WO2017000364A1 - 基于光束扫描共焦探测技术的探针传感方法及装置 - Google Patents

基于光束扫描共焦探测技术的探针传感方法及装置 Download PDF

Info

Publication number
WO2017000364A1
WO2017000364A1 PCT/CN2015/086951 CN2015086951W WO2017000364A1 WO 2017000364 A1 WO2017000364 A1 WO 2017000364A1 CN 2015086951 W CN2015086951 W CN 2015086951W WO 2017000364 A1 WO2017000364 A1 WO 2017000364A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
fiber
lens
photodetector
incident
Prior art date
Application number
PCT/CN2015/086951
Other languages
English (en)
French (fr)
Inventor
邹丽敏
倪赫
谭久彬
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Publication of WO2017000364A1 publication Critical patent/WO2017000364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the invention belongs to the technical field of dimension measurement, and mainly relates to a probe sensing method and device based on beam scanning confocal detection technology.
  • optical fiber to make probes In the field of internal cavity structure measurement with micro-size and large aspect ratio, the use of optical fiber to make probes is an important solution, which is easy to miniaturize and easy to manufacture.
  • the existing probes are as follows:
  • Similar patents include: dual-fiber co-sphere-coupled micro-measurement force aiming sensor with end-face microstructure (application number: 201410118922.2), micro-measurement force aiming sensor based on three-fiber co-sphere coupling (application number: 201410118924.1), based on double-incidence fiber A ball-coupled micro-measuring force aiming sensor (application number: 201410118968.4).
  • micro-cavity size and two-dimensional coordinate sensing method and device based on one-dimensional microfocus collimation application number: 200910071624.1
  • micropore measurement device and method based on orthogonal two-dimensional microfocus collimation application No.: 201110438936.9
  • two-dimensional micro-focus collimation and three-dimensional coordinate sensor of orthogonal optical path application number: 201110456022.5.
  • the "fiber Bragg grating-based micropore size measuring device and method" described in Application No. 201110456011.7 utilizes the property that the fiber Bragg grating is subjected to external force to cause a change in the pitch and thus the wavelength of the reflected light center is detected.
  • Similar patents include: contact temperature non-inductive three-dimensional sensor based on fiber Bragg grating (application number: 201110456051.1), three-dimensional micro-scale measuring device and method based on four-core fiber grating (application number: 201410030736.3), based on three-core fiber grating Two-dimensional micro-scale measuring device and method (application number: 201410030737.8), two-dimensional micro-scale measuring device and method based on double-core fiber grating (application number: 201410030738.2), two-dimensional micro-scale measuring device and method based on double fiber grating ( Application number: 201410030739.7).
  • the existing probes described in the above documents and the reference documents mentioned therein are disadvantageous in that: (1) the probe is difficult to manufacture and is not easily miniaturized; (2) the intensity of the probe light is weak and difficult to detect; 3) No three-dimensional detection capability or weak three-dimensional detection capability; (4) low resolution.
  • the object of the present invention is to provide a probe sensing method and device based on beam scanning confocal detection technology, which aims to achieve a simple structure, high resolution and three-dimensional detection capability.
  • a probe sensing method based on beam scanning confocal detection technology in which a laser beam is incident from the incident end of the fiber probe to the inside of the fiber probe through a lens, and the incident beam is reflected by the fiber grating structure inside the fiber probe and then probed from the fiber
