WO2016208745A1 - 電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム - Google Patents

電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム Download PDF

Info

Publication number
WO2016208745A1
WO2016208745A1 PCT/JP2016/068904 JP2016068904W WO2016208745A1 WO 2016208745 A1 WO2016208745 A1 WO 2016208745A1 JP 2016068904 W JP2016068904 W JP 2016068904W WO 2016208745 A1 WO2016208745 A1 WO 2016208745A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex impedance
battery
discharge
frequency
depth
Prior art date
Application number
PCT/JP2016/068904
Other languages
English (en)
French (fr)
Inventor
康平 田中
理嗣 曽根
盛介 福田
昌幸 板垣
Original Assignee
国立研究開発法人宇宙航空研究開発機構
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構, 学校法人東京理科大学 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to US15/739,566 priority Critical patent/US10534038B2/en
Priority to DE112016002873.3T priority patent/DE112016002873T5/de
Priority to JP2017525458A priority patent/JP7018609B2/ja
Publication of WO2016208745A1 publication Critical patent/WO2016208745A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • G01R31/3832Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration without measurement of battery voltage
    • G01R31/3833Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration without measurement of battery voltage using analog integrators, e.g. coulomb-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the present invention relates to a method and system for performing safe charging / discharging while estimating a charging state or depth of discharge of a battery and feeding back to control.
  • the present invention also relates to a method and system for performing safe operation while evaluating the soundness of a battery and feeding back to control.
  • Secondary batteries are widely used in stationary electric storage devices for home use, electric vehicle power supplies, personal computers, artificial satellites, and the like.
  • liquid leakage due to overcharge, failure due to overdischarge, and the like are known, and operation is required after recognizing an appropriate charge state and depth of discharge.
  • it is effective in determining the replacement timing to operate the primary battery after recognizing the depth of discharge.
  • Patent Document 1 In order to manage the state of charge of a battery, a method of measuring the voltage of a battery in an energized or open state has been common (Patent Document 1). This is because the voltage of the conventional battery tends to gradually decrease with discharge, and the discharge state can be recognized from the reached voltage. On the other hand, there is a battery in which it is difficult to estimate the discharge state from only the voltage.
  • the present invention provides a method and system for enabling estimation of the charge / discharge state even when the charge / discharge state of the battery cannot be estimated from conventional techniques, and
  • An object is to provide a method and system for appropriately recognizing soundness.
  • the present invention provides, as a new technique, a state of charge focusing on the internal resistance of a battery, a method of estimating a discharge depth, a method of controlling charge / discharge based on the estimated state of charge / discharge, and a related system. Propose.
  • the present invention also includes data relating to internal resistance acquired on-board (in a state where the battery is mounted on a mobile object such as an automobile or an artificial satellite, or in a state where the battery is used in any other situation). It is possible to analyze the charge / discharge state and provide a method for feeding back the analysis result to the control.
  • the present invention teaches a charging / discharging management method and system that understands the state of charge of a battery from on-board AC impedance measurement function and AC impedance information obtained as response characteristics to a pulse load, and DC resistance, and feeds back to the control. To do.
  • the impedance proposed by the present invention is used.
  • the method can be used in an environment where the current integration method cannot be used, or as a method for improving the accuracy by complementing the current integration method.
  • the present invention determines the complex impedance for a plurality of frequencies between the positive and negative electrodes of the battery, and determines the frequency dependence of the Warburg impedance among the determined complex impedances as a known charge state or discharge of the battery. Estimating the state of charge or depth of discharge of a battery as compared to the frequency dependence of the Warburg impedance corresponding to depth.
  • the frequency dependence of the determined complex impedance in the frequency region lower than the frequency region of the Warburg impedance is also changed to a known state of charge or By comparing with the frequency dependence of the complex impedance corresponding to the depth of discharge, the state of charge or the depth of discharge can be estimated.
  • the present inventor has determined that the charge impedance (SOC) is different in the low-frequency domain Warburg impedance (Warburg Impedance), which is controlled by diffusion, and the complex impedance in a lower frequency domain than the Warburg impedance frequency domain.
  • State of Charge Ratio of current charge amount to charge amount at full charge
  • discharge depth Depth of Discharge: ratio of current discharge charge amount to dischargeable charge amount. It was found to show dependency. If this phenomenon is utilized, it becomes possible to estimate the charge state and discharge depth of the battery based on the frequency dependence of the measured complex impedance.
  • the frequency dependence of the complex impedance corresponding to a known charge state or discharge depth is measured in advance, the measurement results are stored as a catalog, and the complex measured for a battery whose charge state or discharge depth is unknown.
  • the phenomenon that the frequency dependency of the Warburg impedance and the complex impedance in the lower frequency region changes depending on the state of charge or the depth of discharge is the same not only in the specific battery exemplified in the examples described later but also in any battery. Presumed to occur.
  • the characteristic response of the impedance is a phenomenon derived from the battery discharge curve in which the potential fluctuation accompanying the change in capacity increases in the high or low state of charge, and is a similar phenomenon in general batteries in general. This is because it is considered that this occurs. Therefore, the present invention can be applied to any battery (including not only a secondary battery but also a primary battery).
  • the primary battery may be inactive at the beginning of discharge, and it may be difficult to determine the impedance.
  • the method of the present invention may further include the step of determining the direct current resistance of the battery and estimating the deterioration state of the battery, and the step of estimating the charge state or the discharge depth of the battery includes the step of determining the complex impedance. Comparing the frequency dependency with the frequency dependency of the complex impedance corresponding to the known charge state or discharge depth of the battery corresponding to the estimated deterioration state, and to make a stage of estimating the charge state or discharge depth of the battery it can.
  • a catalog representing the frequency dependence of the complex impedance corresponding to a known charge state or depth of discharge should be used whenever possible. It is preferable to use a catalog created immediately before the complex impedance measurement is performed for a battery of which is unknown. Alternatively, if a catalog corresponding to a certain known state of charge or depth of discharge is created in accordance with each deterioration state estimated from the DC resistance value of the battery, a battery whose state of charge or depth of discharge is unknown By measuring the direct current resistance and using a catalog corresponding to the deterioration state estimated from the direct current resistance, it is possible to improve the estimation accuracy of the charge state or the discharge depth.
  • the charging by the charging source connected to the battery is controlled or the power consumption of the power consuming element connected to the battery is controlled according to the estimated charging state or discharging depth of the battery.
  • the method may further comprise the step of:
  • overcharge can be prevented by performing control to stop charging by the charging source when the estimated state of charge exceeds a predetermined level, or the estimated depth of discharge exceeds a predetermined level.
  • overdischarge can be prevented by performing control such as disconnecting the connection between the power consuming element and the battery, such as a device that operates with power from the battery.
  • the present invention also provides a step of determining a complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and the frequency dependence of the complex impedance at a frequency of about 100 mHz or less among the determined complex impedances.
  • the step of estimating the state of charge or the depth of discharge of the battery corresponds to the frequency dependence of the complex impedance at a frequency of about 10 mHz or less among the determined complex impedances to the known state of charge or the depth of discharge of the battery.
  • the state of charge or depth of discharge of the battery can be estimated.
  • the difference in the complex impedance of the battery according to the state of charge or the depth of discharge is particularly large in the frequency region of 100 mHz (desirably 10 mHz) or less. Sometimes. Therefore, in estimating the state of charge or the depth of discharge of such a battery, it is effective to focus on a frequency region of 100 mHz or less, particularly 10 mHz or less.
  • the present invention also provides a step of determining a complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery and a real part of a complex impedance characteristic curve representing a correlation between a real part and an imaginary part of the determined complex impedance. Compare the complex impedance characteristic curve with the complex impedance characteristic curve corresponding to the known charge state or discharge depth of the battery on the lower frequency side than the frequency at which the change of the imaginary part due to the rise changes from the fall to the rise. Estimating the state of charge or the depth of discharge.
  • the change in the complex impedance characteristic curve according to the state of charge or the discharge depth is represented by the complex impedance real number part and the vertical axis value complex. It becomes more conspicuous on the lower frequency side than the point (point P in FIGS. 3 and 4) where the complex impedance characteristic curve as the imaginary part of the impedance changes from descending to rising. If the complex impedance characteristic curve is compared with the above-mentioned catalog in such a frequency region, the state of charge or the depth of discharge of the battery can be estimated with high accuracy.
