WO2017002535A1 - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
WO2017002535A1
WO2017002535A1 PCT/JP2016/066636 JP2016066636W WO2017002535A1 WO 2017002535 A1 WO2017002535 A1 WO 2017002535A1 JP 2016066636 W JP2016066636 W JP 2016066636W WO 2017002535 A1 WO2017002535 A1 WO 2017002535A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
light
sample
discrete
frequency
Prior art date
Application number
PCT/JP2016/066636
Other languages
French (fr)
Japanese (ja)
Inventor
安井 武史
岩田 哲郎
水谷 康弘
丈夫 南川
宜達 謝
栄治 長谷
裕紹 山本
Original Assignee
国立大学法人徳島大学
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学, 国立大学法人宇都宮大学 filed Critical 国立大学法人徳島大学
Priority to JP2017526246A priority Critical patent/JPWO2017002535A1/en
Publication of WO2017002535A1 publication Critical patent/WO2017002535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to a measuring device.
  • This application claims priority based on Japanese Patent Application No. 2015-130249 filed in Japan on June 29, 2015, the contents of which are incorporated herein by reference.
  • a microscope equipped with a confocal optical system (hereinafter referred to as a confocal microscope) is known as an optical microscope that enables high-resolution imaging (see, for example, Patent Document 1).
  • a predetermined range of a sample is uniformly irradiated, whereas in a confocal optical system, irradiation light emitted from a point light source is condensed on one point of the sample by an objective lens.
  • the irradiation light laser light having excellent monochromaticity and straightness is used.
  • a pinhole is arranged at a position conjugate with the focal position of the objective lens, so that only transmitted light or reflected light (or fluorescence, Raman scattered light, etc.) at a position in focus on the sample is used. Is detected through the pinhole.
  • the irradiation light is first condensed at one point of the sample, and the transmitted light or reflected light at the focal position of the sample passes through the pinhole, whereas the light from other than the focal position is pinhole. It is cut with. Therefore, compared with a normal optical microscope, the contrast is improved without being affected by stray light from the lateral direction adjacent to the focal point. Furthermore, since only information on the focal position of the irradiation light is detected, it has a three-dimensional spatial resolution.
  • the confocal microscope that can form a clear three-dimensional image as described above is used in a wide range of fields, such as a bio field such as life function analysis using a fluorescent protein.
  • the confocal microscope is expected to become more important in the future because of its high resolution and quantitativeness.
  • the confocal microscope can only obtain point information of the focal position. Therefore, in order to image two-dimensional information in the sample surface, it is necessary to relatively scan the focal position of the irradiation light emitted from the point light source within the sample.
  • a galvanometer mirror is known as a scanning device that can relatively scan the focal position of irradiation light with respect to a sample.
  • these scanning devices it takes time to scan a wide range at a high speed.
  • Patent Document 2 discloses a transmission confocal microscope in which focus scanning units are provided before and after an inspection target (sample).
  • This scanning unit includes a rotating polyhedral mirror that swings the angle of light from the light source and scans the focal position of the inspection object via the objective lens.
  • the rotating polyhedral mirrors of the first and second scanning units provided before and after the sample are operable in synchronization.
  • the present invention has been made to solve the above-described problems, and provides a measuring apparatus capable of acquiring sample information at high speed while maintaining high accuracy and without requiring mechanical scanning.
  • the measuring device of the present invention includes a point light source that emits a discrete spectrum light including two or more spectra distributed at different frequencies, and a wavelength of the discrete spectrum light emitted from the point light source in a different direction for each spectrum.
  • the dispersion part to disperse, the light collecting part for condensing the spectrum wavelength-dispersed by the dispersion part at different positions of the sample, and the spectrum collected by the light collecting part are different from each other.
  • a superimposing unit that spatially superimposes each spectrum transmitted or reflected from a position, and discrete spectral light including information on the sample superimposed by the superimposing unit, of the spectrum that has been wavelength-dispersed by the dispersing unit.
  • the confocal effect is obtained by focusing light at a position conjugate with the light collecting position on the sample and spatial filtering.
  • spatial filtering optics to obtain, for the discrete spectrum light including information of the sample that is spatially filtered by the spatial filtering optics, a detection unit for acquiring a mode decomposition spectra, characterized in that it comprises.
  • mode-resolved spectrum refers to a spectrum that can be individually separated from discrete spectrum light.
  • the measurement apparatus according to the present invention can acquire only a mode-resolved spectrum (hereinafter referred to as a mode-resolved intensity spectrum) of intensity (square of amplitude).
  • the measurement apparatus can acquire a mode-resolved spectrum of amplitude and phase (hereinafter, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum).
  • a mode-resolved amplitude spectrum and a mode-resolved phase spectrum a mode-resolved spectrum of amplitude and phase
  • mode-resolved spectrum a mode-resolved spectrum of amplitude and phase
  • two or more spectra included in the discrete spectrum light are wavelength-dispersed in different directions by a single irradiation of the discrete spectrum light to the dispersion portion, and are condensed at different positions on the sample. Accordingly, two or more spectra that are independent of each other can be simultaneously focused on the sample.
  • “independent” indicates that the sample information can be uniquely included in other spectra by being distributed at different frequencies. Therefore, the information of the sample at the condensing position of the spectrum is added to each of the two or more spectra.
  • the mode-resolved spectrum to which the image information of the sample is added in this way can be spatially filtered by the spatial filtering optical system and added with the confocal effect, and then detected by the detection unit.
  • the frequency interval of the spectrum adjacent to the frequency position on the frequency axis is a second adjacent frequency interval different from the first adjacent frequency interval
  • the second adjacent frequency interval is A second comb light source that emits a second optical frequency comb spectrum that is coincident with each other
  • the detection unit is generated by causing the first optical frequency comb spectrum and the second optical frequency comb spectrum to interfere with each other
  • the mode-resolved spectrum may be acquired based on an interference signal (interference spectrum or interferogram) (dual optical comb spectroscopy).
  • the interference spectrum is an optical beat spectrum of the first and second optical frequency comb spectra obtained by frequency downscaling the first optical frequency comb spectrum.
  • a mode-resolved phase spectrum can be acquired in addition to the mode-resolved amplitude spectrum.
  • the dispersive unit includes a dispersive element that spatially separates incident light for each wavelength, and the discrete spectrum light emitted from the point light source has different directions depending on the spectrum by the dispersive element.
  • the superimposing unit may spatially superimpose a spectrum including information on the sample transmitted through the sample.
  • the dispersion unit and the superposition unit share one dispersion element that wavelength-disperses incident light, and the discrete spectrum light emitted from the point light source has different directions for each spectrum by the one dispersion element. And a spectrum including information of the sample reflected from the sample may be spatially superimposed.
  • each spectrum when discrete light is irradiated once on the dispersive element, each spectrum is wavelength-dispersed at a dispersion angle depending on the optical frequency (wavelength) of the spectrum. That is, two or more spectra distributed at different optical frequencies can be simultaneously dispersed in different directions. Further, in the above configuration, it is possible to detect discrete spectrum light that passes through the sample, is spatially superimposed by the overlapping unit, and includes sample information. Also, it is possible to detect discrete spectrum light including information on the sample that is reflected from the sample and similarly spatially overlapped by the overlapping unit.
  • the dispersive element includes a first dispersive element that wavelength-disperses the discrete spectrum light in a first direction different for each spectrum, and the wavelength disperse by the first dispersive element.
  • a second dispersive element that disperses the wavelength of the discrete spectrum light in a second direction that intersects the first direction.
  • the dispersive element may be composed of a diffraction grating.
  • the individual spectrum is converted by the first dispersive element into the optical frequency (that is, wavelength) of the spectrum, the pitch of the first dispersive element, the incident angle, and the like.
  • the wavelength dispersion is performed in the first direction at a dispersion angle determined by the dispersion performance that depends on.
  • each spectrum that could not be separated by the first dispersion element depends on the optical frequency (that is, wavelength) of the spectrum, the pitch of the second dispersion element, the incident angle, and the like by the second dispersion element.
  • Wavelength dispersion is performed in the second direction at a dispersion angle determined by the dispersion performance.
  • two or more spectra distributed at different optical frequencies can be simultaneously dispersed in different directions in two stages using the first and second dispersion elements. If a diffraction grating is used as the first and second dispersive elements, two or more such spectrums are two-dimensionally oriented in different directions at desired intervals by appropriately adjusting the dispersion performance of the diffraction grating. Can be dispersed.
  • the center wavelength of the discrete spectrum light, the frequency interval between the adjacent spectra, the dispersion performance of the dispersion unit, the numerical aperture of the lens used in the light collection unit, and the discrete spectrum light are set such that the center interval between the spots of the spectrum condensed at different positions of the sample by the condensing unit is equal to or larger than the diameter of the spots of the spectrum. May be.
  • the two-dimensional spot group of the optical frequency comb mode is formed on the sample in a discrete and high-density manner.
  • crosstalk between adjacent spots (that is, pixels) of the two-dimensional spot group is suppressed, the center wavelength of the discrete spectrum light, the dispersion performance of the dispersion unit.
  • the numerical aperture of the lens used in the light converging unit and the frequency interval between adjacent spectrums of discrete spectrum light are not set as described above, an image with less blur is obtained from the mode-resolved spectrum.
  • the center wavelength of the discrete spectrum light, the frequency interval between the adjacent spectra, the numerical aperture of the lens arranged between the sample and the overlapping portion, and the overlapping portion may be set so that the spots of the spectrum collected at different positions of the sample are spatially superimposed by the lens at a predetermined position of the overlapping portion.
  • interval of the frequency of an adjacent spectrum, the numerical aperture of the lens used for a superimposition part, and the resolution of a spatial filtering optical system are not set as mentioned above.
  • a two-dimensional spot group focused at different positions on the sample can be used to obtain a more accurate image without loss of information from different positions on the sample in accordance with the center interval between spectral spots. Obtained from mode-resolved spectra.
  • the measurement apparatus may include a deconvolution processing unit that performs a deconvolution process on the two-dimensional spot group of the spectrum collected at different positions of the sample.
  • the image blur that is, the spread of the spot light
  • the image blur that is, the spread of the spot light
  • the measurement apparatus includes a third comb light source that emits a third optical frequency comb spectrum that is different from a phase of the first optical frequency comb spectrum, and the detection unit includes the first optical frequency comb.
  • the mode-resolved phase spectrum may be acquired based on a phase difference obtained by causing the spectrum and the third optical frequency comb spectrum to interfere with each other.
  • the frequency interval of the spectrum of the third optical frequency comb spectrum is a second adjacent frequency interval different from the first adjacent frequency interval, and the second adjacent frequency interval matches each other, and the detection unit May acquire the mode-resolved phase spectrum based on an interference spectrum generated by causing the first optical frequency comb spectrum and the third optical frequency comb spectrum to interfere with each other.
  • phase information in the confocal volume at different positions of the sample can be obtained, and from the depth resolution determined by the confocal characteristics (confocal depth resolution)
  • confocal depth resolution since information acquisition is performed with a depth resolution with higher accuracy, information in the thickness direction of the sample can be acquired with higher accuracy than in the case of only confocal characteristics.
  • the second comb light source and the third comb light source are provided separately by sharing the second comb light source as the third comb light source. In comparison, the apparatus can be simplified.
  • two or more independent spectra are simultaneously collected by one irradiation of the discrete spectrum light without performing mechanical scanning of the discrete spectrum light, and two or more focal points are focused on the sample. Can be formed simultaneously.
  • the spatial filtering optical system cuts off light from other than the focal position of the spectrum on the sample and simultaneously detects only two or more spectra including the sample information from the mode-resolved spectrum. Clear information of dimension space decomposition can be obtained. Furthermore, by using the mode-resolved phase spectrum, a depth resolution that greatly exceeds the confocal depth resolution can be obtained. Therefore, according to the present invention, it is possible to provide a measuring apparatus capable of acquiring sample information at high speed while maintaining high accuracy.
  • FIG. 1 is a schematic diagram of an optical system according to Example 1.
  • FIG. 2 is a test chart used in Example 1.
  • FIG. It is a figure which shows the line space
  • FIG. 6 is a graph showing the wavelength dependence of reflectance with respect to a range R1 of a test chart measured in Example 1.
  • FIG. 6 is a graph showing the wavelength dependence of reflectance with respect to a range R2 of a test chart measured in Example 1.
  • FIG. 6 is a graph showing the wavelength dependence of reflectance with respect to a range R3 of the test chart measured in Example 1.
  • FIG. 2 is a data showing a part of a test chart measured in Example 1.
  • FIG. 6 is a schematic diagram of a confocal microscopic line imaging apparatus according to Embodiment 2.
  • FIG. It is the upper side figure and side view which show a part of confocal microscopic line imaging apparatus of Example 2.
  • FIG. 6 is a graph showing the effect of limiting the depth resolution by pinholes in the spatial filtering optical system in Example 2.
  • FIG. 27 shows data related to a range R5 of the test chart measured in Example 2, and shows data when pinholes are arranged in the confocal microscopic line imaging apparatus shown in FIG.
  • FIG. 6 is a schematic diagram of a confocal microscopic line imaging apparatus according to Embodiment 3.
  • FIG. It is the mode decomposition spectrum acquired in Example 3.
  • It is the mode decomposition spectrum acquired in Example 3, and is the elements on larger scale of FIG.
  • It is the data regarding range R6 of the test chart measured in Example 3.
  • FIG. FIG. 6 is a schematic diagram of a confocal microscopic imaging apparatus according to a fourth embodiment. It is the mode decomposition spectrum acquired in Example 4. It is a mode decomposition spectrum acquired in Example 4, and is the elements on larger scale of FIG.
  • FIG. It is a two-dimensional confocal microscopic image of the group 4 element 1 of the test chart acquired in Example 4, and is an image when the measurement position is a position shifted by +10 ⁇ m from the condensing position of the optical frequency comb spectrum.
  • FIG. 1 is a schematic diagram of a measurement apparatus 10A according to the first embodiment.
  • the measurement device 10A is a measurement device that can acquire information on a sample S such as a cell, and includes a point light source 12, a dispersion unit 14, a first light collection unit (light collection unit) 15, The second condensing unit 17, the overlapping unit 19, the spatial filtering optical system 18, and the detection unit 20 are provided.
  • the point light source 12 includes a discrete spectrum light source (first comb light source) 22 and a condenser lens 24.
  • the discrete spectrum light source 22 is a light source that emits discrete spectrum light LA.
  • FIG. 2 is a schematic diagram for explaining the discrete spectrum light LA.
  • the discrete spectrum light LA includes two or more spectra MA distributed at different frequencies.
  • Examples of such discrete spectrum light LA include an optical frequency comb spectrum (first optical frequency comb spectrum) LX0.
  • the optical frequency comb spectrum LX0 includes, for example, two or more spectra MA distributed at a frequency interval fr on the frequency axis (f-axis shown in FIG. 2).
  • the number of the spectrum MA is assumed to be n.
  • the frequency interval fr is the frequency interval between the spectra MA and MA whose frequency positions are adjacent on the frequency axis.
  • n spectrums MA have a carrier envelope offset frequency f0 (hereinafter referred to as offset frequency f0) and a spectrum envelope NA having a distribution of a predetermined light intensity
  • the time interval between the centers of adjacent pulses ⁇ 1, ⁇ 2,..., ⁇ m is 1 / fr.
  • the optical carrier electric field CA of the plurality of pulses ⁇ 1, ⁇ 2,... ⁇ m has a time distribution obtained by inverse Fourier transform of the plurality of spectra MA.
  • the pulse envelope WA of the plurality of pulses ⁇ 1, ⁇ 2,..., ⁇ n has a time distribution obtained by inverse Fourier transform of the spectrum envelope NA.
  • the frequency of the spectrum MA in a predetermined order is determined.
  • the frequency ⁇ n of the nth spectrum MA with respect to the spectrum MA having the offset frequency f0 is determined as the following equation (1).
  • the frequency interval fr and the offset frequency f0 are stabilized with reference to the frequency standard, and the frequency of the spectrum MA hardly changes on the frequency axis and is fixed. “No change on the frequency axis” means that the different modes of the plurality of spectrum MAs are phase-synchronized and the frequency of the spectrum MA changes so that it can be achieved by phase-synchronizing with the frequency standard. Indicates a state that does not.
  • the discrete spectrum light source 22 a known comb light source capable of emitting the optical frequency comb spectrum LX0 described above can be used. Below, the structural example of the discrete spectrum light source 22 is demonstrated. Detailed descriptions of known components in each example are omitted. The configuration of the discrete spectrum light source 22 is not limited to the following examples.
  • FIG. 3 is a schematic diagram of a comb light source 22A which is a first configuration example of the discrete spectrum light source 22.
  • the comb light source 22 ⁇ / b> A includes a mode-locked fiber laser 77 and an amplifier 78.
  • the mode-locked fiber laser 77 includes an excitation semiconductor laser 82, an optical fiber 80G including an optical isolator 87A, an optical coupler 84A, an optical fiber 80A including a doped fiber 86A such as ytterbium (Yb), an optical fiber 80B, 80C and an optical isolator 85A.
  • the amplifier 78 is connected to the mode-locked fiber laser 77 via an optical coupler 84D disposed between the optical fibers 80B and 80C.
  • the amplifier 78 includes an optical fiber 80D connected to the output side of the optical coupler 84D, an optical isolator 85B, a pumping semiconductor laser 83, an optical fiber 80F including the optical isolator 87B, an optical coupler 84C, an ytterbium (Yb ) Or the like, and an optical isolator 85C.
  • a pulse with high frequency stability is oscillated from the mode-locked fiber laser 77 toward the optical coupler 84A from the optical isolator 85A.
  • a part of the oscillated pulse is extracted from the optical coupler 84D, and a part of the pulse travels through the optical fiber 80D, and the amplifier 78 amplifies the intensity thereof.
  • the remaining pulses travel through the optical fiber 80C and loop inside the mode-locked fiber laser 77.
  • FIG. 4 is a schematic diagram of a comb light source 22 ⁇ / b> B that is a second configuration example of the discrete spectrum light source 22.
  • the comb light source 22 ⁇ / b> B includes an optical modulator 90 and a microwave oscillator 93.
  • the light modulator 90 includes mirrors 92A and 92B that are spaced apart by a predetermined distance, and an electro-optic crystal 94 that is disposed between the two mirrors 92A and 92B.
  • lithium niobate LiNbO 3
  • LiNbO 3 lithium niobate
  • the single spectrum light incident on the optical modulator 90 is externally phase-modulated by the microwave oscillator 93.
  • the electro-optic crystal 94 is arranged in the Fabry-Perot resonator composed of the two mirrors 92A and 92B as described above, deep modulation is applied, and about 1000 or more spectra MA are generated.
  • the frequency interval fr of the spectrum MA matches the modulation frequency of the microwave oscillator 93.
  • the optical modulator 90 is composed of passive components, an optical frequency comb spectrum LX0 including two or more spectra MA that is very stable on the frequency axis is generated.
  • the center frequency of the spectrum envelope NA is determined by an input light source (not shown).
  • FIG. 5 is a schematic diagram of a comb light source 22 ⁇ / b> C which is a third configuration example of the discrete spectrum light source 22.
  • the comb light source 22C includes a waveguide type Mach-Zehnder modulator (MZM) type ultra-flat optical comb generator (MZ-FCG) 95.
  • MZM Mach-Zehnder modulator
  • MZ-FCG ultra-flat optical comb generator
  • an input waveguide 96A, two branch waveguides 96B and 96C, and an output waveguide 96D are formed.
  • Each of the two branch waveguides 96B and 96C is coupled with a waveguide capable of inputting a radio frequency (RF) signal and a phase modulation signal.
  • RF radio frequency
  • FIG. 6 is a schematic diagram of a comb light source 22 ⁇ / b> D that is a fourth configuration example of the discrete spectrum light source 22.
  • the comb light source 22D is a broadband comb / ultra short pulse light source using the MZ-FCG95 of the comb light source 22C.
  • the comb light source 22D includes a pumping semiconductor laser 98, a polarization controller (PC) 99, an MZM 100, a single mode fiber (SMF) 108, an erbium-doped fiber amplifier 109, a dispersion flat laser A dispersion reducing fiber (DF-DDF) 110.
  • the optical comb signal generated by the MZ-FCG 95 is input to the standard SMF 108 and then input to the DF-DDF, thereby generating an optical frequency comb spectrum LX0 extending to about 20 THz.
  • a condenser lens 24 is disposed in the emission direction of the discrete spectrum light source 22 exemplified by the comb light sources 22A to 22D described above.
  • the condensing lens 24 is an optical element that condenses the discrete spectrum light LA emitted from the discrete spectrum light source 22 at the condensing position P1. Accordingly, the various parameters of the condenser lens 24 are set in consideration of the frequency ⁇ of the spectrum MA, the distance between the position of the condenser lens 24 and the condenser position P1, and the like, and are not particularly limited.
  • the point light source 12 may be configured by replacing the lens with a mirror.
  • a mirror instead of the lens, it is possible to avoid the influence of the chromatic aberration of the lens on the frequency of each spectrum MA of the optical frequency comb spectrum LX0 emitted from the discrete spectrum light source 22.
  • the pinhole 26 has an opening having a predetermined size and shape. In the direction of the optical axis X, the opening of the pinhole 26 is located at the condensing position P1.
  • the size and shape of the opening are not particularly limited, and are set in consideration of the frequency of the spectrum MA and the desired resolution for acquiring information on the sample S.
  • the collimating lens 28 is an optical element that collimates the discrete spectrum light LA emitted from the condensing position P1.
  • the various parameters of the collimating lens 28 are set in consideration of the frequency of the spectrum MA, the distance between the condensing position P1 and the position of the collimating lens 28, etc., and are not particularly limited.
  • the pinhole 26, the condensing lens 24, and the collimating lens 28 can be replaced with other configurations as long as the discrete spectrum light LA can be condensed in at least one arbitrary direction at the condensing position P1.
  • a combination of a cylindrical lens and a slit may be used, and an encoding pattern may be used instead of the pinhole 26.
  • the dispersion unit 14 is disposed between the collimating lens 28 and the first light collecting unit 15 in the optical axis X direction, and is configured to disperse the discrete spectrum light LA in different directions for each spectrum MA.
  • the dispersion unit 14 of the first embodiment includes a dispersion element 32.
  • FIG. 1 shows a case where a diffraction grating is used as the dispersion element 32.
  • the dispersive element 32 is disposed in a posture in which an axis J1 orthogonal to the dispersive surface 32a is inclined with respect to the optical axis X by an angle ⁇ 0.
  • the dispersive element 32 wavelength-disperses light incident at an angle ⁇ 0 one-dimensionally, two-dimensionally, or three-dimensionally for each spectrum MA at angles ⁇ 1, ⁇ 2,..., ⁇ n corresponding to the frequencies of n spectra MA. It has a function.
  • the dispersive element 32 having such a function include a diffraction grating, a prism, a Virtual imaged Phased array (VIPA: registered trademark), a computer generated hologram (Computer Generated Hologram: CGH), and the like.
  • VIPA Virtual imaged Phased array
  • CGH Computer Generated Hologram
  • the pitch of the diffraction grating is set based on a known grating equation in consideration of the angle ⁇ 0 at which the spectrum MA is incident, the frequency of the spectrum MA, a desired resolution for obtaining information on the sample S, and the like, and is not particularly limited. .
  • the dispersion beam is wavelength-dispersed two-dimensionally (in a plane).
  • CGH is used as the dispersive element 32, the depth of the condensing position can be changed for each spectrum by giving the CGH lens characteristics.
  • the first condensing unit 15 is arranged between the dispersion unit 14 and the sample S in the optical axis X direction, and the spectrum MA wavelength-dispersed by the dispersion unit 14 is located at different positions p1, p2,. It is the structure for condensing each.
  • the first light collecting unit 15 includes relay lenses 34 and 36 and an objective lens 38.
  • the relay lenses 34 and 36 are used to transfer the beam emission state of the dispersive element 32 to the entrance pupil (point P4) of the objective lens.
  • the relay lens 34 condenses the plurality of spectra MA at different positions in the direction orthogonal to the optical axis X (that is, in the direction of the arrow D2 or the arrow D3 shown in FIG. 1).
  • the relay lens 36 collimates a plurality of spectrums MA diverged after condensing, and passes the point P4 which is the entrance pupil of the objective lens in common, and enters the objective lens 38.
  • the objective lens 38 forms a focal point at a different position depending on the beam incident angle at the point P4. However, since the incident angle is different for each spectrum MA, the spectrum MA from the incident point P4 is converted into the sample S for each spectrum MA. Are condensed at different positions in the direction of arrow D2 or D3.
  • the first condensing unit 15 is not limited to the above-described configuration as long as the spectrum MA dispersed by the dispersing unit 14 can be condensed at different positions p1, p2,.
  • the sample S is disposed between the first light collecting unit 15 and the second light collecting unit 17 in the optical axis X direction.
  • the sample S is not particularly limited as long as it is an object that transmits the spectrum MA and can add the information to the spectrum MA by modulation of amplitude or phase, such as a cell.
  • the second light collecting unit 17 is disposed between the sample S and the overlapping unit 19 in the optical axis X direction, and includes an objective lens 39 and relay lenses 35 and 37.
  • the relay lenses 35 and 37 are used to transfer the beam emission state of the entrance pupil (point P5) of the objective lens to the dispersion element 33. These components correspond to the objective lens 38 and the relay lenses 34 and 36, respectively. That is, the second light collecting unit 17 is configured by folding the first light collecting unit 15 with respect to the sample S in the optical axis X direction.
  • the objective lens 39 collimates each transmitted spectrum (hereinafter referred to as a transmission spectrum) transmitted from different positions p1, p2,..., Pn, and passes the point P5 in common to be incident on the relay lens 37. .
  • the relay lens 37 condenses the plurality of transmission spectra that have passed through the point P5 at different positions in the direction orthogonal to the optical axis X (that is, in the direction of the arrow D2 or the arrow D3 shown in FIG. 1).
  • the relay lens 35 collimates a plurality of transmission spectra diverged after condensing.
  • the 2nd condensing part 17 is not limited to the said structure, It is omissible.
  • the superimposing unit 19 is disposed between the second light collecting unit 17 and the spatial filtering optical system 18 in the optical axis X direction, and spatially superimposes transmission spectra from different positions p1, p2,. It is the structure for.
  • the overlapping portion 19 of the first embodiment includes a dispersive element 33.
  • the dispersive element 33 is arranged in a posture in which an axis J2 orthogonal to the wavelength dispersion surface 33a is inclined with respect to the optical axis X by an angle ⁇ 0.
  • the dispersive element 33 has a function to simultaneously disperse light incident at angles ⁇ 1, ⁇ 2,..., ⁇ n corresponding to the frequencies of n spectrum MAs at a common angle ⁇ 0.
  • n spectra MA are superimposed on the optical axis X.
  • the dispersing element 33 having such a function include a diffraction grating, a prism, VIPA, and CGH.
  • the dispersive element 33 preferably has the same performance as the dispersive element 32.
  • the spatial filtering optical system 18 is disposed between the overlapping unit 19 and the detection unit 20 in the optical axis X direction, and is conjugated with each of the positions p1, p2,..., Pn collected on the sample S of the spectrum MA. This is a configuration for condensing light at the correct position P3.
  • the spatial filtering optical system 18 includes a condenser lens 40, a pinhole 42, and a collimator lens 44, and these components are arranged in the order described above from the rear side in the optical axis X direction.
  • the condensing lens 40 condenses the transmission spectrum incident on the optical axis X at a position P3 conjugate to the focal point on the sample S of the spectrum MA (hereinafter sometimes simply referred to as a position P3 conjugate to the focal point). . Therefore, the various parameters of the condenser lens 40 are set in consideration of the frequency of the spectrum MA and the distance between the position of the condenser lens 40 and the position P3 conjugate to the focal point, and are not particularly limited.
  • the pinhole 42 has an opening having a predetermined size and shape. In the direction of the optical axis X, the opening of the pinhole 42 is located at a position P3 conjugate to the focal point.
  • the size and shape of the opening are set in consideration of the frequency of the spectrum MA and the light condensing performance of the condensing lens 40, and are not particularly limited.
  • the pinhole 42 allows the transmission spectrum from the positions p1, p2,.
  • the collimating lens 44 is an optical element that collimates the transmission spectrum emitted from the position P3 conjugate to the focal point. Therefore, the various parameters of the collimating lens 44 are set in consideration of the frequency of the spectrum MA and the distance between the position P3 conjugate to the focal point and the position of the collimating lens 44, etc., and are not particularly limited.
  • the detection unit 20 is disposed at the end of the measuring device 10A in the optical axis X direction.
  • the detection unit 20 is configured to acquire a mode-resolved spectrum including information on the sample S from the discrete spectrum light LB that is spatially filtered by the spatial filtering optical system 18 and includes information on the sample S.
  • a known detection optical system 46 or a spectroscopic device capable of acquiring a mode-resolved spectrum from the discrete spectrum light LB can be used.
  • a configuration example of the detection optical system 46 will be described. Detailed descriptions of known components in each example are omitted.
  • the configuration of the detection optical system 46 is not limited to the following examples.
  • FIG. 7 is a schematic diagram of an optical system 46A which is a first configuration example of the detection optical system 46.
  • the optical system 46 ⁇ / b> A includes a cylindrical lens 48, a VIPA 50, a spherical lens 52, and a diffraction grating 54.
  • the VIPA 50 is formed of a semi-transmissive film (not shown) on one surface of a thin glass plate 50b and a reflective film 50r on the other surface, and has sharp wavelength dispersion characteristics due to etalon. Then, the chromatic dispersion angle is changed by moving the VIPA.
  • the light collected by the cylindrical lens 48 along the direction of the arrow x shown in FIG. 7 is dispersed by the VIPA 50 in the direction of the arrow y (first direction).
  • the dispersion angle of the dispersed light is an angle resulting from the frequency of the light, the thickness of the VIPA 50, and the incident angle within an angle ⁇ with respect to the optical axis.
  • the light dispersed by the VIPA 50 is deflected by the spherical lens 52 in a direction parallel to the optical axis for each light, and enters the diffraction grating 54.
  • the extending direction of the diffraction grating 54 is parallel to the arrow y direction, the light reflected from the diffraction grating 54 is reflected in a direction orthogonal to the one direction at the same time as the reflection (the direction of the arrow x shown in FIG. Diffracted in the second direction)) and thereby dispersed by frequency. Accordingly, a plurality of mode-resolved spectra are two-dimensionally expanded in the directions of the arrow D1 and the arrow D3, and a two-dimensional spatial distribution of each mode-resolved intensity spectrum is detected by an imaging device or the like.
  • the scattered band d1 in the direction of the arrow D1 and the pitch d2 in the direction of the arrow D3 depend on the Free Spectrum Range (FSR) of the VIPA 50 and the grating pitch of the diffraction grating 54. Further, the pitch d3 in the direction of the arrow D1 depends on the frequency interval of the spectrum of light incident on the VIPA 50 (that is, the frequency interval fr in this embodiment).
  • FIG. 8 is a schematic diagram of an optical system 46B which is a second configuration example of the detection optical system 46.
  • the optical system 46 ⁇ / b> B is a dispersive spectrometer including an entrance slit 120, reflection concave mirrors 121 and 123, a diffraction grating 122, and an output slit 124.
  • the light incident from the opening of the entrance slit 120 is collimated by the reflective concave mirror 121 and enters the diffraction grating 122. Since the extending direction of the grating of the diffraction grating 122 is a predetermined direction (a direction penetrating the paper surface of FIG. 8), the light reflected from the diffraction grating 122 is diffracted in a predetermined direction simultaneously with the reflection, and thereby, for each frequency. Are distributed in different directions. Subsequently, the light dispersed for each frequency is applied to the output slit 124 by the reflecting concave mirror 123, and the light at the position of the opening of the output slit 124 is extracted.
  • the mode-resolved spectrum dispersed by the diffraction grating 122 is detected for each frequency.
  • a similar mode-resolved intensity spectrum is detected by rotating the diffraction grating 122 while the output slit 124 is fixed.
  • FIG. 9 is a schematic diagram of an optical system 46C which is a third configuration example of the detection optical system 46.
  • the optical system 46 ⁇ / b> C includes a Michelson interferometer type Fourier filter including a mirror 127, a beam splitter 128, right-angle (prism) mirrors 129 and 130, a detector 131, and a Fourier transform unit 132. This is a conversion spectroscopic optical system.
  • one right-angle mirror 129 is moved in the direction of arrow D12 parallel to the optical axis, and the interference waveform of the light reflected from each of the right-angle mirrors 129 and 130 is detected by the detector 131. Subsequently, a mode-resolved intensity spectrum for each frequency (wavelength) is detected by Fourier transforming the interference waveform in the Fourier transform unit 132.
  • the discrete spectrum light LA emitted from the discrete spectrum light source 22 of the point light source 12 is condensed at the condensing position P ⁇ b> 1 and passes through the opening of the pinhole 26.
  • the discrete spectrum light LA diverging from the condensing position P1 is collimated by the collimating lens 28 and enters the dispersion element 32 of the dispersion unit 14.
  • Two or more (here, n) spectrum MA of the discrete spectrum light LA incident on the dispersive element 32 and having a common angle ⁇ 0 with respect to the axis J1 is an angle corresponding to the frequency of each spectrum MA. Disperse simultaneously at ⁇ 1, ⁇ 2,. That is, each spectrum MA is simultaneously dispersed in different directions. Subsequently, n spectra MA dispersed at different angles ⁇ 1, ⁇ 2,..., ⁇ n for each spectrum are incident on the first condensing unit 15 and are condensed for each spectrum by the relay lens 34, and the relay lens 36 is obtained. Is collimated toward position P4. The n spectra MA passing through the position P4 are simultaneously condensed by the objective lens 38 at different positions p1, p2,.
  • Information relating to the sample S at the positions p1, p2,..., Pn is added to the n spectrums MA simultaneously condensed at different positions p1, p2,.
  • the irradiation spot for measurement which consists of n spectrum MA is simultaneously formed in the sample S by one irradiation of discrete spectrum light LA. Further, the information on the sample S is added to each of the n spectra MA that are independent of each other.
  • Discrete spectrum light LB including information on the sample S is transmitted from mutually different positions p1, p2,.
  • the spectrum of the discrete spectrum light LB (hereinafter referred to as a transmission spectrum) is collimated by the objective lens 39 of the second condenser 17 and passes through the point P5 in common.
  • transmission spectra are incident on the relay lens 37 and are collected by the relay lens 37 at different positions in the direction perpendicular to the optical axis X (that is, the direction of the arrow D2 or D3 shown in FIG. 1).
  • the plurality of transmission spectra diverged after condensing are collimated by the relay lens 35 and deflected toward the overlapping portion 19.
  • Transmission spectra from different positions p1, p2,..., Pn are incident on the dispersive element 33 of the overlapping section 19 at angles ⁇ 1, ⁇ 2,..., ⁇ n corresponding to the frequencies of the n transmission spectra. Then, the dispersion element 33 simultaneously performs wavelength dispersion at a common angle ⁇ 0 with respect to the axis J2, and is spatially and simultaneously superimposed on the optical axis X.
  • the n transmission spectra that are spatially superimposed and include information of the sample S are incident on the spatial filtering optical system 18, collected at the conjugate position P3 by the condenser lens 40, and passed through the opening of the pinhole 42. To do. Light and spectra other than the n transmission spectra are cut by the pinhole 42. The n transmission spectra that have passed through the opening of the pinhole 42 are collimated by the collimating lens 44 and enter the detection unit 20.
  • the detection unit 20 acquires n mode-resolved spectra including the information of the sample S from the discrete spectrum light LB including the information of the sample S (that is, the transmission spectrum described above). If n mode-resolved spectra are arranged one-dimensionally, two-dimensionally or three-dimensionally according to different positions p1, p2,... pn of the sample S by the detection optical system 46 or other configurations, Information on the sample S included in the mode-resolved spectrum is easy to see. Regardless of such a method, if n mode-resolved spectra are acquired from the discrete spectrum light LB, the measurement of the sample S is completed.
  • FIG. 10 illustrates the light operations (reflection arrangement) performed by the point light source 12, the dispersion unit 14, the first light collection unit 15, the second light collection unit 17, the superposition unit 19, and the spatial filtering optical system 18 described above. It is a schematic diagram for demonstrating. As shown in FIG. 10, according to the measurement apparatus 10 ⁇ / b> A described above, discrete spectrum light that is emitted from the point light source 12 including the spatial filtering optical system 18 and includes two or more spectra MA that are independent from each other on the frequency axis.
  • FIG. 10 illustrates a state in which n spectrums MA are two-dimensionally plane-converted according to the respective frequencies (wavelengths).
  • the plurality of dispersed spectra s1, s2,..., Sn are simultaneously condensed at different positions p1, p2,. That is, a plurality of spectra MA can be condensed at different positions on the sample S by one irradiation (one shot) of the discrete spectrum light LA. In addition, unlike the case where continuous spectrum light is used, the plurality of spectra MA are independent from each other, so that information on the sample S can be simultaneously and simultaneously collected at the condensing positions p1, p2,. Each of the n spectrums MA can be added in parallel. Therefore, if the condensing positions p1, p2,..., Pn of the n spectra are matched with the measurement target range of the sample S, the information of the sample S in the measurement range can be acquired non-mechanically at high speed.
  • the discrete spectrum light LB to which the information of the sample S is added is spatially superimposed by the second condensing unit 17 and the overlapping unit 19, and the spatial filtering optical system 18 is spatially filtered.
  • the information of the sample S is added to each of the n spectra MA from the superposition unit 19, and n mode-resolved spectra MA2 are generated, and the spectrum envelope NA is changed to the spectrum envelope NA2.
  • the aperture of the pinhole 42 of the spatial filtering optical system 18 is disposed at a position P3 conjugate with the positions p1, p2,.
  • the frequency intervals of the n spectrum MAs can coincide with each other, and the first adjacent frequency interval fr1 can be obtained.
  • the n spectra MA are collected at different positions on the sample S and at a predetermined interval corresponding to the first adjacent frequency interval fr1. Therefore, information within the measurement range of the sample S can be acquired at regular intervals.
  • the measurement apparatus 10A of the first embodiment it is possible to detect the discrete spectrum light LB that passes through the sample S and is spatially superimposed by the overlapping unit 19.
  • the high speed and high resolution are greatly improved as compared with the conventional confocal microscope, and clear information with high contrast can be acquired with one shot of the discrete spectrum light LA. it can.
  • FIG. 11 is a schematic diagram of a measuring apparatus 10B according to the second embodiment to which the present invention is applied.
  • symbol is attached
  • the measurement device 10 ⁇ / b> B includes a half mirror 55 and a discrete spectrum light source (second comb light source) 60 in addition to the components of the measurement device 10 ⁇ / b> A.
  • the half mirror 55 is disposed between the detection optical system 46 of the detection unit 20 and the collimator lens 44 in the optical axis X direction.
  • the mirror surface of the half mirror 55 is inclined at a predetermined angle with respect to the optical axis X.
  • the discrete spectrum light source 60 is a light source that emits discrete spectrum light LC.
  • the discrete spectrum light LC includes two or more spectra MA2 distributed at different frequencies (see FIG. 12).
  • An example of such a discrete spectrum light LC is an optical frequency comb spectrum (second optical frequency comb spectrum) LX2.
  • the discrete spectrum light source 60 is disposed so that the discrete spectrum light LC is incident on the half mirror 55 at a predetermined angle.
  • FIG. 11 illustrates a discrete spectrum light source 60 that is disposed at a position that advances in the direction opposite to the arrow D1 direction from the center position of the half mirror 55 in the optical axis X direction.
  • FIG. 12 is a schematic diagram for explaining an interference spectrum generation process (that is, dual optical comb spectroscopy) between the discrete spectrum light LB including the information of the sample S and the discrete spectrum light LC emitted from the discrete spectrum light source 60. It is. As shown in FIG. 12, regarding the discrete spectrum light LB including the information of the sample S, the frequency interval between the mode-resolved spectra MA1 and MA1 whose frequency positions are adjacent on the frequency axis of the optical region is the first adjacent frequency interval fr1. is there. The first adjacent frequency intervals fr1 coincide with each other.
  • the frequency interval between the mode-resolved spectra MA2 and MA2 whose frequency positions are adjacent on the frequency axis of the optical region is the second adjacent frequency interval fr2 different from the first adjacent frequency interval fr1.
  • the second adjacent frequency intervals fr2 also coincide with each other. That is, the discrete spectrum lights LB and LC are each provided with n spectrums MA1 and MA2 distributed at equal intervals on the frequency axis, and the first adjacent frequency interval fr1 and the second adjacent frequency interval fr2 are different from each other. ing.
  • the discrete spectrum light LB collimated by the collimating lens 44 interferes with the discrete spectrum light LC emitted from the discrete spectrum light source 60 by the half mirror 55 by multi-frequency heterodyne interference (that is, dual optical comb spectroscopy).
  • the discrete spectrum light LB is the optical frequency comb spectrum LX1 obtained by adding the information of the sample S to the optical frequency comb spectrum LX0
  • the discrete spectrum light LC is the optical frequency comb spectrum. LX2.
  • the interference spectrum LZ is incident on the detection optical system 46, and the interference spectrum LZ is directly measured by, for example, an RF spectrum analyzer and converted to the frequency scale of the original optical region.
  • the interference spectrum LZ can also be obtained by acquiring a time change (interferogram) of the interference waveform with a digitizer and subjecting it to Fourier transform. In this way, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum are obtained based on the interference spectrum LZ.
  • the same effects as the measurement device 10A of the first embodiment can be obtained.
  • the dual optical comb spectroscopy described above is employed.
  • the modes of the optical frequency comb spectra LX1 and LX2 are often incapable of being decomposed due to insufficient resolution with commercially available spectroscopes that are widely used.
  • the optical frequency comb spectrum LX1 can be downscaled to the interference spectrum LZ in the electromagnetic wave region by multi-frequency heterodyne interference.
  • a mode-resolved amplitude spectrum and a mode-resolved phase spectrum can be acquired with high resolution, high accuracy, wide bandwidth and high speed without using a spectrometer.
  • FIG. 13 is a schematic diagram of a measuring apparatus 10C according to a third embodiment to which the present invention is applied.
  • symbol is attached
  • the measurement device 10 ⁇ / b> C is obtained by changing the configuration of the transmission type measurement device 10 ⁇ / b> A to a reflection type configuration.
  • the measurement device 10 ⁇ / b> C includes a point light source 12, a half mirror 30, a dispersion unit 14, a third light collection unit (light collection unit) 16, a superposition unit 19, a spatial filtering optical system 18, and a detection unit 20. It is equipped with.
  • the pinhole 26 and the collimating lens 28 are arranged in this order in front of the point light source 12.
  • the discrete spectrum light LA emitted from the collimator lens 28 enters the half mirror 30.
  • the half mirror 30 makes the discrete spectrum light LA incident on the axis J3 of the dispersion element 32 at an angle ⁇ 0.
  • the dispersion element 32 serves as both the dispersion part 14 and the overlapping part 19.
  • the third condensing unit 16 condenses the spectrum MA dispersed in different directions for each spectrum by the dispersive element 32 at different positions p1, p2,.
  • the dispersive element 32 spatially superimposes spectra (hereinafter referred to as reflection spectra) reflected from different positions p1, p2,. Then, the reflection spectrum is emitted in the direction opposite to the direction in which the discrete spectrum light LA travels.
  • the sample S may be an object that reflects the n number of irradiated spectrums MA, and may be reflective by being colored or the like. Further, a reflecting plate or the like may be installed behind the sample S in the optical axis X direction (that is, the back side of the sample S in the direction of arrow D1).
  • the collimated discrete spectrum light LA has its path changed at a right angle by the half mirror 30 and is incident on the dispersion element 32 of the dispersion unit 14.
  • the n spectrums MA wavelength-dispersed at different angles ⁇ 1, ⁇ 2,..., ⁇ n for each spectrum by the dispersive element 32 are incident on the third condensing unit 16, and are collected for each spectrum by the relay lens 34. It is collimated by the relay lens 36 toward the position P7.
  • the n spectra MA passing through the position P7 are simultaneously condensed by the objective lens 38 at different positions p1, p2,.
  • the discrete spectrum light LB including the information of the sample S is reflected from mutually different positions p1, p2,..., Pn and is incident on the third light collecting unit 16 again.
  • the reflection spectrum of the discrete spectrum light LB is collimated by the objective lens 38 of the third condenser 16 and passes through the point P7 in common.
  • the n reflection spectra are incident on the relay lens 36 and are collected by the relay lens 36 at different positions in the direction orthogonal to the optical axis X (that is, the direction of the arrow D2 or D3 shown in FIG. 1). Then, the plurality of reflection spectra diverged after condensing are collimated by the relay lens 34 and deflected toward the dispersion element 32 of the overlapping portion 19.
  • the reflection spectra from different positions p1, p2,..., Pn are incident on the dispersion element 32 of the overlapping portion 19 at angles ⁇ 1, ⁇ 2,..., ⁇ n corresponding to the frequencies of the n reflection spectra. Then, the dispersion element 32 simultaneously performs wavelength dispersion at a common angle ⁇ 0 with respect to the axis J2, and is spatially and simultaneously superimposed on the optical axis X.
  • the n reflection spectra that are spatially superimposed and include the information of the sample S are transmitted through the half mirror 30 and go straight and enter the spatial filtering optical system 18. Then, the light is condensed at a conjugate position P 3 by the condenser lens 40 and passes through the opening of the pinhole 42. Light and spectrum other than n reflection spectra are cut by the pinhole 42. The n reflection spectra that have passed through the opening of the pinhole 42 are collimated by the collimator lens 44 and enter the detection unit 20.
  • the detection unit 20 acquires n mode-resolved spectra including the information of the sample S from the discrete spectrum light LB including the information of the sample S (that is, the reflection spectrum). If n mode-resolved spectra are arranged one-dimensionally, two-dimensionally or three-dimensionally according to different positions p1, p2,... pn of the sample S by the detection optical system 46 or other configurations, Information on the sample S included in the mode-resolved spectrum is easy to see. Regardless of such a method, if n mode-resolved spectra are acquired from the discrete spectrum light LB, the measurement of the sample S is completed.
  • the same effects as those of the measurement device 10A of the first embodiment can be obtained.
  • the discrete spectrum light LB including the information of the sample S, which is reflected from the sample S and similarly spatially superimposed by the overlapping unit 19, is detected. be able to.
  • the first and second light collecting units 15 and 17 in the measurement device 10A are the third light collecting unit 16 having a common configuration, and the individual dispersion units 14 and The superposition part 19 is comprised by the dispersive element 32 which is a common structure. Therefore, the size of the measuring device 10C can be reduced.
  • FIG. 14 is a schematic diagram of a measurement apparatus 10D according to the fourth embodiment.
  • symbol is attached
  • dual optical comb spectroscopy can also be adopted for the reflective measurement apparatus 10C.
  • the measurement device 10 ⁇ / b> D includes a half mirror 55 and a discrete spectrum light source (second comb light source) 60 in addition to the components of the measurement device 10 ⁇ / b> C.
  • the discrete spectrum light source 60 is disposed so that the discrete spectrum light LC is incident on the half mirror 55 at a predetermined angle.
  • FIG. 14 illustrates a discrete spectrum light source 60 arranged at a position that advances in the direction opposite to the arrow D1 direction from the center position of the half mirror 55 in the optical axis X direction.
  • the discrete spectrum light LB collimated by the collimator lens 44 interferes with the discrete spectrum light LC emitted from the discrete spectrum light source 60 by the half mirror 55 by multi-frequency heterodyne interference.
  • the interference spectrum LZ is incident on the detection optical system 46, and the interference spectrum LZ is directly measured by, for example, an RF spectrum analyzer and converted to the frequency scale of the original optical region.
  • the interference spectrum LZ can also be obtained by acquiring a time change (interferogram) of the interference waveform with a digitizer and subjecting it to Fourier transform. In this way, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum are obtained based on the interference spectrum LZ.
  • the same operational effects as those of the measurement device 10C of the third embodiment can be obtained.
  • the dual optical comb spectroscopy is employed, so that the optical frequency comb spectrum LX1 can be downscaled to the interference spectrum LZ in the electromagnetic wave region by multi-frequency heterodyne interference. .
  • a mode-resolved amplitude spectrum and a mode-resolved phase spectrum can be acquired with high resolution, high accuracy, wide bandwidth and high speed without using a spectrometer.
  • FIG. 15 is a schematic diagram of a measuring apparatus 10E according to a fifth embodiment to which the present invention is applied.
  • symbol is attached
  • the measuring device 10E changes the condensing lens 24, the pinhole 26, and the collimating lens 28 of the transmissive measuring device 10A to a cylindrical lens 174, a slit 176, and a cylindrical lens 178, respectively.
  • the lens 40, the pinhole 42, and the collimating lens 44 are changed to a cylindrical lens 180, a slit 182 and a cylindrical lens 184, respectively.
  • the cylindrical lenses 174, 178, 180, and 184 have a curved surface only in the direction of the arrow D1, collect the incident light in the same direction, or collimate, and do not have a curved surface in the direction of the arrow D5. Does not act on the lens.
  • the dimensions of the slits 176 and 182 in the arrow D1 direction are the same as the dimensions of the pinholes 26 and 42 in the same direction.
  • the dimensions of the slits 176 and 182 in the direction of arrow D5 are the same as the dimensions of the cylindrical lenses 174 and 178 in the same direction.
  • the discrete spectrum light LA is line-condensed by the cylindrical lens 174 in the direction of the arrow D1 to be a line light source.
  • Discrete spectrum light LA condensed into a linear shape passes through slit 176 and is collimated by cylindrical lens 178 in the direction of arrow D1.
  • the discrete spectrum light LA that has passed through the cylindrical lens 178 enters a one-dimensional wavelength dispersion element (dispersion element) 32 such as a diffraction grating.
  • the incident discrete spectrum light LA is dispersed at an angle of ⁇ 1 to ⁇ n in a direction orthogonal to the axis of the slit 176 (that is, in a plane parallel to the paper surface of FIG. 15).
  • the wavelength dispersion power of the one-dimensional wavelength dispersion element 32 is set to a desired concentration in the direction of the arrow D2 or D3 in the sample S in consideration of the frequency interval between the plurality of spectra MA and the angles ⁇ 0, ⁇ 1,.
  • two or more spectra MA of the discrete spectrum light LA wavelength-dispersed by the one-dimensional wavelength dispersion element 32 are D5 direction (that is, perpendicular to the paper surface of FIG. 15) for each wavelength component in the sample S by the first condenser 15. Line) along each direction.
  • the principle of measurement using the measuring device 10E is the same as the principle of measurement using the measuring device 10A until it is incident on the one-dimensional wavelength dispersion element (dispersing element) 33 by the second condensing unit 17; Description is omitted.
  • a linear light collection pattern having a certain length in the arrow D5 direction is formed at a position different from each other for each wavelength in the arrow D2 or D3 direction of the sample S.
  • the linear discrete spectrum LB including the information of the sample S is transmitted from positions p1, p2,..., Pn different from each other in the direction of the arrow D2 or D3, and the one-dimensional wavelength dispersion of the overlapping unit 19 by the second condensing unit 17. ..., .Theta.n is incident on the element 33, and simultaneously wavelength-dispersed at the angle .theta.0 in common with the axis J2 and superimposed on the optical axis X.
  • the n transmission spectra that are spatially and simultaneously overlapped are line-collected by the cylindrical lens 180 in the direction of the arrow D 1, pass through the slit 182, collimated by the cylindrical lens 184, and enter the detection unit 20. In the direction of arrow D5, the size and collimated state of the discrete spectrum light LA emitted from the discrete spectrum light source 22 are maintained.
  • the discrete spectrum light LB is line-condensed by a cylindrical lens 188 in a direction parallel to the D5 direction, and a mode-resolved spectrum, that is, a spectral line image at each position of the condensing line is acquired.
  • a multi-channel spectroscope 192 that can enter through a slit 190 using a two-dimensional sensor such as a CCD or CMOS as a detector can be used.
  • the same operational effects as those of the measurement device 10A of the first embodiment can be obtained.
  • the sample S is irradiated two-dimensionally by forming a linear condensing pattern at different positions for each of two or more spectra MA in the sample S. be able to.
  • a measurement result can be obtained as a spectral line image.
  • a two-dimensional image can also be acquired using a two-dimensional wavelength dispersion element.
  • the discrete spectrum light source 22 is not limited to a known comb light source and the like as long as it can emit discrete spectrum light LA including two or more spectra MA.
  • the discrete spectrum light source 22 may be configured by combining a plurality of light sources that emit a single spectrum. Further, for example, when measuring two specific ranges of the sample S that are separated from each other, two spectra MA having a frequency interval fr corresponding to the separated distance may be used. In that case, two laser light sources emitting each of the two spectra MA as a single spectrum may be prepared, and the single spectrum from these laser light sources may be photomixed.
  • the measurement apparatus if the spectrum MA is two-dimensionally condensed in the first condensing unit 15 at different positions p1, p2,.
  • two-dimensional simultaneous measurement can be performed.
  • the spectrum MA is collected one-dimensionally in the first light collecting unit 15, in other words, at different positions on one line, one shot of the discrete spectrum light LA is obtained.
  • simultaneous measurement on the line can be performed. That is, if the spectrum MA is condensed in k-dimensionally different positions in the first condensing unit 15, the measuring apparatus according to the present invention can be applied to k-dimensional imaging.
  • the confocal effect in the measurement apparatus of the present invention can also be exhibited in a measurement apparatus (not shown) provided with continuous spectrum light instead of the discrete spectrum light LB. That is, a confocal effect can be obtained even in a measurement apparatus including a point light source that emits continuous spectrum light, a dispersion unit, a condensing unit, a spatial filtering optical system, and a detection unit.
  • the dispersion unit chromatically disperses the continuous spectrum light emitted from the point light source in a predetermined direction.
  • a condensing part condenses the said continuous spectrum wavelength-dispersed by the dispersion
  • the spatial filtering optical system spatially filters the continuous spectrum light transmitted or reflected from the sample and containing the sample information at a position conjugate to the condensing position on the sample of the continuous spectrum dispersed by the dispersion unit. .
  • a detection part acquires the information of a sample from the continuous spectrum light containing the information of the sample spatially filtered by the spatial filtering optical system.
  • a continuous focus group is formed at a predetermined position of the sample, and the accuracy is lower than that of the measurement device of the present invention, and information with lower resolution than that of the measurement device of the present invention is acquired. It will be.
  • the center wavelength ⁇ 0 of the discrete spectrum light LA, the resolution of the dispersion unit 14, and the objective lens 38 The numerical aperture fr and the frequency interval fr of the adjacent spectra MA, MA of the discrete spectrum light LA (optical frequency comb spectra LX0, LX1, LX2) are changed to positions p1, p2,. It is preferable that the center interval between the spots of the spectrum MA focused on pn (that is, the distance between the positions p1, p2,..., pn) is set to be equal to or larger than the diameter of the spot of the spectrum MA.
  • the center wavelength ⁇ 0 of the discrete spectrum light LA, the resolution of the dispersion unit 14, the numerical aperture of the objective lens 38, and the adjacent spectra MA, MA (or spectra) of the discrete spectrum light LA optical frequency comb spectra LX0, LX1, LX2.
  • the crosstalk between the pixels is further suppressed by condensing the two-dimensional spot group, which is spatially distributed in a discrete and high-density manner, at a position corresponding to each pixel on the condensing area of the sample S.
  • the mode-resolved spectrum, that is, the confocal image can be acquired with higher accuracy.
  • the second optical system 17 is set so as to be spatially superimposed at a predetermined position of the overlapping portion 19.
  • the center wavelength ⁇ 0 of the discrete spectrum light LA, the frequency interval ⁇ fr between the adjacent spectra MA, MA, the numerical aperture of the lenses 35, 35, 37 used in the second optical system 17 and the resolution of the overlapping portion 19 are described above.
  • the sample is not set as above, from the two-dimensional spot group condensed at different positions p1, p2,.
  • a more accurate mode-resolved spectrum can be obtained without missing or overlapping information from different positions p1, p2,..., Pn of the sample S.
  • a VIPA (first dispersion element) 50 and a diffraction grating (second dispersion element) as the dispersion element 32 of the dispersion unit 14 of each of the measurement apparatuses 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment. ) 54 can be used in combination.
  • the dispersion portion 14A made of the optical system shown in FIG. 16 can be employed.
  • the light collected by the cylindrical lens 48 along the direction of the arrow x is dispersed by the VIPA 50 in the direction of the arrow y.
  • spots of a plurality of spectra MA are spatially superimposed at individual spatial positions along the arrow y direction.
  • a band d1 in which these spot-like spectra MA are scattered in the direction of the arrow y corresponds to the FSR of the VIPA 50.
  • the interval d3 between the plurality of spectrum MA groups in the direction of the arrow y corresponds to the frequency interval fr of the plurality of spectra MA.
  • the diameter of the spots of the plurality of spectra MA depends on the VIPA 50 FSR and finesse (about 1 / 100th of the FSR).
  • the light dispersed in the arrow y direction by the VIPA 50 is diffracted by the diffraction grating 54 in the arrow x direction at the same time as being reflected, and is dispersed for each frequency. Accordingly, the spots of the spectrum MA that have been spatially superimposed are dispersed in the direction of the arrow x, and as a result, the plurality of modes MA are two-dimensionally expanded in the directions of the arrows D1 and D3.
  • the band d4 where the spot-like spectrum MA is scattered in the direction of the arrow x is the spot sp1 of the spectrum MA having the shortest wavelength and the spot sp2 of the spectrum MA having the longest wavelength. This corresponds to an optical frequency difference (ie, wavelength difference) ⁇ .
  • the pitch d2 of the plurality of spectra MA in the direction of the arrow x corresponds to the FSR of the VIPA 50.
  • the center optical frequency ⁇ 0 of the discrete spectrum light LA (optical frequency comb spectrum LX0, LX1, LX2) is set to 194 THz (center wavelength ⁇ 0). 1.55 ⁇ m), the frequency interval fr of the spectrum MA adjacent on the frequency axis of the discrete spectrum light LA is 250 MHz, and the optical frequency difference between the spot sp1 of the spectrum MA with the shortest wavelength and the spot sp2 of the spectrum MA with the longest wavelength Assume ⁇ is 900 GHz, VIPA50 FSR and finesse are 15 GHz and 100.
  • the band d1 in which the spot-like spectrum MA is scattered in the direction of the arrow y is , About 100 ⁇ m.
  • the interval d3 between the plurality of spectrum MA groups in the arrow y direction is 1.67 ⁇ m.
  • a band d4 where the spot-like spectrum MA is scattered in the direction of the arrow x is 600 ⁇ m.
  • the pitch d2 of the plurality of spectra MA in the arrow x direction is 10 ⁇ m.
  • the diameters of the spots of the plurality of spectra MA are 0.1 ⁇ m in the arrow x direction and 1 ⁇ m in the arrow y direction. Therefore, in the dispersion unit 14A and the measuring apparatus 10A adopting the above-described numerical examples, the entire width is 600 ⁇ m in the direction of the arrow x, 60 points at intervals of 10 ⁇ m, and the total width of 100 ⁇ m in the direction of arrow y is 60 points at intervals of 1.67 ⁇ m.
  • the spot-like spectrum MA of the points is two-dimensionally developed and scattered, and the sample S can be irradiated simultaneously.
  • the diffraction limit at the focal point of each spectrum MA is expressed by the following equation (2).
  • NA in the above equation (2) indicates the numerical aperture of the objective lens 38 of the first light condensing unit 15.
  • Each spot diameter of the two-dimensional spot group of the actual spectrum MA is limited by the diffraction limit of the objective lens 38 and the dispersion performance of the diffraction grating.
  • each parameter is appropriately set based on the mutual relationship between the parameters.
  • the sample S is irradiated with light of an optical comb mode independent of each other and composed of a two-dimensional spot group with a fine interval, and the distribution of the mode-resolved amplitude spectrum and the mode-resolved phase spectrum is examined, thereby approaching the diffraction limit.
  • Optical information of the sample S at the irradiation position of the two-dimensional spot group scattered at intervals of ⁇ m order can be acquired instantaneously.
  • a plurality of spectra MA of the discrete spectrum light LA (optical frequency comb spectra LX0, LX1, and LX2). Is a size smaller than the interval between adjacent spots from the center of a plurality of spots forming the two-dimensional spot group.
  • a spectral spot duplicating section for generating a plurality of two-dimensional spot groups in which the centers of the spots are arranged at positions separated by.
  • the measuring device including the spectrum spot replicating unit scans the frequency of the discrete spectrum light LA and interpolates the gaps between adjacent spots of the plurality of spectra MA with the newly generated two-dimensional spot group. Therefore, the measurement apparatus including the spectrum spot replication unit can further improve the resolution as compared with the case where the spectrum spot replication unit is not included.
  • the discrete spectrum light source 22 by changing the frequency interval fr of the adjacent spectra MA and MA on the frequency axis (f axis shown in FIG. 2) of the optical frequency comb spectrum LX0, different positions of the sample S are obtained.
  • a two-dimensional spot group in which the centers of the spots are arranged at positions away from the centers of a plurality of spots of the two-dimensional spot group condensed on p1, p2,. Multiple) can be generated.
  • the two-dimensional spot group is duplicated in this way, it can be said that the pixel at the measurement position in the sample S can be superimposed as shown in FIG.
  • the measuring apparatus which adjusted the frequency interval fr of spectrum MA and MA appropriately compared with the case where it does not adjust, the space
  • the dimension can be made smaller than the interval between adjacent spots in the dimension spot group.
  • each of the measuring devices 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment described above is condensed at different positions p1, p2,.
  • a deconvolution processing unit that performs a deconvolution process on the two-dimensional spot group of the spectrum MA may be provided.
  • a measuring apparatus including a deconvolution processing unit is a spectrum generated from blur characteristics of optical systems such as the first light collecting unit 15 and the second light collecting unit 17 when the sample is irradiated with a two-dimensional spot group of the spectrum MA. The image blur of the two-dimensional spot group of MA can be eliminated.
  • the PSF A deconvolution process is performed by performing an inverse operation using.
  • the detector 20 may be provided with a deconvolution processing unit such as an arithmetic unit that performs such deconvolution processing.
  • the measuring device including the deconvolution processing unit can further suppress crosstalk between the pixels, and the mode-resolved spectrum, that is, the confocal image is more accurately detected. Can be obtained.
  • the phase of the spectrum MA of the optical frequency comb spectrum (first optical frequency comb spectrum) LX0 A third comb light source (not shown) that emits a third optical frequency comb spectrum different from the above may be provided. Further, the detection unit 20 may acquire a mode-resolved phase spectrum based on a phase difference obtained by causing the optical frequency comb spectrum LX0 and the third optical frequency comb spectrum to interfere with each other.
  • the measurement apparatus that does not include the third comb light source has a spot diameter of the spectrum MA at the condensing position on the sample S, and the confocal depth resolution based on the measurement principle of the confocal microscope.
  • Optical information (that is, confocal volume) obtained by integrating the entire ⁇ z can be acquired.
  • the measurement apparatus equipped with the third comb light source as described above, when the confocal depth resolution ⁇ z is set to be in the wavelength order, the spectrum of the first optical frequency comb spectrum and the third optical frequency comb are set.
  • the measurement apparatus including the third comb light source has an amplitude image on the virtual plane where the positions p1, p2,.
  • the phase image of the sample S can be acquired over the range of the confocal depth resolution ⁇ z in the direction of the arrow D1 orthogonal to the virtual plane, and information in the thickness direction of the sample S can be obtained with higher accuracy.
  • the second comb light source may also serve as the third comb light source. That is, the second comb light source may be a light source that emits a third optical frequency comb spectrum in which the phase of the spectrum whose frequency positions are adjacent on the frequency axis is different from the phase of the spectrum MA of the optical frequency comb spectrum LX0. . According to such a configuration, it is possible to acquire the amplitude image and the phase image of the sample S while saving the space of the entire measuring apparatus.
  • the measurement apparatus to which the present invention is applied clear information with high contrast can be obtained at ultra high speed while maintaining high accuracy, and can be applied to industrial confocal laser microscopes and cell observation microscopes. Become. Therefore, the measuring device to which the present invention is applied can be used in a wide field such as a medical field and a measuring field, as well as a bio field for performing a life function analysis. Further, the measurement apparatus to which the present invention is applied is expected to be developed in a field that requires high resolution imaging.
  • a confocal microscope and a phase-contrast microscope which have been used independently so far, can be integrated, so that a three-dimensional image having a very wide depth dynamic range extending from several tens of nm to several mm or more. Can be obtained.
  • Example 1 Two or more spectra MA were wavelength-dispersed one-dimensionally and then condensed into a line shape, and the principle confirmation measurement was performed. As shown in FIG. 19, a laser beam was emitted from an optical comb 61 (manufacturer: Imla America ink, center wavelength: 780 nm, without frequency stabilization control). This optical comb was passed through the half-wave plate 62 and made incident on the diffraction grating 66. The grating pitch of the diffraction grating 66 was 2000 lines / mm.
  • the distance between the diffraction grating 66 and the spherical lens 68 (focal length f1) and the distance between the spherical lens 68 and the index T are both set to the focal length f1.
  • the Fourier plane FP is located on the light irradiation surface of the target and is condensed in a line shape.
  • the light reflected from the index T is again incident on the diffraction grating 66, folded back by the half mirror 64, and incident on the multimode optical fiber 74 by the condenser lens 72.
  • the spectral waveform of the light incident on the multimode optical fiber 74 was acquired by a photodetector 76 such as an optical spectrum analyzer.
  • the focal length f1 was 150 mm. Note that “FP” in FIG. 19 indicates a Fourier plane.
  • FIG. 21 shows the elements and line widths of each group of the test chart.
  • the measurement results of the reflectance dependency (scan position) in each of the predetermined ranges R1, R2, and R3 of the index T are shown in FIGS. 22, 23, and 24, respectively. 22, 23, and 24, it can be seen that the test chart lines can be disassembled. For the range R4, the test chart line could not be disassembled.
  • the spherical lens 68 is changed to an objective lens (not shown), and a line image is obtained from the waveform of the optical comb spectrum (see FIGS. 22, 23, and 24).
  • the index T was moved in the orthogonal direction.
  • a two-dimensional microscopic image of element numbers 2 to 6 of the group 4 in the test chart of the index T was acquired.
  • the acquired microscopic image is shown in FIG.
  • On the “wavelength axis” that is, the optical frequency axis) shown in FIG.
  • a microscopic image was constructed from a spectrum waveform composed of 1000 points with a spectrum acquisition range of 10 nm and a sampling interval of 0.01 nm.
  • the moving range of the index T is set to 232 ⁇ m
  • the moving step is set to 1 ⁇ m / step
  • a microscopic image is constructed from the data of 232 steps.
  • the two-dimensional microscopic images of the element numbers 2 to 6 of the group 4 can be accurately acquired.
  • Example 2 a confocal microscopic line imaging apparatus 150 shown in FIG. 26 was prepared.
  • the same constituent elements as those of the optical system shown in FIG.
  • FIG. 27 shows the arrangement of the diffraction grating 66, the relay lenses 69A (focal length: f2) and 69B (focal length: f2), and the objective lens 70 (focal length: f3).
  • the upper part of FIG. 27 is a view when viewed from above the confocal microscopic line imaging apparatus 150, and the lower part of FIG. 27 is a view when viewed from the side of the confocal microscopic line imaging apparatus 150.
  • the distance between the diffraction position in the diffraction grating 66 and the relay lens 69A is the focal length f2.
  • the interval between the relay lenses 69A and 69B was set to twice the focal length f2.
  • FIG. 28 shows the detection signal intensity when the sample position is changed in the optical axis direction.
  • no pinhole that is, when no pinhole 144 is arranged in the confocal microscope line imaging apparatus 150
  • ⁇ 0.0 mm from the “depth position” of the sample position
  • the signal is detected only within the range of ⁇ 15 ⁇ m from the focus, and the depth is 20 ⁇ m. It turns out that it has resolution. That is, the half width ⁇ of the normalized light intensity was 20 ⁇ m.
  • the index T is moved in the direction orthogonal to the line image (that is, the arrow D30 direction). .
  • a two-dimensional microscopic image of a predetermined range R5 in the test chart of the index T shown in FIG. 20 was acquired.
  • the acquired microscopic images are shown in FIGS.
  • FIG. 29 shows the case of “with pinhole”
  • FIG. 30 shows the case of “without pinhole”.
  • 29 and 30 includes a two-dimensional microscopic image at “depth position 0 ⁇ m” as a sample position and an optical axis direction from “depth position 0 ⁇ m” (that is, an arrow D30 shown in FIG. 26).
  • a two-dimensional microscopic image at a position moved by 100 ⁇ m in a direction orthogonal to the direction) is shown side by side.
  • the microscopic image was constructed from the envelope spectrum of 1000 points with an envelope spectrum acquisition range of 10 nm and a sampling interval of 0.01 nm.
  • the microscopic image was constructed from 100 step data, with the moving range of the index T being 100 ⁇ m and the moving step being 1 ⁇ m / step.
  • FIG. 29 in the case of “with pinhole”, a two-dimensional image in the range R5 of the index T is obtained at “depth position 0 ⁇ m”, and the two-dimensional image is moved by 100 ⁇ m from “depth position 0 ⁇ m”. The image has disappeared. From these results, it can be seen that the confocal microscope line imaging apparatus 150 in which the pinhole 144 is arranged has a high depth resolution and can accurately acquire a two-dimensional confocal microscope image from the discrete spectrum light LA.
  • FIG. 30 shows that in the case of “no pinhole”, two-dimensional images in the range R5 of the index T are obtained at the “depth position 0 ⁇ m”, but originally two-dimensional images in the range R5 are obtained.
  • Example 3 a confocal microscopic line imaging device 152 employing dual optical comb spectroscopy was prepared.
  • the confocal microscopic line imaging apparatus 152 includes a comb light source 102 and a half mirror 148 in addition to the components of the confocal microscopic line imaging apparatus 150. Further, the confocal microscopic line imaging apparatus 152 uses a comb light source 101 phase-locked to the rubidium frequency standard in place of the optical comb 61 which is not controlled for stabilization, employs dual optical comb spectroscopy, and the comb light source 101 is the first one.
  • the comb light source 102 is a second comb light source.
  • the second adjacent frequency intervals fr2 of the plurality of spectra included in the discrete spectrum light LC emitted from the comb light source 102 are included in the discrete spectrum light LB emitted from the comb light source 101. Different from the first adjacent frequency interval fr1 of the plurality of spectra.
  • the half mirror 148 is disposed between the two collimating lenses 145A and 145B. The mirror surface of the half mirror 148 is inclined at a predetermined angle with respect to the optical axis.
  • the comb light source 102 is arranged so that the emitted discrete spectrum light LC is incident on the half mirror 148 at a predetermined angle. With such an arrangement, the laser light that has passed through the pinhole 144 is collimated by the collimating lens 145A. Thereafter, the laser light reflected from the index T and the laser light emitted from the comb light source 102 (that is, the discrete spectrum light LC) are spatially superimposed by the half mirror 148. Therefore, an interferogram repetitive signal (that is, an interferogram sequence) is obtained by detecting the interference signal of the two laser beams by the photodetector 76. In Example 3, a mode-resolved spectrum was acquired by performing Fourier transform on the repetitive signal.
  • FIG. 32 shows a mode-resolved amplitude spectrum acquired by the confocal microscopic line imaging device 152.
  • FIG. 33 is a partially enlarged view of the mode-resolved amplitude spectrum shown in FIG. It can be seen from FIG. 33 that each of the plurality of mode-resolved amplitude spectra is acquired with high contrast in a state where it can be individually separated from the discrete spectrum light including the information of the index T. In addition, from FIG. 32, it can be seen that the mode-resolved amplitude spectrum has irregularities and the information of the index T is reflected.
  • the index T is moved in the direction orthogonal to the line image (that is, the direction of arrow D30). . Then, by repeating the acquisition of the line image and the movement of the index T, the two-dimensional microscopic image of the predetermined range R6 in the test chart of the index T shown in FIG. 20 is obtained as “depth position 0 ⁇ m” and “depth position +120 ⁇ m”. ”
  • the acquired microscopic image is shown in FIG.
  • the microscopic image was constructed from the envelope spectrum of 5000 points with the acquisition range of the envelope spectrum being 1.5 THz and the sampling interval being 250 MHz.
  • the moving range of the index T was set to 150 ⁇ m
  • the moving step was set to 1 ⁇ m / step
  • the microscopic image was constructed from 150 step data.
  • a two-dimensional image having an index T range R6 was obtained at the “depth position 0 ⁇ m”.
  • the two-dimensional image disappeared. Therefore, it can be seen that the confocal microscope line imaging apparatus 152 employing the dual optical comb spectroscopy and having the pinhole 144 can accurately acquire a two-dimensional confocal microscope image from the discrete spectrum light LA.
  • Example 4 Next, as shown in FIG. 35, a confocal microscopic imaging apparatus 160 using a two-dimensional spectral spot group was prepared. 35, the measurement apparatuses 10A, 10B, 10C, 10D, and 10E (particularly the measurement apparatus 10D) of each embodiment and the components thereof and the confocal elements shown in FIG. The same components as those of the microscopic line imaging apparatus 150 are denoted by the same reference numerals, and the description thereof is omitted.
  • the confocal microscopic imaging device 160 includes a discrete spectrum light source 22, a beam splitter 30, a dispersion unit 14, a third condensing unit (condensing unit) 16, an overlapping unit 19, a spatial filtering optical system 18,
  • a half mirror 30 and a discrete spectrum light source (second comb light source) 60 are provided.
  • the detector 20 is a dual optical comb spectrometer and incorporates a so-called discrete spectrum light source 60.
  • the center wavelength ⁇ 0 of the discrete spectrum light LA (optical frequency comb spectrum LX0, LX1, LX2) of the discrete spectrum light source 22 is 1.55 ⁇ m
  • the frequency interval between the adjacent spectrums MA on the frequency axis of the discrete spectrum light LA. fr is 250 MHz
  • optical frequency difference ⁇ between spot sp1 of spectrum MA with the shortest wavelength and spot sp2 of spectrum MA with the longest wavelength is 900 GHz
  • FSR of VIPA50 is 15 GHz
  • pitch of diffraction grating 54 is 2000 grooves / mm
  • pin The diameter of the hole 42 was 50 ⁇ m.
  • the discrete spectrum LA emitted from the discrete spectrum light source 22 passes through the half mirror 30, and is condensed by the cylindrical lens 48 along the direction of the arrow x shown in FIG. Subsequently, the VIPA 50 disperses in a direction orthogonal to the one direction. The light dispersed by the VIPA 50 enters the adjacent diffraction grating 54. Since the extending direction of the diffraction grating 54 is parallel to the arrow y direction, the light reflected by the diffraction grating 54 is diffracted in the direction orthogonal to the one direction at the same time as the reflection, and thereby dispersed for each frequency. Is done.
  • a plurality of mode-resolved spectra are two-dimensionally developed in the directions of the arrow D1 and the arrow D3. Subsequently, the plurality of spectra MA dispersed at different angles for each spectrum are incident on the third condensing unit 16, pass through the relay lenses 34 and 36, and then are respectively positioned at different positions on the sample S by the objective lens 38. Condensed at the same time.
  • Information about the sample S is added to the plurality of spectra MA simultaneously condensed at different positions of the sample S.
  • Discrete spectrum light LB including information on the sample S is reflected from different positions on the sample S, enters the third light collecting unit 16, and is condensed or diffused as appropriate by the third light collecting unit 16.
  • the light passes through the light part 16 and is introduced into the overlapping part 19.
  • the plurality of reflection spectra are incident on the diffraction grating 54 of the overlapping portion 19 at an angle corresponding to each frequency of the plurality of reflection spectra.
  • the plurality of reflection spectra are simultaneously wavelength-dispersed at a common angle with respect to the diffraction grating 54, and are spatially and simultaneously superimposed on the optical axis.
  • a plurality of spatially superimposed reflection spectra are reflected by the beam splitter 30, folded back by the mirror 31, and incident on the spatial filtering optical system 18.
  • the reflection spectrum including the information of the sample S and incident on the spatial filtering optical system 18 is condensed at a conjugate position by the condenser lens 40 and passes through the opening of the pinhole 42.
  • Light and spectrum other than the reflection spectrum including the information of the sample S are cut by the pinhole 42.
  • the reflection spectrum that has passed through the opening of the pinhole 42 is collimated by the collimating lens 44 and enters the detection unit 20.
  • the detection unit 20 acquires a mode-resolved spectrum including information about the sample S from the discrete spectrum light LB including information about the sample S.
  • a plurality of mode-resolved amplitude spectra and mode-resolved phase spectra are two-dimensionally arranged in accordance with different positions of the sample S, so that it is converted into desired information such as an amplitude image and a phase image, and the measurement of the sample S is performed. Complete.
  • a two-dimensional microscopic image of group 4, element 1 of the test chart of index T shown in FIG. 20 was acquired at a depth position of 0 ⁇ m.
  • the acquired mode decomposition spectrum is shown in FIGS. 36 and 37, and the microreflection image is shown in FIG.
  • the microscopic image acquisition range was 580 ⁇ m ⁇ 100 ⁇ m, and a microscopic image of 58 pixels ⁇ 60 pixels was constructed.
  • FIG. 36 and FIG. 37 it means that the optical comb mode number of a huge spectrum is realized, and the information of a huge number of pixels can be acquired collectively.
  • the transmission image of group 4 and element 1 of the index T test chart shown in FIG. 20 corresponding to the measurement region of the microscopic image shown in FIG. 38 is obtained from a near-infrared camera (Goldeye P-008 SWIR (NIR-300), manufacturer: A photograph taken by Allied Vision Technologies) is shown in FIG. Comparing FIG. 38 and FIG. 39, it can be seen that a two-dimensional confocal microscopic image can be accurately acquired from the discrete spectrum light LA although there is a difference in relative ratio. In addition, it was confirmed that the image contrast was reversed from the relationship between the reflection image and the transmission image.
  • the confocal microscopic imaging apparatus 160 can accurately acquire a two-dimensional confocal microscopic image from the discrete spectrum light LA at intervals of the ⁇ m order.
  • FIG. 41 shows an amplitude image of the acquired test target group 3 and element 1
  • FIG. 42 shows a phase image
  • FIG. 43 shows a transmission image of test chart group 4 and element 1 taken by the above-described near-infrared light camera.
  • the comparison between the amplitude image and the near-infrared light camera shows that the region of the amplitude image is the region surrounded by the broken line of the image acquired using the near-infrared light camera. Yes, it was confirmed that the image contrast was reversed from the relationship between the reflection image and the transmission image.
  • the phase image has a lower contrast than the amplitude image. This is because the amplitude image reflects the reflectance of the detection target S, whereas the phase image reflects the depth information of the detection target S. Therefore, the actual size is determined from the phase difference between the portion of the test target where the reflective coat is provided (the white portion of the amplitude image shown in FIG.
  • the portion where the reflective coat is not provided was calculated to be 72 nm.
  • the difference in level between the portion of the test target where the reflective coat was provided and the portion where it was not provided was measured and found to be 75 nm. Therefore, it was confirmed that the measurement value using the confocal microscopic imaging apparatus 160 to which the present invention was applied and the measurement value by digital holography coincided with each other with high accuracy.
  • this is also measured with the confocal microscopic imaging device 160 (CLM shown in the graph of FIG. 44).
  • Example 1 to Example 4 above information can be obtained simultaneously from a plurality of independent mode-resolved spectra having depth resolution, while maintaining high accuracy.
  • Sample information can be acquired at high speed.
  • 10A, 10B, 10C, 10D ... measuring device 14 ... dispersion part 15 ... first light collecting part (light collecting part) 16 ... Third condensing part (condensing part) DESCRIPTION OF SYMBOLS 19 ... Overlapping part 18 ... Spatial filtering optical system 20 ... Detection part 22 ... Point light source (1st comb light source) 32, 33 ... Dispersion element 60 ... Second comb light source LA ... Discrete spectrum light LB ... Discrete spectrum light p1, p2, ..., pn including information on the sample, different positions of the sample, condensing position P3 on the sample ... Conjugate position S ... sample