  • the incident end of the needle exits the outgoing beam of the fiber optic probe is focused by the lens to the photodetector, the lateral photodetector is used to detect the position of the focused spot to measure the lateral displacement of the probe, and the axial photodetector is used to detect the intensity of the focused spot.
  • To measure the axial displacement of the probe complete the three-dimensional sensing.
  • the beam scanning device is used to control the deflection of the laser beam such that the focus of the laser beam follows the fiber optic probe to ensure that the laser beam can be incident inside the fiber optic probe.
  • a probe sensing device based on beam scanning confocal detection technology comprising a laser, wherein a collimating lens, a two-dimensional scanning galvanometer, a scanning lens, a tube mirror, a microscope objective, and an optical fiber are sequentially disposed on an outgoing light path of the laser a probe, the fiber optic probe being mounted on the mount by suspension suspension, the fiber probe being composed of an optical fiber engraved with a fiber grating structure and a probe ball; in the microscope objective Configuring a first beam splitter between the tube mirrors, and sequentially arranging a first collecting lens and a first lateral photodetector on the reflected light path of the first beam splitter; arranging between the two-dimensional scanning galvanometer and the collimating lens a second beam splitter, wherein a second collecting lens and a second lateral photodetector are disposed in sequence on the reflected light path of the second beam splitter; and a third beam splitter is disposed between the second beam splitter and the second collecting lens, A third collecting lens
  • a pinhole is provided at a focus point of the beam in front of the axial photodetector.
  • the probe is easy to manufacture and easy to realize miniaturization; (2) the detection light has high intensity and is easy to detect; (3) has the capability of three-dimensional detection and demodulation; and (4) has high resolution.
  • Figure 2 is a schematic diagram of the probe structure
  • Figure 3 is a schematic diagram of lateral measurement
  • Figure 4 is a schematic diagram of axial measurement
  • a probe sensing method based on beam scanning confocal detection technology in which a laser beam is incident from the incident end of the fiber probe to the inside of the fiber probe through a lens, and the incident beam is reflected by the fiber grating structure inside the fiber probe and then probed from the fiber
  • the incident end of the needle exits the outgoing beam of the fiber optic probe is focused by the lens to the photodetector, the lateral photodetector is used to detect the position of the focused spot to measure the lateral displacement of the probe, and the axial photodetector is used to detect the intensity of the focused spot.
  • To measure the axial displacement of the probe complete the three-dimensional sensing.
  • the beam scanning device is used to control the deflection of the laser beam such that the focus of the laser beam follows the fiber optic probe to ensure that the laser beam can be incident inside the fiber optic probe.
  • a probe sensing device based on beam scanning confocal detection technology comprising a laser 13 characterized in that a collimating lens 12, a two-dimensional scanning galvanometer 10, and a scanning lens 9 are sequentially disposed on an outgoing light path of the laser 13 , tube mirror 8, microscope objective 4, fiber optic probe 1, the fiber optic probe 1 through the suspension elastic 2 Suspended and mounted on the fixing base 3, the optical fiber probe 1 is composed of an optical fiber 1a in which the fiber grating structure 1c is engraved and a probe ball 1b; and a configuration is arranged between the microscope objective 4 and the tube mirror 8.
  • a splitter mirror 5 in which the first collecting lens 6 and the first lateral photodetector 7 are disposed in sequence on the reflected light path of the first beam splitter 5; and between the two-dimensional scanning galvanometer 10 and the collimating lens 12 a second beam splitter 11 in which a second collecting lens 15 and a second lateral photodetector 16 are sequentially disposed on a reflected light path of the second beam splitter 11; between the second beam splitter 11 and the second collecting lens 15