  • the present invention compares the step of determining the differential capacity of the battery, the determined differential capacity, and the dependence of the differential capacity of the battery on the state of charge or depth of discharge, and determines the state of charge or discharge depth of the battery.
  • a method comprising: estimating. Independent of the above-described method using the frequency dependence of the complex impedance, it is possible to estimate the state of charge or the depth of discharge based only on the dependence of the differential capacity on the state of charge or the depth of discharge. Even if it is difficult to accurately estimate the state of charge or the depth of discharge only from the frequency characteristics of the complex impedance, the accuracy of estimation can be improved by using the differential capacity.
  • a method for determining a complex impedance for a plurality of frequencies between positive and negative electrodes of a battery and a Warburg impedance of a complex impedance characteristic curve representing a correlation between a real part and an imaginary part of the determined complex impedance evaluating the health of the battery using the real part of the complex impedance at the point where the imaginary part of the complex impedance is zero on the line obtained by extending the part showing the frequency dependence of I will provide a.
  • the soundness of the battery can be evaluated based on the change over time of the real part of the complex impedance at the point where the imaginary part becomes zero (the same applies to the following methods and systems).
  • the present invention also provides a step of determining a complex impedance for a plurality of frequencies between positive and negative electrodes of a battery, and about 100 mHz of a complex impedance characteristic curve representing a correlation between a real part and an imaginary part of the determined complex impedance.
  • Evaluate the health of the battery by using the real part of the complex impedance at the point where the imaginary part of the complex impedance becomes zero on the line obtained by extending the part showing the frequency dependence of the complex impedance at the following frequencies: And a method comprising steps.
  • the present invention also provides a step of determining a complex impedance for a plurality of frequencies between positive and negative electrodes of a battery, and a real number among complex impedance characteristic curves representing a correlation between a real part and an imaginary part of the determined complex impedance.
  • a step of evaluating the soundness of the battery is
  • the real part of the complex impedance determined as described above in the method for evaluating the soundness of the battery taught by the present invention is considered to correspond to the sum of the internal resistances of the battery, knowing this, the soundness of the battery can be improved. It becomes possible to evaluate.
  • the step of evaluating the soundness of the battery in these methods determines that the soundness of the battery has deteriorated based on the fact that the real part of the complex impedance at the point where the imaginary part of the complex impedance becomes zero is reduced. Stages can be included. Since the decrease in the real part of the complex impedance is determined to be a sign of a short circuit inside the battery, it is determined that the soundness of the battery has deteriorated when the real part is lower than before.
  • the information equivalent to the information for evaluating the soundness of the battery is calculated as a resistance component inside the battery by constructing an equivalent circuit that simulates the inside of the battery for the complex impedance and fitting the impedance information by this circuit. It is also possible to ask for it.
  • the real part of the complex impedance at the point where the imaginary part on the line obtained by fitting and extending the semicircular arc part obtained when the complex impedance is represented as a diagram consisting of the real part and the imaginary part is zero It is also possible to obtain based on
  • the present invention provides a step of determining a complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and a real number among complex impedance characteristic curves representing a correlation between a real part and an imaginary part of the determined complex impedance.
  • a step of evaluating the soundness of the battery is a step of evaluating the soundness of the battery.
  • the present invention determines a complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, constructs an equivalent circuit that simulates the inside of the battery with respect to the determined complex impedance, and uses the equivalent circuit. And evaluating the soundness of the battery using the resistance component inside the battery determined by fitting the impedance information and calculating the impedance information.
  • the method for evaluating the soundness of the battery taught by the present invention may further include a step of controlling the operation of the battery according to the evaluated soundness of the battery.
  • a step of controlling the operation of the battery As an example, when it is determined that the real part of the complex impedance is reduced and the soundness is deteriorated as described above, it is effective to stop the operation of the battery in order to prevent a short circuit.
  • the present invention also provides a complex impedance characteristic determination unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and the frequency dependence of the Warburg impedance among the determined complex impedances.
  • a system including a complex impedance characteristic comparison unit that estimates a charge state or discharge depth of a battery as compared with the frequency dependence of Warburg impedance corresponding to the state or discharge depth.
  • the present invention also provides a complex impedance characteristic determination unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and the frequency dependence of the complex impedance at a frequency of about 100 mHz or less among the determined complex impedances. Is compared with the frequency dependence of the complex impedance at a frequency of about 100 mHz or less, corresponding to the known charge state or discharge depth of the battery, and a complex impedance characteristic comparison unit for estimating the charge state or discharge depth of the battery.
  • the complex impedance characteristic comparison unit determines the complex impedance at a frequency of about 10 mHz or less corresponding to a known charge state or discharge depth of the battery, from the determined complex impedance. It may be configured to estimate the state of charge or the depth of discharge of the battery as compared to the frequency dependence.
  • the present invention also provides a complex impedance characteristic determination unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance characteristic curve that represents a correlation between a real part and an imaginary part of the determined complex impedance. Compare the complex impedance characteristic curve with the complex impedance characteristic curve corresponding to the known charge state or discharge depth of the battery on the lower frequency side than the frequency at which the change of the imaginary part due to the rise of the real part in Then, a system including a complex impedance characteristic comparison unit that estimates a charge state or a discharge depth of a battery is provided.
  • the present invention compares the differential capacity determination unit that determines the differential capacity of the battery, the determined differential capacity, and the dependence of the differential capacity of the battery on the state of charge or the depth of discharge,
  • a system including a differential capacity comparison unit that estimates a depth of discharge is provided.
  • the present invention also provides a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance characteristic that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery
  • a complex impedance characteristic that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • the present invention also provides a complex impedance characteristic determining unit that determines complex impedances for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • a complex impedance characteristic determining unit that determines complex impedances for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • the present invention also provides a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance characteristic that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery
  • a complex impedance characteristic that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • the present invention also provides a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance characteristic that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of a battery, and a complex impedance characteristic that represents a correlation between a real part and an imaginary part of the determined complex impedance.
  • the present invention constructs an equivalent circuit that simulates the inside of the battery for the determined complex impedance, and a complex impedance characteristic determining unit that determines complex impedance for a plurality of frequencies between the positive and negative electrodes of the battery,
  • a system including a soundness evaluation unit that evaluates the soundness of a battery by using a resistance component inside the battery obtained by fitting and calculating impedance information by using an equivalent circuit is provided.
  • the present invention even if it is impossible to estimate the charge / discharge state of a battery from a conventional method such as a method based on a voltage measurement value, it is based on the frequency dependence and differential capacity of the complex impedance in the low frequency region. Thus, the charge / discharge state can be estimated.
  • the present invention it is possible to evaluate the soundness of the battery using the complex impedance characteristic curve. This makes it possible to detect deterioration in soundness such as a short circuit occurring inside the battery at an early stage and prevent accidents such as ignition and explosion in advance.
  • FIG. 3 is a circuit diagram schematically showing a circuit configuration of a complex impedance characteristic determining unit that determines a complex impedance of a battery (except for elements directly related to measurement).
  • the graph which drew the complex impedance characteristic curve obtained by charging a lithium ion secondary battery and measuring complex impedance while changing a frequency about each SOC.
  • the state and the depth of discharge of the battery are estimated using the drawings, the method and system according to the present invention for feedback control of the charge / discharge operation, and the health of the battery using the complex impedance characteristic curve
  • a method and system for evaluating and controlling battery operation is described.
  • the method and system according to the present invention are not limited to a specific specific configuration described with reference to the drawings, and can be appropriately changed within the scope of the present invention.
  • the apparatus and method for determining the complex impedance of the battery are not limited to those described below, and the configuration of the system that controls the battery based on the complex impedance characteristics is also limited to the configurations of FIGS.
  • the charge / discharge control unit and the operation control unit are not required when the charge / discharge operation and the operation state are not feedback-controlled in the systems of FIGS. 2 and 7).
  • a secondary battery is mainly used as a battery
  • the method and system of the present invention can be applied to any battery including a primary battery, and the depth of discharge is estimated. It is possible to perform the evaluation of the soundness of the battery and the control based on these and the same principle.
  • the system configuration shown in FIG. 2 and FIG. 7 is merely an example, and one or more arbitrary ones performed for the estimation of the state of charge or the depth of discharge taught in the present invention, the evaluation of soundness, and the control based on them. Functions can be arbitrarily assigned to one or more arbitrary elements.