Abstract

The present invention is provided with a point light source (12) for emitting discrete-spectrum light (LA) including two or more spectra distributed at mutually different frequencies, a scattering part (14) for scattering the discrete-spectrum light in mutually different directions for each spectrum, a first light condensing part (15) for condensing spectra at mutually different positions (p1, . . ., pn) of a sample (S), a superimposing part (19) for spatially superimposing each spectrum transmitted or reflected from mutually different positions of the sample, a spatial filtering optical system (18) for condensing discrete-spectrum light (LB) including information of the sample on a position (P3) conjugate with the condensation position on the sample of the spectrum scattered by the scattering part and performing spatial filtering, and a detection part (20) for acquiring a modal decomposition spectrum including the information of the sample from the discrete-spectrum light including the information of the sample.

Description

計測装置Measuring device
 本発明は、計測装置に関する。本願は、2015年6月29日に、日本に出願された特願2015-130249号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a measuring device. This application claims priority based on Japanese Patent Application No. 2015-130249 filed in Japan on June 29, 2015, the contents of which are incorporated herein by reference.
 従来、高解像度のイメージングを可能とする光学顕微鏡として、共焦点光学系を備えた顕微鏡(以下、共焦点顕微鏡とする)が知られている(例えば、特許文献1参照)。 Conventionally, a microscope equipped with a confocal optical system (hereinafter referred to as a confocal microscope) is known as an optical microscope that enables high-resolution imaging (see, for example, Patent Document 1).
 通常の光学顕微鏡では試料の所定範囲を均一に照射するのに対し、共焦点光学系では点光源から発せられた照射光が対物レンズによって試料の一点に集光される。照射光としては、単色性及び直進性に優れているレーザー光が用いられる。また、共焦点光学系では、対物レンズの焦点位置と共役な位置にピンホールを配置することで、試料で焦点が合った位置の透過光又は反射光(あるいは、蛍光、ラマン散乱光等)のみがピンホールを通過して検出される。
 このように共焦点光学系では、先ず照射光が試料の一点に集光され、試料の焦点位置の透過光又は反射光はピンホールを通過するのに対し、焦点位置以外からの光はピンホールでカットされる。従って、通常の光学顕微鏡に比べて、焦点に隣接する横方向からの迷光の影響を受けず、コントラストが向上する。さらに、照射光の焦点位置のみの情報が検出されるので、3次元の空間分解能を有する。
In a normal optical microscope, a predetermined range of a sample is uniformly irradiated, whereas in a confocal optical system, irradiation light emitted from a point light source is condensed on one point of the sample by an objective lens. As the irradiation light, laser light having excellent monochromaticity and straightness is used. In a confocal optical system, a pinhole is arranged at a position conjugate with the focal position of the objective lens, so that only transmitted light or reflected light (or fluorescence, Raman scattered light, etc.) at a position in focus on the sample is used. Is detected through the pinhole.
In this way, in the confocal optical system, the irradiation light is first condensed at one point of the sample, and the transmitted light or reflected light at the focal position of the sample passes through the pinhole, whereas the light from other than the focal position is pinhole. It is cut with. Therefore, compared with a normal optical microscope, the contrast is improved without being affected by stray light from the lateral direction adjacent to the focal point. Furthermore, since only information on the focal position of the irradiation light is detected, it has a three-dimensional spatial resolution.
 上記のように鮮明な3次元画像を形成可能とする共焦点顕微鏡は、例えば蛍光タンパク質を用いた生命機能解析等のバイオ分野をはじめ、広い分野で用いられている。また、高い分解能や定量性を有する点から、将来においても共焦点顕微鏡の重要性は増していくと考えられる。 The confocal microscope that can form a clear three-dimensional image as described above is used in a wide range of fields, such as a bio field such as life function analysis using a fluorescent protein. In addition, the confocal microscope is expected to become more important in the future because of its high resolution and quantitativeness.
 上記のように優れた特徴を有する一方で、共焦点顕微鏡では焦点位置の点情報しか得られない。そのため、試料面内の2次元情報を画像化するには、点光源から発せられた照射光の焦点位置を試料内部で相対的に走査させる必要がある。このように照射光の焦点位置を試料に対して相対的に走査することを可能とする走査装置として、例えばガルバノミラーが知られている。ところが、これらの走査装置を用いたとしても、広範囲の高速な走査には時間がかかってしまう。 While having excellent characteristics as described above, the confocal microscope can only obtain point information of the focal position. Therefore, in order to image two-dimensional information in the sample surface, it is necessary to relatively scan the focal position of the irradiation light emitted from the point light source within the sample. For example, a galvanometer mirror is known as a scanning device that can relatively scan the focal position of irradiation light with respect to a sample. However, even if these scanning devices are used, it takes time to scan a wide range at a high speed.
 上記の事情に対処する技術として、例えば特許文献2には、焦点走査ユニットを検査対象(試料)の前後に設けた透過式共焦点顕微鏡が開示されている。この走査ユニットは、光源からの光の角度を振り、対物レンズを介して、検査対象における焦点位置を走査させる回転多面体鏡を備えている。また、試料の前後に設けられた第一及び第二の走査ユニットのそれぞれの回転多面体鏡は同期して動作可能とされている。このような構成によって、検査対象を走査して検査対象から透過した光は、第二の走査ユニットの受光素子に正確に入射する。従って、上記の透過式共焦点顕微鏡では、高速機械走査が可能な回転多面体鏡を用いることにより、透過光を用いた検査や測定を高速で行うことができる。 As a technique for dealing with the above situation, for example, Patent Document 2 discloses a transmission confocal microscope in which focus scanning units are provided before and after an inspection target (sample). This scanning unit includes a rotating polyhedral mirror that swings the angle of light from the light source and scans the focal position of the inspection object via the objective lens. Further, the rotating polyhedral mirrors of the first and second scanning units provided before and after the sample are operable in synchronization. With such a configuration, the light transmitted through the inspection object after scanning the inspection object accurately enters the light receiving element of the second scanning unit. Therefore, the transmission confocal microscope described above can perform inspection and measurement using transmitted light at high speed by using a rotating polyhedral mirror capable of high-speed mechanical scanning.
特開2012-103379号公報JP 2012-103379 A 特開2014-206608号公報JP 2014-206608 A
 しかしながら、特許文献2に記載の共焦点顕微鏡であっても、光源からの光を所定領域内で機械的に走査させる必要があり、高い精度を保ちつつ、試料の情報を取得するには時間がかかるという問題がある。また、所定領域の拡大に伴い、試料の情報を取得するための所要時間が長くなってしまう。生命機能解析等のバイオ分野では細胞を生きたまま観察することもあり、共焦点顕微鏡、及び共焦点光学系を備えた測定装置に対して、より一層の高速化と高精度化が強く望まれている。 However, even with the confocal microscope described in Patent Document 2, it is necessary to mechanically scan the light from the light source within a predetermined region, and it takes time to acquire information on the sample while maintaining high accuracy. There is a problem that it takes. In addition, as the predetermined area is enlarged, the time required for acquiring the sample information becomes longer. In the field of biotechnology such as biofunction analysis, cells may be observed alive, and there is a strong demand for higher speed and higher accuracy for measurement devices equipped with confocal microscopes and confocal optical systems. ing.
 本発明は、上記問題を解決するためになされたものであって、高い精度を保ちつつ、機械的走査を必要とすることなく、試料の情報を高速取得可能な計測装置を提供する。 The present invention has been made to solve the above-described problems, and provides a measuring apparatus capable of acquiring sample information at high speed while maintaining high accuracy and without requiring mechanical scanning.
 本発明の計測装置は、互いに異なる周波数で分布しているスペクトルを二以上含む離散スペクトル光を発する点光源と、前記点光源から発せられた前記離散スペクトル光を前記スペクトル毎に互いに異なる方向に波長分散させる分散部と、前記分散部によって波長分散された前記スペクトルを試料の互いに異なる位置にそれぞれ集光させる集光部と、前記集光部によって集光された前記スペクトルが、前記試料の互いに異なる位置から透過又は反射したそれぞれのスペクトルを空間的に重ね合わせる重ね合わせ部と、前記重ね合わせ部によって重ね合わされた前記試料の情報を含む離散スペクトル光を、前記分散部によって波長分散された前記スペクトルの前記試料上の集光位置と共役な位置に集光させ空間フィルタリングにより共焦点効果を得る空間フィルタリング光学系と、前記空間フィルタリング光学系で空間フィルタリングされた前記試料の情報を含む離散スペクトル光から、モード分解スペクトルを取得する検出部と、を備えていることを特徴とする。
 本明細書において、「モード分解スペクトル」とは、離散スペクトル光から個別に分離され得るスペクトルのことを示す。本発明に係る計測装置は、強度(振幅の2乗)のモード分解スペクトル(以下、モード分解強度スペクトルとする)のみを取得することができる。また、検出部の構成を適宜変更することで、本発明に係る計測装置は、振幅と位相のモード分解スペクトル(以下、モード分解振幅スペクトル及びモード分解位相スペクトル)とを取得することができる。なお、以下では、モード分解強度スペクトル、モード分解振幅スペクトル、モード分解位相スペクトルを区別する必要のない場合には、単に「モード分解スペクトル」と記載することがある。
The measuring device of the present invention includes a point light source that emits a discrete spectrum light including two or more spectra distributed at different frequencies, and a wavelength of the discrete spectrum light emitted from the point light source in a different direction for each spectrum. The dispersion part to disperse, the light collecting part for condensing the spectrum wavelength-dispersed by the dispersion part at different positions of the sample, and the spectrum collected by the light collecting part are different from each other. A superimposing unit that spatially superimposes each spectrum transmitted or reflected from a position, and discrete spectral light including information on the sample superimposed by the superimposing unit, of the spectrum that has been wavelength-dispersed by the dispersing unit. The confocal effect is obtained by focusing light at a position conjugate with the light collecting position on the sample and spatial filtering. And spatial filtering optics to obtain, for the discrete spectrum light including information of the sample that is spatially filtered by the spatial filtering optics, a detection unit for acquiring a mode decomposition spectra, characterized in that it comprises.
As used herein, “mode-resolved spectrum” refers to a spectrum that can be individually separated from discrete spectrum light. The measurement apparatus according to the present invention can acquire only a mode-resolved spectrum (hereinafter referred to as a mode-resolved intensity spectrum) of intensity (square of amplitude). In addition, by appropriately changing the configuration of the detection unit, the measurement apparatus according to the present invention can acquire a mode-resolved spectrum of amplitude and phase (hereinafter, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum). Hereinafter, when it is not necessary to distinguish the mode-resolved intensity spectrum, the mode-resolved amplitude spectrum, and the mode-resolved phase spectrum, they may be simply referred to as “mode-resolved spectrum”.
 上記の構成によれば、離散スペクトル光に二以上含まれるスペクトルが、分散部への離散スペクトル光の一回の照射で互いに異なる方向に波長分散され、試料の互いに異なる位置に集光する。従って、互いに独立しているスペクトルを試料に二以上同時に集光させることができる。本明細書において、「独立している」とは、互いに異なる周波数で分布することで、他のスペクトルに対して独自に試料の情報を含むことができることを示す。ゆえに、二以上のスペクトルのそれぞれに当該スペクトルの集光位置の試料の情報が付加される。このように試料のイメージ情報が付加されたモード分解スペクトルを空間フィルタリング光学系によって空間フィルタリングし、共焦点効果を付与した後、検出部によって検出することができる。 According to the above configuration, two or more spectra included in the discrete spectrum light are wavelength-dispersed in different directions by a single irradiation of the discrete spectrum light to the dispersion portion, and are condensed at different positions on the sample. Accordingly, two or more spectra that are independent of each other can be simultaneously focused on the sample. In this specification, “independent” indicates that the sample information can be uniquely included in other spectra by being distributed at different frequencies. Therefore, the information of the sample at the condensing position of the spectrum is added to each of the two or more spectra. The mode-resolved spectrum to which the image information of the sample is added in this way can be spatially filtered by the spatial filtering optical system and added with the confocal effect, and then detected by the detection unit.
 上記の計測装置では、前記点光源が、前記離散スペクトル光として、周波数軸で周波数の位置が隣り合う前記スペクトルの周波数の間隔である第一隣接周波数間隔が互いに一致している第一の光周波数コムスペクトルを発する第一のコム光源であってもよい。 In the above measurement apparatus, the first light frequency in which the point light source is the discrete spectrum light and the first adjacent frequency intervals, which are the frequency intervals of the spectrum adjacent to each other on the frequency axis, coincide with each other. It may be a first comb light source that emits a comb spectrum.
 上記の構成では、第一隣接周波数間隔に応じた間隔、且つ一定の間隔をあけて、二以上のスペクトルが試料の互いに異なる位置に集光する。従って、試料の所定範囲の情報を当該範囲内で等間隔に同時取得することができる。 In the above configuration, two or more spectra are collected at different positions on the sample at intervals corresponding to the first adjacent frequency interval and at a constant interval. Therefore, information on a predetermined range of the sample can be simultaneously acquired at regular intervals within the range.
 また、上記の計測装置は、前記周波数軸で周波数の位置が隣り合う前記スペクトルの周波数の間隔が前記第一隣接周波数間隔とは異なる第二隣接周波数間隔であり、且つ前記第二隣接周波数間隔が互いに一致している第二の光周波数コムスペクトルを発する第二のコム光源を備え、前記検出部は、前記第一の光周波数コムスペクトルと前記第二の光周波数コムスペクトルとを干渉させて生じる干渉信号(干渉スペクトルもしくはインターフェログラム)に基づいて前記モード分解スペクトルを取得してもよい(デュアル光コム分光法)。この場合、干渉スペクトルは第一の光周波数コムスペクトルが周波数ダウンスケーリングされてなる第一及び第二の光周波数コムスペクトルの光ビートスペクトルである。また、デュアル光コム分光法を用いると、モード分解振幅スペクトル以外に、モード分解位相スペクトルも取得できる。 In the measurement apparatus, the frequency interval of the spectrum adjacent to the frequency position on the frequency axis is a second adjacent frequency interval different from the first adjacent frequency interval, and the second adjacent frequency interval is A second comb light source that emits a second optical frequency comb spectrum that is coincident with each other, and the detection unit is generated by causing the first optical frequency comb spectrum and the second optical frequency comb spectrum to interfere with each other The mode-resolved spectrum may be acquired based on an interference signal (interference spectrum or interferogram) (dual optical comb spectroscopy). In this case, the interference spectrum is an optical beat spectrum of the first and second optical frequency comb spectra obtained by frequency downscaling the first optical frequency comb spectrum. When dual optical comb spectroscopy is used, a mode-resolved phase spectrum can be acquired in addition to the mode-resolved amplitude spectrum.
 また、上記の計測装置では、前記分散部が、入射する光を波長毎に空間分離する分散素子を備え、前記点光源から発せられた前記離散スペクトル光を前記分散素子によって前記スペクトル毎に異なる方向に波長分散させ、前記重ね合わせ部は、前記試料を透過した前記試料の情報を含むスペクトルを空間的に重ね合わせてもよい。
 一方、前記分散部及び前記重ね合わせ部は入射する光を波長分散する一つの分散素子を共有し、前記点光源から発せられた前記離散スペクトル光を前記一つの分散素子によって前記スペクトル毎に異なる方向に分散させ、且つ前記試料から反射した前記試料の情報を含むスペクトルを空間的に重ね合わせてもよい。
In the measurement apparatus, the dispersive unit includes a dispersive element that spatially separates incident light for each wavelength, and the discrete spectrum light emitted from the point light source has different directions depending on the spectrum by the dispersive element. And the superimposing unit may spatially superimpose a spectrum including information on the sample transmitted through the sample.
On the other hand, the dispersion unit and the superposition unit share one dispersion element that wavelength-disperses incident light, and the discrete spectrum light emitted from the point light source has different directions for each spectrum by the one dispersion element. And a spectrum including information of the sample reflected from the sample may be spatially superimposed.
 上記の構成では、分散素子に離散スペクトル光が一回照射されれば、個々のスペクトルが当該スペクトルの光周波数(波長)に依存する分散角で波長分散される。即ち、互いに異なる光周波数で分布し、且つ二以上のスペクトルを、同時に、互いに異なる方向に向けて分散させることができる。
 また、上記の構成では、試料を透過し、重ね合わせ部によって空間的に重ね合され、且つ試料の情報を含む離散スペクトル光を検出することができる。
 また、試料から反射し、同様に重ね合わせ部によって空間的に重ね合されてなる、試料の情報を含む離散スペクトル光を検出することもできる。
In the above configuration, when discrete light is irradiated once on the dispersive element, each spectrum is wavelength-dispersed at a dispersion angle depending on the optical frequency (wavelength) of the spectrum. That is, two or more spectra distributed at different optical frequencies can be simultaneously dispersed in different directions.
Further, in the above configuration, it is possible to detect discrete spectrum light that passes through the sample, is spatially superimposed by the overlapping unit, and includes sample information.
Also, it is possible to detect discrete spectrum light including information on the sample that is reflected from the sample and similarly spatially overlapped by the overlapping unit.
 また、上記の計測装置では、前記分散素子は、前記離散スペクトル光を前記スペクトル毎に異なる第一の方向に波長分散させる第一の分散素子と、前記第一の分散素子によって波長分散された前記離散スペクトル光を前記第一の方向に交差する第二の方向に波長分散させる第二の分散素子と、を備えていてもよい。
 前記分散素子は、回折格子で構成されていてもよい。
In the measurement apparatus, the dispersive element includes a first dispersive element that wavelength-disperses the discrete spectrum light in a first direction different for each spectrum, and the wavelength disperse by the first dispersive element. A second dispersive element that disperses the wavelength of the discrete spectrum light in a second direction that intersects the first direction.
The dispersive element may be composed of a diffraction grating.
 上記の構成によれば、離散スペクトル光が一回照射されれば、第一の分散素子によって個々のスペクトルが当該スペクトルの光周波数(即ち、波長)及び第一の分散素子のピッチや入射角等に依存する分散性能によって決まる分散角で第一の方向に波長分散される。続いて、第一の分散素子では分離できなかった個々のスペクトルが、第二の分散素子によって、当該スペクトルの光周波数(即ち、波長)及び第二の分散素子のピッチや入射角等に依存する分散性能によって決まる分散角で第二の方向に波長分散される。即ち、互いに異なる光周波数で分布し、且つ二以上のスペクトルを、同時に、第一及び第二の分散素子を用いて2段階で、互いに異なる方向に向けて分散させることができる。第一及び第二の分散素子として回折格子を用いれば、回折格子の分散性能を適切に調節することで、このような二以上のスペクトルを所望の間隔をあけて互いに異なる方向に向けて2次元的に分散させることができる。 According to the above configuration, when the discrete spectrum light is irradiated once, the individual spectrum is converted by the first dispersive element into the optical frequency (that is, wavelength) of the spectrum, the pitch of the first dispersive element, the incident angle, and the like. The wavelength dispersion is performed in the first direction at a dispersion angle determined by the dispersion performance that depends on. Subsequently, each spectrum that could not be separated by the first dispersion element depends on the optical frequency (that is, wavelength) of the spectrum, the pitch of the second dispersion element, the incident angle, and the like by the second dispersion element. Wavelength dispersion is performed in the second direction at a dispersion angle determined by the dispersion performance. That is, two or more spectra distributed at different optical frequencies can be simultaneously dispersed in different directions in two stages using the first and second dispersion elements. If a diffraction grating is used as the first and second dispersive elements, two or more such spectrums are two-dimensionally oriented in different directions at desired intervals by appropriately adjusting the dispersion performance of the diffraction grating. Can be dispersed.
 また、上記の計測装置では、前記離散スペクトル光の中心波長、前記隣り合うスペクトルの周波数の間隔、前記分散部の分散性能、前記集光部に用いられるレンズの開口数、及び、前記離散スペクトル光の隣り合う前記スペクトルの周波数の間隔がそれぞれ、前記集光部によって前記試料の互いに異なる位置にそれぞれ集光させた前記スペクトルのスポット同士の中心間隔が前記スペクトルのスポットの直径以上となるように設定されていてもよい。 In the measurement apparatus, the center wavelength of the discrete spectrum light, the frequency interval between the adjacent spectra, the dispersion performance of the dispersion unit, the numerical aperture of the lens used in the light collection unit, and the discrete spectrum light The frequency intervals of the adjacent spectrums are set such that the center interval between the spots of the spectrum condensed at different positions of the sample by the condensing unit is equal to or larger than the diameter of the spots of the spectrum. May be.
 上記の構成によれば、光周波数コム・モードの2次元スポット群が離散的且つ高密度に試料上に形成される。このような2次元スポット群が試料に形成されることで、2次元スポット群の隣接したスポット(即ち、画素)間のクロストークが抑制され、離散スペクトル光の中心波長、分散部の分散性能、集光部に用いられるレンズの開口数及び離散スペクトル光の隣り合うスペクトルの周波数の間隔が上述のように設定されていない場合に比べて、よりボケの無い画像がモード分解スペクトルから得られる。 According to the above configuration, the two-dimensional spot group of the optical frequency comb mode is formed on the sample in a discrete and high-density manner. By forming such a two-dimensional spot group on the sample, crosstalk between adjacent spots (that is, pixels) of the two-dimensional spot group is suppressed, the center wavelength of the discrete spectrum light, the dispersion performance of the dispersion unit, Compared to the case where the numerical aperture of the lens used in the light converging unit and the frequency interval between adjacent spectrums of discrete spectrum light are not set as described above, an image with less blur is obtained from the mode-resolved spectrum.
 また、上記の計測装置では、前記離散スペクトル光の中心波長、前記隣り合うスペクトルの周波数の間隔、前記試料と前記重ね合わせ部との間に配置されるレンズの開口数、及び、前記重ね合わせ部の分散性能がそれぞれ、前記試料の互いに異なる位置にそれぞれ集光させた前記スペクトルのスポットが前記レンズによって前記重ね合わせ部の所定の位置で空間的に重ね合わされるように設定されていてもよい。 In the measurement apparatus, the center wavelength of the discrete spectrum light, the frequency interval between the adjacent spectra, the numerical aperture of the lens arranged between the sample and the overlapping portion, and the overlapping portion The spectral performances may be set so that the spots of the spectrum collected at different positions of the sample are spatially superimposed by the lens at a predetermined position of the overlapping portion.
 上記の構成によれば、離散スペクトル光の中心波長、隣り合うスペクトルの周波数の間隔、重ね合わせ部に用いられるレンズの開口数及び空間フィルタリング光学系の分解能が上述のように設定されていない場合に比べて、試料の互いに異なる位置にそれぞれ集光させた2次元スポット群から、スペクトルのスポット同士の中心間隔に合わせて、試料の互いに異なる位置からの情報の欠損等なく、より高精度な画像がモード分解スペクトルから得られる。 According to said structure, when the center wavelength of discrete spectrum light, the space | interval of the frequency of an adjacent spectrum, the numerical aperture of the lens used for a superimposition part, and the resolution of a spatial filtering optical system are not set as mentioned above. In comparison, a two-dimensional spot group focused at different positions on the sample can be used to obtain a more accurate image without loss of information from different positions on the sample in accordance with the center interval between spectral spots. Obtained from mode-resolved spectra.
 また、上記の計測装置では、前記試料の互いに異なる位置にそれぞれ集光させた前記スペクトルの2次元スポット群に対してデコンボリュージョン処理を施すデコンボリュージョン処理部を備えていてもよい。 In addition, the measurement apparatus may include a deconvolution processing unit that performs a deconvolution process on the two-dimensional spot group of the spectrum collected at different positions of the sample.
 上記の構成によれば、デコンボリュージョン処理部でデコンボリュージョン処理がなされるので、集光部等のボケ特性から生じるスペクトルの2次元スポット群の画像ボケ(即ち、スポット光の拡がり)が軽減される。 According to the above configuration, since the deconvolution processing is performed by the deconvolution processing unit, the image blur (that is, the spread of the spot light) of the two-dimensional spot group of the spectrum caused by the blur characteristic of the light collecting unit or the like is reduced. Is done.
 また、上記の計測装置では、前記第一の光周波数コムスペクトルの位相とは異なる第三の光周波数コムスペクトルを発する第三のコム光源を備え、前記検出部は、前記第一の光周波数コムスペクトルと前記第三の光周波数コムスペクトルとを干渉させて得られる位相差に基づいて前記モード分解位相スペクトルを取得してもよい。
 さらに、前記第三の光周波数コムスペクトルの前記スペクトルの周波数の間隔が前記第一隣接周波数間隔とは異なる第二隣接周波数間隔であり、且つ前記第二隣接周波数間隔が互いに一致し、前記検出部は、前記第一の光周波数コムスペクトルと前記第三の光周波数コムスペクトルとを干渉させて生じる干渉スペクトルに基づいて前記モード分解位相スペクトルを取得してもよい。
Further, the measurement apparatus includes a third comb light source that emits a third optical frequency comb spectrum that is different from a phase of the first optical frequency comb spectrum, and the detection unit includes the first optical frequency comb. The mode-resolved phase spectrum may be acquired based on a phase difference obtained by causing the spectrum and the third optical frequency comb spectrum to interfere with each other.
Further, the frequency interval of the spectrum of the third optical frequency comb spectrum is a second adjacent frequency interval different from the first adjacent frequency interval, and the second adjacent frequency interval matches each other, and the detection unit May acquire the mode-resolved phase spectrum based on an interference spectrum generated by causing the first optical frequency comb spectrum and the third optical frequency comb spectrum to interfere with each other.
 上記の構成によれば、第三のコム光源を備えることで、試料の互いに異なる位置における共焦点ボリューム内の位相情報が得られ、共焦点特性によって決まる深さ分解能(共焦点深さ分解能)よりも、更に高精度な深さ分解能で情報取得がなされるので、共焦点特性のみの場合に比べて、試料の厚み方向の情報をより高精度に取得することができる。
 また、デュアル光コム分光法を採用した場合に、第二のコム光源を第三のコム光源としても共有することで、第二のコム光源と第三のコム光源とを個別に設けた構成に比べて装置を単純化することができる。
According to the above configuration, by providing the third comb light source, phase information in the confocal volume at different positions of the sample can be obtained, and from the depth resolution determined by the confocal characteristics (confocal depth resolution) However, since information acquisition is performed with a depth resolution with higher accuracy, information in the thickness direction of the sample can be acquired with higher accuracy than in the case of only confocal characteristics.
In addition, when dual optical comb spectroscopy is adopted, the second comb light source and the third comb light source are provided separately by sharing the second comb light source as the third comb light source. In comparison, the apparatus can be simplified.
 本発明の計測装置では、離散スペクトル光の機械的走査を行うことなく、離散スペクトル光の一回の照射で、互いに独立しているスペクトルを二以上同時に集光させ、試料に二以上の焦点を同時形成することができる。また、空間フィルタリング光学系によって試料上のスペクトルの焦点位置以外からの光をカットし、モード分解スペクトルから試料の情報を含むスペクトルのみを二以上同時に検出することで、共焦点効果による高コントラストかつ3次元空間分解の鮮明な情報を得ることができる。さらに、モード分解位相スペクトルを利用することにより、共焦点深さ分解能を大きく上回る深さ分解能を得ることができる。
 従って、本発明によれば、高い精度を保ちつつ、試料の情報を高速に取得可能な計測装置を提供することができる。
In the measurement apparatus of the present invention, two or more independent spectra are simultaneously collected by one irradiation of the discrete spectrum light without performing mechanical scanning of the discrete spectrum light, and two or more focal points are focused on the sample. Can be formed simultaneously. In addition, the spatial filtering optical system cuts off light from other than the focal position of the spectrum on the sample and simultaneously detects only two or more spectra including the sample information from the mode-resolved spectrum. Clear information of dimension space decomposition can be obtained. Furthermore, by using the mode-resolved phase spectrum, a depth resolution that greatly exceeds the confocal depth resolution can be obtained.
Therefore, according to the present invention, it is possible to provide a measuring apparatus capable of acquiring sample information at high speed while maintaining high accuracy.
本発明を適用した第一実施形態の計測装置の模式図である。It is a mimetic diagram of a measuring device of a first embodiment to which the present invention is applied. 本発明における離散スペクトル光について説明するための模式図である。It is a schematic diagram for demonstrating the discrete spectrum light in this invention. 本発明の第一実施形態の計測装置における離散スペクトル光源の第一構成例を示す概略図である。It is the schematic which shows the 1st structural example of the discrete spectrum light source in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における離散スペクトル光源の第二構成例を示す概略図である。It is the schematic which shows the 2nd structural example of the discrete spectrum light source in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における離散スペクトル光源の第三構成例を示す概略図である。It is the schematic which shows the 3rd structural example of the discrete spectrum light source in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における離散スペクトル光源の第四構成例を示す概略図である。It is the schematic which shows the 4th structural example of the discrete spectrum light source in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における検出光学系の第一構成例を示す概略図である。It is the schematic which shows the 1st structural example of the detection optical system in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における検出光学系の第二構成例を示す概略図である。It is the schematic which shows the 2nd structural example of the detection optical system in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における検出光学系の第三構成例を示す概略図である。It is the schematic which shows the 3rd structural example of the detection optical system in the measuring apparatus of 1st embodiment of this invention. 本発明の第一実施形態の計測装置における空間フィルタリング部、分散部、第一集光部、第二集光部及び重ね合わせ部における光の操作を説明するための模式図である。It is a schematic diagram for demonstrating the operation of the light in the spatial filtering part, the dispersion | distribution part, the 1st condensing part, the 2nd condensing part, and the superimposition part in the measuring apparatus of 1st embodiment of this invention. 本発明を適用した第二実施形態の計測装置の模式図である。It is a schematic diagram of the measuring apparatus of 2nd embodiment to which this invention is applied. 本発明を適用した第二実施形態の計測装置における干渉スペクトルの発生過程を説明するための模式図である。It is a schematic diagram for demonstrating the generation process of the interference spectrum in the measuring apparatus of 2nd embodiment to which this invention is applied. 本発明を適用した第三実施形態の計測装置の模式図である。It is a schematic diagram of the measuring device of 3rd embodiment to which this invention is applied. 本発明を適用した第四実施形態の計測装置の模式図である。It is a schematic diagram of the measuring device of 4th embodiment to which this invention is applied. 本発明を適用した第五実施形態の計測装置の模式図である。It is a schematic diagram of the measuring device of 5th embodiment to which this invention is applied. 本発明の第一実施形態から第五実施形態の計測装置に適用可能な分散部の光学系の第一構成例を示す概略図である。It is the schematic which shows the 1st structural example of the optical system of the dispersion | distribution part applicable to the measuring device of 5th embodiment from 1st embodiment of this invention. 本発明の第一実施形態から第五実施形態の計測装置における離散スペクトル光のスペクトルの2次元スポット群の複製について説明するための模式図である。It is a schematic diagram for demonstrating duplication of the two-dimensional spot group of the spectrum of discrete spectrum light in the measuring device of 1st embodiment of this invention to 5th embodiment. 本発明の第一実施形態から第五実施形態の計測装置における試料の位相イメージの取得について説明するための模式図である。It is a schematic diagram for demonstrating acquisition of the phase image of the sample in the measuring apparatus of 1st embodiment of this invention to 5th embodiment. 実施例1の光学系の模式図である。1 is a schematic diagram of an optical system according to Example 1. FIG. 実施例1で用いたテストチャートである。2 is a test chart used in Example 1. FIG. 実施例1で用いたテストチャートのライン間隔を示す図である。It is a figure which shows the line space | interval of the test chart used in Example 1. FIG. 実施例1で測定したテストチャートの範囲R1に関する反射率の波長依存性を示すグラフである。6 is a graph showing the wavelength dependence of reflectance with respect to a range R1 of a test chart measured in Example 1. FIG. 実施例1で測定したテストチャートの範囲R2に関する反射率の波長依存性を示すグラフである。6 is a graph showing the wavelength dependence of reflectance with respect to a range R2 of a test chart measured in Example 1. FIG. 実施例1で測定したテストチャートの範囲R3に関する反射率の波長依存性を示すグラフである。6 is a graph showing the wavelength dependence of reflectance with respect to a range R3 of the test chart measured in Example 1. FIG. 実施例1で測定したテストチャートの一部を示すデータである。2 is a data showing a part of a test chart measured in Example 1. FIG. 実施例2の共焦点顕微ラインイメージング装置の模式図である。6 is a schematic diagram of a confocal microscopic line imaging apparatus according to Embodiment 2. FIG. 実施例2の共焦点顕微ラインイメージング装置の一部を示す上面図及び側面図である。It is the upper side figure and side view which show a part of confocal microscopic line imaging apparatus of Example 2. FIG. 実施例2で空間フィルタリング光学系におけるピンホールによる深さ分解能の限定効果を示すグラフである。6 is a graph showing the effect of limiting the depth resolution by pinholes in the spatial filtering optical system in Example 2. 実施例2で測定したテストチャートの範囲R5に関するデータであり、図26に示す共焦点顕微ラインイメージング装置においてピンホールを配置した場合のデータを示す。FIG. 27 shows data related to a range R5 of the test chart measured in Example 2, and shows data when pinholes are arranged in the confocal microscopic line imaging apparatus shown in FIG. 実施例2で測定したテストチャートの範囲R5に関するデータであり、図26に示す共焦点顕微ラインイメージング装置においてピンホールを配置しない場合のデータを示す。FIG. 27 shows data related to the range R5 of the test chart measured in Example 2, and shows data when no pinhole is arranged in the confocal microscopic line imaging apparatus shown in FIG. 実施例3の共焦点顕微ラインイメージング装置の模式図である。6 is a schematic diagram of a confocal microscopic line imaging apparatus according to Embodiment 3. FIG. 実施例3で取得したモード分解スペクトルである。It is the mode decomposition spectrum acquired in Example 3. 実施例3で取得したモード分解スペクトルであり、図32の部分拡大図である。It is the mode decomposition spectrum acquired in Example 3, and is the elements on larger scale of FIG. 実施例3で測定したテストチャートの範囲R6に関するデータである。It is the data regarding range R6 of the test chart measured in Example 3. FIG. 実施例4の共焦点顕微イメージング装置の模式図である。FIG. 6 is a schematic diagram of a confocal microscopic imaging apparatus according to a fourth embodiment. 実施例4で取得したモード分解スペクトルである。It is the mode decomposition spectrum acquired in Example 4. 実施例4で取得したモード分解スペクトルであり、図36の部分拡大図である。It is a mode decomposition spectrum acquired in Example 4, and is the elements on larger scale of FIG. 実施例4で取得したテストチャートのグループ4要素1の2次元共焦点顕微イメージ(反射)であり、測定位置が光周波数コムスペクトルの集光位置である場合のイメージである。It is a two-dimensional confocal microscopic image (reflection) of the group 4 element 1 of the test chart acquired in Example 4, and is an image when a measurement position is a condensing position of an optical frequency comb spectrum. 実施例4で近赤外光カメラを用いて取得したテストチャートのグループ4要素1の透過イメージである。It is the transmission image of the group 4 element 1 of the test chart acquired using the near-infrared-light camera in Example 4. FIG. 実施例4で取得したテストチャートのグループ4要素1の2次元共焦点顕微イメージであり、測定位置が光周波数コムスペクトルの集光位置から+10μm移動した位置である場合のイメージである。It is a two-dimensional confocal microscopic image of the group 4 element 1 of the test chart acquired in Example 4, and is an image when the measurement position is a position shifted by +10 μm from the condensing position of the optical frequency comb spectrum. 実施例4で取得したテストチャートのグループ3要素1の2次元共焦点顕微イメージ(反射振幅イメージ)である。It is a two-dimensional confocal microscopic image (reflection amplitude image) of the group 3 element 1 of the test chart acquired in Example 4. 実施例4で取得したテストチャートのグループ3要素1の2次元共焦点顕微イメージ(反射位相イメージ)である。It is a two-dimensional confocal microscopic image (reflection phase image) of group 3 element 1 of the test chart acquired in Example 4. 実施例4で近赤外光カメラを用いて取得したテストチャートのグループ3要素1の透過イメージである。It is the transmission image of the group 3 element 1 of the test chart acquired using the near-infrared-light camera in Example 4. FIG. 実施例4(CLM)及びデジタルホログラフィー(DH)によって取得したテストチャート反射コート有りと無しの部位における高さプロファイルの比較である。It is the comparison of the height profile in a site | part with and without the test chart reflective coat acquired by Example 4 (CLM) and digital holography (DH).