  • the third beam splitter 14 is disposed, and the third collecting lens 17 and the axial photodetector 19 are sequentially disposed on the reflected light path of the third beam splitter 14.
  • a pinhole 18 is provided at the focus of the beam in front of the axial photodetector 19.
  • the laser light emitted from the laser 13 is incident on the inside of the fiber probe 1 through a series of optical components.
  • the fiber grating structure 1c inside the fiber probe 1 reflects incident light of a specific wavelength, and the reflected light is emitted from the incident end of the fiber probe 1.
  • the reflected light is detected by the first beam splitter 5, the second beam splitter 11 and the third beam splitter 14 by the first lateral photodetector 7, the second lateral photodetector 16, and the axial photodetector 19, respectively. .
  • the first lateral photodetector 7 and the second lateral photodetector 16 are used to measure the position of the focused spot, generally implemented by a device having a function of measuring a spot position such as QPD, PSD or CCD; and the axial photodetector 19 is used.
  • Measuring the intensity of the focused spot is generally achieved by a device capable of measuring light intensity such as APD, PMT or CCD; the CCD can simultaneously measure the position and intensity of the spot, which can be used to simplify the optical path in actual operation.
  • the lateral displacement of the probe ball 1b is X
  • X is proportional to x. Since the exit end (incident end) of the optical fiber probe 1 moves, the position of the focused spot of the outgoing light of the optical fiber probe 1 on the first lateral photodetector 7 and the second lateral photodetector 16 also moves, detecting The lateral displacement of the probe ball 1b can be calculated by the amount of movement of the spot position, and the lateral sensing of the fiber probe 1 is completed.
  • the two-dimensional scanning galvanometer 10 controls the deflection of the laser beam so that the focus of the laser beam follows the movement of the fiber probe 1 to ensure that it is incident inside the fiber probe 1, and the control of the two-dimensional scanning galvanometer 10 can be opened or closed.
  • the first lateral photodetector 7 and the second lateral photodetector 16 are not simultaneously required, and only one of them can be used for lateral sensing. However, if two lateral photoelectrics are properly configured
  • the detector's resolution and range allow the probe to have both high resolution and large range measurement capabilities.
  • the axial displacement of the probe ball 1b is Z, and the fiber probe 1 is incident due to the guiding action of the suspension spring 2
  • the displacement of the end is z, and in the small range, Z is equal to z. Since the incident end of the optical fiber probe 1 moves axially, the coupling efficiency of the laser beam is lowered, so that the light energy incident on the inside of the optical fiber probe 1 is lowered, and the intensity of the outgoing light of the optical fiber probe 1 is also reduced.
  • the axial displacement of the probe ball 1b can be calculated by the change of the light intensity detected by the axial photodetector 19, and the axial sensing of the fiber probe 1 is completed.
  • a pinhole 18 is provided at a focus point of the beam in front of the axial photodetector 19, which blocks the light outside the center, enabling the axial photodetector 19 to perform point detection, which can significantly improve the axial measurement resolution of the fiber probe 1. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于光束扫描共焦探测技术的探针传感方法及装置,该方法包括:激光光束通过透镜从光纤探针(1)的入射端入射至光纤探针(1)内部,入射光束在光纤探针(1)内部由光纤光栅结构(1c)反射后从光纤探针(1)的入射端出射,光纤探针(1)的出射光束通过透镜聚焦至光电探测器,使用横向光电探测器(7,16)探测聚焦光斑的位置来测量光纤探针(1)的横向位移,使用轴向光电探测器(19)探测聚焦光斑的光强来测量光纤探针(1)的轴向位移,完成三维传感;该方法与装置具有探针制作方便且易实现微型化、探测光强度高且易于探测、具备三维探测及解调能力、分辨力高的特点。

