。
    A knocking determination device that determines the presence or absence of knocking based on an acquired signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine, comprising:
    A determination signal selection unit configured to select a determination signal for determining the presence or absence of knocking from the acquired signal;
    A target signal selection unit that selects a target signal from the acquired signal based on a condition determined based on a relationship with the determination signal;
    A calculation unit that calculates a value based on the spectrum of the determination signal;
    A determination unit that determines whether the determination signal is a signal indicating knocking;
    The updating unit updating the statistical parameter based on the value based on the spectrum of the target signal;
    The determination unit normalizes the value based on the spectrum of the determination signal using the statistical parameter with variation in multiple dimensions to obtain a normalized value, and a predetermined determination value and the normalized value A knocking determination device configured to determine that the determination signal is a signal indicating knocking based on the fact that the degree of deviation is large.
  17.  前記対象信号選択部は、前記判定部でノッキングを示す信号ではない旨が判定された判定信号を前記対象信号に含めるように構成され、
     前記更新部は、前記判定信号の直前の対象信号のスペクトルに基づく値と、前記統計パラメータとに対してそれぞれ重みをつける態様で前記統計パラメータを更新するように構成される
     請求項16に記載のノッキング判定装置。
    The target signal selection unit is configured to include in the target signal a determination signal that is determined by the determination unit not to be a signal indicating knocking.
    17. The apparatus according to claim 16, wherein the updating unit is configured to update the statistical parameter in a manner of weighting each of the statistical parameter and a value based on a spectrum of the target signal immediately before the determination signal. Knocking judgment device.
  18.  内燃機関に発生する圧力変動に基づく物理量を示す取得信号に基づいてノッキングの有無を判定するノッキング判定装置で実行されるノッキング判定方法であって、
     前記ノッキング判定装置が、前記取得信号から、ノッキングの有無を判定する判定信号を選択することと、
     前記ノッキング判定装置が、前記取得信号から、前記判定信号との関係で定まる条件に基づいて複数の対象信号を選択することと、
     前記ノッキング判定装置が、前記複数の対象信号のスペクトルに基づく値をそれぞれ算出することと、
     前記ノッキング判定装置が、前記判定信号のスペクトルに基づく値を算出することと、
     前記ノッキング判定装置が、前記判定信号がノッキングを示す信号であるか否かの判定を行うことと、を含み、
     前記判定することは、
      前記複数の対象信号のスペクトルに基づく値から統計パラメータを推定すること、
      前記統計パラメータを用いて前記各対象信号のスペクトルに基づく値を同値の多次元におけるばらつきで正規化して正規化後の値を得ること、
      前記統計パラメータを用いて前記判定信号のスペクトルに基づく値を多次元におけるばらつきで正規化して正規化後の値を得ること、及び、
      前記複数の対象信号についての正規化後の値の集合と前記判定信号についての正規化後の値との乖離の度合いが大きいことに基づいて前記判定信号がノッキングを示す信号である旨を判定すること
     を含む、ノッキング判定方法。
    A knocking determination method performed by a knocking determination device that determines the presence or absence of knocking based on an acquired signal indicating a physical quantity based on a pressure fluctuation generated in an internal combustion engine,
    Selecting the determination signal for determining the presence or absence of knocking from the acquired signal;
    The knocking determination device selects a plurality of target signals from the acquired signal based on conditions determined in relation to the determination signal;
    The knocking determination device calculates values based on the spectra of the plurality of target signals, respectively;
    The knocking determination device calculates a value based on a spectrum of the determination signal;
    The knocking determination device determines whether the determination signal is a signal indicating knocking;
    The above determination is
    Estimating statistical parameters from values based on the spectra of the plurality of target signals;
    Normalizing the values based on the spectrum of each of the target signals with variations in the same multidimensional values using the statistical parameters to obtain normalized values;
    Normalizing the value based on the spectrum of the determination signal with variations in multiple dimensions using the statistical parameter to obtain a normalized value;
    It is determined that the determination signal is a signal indicating knocking based on the fact that the degree of divergence between a set of normalized values for the plurality of target signals and the normalized value for the determination signal is large. Knocking judgment method including
PCT/JP2016/069058 2015-06-29 2016-06-28 Knocking determination device and knocking determination method WO2017002773A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-129604 2015-06-29
JP2015129604A JP6420213B2 (en) 2015-06-29 2015-06-29 Knocking determination device and knocking determination method
JP2015-167261 2015-08-26
JP2015167261A JP6542073B2 (en) 2015-08-26 2015-08-26 Knocking determination apparatus and knocking determination method