  • FIG. 1 schematically shows an example of a circuit configuration of a complex impedance characteristic determination unit that determines a complex impedance of a secondary battery such as a lithium ion secondary battery.
  • a constant frequency AC current is supplied from a frequency variable AC power source to a secondary battery (which may be during charge / discharge operation. In such a case, a charging source or a load connected to the secondary battery is not shown).
  • the alternating voltage applied to the secondary battery and the flowing alternating current are measured by an alternating current voltmeter and an alternating current ammeter, and complex impedance is calculated from the measured values of voltage and current.
  • the frequency dependence of the complex impedance is determined by repeating the operation of calculating the complex impedance by measuring the alternating voltage and the alternating current while changing the frequency of the alternating current from the alternating current power supply.
  • the calculation of the complex impedance from the AC voltage and the AC current measurement value can be performed by the following calculation as an example.
  • the measured AC voltage, AC current is above formula (1), a is the real part of (2), V 0 cos ( ⁇ t + ⁇ V) and I 0 cos ( ⁇ t + ⁇ I ), from these measured waveform, V 0 , I 0 , ⁇ , ⁇ V , ⁇ I are determined.
  • the complex impedance at each angular frequency ⁇ is Is calculated.
  • the real part Z ′ and the imaginary part Z ′′ of the complex impedance are respectively It is expressed as By plotting coordinate points (Z ′, Z ′′) on a two-dimensional plane, calculating complex impedances for various (angular) frequencies in the same way, and plotting coordinate points (Z ′, Z ′′), complex A complex impedance characteristic curve representing the correlation between the real part and the imaginary part of the impedance is obtained.
  • a complex impedance characteristic curve obtained by measurement for a secondary battery whose charging state or depth of discharge is unknown is compared with each individual complex impedance characteristic curve included in the catalog and obtained by measurement.
  • the complex impedance characteristic curve that is the most “similar” to the complex impedance characteristic curve is extracted from the catalog (similarity judgment is performed over all the horizontal axis values, for example, the difference between the vertical axis values of both curves at the same horizontal axis value. The smaller the mean square is, the more the two curves are judged to be “similar”, or any image authentication may be used.
  • the corresponding state of charge or depth of discharge is an estimate of the unknown state of charge or depth of discharge (or multiple complex impedance characteristics with high similarity) Etc. to estimate the weighted average of the state of charge or discharge depth corresponding to line, the specific analysis method optional.), There is a method and the like.
  • the frequency dependence of the complex impedance can change depending on the degradation state of the secondary battery. It is preferable to use a catalog created immediately before performing complex impedance measurement for a secondary battery whose charge state or depth of discharge is unknown. Alternatively, if a catalog is created in accordance with each deterioration state of the secondary battery, it is possible to improve the estimation accuracy of the charge state or the discharge depth by catalog collation that also considers the deterioration state. Specifically, when creating a catalog, the DC resistance of the secondary battery is also measured, and the DC resistance and the catalog as shown in FIGS. 3 and 4 are stored as a set.
  • a set of catalogs corresponding to various DC resistances can be obtained by repeating the operation of measuring the DC resistance and creating a catalog after the secondary battery is deteriorated by long-term use.
  • the DC resistance of the secondary battery is measured, and then collated using a catalog corresponding to the DC resistance closest to this DC resistance measurement value. By performing this, the estimation accuracy can be further improved.
  • FIG. 2 shows a schematic configuration diagram of an example of a system for estimating charge state or discharge depth of a secondary battery such as a lithium ion secondary battery, and controlling charge / discharge by feeding back an estimated value.
  • a charger is unnecessary.
  • the secondary battery is connected to a load (arbitrary device that consumes power) or a charger (arbitrary external power source such as a solar cell system) by switching the switch (a circuit for controlling the switch, etc.) (Not shown), on-board discharging or charging operation is performed.
  • a complex impedance characteristic determining unit is connected in the connection mode shown in FIG.
  • the complex impedance characteristic determination unit has the functions of an AC power source, an AC voltmeter, and an AC ammeter as shown in FIG. 1, and calculates a complex impedance as described above from the measured AC current value and AC voltage value. It includes a processor that performs data processing, a memory that stores data, a control circuit that controls the following functions, a communication circuit that communicates with other circuit units, etc. (for processors, memory, control / communication circuits, etc.)
  • the complex impedance characteristic comparison unit and the charge / discharge control unit are also provided in the same manner.
  • the complex impedance characteristic determination unit measures the complex impedance of the lithium ion secondary battery while changing the frequency as described above.
  • the complex impedance characteristic can also be determined by the DC method.
  • the complex impedance characteristic is determined using a control circuit that cuts off the load connection, a processor that performs Fourier analysis, a processing circuit that includes a memory, and the like.
  • a characteristic determination unit may be configured. When estimation is performed in consideration of the deterioration state, DC resistance is measured by, for example, measuring complex impedance by flowing a long-period AC current from an AC power supply.
  • the complex impedance characteristic comparison unit includes a catalog created from the result of measuring the frequency dependence of the complex impedance corresponding to the known charge state or discharge depth of the secondary battery in advance (here, FIG. 3 described later). , Which is a graph format as shown in FIG. 4, but may be a data format in which a complex impedance value of each frequency is recorded.) Is stored in the memory.
  • the complex impedance characteristic comparison unit creates a complex impedance characteristic curve from the current complex impedance measurement value of the secondary battery received from the complex impedance characteristic determination unit, and converts the complex impedance characteristic curve into various charge states or discharge depths included in the catalog. Compared to the corresponding complex impedance characteristic curve (when performing the estimation considering the degradation state, the degradation state is estimated from the DC resistance value received from the complex impedance characteristic determination unit (secondary in various cumulative usage periods).
  • DC resistance value data in the battery is stored in advance, and the deterioration state is estimated based on the cumulative use period corresponding to the DC resistance value data closest to the DC resistance value data received from the complex impedance characteristic determination unit), Use the catalog corresponding to the DC resistance value closest to the received DC resistance value.), Secondary power
  • the current charging state or the depth of discharge is estimated (if the secondary battery is connected to the load, the complex impedance characteristic curve created from the complex impedance measurement value is assumed to be discharging, as shown in FIG.
  • the complex impedance characteristic curve created from the complex impedance measurement value is assumed to be charging, as shown in FIG.
  • the signal representing the estimation result of the charge state or the discharge depth is transmitted from the complex impedance characteristic comparison unit to the charge / discharge control unit.
  • the charge / discharge control unit controls the discharge by the load or the charge by the charger based on the estimation result. As an example, if the depth of discharge exceeds a predetermined reference value when discharging by a load, the connection between the secondary battery and the load is cut off, or the power consumption of the load is reduced by a control signal Depending on the load, such as reducing the power consumption when the load is equipped with an inverter or cutting off the power supply to some of the elements when multiple power consumption elements are included.
  • Control power consumption (even when using a primary battery), and when charging with a charger, if the state of charge exceeds a predetermined reference value, a secondary battery is connected to the charger to prevent overcharging.
  • the charging by the charger is controlled by cutting off the connection of the battery.
  • the complex impedance characteristic comparison unit creates the complex impedance characteristic curve here, this process may be performed by the complex impedance characteristic determination unit.
  • Other data processing, data storage, and the like may be performed by any circuit unit as long as feedback control similar to the feedback control described above can be performed.
  • Each circuit unit may be configured by a plurality of circuit units, or may be configured as one integrated device. Alternatively, a plurality of circuit units may be integrated as one device, for example, a complex impedance characteristic determination unit and a complex impedance characteristic comparison unit are integrated.
  • the complex impedance was measured while changing the frequency when the state of charge of the lithium ion secondary battery was 50%, and then the lithium ion secondary battery was charged to 90% of the state of charge.
  • the complex impedance was measured while changing the frequency at each depth of discharge, and this was performed until the depth of discharge reached 80% (FIG. 4).
  • the complex impedance was measured while changing the frequency in each charging state while charging the lithium ion secondary battery again by 10% to 90% charging state in the resting state (FIG. 3).
  • the depth of discharge was returned to 50% and the impedance was measured again.
  • FIG. 3 shows a complex impedance measurement result graph of the charging state 20%, 40%, 60%, and 80%
  • FIG. 4 shows a complex impedance measurement result graph of the discharge depth of 10%, 30%, 50%, and 70%, respectively.