Description

基于光束扫描共焦探测技术的探针传感方法及装置 技术领域
本发明属于尺寸测量技术领域,主要涉及一种基于光束扫描共焦探测技术的探针传感方法及装置。
背景技术
在具有微尺寸和大深径比的内腔结构测量领域,使用光纤制作探针是一个重要的解决方案,具有易于微型化、易于制作等优势,现有探针如下:
(1)申请号200510072254.5所描述的“双光纤耦合接触式微测量力瞄准传感器”,在该专利中,提出了一种新结构传感器,其利用两根光纤烧制耦合球的方式实现光的反向传输,并对出射光进行探测。
相似专利有:带有端面微结构的双光纤共球耦合微测量力瞄准传感器(申请号:201410118922.2)、基于三光纤共球耦合的微测量力瞄准传感器(申请号:201410118924.1)、基于双入射光纤共球耦合的微测量力瞄准传感器(申请号:201410118968.4)。
(2)申请号200910071623.7所描述的“基于二维微焦准直的微小内腔尺寸和三维坐标传感方法与装置”,利用光纤作为柱透镜对点光源准直成像从而实现探测。
相似专利有:基于一维微焦准直的微小内腔尺寸和二维坐标传感方法与装置(申请号:200910071624.1)、基于正交二维微焦准直的微孔测量装置与方法(申请号:201110438936.9)、正交光路二维微焦准直与三维坐标传感器(申请号:201110456022.5)。
(3)申请号201110456011.7所描述的“基于光纤布拉格光栅的微孔尺寸测量装置及方法”,利用了光纤布拉格光栅受外力导致栅距变化进而致其反射光中心波长改变的性质进行探测。
相似专利有:基于光纤布拉格光栅的接触式温度无感三维探测传感器(申请号:201110456051.1)、基于四芯光纤光栅的三维微尺度测量装置及方法(申请号:201410030736.3)、基于三芯光纤光栅的二维微尺度测量装置及方法(申请号:201410030737.8)、基于双芯光纤光栅的二维微尺度测量装置及方法(申请号:201410030738.2)、基于双光纤光栅的二维微尺度测量装置及方法(申请号:201410030739.7)。
(4)申请号201410118970.1所描述的“基于偏振态检测的双入射保偏平光纤耦合球微尺度传感器”,利用光纤烧制的耦合球实现光反向传输,通过检测出射光的偏振态来实现探测。
相似专利有:基于偏振态检测的保偏平光纤耦合球微尺度传感器(申请号:201410118966.5)。
(5)参考文献(H Ji,H-Y Hsu,L X Kong and A B Wedding.Development of a contact probe incorporating a Bragg grating strain sensor for nano coordinate measuring machines[J].Meas.Sci.Technol.2009,20:1-7.)提出了一种利用光纤光栅设计的传感器探针,采用反射式光栅对反射光谱进行分光,并利用CCD测量其固定波长的光能量。但其实验并不成功,传感信号完全淹没在噪声信号之中,无法被检出。
上述文件及其提到的对比文献中所描述的现有探针不足之处在于:(1)探针制作难度大,且不易实现微型化;(2)探测光的强度弱,难以探测;(3)无三维探测能力或三维探测能力弱;(4)分辨力低。
发明内容
本发明的目的是针对上述现有技术存在的问题,设计提供一种基于光束扫描共焦探测技术的探针传感方法及装置,达到结构简单、分辨力高且具有三维探测能力的目的。
本发明的目的是这样实现的:
一种基于光束扫描共焦探测技术的探针传感方法,激光光束通过透镜从光纤探针的入射端入射至光纤探针内部,入射光束在光纤探针内部由光纤光栅结构反射后从光纤探针的入射端出射,光纤探针的出射光束通过透镜聚焦至光电探测器,使用横向光电探测器探测聚焦光斑的位置来测量探针的横向位移,使用轴向光电探测器探测聚焦光斑的光强来测量探针的轴向位移,完成三维传感。
使用光束扫描装置控制激光光束偏转,使激光光束的聚焦点跟随所述光纤探针移动以保证激光光束能够入射至所述光纤探针内部。
一种基于光束扫描共焦探测技术的探针传感装置,包括激光器,在所述激光器的出射光路上依次配置准直透镜、二维扫描振镜、扫描透镜、管镜、显微物镜、光纤探针,所述光纤探针通过悬挂弹片悬挂安装在固定座上,所述光纤探针由内部刻有光纤光栅结构的光纤和探针触球配装构成;在所述显微物镜与 管镜之间配置第一分光镜,在所述第一分光镜的反射光路上依次配置第一收集透镜和第一横向光电探测器;在所述二维扫描振镜与准直透镜之间配置第二分光镜,在所述第二分光镜的反射光路上依次配置第二收集透镜和第二横向光电探测器;在所述第二分光镜和第二收集透镜之间配置第三分光镜,在所述第三分光镜的反射光路上依次配置第三收集透镜和轴向光电探测器。