 以下、本発明を適用した計測装置の実施形態について、図面を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更できる。 Hereinafter, embodiments of a measuring apparatus to which the present invention is applied will be described with reference to the drawings. The drawings used in the following description are schematic, and the length, width, thickness ratio, and the like are not necessarily the same as actual ones, and can be changed as appropriate.
(第一実施形態)
 始めに、本発明を適用した計測装置の第一実施形態を図1から図10に基づいて説明する。図1は第一実施形態の計測装置10Aの模式図である。
(First embodiment)
First, a first embodiment of a measuring apparatus to which the present invention is applied will be described with reference to FIGS. FIG. 1 is a schematic diagram of a measurement apparatus 10A according to the first embodiment.
[計測装置10Aの構成]
 図1に示すように、計測装置10Aは細胞等の試料Sの情報を取得可能な計測装置であり、点光源12と、分散部14と、第一集光部(集光部)15と、第二集光部17と、重ね合わせ部19と、空間フィルタリング光学系18と、検出部20と、を備えている。
[Configuration of Measuring Device 10A]
As shown in FIG. 1, the measurement device 10A is a measurement device that can acquire information on a sample S such as a cell, and includes a point light source 12, a dispersion unit 14, a first light collection unit (light collection unit) 15, The second condensing unit 17, the overlapping unit 19, the spatial filtering optical system 18, and the detection unit 20 are provided.
 点光源12は、離散スペクトル光源(第一のコム光源)22と、集光レンズ24と、を備えている。
 離散スペクトル光源22は、離散スペクトル光LAを発する光源である。
The point light source 12 includes a discrete spectrum light source (first comb light source) 22 and a condenser lens 24.
The discrete spectrum light source 22 is a light source that emits discrete spectrum light LA.
 図2は離散スペクトル光LAについて説明するための模式図である。図2に示すように、離散スペクトル光LAは互いに異なる周波数で分布しているスペクトルMAを二以上含んでいる。このような離散スペクトル光LAとしては、光周波数コムスペクトル(第一の光周波数コムスペクトル)LX0が挙げられる。光周波数コムスペクトルLX0は、例えば周波数軸(図2に示すf軸)上で互いに周波数間隔frをあけて分布するスペクトルMAを二以上含んでいる。以降では、スペクトルMAの数をnとする。言い換えれば、周波数軸で周波数の位置が隣り合うスペクトルMA,MAの周波数の間隔が周波数間隔frである。周波数特性で見ると、n個のスペクトルMAがキャリア・エンベロープ・オフセット周波数f0(以下、オフセット周波数f0と記載する)、及び所定の光強度|E(f)|の分布を有するスペクトル・エンベロープNAを備え、周波数軸上に分布している。
 光周波数コムスペクトルLX0の時間特性を見ると、パルスΦ1,Φ2,…,Φmが複数分布している。隣接したパルスΦ1,Φ2,…,Φmの間の互いに中心の時間間隔が1/frである。複数のパルスΦ1,Φ2,…,Φmの光搬送波電界CAは、複数のスペクトルMAを逆フーリエ変換して得られる時間分布を有する。複数のパルスΦ1,Φ2,…,Φnのパルス包絡線WAはスペクトル・エンベロープNAを逆フーリエ変換して得られる時間分布を有する。
FIG. 2 is a schematic diagram for explaining the discrete spectrum light LA. As shown in FIG. 2, the discrete spectrum light LA includes two or more spectra MA distributed at different frequencies. Examples of such discrete spectrum light LA include an optical frequency comb spectrum (first optical frequency comb spectrum) LX0. The optical frequency comb spectrum LX0 includes, for example, two or more spectra MA distributed at a frequency interval fr on the frequency axis (f-axis shown in FIG. 2). Hereinafter, the number of the spectrum MA is assumed to be n. In other words, the frequency interval fr is the frequency interval between the spectra MA and MA whose frequency positions are adjacent on the frequency axis. Looking at the frequency characteristics, n spectrums MA have a carrier envelope offset frequency f0 (hereinafter referred to as offset frequency f0) and a spectrum envelope NA having a distribution of a predetermined light intensity | E (f) | 2. And distributed on the frequency axis.
Looking at the time characteristics of the optical frequency comb spectrum LX0, a plurality of pulses Φ1, Φ2,. The time interval between the centers of adjacent pulses Φ1, Φ2,..., Φm is 1 / fr. The optical carrier electric field CA of the plurality of pulses Φ1, Φ2,... Φm has a time distribution obtained by inverse Fourier transform of the plurality of spectra MA. The pulse envelope WA of the plurality of pulses Φ1, Φ2,..., Φn has a time distribution obtained by inverse Fourier transform of the spectrum envelope NA.
 キャリア・エンベロープ・オフセット周波数f0と、キャリア・エンベロープ・オフセット周波数f0を有するスペクトルMAに対する順番を決めれば、所定の順番のスペクトルMAの周波数が決まる。例えば、オフセット周波数f0を有するスペクトルMAに対してn番目のスペクトルMAの周波数νnは、下記の(1)式のように決められる。 If the order of the spectrum MA having the carrier envelope offset frequency f0 and the carrier envelope offset frequency f0 is determined, the frequency of the spectrum MA in a predetermined order is determined. For example, the frequency νn of the nth spectrum MA with respect to the spectrum MA having the offset frequency f0 is determined as the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 光周波数コムスペクトルLX0では、周波数間隔fr及びオフセット周波数f0が周波数標準器を基準に安定化されてスペクトルMAの周波数が周波数軸上で殆ど変化せず、固定されている。「周波数軸上で変化せず」とは、複数のスペクトルMAの互いに異なるモードが位相同期され、スペクトルMAの周波数が周波数標準器に位相同期することで達成され得る程度に、周波数軸上で変化しない状態を示す。 In the optical frequency comb spectrum LX0, the frequency interval fr and the offset frequency f0 are stabilized with reference to the frequency standard, and the frequency of the spectrum MA hardly changes on the frequency axis and is fixed. “No change on the frequency axis” means that the different modes of the plurality of spectrum MAs are phase-synchronized and the frequency of the spectrum MA changes so that it can be achieved by phase-synchronizing with the frequency standard. Indicates a state that does not.
 離散スペクトル光源22としては、上記説明した光周波数コムスペクトルLX0を発することが可能な公知のコム光源を用いることができる。
 以下では、離散スペクトル光源22の構成例について説明する。各例において公知の構成要素については、その詳細な説明を省略する。
 なお、離散スペクトル光源22の構成は下記の各例に限定されるものではない。
As the discrete spectrum light source 22, a known comb light source capable of emitting the optical frequency comb spectrum LX0 described above can be used.
Below, the structural example of the discrete spectrum light source 22 is demonstrated. Detailed descriptions of known components in each example are omitted.
The configuration of the discrete spectrum light source 22 is not limited to the following examples.
 図3は離散スペクトル光源22の第一構成例であるコム光源22Aの概略図である。図3に示すように、コム光源22Aはモード同期ファイバレーザー77と、増幅器78と、を備えている。モード同期ファイバレーザー77は励起用半導体レーザー82と、光アイソレータ87Aを備えた光ファイバ80Gと、光カプラ84Aと、イッテルビウム(Yb)等のドープファイバ86Aを備えた光ファイバ80Aと、光ファイバ80B,80Cと、光アイソレータ85Aと、を備えている。増幅器78は光ファイバ80B,80Cの間に配置された光カプラ84Dを介してモード同期ファイバレーザー77に接続されている。増幅器78は、光カプラ84Dの出力側に接続された光ファイバ80Dと、光アイソレータ85Bと、励起用半導体レーザー83と、光アイソレータ87Bを備えた光ファイバ80Fと、光カプラ84Cと、イッテルビウム(Yb)等のドープファイバ86Bを備えた光ファイバ80Hと、光アイソレータ85Cと、を備えている。 FIG. 3 is a schematic diagram of a comb light source 22A which is a first configuration example of the discrete spectrum light source 22. As shown in FIG. 3, the comb light source 22 </ b> A includes a mode-locked fiber laser 77 and an amplifier 78. The mode-locked fiber laser 77 includes an excitation semiconductor laser 82, an optical fiber 80G including an optical isolator 87A, an optical coupler 84A, an optical fiber 80A including a doped fiber 86A such as ytterbium (Yb), an optical fiber 80B, 80C and an optical isolator 85A. The amplifier 78 is connected to the mode-locked fiber laser 77 via an optical coupler 84D disposed between the optical fibers 80B and 80C. The amplifier 78 includes an optical fiber 80D connected to the output side of the optical coupler 84D, an optical isolator 85B, a pumping semiconductor laser 83, an optical fiber 80F including the optical isolator 87B, an optical coupler 84C, an ytterbium (Yb ) Or the like, and an optical isolator 85C.
 図3に示す構成では、モード同期ファイバレーザー77から周波数安定度の高いパルスが光アイソレータ85Aから光カプラ84Aに向かって発振される。発振されたパルスの一部が光カプラ84Dから取り出され、一部のパルスは光ファイバ80D内を進み、増幅器78でその強度を増幅させる。一方、残りのパルスは光ファイバ80C内を進み、モード同期ファイバレーザー77の内部をループする。このような動作原理によって、光アイソレータ85Cから、高出力の光周波数コムスペクトルLX0が出射される。 In the configuration shown in FIG. 3, a pulse with high frequency stability is oscillated from the mode-locked fiber laser 77 toward the optical coupler 84A from the optical isolator 85A. A part of the oscillated pulse is extracted from the optical coupler 84D, and a part of the pulse travels through the optical fiber 80D, and the amplifier 78 amplifies the intensity thereof. On the other hand, the remaining pulses travel through the optical fiber 80C and loop inside the mode-locked fiber laser 77. By such an operation principle, a high-power optical frequency comb spectrum LX0 is emitted from the optical isolator 85C.
 図4は離散スペクトル光源22の第二構成例であるコム光源22Bの概略図である。図4に示すように、コム光源22Bは光変調器90と、マイクロ波発振器93と、を備えている。光変調器90は所定距離だけ離間させて配置された鏡92A,92Bと、二枚の鏡92A,92Bの間に配置された電気光学結晶94から構成されている。電気光学結晶94には、例えばニオブ酸リチウム(LiNbO)が用いられている。 FIG. 4 is a schematic diagram of a comb light source 22 </ b> B that is a second configuration example of the discrete spectrum light source 22. As shown in FIG. 4, the comb light source 22 </ b> B includes an optical modulator 90 and a microwave oscillator 93. The light modulator 90 includes mirrors 92A and 92B that are spaced apart by a predetermined distance, and an electro-optic crystal 94 that is disposed between the two mirrors 92A and 92B. For example, lithium niobate (LiNbO 3 ) is used for the electro-optic crystal 94.
 図4に示す構成では、光変調器90に入射した単一スペクトル光はマイクロ波発振器93によって外部位相変調される。一方、電気光学結晶94が上記のように二枚の鏡92A,92Bからなるファブリ・ペロー共振器内に配置されていることで深い変調がかけられ、約1000本以上のスペクトルMAが発生する。スペクトルMAの周波数間隔frはマイクロ波発振器93の変調周波数に一致する。また、光変調器90はパッシブな構成要素で構成されているため、周波数軸上で非常に安定したスペクトルMAを二以上含む光周波数コムスペクトルLX0が発生する。スペクトル・エンベロープNAの中心周波数は、不図示の入力光源で決定される。 In the configuration shown in FIG. 4, the single spectrum light incident on the optical modulator 90 is externally phase-modulated by the microwave oscillator 93. On the other hand, since the electro-optic crystal 94 is arranged in the Fabry-Perot resonator composed of the two mirrors 92A and 92B as described above, deep modulation is applied, and about 1000 or more spectra MA are generated. The frequency interval fr of the spectrum MA matches the modulation frequency of the microwave oscillator 93. Further, since the optical modulator 90 is composed of passive components, an optical frequency comb spectrum LX0 including two or more spectra MA that is very stable on the frequency axis is generated. The center frequency of the spectrum envelope NA is determined by an input light source (not shown).
 図5は離散スペクトル光源22の第三構成例であるコム光源22Cの概略図である。図5に示すように、コム光源22Cは導波路型のマッハツェンダ変調器(MZM)型超平坦光コム発生器(MZ-FCG)95を備えている。MZ-FCG95には、入力導波路96Aと、二つの分岐導波路96B,96Cと、出力導波路96Dと、が形成されている。二つの分岐導波路96B,96Cのそれぞれには、高周波(RF)信号と位相変調信号を入力可能とする導波路が結合されている。 FIG. 5 is a schematic diagram of a comb light source 22 </ b> C which is a third configuration example of the discrete spectrum light source 22. As shown in FIG. 5, the comb light source 22C includes a waveguide type Mach-Zehnder modulator (MZM) type ultra-flat optical comb generator (MZ-FCG) 95. In the MZ-FCG 95, an input waveguide 96A, two branch waveguides 96B and 96C, and an output waveguide 96D are formed. Each of the two branch waveguides 96B and 96C is coupled with a waveguide capable of inputting a radio frequency (RF) signal and a phase modulation signal.
 図5に示す構成では、RF信号が所定の条件で二つの分岐導波路96B,96Cに入力されると、単一スペクトルから分岐導波路96B,96Cのそれぞれで二つの光周波数コムスペクトルが発生する。二つの分岐導波路96B,96Cの結合位置において、二つの光周波数コムスペクトルは互いにそれぞれの光強度のアンバランスを補い合う。従って、スペクトル・エンベロープNAの平坦性に優れた光周波数コムスペクトルLX0が発生し、出力導波路96Dから取り出される。 In the configuration shown in FIG. 5, when an RF signal is input to the two branch waveguides 96B and 96C under a predetermined condition, two optical frequency comb spectra are generated from the single spectrum in each of the branch waveguides 96B and 96C. . At the coupling position of the two branch waveguides 96B and 96C, the two optical frequency comb spectra compensate for each other's light intensity imbalance. Accordingly, the optical frequency comb spectrum LX0 having excellent flatness of the spectrum envelope NA is generated and taken out from the output waveguide 96D.
 図6は離散スペクトル光源22の第四構成例であるコム光源22Dの概略図である。コム光源22Dはコム光源22CのMZ-FCG95を用いた広帯域コム/超短パルス光源である。図6に示すように、コム光源22Dは、励起用半導体レーザー98と、偏波コントローラ(PC)99と、MZM100と、シングルモードファイバ(SMF)108と、エルビウム添加ファイバ増幅器109と、分散フラット・分散減少ファイバ(DF-DDF)110と、を備えている。
 図6に示す構成では、MZ-FCG95によって発生した光コム信号は標準的なSMF108に入力された後にDF-DDFに入力することで、約20THzに及ぶ光周波数コムスペクトルLX0が発生する。
FIG. 6 is a schematic diagram of a comb light source 22 </ b> D that is a fourth configuration example of the discrete spectrum light source 22. The comb light source 22D is a broadband comb / ultra short pulse light source using the MZ-FCG95 of the comb light source 22C. As shown in FIG. 6, the comb light source 22D includes a pumping semiconductor laser 98, a polarization controller (PC) 99, an MZM 100, a single mode fiber (SMF) 108, an erbium-doped fiber amplifier 109, a dispersion flat laser A dispersion reducing fiber (DF-DDF) 110.
In the configuration shown in FIG. 6, the optical comb signal generated by the MZ-FCG 95 is input to the standard SMF 108 and then input to the DF-DDF, thereby generating an optical frequency comb spectrum LX0 extending to about 20 THz.
 上記説明したコム光源22Aから22Dに例示される離散スペクトル光源22の出射方向には、図1に示すように、集光レンズ24が配置されている。集光レンズ24は離散スペクトル光源22から発せられた離散スペクトル光LAを集光位置P1に集光させる光学素子である。従って、集光レンズ24の各種パラメータは、スペクトルMAの周波数ν及び集光レンズ24の位置と集光位置P1との距離等を勘案して設定され、特に限定されない。 As shown in FIG. 1, a condenser lens 24 is disposed in the emission direction of the discrete spectrum light source 22 exemplified by the comb light sources 22A to 22D described above. The condensing lens 24 is an optical element that condenses the discrete spectrum light LA emitted from the discrete spectrum light source 22 at the condensing position P1. Accordingly, the various parameters of the condenser lens 24 are set in consideration of the frequency ν of the spectrum MA, the distance between the position of the condenser lens 24 and the condenser position P1, and the like, and are not particularly limited.
 なお、例えば集光レンズ24のように、点光源12の光学系においてレンズが用いられている場合は、図示しないが、レンズをミラーに替えて点光源12を構成してもよい。レンズに替えてミラーを用いることによって、離散スペクトル光源22から発せられた光周波数コムスペクトルLX0の各スペクトルMAの周波数に対してレンズの色収差の影響が及ぶことを避けることができる。 When a lens is used in the optical system of the point light source 12, such as the condenser lens 24, for example, the point light source 12 may be configured by replacing the lens with a mirror. By using a mirror instead of the lens, it is possible to avoid the influence of the chromatic aberration of the lens on the frequency of each spectrum MA of the optical frequency comb spectrum LX0 emitted from the discrete spectrum light source 22.
 光軸X上において、点光源12の前方にはピンホール26及びコリメートレンズ28がこの順で配置されている。
 ピンホール26は所定の大きさ及び形状の開口を有する。光軸X方向において、ピンホール26の開口は集光位置P1に位置している。この開口の大きさ及び形状は、スペクトルMAの周波数と、試料Sの情報を取得するための所望の分解能等を勘案して設定され、特に限定されない。
 コリメートレンズ28は集光位置P1から発散された離散スペクトル光LAをコリメートする光学素子である。従って、コリメートレンズ28の各種パラメータは、スペクトルMAの周波数及び集光位置P1とコリメートレンズ28の位置との距離等を勘案して設定され、特に限定されない。
 なお、ピンホール26、集光レンズ24及びコリメートレンズ28は、集光位置P1において離散スペクトル光LAを少なくとも任意の一方向に集光できれば、他の構成に置き換えられる。例えば、これらの構成に替えて、シリンドリカルレンズ及びスリットの組合せを用いてもよく、ピンホール26に替えて符号化パターンを用いてもよい。
On the optical axis X, a pinhole 26 and a collimating lens 28 are arranged in this order in front of the point light source 12.
The pinhole 26 has an opening having a predetermined size and shape. In the direction of the optical axis X, the opening of the pinhole 26 is located at the condensing position P1. The size and shape of the opening are not particularly limited, and are set in consideration of the frequency of the spectrum MA and the desired resolution for acquiring information on the sample S.
The collimating lens 28 is an optical element that collimates the discrete spectrum light LA emitted from the condensing position P1. Accordingly, the various parameters of the collimating lens 28 are set in consideration of the frequency of the spectrum MA, the distance between the condensing position P1 and the position of the collimating lens 28, etc., and are not particularly limited.
The pinhole 26, the condensing lens 24, and the collimating lens 28 can be replaced with other configurations as long as the discrete spectrum light LA can be condensed in at least one arbitrary direction at the condensing position P1. For example, instead of these configurations, a combination of a cylindrical lens and a slit may be used, and an encoding pattern may be used instead of the pinhole 26.
 分散部14は、光軸X方向においてコリメートレンズ28と第一集光部15との間に配置され、離散スペクトル光LAをスペクトルMA毎に互いに異なる方向に波長分散させるための構成である。第一実施形態の分散部14は分散素子32を備えている。図1では、分散素子32として、回折格子を用いた場合を示している。分散素子32は、分散面32aに直交する軸J1を光軸Xに対して角度θ0だけ傾斜させた姿勢で配置されている。分散素子32は角度θ0で入射した光をスペクトルMA毎に、n個のスペクトルMAの周波数に応じた角度θ1,θ2,…,θnで1次元的、2次元的又は3次元的に波長分散させる機能を有する。このような機能を有する分散素子32としては、例えば回折格子、プリズム、Virtual Imaged Phased Array(VIPA:登録商標)、計算機ホログラム(Computer Generated Hologram:CGH)等が挙げられる。分散素子32として回折格子やプリズムを用いる場合は、図1に示すように、分散ビームが1次元的に(即ち、ライン状に)波長分散される。回折格子のピッチは、スペクトルMAが入射する角度θ0、スペクトルMAの周波数及び試料Sの情報を取得するための所望の分解能等を勘案して、公知のグレーティング方程式に基づいて設定され、特に限定されない。分散素子32としてVIPA(第一の分散素子)と回折格子(第二の分散素子)とを組み合わせて用いる場合は、分散ビームが2次元的に(平面状に)波長分散される。分散素子32としてCGHを用いる場合は、CGHにレンズ特性を持たせることでスペクトル毎に集光位置の深さを変えることができる。 The dispersion unit 14 is disposed between the collimating lens 28 and the first light collecting unit 15 in the optical axis X direction, and is configured to disperse the discrete spectrum light LA in different directions for each spectrum MA. The dispersion unit 14 of the first embodiment includes a dispersion element 32. FIG. 1 shows a case where a diffraction grating is used as the dispersion element 32. The dispersive element 32 is disposed in a posture in which an axis J1 orthogonal to the dispersive surface 32a is inclined with respect to the optical axis X by an angle θ0. The dispersive element 32 wavelength-disperses light incident at an angle θ0 one-dimensionally, two-dimensionally, or three-dimensionally for each spectrum MA at angles θ1, θ2,..., Θn corresponding to the frequencies of n spectra MA. It has a function. Examples of the dispersive element 32 having such a function include a diffraction grating, a prism, a Virtual imaged Phased array (VIPA: registered trademark), a computer generated hologram (Computer Generated Hologram: CGH), and the like. When a diffraction grating or a prism is used as the dispersive element 32, as shown in FIG. 1, the dispersive beam is wavelength-dispersed one-dimensionally (that is, in a line). The pitch of the diffraction grating is set based on a known grating equation in consideration of the angle θ0 at which the spectrum MA is incident, the frequency of the spectrum MA, a desired resolution for obtaining information on the sample S, and the like, and is not particularly limited. . When a combination of VIPA (first dispersion element) and diffraction grating (second dispersion element) is used as the dispersion element 32, the dispersion beam is wavelength-dispersed two-dimensionally (in a plane). When CGH is used as the dispersive element 32, the depth of the condensing position can be changed for each spectrum by giving the CGH lens characteristics.
 第一集光部15は、光軸X方向において分散部14と試料Sとの間に配置され、分散部14によって波長分散されたスペクトルMAを試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させるための構成である。第一集光部15はリレーレンズ34,36と、対物レンズ38と、を備えている。リレーレンズ34,36は、分散素子32のビーム出射状態を、対物レンズの入射瞳(点P4)に転送するために用いられている。リレーレンズ34は複数のスペクトルMAを光軸Xに直交する方向(即ち、図1に示す矢印D2方向又は矢印D3方向)にそれぞれ異なる位置で集光させる。リレーレンズ36は集光後に発散した複数のスペクトルMAをコリメートすると共に、共通して対物レンズの入射瞳である点P4を通過させ、対物レンズ38に入射させる。対物レンズ38は、点P4のビーム入射角度に依存して異なる位置に焦点を形成するが、スペクトルMA毎に入射角度が異なるので、入射した点P4からのスペクトルMAをスペクトルMA毎に、試料Sの矢印D2又はD3方向に異なる位置で集光させる。
 なお、第一集光部15は分散部14によって分散されたスペクトルMAを試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させることができれば、上記の構成に限定されない。
The first condensing unit 15 is arranged between the dispersion unit 14 and the sample S in the optical axis X direction, and the spectrum MA wavelength-dispersed by the dispersion unit 14 is located at different positions p1, p2,. It is the structure for condensing each. The first light collecting unit 15 includes relay lenses 34 and 36 and an objective lens 38. The relay lenses 34 and 36 are used to transfer the beam emission state of the dispersive element 32 to the entrance pupil (point P4) of the objective lens. The relay lens 34 condenses the plurality of spectra MA at different positions in the direction orthogonal to the optical axis X (that is, in the direction of the arrow D2 or the arrow D3 shown in FIG. 1). The relay lens 36 collimates a plurality of spectrums MA diverged after condensing, and passes the point P4 which is the entrance pupil of the objective lens in common, and enters the objective lens 38. The objective lens 38 forms a focal point at a different position depending on the beam incident angle at the point P4. However, since the incident angle is different for each spectrum MA, the spectrum MA from the incident point P4 is converted into the sample S for each spectrum MA. Are condensed at different positions in the direction of arrow D2 or D3.
The first condensing unit 15 is not limited to the above-described configuration as long as the spectrum MA dispersed by the dispersing unit 14 can be condensed at different positions p1, p2,.
 試料Sは、光軸X方向において第一集光部15と第二集光部17との間に配置されている。試料Sは、例えば細胞等のように、スペクトルMAを透過させ、且つスペクトルMAに振幅や位相の変調等によってその情報を付加し得る物体であればよく、特に制限されない。 The sample S is disposed between the first light collecting unit 15 and the second light collecting unit 17 in the optical axis X direction. The sample S is not particularly limited as long as it is an object that transmits the spectrum MA and can add the information to the spectrum MA by modulation of amplitude or phase, such as a cell.
 第二集光部17は、光軸X方向において試料Sと重ね合わせ部19との間に配置され、対物レンズ39と、リレーレンズ35,37と、を備えている。リレーレンズ35,37は、対物レンズの入射瞳(点P5)のビーム出射状態を、分散素子33に転送するために用いられている。これらの構成要素はそれぞれ、対物レンズ38と、リレーレンズ34,36と、に対応している。即ち、第二集光部17は、光軸X方向において試料Sに対し、第一集光部15を折り返してなる構成である。対物レンズ39は互いに異なる位置p1,p2,…,pnから透過した透過したそれぞれのスペクトル(以下、透過スペクトルとする)をコリメートすると共に、共通して点P5を通過させ、リレーレンズ37に入射させる。リレーレンズ37は点P5を通過した複数の透過スペクトルを光軸Xに直交する方向(即ち、図1に示す矢印D2方向又は矢印D3方向)にそれぞれ異なる位置で集光させる。リレーレンズ35は集光後に発散した複数の透過スペクトルをコリメートする。
 なお、第二集光部17は上記構成に限定されず、省略可能である。
The second light collecting unit 17 is disposed between the sample S and the overlapping unit 19 in the optical axis X direction, and includes an objective lens 39 and relay lenses 35 and 37. The relay lenses 35 and 37 are used to transfer the beam emission state of the entrance pupil (point P5) of the objective lens to the dispersion element 33. These components correspond to the objective lens 38 and the relay lenses 34 and 36, respectively. That is, the second light collecting unit 17 is configured by folding the first light collecting unit 15 with respect to the sample S in the optical axis X direction. The objective lens 39 collimates each transmitted spectrum (hereinafter referred to as a transmission spectrum) transmitted from different positions p1, p2,..., Pn, and passes the point P5 in common to be incident on the relay lens 37. . The relay lens 37 condenses the plurality of transmission spectra that have passed through the point P5 at different positions in the direction orthogonal to the optical axis X (that is, in the direction of the arrow D2 or the arrow D3 shown in FIG. 1). The relay lens 35 collimates a plurality of transmission spectra diverged after condensing.
In addition, the 2nd condensing part 17 is not limited to the said structure, It is omissible.
 重ね合わせ部19は、光軸X方向において第二集光部17と空間フィルタリング光学系18との間に配置され、互いに異なる位置p1,p2,…,pnからの透過スペクトルを空間的に重ね合わせるための構成である。第一実施形態の重ね合わせ部19は分散素子33を備えている。分散素子33は、波長分散面33aに直交する軸J2を光軸Xに対して角度θ0だけ傾斜させた姿勢で配置されている。分散素子33はn個のスペクトルMAの周波数に応じた角度θ1,θ2,…,θnで入射した光を共通の角度θ0で同時に波長分散させる機能を有する。共通の角度θ0で同時に波長分散することで、n個のスペクトルMAは光軸X上に重ねられる。このような機能を有する分散素子33としては、例えば回折格子、プリズム、VIPA、CGH等が挙げられる。分散素子33は、分散素子32と同様の性能を有することが好ましい。 The superimposing unit 19 is disposed between the second light collecting unit 17 and the spatial filtering optical system 18 in the optical axis X direction, and spatially superimposes transmission spectra from different positions p1, p2,. It is the structure for. The overlapping portion 19 of the first embodiment includes a dispersive element 33. The dispersive element 33 is arranged in a posture in which an axis J2 orthogonal to the wavelength dispersion surface 33a is inclined with respect to the optical axis X by an angle θ0. The dispersive element 33 has a function to simultaneously disperse light incident at angles θ1, θ2,..., Θn corresponding to the frequencies of n spectrum MAs at a common angle θ0. By simultaneously performing wavelength dispersion at a common angle θ0, n spectra MA are superimposed on the optical axis X. Examples of the dispersing element 33 having such a function include a diffraction grating, a prism, VIPA, and CGH. The dispersive element 33 preferably has the same performance as the dispersive element 32.
 空間フィルタリング光学系18は、光軸X方向において重ね合わせ部19と検出部20との間に配置され、スペクトルMAの試料S上で集光された位置p1,p2,…,pnのそれぞれと共役な位置P3に集光させるための構成である。空間フィルタリング光学系18は集光レンズ40と、ピンホール42と、コリメートレンズ44と、を備え、これらの構成要素が光軸X方向の後方側から前述の順で配置されている。 The spatial filtering optical system 18 is disposed between the overlapping unit 19 and the detection unit 20 in the optical axis X direction, and is conjugated with each of the positions p1, p2,..., Pn collected on the sample S of the spectrum MA. This is a configuration for condensing light at the correct position P3. The spatial filtering optical system 18 includes a condenser lens 40, a pinhole 42, and a collimator lens 44, and these components are arranged in the order described above from the rear side in the optical axis X direction.
 集光レンズ40は光軸X上で入射する透過スペクトルをスペクトルMAの試料S上での焦点に共役な位置P3(以下、単に焦点に共役な位置P3と記載する場合がある)に集光させる。従って、集光レンズ40の各種パラメータは、スペクトルMAの周波数及び集光レンズ40の位置と、焦点に共役な位置P3との距離等を勘案して設定され、特に限定されない。
 ピンホール42は所定の大きさ及び形状の開口を有する。光軸X方向において、ピンホール42の開口は焦点に共役な位置P3に位置している。この開口の大きさ及び形状は、スペクトルMAの周波数と、集光レンズ40の集光性能等を勘案して設定され、特に限定されない。ピンホール42は位置p1,p2,…,pnからの透過スペクトルを開口から通過させる。
 コリメートレンズ44は焦点に共役な位置P3から発散された透過スペクトルをコリメートする光学素子である。従って、コリメートレンズ44の各種パラメータは、スペクトルMAの周波数及び焦点に共役な位置P3とコリメートレンズ44の位置との距離等を勘案して設定され、特に限定されない。
The condensing lens 40 condenses the transmission spectrum incident on the optical axis X at a position P3 conjugate to the focal point on the sample S of the spectrum MA (hereinafter sometimes simply referred to as a position P3 conjugate to the focal point). . Therefore, the various parameters of the condenser lens 40 are set in consideration of the frequency of the spectrum MA and the distance between the position of the condenser lens 40 and the position P3 conjugate to the focal point, and are not particularly limited.
The pinhole 42 has an opening having a predetermined size and shape. In the direction of the optical axis X, the opening of the pinhole 42 is located at a position P3 conjugate to the focal point. The size and shape of the opening are set in consideration of the frequency of the spectrum MA and the light condensing performance of the condensing lens 40, and are not particularly limited. The pinhole 42 allows the transmission spectrum from the positions p1, p2,.
The collimating lens 44 is an optical element that collimates the transmission spectrum emitted from the position P3 conjugate to the focal point. Therefore, the various parameters of the collimating lens 44 are set in consideration of the frequency of the spectrum MA and the distance between the position P3 conjugate to the focal point and the position of the collimating lens 44, etc., and are not particularly limited.
 検出部20は、光軸X方向において計測装置10Aの最後方に配置されている。検出部20は、空間フィルタリング光学系18で空間フィルタリングされ、且つ試料Sの情報を含む離散スペクトル光LBから、試料Sの情報を含むモード分解スペクトルを取得するための構成である。
 検出部20としては、離散スペクトル光LBからモード分解スペクトルを取得することが可能な公知の検出光学系46又は分光装置を用いることができる。ここで、検出光学系46の構成例について説明する。各例において公知の構成要素については、その詳細な説明を省略する。
 なお、検出光学系46の構成は下記の各例に限定されるものではない。
The detection unit 20 is disposed at the end of the measuring device 10A in the optical axis X direction. The detection unit 20 is configured to acquire a mode-resolved spectrum including information on the sample S from the discrete spectrum light LB that is spatially filtered by the spatial filtering optical system 18 and includes information on the sample S.
As the detection unit 20, a known detection optical system 46 or a spectroscopic device capable of acquiring a mode-resolved spectrum from the discrete spectrum light LB can be used. Here, a configuration example of the detection optical system 46 will be described. Detailed descriptions of known components in each example are omitted.
The configuration of the detection optical system 46 is not limited to the following examples.
 図7は検出光学系46の第一構成例である光学系46Aの概略図である。図7に示すように、光学系46Aはシリンドリカルレンズ48と、VIPA50と、球面レンズ52と、回折格子54と、を備えている。VIPA50は、薄いガラス板50bの片面に半透過膜(図示略)を形成し、他面に反射膜50rで構成され、エタロンによる鋭い波長分散特性を有している。そして、VIPAを可動させることによって波長分散角度を変化させる。 FIG. 7 is a schematic diagram of an optical system 46A which is a first configuration example of the detection optical system 46. As shown in FIG. 7, the optical system 46 </ b> A includes a cylindrical lens 48, a VIPA 50, a spherical lens 52, and a diffraction grating 54. The VIPA 50 is formed of a semi-transmissive film (not shown) on one surface of a thin glass plate 50b and a reflective film 50r on the other surface, and has sharp wavelength dispersion characteristics due to etalon. Then, the chromatic dispersion angle is changed by moving the VIPA.
 図7に示す構成では、先ず、シリンドリカルレンズ48によって図7に示す矢印x方向に沿ってライン集光された光が、VIPA50によって矢印y方向(第一の方向)に分散される。また、分散された光の分散角度は、光軸に対して角度αの範囲内で、その光の周波数、VIPA50の厚さ、ならびに入射角度に起因する角度となる。VIPA50で分散された光は、球面レンズ52によって当該光毎に光軸に対して平行な方向に偏向され、回折格子54に入射する。回折格子54の格子の延在方向は矢印y方向に平行する方向であるため、回折格子54から反射した光は、反射と同時に前記一方向に直交する方向(図7に示す矢印x方向(第二の方向))に回折し、これによって周波数毎に分散される。従って、矢印D1方向及び矢印D3方向に複数のモード分解スペクトルが2次元展開され、個々のモード分解強度スペクトルの2次元空間分布がイメージングデバイス等によって検出される。2次元展開されたモード分解スペクトルの分布について、矢印D1方向の散在する帯域d1、及び矢印D3方向のピッチd2はVIPA50のFree Spectrum Range(FSR)及び回折格子54の格子ピッチに依存する。また、矢印D1方向のピッチd3はVIPA50に入射する光のスペクトルの周波数間隔(即ち、本実施形態では周波数間隔fr)に依存する。 In the configuration shown in FIG. 7, first, the light collected by the cylindrical lens 48 along the direction of the arrow x shown in FIG. 7 is dispersed by the VIPA 50 in the direction of the arrow y (first direction). The dispersion angle of the dispersed light is an angle resulting from the frequency of the light, the thickness of the VIPA 50, and the incident angle within an angle α with respect to the optical axis. The light dispersed by the VIPA 50 is deflected by the spherical lens 52 in a direction parallel to the optical axis for each light, and enters the diffraction grating 54. Since the extending direction of the diffraction grating 54 is parallel to the arrow y direction, the light reflected from the diffraction grating 54 is reflected in a direction orthogonal to the one direction at the same time as the reflection (the direction of the arrow x shown in FIG. Diffracted in the second direction)) and thereby dispersed by frequency. Accordingly, a plurality of mode-resolved spectra are two-dimensionally expanded in the directions of the arrow D1 and the arrow D3, and a two-dimensional spatial distribution of each mode-resolved intensity spectrum is detected by an imaging device or the like. Regarding the distribution of the mode-resolved spectrum developed two-dimensionally, the scattered band d1 in the direction of the arrow D1 and the pitch d2 in the direction of the arrow D3 depend on the Free Spectrum Range (FSR) of the VIPA 50 and the grating pitch of the diffraction grating 54. Further, the pitch d3 in the direction of the arrow D1 depends on the frequency interval of the spectrum of light incident on the VIPA 50 (that is, the frequency interval fr in this embodiment).
 図8は検出光学系46の第二構成例である光学系46Bの概略図である。図8に示すように、光学系46Bは入射スリット120と、反射凹面鏡121,123と、回折格子122と、出力スリット124と、を備えた分散型分光計である。 FIG. 8 is a schematic diagram of an optical system 46B which is a second configuration example of the detection optical system 46. As shown in FIG. As shown in FIG. 8, the optical system 46 </ b> B is a dispersive spectrometer including an entrance slit 120, reflection concave mirrors 121 and 123, a diffraction grating 122, and an output slit 124.
 図8に示す構成では、入射スリット120の開口から入射した光が反射凹面鏡121でコリメートされ、回折格子122に入射する。回折格子122の格子の延在方向は所定の方向(図8の紙面を貫通する方向)であるため、回折格子122から反射した光は、反射と同時に所定の方向に回折し、これによって周波数毎に互いに異なる方向へ分散される。
 続いて、周波数毎に分散された光は、反射凹面鏡123で出力スリット124に照射され、出力スリット124の開口の位置にある光が取り出される。出力スリット124が矢印D10方向に走査されることで、回折格子122で分散されたモード分解スペクトルが周波数毎に検出される。もしくは、出力スリット124を固定した状態で、回折格子122を回転させることによって、同様のモード分解強度スペクトルが検出される。
In the configuration shown in FIG. 8, the light incident from the opening of the entrance slit 120 is collimated by the reflective concave mirror 121 and enters the diffraction grating 122. Since the extending direction of the grating of the diffraction grating 122 is a predetermined direction (a direction penetrating the paper surface of FIG. 8), the light reflected from the diffraction grating 122 is diffracted in a predetermined direction simultaneously with the reflection, and thereby, for each frequency. Are distributed in different directions.
Subsequently, the light dispersed for each frequency is applied to the output slit 124 by the reflecting concave mirror 123, and the light at the position of the opening of the output slit 124 is extracted. By scanning the output slit 124 in the direction of the arrow D10, the mode-resolved spectrum dispersed by the diffraction grating 122 is detected for each frequency. Alternatively, a similar mode-resolved intensity spectrum is detected by rotating the diffraction grating 122 while the output slit 124 is fixed.