  • the horizontal axis is the real part and the vertical axis is the imaginary part. The unit is m ⁇ ).
  • the left side of the graph corresponds to the high frequency side, and the right side corresponds to the low frequency side.
  • the complex impedance characteristic curve is separated according to the state of charge or the discharge depth when the real part of the complex impedance exceeds approximately 40 m ⁇ .
  • the complex impedance characteristic curve is a semi-circular graph until the real part is approximately 40 m ⁇ , and beyond this, it enters the frequency region of Warburg impedance (approximately 100 mHz or less) and increases monotonically. In the increasing part, the separation of the complex impedance characteristic curves at different charge states or depths of discharge is significant. In the frequency range of 10 mHz and 1 mHz, which is lower than the frequency range of the Warburg impedance (as can be seen from FIGS. 3 and 4, the slope of the complex impedance characteristic curve changes in the frequency range of about 10 mHz or less). The separation of the impedance characteristic curve becomes even more remarkable.
  • the complex impedance characteristic curve shows the charge state or the depth of discharge on the lower frequency side than the frequency at which the change of the imaginary part accompanying the rise of the real part in the complex impedance characteristic curve turns from the fall to the rise. It can be seen that the separation is remarkable.
  • Table 1 data of the real part of the complex impedance measured while changing the frequency for each state of charge.
  • Table 2 data of complex impedance imaginary part measured while changing frequency for each state of charge.
  • Table 3 data of real part of complex impedance measured while changing frequency for each discharge depth.
  • Table 4 data of complex impedance imaginary part measured for each discharge depth while changing the frequency.
  • unit of complex impedance real part and imaginary part are all m ⁇ ).
  • the real part and imaginary part values of the complex impedance in the high frequency range of about 1000 Hz to 100 Hz do not change greatly regardless of the state of charge or discharge depth, but the frequency of about 1 Hz to 100 mHz.
  • the real part of the complex impedance is a frequency that exceeds approximately 40 m ⁇
  • the value of the imaginary part begins to change greatly depending on the state of charge or discharge depth, and the difference is particularly significant at frequencies of 10 mHz or less. Is remarkable. Therefore, it is considered that the charge state or the discharge depth can be accurately estimated by comparing the complex impedance characteristics in a frequency region of approximately 100 mHz or less, preferably 10 mHz or less.
  • FIG. 5 shows the depth of discharge (DOD) and the differential capacity (the amount of change in charge Q with respect to the amount of voltage change ⁇ V (shown as current I in the graph)) when the differential capacity is measured while discharging the lithium ion secondary battery.
  • DOD depth of discharge
  • ⁇ V the amount of voltage change in charge Q with respect to the amount of voltage change ⁇ V (shown as current I in the graph)
  • Ratio I / ⁇ V The unit is a graph depicting the relationship with farad (F).
  • the battery used in the experiment was a commercially available winding manufactured using an olivine-type lithium iron phosphate (LiFePO 4 ) as the positive electrode material, graphite carbon as the negative electrode material, an organic electrolyte, and a polyethylene separator. This is a rechargeable lithium ion secondary battery.
  • LiFePO 4 olivine-type lithium iron phosphate
  • the state of charge or the depth of discharge can be estimated from the measured value of the differential capacity. Therefore, even if it is difficult to estimate the state of charge or the depth of discharge only from the frequency dependence of the complex impedance, the state of charge or the depth of discharge may be accurately estimated using the value of the differential capacity. For example, if the slope of the battery discharge curve of the potential fluctuation accompanying the change in the capacity described above is similar in two different charge states or discharge depths, the two different charge states or only depending on the frequency dependence of the complex impedance In some cases, it is difficult to distinguish the depth of discharge. In this case, an estimated value that is close to the state of charge or the depth of discharge estimated from the measured value of the differential capacity among the two different states of charge or the depth of discharge. Can be adopted as.
  • the complex impedance characteristic comparison unit (hereinafter referred to as the differential capacity comparison unit) is obtained by using the measurement results obtained by measuring the differential capacity values in various discharge depths or charged states in advance as shown in FIG. Function).
  • the state of charge or discharge depth of the battery can be estimated (the point in the catalog having the differential capacity value closest to the measured value of the differential capacity is identified and The charging state or the depth of discharge at the point is an estimated value).
  • the DC resistance of the battery is also measured when creating the differential capacity catalog, and the DC resistance and the differential capacity catalog as shown in the graph of FIG. 5 are stored as a set (FIG. 5).
  • the estimated values from the differential capacity should be obtained by measuring the direct current resistance of the battery and then determining the differential capacity corresponding to the direct current resistance closest to the measured direct current resistance. The estimation accuracy can be further improved by performing collation using a catalog.
  • the complex impedance characteristic determination unit measures the current differential capacity value of the battery, and transmits the measurement result to the complex impedance characteristic comparison unit.
  • the complex impedance characteristic comparison unit compares the differential capacity value corresponding to various charge states or discharge depths included in the catalog of the differential capacity stored in the memory and the received current differential capacity measurement value, Estimate the current state of charge or depth of discharge of the battery.
  • the deterioration state is estimated from the DC resistance measurement value received from the complex impedance characteristic determination unit (DC resistance value data in the battery during various cumulative use periods is stored in advance.
  • the degradation state is estimated based on the cumulative use period corresponding to the DC resistance value data closest to the DC resistance value data received from the complex impedance characteristic determination unit), and the DC resistance value closest to the received DC resistance value is determined.
  • Use the corresponding differential capacity catalogue As already described in connection with FIG. 2, when the battery is connected to the load, it is assumed that the battery is being discharged, and the current differential capacity value is calculated for the depth of discharge as shown in FIG. 5. If the battery is connected to the charger, the current differential capacity is compared with the catalog of the differential capacity similarly created for the state of charge, assuming that the battery is being charged.
  • the complex impedance characteristic comparison unit can estimate the state of charge or the depth of discharge from the measured value of the differential capacity.
  • the state of charge or the depth of discharge is further increased. Can be estimated accurately.
  • the estimation of the state of charge or the depth of discharge from the measured value of the differential capacity may be performed independently rather than being combined with the estimation of the state of charge or the depth of discharge based on the frequency dependence of the complex impedance. That is, it is possible to estimate the state of charge or the depth of discharge only from the dependence on the differential capacity. In the graph of FIG.
  • the peak of the differential capacity that appears approximately in the vicinity of DOD 30% to 40% fluctuates according to the deterioration state (number of cycles) of the battery, and it is managed that this peak of the differential capacity fluctuates. By doing so, it is estimated that the degree of deterioration can be diagnosed.
  • FIGS. 6a shows a complex impedance characteristic curve of SOC 20% in the graph shown in FIG. 3, which corresponds to a frequency corresponding to a frequency of about 100 mHz or less (corresponding to the frequency region of the Warburg impedance, and focusing on the shape of the graph,
  • the change in the imaginary part with the rise in the real part corresponds to the lower frequency side than the frequency where the change from the fall to the rise.
  • the principle of sex evaluation is shown.
  • the real part of the complex impedance at the point where the imaginary part of the complex impedance is zero (intersection A with the horizontal axis) on the extended portion is considered to correspond to the sum of the internal resistances of the battery as described above, If the above point A moves to the left side (the side where the real part of the complex impedance is lower) than before, in the secondary battery that has repeated the charge / discharge cycle and the primary battery that has deteriorated in soundness for some reason, It is estimated that the internal resistance has decreased due to some reason.
  • One cause of the decrease in internal resistance is a short circuit inside the battery. That is, a decrease in the real part of the complex impedance at point A can be regarded as a sign of a short circuit inside the battery.
  • FIG. 6b shows another principle for evaluating the soundness of the battery using the complex impedance characteristic curve.
  • 6b in the graph shown in FIG. 3, in the complex impedance characteristic curve of SOC 20%, the portion on the high frequency side is extended from the frequency at which the change of the imaginary part accompanying the rise of the real part turns from the fall to the rise. The point of intersection with the horizontal axis is shown.
  • the real part of the complex impedance at the point (intersection B with the horizontal axis) where the imaginary part on the line obtained by fitting and extending the semicircular arc part in the complex impedance characteristic curve becomes zero is also the real part at the above point A Similarly, it is considered that the voltage decreases due to a short circuit inside the battery, that is, a decrease in the real part of the complex impedance at the point B can be regarded as a sign of a short circuit inside the battery.