在所述轴向光电探测器前方的光束聚焦点处设置针孔。
本发明的优点是:(1)探针制作方便且易实现微型化;(2)探测光的强度高,易于探测;(3)具备三维探测和解调的能力;(4)分辨力高。
附图说明
图1为本发明结构示意图
图2为探针结构示意图
图3为横向测量示意图
图4为轴向测量示意图
图中:1.光纤探针,2.悬挂弹片,3.固定座,4.显微物镜,5.第一分光镜,6.第一收集透镜,7.第一横向光电探测器,8.管镜,9.扫描透镜,10.二维扫描振镜,11.第二分光镜,12.准直透镜,13.激光器,14.第三分光镜,15.第二收集透镜,16.第二横向光电探测器,17.第三收集透镜,18.针孔,19.轴向光电探测器,1a.光纤,1b.探针触球,1c.光纤光栅结构。
具体实施方式
下面结合附图对本发明具体实施方式进行详细描述。
一种基于光束扫描共焦探测技术的探针传感方法,激光光束通过透镜从光纤探针的入射端入射至光纤探针内部,入射光束在光纤探针内部由光纤光栅结构反射后从光纤探针的入射端出射,光纤探针的出射光束通过透镜聚焦至光电探测器,使用横向光电探测器探测聚焦光斑的位置来测量探针的横向位移,使用轴向光电探测器探测聚焦光斑的光强来测量探针的轴向位移,完成三维传感。
使用光束扫描装置控制激光光束偏转,使激光光束的聚焦点跟随所述光纤探针移动以保证激光光束能够入射至所述光纤探针内部。
一种基于光束扫描共焦探测技术的探针传感装置,包括激光器13,其特征在于:在所述激光器13的出射光路上依次配置准直透镜12、二维扫描振镜10、扫描透镜9、管镜8、显微物镜4、光纤探针1,所述光纤探针1通过悬挂弹片2 悬挂安装在固定座3上,所述光纤探针1由内部刻有光纤光栅结构1c的光纤1a和探针触球1b配装构成;在所述显微物镜4与管镜8之间配置第一分光镜5,在所述第一分光镜5的反射光路上依次配置第一收集透镜6和第一横向光电探测器7;在所述二维扫描振镜10与准直透镜12之间配置第二分光镜11,在所述第二分光镜11的反射光路上依次配置第二收集透镜15和第二横向光电探测器16;在所述第二分光镜11和第二收集透镜15之间配置第三分光镜14,在所述第三分光镜14的反射光路上依次配置第三收集透镜17和轴向光电探测器19。
在所述轴向光电探测器19前方的光束聚焦点处设置针孔18。
本发明的工作原理如下:
激光器13发出的激光经过一系列光学元器件入射至光纤探针1内部,光纤探针1内部的光纤光栅结构1c将特定波长的入射光反射,反射光从光纤探针1的入射端出射,所述反射光由第一分光镜5、第二分光镜11和第三分光镜14的作用,分别被第一横向光电探测器7、第二横向光电探测器16和轴向光电探测器19所探测。其中,第一横向光电探测器7和第二横向光电探测器16用来测量聚焦光斑的位置,一般采用QPD、PSD或CCD等具有测量光斑位置功能的器件实现;轴向光电探测器19用来测量聚焦光斑的光强,一般采用APD、PMT或CCD等能够测量光强的器件实现;CCD能够同时测量光斑位置和光强,在实际操作中可用其简化光路。
如图3所示,当光纤探针1的探针触球1b横向接触被测物体时,探针触球1b的横向位移为X,由于悬挂弹片2的支点作用,光纤探针1入射端的位移为x,在小范围时,X与x成比例关系。由于光纤探针1的出射端(入射端)发生了移动,则光纤探针1的出射光在第一横向光电探测器7和第二横向光电探测器16上的聚焦光斑位置亦发生移动,检测出光斑位置的移动量即可计算探针触球1b的横向位移,完成光纤探针1的横向传感。
当探针触球1b的横向位移X增大时,光纤探针1入射端的移动量x随之增大,光束将无法入射至光纤探针1内部,此时,根据对光斑位置的测量结果驱动二维扫描振镜10以控制激光光束偏转,使激光光束的聚焦点跟随光纤探针1移动以保证其入射至光纤探针1内部,对二维扫描振镜10的控制可采取开环或闭环的方式;其中,第一横向光电探测器7和第二横向光电探测器16并非同时需要的,仅使用其中一个亦可完成横向传感,然而,若合理配置两个横向光电 探测器各自的分辨力及量程可以使得探针同时具备高分辨力和大量程测量能力。
如图4所示,当光纤探针1的探针触球1b轴向接触被测物体时,探针触球1b的轴向位移为Z,由于悬挂弹片2的导向作用,光纤探针1入射端的位移为z,在小范围时,Z与z相等。由于光纤探针1的入射端轴向移动,导致激光光束的耦合效率降低,使得入射至光纤探针1内部的光能量降低,则光纤探针1的出射光强度也随之降低,因此,根据轴向光电探测器19所探测到的光强变化即可计算出探针触球1b的轴向位移,完成光纤探针1的轴向传感。
在轴向光电探测器19前方的光束聚焦点处设置针孔18,可以将中心以外的光挡住,使轴向光电探测器19实现点探测,可以显著提高光纤探针1的轴向测量分辨力。