 図9は検出光学系46の第三構成例である光学系46Cの概略図である。図9に示すように、光学系46Cはミラー127と、ビームスプリッタ128と、直角(プリズム)ミラー129,130と、検出器131と、フーリエ変換部132と、を備えたマイケルソン干渉計型フーリエ変換分光光学系である。 FIG. 9 is a schematic diagram of an optical system 46C which is a third configuration example of the detection optical system 46. As shown in FIG. 9, the optical system 46 </ b> C includes a Michelson interferometer type Fourier filter including a mirror 127, a beam splitter 128, right-angle (prism) mirrors 129 and 130, a detector 131, and a Fourier transform unit 132. This is a conversion spectroscopic optical system.
 図9に示す構成では、先ず、一方の直角ミラー129を光軸に平行する矢印D12方向に動かし、直角ミラー129,130のそれぞれから反射した光の干渉波形を検出器131で検出する。続いて、その干渉波形をフーリエ変換部132においてフーリエ変換することにより、周波数(波長)毎のモード分解強度スペクトルが検出される。 In the configuration shown in FIG. 9, first, one right-angle mirror 129 is moved in the direction of arrow D12 parallel to the optical axis, and the interference waveform of the light reflected from each of the right-angle mirrors 129 and 130 is detected by the detector 131. Subsequently, a mode-resolved intensity spectrum for each frequency (wavelength) is detected by Fourier transforming the interference waveform in the Fourier transform unit 132.
[計測装置10Aを用いた計測]
 次いで、図1に示す計測装置10Aを用いた計測の原理について説明する。
 点光源12の離散スペクトル光源22から発せられた離散スペクトル光LAは、集光位置P1で集光すると共に、ピンホール26の開口を通過する。集光位置P1から発散した離散スペクトル光LAは、コリメートレンズ28でコリメートされ、分散部14の分散素子32に入射する。
[Measurement Using Measuring Device 10A]
Next, the principle of measurement using the measurement apparatus 10A shown in FIG. 1 will be described.
The discrete spectrum light LA emitted from the discrete spectrum light source 22 of the point light source 12 is condensed at the condensing position P <b> 1 and passes through the opening of the pinhole 26. The discrete spectrum light LA diverging from the condensing position P1 is collimated by the collimating lens 28 and enters the dispersion element 32 of the dispersion unit 14.
 軸J1に対して共通の角度θ0をなし、分散素子32に入射した離散スペクトル光LAの二以上(ここでは、n個とする)のスペクトルMAは、スペクトルMA毎に、その周波数に応じた角度θ1,θ2,…,θnで同時に分散する。即ち、スペクトルMA毎に互いに異なる方向に同時に分散する。
 続いて、スペクトル毎に異なる角度θ1,θ2,…,θnで分散されたn個のスペクトルMAは、第一集光部15に入射し、リレーレンズ34によってスペクトル毎に集光され、リレーレンズ36によって位置P4に向けてコリメートされる。位置P4を通ったn個のスペクトルMAは、対物レンズ38によって試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ、同時に集光される。
Two or more (here, n) spectrum MA of the discrete spectrum light LA incident on the dispersive element 32 and having a common angle θ0 with respect to the axis J1 is an angle corresponding to the frequency of each spectrum MA. Disperse simultaneously at θ1, θ2,. That is, each spectrum MA is simultaneously dispersed in different directions.
Subsequently, n spectra MA dispersed at different angles θ1, θ2,..., Θn for each spectrum are incident on the first condensing unit 15 and are condensed for each spectrum by the relay lens 34, and the relay lens 36 is obtained. Is collimated toward position P4. The n spectra MA passing through the position P4 are simultaneously condensed by the objective lens 38 at different positions p1, p2,.
 試料Sの互いに異なる位置p1,p2,…,pnに同時集光したn個のスペクトルMAには、位置p1,p2,…,pnの試料Sに関する情報が付加される。このように、離散スペクトル光LAの一回の照射で、試料Sにn個のスペクトルMAからなる測定用の照射スポットが同時に形成される。また、試料Sの情報が互いに独立しているn個のスペクトルMAのそれぞれに付加される。 Information relating to the sample S at the positions p1, p2,..., Pn is added to the n spectrums MA simultaneously condensed at different positions p1, p2,. Thus, the irradiation spot for measurement which consists of n spectrum MA is simultaneously formed in the sample S by one irradiation of discrete spectrum light LA. Further, the information on the sample S is added to each of the n spectra MA that are independent of each other.
 試料Sの情報を含む離散スペクトル光LBは、互いに異なる位置p1,p2,…,pnから透過し、第二集光部17に入射する。第二集光部17の対物レンズ39によって、離散スペクトル光LBのスペクトル(以下、透過スペクトルとする)はそれぞれ、コリメートされると共に、共通して点P5を通過する。n個の透過スペクトルはリレーレンズ37に入射し、リレーレンズ37によって光軸Xに直交する方向(即ち、図1に示す矢印D2又はD3方向)にそれぞれ異なる位置で集光される。そして、集光後に発散した複数の透過スペクトルはリレーレンズ35によって、コリメートされると共に、重ね合わせ部19に向かって偏向される。 Discrete spectrum light LB including information on the sample S is transmitted from mutually different positions p1, p2,. The spectrum of the discrete spectrum light LB (hereinafter referred to as a transmission spectrum) is collimated by the objective lens 39 of the second condenser 17 and passes through the point P5 in common. The n transmission spectra are incident on the relay lens 37 and are collected by the relay lens 37 at different positions in the direction perpendicular to the optical axis X (that is, the direction of the arrow D2 or D3 shown in FIG. 1). Then, the plurality of transmission spectra diverged after condensing are collimated by the relay lens 35 and deflected toward the overlapping portion 19.
 互いに異なる位置p1,p2,…,pnからの透過スペクトルは、重ね合わせ部19の分散素子33に対し、n個の透過スペクトルの各周波数に応じた角度θ1,θ2,…,θnで入射する。そして、分散素子33によって軸J2に対して共通の角度θ0で同時に波長分散し、光軸X上で空間的に且つ同時に重ねられる。 Transmission spectra from different positions p1, p2,..., Pn are incident on the dispersive element 33 of the overlapping section 19 at angles θ1, θ2,..., Θn corresponding to the frequencies of the n transmission spectra. Then, the dispersion element 33 simultaneously performs wavelength dispersion at a common angle θ0 with respect to the axis J2, and is spatially and simultaneously superimposed on the optical axis X.
 空間的に重ね合され、且つ試料Sの情報を含むn個の透過スペクトルは空間フィルタリング光学系18に入射し、集光レンズ40で共役な位置P3に集光され、ピンホール42の開口を通過する。n個の透過スペクトル以外の光やスペクトルはピンホール42でカットされる。ピンホール42の開口を通過したn個の透過スペクトルがコリメートレンズ44でコリメートされ、検出部20に入射する。 The n transmission spectra that are spatially superimposed and include information of the sample S are incident on the spatial filtering optical system 18, collected at the conjugate position P3 by the condenser lens 40, and passed through the opening of the pinhole 42. To do. Light and spectra other than the n transmission spectra are cut by the pinhole 42. The n transmission spectra that have passed through the opening of the pinhole 42 are collimated by the collimating lens 44 and enter the detection unit 20.
 検出部20では、試料Sの情報を含む離散スペクトル光LB(即ち、上記の透過スペクトル)から、試料Sの情報を含むn個のモード分解スペクトルが取得される。n個のモード分解スペクトルが検出光学系46、又はその他の構成等によって、試料Sの互いに異なる位置p1,p2,…,pnに応じて1次元、2次元又は3次元的に配置されれば、モード分解スペクトルに含まれている試料Sの情報が見易くなる。このような方法によらず、離散スペクトル光LBからn個のモード分解スペクトルが取得されれば、試料Sの計測が完了する。 The detection unit 20 acquires n mode-resolved spectra including the information of the sample S from the discrete spectrum light LB including the information of the sample S (that is, the transmission spectrum described above). If n mode-resolved spectra are arranged one-dimensionally, two-dimensionally or three-dimensionally according to different positions p1, p2,... pn of the sample S by the detection optical system 46 or other configurations, Information on the sample S included in the mode-resolved spectrum is easy to see. Regardless of such a method, if n mode-resolved spectra are acquired from the discrete spectrum light LB, the measurement of the sample S is completed.
[計測装置10Aの作用効果]
 次いで、第一実施形態の計測装置10Aの作用効果について、図10を参照して説明する。図10は、上記説明した点光源12、分散部14、第一集光部15、第二集光部17、重ね合わせ部19及び空間フィルタリング光学系18で行われる光の操作(反射配置)を説明するための模式図である。
 図10に示すように、上記説明した計測装置10Aによれば、空間フィルタリング光学系18を含む点光源12から出射された、周波数軸上で互いに独立しているスペクトルMAを二以上含む離散スペクトル光LAを分散部14に入射させると、スペクトルMA毎に、互いに異なる方向に分散される。これにより、離散スペクトル光LAを走査せずに、離散スペクトル光LAに含まれるn個のスペクトルMAを二以上同時に多次元変換して、多次元平面にマッピングすることができる。図10には、n個のスペクトルMAがそれぞれの周波数(波長)に応じて2次元平面変換がなされた状態を例示している。
[Operational Effect of Measuring Device 10A]
Next, operational effects of the measurement apparatus 10A of the first embodiment will be described with reference to FIG. FIG. 10 illustrates the light operations (reflection arrangement) performed by the point light source 12, the dispersion unit 14, the first light collection unit 15, the second light collection unit 17, the superposition unit 19, and the spatial filtering optical system 18 described above. It is a schematic diagram for demonstrating.
As shown in FIG. 10, according to the measurement apparatus 10 </ b> A described above, discrete spectrum light that is emitted from the point light source 12 including the spatial filtering optical system 18 and includes two or more spectra MA that are independent from each other on the frequency axis. When LA is incident on the dispersion unit 14, the spectrum MA is dispersed in mutually different directions. Accordingly, two or more n number of spectra MA included in the discrete spectrum light LA can be subjected to multidimensional conversion at the same time and mapped to a multidimensional plane without scanning the discrete spectrum light LA. FIG. 10 illustrates a state in which n spectrums MA are two-dimensionally plane-converted according to the respective frequencies (wavelengths).
 分散された複数のスペクトルs1,s2,…,snはそれぞれ、第一集光部15によって試料Sの互いに異なる位置p1,p2,…,pnのそれぞれに同時集光する。即ち、離散スペクトル光LAの一回の照射(1ショット)で複数のスペクトルMAを試料Sの互いに異なる位置に集光させることができる。また、連続スペクトル光を用いた場合とは異なり、複数のスペクトルMAは互いに独立しているため、n個のスペクトルMAの集光位置p1,p2,…,pnで、試料Sの情報を同時且つ並列に、n個のスペクトルMAに、それぞれ付加することができる。従って、n個のスペクトルの集光位置p1,p2,…,pnを試料Sの計測対象の範囲に合わせれば、その計測範囲の試料Sの情報を非機械的に高速取得することができる。 The plurality of dispersed spectra s1, s2,..., Sn are simultaneously condensed at different positions p1, p2,. That is, a plurality of spectra MA can be condensed at different positions on the sample S by one irradiation (one shot) of the discrete spectrum light LA. In addition, unlike the case where continuous spectrum light is used, the plurality of spectra MA are independent from each other, so that information on the sample S can be simultaneously and simultaneously collected at the condensing positions p1, p2,. Each of the n spectrums MA can be added in parallel. Therefore, if the condensing positions p1, p2,..., Pn of the n spectra are matched with the measurement target range of the sample S, the information of the sample S in the measurement range can be acquired non-mechanically at high speed.
 また、第一実施形態の計測装置10Aによれば、試料Sの情報が付加された離散スペクトル光LBが第二集光部17及び重ね合わせ部19によって空間的に重ね合され、空間フィルタリング光学系18によって空間フィルタリングされる。これにより、重ね合わせ部19からは、n個のスペクトルMAのそれぞれに試料Sの情報が付加され、n個のモード分解スペクトルMA2が生成されると共に、スペクトル・エンベロープNAがスペクトル・エンベロープNA2に変化する。そして、空間フィルタリング光学系18のピンホール42の開口は、スペクトルMAが集光する位置p1,p2,…,pnに対して共役な位置P3に配置されている。従って、試料Sでの位置p1,p2,…,pn以外から透過した光、又はその他の迷光、散乱光等をピンホール42によってカットし、検出部20には計測対象である離散スペクトル光LBを検出することができる。
 以上のように、第一実施形態の計測装置10Aによれば、高い精度を保ちつつ、試料Sの情報を高速に取得することができる。
In addition, according to the measurement apparatus 10A of the first embodiment, the discrete spectrum light LB to which the information of the sample S is added is spatially superimposed by the second condensing unit 17 and the overlapping unit 19, and the spatial filtering optical system 18 is spatially filtered. As a result, the information of the sample S is added to each of the n spectra MA from the superposition unit 19, and n mode-resolved spectra MA2 are generated, and the spectrum envelope NA is changed to the spectrum envelope NA2. To do. The aperture of the pinhole 42 of the spatial filtering optical system 18 is disposed at a position P3 conjugate with the positions p1, p2,. Therefore, light transmitted from positions other than the positions p1, p2,..., Pn on the sample S, or other stray light, scattered light, and the like are cut by the pinhole 42, and the discrete spectrum light LB to be measured is supplied to the detection unit 20. Can be detected.
As described above, according to the measurement apparatus 10A of the first embodiment, information on the sample S can be acquired at high speed while maintaining high accuracy.
 また、第一実施形態の計測装置10Aによれば、n個のスペクトルMAの周波数間隔が互いに一致し、第一隣接周波数間隔fr1とすることもできる。その場合、n個のスペクトルMAが試料Sの互いに異なる位置で、且つ第一隣接周波数間隔fr1に応じた一定の間隔をあけて集光する。従って、試料Sの計測範囲内の情報を等間隔に取得することができる。 Further, according to the measurement apparatus 10A of the first embodiment, the frequency intervals of the n spectrum MAs can coincide with each other, and the first adjacent frequency interval fr1 can be obtained. In this case, the n spectra MA are collected at different positions on the sample S and at a predetermined interval corresponding to the first adjacent frequency interval fr1. Therefore, information within the measurement range of the sample S can be acquired at regular intervals.
 また、第一実施形態の計測装置10Aによれば、試料Sを透過し、重ね合わせ部19によって空間的に重ね合されてなる離散スペクトル光LBを検出することができる。 Further, according to the measurement apparatus 10A of the first embodiment, it is possible to detect the discrete spectrum light LB that passes through the sample S and is spatially superimposed by the overlapping unit 19.
 上述の作用効果を奏する計測装置10Aでは、従来の共焦点顕微鏡に比べて高速性と高分解能性が大幅に向上し、離散スペクトル光LAの1ショットで高いコントラストの鮮明な情報を取得することができる。必要に応じて蛍光プローブ等と併用することで、従来の共焦点顕微鏡や共焦点光学系を備えた装置等では困難とされていた、例えば生きたままの細胞内部の分子の動きを直接観察することも可能になる。その結果、生命機能解析等のバイオ分野に関する新たな知見を取得することができると考えられる。 In the measurement apparatus 10A having the above-described effects, the high speed and high resolution are greatly improved as compared with the conventional confocal microscope, and clear information with high contrast can be acquired with one shot of the discrete spectrum light LA. it can. Directly observe the movement of molecules inside living cells, for example, which has been difficult with conventional confocal microscopes and devices equipped with confocal optical systems, etc. It becomes possible. As a result, it is considered that new knowledge about the bio field such as life function analysis can be acquired.
(第二実施形態)
 図11は本発明を適用した第二実施形態の計測装置10Bの模式図である。なお、図11に示す第二実施形態の計測装置10Bの構成要素において、図1に示す第一実施形態の計測装置10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Second embodiment)
FIG. 11 is a schematic diagram of a measuring apparatus 10B according to the second embodiment to which the present invention is applied. In addition, in the component of measurement apparatus 10B of 2nd embodiment shown in FIG. 11, the same code | symbol is attached | subjected about the component same as the component of measurement apparatus 10A of 1st embodiment shown in FIG. Description is omitted.
[計測装置10Bの構成]
 図11に示すように、計測装置10Bは、計測装置10Aの構成要素に加えて、ハーフミラー55と、離散スペクトル光源(第二のコム光源)60と、を備えている。
 ハーフミラー55は、光軸X方向において、検出部20の検出光学系46とコリメートレンズ44との間に配置されている。ハーフミラー55のミラー面は光軸Xに対して所定の角度で傾斜している。
[Configuration of Measuring Device 10B]
As illustrated in FIG. 11, the measurement device 10 </ b> B includes a half mirror 55 and a discrete spectrum light source (second comb light source) 60 in addition to the components of the measurement device 10 </ b> A.
The half mirror 55 is disposed between the detection optical system 46 of the detection unit 20 and the collimator lens 44 in the optical axis X direction. The mirror surface of the half mirror 55 is inclined at a predetermined angle with respect to the optical axis X.
 離散スペクトル光源60は、離散スペクトル光LCを発する光源である。離散スペクトル光LCは互いに異なる周波数で分布しているスペクトルMA2を二以上含んでいる(図12参照)。このような離散スペクトル光LCとしては、光周波数コムスペクトル(第二の光周波数コムスペクトル)LX2が挙げられる。
 離散スペクトル光源60は、離散スペクトル光LCを所定の角度でハーフミラー55に入射させるように配置されている。図11には、光軸X方向におけるハーフミラー55の中心の位置から矢印D1方向とは反対方向に進んだ位置に配置された離散スペクトル光源60を例示している。
The discrete spectrum light source 60 is a light source that emits discrete spectrum light LC. The discrete spectrum light LC includes two or more spectra MA2 distributed at different frequencies (see FIG. 12). An example of such a discrete spectrum light LC is an optical frequency comb spectrum (second optical frequency comb spectrum) LX2.
The discrete spectrum light source 60 is disposed so that the discrete spectrum light LC is incident on the half mirror 55 at a predetermined angle. FIG. 11 illustrates a discrete spectrum light source 60 that is disposed at a position that advances in the direction opposite to the arrow D1 direction from the center position of the half mirror 55 in the optical axis X direction.
 図12は、試料Sの情報を含む離散スペクトル光LBと離散スペクトル光源60から発せられた離散スペクトル光LCとの干渉スペクトルの発生過程(即ち、デュアル光コム分光法)を説明するための模式図である。
 図12に示すように、試料Sの情報を含む離散スペクトル光LBに関しては、光領域の周波数軸で周波数の位置が隣り合うモード分解スペクトルMA1,MA1の周波数の間隔が第一隣接周波数間隔fr1である。第一隣接周波数間隔fr1は互いに一致している。
 一方、離散スペクトル光LCに関しては、光領域の周波数軸で周波数の位置が隣り合うモード分解スペクトルMA2,MA2の周波数の間隔が、第一隣接周波数間隔fr1とは異なる第二隣接周波数間隔fr2である。第二隣接周波数間隔fr2も互いに一致している。
 即ち、離散スペクトル光LB,LCはそれぞれ、周波数軸で等間隔に分布するn個のスペクトルMA1,MA2のそれぞれを備えると共に、第一隣接周波数間隔fr1と第二隣接周波数間隔fr2とを互いに異ならせている。
FIG. 12 is a schematic diagram for explaining an interference spectrum generation process (that is, dual optical comb spectroscopy) between the discrete spectrum light LB including the information of the sample S and the discrete spectrum light LC emitted from the discrete spectrum light source 60. It is.
As shown in FIG. 12, regarding the discrete spectrum light LB including the information of the sample S, the frequency interval between the mode-resolved spectra MA1 and MA1 whose frequency positions are adjacent on the frequency axis of the optical region is the first adjacent frequency interval fr1. is there. The first adjacent frequency intervals fr1 coincide with each other.
On the other hand, regarding the discrete spectrum light LC, the frequency interval between the mode-resolved spectra MA2 and MA2 whose frequency positions are adjacent on the frequency axis of the optical region is the second adjacent frequency interval fr2 different from the first adjacent frequency interval fr1. . The second adjacent frequency intervals fr2 also coincide with each other.
That is, the discrete spectrum lights LB and LC are each provided with n spectrums MA1 and MA2 distributed at equal intervals on the frequency axis, and the first adjacent frequency interval fr1 and the second adjacent frequency interval fr2 are different from each other. ing.
[計測装置10Bを用いた計測]
 次いで、図11に示す計測装置10Bを用いた計測の原理について説明する。なお、ピンホール42の開口を通過した離散スペクトル光LBがコリメートレンズ44でコリメートされるまでは、計測装置10Bを用いた計測の原理は、計測装置10Aを用いた計測の原理と同様であるため、その説明を省略する。
[Measurement Using Measuring Device 10B]
Next, the principle of measurement using the measurement apparatus 10B shown in FIG. 11 will be described. The principle of measurement using the measurement device 10B is the same as the principle of measurement using the measurement device 10A until the discrete spectrum light LB that has passed through the opening of the pinhole 42 is collimated by the collimator lens 44. The description is omitted.
 コリメートレンズ44でコリメートされた離散スペクトル光LBは、ハーフミラー55で離散スペクトル光源60から発せられた離散スペクトル光LCと多周波ヘテロダイン干渉(即ち、デュアル光コム分光法)によって干渉する。図12に示すように、第二実施形態では、離散スペクトル光LBが光周波数コムスペクトルLX0に試料Sの情報が付加されてなる光周波数コムスペクトルLX1であり、離散スペクトル光LCが光周波数コムスペクトルLX2である。光周波数コムスペクトルLX1,LX2の干渉スペクトルLZは、電磁波領域の周波数軸で周波数の位置が隣り合うスペクトルMB,MBの周波数の間隔が、Δfr(=fr2-fr1)となる。
 検出光学系46には、干渉スペクトルLZが入射すると共に、例えばRFスペクトラムアナライザで干渉スペクトルLZを直接計測し、元の光領域の周波数スケールに変換する。あるいは、干渉波形の時間変化(インターフェログラム)をデジタイザで取得し、それをフーリエ変換することにより、干渉スペクトルLZを得ることもできる。このようにして、干渉スペクトルLZに基づいてモード分解振幅スペクトル及びモード分解位相スペクトルが得られる。
The discrete spectrum light LB collimated by the collimating lens 44 interferes with the discrete spectrum light LC emitted from the discrete spectrum light source 60 by the half mirror 55 by multi-frequency heterodyne interference (that is, dual optical comb spectroscopy). As shown in FIG. 12, in the second embodiment, the discrete spectrum light LB is the optical frequency comb spectrum LX1 obtained by adding the information of the sample S to the optical frequency comb spectrum LX0, and the discrete spectrum light LC is the optical frequency comb spectrum. LX2. In the interference spectrum LZ of the optical frequency comb spectra LX1 and LX2, the frequency interval between the spectra MB and MB whose frequencies are adjacent to each other on the frequency axis in the electromagnetic wave region is Δfr (= fr2-fr1).
The interference spectrum LZ is incident on the detection optical system 46, and the interference spectrum LZ is directly measured by, for example, an RF spectrum analyzer and converted to the frequency scale of the original optical region. Alternatively, the interference spectrum LZ can also be obtained by acquiring a time change (interferogram) of the interference waveform with a digitizer and subjecting it to Fourier transform. In this way, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum are obtained based on the interference spectrum LZ.
[計測装置10Bの作用効果]
 第二実施形態の計測装置10Bによれば、第一実施形態の計測装置10Aと同様の作用効果が得られる。
 また、第二実施形態の計測装置10Bでは、上記説明したデュアル光コム分光法を採用している。光周波数コムスペクトルLX1,LX2の各モードは一般に広く用いられている市販の分光器では分解能が不足して分解できないことが多い。しかしながら、第2実施形態の計測装置10Bのようにデュアル光コム分光法を適用することで、多周波ヘテロダイン干渉によって、光周波数コムスペクトルLX1を電磁波領域の干渉スペクトルLZにダウンスケーリングすることができる。
 このようにデュアル光コム分光法に基づけば、分光器フリーで高分解能、高確度、広帯域且つ高速に、モード分解振幅スペクトル及びモード分解位相スペクトルを取得することができる。
[Operation and Effect of Measuring Device 10B]
According to the measurement device 10B of the second embodiment, the same effects as the measurement device 10A of the first embodiment can be obtained.
Moreover, in the measuring apparatus 10B of the second embodiment, the dual optical comb spectroscopy described above is employed. The modes of the optical frequency comb spectra LX1 and LX2 are often incapable of being decomposed due to insufficient resolution with commercially available spectroscopes that are widely used. However, by applying dual optical comb spectroscopy as in the measurement apparatus 10B of the second embodiment, the optical frequency comb spectrum LX1 can be downscaled to the interference spectrum LZ in the electromagnetic wave region by multi-frequency heterodyne interference.
Thus, based on dual optical comb spectroscopy, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum can be acquired with high resolution, high accuracy, wide bandwidth and high speed without using a spectrometer.
(第三実施形態)
 図13は本発明を適用した第三実施形態の計測装置10Cの模式図である。なお、図13に示す第三実施形態の計測装置10Cの構成要素において、図1に示す第一実施形態の計測装置10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Third embodiment)
FIG. 13 is a schematic diagram of a measuring apparatus 10C according to a third embodiment to which the present invention is applied. In addition, in the component of 10 C of measuring devices of 3rd embodiment shown in FIG. 13, the same code | symbol is attached | subjected about the component same as the component of 10 A of measuring devices of 1st embodiment shown in FIG. Description is omitted.
[計測装置10Cの構成]
 図13に示すように、計測装置10Cは、透過式の計測装置10Aの構成を反射式の構成に変更したものである。
 計測装置10Cは、点光源12と、ハーフミラー30と、分散部14と、第三集光部(集光部)16と、重ね合わせ部19と、空間フィルタリング光学系18と、検出部20と、を備えている。
[Configuration of Measuring Device 10C]
As illustrated in FIG. 13, the measurement device 10 </ b> C is obtained by changing the configuration of the transmission type measurement device 10 </ b> A to a reflection type configuration.
The measurement device 10 </ b> C includes a point light source 12, a half mirror 30, a dispersion unit 14, a third light collection unit (light collection unit) 16, a superposition unit 19, a spatial filtering optical system 18, and a detection unit 20. It is equipped with.
 計測装置10Cにおいても、光軸X上において、点光源12の前方にはピンホール26及びコリメートレンズ28がこの順で配置されている。コリメートレンズ28から出射された離散スペクトル光LAはハーフミラー30に入射する。ハーフミラー30は、離散スペクトル光LAを分散素子32の軸線J3に対して角度θ0で入射させる。 Also in the measuring apparatus 10C, on the optical axis X, the pinhole 26 and the collimating lens 28 are arranged in this order in front of the point light source 12. The discrete spectrum light LA emitted from the collimator lens 28 enters the half mirror 30. The half mirror 30 makes the discrete spectrum light LA incident on the axis J3 of the dispersion element 32 at an angle θ0.
 分散素子32は、分散部14と、重ね合わせ部19の両方を兼ねている。第三集光部16は、分散素子32によってスペクトル毎に異なる方向に分散されたスペクトルMAを試料Sの異なる位置p1,p2,…,pnに集光させる。また、分散素子32は試料Sの異なる位置p1,p2,…,pnから反射したスペクトル(以下、反射スペクトルとする)を空間的に重ね合わせる。そして、離散スペクトル光LAが進んだ方向と反対方向に反射スペクトルを出射する。
 試料Sは照射されたn個のスペクトルMAを反射する物体であってもよく、着色等が施されることで反射性を有していてもよい。また、光軸X方向において試料Sの後方(即ち、試料Sの矢印D1方向の裏側)に反射板等が設置されていてもよい。
The dispersion element 32 serves as both the dispersion part 14 and the overlapping part 19. The third condensing unit 16 condenses the spectrum MA dispersed in different directions for each spectrum by the dispersive element 32 at different positions p1, p2,. The dispersive element 32 spatially superimposes spectra (hereinafter referred to as reflection spectra) reflected from different positions p1, p2,. Then, the reflection spectrum is emitted in the direction opposite to the direction in which the discrete spectrum light LA travels.
The sample S may be an object that reflects the n number of irradiated spectrums MA, and may be reflective by being colored or the like. Further, a reflecting plate or the like may be installed behind the sample S in the optical axis X direction (that is, the back side of the sample S in the direction of arrow D1).
[計測装置10Cを用いた計測]
 次いで、図13に示す計測装置10Cを用いた計測の原理について説明する。なお、点光源12から発せられた離散スペクトル光LAがピンホール26を通った後に、コリメートレンズ28でコリメートされるまでは、計測装置10Aを用いた計測の原理と同様であるため、その説明を省略する。
[Measurement Using Measuring Device 10C]
Next, the principle of measurement using the measurement apparatus 10C shown in FIG. 13 will be described. Since the discrete spectrum light LA emitted from the point light source 12 passes through the pinhole 26 and is collimated by the collimating lens 28, it is the same as the principle of measurement using the measuring device 10A. Omitted.
 コリメートされた離散スペクトル光LAはハーフミラー30によって直角にその進路を変更され、分散部14の分散素子32に入射する。
 分散素子32によって、スペクトル毎に異なる角度θ1,θ2,…,θnで波長分散されたn個のスペクトルMAは、第三集光部16に入射し、リレーレンズ34によってスペクトル毎に集光され、リレーレンズ36によって位置P7に向けてコリメートされる。位置P7を通ったn個のスペクトルMAは、対物レンズ38によって試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ、同時に集光される。
The collimated discrete spectrum light LA has its path changed at a right angle by the half mirror 30 and is incident on the dispersion element 32 of the dispersion unit 14.
The n spectrums MA wavelength-dispersed at different angles θ1, θ2,..., Θn for each spectrum by the dispersive element 32 are incident on the third condensing unit 16, and are collected for each spectrum by the relay lens 34. It is collimated by the relay lens 36 toward the position P7. The n spectra MA passing through the position P7 are simultaneously condensed by the objective lens 38 at different positions p1, p2,.
 試料Sの互いに異なる位置p1,p2,…,pnに同時集光したn個のスペクトルMAには、位置p1,p2,…,pnの試料Sに関する情報が付加される。
 試料Sの情報を含む離散スペクトル光LBは、互いに異なる位置p1,p2,…,pnから反射し、再び第三集光部16に入射する。第三集光部16の対物レンズ38によって、離散スペクトル光LBの反射スペクトルはそれぞれ、コリメートされると共に、共通して点P7を通過する。n個の反射スペクトルはリレーレンズ36に入射し、リレーレンズ36によって光軸Xに直交する方向(即ち、図1に示す矢印D2又はD3方向)にそれぞれ異なる位置で集光される。そして、集光後に発散した複数の反射スペクトルはリレーレンズ34によって、コリメートされると共に、重ね合わせ部19の分散素子32に向かって偏向される。
Information about the sample S at the positions p1, p2,..., Pn is added to the n spectra MA simultaneously collected at different positions p1, p2,.
The discrete spectrum light LB including the information of the sample S is reflected from mutually different positions p1, p2,..., Pn and is incident on the third light collecting unit 16 again. The reflection spectrum of the discrete spectrum light LB is collimated by the objective lens 38 of the third condenser 16 and passes through the point P7 in common. The n reflection spectra are incident on the relay lens 36 and are collected by the relay lens 36 at different positions in the direction orthogonal to the optical axis X (that is, the direction of the arrow D2 or D3 shown in FIG. 1). Then, the plurality of reflection spectra diverged after condensing are collimated by the relay lens 34 and deflected toward the dispersion element 32 of the overlapping portion 19.
 互いに異なる位置p1,p2,…,pnからの反射スペクトルは、重ね合わせ部19の分散素子32に対し、n個の反射スペクトルの各周波数に応じた角度θ1,θ2,…,θnで入射する。そして、分散素子32によって軸J2に対して共通の角度θ0で同時に波長分散し、光軸X上で空間的に且つ同時に重ねられる。 The reflection spectra from different positions p1, p2,..., Pn are incident on the dispersion element 32 of the overlapping portion 19 at angles θ1, θ2,..., Θn corresponding to the frequencies of the n reflection spectra. Then, the dispersion element 32 simultaneously performs wavelength dispersion at a common angle θ0 with respect to the axis J2, and is spatially and simultaneously superimposed on the optical axis X.
 空間的に重ね合され、且つ試料Sの情報を含むn個の反射スペクトルは、ハーフミラー30を透過し、直進して空間フィルタリング光学系18に入射する。そして、集光レンズ40で共役な位置P3に集光され、ピンホール42の開口を通過する。n個の反射スペクトル以外の光やスペクトルはピンホール42でカットされる。ピンホール42の開口を通過したn個の反射スペクトルがコリメートレンズ44でコリメートされ、検出部20に入射する。 The n reflection spectra that are spatially superimposed and include the information of the sample S are transmitted through the half mirror 30 and go straight and enter the spatial filtering optical system 18. Then, the light is condensed at a conjugate position P 3 by the condenser lens 40 and passes through the opening of the pinhole 42. Light and spectrum other than n reflection spectra are cut by the pinhole 42. The n reflection spectra that have passed through the opening of the pinhole 42 are collimated by the collimator lens 44 and enter the detection unit 20.
 検出部20では、試料Sの情報を含む離散スペクトル光LB(即ち、上記の反射スペクトル)から、試料Sの情報を含むn個のモード分解スペクトルが取得される。n個のモード分解スペクトルが検出光学系46、又はその他の構成等によって、試料Sの互いに異なる位置p1,p2,…,pnに応じて1次元、2次元又は3次元的に配置されれば、モード分解スペクトルに含まれている試料Sの情報が見易くなる。このような方法によらず、離散スペクトル光LBからn個のモード分解スペクトルが取得されれば、試料Sの計測が完了する。 The detection unit 20 acquires n mode-resolved spectra including the information of the sample S from the discrete spectrum light LB including the information of the sample S (that is, the reflection spectrum). If n mode-resolved spectra are arranged one-dimensionally, two-dimensionally or three-dimensionally according to different positions p1, p2,... pn of the sample S by the detection optical system 46 or other configurations, Information on the sample S included in the mode-resolved spectrum is easy to see. Regardless of such a method, if n mode-resolved spectra are acquired from the discrete spectrum light LB, the measurement of the sample S is completed.
[計測装置10Cの作用効果]
 第三実施形態の計測装置10Cによれば、第一実施形態の計測装置10Aと同様の作用効果が得られる。
 また、第三実施形態の計測装置10Cによれば、試料Sから反射し、同様に重ね合わせ部19によっても空間的に重ね合されてなる、試料Sの情報を含む離散スペクトル光LBを検出することができる。
 さらに、第三実施形態の計測装置10Cによれば、計測装置10Aでの第一及び第二集光部15,17を共通の構成である第三集光部16とし、個別の分散部14及び重ね合わせ部19を共通の構成である分散素子32で構成する。従って、計測装置10Cの小型化を図ることができる。
[Operational effect of measuring device 10C]
According to the measurement device 10C of the third embodiment, the same effects as those of the measurement device 10A of the first embodiment can be obtained.
In addition, according to the measurement apparatus 10C of the third embodiment, the discrete spectrum light LB including the information of the sample S, which is reflected from the sample S and similarly spatially superimposed by the overlapping unit 19, is detected. be able to.
Furthermore, according to the measurement device 10C of the third embodiment, the first and second light collecting units 15 and 17 in the measurement device 10A are the third light collecting unit 16 having a common configuration, and the individual dispersion units 14 and The superposition part 19 is comprised by the dispersive element 32 which is a common structure. Therefore, the size of the measuring device 10C can be reduced.
(第四実施形態) (Fourth embodiment)
 図14は第四実施形態の計測装置10Dの概略図である。なお、図14に示す第四実施形態の計測装置10Dの構成要素において、図13に示す第三実施形態の計測装置10Cの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。 FIG. 14 is a schematic diagram of a measurement apparatus 10D according to the fourth embodiment. In addition, in the component of measurement device 10D of 4th embodiment shown in FIG. 14, the same code | symbol is attached | subjected about the component same as the component of measurement device 10C of 3rd embodiment shown in FIG. Description is omitted.
 反射式の計測装置10Cについても、図14に示すように、デュアル光コム分光法を採用することができる。 As shown in FIG. 14, dual optical comb spectroscopy can also be adopted for the reflective measurement apparatus 10C.
[計測装置10Dの構成]
 図14に示すように、計測装置10Dは、計測装置10Cの構成要素に加えて、ハーフミラー55と、離散スペクトル光源(第二のコム光源)60と、を備えている。
 離散スペクトル光源60は、離散スペクトル光LCを所定の角度でハーフミラー55に入射させるように配置されている。図14には、光軸X方向におけるハーフミラー55の中心の位置から矢印D1方向とは反対方向に進んだ位置に配置された離散スペクトル光源60を例示している。
[Configuration of Measuring Device 10D]
As illustrated in FIG. 14, the measurement device 10 </ b> D includes a half mirror 55 and a discrete spectrum light source (second comb light source) 60 in addition to the components of the measurement device 10 </ b> C.
The discrete spectrum light source 60 is disposed so that the discrete spectrum light LC is incident on the half mirror 55 at a predetermined angle. FIG. 14 illustrates a discrete spectrum light source 60 arranged at a position that advances in the direction opposite to the arrow D1 direction from the center position of the half mirror 55 in the optical axis X direction.
[計測装置10Dを用いた計測]
 次いで、図14に示す計測装置10Dを用いた計測の原理について説明する。なお、ピンホール42の開口を通過した離散スペクトル光LBがコリメートレンズ44でコリメートされるまでは、計測装置10Dを用いた計測の原理は、計測装置10Cを用いた計測の原理と同様であるため、その説明を省略する。
[Measurement Using Measuring Device 10D]
Next, the principle of measurement using the measurement apparatus 10D shown in FIG. 14 will be described. The principle of measurement using the measurement device 10D is the same as the principle of measurement using the measurement device 10C until the discrete spectrum light LB that has passed through the opening of the pinhole 42 is collimated by the collimator lens 44. The description is omitted.
 コリメートレンズ44でコリメートされた離散スペクトル光LBは、ハーフミラー55で離散スペクトル光源60から発せられた離散スペクトル光LCと多周波ヘテロダイン干渉によって干渉する。デュアル光コム分光法を採用した計測装置10Bと同様に、光周波数コムスペクトルLX1,LX2の干渉スペクトルLZは、電磁波領域の周波数軸で周波数の位置が隣り合うスペクトルMB,MBの周波数の間隔が、Δfr(=fr2-fr1)となる。
 検出光学系46には、干渉スペクトルLZが入射すると共に、例えばRFスペクトラムアナライザで干渉スペクトルLZを直接計測し、元の光領域の周波数スケールに変換する。あるいは、干渉波形の時間変化(インターフェログラム)をデジタイザで取得し、それをフーリエ変換することにより、干渉スペクトルLZを得ることもできる。このようにして、干渉スペクトルLZに基づいてモード分解振幅スペクトル及びモード分解位相スペクトルが得られる。
The discrete spectrum light LB collimated by the collimator lens 44 interferes with the discrete spectrum light LC emitted from the discrete spectrum light source 60 by the half mirror 55 by multi-frequency heterodyne interference. Similar to the measurement apparatus 10B employing the dual optical comb spectroscopy, the interference spectrum LZ of the optical frequency comb spectra LX1 and LX2 has the frequency interval between the spectra MB and MB adjacent to each other on the frequency axis in the electromagnetic wave region. Δfr (= fr2-fr1).