  • an equivalent circuit that simulates the inside of the battery is constructed for the determined complex impedance, and impedance information is fitted and calculated by using the equivalent circuit to calculate the resistance component inside the battery. This resistance component can be used for soundness evaluation as well as the real part of the B point.
  • FIG. 7 shows a schematic configuration diagram of a system for performing such battery health evaluation and operation control. As shown in FIG. 2, it is shown as a system for a secondary battery, and a charger is not required when the system for a primary battery is configured similarly. Note that a description of the same configuration as the system of FIG. 2 is omitted as appropriate.
  • a load or a charger is connected to the secondary battery by switching the switch, and an on-board discharging or charging operation is performed.
  • a complex impedance characteristic determination unit is connected to the secondary battery as in the system of FIG. 2, and the complex impedance of the secondary battery is measured while changing the frequency as already described.
  • the complex impedance characteristic may be determined by the direct current method, and the specific configuration of the complex impedance characteristic determination unit is as described above with reference to FIG.
  • the complex impedance measurement result is appropriately provided with a processor, a memory, a control / communication circuit, etc. as in the complex impedance characteristic comparison unit in FIG. The description is omitted.
  • the soundness evaluation unit creates a complex impedance characteristic curve from the current complex impedance measurement value of the secondary battery received from the complex impedance characteristic determination unit, and calculates the Warburg impedance
  • the part corresponding to the frequency region in one example, the part showing the frequency dependence of the complex impedance at a frequency of about 100 mHz or less. Or, from the frequency at which the change of the imaginary part accompanying the rise of the real part of the complex impedance turns from the fall to the rise
  • the real part of the complex impedance at the point A (see FIG. 6a) where the imaginary part of the complex impedance is zero on the line obtained by extending the low frequency side part) is determined.
  • the real part of the complex impedance determined by the same method in the past for the secondary battery is stored.
  • the soundness evaluation unit compares the real part determined as described above in the complex impedance characteristic curve obtained from the current complex impedance measurement value with the real part determined in the past as described above for the secondary battery. Thus, the soundness of the secondary battery is evaluated.
  • the soundness evaluation unit creates a complex impedance characteristic curve from the current complex impedance measurement value in the secondary battery received from the complex impedance characteristic determination unit, and the real part At the point B (see FIG. 6b) where the imaginary part of the complex impedance becomes zero on the line obtained by extending the portion on the higher frequency side than the frequency at which the change of the imaginary part accompanying the rise of the transition from the fall to the rise. Determine the real part of the complex impedance.
  • the real part of the complex impedance determined by the same method in the past for the secondary battery is stored.
  • the soundness evaluation unit compares the real part determined as described above in the complex impedance characteristic curve obtained from the current complex impedance measurement value with the real part determined in the past as described above for the secondary battery. Thus, the soundness of the secondary battery is evaluated.
  • a technique using fitting a technique using an equivalent circuit can be cited as described above, and a resistance component obtained by calculation by fitting using an equivalent circuit may be used for soundness evaluation.
  • the resistance component determined by the same method in the past is stored in the memory of the soundness evaluation unit, and the soundness of the secondary battery is determined by comparing the current resistance component with the past resistance component. evaluate.
  • the resistance component obtained by calculation by fitting using the equivalent circuit can be used in the following, and the description is appropriately omitted below.
  • the position of point A or point B (or the resistance component obtained by calculation by fitting using the equivalent circuit) is generally considered to be variable depending on the SOC or DOD of the secondary battery.
  • the real part of the complex impedance (or the resistance component) at the point or point B with the real part (or the resistance component) determined in the past, the real part (or the resistance component) in the same SOC or DOD is used. It is preferable to compare.
  • various values of SOC and DOD of the secondary battery are stored in the memory of the soundness evaluation unit.
  • the complex impedance real number part (or the above resistance component) at the past A point or B point in SOC or DOD is stored as a catalog as a set. Keep it.