Claims (4)

  1. 一种基于光束扫描共焦探测技术的探针传感方法,其特征在于:激光光束通过透镜从光纤探针的入射端入射至光纤探针内部,入射光束在光纤探针内部由光纤光栅结构反射后从光纤探针的入射端出射,光纤探针的出射光束通过透镜聚焦至光电探测器,使用横向光电探测器探测聚焦光斑的位置来测量探针的横向位移,使用轴向光电探测器探测聚焦光斑的光强来测量探针的轴向位移,完成三维传感。
  2. 根据权利要求1所述的基于光束扫描共焦探测技术的探针传感方法,其特征在于:使用光束扫描装置控制激光光束偏转,使激光光束的聚焦点跟随所述光纤探针移动以保证激光光束能够入射至所述光纤探针内部。
  3. 一种基于光束扫描共焦探测技术的探针传感装置,包括激光器(13),其特征在于:在所述激光器(13)的出射光路上依次配置准直透镜(12)、扫描振镜(10)、扫描透镜(9)、管镜(8)、显微物镜(4)、光纤探针(1),所述光纤探针(1)通过悬挂弹片(2)悬挂安装在固定座(3)上,所述光纤探针(1)由内部刻有光纤光栅结构(1c)的光纤(1a)和探针触球(1b)配装构成;在所述显微物镜(4)与管镜(8)之间配置第一分光镜(5),在所述第一分光镜(5)的反射光路上依次配置第一收集透镜(6)和第一横向光电探测器(7);在所述扫描振镜(10)与准直透镜(12)之间配置第二分光镜(11),在所述第二分光镜(11)的反射光路上依次配置第二收集透镜(15)和第二横向光电探测器(16);在所述第二分光镜(11)和第二收集透镜(15)之间配置第三分光镜(14),在所述第三分光镜(14)的反射光路上依次配置第三收集透镜(17)和轴向光电探测器(19)。
  4. 根据权利要求4所述的基于光束扫描共焦探测技术的探针传感装置,其特征在于:在所述轴向光电探测器(19)前方的光束聚焦点处设置针孔(18)。
PCT/CN2015/086951 2015-07-02 2015-08-14 基于光束扫描共焦探测技术的探针传感方法及装置 WO2017000364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510381702.3A CN105021128B (zh) 2015-07-02 2015-07-02 基于光束扫描共焦探测技术的探针传感方法及装置
CN201510381702.3 2015-07-02

Publications (1)

Publication Number Publication Date
WO2017000364A1 true WO2017000364A1 (zh) 2017-01-05

Family

ID=54411282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086951 WO2017000364A1 (zh) 2015-07-02 2015-08-14 基于光束扫描共焦探测技术的探针传感方法及装置

Country Status (2)

Country Link
CN (1) CN105021128B (zh)
WO (1) WO2017000364A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950558A (zh) * 2017-04-06 2017-07-14 北京环境特性研究所 一种激光能量测量组件、测量仪与测量方法
CN107727008A (zh) * 2017-10-13 2018-02-23 中国科学院上海技术物理研究所 一种测量主动光电系统收发同轴的装置及方法
CN113008929A (zh) * 2021-02-22 2021-06-22 哈尔滨工业大学(深圳) 热导测量装置、系统及方法
CN113899699A (zh) * 2021-11-08 2022-01-07 长春理工大学 用于级联双环生物传感器出入射共孔径多路空间对光系统
CN113916776A (zh) * 2021-08-27 2022-01-11 河海大学 一种基于虚拟针孔共焦技术的轴向定位系统及方法
CN113916891A (zh) * 2021-09-24 2022-01-11 哈尔滨工业大学 基于光纤环形光束的暗场共焦布里渊显微测量装置与方法
US11555971B2 (en) * 2018-08-29 2023-01-17 Shanghai Institute Of Optics And Fine Mechanics, Chinese Academy Of Sciences Apparatus and method for coupling the spatial light to the optical fiber light for achieving the stability of an optical axis without a position detector