The interference spectrum LZ is incident on the detection optical system 46, and the interference spectrum LZ is directly measured by, for example, an RF spectrum analyzer and converted to the frequency scale of the original optical region. Alternatively, the interference spectrum LZ can also be obtained by acquiring a time change (interferogram) of the interference waveform with a digitizer and subjecting it to Fourier transform. In this way, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum are obtained based on the interference spectrum LZ.
[計測装置10Dの作用効果]
 第四実施形態の計測装置10Dによれば、第三実施形態の計測装置10Cと同様の作用効果が得られる。
 また、第四実施形態の計測装置10Dでは、デュアル光コム分光法を採用していることで、多周波ヘテロダイン干渉によって、光周波数コムスペクトルLX1を電磁波領域の干渉スペクトルLZにダウンスケーリングすることができる。
 このようにデュアル光コム分光法に基づけば、分光器フリーで高分解能、高確度、広帯域且つ高速に、モード分解振幅スペクトル及びモード分解位相スペクトルを取得することができる。
[Operational effect of measuring device 10D]
According to the measurement device 10D of the fourth embodiment, the same operational effects as those of the measurement device 10C of the third embodiment can be obtained.
Further, in the measurement apparatus 10D of the fourth embodiment, the dual optical comb spectroscopy is employed, so that the optical frequency comb spectrum LX1 can be downscaled to the interference spectrum LZ in the electromagnetic wave region by multi-frequency heterodyne interference. .
Thus, based on dual optical comb spectroscopy, a mode-resolved amplitude spectrum and a mode-resolved phase spectrum can be acquired with high resolution, high accuracy, wide bandwidth and high speed without using a spectrometer.
(第五実施形態)
 図15は本発明を適用した第五実施形態の計測装置10Eの模式図である。なお、図15に示す第五実施形態の計測装置10Eの構成要素において、図1に示す第一実施形態の計測装置10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Fifth embodiment)
FIG. 15 is a schematic diagram of a measuring apparatus 10E according to a fifth embodiment to which the present invention is applied. In addition, in the component of measurement apparatus 10E of 5th embodiment shown in FIG. 15, the same code | symbol is attached | subjected about the component same as the component of measurement apparatus 10A of 1st embodiment shown in FIG. Description is omitted.
[計測装置10Eの構成]
 図15に示すように、計測装置10Eは、透過式の計測装置10Aの集光レンズ24、ピンホール26、コリメートレンズ28をそれぞれ、シリンドリカルレンズ174、スリット176、シリンドリカルレンズ178に変更し、集光レンズ40、ピンホール42、コリメートレンズ44をそれぞれ、シリンドリカルレンズ180、スリット182、シリンドリカルレンズ184に変更したものである。シリンドリカルレンズ174,178,180,184は、矢印D1方向のみに曲面を有し、入射した光を同方向において集光させる、又はコリメートするとともに、矢印D5方向においては曲面を有さず、入射した光にレンズ作用しない。スリット176,182の矢印D1方向の寸法は、ピンホール26,42の同方向の寸法と同等とされている。また、スリット176,182の矢印D5方向(即ち、図15の紙面に直交する方向)の寸法は、シリンドリカルレンズ174,178の同方向の寸法と同等とされている。
[Configuration of Measuring Device 10E]
As shown in FIG. 15, the measuring device 10E changes the condensing lens 24, the pinhole 26, and the collimating lens 28 of the transmissive measuring device 10A to a cylindrical lens 174, a slit 176, and a cylindrical lens 178, respectively. The lens 40, the pinhole 42, and the collimating lens 44 are changed to a cylindrical lens 180, a slit 182 and a cylindrical lens 184, respectively. The cylindrical lenses 174, 178, 180, and 184 have a curved surface only in the direction of the arrow D1, collect the incident light in the same direction, or collimate, and do not have a curved surface in the direction of the arrow D5. Does not act on the lens. The dimensions of the slits 176 and 182 in the arrow D1 direction are the same as the dimensions of the pinholes 26 and 42 in the same direction. The dimensions of the slits 176 and 182 in the direction of arrow D5 (that is, the direction orthogonal to the paper surface of FIG. 15) are the same as the dimensions of the cylindrical lenses 174 and 178 in the same direction.
[計測装置10Eを用いた計測]
 次いで、図15に示す計測装置10Eを用いた計測の原理について説明する。
 計測装置10Eにおいて、離散スペクトル光LAは、矢印D1方向において、シリンドリカルレンズ174によってライン集光され、線光源とされる。線状に集光した離散スペクトル光LAは、スリット176を通り、シリンドリカルレンズ178によって矢印D1方向においてコリメートされる。
[Measurement Using Measuring Device 10E]
Next, the principle of measurement using the measurement apparatus 10E shown in FIG. 15 will be described.
In the measurement apparatus 10E, the discrete spectrum light LA is line-condensed by the cylindrical lens 174 in the direction of the arrow D1 to be a line light source. Discrete spectrum light LA condensed into a linear shape passes through slit 176 and is collimated by cylindrical lens 178 in the direction of arrow D1.
 シリンドリカルレンズ178を通った離散スペクトル光LAは、例えば回折格子のような1次元波長分散素子(分散素子)32に入射する。この1次元波長分散素子32では、スリット176の軸線と直交する方向(即ち、図15の紙面に平行な面内)において、入射した離散スペクトル光LAがθ1からθnの角度で分散される。1次元波長分散素子32の波長分散能は、複数のスペクトルMA同士の周波数間隔や角度θ0,θ1,…,θn等を考慮して、試料Sにて、矢印D2又はD3方向での所望の集光間隔が達成されるように設定すればよい。
 その後、1次元波長分散素子32によって波長分散された離散スペクトル光LAの二以上のスペクトルMAが第一集光部15によって試料Sにおいて波長成分毎にD5方向(即ち、図15の紙面に垂直な方向)に沿ってそれぞれライン集光される。第二集光部17によって1次元波長分散素子(分散素子)33に入射するまでは、計測装置10Eを用いた計測の原理は、計測装置10Aを用いた計測の原理と同様であるため、詳しい説明を省略する。計測装置10Eを用いた計測では、試料Sの矢印D2又はD3方向において波長毎に互いに異なる位置で、矢印D5方向に一定の長さを有する線状の集光パターンが形成される。
The discrete spectrum light LA that has passed through the cylindrical lens 178 enters a one-dimensional wavelength dispersion element (dispersion element) 32 such as a diffraction grating. In the one-dimensional wavelength dispersion element 32, the incident discrete spectrum light LA is dispersed at an angle of θ1 to θn in a direction orthogonal to the axis of the slit 176 (that is, in a plane parallel to the paper surface of FIG. 15). The wavelength dispersion power of the one-dimensional wavelength dispersion element 32 is set to a desired concentration in the direction of the arrow D2 or D3 in the sample S in consideration of the frequency interval between the plurality of spectra MA and the angles θ0, θ1,. What is necessary is just to set so that a light interval may be achieved.
Thereafter, two or more spectra MA of the discrete spectrum light LA wavelength-dispersed by the one-dimensional wavelength dispersion element 32 are D5 direction (that is, perpendicular to the paper surface of FIG. 15) for each wavelength component in the sample S by the first condenser 15. Line) along each direction. The principle of measurement using the measuring device 10E is the same as the principle of measurement using the measuring device 10A until it is incident on the one-dimensional wavelength dispersion element (dispersing element) 33 by the second condensing unit 17; Description is omitted. In the measurement using the measurement device 10E, a linear light collection pattern having a certain length in the arrow D5 direction is formed at a position different from each other for each wavelength in the arrow D2 or D3 direction of the sample S.
 試料Sの情報を含む線状の離散スペクトルLBは、矢印D2又はD3方向において互いに異なる位置p1,p2,…,pnから透過し、第二集光部17によって重ね合わせ部19の1次元波長分散素子33に角度θ1,θ2,…,θnで入射し、軸J2に対して共通に角度θ0で同時に波長分散し、光軸X上で重ね合される。
 空間的に且つ同時に重ね合されたn個の透過スペクトルは、矢印D1方向において、シリンドリカルレンズ180によってライン集光され、スリット182を通り、シリンドリカルレンズ184によってコリメートされ、検出部20に入射する。
 なお、矢印D5方向においては、離散スペクトル光源22から発せられた離散スペクトル光LAの寸法及びコリメートされた状態が保持される。
The linear discrete spectrum LB including the information of the sample S is transmitted from positions p1, p2,..., Pn different from each other in the direction of the arrow D2 or D3, and the one-dimensional wavelength dispersion of the overlapping unit 19 by the second condensing unit 17. ..., .Theta.n is incident on the element 33, and simultaneously wavelength-dispersed at the angle .theta.0 in common with the axis J2 and superimposed on the optical axis X.
The n transmission spectra that are spatially and simultaneously overlapped are line-collected by the cylindrical lens 180 in the direction of the arrow D 1, pass through the slit 182, collimated by the cylindrical lens 184, and enter the detection unit 20.
In the direction of arrow D5, the size and collimated state of the discrete spectrum light LA emitted from the discrete spectrum light source 22 are maintained.
 検出部20では、離散スペクトル光LBをシリンドリカルレンズ188でD5方向と平行な方向にライン集光し、集光ラインの各位置におけるモード分解スペクトル、すなわち分光ラインイメージが取得される。例えば、CCDやCMOS等の二次元センサを検出器とし、スリット190を介して入射可能なマルチチャネル分光器192を用いることができる。 In the detection unit 20, the discrete spectrum light LB is line-condensed by a cylindrical lens 188 in a direction parallel to the D5 direction, and a mode-resolved spectrum, that is, a spectral line image at each position of the condensing line is acquired. For example, a multi-channel spectroscope 192 that can enter through a slit 190 using a two-dimensional sensor such as a CCD or CMOS as a detector can be used.
[計測装置10Eの作用効果]
 第五実施形態の計測装置10Eによれば、第一実施形態の計測装置10Aと同様の作用効果が得られる。
 また、第五実施形態の計測装置10Eによれば、試料Sにて、二以上のスペクトルMA毎に異なる位置に線状の集光パターンを形成することによって、二次元的に試料Sを照射することができる。このような線状パターンの離散スペクトル光LBをスリット入射可能なマルチチャネル分光器192で検出することで、分光ラインイメージとして計測結果を得ることができ、分散素子32,33として回折格子等の1次元波長分散素子を用いても2次元イメージを取得することができる。
[Operational effect of measuring device 10E]
According to the measurement device 10E of the fifth embodiment, the same operational effects as those of the measurement device 10A of the first embodiment can be obtained.
Moreover, according to the measurement apparatus 10E of the fifth embodiment, the sample S is irradiated two-dimensionally by forming a linear condensing pattern at different positions for each of two or more spectra MA in the sample S. be able to. By detecting the discrete spectrum light LB having such a linear pattern with a multi-channel spectroscope 192 capable of slit incidence, a measurement result can be obtained as a spectral line image. A two-dimensional image can also be acquired using a two-dimensional wavelength dispersion element.
 以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Deformation / change is possible.
 例えば、離散スペクトル光源22は二以上のスペクトルMAを含む離散スペクトル光LAを発することができれば、公知のコム光源等に限定されない。離散スペクトル光源22は単一スペクトルを発する光源を複数組み合わせて構成されていてもよい。
 また、例えば試料Sの互いに離間した二箇所の特定範囲を計測する場合には、その離間距離に応じた周波数間隔frを有する二つのスペクトルMAを用いればよい。その場合、二つのスペクトルMAのそれぞれを単一スペクトルとして発するレーザー光源を二台用意し、これらのレーザー光源からの単一スペクトルをフォトミキシングしてもよい。
 また、本発明に係る計測装置では、第一集光部15においてスペクトルMAを2次元的に、互いに異なる位置p1,p2,…,pnにそれぞれ集光させれば、離散スペクトル光LAの1ショットで、2次元の同時計測を行うことができる。そして、図1に示すように、第一集光部15においてスペクトルMAを1次元的に、言い換えれば一つのライン上の互いに異なる位置に、それぞれ集光させれば、離散スペクトル光LAの1ショットで、ライン上の同時計測を行うことができる。即ち、第一集光部15においてスペクトルMAをk次元的に、互いに異なる位置にそれぞれ集光させれば、本発明に係る計測装置をk次元イメージングに適用することができる。
For example, the discrete spectrum light source 22 is not limited to a known comb light source and the like as long as it can emit discrete spectrum light LA including two or more spectra MA. The discrete spectrum light source 22 may be configured by combining a plurality of light sources that emit a single spectrum.
Further, for example, when measuring two specific ranges of the sample S that are separated from each other, two spectra MA having a frequency interval fr corresponding to the separated distance may be used. In that case, two laser light sources emitting each of the two spectra MA as a single spectrum may be prepared, and the single spectrum from these laser light sources may be photomixed.
Further, in the measurement apparatus according to the present invention, if the spectrum MA is two-dimensionally condensed in the first condensing unit 15 at different positions p1, p2,. Thus, two-dimensional simultaneous measurement can be performed. As shown in FIG. 1, if the spectrum MA is collected one-dimensionally in the first light collecting unit 15, in other words, at different positions on one line, one shot of the discrete spectrum light LA is obtained. Thus, simultaneous measurement on the line can be performed. That is, if the spectrum MA is condensed in k-dimensionally different positions in the first condensing unit 15, the measuring apparatus according to the present invention can be applied to k-dimensional imaging.
 なお、本発明の計測装置における共焦点効果は、離散スペクトル光LBに替えて連続スペクトル光を備えた計測装置(図示略)においても発揮され得る。即ち、連続スペクトル光を発する点光源と、分散部と、集光部と、空間フィルタリング光学系と、検出部と、を備えた計測装置においても、共焦点効果が得られる。この種の計測装置では、分散部は点光源から発せられた連続スペクトル光を所定の方向に波長分散させる。集光部は、分散部によって波長分散された前記連続スペクトルを試料の所定の位置に集光させる。空間フィルタリング光学系は試料から透過又は反射され、且つ試料の情報を含む連続スペクトル光を、分散部によって分散された連続スペクトルの試料上の集光位置と共役な位置に集光させて空間フィルタリングする。そして、検出部は、空間フィルタリング光学系で空間フィルタリングされた試料の情報を含む連続スペクトル光から、試料の情報を取得する。
 但し、上記の計測装置では、試料の所定の位置に連続焦点群が形成されるとともに、本発明の計測装置に比べれば精度が低下し、本発明の計測装置よりも低解像度の情報を取得することとなる。
The confocal effect in the measurement apparatus of the present invention can also be exhibited in a measurement apparatus (not shown) provided with continuous spectrum light instead of the discrete spectrum light LB. That is, a confocal effect can be obtained even in a measurement apparatus including a point light source that emits continuous spectrum light, a dispersion unit, a condensing unit, a spatial filtering optical system, and a detection unit. In this type of measurement apparatus, the dispersion unit chromatically disperses the continuous spectrum light emitted from the point light source in a predetermined direction. A condensing part condenses the said continuous spectrum wavelength-dispersed by the dispersion | distribution part to the predetermined position of a sample. The spatial filtering optical system spatially filters the continuous spectrum light transmitted or reflected from the sample and containing the sample information at a position conjugate to the condensing position on the sample of the continuous spectrum dispersed by the dispersion unit. . And a detection part acquires the information of a sample from the continuous spectrum light containing the information of the sample spatially filtered by the spatial filtering optical system.
However, in the above measurement device, a continuous focus group is formed at a predetermined position of the sample, and the accuracy is lower than that of the measurement device of the present invention, and information with lower resolution than that of the measurement device of the present invention is acquired. It will be.
 また、例えば、上述の第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eにおいて、離散スペクトル光LAの中心波長λ0、分散部14の分解能、対物レンズ38の開口数及び離散スペクトル光LA(光周波数コムスペクトルLX0,LX1,LX2)の隣り合うスペクトルMA,MAの周波数間隔frを、第一集光部15によって試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させたスペクトルMAのスポット同士の中心間隔(即ち、位置p1,p2,…,pn同士の距離)がスペクトルMAのスポットの直径以上となるように設定することが好ましい。このように離散スペクトル光LAの中心波長λ0、分散部14の分解能、対物レンズ38の開口数及び離散スペクトル光LA(光周波数コムスペクトルLX0,LX1,LX2)の隣り合うスペクトルMA,MA(又はスペクトルMB,MB)の周波数間隔frを最適化することで、試料S上に形成される光周波数コム・モードの2次元スポット群が離散的且つ高密度に空間分布する。このように、さらに、離散的且つ高密度に空間分布した2次元スポット群を試料Sの集光エリア上の各画素に対応する位置に集光させることで、画素間のクロストークを抑制することができ、モード分解スペクトル、すなわち共焦点画像をより高精度に取得することができる。 Further, for example, in each of the measurement apparatuses 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment described above, the center wavelength λ0 of the discrete spectrum light LA, the resolution of the dispersion unit 14, and the objective lens 38 The numerical aperture fr and the frequency interval fr of the adjacent spectra MA, MA of the discrete spectrum light LA (optical frequency comb spectra LX0, LX1, LX2) are changed to positions p1, p2,. It is preferable that the center interval between the spots of the spectrum MA focused on pn (that is, the distance between the positions p1, p2,..., pn) is set to be equal to or larger than the diameter of the spot of the spectrum MA. As described above, the center wavelength λ0 of the discrete spectrum light LA, the resolution of the dispersion unit 14, the numerical aperture of the objective lens 38, and the adjacent spectra MA, MA (or spectra) of the discrete spectrum light LA (optical frequency comb spectra LX0, LX1, LX2). By optimizing the frequency interval fr of MB, MB), the two-dimensional spot group of the optical frequency comb mode formed on the sample S is spatially distributed in a discrete and high-density manner. In this way, the crosstalk between the pixels is further suppressed by condensing the two-dimensional spot group, which is spatially distributed in a discrete and high-density manner, at a position corresponding to each pixel on the condensing area of the sample S. The mode-resolved spectrum, that is, the confocal image can be acquired with higher accuracy.
 また、上述の第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eにおいて、離散スペクトル光LAの中心波長λ0、隣り合うスペクトルMA,MAの周波数間隔fr、第二光学系17に用いられるレンズ35,35,37の開口数及び重ね合わせ部19の分解能がそれぞれ、試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させたスペクトルMAのスポットが第二光学系17によって重ね合わせ部19の所定の位置で空間的に重ね合わされるように設定されていることが好ましい。
 これにより、離散スペクトル光LAの中心波長λ0、隣り合うスペクトルMA,MAの周波数の間隔Δfr、第二光学系17に用いられるレンズ35,35,37の開口数及び重ね合わせ部19の分解能が上述のように設定されていない場合に比べて、試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させた2次元スポット群から、スペクトルMA,MAのスポット同士の中心間隔に合わせて、試料Sの互いに異なる位置p1,p2,…,pnからの情報の欠損や重複させること等なく、より高精度なモード分解スペクトルを得ることができる。
Further, in each of the measurement apparatuses 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment, the center wavelength λ0 of the discrete spectrum light LA, the frequency interval fr between the adjacent spectra MA and MA, the first The spots of the spectrum MA collected at the positions p1, p2,..., Pn of the sample S, which are different from each other in the numerical aperture of the lenses 35, 35, 37 used in the second optical system 17 and the resolution of the overlapping portion 19, respectively. It is preferable that the second optical system 17 is set so as to be spatially superimposed at a predetermined position of the overlapping portion 19.
As a result, the center wavelength λ0 of the discrete spectrum light LA, the frequency interval Δfr between the adjacent spectra MA, MA, the numerical aperture of the lenses 35, 35, 37 used in the second optical system 17 and the resolution of the overlapping portion 19 are described above. Compared to the case where the sample is not set as above, from the two-dimensional spot group condensed at different positions p1, p2,. A more accurate mode-resolved spectrum can be obtained without missing or overlapping information from different positions p1, p2,..., Pn of the sample S.
 第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eの分散部14の分散素子32としてVIPAのみを用いた場合は、VIPAによって多重バンドパス・フィルタリングが行われ、試料Sの互いに異なる位置p1,p2,…,pnのそれぞれにVIPAのFree Spectrum Range(FSR)に相当する間隔で周波数軸上の周波数の位置が互いに異なる光が多重された1次元スポット群が形成される。 When only VIPA is used as the dispersion element 32 of the dispersion unit 14 of each measurement apparatus 10A, 10B, 10C, 10D, 10E from the first embodiment to the fifth embodiment, multiple bandpass filtering is performed by VIPA. A one-dimensional spot group in which light having different frequency positions on the frequency axis is multiplexed at intervals corresponding to VIPA Free Spectrum Range (FSR) at different positions p1, p2,. It is formed.
 第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eの分散部14の分散素子32としてVIPA(第一の分散素子)50と回折格子(第二の分散素子)54とを組み合わせて用いることができる。図7に示す光学系46Aを参照し、図16に示す光学系からなる分散部14Aを採用することができる。 A VIPA (first dispersion element) 50 and a diffraction grating (second dispersion element) as the dispersion element 32 of the dispersion unit 14 of each of the measurement apparatuses 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment. ) 54 can be used in combination. With reference to the optical system 46A shown in FIG. 7, the dispersion portion 14A made of the optical system shown in FIG. 16 can be employed.
 図16に示す構成では、先ず、シリンドリカルレンズ48によって矢印x方向に沿ってライン集光された光が、VIPA50によって矢印y方向に分散される。この際、VIPA50のみでは、矢印y方向に沿った個々の空間位置では、複数のスペクトルMAのスポットが空間的に重畳されている。これらのスポット状のスペクトルMAが矢印y方向に散在する帯域d1は、VIPA50のFSRに相当する。また、矢印y方向における複数のスペクトルMA群の間隔d3は、複数のスペクトルMAの周波数間隔frに相当する。複数のスペクトルMAのスポットの直径は、VIPA50のFSRとフィネス(FSRの約100分の1)に依存する。 In the configuration shown in FIG. 16, first, the light collected by the cylindrical lens 48 along the direction of the arrow x is dispersed by the VIPA 50 in the direction of the arrow y. At this time, with only VIPA 50, spots of a plurality of spectra MA are spatially superimposed at individual spatial positions along the arrow y direction. A band d1 in which these spot-like spectra MA are scattered in the direction of the arrow y corresponds to the FSR of the VIPA 50. Further, the interval d3 between the plurality of spectrum MA groups in the direction of the arrow y corresponds to the frequency interval fr of the plurality of spectra MA. The diameter of the spots of the plurality of spectra MA depends on the VIPA 50 FSR and finesse (about 1 / 100th of the FSR).
 VIPA50によって矢印y方向に分散された光は、回折格子54によって、反射と同時に矢印x方向に回折し、周波数毎に分散される。従って、空間的に重畳されていたスペクトルMAのスポットは矢印x方向に分散され、結果として複数のスペクトルMAは、矢印D1方向及び矢印D3方向に複数のモード分解スペクトルが2次元展開される。この際、2次元展開されたモード分解スペクトルの分布について、スポット状のスペクトルMAが矢印x方向に散在する帯域d4は、最も波長の短いスペクトルMAのスポットsp1と最も波長の長いスペクトルMAのスポットsp2との光周波数差(即ち、波長差)Δνに相当する。また、矢印x方向における複数のスペクトルMAのピッチd2は、VIPA50のFSRに相当する。 The light dispersed in the arrow y direction by the VIPA 50 is diffracted by the diffraction grating 54 in the arrow x direction at the same time as being reflected, and is dispersed for each frequency. Accordingly, the spots of the spectrum MA that have been spatially superimposed are dispersed in the direction of the arrow x, and as a result, the plurality of modes MA are two-dimensionally expanded in the directions of the arrows D1 and D3. At this time, regarding the distribution of the mode-resolved spectrum developed two-dimensionally, the band d4 where the spot-like spectrum MA is scattered in the direction of the arrow x is the spot sp1 of the spectrum MA having the shortest wavelength and the spot sp2 of the spectrum MA having the longest wavelength. This corresponds to an optical frequency difference (ie, wavelength difference) Δν. The pitch d2 of the plurality of spectra MA in the direction of the arrow x corresponds to the FSR of the VIPA 50.
 例えば、市販されている各種光源、光学部品等の性能を勘案し、具体的な数値例として離散スペクトル光LA(光周波数コムスペクトルLX0,LX1,LX2)の中心光周波数ν0を194THz(中心波長λ0は1.55μm)、離散スペクトル光LAの周波数軸上で隣り合うスペクトルMAの周波数間隔frを250MHz、最も波長の短いスペクトルMAのスポットsp1と最も波長の長いスペクトルMAのスポットsp2との光周波数差Δνを900GHz、VIPA50のFSRとフィネスを15GHzと100、と想定する。対物レンズの回折限界及び回折格子の分散性能によるスペクトルMAのスポットの拡がりを無視し、上述の各パラメータを空間上の距離に換算すると、スポット状のスペクトルMAが矢印y方向に散在する帯域d1は、約100μmとなる。矢印y方向における複数のスペクトルMA群の間隔d3は、1.67μmとなる。スポット状のスペクトルMAが矢印x方向に散在する帯域d4は、600μmとなる。矢印x方向における複数のスペクトルMAのピッチd2は、10μmとなる。複数のスペクトルMAのスポットの直径は、矢印x方向で0.1μmとなり、矢印y方向で1μmとなる。従って、上述の数値例を採用した分散部14A及び計測装置10Aでは、矢印x方向において全幅600μmに亘り、10μmの間隔で60点、矢印y方向において全幅100μmに亘り、1.67μmの間隔で60点のスポット状のスペクトルMAが2次元展開され、散在し、試料Sに同時に照射可能となる。各スペクトルMAの焦点における回折限界は、以下の(2)式によって表される。 For example, considering the performance of various light sources and optical components that are commercially available, as a specific numerical example, the center optical frequency ν0 of the discrete spectrum light LA (optical frequency comb spectrum LX0, LX1, LX2) is set to 194 THz (center wavelength λ0). 1.55 μm), the frequency interval fr of the spectrum MA adjacent on the frequency axis of the discrete spectrum light LA is 250 MHz, and the optical frequency difference between the spot sp1 of the spectrum MA with the shortest wavelength and the spot sp2 of the spectrum MA with the longest wavelength Assume Δν is 900 GHz, VIPA50 FSR and finesse are 15 GHz and 100. By ignoring the spread of the spot of the spectrum MA due to the diffraction limit of the objective lens and the dispersion performance of the diffraction grating, and converting each of the above parameters into a distance in space, the band d1 in which the spot-like spectrum MA is scattered in the direction of the arrow y is , About 100 μm. The interval d3 between the plurality of spectrum MA groups in the arrow y direction is 1.67 μm. A band d4 where the spot-like spectrum MA is scattered in the direction of the arrow x is 600 μm. The pitch d2 of the plurality of spectra MA in the arrow x direction is 10 μm. The diameters of the spots of the plurality of spectra MA are 0.1 μm in the arrow x direction and 1 μm in the arrow y direction. Therefore, in the dispersion unit 14A and the measuring apparatus 10A adopting the above-described numerical examples, the entire width is 600 μm in the direction of the arrow x, 60 points at intervals of 10 μm, and the total width of 100 μm in the direction of arrow y is 60 points at intervals of 1.67 μm. The spot-like spectrum MA of the points is two-dimensionally developed and scattered, and the sample S can be irradiated simultaneously. The diffraction limit at the focal point of each spectrum MA is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、上述の(2)式におけるNAは、第一集光部15の対物レンズ38の開口数を示す。 Note that NA in the above equation (2) indicates the numerical aperture of the objective lens 38 of the first light condensing unit 15.
 実際のスペクトルMAの2次元スポット群の各スポット径は、対物レンズ38の回折限界及び回折格子の分散性能によって制限されるが、上述のように各パラメータ同士の相互関係をふまえて各パラメータを適宜調節することにより、試料Sに細かい間隔の2次元スポット群からなる互いに独立した光コム・モードの光を照射し、モード分解振幅スペクトルやモード分解位相スペクトルの分布を調べることで、回折限界に近いμmオーダーの間隔で散在する2次元スポット群の照射位置の試料Sの光学情報を瞬時に取得することができる。 Each spot diameter of the two-dimensional spot group of the actual spectrum MA is limited by the diffraction limit of the objective lens 38 and the dispersion performance of the diffraction grating. As described above, each parameter is appropriately set based on the mutual relationship between the parameters. By adjusting, the sample S is irradiated with light of an optical comb mode independent of each other and composed of a two-dimensional spot group with a fine interval, and the distribution of the mode-resolved amplitude spectrum and the mode-resolved phase spectrum is examined, thereby approaching the diffraction limit. Optical information of the sample S at the irradiation position of the two-dimensional spot group scattered at intervals of μm order can be acquired instantaneously.
 また、上述の第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eにおいては、離散スペクトル光LA(光周波数コムスペクトルLX0,LX1,LX2)の複数のスペクトルMAを試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させてなる2次元スポット群を、該2次元スポット群をなす複数のスポットの中心から隣り合うスポット同士の間隔よりも小さい寸法で離れた位置にそれぞれのスポットの中心が配置された2次元スポット群を複数生成するスペクトルスポット複製部を備えていてもよい。スペクトルスポット複製部を備える計測装置は、離散スペクトル光LAを周波数走査し、複数のスペクトルMAの隣り合うスポット同士の間の隙間を新たに生成された2次元スポット群で補間する。従って、スペクトルスポット複製部を備える計測装置は、スペクトルスポット複製部を備えていない場合に比べて解像度をより向上させることができる。 Further, in each of the measurement apparatuses 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment described above, a plurality of spectra MA of the discrete spectrum light LA (optical frequency comb spectra LX0, LX1, and LX2). Is a size smaller than the interval between adjacent spots from the center of a plurality of spots forming the two-dimensional spot group. There may be provided a spectral spot duplicating section for generating a plurality of two-dimensional spot groups in which the centers of the spots are arranged at positions separated by. The measuring device including the spectrum spot replicating unit scans the frequency of the discrete spectrum light LA and interpolates the gaps between adjacent spots of the plurality of spectra MA with the newly generated two-dimensional spot group. Therefore, the measurement apparatus including the spectrum spot replication unit can further improve the resolution as compared with the case where the spectrum spot replication unit is not included.
 また、例えば、離散スペクトル光源22において、光周波数コムスペクトルLX0の周波数軸(図2に示すf軸)上で隣り合うスペクトルMA,MAの周波数間隔frを変化させることにより、試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させてなる2次元スポット群の複数のスポットの中心から離れた位置にそれぞれのスポットの中心が配置された2次元スポット群(以下、複製2次元スポット群とする)を複数生成することができる。このように2次元スポット群を複製すると、図17に示すように、試料Sにおける測定位置の画素を重畳することができるといえる。そして、スペクトルMA,MAの周波数間隔frを適当に調整した計測装置は、調整しない場合に比べて、元の2次元スポット群と複製2次元スポット群との対応するスポット同士の間隔を元の2次元スポット群において隣り合うスポット同士の間隔よりも小さい寸法にすることができる。 Further, for example, in the discrete spectrum light source 22, by changing the frequency interval fr of the adjacent spectra MA and MA on the frequency axis (f axis shown in FIG. 2) of the optical frequency comb spectrum LX0, different positions of the sample S are obtained. A two-dimensional spot group in which the centers of the spots are arranged at positions away from the centers of a plurality of spots of the two-dimensional spot group condensed on p1, p2,. Multiple) can be generated. When the two-dimensional spot group is duplicated in this way, it can be said that the pixel at the measurement position in the sample S can be superimposed as shown in FIG. And the measuring apparatus which adjusted the frequency interval fr of spectrum MA and MA appropriately compared with the case where it does not adjust, the space | interval of the corresponding spots of the original two-dimensional spot group and the replication two-dimensional spot group is the original 2 The dimension can be made smaller than the interval between adjacent spots in the dimension spot group.
 また、例えば、上述の第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eは、試料Sの互いに異なる位置p1,p2,…,pnにそれぞれ集光させたスペクトルMAの2次元スポット群に対してデコンボリュージョン処理を施すデコンボリュージョン処理部を備えていてもよい。デコンボリュージョン処理部を備える計測装置は、スペクトルMAの2次元スポット群をサンプルに照射させた際に、第一集光部15及び第二集光部17等の光学系のボケ特性から生じるスペクトルMAの2次元スポット群の画像ボケを解消することができる。具体的には、検出部20等で観測されるスペクトルMAの2次元スポット群の画像には、畳み込み積分により光学系の点像分布関数(Point spread hunction:PSF)がのっているので、PSFを用いた逆演算を行うことにより、デコンボリュージョン処理がなされる。検出器20には、このようなデコンボリュージョン処理を行う演算装置等のデコンボリュージョン処理部が設けられていてもよい。
 デコンボリュージョン処理部を備える計測装置は、デコンボリュージョン処理部を備えていない場合に比べて、画素間のクロストークをより抑制することができ、モード分解スペクトル、すなわち共焦点画像をさらに高精度に取得することができる。
Further, for example, each of the measuring devices 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment described above is condensed at different positions p1, p2,. A deconvolution processing unit that performs a deconvolution process on the two-dimensional spot group of the spectrum MA may be provided. A measuring apparatus including a deconvolution processing unit is a spectrum generated from blur characteristics of optical systems such as the first light collecting unit 15 and the second light collecting unit 17 when the sample is irradiated with a two-dimensional spot group of the spectrum MA. The image blur of the two-dimensional spot group of MA can be eliminated. Specifically, since the image of the two-dimensional spot group of the spectrum MA observed by the detection unit 20 or the like has a point spread function (PSF) of the optical system by convolution integration, the PSF A deconvolution process is performed by performing an inverse operation using. The detector 20 may be provided with a deconvolution processing unit such as an arithmetic unit that performs such deconvolution processing.
Compared to the case where the deconvolution processing unit is not provided, the measuring device including the deconvolution processing unit can further suppress crosstalk between the pixels, and the mode-resolved spectrum, that is, the confocal image is more accurately detected. Can be obtained.
 また、例えば、上述の第一実施形態から第五実施形態までの各計測装置10A,10B,10C,10D,10Eでは、光周波数コムスペクトル(第一の光周波数コムスペクトル)LX0のスペクトルMAの位相とは異なる第三の光周波数コムスペクトルを発する第三のコム光源(図示略)を備えていてもよい。また、検出部20は、光周波数コムスペクトルLX0と前述の第三の光周波数コムスペクトルとを干渉させて得られる位相差に基づいてモード分解位相スペクトルを取得してもよい。 Further, for example, in each of the measurement devices 10A, 10B, 10C, 10D, and 10E from the first embodiment to the fifth embodiment described above, the phase of the spectrum MA of the optical frequency comb spectrum (first optical frequency comb spectrum) LX0 A third comb light source (not shown) that emits a third optical frequency comb spectrum different from the above may be provided. Further, the detection unit 20 may acquire a mode-resolved phase spectrum based on a phase difference obtained by causing the optical frequency comb spectrum LX0 and the third optical frequency comb spectrum to interfere with each other.
 第三のコム光源を備えない計測装置では、図18に示すように、試料S上の集光位置のスペクトルMAのスポット径を有し、共焦点顕微鏡の測定原理に基づき、共焦点深さ分解能Δz全体が積算された光学情報(即ち、共焦点ボリューム)を取得できる。一方、上述のように第三のコム光源を備えた計測装置では、共焦点深さ分解能Δzが波長オーダーとなるように設定すると、第一の光周波数コムスペクトルのスペクトルと第三の光周波数コムスペクトルのスペクトルとの位相差によって取得したモード分解位相スペクトルから、共焦点深さ分解能Δzの範囲内を更に高精度に分割した位相イメージを取得することが可能となる。従って、第三のコム光源を備えた計測装置は、第三のコム光源を備えていない場合に比べて、試料Sの互いに異なる位置p1,p2,…,pnが存在する仮想面上の振幅イメージに加えて仮想面に直交する矢印D1方向の共焦点深さ分解能Δzの範囲にわたって試料Sの位相イメージを取得し、試料Sの厚み方向の情報をより高精度に得ることができる。 As shown in FIG. 18, the measurement apparatus that does not include the third comb light source has a spot diameter of the spectrum MA at the condensing position on the sample S, and the confocal depth resolution based on the measurement principle of the confocal microscope. Optical information (that is, confocal volume) obtained by integrating the entire Δz can be acquired. On the other hand, in the measurement apparatus equipped with the third comb light source as described above, when the confocal depth resolution Δz is set to be in the wavelength order, the spectrum of the first optical frequency comb spectrum and the third optical frequency comb are set. It is possible to acquire a phase image obtained by dividing the range of the confocal depth resolution Δz with higher accuracy from the mode-resolved phase spectrum acquired by the phase difference from the spectrum of the spectrum. Therefore, the measurement apparatus including the third comb light source has an amplitude image on the virtual plane where the positions p1, p2,. In addition, the phase image of the sample S can be acquired over the range of the confocal depth resolution Δz in the direction of the arrow D1 orthogonal to the virtual plane, and information in the thickness direction of the sample S can be obtained with higher accuracy.