  • the soundness evaluation unit uses the current SOC or DOD of the secondary battery in advance by any method including the estimation method of the present invention or the conventional method. For example, it may be determined by the system shown in Fig. 2 and transmitted to the soundness evaluation unit as data in advance, or the soundness evaluation unit functions as the complex impedance characteristic comparison unit shown in Fig. In the case where the soundness evaluation unit estimates by itself, as in the system of Fig.
  • the soundness evaluation it is determined that the soundness of the battery has deteriorated when the complex impedance real part (or the resistance component) at the point A or B is lower than the past, and the point A or B If the real part of the complex impedance at the point (or the resistance component) is the same as in the past, it can be determined that there is no change in the soundness.
  • a signal representing the soundness determination result is transmitted from the soundness evaluation unit to the operation control unit (consisting of a processor, a memory, a control / communication circuit, etc.).
  • the operation control unit controls the operation of the secondary battery based on the determination result.
  • the operation control unit receives a determination result that the complex impedance real part (or the resistance component) at the point A or B is lowered and the soundness is deteriorated
  • the operation control unit is a secondary battery. Disconnect the load or the charger and stop the operation of the secondary battery.
  • the operation of the secondary battery is stopped only when a determination result indicating that the complex impedance real part (or the resistance component) at the point A or the point B has decreased by a certain rate or more is received, and the real part (or When the decrease in the resistance component is less than the predetermined ratio, it is possible to perform control such as disconnecting only a part of the load or the charger and restricting the operation.
  • each circuit unit may be configured by a plurality of circuit units, or may be configured as one integrated device. Alternatively, a plurality of circuit units may be integrated as one device, for example, a complex impedance characteristic determination unit and a soundness evaluation unit are integrated.
  • the technology of the present invention can be widely used in order to realize a society with improved energy use efficiency and improve human sustainability.

Abstract

電池の充電状態や放電深度を従来技術よりも正確に認識し、電池の健全性を適切に認識することを目的とする。 電池の正極負極間での複数の周波数に対する複素インピーダンスを決定し、決定された複素インピーダンスのうちワールブルグインピーダンスの周波数依存性を電池の既知の充電状態又は放電深度に対応するワールブルグインピーダンスの周波数依存性と比較して電池の充電状態又は放電深度を推定する。また、同じく複素インピーダンスを決定し、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうちワールブルグインピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する。

Description

電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム
 本発明は、電池の充電状態又は放電深度を推定し、制御にフィードバックしつつ、安全な充放電を行うための方法及びシステムに関する。また本発明は、電池の健全性を評価し、制御にフィードバックしつつ、安全な運用を行うための方法及びシステムに関する。
 二次電池は、家庭用定置型蓄電装置、電気自動車用電源、パーソナルコンピュータ、人工衛星等に幅広く用いられている。その一方で、過充電による液漏れや、過放電による故障などが知られており、適切な充電状態や放電深度を認識した上での運用が求められる。また一次電池においても、放電深度を認識した上で運用することは、交換タイミングの判断等において有効である。
 電池の充電状態の管理には、通電あるいは開放状態にある電池の電圧を計測する方法が一般的であった(特許文献1)。従来の電池の電圧は放電とともに徐々に低下する傾向にあり、到達している電圧から放電状態を認識することが可能であったためである。一方で、電圧のみから放電状態を推定することが困難な電池も存在する。
 近年、電池の開発が進み、高い安全性を求める動きが加速している。特に安全性を重視した電池としては、電解液にイオン液体を使用した電池や、電極材料に酸素発生の抑制がかかる材料を使用した電池などが知られる。これらにおいても、過充電による液漏れや、過放電による故障を避けるべく、適切な充電状態や放電深度を認識した上での運用が求められる。
 また、電池の運用においては、充電状態や放電深度に加えて電池の健全性も適切に認識した上で運用することが求められる。健全性が悪化した電池を運用し続けた場合、発火や爆発等、重大なアクシデントが発生する恐れがある。
特開2003-291754号公報
 本発明は、従来の手法からは電池の充放電状態を推定不可能な場合であっても、充放電状態を推定することを可能とするための方法及びシステムを提供すること、及び、電池の健全性を適切に認識するための方法及びシステムを提供することを目的とする。
 上記課題を解決するべく、本発明は新たな手法として、電池の内部抵抗に着目した充電状態、放電深度の推定方法、推定されたこれら充放電状態に基づく充放電の制御方法、及び関連するシステムを提案する。本発明は、電池についてオンボード(自動車や人工衛星などの移動体に搭載された状態。あるいは、その他任意の状況で電池が使用されている状態。)で取得される内部抵抗に関わるデータをもとにした充放電状態解析を可能にし、また解析結果を制御にフィードバックする手法を提供する。
 本発明は、オンボード装着された交流インピーダンス計測機能やパルス負荷に対する応答特性として得られる交流インピーダンス情報、そして直流抵抗から電池の充電状態を理解し、制御にフィードバックする充放電管理手法及びシステムを教示する。
 電流を積算し、充電状態を計算により求める方法(以下、「電流積算法」)により充電状態(以下、「SOC」)を管理することは可能であるが、本発明の提案するインピーダンスを利用する手法は、電流積算法が使用できない環境において、あるいは電流積算法を補完し精度を向上させる手法として使用することができる。
 具体的に本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスのうちワールブルグインピーダンスの周波数依存性を、電池の既知の充電状態又は放電深度に対応するワールブルグインピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定する段階とを備えた方法を提供する。
 上記本発明の方法においては、ワールブルグインピーダンスの周波数依存性の比較に加えて、ワールブルグインピーダンスの周波数領域よりも更に低い周波数領域においても、決定された複素インピーダンスの周波数依存性を、既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性と比較することにより、充電状態又は放電深度の推定を行うよう構成することができる。
 本発明者は、電池の複素インピーダンス測定において、拡散が支配する低周波数領域のワールブルグインピーダンス(Warburg Impedance)、及び、ワールブルグインピーダンスの周波数領域よりも更に低い周波数領域における複素インピーダンスが、異なる充電状態(SOC:State of Charge:満充電時の充電電荷量に対する現在の充電電荷量の割合。)及び放電深度(DOD:Depth of Discharge:放電可能な電荷量に対する現在の放電電荷量の割合。)において異なる周波数依存性を示すことを見出した。この現象を利用すれば、測定された複素インピーダンスの周波数依存性に基づいて電池の充電状態及び放電深度を推定することが可能となる。典型的には、既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性を予め測定し、測定結果をカタログとして保存した上で、充電状態又は放電深度が未知である電池について測定した複素インピーダンスの周波数依存性を、当該カタログと、ワールブルグインピーダンスの周波数領域、及び更に低い周波数領域で比較することにより、電池の充電状態又は放電深度を推定することが可能である。
 ワールブルグインピーダンス、及び更に低周波数領域における複素インピーダンスの周波数依存性が充電状態又は放電深度に応じて変化するという現象は、後述の実施例で例示する特定の電池だけではなく、任意の電池においても同様に起こると推定される。なぜなら、当該インピーダンスの特徴的な応答は、充電状態が高い領域あるいは低い領域において、容量の変化に伴う電位変動が大きくなる電池放電カーブに由来する現象であり、一般的な電池全般で類似の現象が生じると考えられるからである。したがって本発明は任意の電池(二次電池のみならず一次電池も含む。)に適用可能である。一次電池においては、放電開始初期には不活性な場合があり、インピーダンスの決定が困難な場合がある。その一方で、放電末期にかけては、上記と同様に充電状態とインピーダンスの相関を定めることが可能になる。また、特に二次電池においては、充電状態に応じた電圧変化が安定に推移するのでより効果が期待される。
 上記本発明の方法には、電池の直流抵抗を決定し、電池の劣化状態を推定する段階を更に備えることができ、電池の充電状態又は放電深度を推定する段階は、決定された複素インピーダンスの周波数依存性を、推定した劣化状態に対応する電池の既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定する段階とすることができる。