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806255A (zh) * 2016-04-19 2016-07-27 哈尔滨工业大学 一种用于共焦显微系统的α-β扫描方法
CN107144219B (zh) * 2017-06-01 2019-08-20 成都茵普精密机械有限公司 一种共聚焦激光测量方法
CN108332664B (zh) * 2018-04-10 2020-01-03 哈尔滨工业大学 一种基于侧面激光耦合的光纤探针传感装置、传感方法及探针制备方法
CN108519057B (zh) * 2018-04-10 2020-01-03 哈尔滨工业大学 一种光纤侧面荧光物质沉积微型探针三维传感装置、传感方法及探针制备方法
CN108332671B (zh) * 2018-04-10 2020-06-26 哈尔滨工业大学 一种表面荧光增强微型探针二维传感装置、传感方法及探针制备方法
CN110487516B (zh) * 2019-09-16 2024-05-10 南京英田光学工程股份有限公司 用于平行光管检焦的角锥自准直扫描装置
CN115406357B (zh) * 2022-06-09 2023-09-05 东北林业大学 基于共焦探测的大深径比微孔测量传感装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833018A (zh) * 2010-05-21 2010-09-15 清华大学 一种基于光纤传感的扫描探针表面测量系统和测量方法
US20110310395A1 (en) * 2010-06-18 2011-12-22 National Taiwan University Three-dimensional optical coherence tomography confocal imaging apparatus
JP2013213695A (ja) * 2012-03-30 2013-10-17 Sumitomo Osaka Cement Co Ltd 形状測定装置
CN103411561A (zh) * 2013-08-15 2013-11-27 哈尔滨工业大学 基于角谱扫描照明的微结构成像装置与方法
CN103900470A (zh) * 2014-03-20 2014-07-02 哈尔滨工业大学 基于三光纤共球耦合的微测量力瞄准传感器
CN104697448A (zh) * 2015-03-05 2015-06-10 哈尔滨工业大学 基于光纤环形激光器的双光纤光栅探针微尺度测量装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816270A1 (de) * 1998-04-11 1999-10-21 Werth Messtechnik Gmbh Verfahren und Anordnung zur Erfassung der Geometrie von Gegenständen mittels eines Koordinatenmeßgeräts
CN1146724C (zh) * 2000-12-08 2004-04-21 中国科学院上海光学精密机械研究所 检测光盘物镜小光斑的装置
JP5226837B2 (ja) * 2011-08-03 2013-07-03 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡用の光学式変位検出機構のスポット光の位置合わせ方法
CN102589439B (zh) * 2011-12-16 2015-04-22 哈尔滨工业大学 基于光纤布拉格光栅的接触式温度无感三维探测传感器
CN103383247B (zh) * 2013-07-30 2016-08-10 中国计量科学研究院 一种光学检测系统及装置
CN103900468A (zh) * 2014-03-20 2014-07-02 哈尔滨工业大学 带有端面微结构的双光纤共球耦合微测量力瞄准传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833018A (zh) * 2010-05-21 2010-09-15 清华大学 一种基于光纤传感的扫描探针表面测量系统和测量方法
US20110310395A1 (en) * 2010-06-18 2011-12-22 National Taiwan University Three-dimensional optical coherence tomography confocal imaging apparatus
JP2013213695A (ja) * 2012-03-30 2013-10-17 Sumitomo Osaka Cement Co Ltd 形状測定装置
CN103411561A (zh) * 2013-08-15 2013-11-27 哈尔滨工业大学 基于角谱扫描照明的微结构成像装置与方法
CN103900470A (zh) * 2014-03-20 2014-07-02 哈尔滨工业大学 基于三光纤共球耦合的微测量力瞄准传感器
CN104697448A (zh) * 2015-03-05 2015-06-10 哈尔滨工业大学 基于光纤环形激光器的双光纤光栅探针微尺度测量装置及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950558A (zh) * 2017-04-06 2017-07-14 北京环境特性研究所 一种激光能量测量组件、测量仪与测量方法
CN107727008A (zh) * 2017-10-13 2018-02-23 中国科学院上海技术物理研究所 一种测量主动光电系统收发同轴的装置及方法
US11555971B2 (en) * 2018-08-29 2023-01-17 Shanghai Institute Of Optics And Fine Mechanics, Chinese Academy Of Sciences Apparatus and method for coupling the spatial light to the optical fiber light for achieving the stability of an optical axis without a position detector
CN113008929A (zh) * 2021-02-22 2021-06-22 哈尔滨工业大学(深圳) 热导测量装置、系统及方法
CN113916776A (zh) * 2021-08-27 2022-01-11 河海大学 一种基于虚拟针孔共焦技术的轴向定位系统及方法
CN113916891A (zh) * 2021-09-24 2022-01-11 哈尔滨工业大学 基于光纤环形光束的暗场共焦布里渊显微测量装置与方法
CN113916891B (zh) * 2021-09-24 2023-07-28 哈尔滨工业大学 基于光纤环形光束的暗场共焦布里渊显微测量装置与方法
CN113899699A (zh) * 2021-11-08 2022-01-07 长春理工大学 用于级联双环生物传感器出入射共孔径多路空间对光系统