 また、デュアル光コム分光法を採用した計測装置10B,10Dでは、第二のコム光源が第三のコム光源を兼ねていても構わない。即ち、第二のコム光源は、周波数軸で周波数の位置が隣り合うスペクトルの位相が光周波数コムスペクトルLX0のスペクトルMAの位相とは異なる第三の光周波数コムスペクトルを発する光源であってもよい。このような構成によれば、計測装置全体の省スペース化を図りつつ、試料Sの振幅イメージと位相イメージとを取得することができる。 Further, in the measurement apparatuses 10B and 10D employing the dual optical comb spectroscopy, the second comb light source may also serve as the third comb light source. That is, the second comb light source may be a light source that emits a third optical frequency comb spectrum in which the phase of the spectrum whose frequency positions are adjacent on the frequency axis is different from the phase of the spectrum MA of the optical frequency comb spectrum LX0. . According to such a configuration, it is possible to acquire the amplitude image and the phase image of the sample S while saving the space of the entire measuring apparatus.
 本発明を適用した計測装置によれば、高い精度を保ちつつ、高コントラストの鮮明な情報を超高速で得ることができ、工業用の共焦点レーザー顕微鏡や細胞観察用顕微鏡への応用が可能になる。従って、本発明を適用した計測装置は、生命機能解析等を行うバイオ分野をはじめ、医療分野、計測分野等の広い分野で利用することができる。また、本発明を適用した計測装置については、高解像イメージングを必要とする分野への展開が期待される。さらに、本発明を適用した計測装置では、これまで独立に利用されてきた共焦点顕微鏡と位相差顕微鏡を統合できるので、数十nmから数mm以上に渡る極めて広い深さダイナミックレンジの3次元イメージを取得できる。 According to the measurement apparatus to which the present invention is applied, clear information with high contrast can be obtained at ultra high speed while maintaining high accuracy, and can be applied to industrial confocal laser microscopes and cell observation microscopes. Become. Therefore, the measuring device to which the present invention is applied can be used in a wide field such as a medical field and a measuring field, as well as a bio field for performing a life function analysis. Further, the measurement apparatus to which the present invention is applied is expected to be developed in a field that requires high resolution imaging. Furthermore, in the measurement apparatus to which the present invention is applied, a confocal microscope and a phase-contrast microscope, which have been used independently so far, can be integrated, so that a three-dimensional image having a very wide depth dynamic range extending from several tens of nm to several mm or more. Can be obtained.
 次いで、本発明を適用した各実施形態の計測装置10Aから10Eの効果を裏付けるために行った実施例について説明する。なお、本発明は以下の実施例に限定されるものではない。 Next, examples performed to support the effects of the measuring devices 10A to 10E of the embodiments to which the present invention is applied will be described. In addition, this invention is not limited to a following example.
(実施例1)
 二以上のスペクトルMAを1次元的に波長分散させた後、ライン状に集光させ、原理確認計測を行った。図19に示すように、光コム61(製造元:イムラアメリカインク、中心波長:780nm、周波数安定化制御なし)からレーザー光を出射させた。この光コムを半波長板62に通し、回折格子66に入射させた。回折格子66の格子ピッチは2000ライン/mmとした。回折格子66と球面レンズ68(焦点距離f1)との間、及び球面レンズ68と指標Tとの間隔は、共に焦点距離f1とした。この光学系において、フーリエ面FPはターゲットの光照射面に位置しており、ライン状に集光されている。指標Tから反射した光は、再び回折格子66に入射され、ハーフミラー64で折り返し、集光レンズ72でマルチモード光ファイバ74に入射させた。マルチモード光ファイバ74に入射された光のスペクトル波形は、光スペクトラムアナライザ等の光検出器76によって取得した。光検出器76のスペクトル分解能は、モード分解スペクトルを取得するには不十分であるが、光コムのスペクトル・エンベロープNAは取得可能であるので、スペクトル・エンベロープNAに基づいて原理確認を行った。また、焦点距離f1は150mmとした。なお、図19の「FP」はフーリエ面を示す。
(Example 1)
Two or more spectra MA were wavelength-dispersed one-dimensionally and then condensed into a line shape, and the principle confirmation measurement was performed. As shown in FIG. 19, a laser beam was emitted from an optical comb 61 (manufacturer: Imla America ink, center wavelength: 780 nm, without frequency stabilization control). This optical comb was passed through the half-wave plate 62 and made incident on the diffraction grating 66. The grating pitch of the diffraction grating 66 was 2000 lines / mm. The distance between the diffraction grating 66 and the spherical lens 68 (focal length f1) and the distance between the spherical lens 68 and the index T are both set to the focal length f1. In this optical system, the Fourier plane FP is located on the light irradiation surface of the target and is condensed in a line shape. The light reflected from the index T is again incident on the diffraction grating 66, folded back by the half mirror 64, and incident on the multimode optical fiber 74 by the condenser lens 72. The spectral waveform of the light incident on the multimode optical fiber 74 was acquired by a photodetector 76 such as an optical spectrum analyzer. Although the spectral resolution of the photodetector 76 is insufficient to obtain the mode-resolved spectrum, the spectral envelope NA of the optical comb can be obtained, so the principle was confirmed based on the spectral envelope NA. The focal length f1 was 150 mm. Note that “FP” in FIG. 19 indicates a Fourier plane.
 計測対象物の指標Tとして、一般に分解能の測定等で広く使われているテストチャート(USAF-1951)を用意した。指標Tの平面図を図20に示す。テストチャートの各グループの要素と線幅を図21に示す。
 指標Tの所定の範囲R1,R2,R3のそれぞれにおける反射率依存性(スキャンの位置)の測定結果を図22、図23、図24にそれぞれ示す。図22、図23、図24の全てにおいて、テストチャートのラインを分解できていることがわかる。なお、範囲R4についてはテストチャートのラインを分解できなかった。
As an index T of the measurement object, a test chart (USAF-1951) that is generally widely used in resolution measurement and the like is prepared. A plan view of the index T is shown in FIG. FIG. 21 shows the elements and line widths of each group of the test chart.
The measurement results of the reflectance dependency (scan position) in each of the predetermined ranges R1, R2, and R3 of the index T are shown in FIGS. 22, 23, and 24, respectively. 22, 23, and 24, it can be seen that the test chart lines can be disassembled. For the range R4, the test chart line could not be disassembled.
 次いで、図19に示す光学系において、球面レンズ68を対物レンズ(図示略)に変更し、光コムスペクトルの波形からラインイメージを取得後(図22、図23、図24参照)、ラインイメージと直交する方向に指標Tを移動させた。このようなラインイメージの取得と指標Tの移動とを繰り返すことによって、指標Tのテストチャートにおけるグループ4の要素番号2から6の2次元の顕微イメージを取得した。取得した顕微イメージを図25に示す。図25に示す「波長軸」(即ち、光周波数軸)では、スペクトルの取得範囲を10nm、サンプリング間隔を0.01nmとし、1000点から構成されるスペクトル波形から顕微イメージを構成した。図25に示す「サンプルの移動方向」では、指標Tの移動範囲を232μm、移動ステップを1μm/stepとし、232stepのデータから顕微イメージを構成した。
 図25を見ると、グループ4の要素番号2から6の2次元の顕微イメージを正確に取得できていることがわかる。
Next, in the optical system shown in FIG. 19, the spherical lens 68 is changed to an objective lens (not shown), and a line image is obtained from the waveform of the optical comb spectrum (see FIGS. 22, 23, and 24). The index T was moved in the orthogonal direction. By repeating the acquisition of the line image and the movement of the index T, a two-dimensional microscopic image of element numbers 2 to 6 of the group 4 in the test chart of the index T was acquired. The acquired microscopic image is shown in FIG. On the “wavelength axis” (that is, the optical frequency axis) shown in FIG. 25, a microscopic image was constructed from a spectrum waveform composed of 1000 points with a spectrum acquisition range of 10 nm and a sampling interval of 0.01 nm. In the “sample moving direction” shown in FIG. 25, the moving range of the index T is set to 232 μm, the moving step is set to 1 μm / step, and a microscopic image is constructed from the data of 232 steps.
As can be seen from FIG. 25, the two-dimensional microscopic images of the element numbers 2 to 6 of the group 4 can be accurately acquired.
(実施例2)
 次いで、図26に示す共焦点顕微ラインイメージング装置150を用意した。なお、図26に示す共焦点顕微ラインイメージング装置150の構成要素において、図15に示す光学系の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Example 2)
Next, a confocal microscopic line imaging apparatus 150 shown in FIG. 26 was prepared. In the constituent elements of the confocal microscopic line imaging apparatus 150 shown in FIG. 26, the same constituent elements as those of the optical system shown in FIG.
 共焦点顕微ラインイメージング装置150では、指標T側のライン集光位置FPと、検出側の集光位置P52が共役の関係になっている。また、回折格子66とリレーレンズ69A(焦点距離:f2),69B(焦点距離:f2)と対物レンズ70(焦点距離:f3)との配置を図27に示す。図27の上段は共焦点顕微ラインイメージング装置150の上方から見た場合の図であり、図27の下段は共焦点顕微ラインイメージング装置150の側方から見た場合の図である。回折格子66における回折位置とリレーレンズ69Aとの間隔は、焦点距離f2とした。リレーレンズ69A,69Bの間隔は、焦点距離f2の2倍とした。 In the confocal microscopic line imaging apparatus 150, the line T condensing position FP on the index T side and the condensing position P52 on the detection side have a conjugate relationship. FIG. 27 shows the arrangement of the diffraction grating 66, the relay lenses 69A (focal length: f2) and 69B (focal length: f2), and the objective lens 70 (focal length: f3). The upper part of FIG. 27 is a view when viewed from above the confocal microscopic line imaging apparatus 150, and the lower part of FIG. 27 is a view when viewed from the side of the confocal microscopic line imaging apparatus 150. The distance between the diffraction position in the diffraction grating 66 and the relay lens 69A is the focal length f2. The interval between the relay lenses 69A and 69B was set to twice the focal length f2.
 図28は、サンプル位置を光軸方向に変化させていった場合の検出信号強度を示している。図28に示すように、「ピンホールなし」の場合(即ち、共焦点顕微ラインイメージング装置150においてピンホール144を配置しない場合)、サンプル位置とする0.0mmの「深さ位置」から例えば±100μmの位置でも高い規格化光強度が得られ、サンプル位置が焦点からズレても信号が検出されており、深さ分解能を有していないことがわかる。
 一方、「ピンホールあり」の場合(即ち、共焦点顕微ラインイメージング装置150においてピンホール144を配置した場合)、信号は焦点から±15μmの範囲内でしか検出されておらず、20μmの深さ分解能を有していることがわかる。即ち、規格化光強度の半値幅ωは20μmであった。
FIG. 28 shows the detection signal intensity when the sample position is changed in the optical axis direction. As shown in FIG. 28, in the case of “no pinhole” (that is, when no pinhole 144 is arranged in the confocal microscope line imaging apparatus 150), for example, ± 0.0 mm from the “depth position” of the sample position It can be seen that a high normalized light intensity is obtained even at a position of 100 μm, a signal is detected even when the sample position is deviated from the focal point, and no depth resolution is provided.
On the other hand, in the case of “with pinhole” (that is, when the pinhole 144 is arranged in the confocal microscopic line imaging apparatus 150), the signal is detected only within the range of ± 15 μm from the focus, and the depth is 20 μm. It turns out that it has resolution. That is, the half width ω of the normalized light intensity was 20 μm.
 次いで、図26に示す共焦点顕微ラインイメージング装置150において、光コムのエンベロープ・スペクトルの波形からラインイメージを取得後、ラインイメージと直交する方向(即ち、矢印D30方向)に指標Tを移動させた。そして、ラインイメージの取得と指標Tの移動とを繰り返すことによって、図20に示す指標Tのテストチャートにおける所定の範囲R5の2次元の顕微イメージを取得した。取得した顕微イメージを図29及び図30に示す。図29は「ピンホールあり」の場合であり、図30は「ピンホールなし」の場合である。また、図29及び図30のそれぞれには、サンプル位置とする「深さ位置0μm」での2次元の顕微イメージと、「深さ位置0μm」から光軸方向(即ち、図26に示す矢印D30方向に直交する方向)に100μm移動した位置での2次元の顕微イメージと、を並べて示す。各々の顕微イメージの「波長軸」(即ち、周波数軸)では、エンベロープ・スペクトルの取得範囲を10nm、サンプリング間隔を0.01nmとし、1000点のエンベロープ・スペクトルから顕微イメージを構成した。各々の顕微イメージの「サンプルの移動方向」では、指標Tの移動範囲を100μm、移動ステップを1μm/stepとし、100stepのデータから顕微イメージを構成した。 Next, in the confocal microscopic line imaging apparatus 150 shown in FIG. 26, after acquiring the line image from the waveform of the envelope spectrum of the optical comb, the index T is moved in the direction orthogonal to the line image (that is, the arrow D30 direction). . Then, by repeating the acquisition of the line image and the movement of the index T, a two-dimensional microscopic image of a predetermined range R5 in the test chart of the index T shown in FIG. 20 was acquired. The acquired microscopic images are shown in FIGS. FIG. 29 shows the case of “with pinhole”, and FIG. 30 shows the case of “without pinhole”. Each of FIGS. 29 and 30 includes a two-dimensional microscopic image at “depth position 0 μm” as a sample position and an optical axis direction from “depth position 0 μm” (that is, an arrow D30 shown in FIG. 26). A two-dimensional microscopic image at a position moved by 100 μm in a direction orthogonal to the direction) is shown side by side. On the “wavelength axis” (that is, the frequency axis) of each microscopic image, the microscopic image was constructed from the envelope spectrum of 1000 points with an envelope spectrum acquisition range of 10 nm and a sampling interval of 0.01 nm. In the “sample moving direction” of each microscopic image, the microscopic image was constructed from 100 step data, with the moving range of the index T being 100 μm and the moving step being 1 μm / step.
 図29を見ると、「ピンホールあり」の場合には、「深さ位置0μm」で指標Tの範囲R5通りの2次元イメージが得られ、「深さ位置0μm」から100μm移動すると当該2次元イメージが消失した。これらの結果から、ピンホール144を配置した共焦点顕微ラインイメージング装置150では、深さ分解能が高く、離散スペクトル光LAから2次元の共焦点顕微イメージを正確に取得できていることがわかる。
 一方、図30を見ると、「ピンホールなし」の場合には、「深さ位置0μm」で指標Tの範囲R5通りの2次元イメージが得られるものの、本来では範囲R5通りの2次元イメージが得られない「深さ位置0μm」から100μm移動した位置においても範囲R5通りの2次元イメージが取得された。これらの結果から、共焦点顕微ラインイメージング装置150においてピンホール144を配置しない場合では、深さ分解能が低下し、離散スペクトル光LAから2次元の共焦点顕微イメージを正確に取得するのは困難であることがわかる。
Referring to FIG. 29, in the case of “with pinhole”, a two-dimensional image in the range R5 of the index T is obtained at “depth position 0 μm”, and the two-dimensional image is moved by 100 μm from “depth position 0 μm”. The image has disappeared. From these results, it can be seen that the confocal microscope line imaging apparatus 150 in which the pinhole 144 is arranged has a high depth resolution and can accurately acquire a two-dimensional confocal microscope image from the discrete spectrum light LA.
On the other hand, FIG. 30 shows that in the case of “no pinhole”, two-dimensional images in the range R5 of the index T are obtained at the “depth position 0 μm”, but originally two-dimensional images in the range R5 are obtained. Two-dimensional images in the range R5 were acquired even at a position shifted by 100 μm from the “depth position 0 μm” that could not be obtained. From these results, when the pinhole 144 is not arranged in the confocal microscope line imaging apparatus 150, the depth resolution is lowered, and it is difficult to accurately acquire a two-dimensional confocal microscope image from the discrete spectrum light LA. I know that there is.
(実施例3)
 次いで、図31に示すように、デュアル光コム分光法を採用した共焦点顕微ラインイメージング装置152を用意した。なお、図31に示す共焦点顕微ラインイメージング装置152の構成要素において、図26に示す共焦点顕微ラインイメージング装置150の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Example 3)
Next, as shown in FIG. 31, a confocal microscopic line imaging device 152 employing dual optical comb spectroscopy was prepared. In the components of the confocal microscope line imaging apparatus 152 shown in FIG. 31, the same components as those of the confocal microscope line imaging apparatus 150 shown in FIG. Omitted.
 共焦点顕微ラインイメージング装置152は、共焦点顕微ラインイメージング装置150の構成要素に加えて、コム光源102と、ハーフミラー148と、を備えている。
 また、共焦点顕微ラインイメージング装置152では安定化制御されていない光コム61に替えてルビジウム周波数標準に位相同期したコム光源101を用い、デュアル光コム分光法を採用し、コム光源101は第一のコム光源であるのに対し、コム光源102は第二のコム光源としている。従って、第2実施形態でも説明したように、コム光源102から発せられる離散スペクトル光LCに含まれる複数のスペクトルの第二隣接周波数間隔fr2は、コム光源101から発せられる離散スペクトル光LBに含まれる複数のスペクトルの第一隣接周波数間隔fr1とは異なる。
 ハーフミラー148は二つのコリメートレンズ145A,145Bの間に配置されている。ハーフミラー148のミラー面は光軸に対して所定の角度で傾斜している。
The confocal microscopic line imaging apparatus 152 includes a comb light source 102 and a half mirror 148 in addition to the components of the confocal microscopic line imaging apparatus 150.
Further, the confocal microscopic line imaging apparatus 152 uses a comb light source 101 phase-locked to the rubidium frequency standard in place of the optical comb 61 which is not controlled for stabilization, employs dual optical comb spectroscopy, and the comb light source 101 is the first one. The comb light source 102 is a second comb light source. Therefore, as described in the second embodiment, the second adjacent frequency intervals fr2 of the plurality of spectra included in the discrete spectrum light LC emitted from the comb light source 102 are included in the discrete spectrum light LB emitted from the comb light source 101. Different from the first adjacent frequency interval fr1 of the plurality of spectra.
The half mirror 148 is disposed between the two collimating lenses 145A and 145B. The mirror surface of the half mirror 148 is inclined at a predetermined angle with respect to the optical axis.
 コム光源102は、発した離散スペクトル光LCを所定の角度でハーフミラー148に入射させるように配置されている。このような配置によって、ピンホール144を通過したレーザー光は、コリメートレンズ145Aでコリメートされる。その後、ハーフミラー148によって、指標Tから反射されたレーザー光とコム光源102から発せられたレーザー光(即ち、離散スペクトル光LC)とが空間的に重ね合される。そこで、二つのレーザー光の干渉信号を光検出器76で検出することで、インターフェログラムの繰り返し信号(即ち、インターフェログラム列)が得られる。実施例3では、当該繰り返し信号をフーリエ変換することによって、モード分解スペクトルを取得した。 The comb light source 102 is arranged so that the emitted discrete spectrum light LC is incident on the half mirror 148 at a predetermined angle. With such an arrangement, the laser light that has passed through the pinhole 144 is collimated by the collimating lens 145A. Thereafter, the laser light reflected from the index T and the laser light emitted from the comb light source 102 (that is, the discrete spectrum light LC) are spatially superimposed by the half mirror 148. Therefore, an interferogram repetitive signal (that is, an interferogram sequence) is obtained by detecting the interference signal of the two laser beams by the photodetector 76. In Example 3, a mode-resolved spectrum was acquired by performing Fourier transform on the repetitive signal.
 図32は、共焦点顕微ラインイメージング装置152で取得したモード分解振幅スペクトルを示している。図33は、図32に示すモード分解振幅スペクトルの部分拡大図である。
 図33を見ると、複数のモード分解振幅スペクトルのそれぞれが、指標Tの情報を含む離散スペクトル光から個別に分離され得る状態で、高コントラストを有して取得されていることがわかる。また、図32を見ると、モード分解振幅スペクトルには凹凸があり、指標Tの情報が反映されていることがわかる。
FIG. 32 shows a mode-resolved amplitude spectrum acquired by the confocal microscopic line imaging device 152. FIG. 33 is a partially enlarged view of the mode-resolved amplitude spectrum shown in FIG.
It can be seen from FIG. 33 that each of the plurality of mode-resolved amplitude spectra is acquired with high contrast in a state where it can be individually separated from the discrete spectrum light including the information of the index T. In addition, from FIG. 32, it can be seen that the mode-resolved amplitude spectrum has irregularities and the information of the index T is reflected.
 次いで、図31に示す共焦点顕微ラインイメージング装置152において、光コムのエンベロープ・スペクトルの波形からラインイメージを取得後、ラインイメージと直交する方向(即ち、矢印D30方向)に指標Tを移動させた。そして、ラインイメージの取得と指標Tの移動とを繰り返すことによって、図20に示す指標Tのテストチャートにおける所定の範囲R6の2次元の顕微イメージを「深さ位置0μm」および「深さ位置+120μm」で取得した。取得した顕微イメージを図34に示す。顕微イメージの「光周波数軸」(即ち、波長軸)では、エンベロープ・スペクトルの取得範囲を1.5THz、サンプリング間隔を250MHzとし、5000点のエンベロープ・スペクトルから顕微イメージを構成した。各々の顕微イメージに示す「サンプルの移動方向」では、指標Tの移動範囲を150μm、移動ステップを1μm/stepとし、150stepのデータから顕微イメージを構成した。 Next, in the confocal microscopic line imaging apparatus 152 shown in FIG. 31, after acquiring the line image from the waveform of the envelope spectrum of the optical comb, the index T is moved in the direction orthogonal to the line image (that is, the direction of arrow D30). . Then, by repeating the acquisition of the line image and the movement of the index T, the two-dimensional microscopic image of the predetermined range R6 in the test chart of the index T shown in FIG. 20 is obtained as “depth position 0 μm” and “depth position +120 μm”. ” The acquired microscopic image is shown in FIG. On the “optical frequency axis” (namely, wavelength axis) of the microscopic image, the microscopic image was constructed from the envelope spectrum of 5000 points with the acquisition range of the envelope spectrum being 1.5 THz and the sampling interval being 250 MHz. In the “sample moving direction” shown in each microscopic image, the moving range of the index T was set to 150 μm, the moving step was set to 1 μm / step, and the microscopic image was constructed from 150 step data.
 図34を見ると、「深さ位置0μm」では、指標Tの範囲R6通りの2次元イメージが得られた。一方、「深さ位置+120μm」では、当該2次元イメージが消失した。従って、デュアル光コム分光法を採用し、ピンホール144を配置した共焦点顕微ラインイメージング装置152では、離散スペクトル光LAから2次元の共焦点顕微イメージを正確に取得できていることがわかる。 Referring to FIG. 34, a two-dimensional image having an index T range R6 was obtained at the “depth position 0 μm”. On the other hand, at the “depth position + 120 μm”, the two-dimensional image disappeared. Therefore, it can be seen that the confocal microscope line imaging apparatus 152 employing the dual optical comb spectroscopy and having the pinhole 144 can accurately acquire a two-dimensional confocal microscope image from the discrete spectrum light LA.
(実施例4)
 次いで、図35に示すように、スペクトルの2次元スポット群を用いた共焦点顕微イメージング装置160を用意した。なお、図35に示す共焦点顕微イメージング装置160の構成要素において、各実施形態の計測装置10A,10B,10C,10D,10E(特に、計測装置10D)及びその構成要素や図26に示す共焦点顕微ラインイメージング装置150の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
Example 4
Next, as shown in FIG. 35, a confocal microscopic imaging apparatus 160 using a two-dimensional spectral spot group was prepared. 35, the measurement apparatuses 10A, 10B, 10C, 10D, and 10E (particularly the measurement apparatus 10D) of each embodiment and the components thereof and the confocal elements shown in FIG. The same components as those of the microscopic line imaging apparatus 150 are denoted by the same reference numerals, and the description thereof is omitted.
 共焦点顕微イメージング装置160は、離散スペクトル光源22と、ビームスプリッタ30と、分散部14と、第三集光部(集光部)16と、重ね合わせ部19と、空間フィルタリング光学系18と、検出部20に加えて、ハーフミラー30と、離散スペクトル光源(第二のコム光源)60と、を備えている。検出器20はデュアル光コム分光器であり、いわゆる離散スペクトル光源60を内蔵している。 The confocal microscopic imaging device 160 includes a discrete spectrum light source 22, a beam splitter 30, a dispersion unit 14, a third condensing unit (condensing unit) 16, an overlapping unit 19, a spatial filtering optical system 18, In addition to the detection unit 20, a half mirror 30 and a discrete spectrum light source (second comb light source) 60 are provided. The detector 20 is a dual optical comb spectrometer and incorporates a so-called discrete spectrum light source 60.
 実施例4では、離散スペクトル光源22の離散スペクトル光LA(光周波数コムスペクトルLX0,LX1,LX2)の中心波長λ0を1.55μm、離散スペクトル光LAの周波数軸上で隣り合うスペクトルMAの周波数間隔frを250MHz、最も波長の短いスペクトルMAのスポットsp1と最も波長の長いスペクトルMAのスポットsp2との光周波数差Δνを900GHz、VIPA50のFSRを15GHz、回折格子54のピッチを2000溝/mm、ピンホール42の直径を50μmとした。 In the fourth embodiment, the center wavelength λ0 of the discrete spectrum light LA (optical frequency comb spectrum LX0, LX1, LX2) of the discrete spectrum light source 22 is 1.55 μm, and the frequency interval between the adjacent spectrums MA on the frequency axis of the discrete spectrum light LA. fr is 250 MHz, optical frequency difference Δν between spot sp1 of spectrum MA with the shortest wavelength and spot sp2 of spectrum MA with the longest wavelength is 900 GHz, FSR of VIPA50 is 15 GHz, pitch of diffraction grating 54 is 2000 grooves / mm, pin The diameter of the hole 42 was 50 μm.
 共焦点顕微イメージング装置160では、離散スペクトル光源22から発せられた離散スペクトルLAは、ハーフミラー30を透過し、シリンドリカルレンズ48によって図35に示す矢印x方向に沿ってライン集光される。続いて、VIPA50によって前記一方向に直交する方向に分散される。VIPA50で分散された光は、近接した回折格子54に入射する。回折格子54の格子の延在方向は矢印y方向に平行する方向であるため、回折格子54で反射した光は、反射と同時に前記一方向に直交する方向に回折し、これによって周波数毎に分散される。従って、矢印D1方向及び矢印D3方向に複数のモード分解スペクトルが2次元展開される。
 続いて、スペクトル毎に異なる角度で分散された複数のスペクトルMAは、第三集光部16に入射し、リレーレンズ34,36を通過した後、対物レンズ38によって試料Sの互いに異なる位置にそれぞれ、同時に集光される。
In the confocal microscopic imaging device 160, the discrete spectrum LA emitted from the discrete spectrum light source 22 passes through the half mirror 30, and is condensed by the cylindrical lens 48 along the direction of the arrow x shown in FIG. Subsequently, the VIPA 50 disperses in a direction orthogonal to the one direction. The light dispersed by the VIPA 50 enters the adjacent diffraction grating 54. Since the extending direction of the diffraction grating 54 is parallel to the arrow y direction, the light reflected by the diffraction grating 54 is diffracted in the direction orthogonal to the one direction at the same time as the reflection, and thereby dispersed for each frequency. Is done. Therefore, a plurality of mode-resolved spectra are two-dimensionally developed in the directions of the arrow D1 and the arrow D3.
Subsequently, the plurality of spectra MA dispersed at different angles for each spectrum are incident on the third condensing unit 16, pass through the relay lenses 34 and 36, and then are respectively positioned at different positions on the sample S by the objective lens 38. Condensed at the same time.
 試料Sの互いに異なる位置に同時集光した複数のスペクトルMAには、試料Sに関する情報が付加される。試料Sの情報を含む離散スペクトル光LBは、試料Sの互いに異なる位置から反射し、第三集光部16に入射すると共に、第三集光部16によって適宜集光又は拡散されて第三集光部16を通過し、重ね合わせ部19に導入される。
 複数の反射スペクトルは、重ね合わせ部19の回折格子54に対し、複数の反射スペクトルの各周波数に応じた角度で入射する。そして、複数の反射スペクトルは、回折格子54に対して共通の角度で同時に波長分散し、光軸上で空間的に且つ同時に重ねられる。空間的に重ねられた複数の反射スペクトルは、ビームスプリッタ30で反射し、ミラー31によって折り返され、空間フィルタリング光学系18に入射する。
Information about the sample S is added to the plurality of spectra MA simultaneously condensed at different positions of the sample S. Discrete spectrum light LB including information on the sample S is reflected from different positions on the sample S, enters the third light collecting unit 16, and is condensed or diffused as appropriate by the third light collecting unit 16. The light passes through the light part 16 and is introduced into the overlapping part 19.
The plurality of reflection spectra are incident on the diffraction grating 54 of the overlapping portion 19 at an angle corresponding to each frequency of the plurality of reflection spectra. The plurality of reflection spectra are simultaneously wavelength-dispersed at a common angle with respect to the diffraction grating 54, and are spatially and simultaneously superimposed on the optical axis. A plurality of spatially superimposed reflection spectra are reflected by the beam splitter 30, folded back by the mirror 31, and incident on the spatial filtering optical system 18.
 試料Sの情報を含み、空間フィルタリング光学系18に入射した反射スペクトルは、集光レンズ40で共役な位置に集光され、ピンホール42の開口を通過する。試料Sの情報を含む反射スペクトル以外の光やスペクトルはピンホール42でカットされる。ピンホール42の開口を通過した反射スペクトルがコリメートレンズ44でコリメートされ、検出部20に入射する。 The reflection spectrum including the information of the sample S and incident on the spatial filtering optical system 18 is condensed at a conjugate position by the condenser lens 40 and passes through the opening of the pinhole 42. Light and spectrum other than the reflection spectrum including the information of the sample S are cut by the pinhole 42. The reflection spectrum that has passed through the opening of the pinhole 42 is collimated by the collimating lens 44 and enters the detection unit 20.
 検出部20では、試料Sの情報を含む離散スペクトル光LBから、試料Sの情報を含むモード分解スペクトルが取得される。複数のモード分解振幅スペクトル及びモード分解位相スペクトルが試料Sの互いに異なる位置に応じて2次元的に配置されることで、振幅イメージや位相イメージ等の所望の情報に変換し、試料Sの計測が完了する。 The detection unit 20 acquires a mode-resolved spectrum including information about the sample S from the discrete spectrum light LB including information about the sample S. A plurality of mode-resolved amplitude spectra and mode-resolved phase spectra are two-dimensionally arranged in accordance with different positions of the sample S, so that it is converted into desired information such as an amplitude image and a phase image, and the measurement of the sample S is performed. Complete.
 次いで、上述した共焦点顕微イメージング装置160において、図20に示す指標Tのテストチャートのグループ4、要素1の2次元の顕微イメージを深さ位置0μmで取得した。取得したモード分解スペクトルを図36,図37に示し、顕微反射イメージを図38に示す。顕微イメージの取得範囲は580μm×100μmとし、58pixels×60pixelsの顕微イメージを構成した。図36,図37に示すように、膨大なスペクトルの光コム・モード数を実現し、膨大なピクセル数の情報を一括して取得することができていることを意味している。 Next, in the above-described confocal microscopic imaging apparatus 160, a two-dimensional microscopic image of group 4, element 1 of the test chart of index T shown in FIG. 20 was acquired at a depth position of 0 μm. The acquired mode decomposition spectrum is shown in FIGS. 36 and 37, and the microreflection image is shown in FIG. The microscopic image acquisition range was 580 μm × 100 μm, and a microscopic image of 58 pixels × 60 pixels was constructed. As shown in FIG. 36 and FIG. 37, it means that the optical comb mode number of a huge spectrum is realized, and the information of a huge number of pixels can be acquired collectively.
 また、図38に示す顕微イメージの測定領域にあたる図20に示す指標Tのテストチャートのグループ4、要素1の透過イメージを近赤外光カメラ(Goldeye P-008 SWIR (NIR-300),製造元:Allied Vision Technologies社)で撮影したものを図39に示す。図38と図39を比較すると、相対比率の差はあるが、離散スペクトル光LAから2次元の共焦点顕微イメージを正確に取得できていることがわかる。また、反射イメージと透過イメージとの関係から、イメージコントラストが反転している様子を確認した。
 なお、図20に示す指標Tのテストチャートにおけるグループ4、要素1の2次元の反射イメージを「深さ位置+10μm」で取得した顕微イメージを図40に示す。図40に示すように、「深さ位置+10μm」では、当該2次元顕微イメージが消失した。従って、共焦点顕微イメージング装置160では、離散スペクトル光LAから2次元の共焦点顕微イメージをμmオーダーの間隔で正確に取得できていることがわかる。
Further, the transmission image of group 4 and element 1 of the index T test chart shown in FIG. 20 corresponding to the measurement region of the microscopic image shown in FIG. 38 is obtained from a near-infrared camera (Goldeye P-008 SWIR (NIR-300), manufacturer: A photograph taken by Allied Vision Technologies) is shown in FIG. Comparing FIG. 38 and FIG. 39, it can be seen that a two-dimensional confocal microscopic image can be accurately acquired from the discrete spectrum light LA although there is a difference in relative ratio. In addition, it was confirmed that the image contrast was reversed from the relationship between the reflection image and the transmission image.
FIG. 40 shows a microscopic image obtained by acquiring a two-dimensional reflection image of group 4 and element 1 at “depth position + 10 μm” in the test chart of the index T shown in FIG. As shown in FIG. 40, the two-dimensional microscopic image disappeared at “depth position + 10 μm”. Therefore, it can be seen that the confocal microscopic imaging apparatus 160 can accurately acquire a two-dimensional confocal microscopic image from the discrete spectrum light LA at intervals of the μm order.
 さらに、共焦点顕微イメージング装置160を用いて、テストターゲットのグループ3、要素1について測定した際の反射光のモード分解振幅スペクトルに加え、モード分解位相スペクトルを取得した。顕微イメージの取得範囲は830μm×100μmとし、83pixels×60pixelsの顕微イメージを構成した。取得したテストターゲットのグループ3、要素1の振幅イメージを図41に示し、位相イメージを図42に示す。また、比較のため、テストチャートのグループ4、要素1の透過イメージを上述の近赤外光カメラで撮影したものを図43に示す。 Further, using the confocal microscope imaging apparatus 160, a mode-resolved phase spectrum was obtained in addition to the mode-resolved amplitude spectrum of the reflected light when measured for group 3 and element 1 of the test target. The microscopic image acquisition range was 830 μm × 100 μm, and a microscopic image of 83 pixels × 60 pixels was constructed. FIG. 41 shows an amplitude image of the acquired test target group 3 and element 1, and FIG. 42 shows a phase image. For comparison, FIG. 43 shows a transmission image of test chart group 4 and element 1 taken by the above-described near-infrared light camera.
 図41及び図43に示すように、振幅イメージと近赤外光カメラとのイメージの比較から、振幅イメージの領域が近赤外光カメラを用いて取得したイメージの破線で囲った領域のものであり、反射イメージと透過イメージとの関係から、イメージコントラストが反転している様子を確認した。一方、図42に示すように、位相イメージは、振幅イメージと比べると低コントラストになっている。これは、振幅イメージが検知対象物Sの反射率を反映しているのに対し、位相イメージが検知対象物Sの深さ情報を反映しているからである。そこで、テストターゲットの反射コートが設けられている部分(図41に示す振幅イメージの白い部分)と反射コートが設けられていない部分(図41に示す振幅イメージの黒い部分)との位相差から実寸の段差を算出したところ、72nmとなった。デジタルホログラフィーを用いて、テストターゲットの反射コートが設けられている部分と設けられていない部分との段差を計測したところ、75nmとなった。従って、本発明を適用した共焦点顕微イメージング装置160を用いた測定値とデジタルホログラフィーによる測定値とが精度良く一致していることを確認した。また、各々の測定方法で取得した水平方向の深さプロファイルを比較した結果、図44に示すように、こちらも共焦点顕微イメージング装置160を用いた測定値(図44のグラフに示すCLM)とデジタルホログラフィーによる測定値(図44のグラフに示すDH)とが良く一致していることが分かる。上述の測定結果から、本発明を適用した計測装置では、位相イメージングによって、共焦点分解能(数μm前後)を大きく超える深さ分解能が得られるといえる。 As shown in FIG. 41 and FIG. 43, the comparison between the amplitude image and the near-infrared light camera shows that the region of the amplitude image is the region surrounded by the broken line of the image acquired using the near-infrared light camera. Yes, it was confirmed that the image contrast was reversed from the relationship between the reflection image and the transmission image. On the other hand, as shown in FIG. 42, the phase image has a lower contrast than the amplitude image. This is because the amplitude image reflects the reflectance of the detection target S, whereas the phase image reflects the depth information of the detection target S. Therefore, the actual size is determined from the phase difference between the portion of the test target where the reflective coat is provided (the white portion of the amplitude image shown in FIG. 41) and the portion where the reflective coat is not provided (the black portion of the amplitude image shown in FIG. 41). The step was calculated to be 72 nm. Using digital holography, the difference in level between the portion of the test target where the reflective coat was provided and the portion where it was not provided was measured and found to be 75 nm. Therefore, it was confirmed that the measurement value using the confocal microscopic imaging apparatus 160 to which the present invention was applied and the measurement value by digital holography coincided with each other with high accuracy. In addition, as a result of comparing the horizontal depth profiles obtained by the respective measurement methods, as shown in FIG. 44, this is also measured with the confocal microscopic imaging device 160 (CLM shown in the graph of FIG. 44). It can be seen that the measured values by digital holography (DH shown in the graph of FIG. 44) agree well. From the above measurement results, it can be said that the depth resolution that greatly exceeds the confocal resolution (around several μm) can be obtained by the phase imaging in the measurement apparatus to which the present invention is applied.
 上記の実施例1から実施例4で示したように、本発明によれば、深さ分解能を有して、互いに独立した複数のモード分解スペクトルから同時に情報が得られ、高い精度を保ちつつ、試料の情報を高速に取得することができる。 As shown in Example 1 to Example 4 above, according to the present invention, information can be obtained simultaneously from a plurality of independent mode-resolved spectra having depth resolution, while maintaining high accuracy. Sample information can be acquired at high speed.
10A,10B,10C,10D…計測装置
14…分散部
15…第一集光部(集光部)
16…第三集光部(集光部)
19…重ね合わせ部
18…空間フィルタリング光学系
20…検出部
22…点光源(第一のコム光源)
32,33…分散素子
60…第二のコム光源
LA…離散スペクトル光
LB…試料の情報を含む離散スペクトル光
p1,p2,…,pn…試料の互いに異なる位置、試料上の集光位置
P3…共役な位置
S…試料
10A, 10B, 10C, 10D ... measuring device 14 ... dispersion part 15 ... first light collecting part (light collecting part)
16 ... Third condensing part (condensing part)
DESCRIPTION OF SYMBOLS 19 ... Overlapping part 18 ... Spatial filtering optical system 20 ... Detection part 22 ... Point light source (1st comb light source)
32, 33 ... Dispersion element 60 ... Second comb light source LA ... Discrete spectrum light LB ... Discrete spectrum light p1, p2, ..., pn including information on the sample, different positions of the sample, condensing position P3 on the sample ... Conjugate position S ... sample