 複素インピーダンスの周波数依存性は電池の劣化状態に応じて変化しうるため、既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性を表わすカタログとしては、可能な限り、充電状態又は放電深度が未知の電池について複素インピーダンス測定を行う直前に作成したカタログを用いることが好ましい。あるいは、当該電池の直流抵抗値から推定される各々の劣化状態に応じて、或る既知の充電状態又は放電深度に対応するカタログを各々作成しておけば、充電状態又は放電深度が未知の電池について直流抵抗を測定し、直流抵抗から推定される劣化状態に対応するカタログを用いることにより、充電状態又は放電深度の推定精度を向上させることができる。
 上記本発明の方法には、推定された電池の充電状態又は放電深度に応じて、電池に接続された充電源による充電を制御するか、又は電池に接続された電力消費要素の電力消費を制御する段階を更に備えることができる。一例として、推定された充電状態が所定レベルを超えている場合には充電源による充電を停止する制御を行うことにより過充電を防止できるし、あるいは、推定された放電深度が所定レベルを超えている場合には、電池からの電力で動作する機器等、電力消費要素と当該電池の接続を遮断する等の制御を行うことにより過放電を防止できる。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスのうち、約100mHz以下の周波数における複素インピーダンスの周波数依存性を、電池の既知の充電状態又は放電深度に対応する、約100mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定する段階とを備えた方法を提供する。ここで、電池の充電状態又は放電深度を推定する段階は、決定された複素インピーダンスのうち、約10mHz以下の周波数における複素インピーダンスの周波数依存性を、電池の既知の充電状態又は放電深度に対応する、約10mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定する段階とすることができる。
 後述の実施例において図3,図4のグラフ等の実験結果を示すとおり、電池の複素インピーダンスにおける充電状態又は放電深度に応じた違いは、特に100mHz(望ましくは10mHz)以下の周波数領域において大きくなることがある。したがって、そのような電池の充電状態又は放電深度を推定するにあたっては、100mHz以下、特に10mHz以下の周波数領域に着目することが有効である。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線における実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側において、複素インピーダンス特性曲線を、電池の既知の充電状態又は放電深度に対応する複素インピーダンス特性曲線と比較して、電池の充電状態又は放電深度を推定する段階とを備えた方法を提供する。
 後述の実施例において図3,図4のグラフ等の実験結果を示すとおり、充電状態又は放電深度に応じた複素インピーダンス特性曲線の変化は、横軸値を複素インピーダンス実数部、縦軸値を複素インピーダンス虚数部とした複素インピーダンス特性曲線が下降から上昇へと転じる点(図3,図4中、P点)よりも低周波数側において顕著となる。このような周波数領域において複素インピーダンス特性曲線を上述のカタログと比較すれば、電池の充電状態又は放電深度を高精度で推定できる。
 また本発明は、電池の微分容量を決定する段階と、決定された微分容量と、電池の微分容量の充電状態又は放電深度への依存性とを比較して、電池の充電状態又は放電深度を推定する段階とを備えた方法を提供する。複素インピーダンスの周波数依存性を利用した上述の手法とは独立に、微分容量の充電状態又は放電深度への依存性のみに基づいて当該充電状態又は放電深度を推定することが可能である。また、複素インピーダンスの周波数特性のみからは充電状態又は放電深度を正確に推定することが困難な場合であっても、微分容量を利用することで推定の正確性を向上させることもできる。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうちワールブルグインピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する段階とを備えた方法を提供する。一例においては、上記虚数部がゼロとなる点における複素インピーダンスの実数部の経時的変化に基づき、電池の健全性を評価することが可能である(以下の方法、システムにおいても同様)。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち約100mHz以下の周波数における複素インピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する段階とを備えた方法を提供する。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する段階とを備えた方法を提供する。
 本発明が教示する電池の健全性を評価する方法において上記のとおり決定される複素インピーダンスの実数部は電池の内部抵抗の総和に対応すると考えられるため、これを知ることにより、電池における健全性を評価することが可能となる。これら方法における電池の健全性を評価する段階は、一例において、上記複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部が低下したことに基づいて電池の健全性が悪化したと判定する段階を含むことができる。上記複素インピーダンスの実数部の低下は当該電池内部でのショート(短絡)の兆しであると判断されるため、上記実数部が以前よりも低下した場合には電池の健全性が悪化したと判定することができる。本来増加し続ける複素インピーダンス実数部が減少傾向を示した場合に、その状況を「健全性が悪化した」、「ショートの傾向が出た」との判断に結び付けて、安全を確保する(運用を止める、あるいは電池を交換する等)ことが可能となる。
 上記電池の健全性を評価するための情報と同等の情報は、複素インピーダンスに対して、電池内部を模擬する等価回路を構築してこの回路によりインピーダンス情報をフィッティングさせ電池内部の抵抗成分として計算により求めることも可能である。
 また、複素インピーダンスを実数部と虚数部とからなる図として表記した際に得られる半円弧状部分をフィッティングし、延長することで得られる線上の虚数部がゼロとなる点における複素インピーダンスの実数部を元にして得ることも可能である。
 すなわち本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する段階とを備えた方法を提供する。また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、決定された複素インピーダンスに対して、電池内部を模擬する等価回路を構築し、等価回路を用いることによりインピーダンス情報をフィッティングさせて計算することにより求めた電池内部の抵抗成分を用いて、電池の健全性を評価する段階とを備えた方法を提供する。
 本発明が教示する電池の健全性を評価する方法においては、評価された電池の健全性に応じて電池の運用を制御する段階を更に備えることができる。一例として、上述のとおり複素インピーダンスの実数部が低下して健全性が悪化したと判定された場合に、ショートを未然に防止するべく電池の運用を中止することが有効である。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスのうちワールブルグインピーダンスの周波数依存性を、電池の既知の充電状態又は放電深度に対応するワールブルグインピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定する、複素インピーダンス特性比較部とを備えたシステムを提供する。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスのうち、約100mHz以下の周波数における複素インピーダンスの周波数依存性を、電池の既知の充電状態又は放電深度に対応する、約100mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定する、複素インピーダンス特性比較部とを備えたシステムを提供する。複素インピーダンス特性比較部は、決定された複素インピーダンスのうち、約10mHz以下の周波数における複素インピーダンスの周波数依存性を、電池の既知の充電状態又は放電深度に対応する、約10mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、電池の充電状態又は放電深度を推定するよう構成されたものであってよい。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する複素インピーダンス特性決定部と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線における実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側において、複素インピーダンス特性曲線を、電池の既知の充電状態又は放電深度に対応する複素インピーダンス特性曲線と比較して、電池の充電状態又は放電深度を推定する、複素インピーダンス特性比較部とを備えたシステムを提供する。
 また本発明は、電池の微分容量を決定する微分容量決定部と、決定された微分容量と、電池の微分容量の充電状態又は放電深度への依存性とを比較して、電池の充電状態又は放電深度を推定する、微分容量比較部とを備えたシステムを提供する。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうちワールブルグインピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する、健全性評価部とを備えたシステムを提供する。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスの実数部と、虚数部との相関関係を表わす複素インピーダンス特性曲線のうち約100mHz以下の周波数における複素インピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する、健全性評価部とを備えたシステムを提供する。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する、健全性評価部とを備えたシステムを提供する。
 また本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、電池の健全性を評価する、健全性評価部とを備えたシステムを提供する。さらに本発明は、電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、決定された複素インピーダンスに対して、電池内部を模擬する等価回路を構築し、等価回路を用いることによりインピーダンス情報をフィッティングさせて計算することにより求めた電池内部の抵抗成分を用いて、電池の健全性を評価する、健全性評価部とを備えたシステムを提供する。
 本発明によれば、電圧測定値に基づく手法等、従来の手法からは電池の充放電状態を推定不可能な場合であっても、複素インピーダンスの低周波数領域における周波数依存性や微分容量に基づいて充放電状態を推定することが可能となる。
 電池の充放電状態を適切に管理することは、モバイルコンピュータ、電気自動車、定置型蓄電装置、宇宙機等、さまざまな機器、システムにおける共通の課題であり、本発明による方法、システムは産業用途において広く市場性を有する技術として発展性が大きい。
 また本発明によれば、複素インピーダンス特性曲線を利用して電池の健全性を評価することが可能となる。これにより、電池内部で生じているショート等の健全性の悪化を早期に検出し、発火、爆発等のアクシデントを未然に防ぐことが可能となる。
電池の複素インピーダンスを決定する複素インピーダンス特性決定部の回路構成(測定に直接関わる要素以外は省略。)を概略的に示した回路図。 電池の複素インピーダンス特性に基づいて充放電動作を制御するシステムの構成概略図。 リチウムイオン二次電池を充電し、周波数を変えながら複素インピーダンスを測定して得られる複素インピーダンス特性曲線を各SOCについて描いたグラフ。 リチウムイオン二次電池を放電し、周波数を変えながら複素インピーダンスを測定して得られる複素インピーダンス特性曲線を各DODについて描いたグラフ。 リチウムイオン二次電池を放電させながら微分容量を測定したときの、DODと微分容量との関係を描いたグラフ。 図3に示したグラフ中、SOC20%の複素インピーダンス特性曲線について、約100mHz以下の周波数に対応する部分を延長したときの横軸との交点を示したグラフ。 図3に示したグラフ中、SOC20%の複素インピーダンス特性曲線について、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長したときの横軸との交点を示したグラフ。 電池の複素インピーダンス特性曲線を用いて電池の健全性を評価し、電池の運用を制御するシステムの構成概略図。