Publications (1)

Publication Number Publication Date
WO2017002773A1 true WO2017002773A1 (en) 2017-01-05

Family

ID=57608857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069058 WO2017002773A1 (en) 2015-06-29 2016-06-28 Knocking determination device and knocking determination method

Country Status (1)

Country Link
WO (1) WO2017002773A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319879A (en) * 1995-05-25 1996-12-03 Kyushu Denki Seizo Kk Method and device for judging operating condition of internal combustion engine
JP2003314348A (en) * 2002-04-24 2003-11-06 Honda Motor Co Ltd Knocking detecting device of internal combustion engine
JP2004138032A (en) * 2002-10-21 2004-05-13 Mitsubishi Electric Corp Knocking control device for internal combustion engine
JP2005090250A (en) * 2003-09-12 2005-04-07 Nissan Motor Co Ltd Engine knock control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319879A (en) * 1995-05-25 1996-12-03 Kyushu Denki Seizo Kk Method and device for judging operating condition of internal combustion engine
JP2003314348A (en) * 2002-04-24 2003-11-06 Honda Motor Co Ltd Knocking detecting device of internal combustion engine
JP2004138032A (en) * 2002-10-21 2004-05-13 Mitsubishi Electric Corp Knocking control device for internal combustion engine
JP2005090250A (en) * 2003-09-12 2005-04-07 Nissan Motor Co Ltd Engine knock control device

Similar Documents

Publication Publication Date Title
US7254475B1 (en) Detection systems and methods
JP6542073B2 (en) Knocking determination apparatus and knocking determination method
Jones et al. Likelihood-based control of engine knock
US9945751B2 (en) Engine management using knock data
US20030164156A1 (en) Method for processing a sensor signal of a knocking sensor for an internal combustion engine
US6845312B1 (en) Method for detecting engine knock
US9046048B2 (en) Method of fuel quality determination
Jones et al. The statistical properties of raw knock signal time histories
Luo et al. Stochastic knock detection, control, software integration, and evaluation on a V6 spark-ignition engine under steady-state operation
Spelina et al. Recent advances in knock analysis, simulation, and control
CN109882334B (en) Method for controlling forced ignition internal combustion engine by means of knock estimation
US10871113B2 (en) Method for managing pinking in a controlled-ignition internal combustion engine
JP6420213B2 (en) Knocking determination device and knocking determination method
WO2017002773A1 (en) Knocking determination device and knocking determination method
Wu A real time statistical method for engine knock detection
JP6605170B1 (en) Learning device and estimation device
JP6854228B2 (en) Knocking determination device and knocking determination method
JP6444777B2 (en) Knocking level evaluation system
CN112922724B (en) Method for identifying knock interference
JP6469553B2 (en) Device state determination device, device state determination method, and knock determination device
JP6433340B2 (en) Signal analysis device and knocking detection device
EP2868902B1 (en) Power unit of saddle-riding type vehicle, saddle-riding type vehicle and method for controlling power unit
JP6651040B1 (en) Knock determination device
Zadnik et al. SI engine knock detection method robust to resonance frequency changes
JP2018091214A (en) Detection system for internal combustion engine knocking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817881

Country of ref document: EP

Kind code of ref document: A1