Claims (13)

  1.  互いに異なる周波数で分布しているスペクトルを二以上含む離散スペクトル光を発する点光源と、
     前記点光源から発せられた前記離散スペクトル光を前記スペクトル毎に互いに異なる方向に分散させる分散部と、
     前記分散部によって分散された前記スペクトルを試料の互いに異なる位置にそれぞれ集光させる集光部と、
     前記集光部によって集光された前記スペクトルが、前記試料の互いに異なる位置から透過又は反射したそれぞれのスペクトルを空間的に重ね合わせる重ね合わせ部と、
     前記重ね合わせ部によって重ね合わされた前記試料の情報を含む離散スペクトル光を、前記分散部によって分散された前記スペクトルの前記試料上の集光位置と共役な位置に集光させて空間フィルタリングする空間フィルタリング光学系と、
     前記空間フィルタリング光学系で空間フィルタリングされた前記試料の情報を含む離散スペクトル光から、前記試料の情報を含むモード分解スペクトルを取得する検出部と、
     を備えていることを特徴とする計測装置。
    A point light source that emits discrete spectrum light including two or more spectra distributed at different frequencies;
    A dispersion unit for dispersing the discrete spectrum light emitted from the point light source in different directions for each spectrum;
    A condensing unit for condensing the spectrum dispersed by the dispersing unit at different positions of the sample;
    An overlapping unit that spatially superimposes each spectrum transmitted or reflected from different positions of the sample, the spectrum collected by the light collecting unit;
    Spatial filtering that spatially filters the discrete spectrum light including the information of the sample superimposed by the superimposing unit at a position conjugate with the condensing position on the sample of the spectrum dispersed by the dispersion unit. Optical system,
    A detector for acquiring a mode-resolved spectrum including information on the sample from discrete spectrum light including information on the sample spatially filtered by the spatial filtering optical system;
    A measuring device comprising:
  2.  前記点光源は、前記離散スペクトル光として、周波数軸で周波数の位置が隣り合う前記スペクトルの周波数の間隔である第一隣接周波数間隔が互いに一致している第一の光周波数コムスペクトルを発する第一のコム光源であることを特徴とする請求項1に記載の計測装置。 The point light source emits, as the discrete spectrum light, a first optical frequency comb spectrum in which first adjacent frequency intervals that are frequency intervals of the spectrum adjacent to each other on the frequency axis coincide with each other. The measuring device according to claim 1, wherein the measuring device is a comb light source.
  3.  前記周波数軸で周波数の位置が隣り合う前記スペクトルの周波数の間隔が前記第一隣接周波数間隔とは異なる第二隣接周波数間隔であり、且つ前記第二隣接周波数間隔が互いに一致している第二の光周波数コムスペクトルを発する第二のコム光源を備え、
     前記検出部は、前記第一の光周波数コムスペクトルと前記第二の光周波数コムスペクトルとを干渉させて生じる干渉スペクトルに基づいて前記モード分解スペクトルを取得することを特徴とする請求項2に記載の計測装置。
    A second adjacent frequency interval in which a frequency interval of the spectrum adjacent to the frequency position on the frequency axis is a second adjacent frequency interval different from the first adjacent frequency interval, and the second adjacent frequency interval coincides with each other. A second comb light source emitting an optical frequency comb spectrum;
    The said detection part acquires the said mode decomposition | disassembly spectrum based on the interference spectrum produced by making said 1st optical frequency comb spectrum and said 2nd optical frequency comb spectrum interfere. Measuring device.
  4.  前記分散部は、入射する光を波長分散する分散素子を備え、
     前記点光源から発せられた前記離散スペクトル光を前記分散素子によって前記スペクトル毎に異なる方向に波長分散させ、
     前記重ね合わせ部は、前記試料を透過した前記試料の情報を含むスペクトルを空間的に重ね合わせることを特徴とする請求項1から請求項3の何れか一項に記載の計測装置。
    The dispersion unit includes a dispersion element that wavelength-disperses incident light,
    The discrete spectrum light emitted from the point light source is wavelength-dispersed in a different direction for each spectrum by the dispersive element,
    The measuring apparatus according to claim 1, wherein the superimposing unit spatially superimposes a spectrum including information on the sample transmitted through the sample.
  5.  前記分散部及び前記重ね合わせ部は入射する光を波長分散する一つの分散素子を共有し、
     前記点光源から発せられた前記離散スペクトル光を前記一つの分散素子によって前記スペクトル毎に異なる方向に分散させ、且つ前記試料から反射した前記試料の情報を含むスペクトルを空間的に重ね合わせることを特徴とする請求項1から請求項3の何れか一項に記載の計測装置。
    The dispersion unit and the overlapping unit share one dispersion element that wavelength-disperses incident light,
    The discrete spectrum light emitted from the point light source is dispersed in a different direction for each spectrum by the one dispersion element, and a spectrum including information on the sample reflected from the sample is spatially superimposed. The measuring device according to any one of claims 1 to 3.
  6.  前記分散素子は、
      前記離散スペクトル光を前記スペクトル毎に異なる第一の方向に波長分散させる第一の分散素子と、
      前記第一の分散素子によって波長分散された前記離散スペクトル光を前記第一の方向に交差する第二の方向に波長分散させる第二の分散素子と、を備えていることを特徴とする請求項4に記載の計測装置。
    The dispersive element is
    A first dispersion element for wavelength-dispersing the discrete spectrum light in a first direction different for each spectrum;
    2. A second dispersive element that chromatically disperses the discrete spectrum light wavelength-dispersed by the first dispersive element in a second direction intersecting the first direction. 4. The measuring device according to 4.
  7.  前記分散素子は、回折格子で構成されていることを特徴とする請求項3又は請求項4に記載の計測装置。 The measuring device according to claim 3 or 4, wherein the dispersive element comprises a diffraction grating.
  8.  前記離散スペクトル光の中心波長、前記隣り合うスペクトルの周波数の間隔、前記分散部の分散性能、前記集光部に用いられるレンズの開口数及び前記離散スペクトル光の隣り合う前記スペクトルの周波数の間隔がそれぞれ、前記集光部によって前記試料の互いに異なる位置にそれぞれ集光させた前記スペクトルのスポット同士の中心間隔が前記スペクトルのスポットの直径以上となるように設定されていることを特徴とする請求項1から請求項7の何れか一項に記載の計測装置。 The center wavelength of the discrete spectrum light, the frequency interval of the adjacent spectrum, the dispersion performance of the dispersion unit, the numerical aperture of the lens used for the light collecting unit, and the frequency interval of the spectrum of the discrete spectrum light adjacent to each other. The center distance between the spots of the spectrum collected respectively at different positions of the sample by the condenser is set to be equal to or larger than the diameter of the spots of the spectrum. The measuring device according to any one of claims 1 to 7.
  9.  前記離散スペクトル光の中心波長、前記隣り合うスペクトルの周波数の間隔、前記試料と前記重ね合わせ部との間に配置されるレンズの開口数及び前記重ね合わせ部の分解能がそれぞれ、前記試料の互いに異なる位置にそれぞれ集光させた前記スペクトルのスポットが前記レンズによって前記重ね合わせ部の所定の位置で空間的に重ね合わされるように設定されていることを特徴とする請求項8に記載の計測装置。 The center wavelength of the discrete spectrum light, the frequency interval between the adjacent spectra, the numerical aperture of the lens disposed between the sample and the overlapping portion, and the resolution of the overlapping portion are different from each other. 9. The measuring apparatus according to claim 8, wherein the spectrum spots focused at respective positions are set so as to be spatially superimposed at a predetermined position of the overlapping portion by the lens.
  10.  前記離散スペクトル光の複数の前記スペクトルを前記試料の互いに異なる位置にそれぞれ集光させてなる2次元スポット群を、該2次元スポット群をなす複数のスポットの中心から隣り合う前記スポット同士の間隔よりも小さい寸法で離れた位置にそれぞれのスポットの中心が配置される2次元スポット群を複数生成するスペクトルスポット複製部を備えていることを特徴とする請求項1から請求項9の何れか一項に記載の計測装置。 A two-dimensional spot group obtained by condensing a plurality of the spectra of the discrete spectrum light at different positions of the sample is determined from an interval between the spots adjacent to each other from the center of the plurality of spots forming the two-dimensional spot group. 10. A spectrum spot duplicating section for generating a plurality of two-dimensional spot groups in which the centers of the respective spots are arranged at positions separated by a small size. The measuring device described in 1.
  11.  前記試料の互いに異なる位置にそれぞれ集光させた前記スペクトルの2次元スポット群に対してデコンボリュージョン処理を施すデコンボリュージョン処理部を備えていることを特徴とする請求項1から請求項10の何れか一項に記載の計測装置。 The deconvolution processing part which performs a deconvolution process with respect to the two-dimensional spot group of the said spectrum condensed at the mutually different position of the said sample, respectively is provided. The measuring device according to any one of the above.
  12.  前記第一の光周波数コムスペクトルの位相とは異なる第三の光周波数コムスペクトルを発する第三のコム光源を備え、
     前記検出部は、前記第一の光周波数コムスペクトルと前記第三の光周波数コムスペクトルとを干渉させて得られる位相差に基づいてモード分解位相スペクトルを取得することを特徴とする請求項1から請求項11の何れか一項に記載の計測装置。
    A third comb light source that emits a third optical frequency comb spectrum different from the phase of the first optical frequency comb spectrum;
    The detection unit acquires a mode-resolved phase spectrum based on a phase difference obtained by causing the first optical frequency comb spectrum and the third optical frequency comb spectrum to interfere with each other. The measuring device according to claim 11.
  13.  前記第三の光周波数コムスペクトルの前記スペクトルの周波数の間隔が前記第一隣接周波数間隔とは異なる第二隣接周波数間隔であり、且つ前記第二隣接周波数間隔が互いに一致し、
     前記検出部は、前記第一の光周波数コムスペクトルと前記第三の光周波数コムスペクトルとを干渉させて生じる干渉スペクトルに基づいて前記モード分解位相スペクトルを取得することを特徴とする請求項12に記載の計測装置。
    The frequency interval of the spectrum of the third optical frequency comb spectrum is a second adjacent frequency interval different from the first adjacent frequency interval, and the second adjacent frequency interval is mutually matched,
    The said detection part acquires the said mode decomposition | disassembly phase spectrum based on the interference spectrum produced by making said 1st optical frequency comb spectrum and said 3rd optical frequency comb spectrum interfere. The measuring device described.
PCT/JP2016/066636 2015-06-29 2016-06-03 Measuring device WO2017002535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526246A JPWO2017002535A1 (en) 2015-06-29 2016-06-03 Measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-130249 2015-06-29
JP2015130249 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017002535A1 true WO2017002535A1 (en) 2017-01-05