Also Published As

Publication number Publication date
CN105021128B (zh) 2017-09-26
CN105021128A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2017000364A1 (zh) 基于光束扫描共焦探测技术的探针传感方法及装置
CN102768015B (zh) 荧光响应随动针孔显微共焦测量装置
CN104990499B (zh) 基于共轭焦点跟踪探测技术的探针传感装置
CN102121818B (zh) 纳米分辨全反射差分微位移测量的方法和装置
CN103017687B (zh) 正交偏振光纤光栅矢量扭转传感装置及其检测方法
KR102115498B1 (ko) 공초점 계측 장치
CN110793450B (zh) 一种基于光纤光镊的高精度粒径测量装置及测量方法
US20180259551A1 (en) Fiber-Optic Accelerometer
KR20130065998A (ko) 렌즈 일체형 광섬유쌍 프로브를 이용한 이미징 시스템
WO2012170275A1 (en) Coupled multi-wavelength confocal systems for distance measurements
CN103267478B (zh) 高精度位置检测装置及方法
CN102121819B (zh) 一种纳米分辨全反射差分微位移测量的方法和装置
WO2017000363A1 (zh) 基于光纤出射光探测的组合悬臂梁探针传感方法及装置
RU156297U1 (ru) Волоконно-оптическое устройство измерения показателя преломления
US20120316830A1 (en) Coupled multi-wavelength confocal systems for distance measurements
CN101281126B (zh) 光纤式光学外差法倏逝波腔衰荡光谱分析装置
CN109443711A (zh) 一种基于针孔随动高速扫描共焦显微技术的大口径光学元件测量装置和方法
CN108332664B (zh) 一种基于侧面激光耦合的光纤探针传感装置、传感方法及探针制备方法
CN108593625A (zh) 一种基于能量反馈的全光纤共焦拉曼光谱测量方法
CN108519057B (zh) 一种光纤侧面荧光物质沉积微型探针三维传感装置、传感方法及探针制备方法
CN211155674U (zh) 基于机械制啁啾长周期光纤光栅的共路径光学层析成像系统
RU2460988C1 (ru) Способ измерения распределения частиц по размерам в расширенном диапазоне концентраций и устройство для реализации способа (варианты)
CN108332671B (zh) 一种表面荧光增强微型探针二维传感装置、传感方法及探针制备方法
CN109443241A (zh) 一种基于音叉驱动的高速轴向扫描共焦显微测量装置和方法
RU78947U1 (ru) Устройство измерения линейных перемещений объектов с плоской зеркально-отражающей поверхностью

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896894

Country of ref document: EP

Kind code of ref document: A1