Family

ID=57609509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066636 WO2017002535A1 (en) 2015-06-29 2016-06-03 Measuring device

Country Status (2)

Country Link
JP (1) JPWO2017002535A1 (en)
WO (1) WO2017002535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031584A1 (en) 2017-08-09 2019-02-14 国立研究開発法人科学技術振興機構 Measurement device and irradiation device
WO2019202648A1 (en) * 2018-04-16 2019-10-24 株式会社島津製作所 Light scattering detection device
CN112326672A (en) * 2020-11-06 2021-02-05 之江实验室 Rapid imaging system based on multicolor parallel frequency shift illumination

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720383A (en) * 1993-06-30 1995-01-24 Koike Seiki Kk Transmission type confocal laser microscope
JPH11249023A (en) * 1997-11-17 1999-09-17 Max Planck Ges Foerderung Wissenschaft Ev Confocal spectral system and spectral method
JP2001227911A (en) * 2000-02-18 2001-08-24 Kanagawa Acad Of Sci & Technol Interference detecting apparatus and tomograph
JP2007286379A (en) * 2006-04-18 2007-11-01 Korea Advanced Inst Of Sci Technol Real time confocal microscope using dispersion optical system
JP2010107519A (en) * 2001-11-29 2010-05-13 General Hospital Corp Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
JP2010525404A (en) * 2007-04-24 2010-07-22 デグデント・ゲーエムベーハー Arrangement and method for three-dimensional measurement of an object
JP2013015357A (en) * 2011-07-01 2013-01-24 Shimadzu Corp Flow cytometer
WO2014053415A1 (en) * 2012-10-01 2014-04-10 Carl Zeiss Microscopy Gmbh Confocal microscope with freely adjustable sample scanning
WO2014110290A1 (en) * 2013-01-09 2014-07-17 The Regents Of The University Of California Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720383A (en) * 1993-06-30 1995-01-24 Koike Seiki Kk Transmission type confocal laser microscope
JPH11249023A (en) * 1997-11-17 1999-09-17 Max Planck Ges Foerderung Wissenschaft Ev Confocal spectral system and spectral method
JP2001227911A (en) * 2000-02-18 2001-08-24 Kanagawa Acad Of Sci & Technol Interference detecting apparatus and tomograph
JP2010107519A (en) * 2001-11-29 2010-05-13 General Hospital Corp Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
JP2007286379A (en) * 2006-04-18 2007-11-01 Korea Advanced Inst Of Sci Technol Real time confocal microscope using dispersion optical system
JP2010525404A (en) * 2007-04-24 2010-07-22 デグデント・ゲーエムベーハー Arrangement and method for three-dimensional measurement of an object
JP2013015357A (en) * 2011-07-01 2013-01-24 Shimadzu Corp Flow cytometer
WO2014053415A1 (en) * 2012-10-01 2014-04-10 Carl Zeiss Microscopy Gmbh Confocal microscope with freely adjustable sample scanning
WO2014110290A1 (en) * 2013-01-09 2014-07-17 The Regents Of The University Of California Apparatus and methods for fluorescence imaging using radiofrequency-multiplexed excitation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031584A1 (en) 2017-08-09 2019-02-14 国立研究開発法人科学技術振興機構 Measurement device and irradiation device
CN110998295A (en) * 2017-08-09 2020-04-10 国立研究开发法人科学技术振兴机构 Measuring device and irradiation device
US10837906B2 (en) 2017-08-09 2020-11-17 Japan Science And Technology Agency Measurement device and irradiation device
EP3667298A4 (en) * 2017-08-09 2021-05-12 Japan Science and Technology Agency Measurement device and irradiation device
CN110998295B (en) * 2017-08-09 2022-09-16 国立研究开发法人科学技术振兴机构 Measuring device and irradiation device
WO2019202648A1 (en) * 2018-04-16 2019-10-24 株式会社島津製作所 Light scattering detection device
CN112326672A (en) * 2020-11-06 2021-02-05 之江实验室 Rapid imaging system based on multicolor parallel frequency shift illumination
CN112326672B (en) * 2020-11-06 2023-12-19 之江实验室 Rapid imaging system based on multicolor parallel frequency shift illumination

Also Published As

Publication number Publication date
JPWO2017002535A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
EP3394579B1 (en) Systems and methods for determining an identity of a probe in a target based on colors and locations of two or more fluorophores in the probe and in the target
JP5536650B2 (en) System and method for self-interfering fluorescence microscopy and associated computer-accessible media
JP4237175B2 (en) Apparatus and method for measuring thickness and shape of transparent thin film using white light interferometer
EP2910928B1 (en) Cars microscope
JP5847821B2 (en) Method and apparatus for non-resonant background reduction in coherent anti-Stokes Raman scattering (CARS) spectroscopy
JP6324709B2 (en) Optical measuring device and optical measuring method
CN104204775A (en) Optical coherence tomography apparatus and optical coherence tomography method
JP2007522445A (en) Method and apparatus for multi-mode spectral image analysis
US11041760B2 (en) Optical measurement device and optical measurement method
WO2017002535A1 (en) Measuring device
CN106990095A (en) Reflection-type confocal CARS micro-spectrometer method and devices
WO2017169788A1 (en) Pulse light generation device, light irradiation device, optical processing device, optical response measurement device, microscope device, and pulse light generation method
US20170322151A1 (en) Interferometric System and Method of Measurement of Refractive Index Spatial Distribution
CN103063307A (en) Image plane interference microimaging device and method
JP7079509B2 (en) Measuring device and irradiation device
JP2021526632A (en) Composite multispectral Raman spectroscopy measurement method and equipment
WO2014208349A1 (en) Optical measurement device and optical measurement method
RU2673784C1 (en) Two-component general track interferometer
CN110763341A (en) Stokes-Mueller spectral imaging system and detection method
JP3992699B2 (en) Time-resolved spectrometer
JP4074271B2 (en) Time-resolved spectrometer
Machikhin et al. Single-shot multi-spectral digital holographic imaging through acousto-optic wavelength scanning
Polschikova et al. Multispectral Digital Holography Based on Acousto-Optic Spectral Tuning in a Common-Path Interferometer
JP4074270B2 (en) Time-resolved spectrometer
CN117269140A (en) Super-resolution Raman microscopic imaging device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817644

Country of ref document: EP

Kind code of ref document: A1