 これより図面を用いて、電池の充電状態又は放電深度を推定し、充放電動作をフィードバック制御するための本発明に係る方法及びシステム、及び、複素インピーダンス特性曲線を利用して電池の健全性を評価し、電池の運用を制御するための方法及びシステムを説明する。但し、本発明に係る方法、システムは、各図面を用いて説明される特定の具体的構成へと限定されるわけではなく、本発明の範囲内で適宜変更可能である。例えば、電池の複素インピーダンスを決定する装置や手法は後述のものに限らず任意であるし、複素インピーダンス特性に基づいて電池を制御するシステムの構成も、後述の図2,図7の構成に限らず任意である(図2,図7のシステムにおいて充放電動作や運用状態をフィードバック制御しない場合、充放電制御部や運用制御部は不要である。)。また以下の実施例では電池として主に二次電池を用いた例を説明するが、既に述べたとおり本発明の方法、システムは一次電池を含む任意の電池に適用可能であり、放電深度の推定や電池の健全性の評価、及びこれらに基づく制御を同様の原理で実施可能である。
なお、図2や図7に示すシステム構成は一例にすぎず、本発明の教示する充電状態又は放電深度の推定や健全性の評価、及びこれらに基づく制御のために行われる1以上の任意の機能を、1以上の任意の要素に任意に分担させることが可能である。
 複素インピーダンス決定
 図1に、リチウムイオン二次電池等、二次電池の複素インピーダンスを決定する複素インピーダンス特性決定部の回路構成の一例を概略的に示す。二次電池(充放電動作中であってもよい。その場合に二次電池に接続される充電源や負荷等は不図示。)に対して周波数可変の交流電源から一定周波数の交流電流を流しつつ、交流電圧計と交流電流計により、当該二次電池に印加される交流電圧と流れる交流電流を測定し、電圧、電流の測定値から複素インピーダンスを算出する。交流電源からの交流電流の周波数を変えつつ同様に交流電圧、交流電流を測定して複素インピーダンスを算出する作業を繰り返すことにより、複素インピーダンスの周波数依存性が決定される。
 なお、交流電圧、交流電流測定値からの複素インピーダンスの算出は、一例として以下の計算により行うことができる。
 二次電池に印加される交流電圧の複素数表示を
Figure JPOXMLDOC01-appb-M000001
(V0は交流電圧の振幅、δVは初期位相、ωは角周波数、tは時刻、iは虚数単位)
とし、二次電池に流れる交流電流の複素数表示を
Figure JPOXMLDOC01-appb-M000002
(I0は交流電流の振幅、δIは初期位相)
とする。
 測定される交流電圧、交流電流は上式(1),(2)の実数部である、V0cos(ωt+δV)とI0cos(ωt+δI)であり、これらの測定波形から、V0,I0,ω,δV,δIが決定される。各角周波数ωにおける複素インピーダンスは、
Figure JPOXMLDOC01-appb-M000003
と算出される。
 複素インピーダンス特性曲線
 上式(3)から、複素インピーダンスの実数部Z’,虚数部Z’’はそれぞれ、
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
と表わされる。2次元平面に座標点(Z’,Z’’)をプロットし、様々な(角)周波数について同様に複素インピーダンスを算出して座標点(Z’,Z’’)をプロットすることで、複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線が得られる。
 二次電池の充電状態又は放電深度の推定
 本発明者は、上記複素インピーダンス特性曲線が、異なる充電状態又は放電深度において異なる曲線となり、特にワールブルグインピーダンスの周波数領域や更なる低周波数領域において差異が顕著になることを見出した。したがって、既知の充電状態又は放電深度において予め同一の二次電池の複素インピーダンス測定を行い、複素インピーダンス特性曲線をカタログとして作成しておけば(後述の図3,図4参照)、充電状態又は放電深度が未知の二次電池についての複素インピーダンス測定により得られた複素インピーダンス特性曲線を、ワールブルグインピーダンスの周波数領域、及び更なる低周波数領域でカタログと照合することにより、当該未知の充電状態又は放電深度を推定することができる。具体的な照合の手法としては、充電状態又は放電深度が未知の二次電池について測定により得られた複素インピーダンス特性曲線を、カタログに含まれる個々の複素インピーダンス特性曲線と比較し、測定により得られた複素インピーダンス特性曲線と最も「類似した」複素インピーダンス特性曲線をカタログから抽出して(類似判断は、例えば同一の横軸値における両曲線の縦軸値の差の、全ての横軸値に亘る二乗平均が小さい程に両曲線が「類似している」と判断したり、あるいは任意の画像認証により判断したりと、任意の手法により行ってよい。)、当該抽出された複素インピーダンス特性曲線に対応する充電状態又は放電深度を、未知の充電状態又は放電深度の推定値とする(あるいは類似度の高い複数の複素インピーダンス特性曲線に対応する充電状態又は放電深度の加重平均を推定値とする等、具体的な解析手法は任意。)、等の手法がある。
 二次電池の劣化状態を考慮した推定
 なお、既に述べたとおり複素インピーダンスの周波数依存性(複素インピーダンス特性曲線)は二次電池の劣化状態に応じて変化しうるため、カタログとしては、可能な限り、充電状態又は放電深度が未知の二次電池について複素インピーダンス測定を行う直前に作成したカタログを用いることが好ましい。あるいは、当該二次電池の各々の劣化状態に応じてカタログを各々作成しておけば、劣化状態をも考慮したカタログ照合により充電状態又は放電深度の推定精度を向上させることができる。具体的には、カタログを作成するときに当該二次電池の直流抵抗も測定しておき、直流抵抗と図3,図4のようなカタログをセットで保存しておく。当該二次電池を長時間使用により劣化させた上で直流抵抗を測定しカタログを作成するという作業を繰り返すことにより、さまざまな直流抵抗と対応するカタログのセットが得られる。充電状態又は放電深度が未知の二次電池についてこれらを推定するにあたっては、当該二次電池の直流抵抗を測定した上で、この直流抵抗測定値と最も近い直流抵抗に対応するカタログを用いて照合を行うことにより推定精度を更に向上できる。
 直流法による複素インピーダンスの決定
 上述のとおり、例えば図1に示す交流形式の測定回路構成により複素インピーダンスを直接測定することも可能であるが、直流負荷に対する解析から複素インピーダンスを決定することも可能である。具体的には、二次電池を負荷に接続して使用している間に、外部回路から一定パターンの電流を重畳したり、突然負荷の接続を遮断したりして、二次電池に流れる電流にパルスを発生させる。このとき、当該二次電池においては負荷が突然変化することとなるため、その電圧も時間変化する。二次電池においてパルス状に時間変化する電流と、その応答として上述のとおり時間変化する電圧とを記録し、電流と電圧を各々フーリエ級数展開等の解析手法により周波数ごとに分解すれば、周波数ごとに上式(1),(2)のような電圧と電流の波形が得られる。各々の周波数ごとに波形を解析して電圧、電流の振幅や初期位相を決定すれば、上式(3)~(5)を用いる等して各々の周波数に対する複素インピーダンスが算出される。算出された複素インピーダンスに対応する座標点(Z’,Z’’)を2次元平面にプロットすれば、複素インピーダンス特性曲線が得られる。長周期の負荷変動等から直流抵抗を測定して二次電池の劣化状態を推定し、当該劣化状態に対応する(測定された直流抵抗と最も近い直流抵抗に対応する)カタログと照合することにより、充電状態又は放電深度の推定精度は更に向上する。
 推定された充電状態又は放電深度に基づく充放電制御
 上述のとおり推定した充電状態又は放電深度に基づき二次電池の充放電制御を行えば、過充電や過放電を防止しつつ安全に二次電池を使用することができる。リチウムイオン二次電池等、二次電池の充電状態又は放電深度を推定し、推定値をフィードバックして充放電を制御するためのシステムの一例について、構成概略図を図2に示す。なお、一次電池用のシステムを同様に構成する場合、充電器は不要である。
 二次電池には、スイッチ切り替えにより、負荷(電力を消費する任意の機器等)又は充電器(太陽電池システム等、任意の充電用外部電源)が接続されており(スイッチ制御用の回路等は不図示)、オンボードの放電又は充電動作が行われている。
 また二次電池に対しては、一例としては図1に示す接続態様で複素インピーダンス特性決定部が接続されている。複素インピーダンス特性決定部は、図1に示すとおり交流電源、交流電圧計、交流電流計の機能を備え、また測定された交流電流値、交流電圧値から上述のとおり複素インピーダンスを算出する等、各種データ処理を行うプロセッサ、データを記憶するメモリ、下記機能を制御するための制御回路、他の回路部と通信するための通信回路等を備えている(プロセッサ、メモリ、制御・通信回路等については、複素インピーダンス特性比較部、充放電制御部も同様に備えている。以下、それらについては記載を省略する。)。複素インピーダンス特性決定部により、上述のとおり周波数を変えつつリチウムイオン二次電池の複素インピーダンスが測定される。なお、既に述べたとおり複素インピーダンス特性は直流法によっても決定可能であり、上述のとおり負荷の接続を遮断等する制御回路、フーリエ解析を行うプロセッサ、メモリ等からなる処理回路等を用いて複素インピーダンス特性決定部を構成してもよい。また劣化状態をも考慮した推定を行う場合には、交流電源から長周期の交流電流を流して複素インピーダンスを測定する等して直流抵抗を測定する。
 複素インピーダンスの測定結果、及び必要であれば直流抵抗測定値を表わす信号は、複素インピーダンス特性決定部から複素インピーダンス特性比較部へと送信される。複素インピーダンス特性比較部には、既に述べたとおり、二次電池における既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性を予め測定した結果から作成されたカタログ(ここでは後述の図3,図4のようなグラフ形式とするが、各周波数の複素インピーダンス値を記録したデータ形式であってもよい。)が、そのメモリに保存されている。複素インピーダンス特性比較部は、複素インピーダンス特性決定部から受信した、二次電池における現在の複素インピーダンス測定値から複素インピーダンス特性曲線を作成し、これを、カタログに含まれる種々の充電状態又は放電深度に対応する複素インピーダンス特性曲線と比較して(劣化状態をも考慮した推定を行う場合には、複素インピーダンス特性決定部から受信した直流抵抗値から劣化状態を推定し(さまざまな累積使用期間の二次電池における直流抵抗値データを予め保持しておき、複素インピーダンス特性決定部から受信した直流抵抗値データに最も近い直流抵抗値データに対応する累積使用期間に基づいて劣化状態を推定する等)、当該受信した直流抵抗値と最も近い直流抵抗値に対応するカタログを用いる。)、二次電池の現在の充電状態又は放電深度を推定する(二次電池が負荷に接続されている場合は、放電中であるとして、複素インピーダンス測定値から作成した複素インピーダンス特性曲線を、図4のような各放電深度について作成されたカタログと比較し、二次電池が充電器に接続されている場合は、充電中であるとして、複素インピーダンス測定値から作成した複素インピーダンス特性曲線を、図3のような各充電状態について作成されたカタログと比較する。二次電池が負荷と充電器のどちらに接続されているかは、例えばその接続を切り替えるスイッチ制御回路から複素インピーダンス特性比較部に送信される信号により通知される。)。上記カタログを用いた複素インピーダンスの周波数特性の比較は、既に述べたとおりワールブルグインピーダンスの周波数領域、及び更なる低周波数領域で行うことが有効である。一例としては、約100mHz以下、特に好ましくは約10mHz以下の周波数領域で行うことが有効であり、あるいは、複素インピーダンス特性曲線における実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側において行うことが考えられる。
 充電状態又は放電深度の推定結果を表わす信号は、複素インピーダンス特性比較部から充放電制御部へと送信される。充放電制御部は、この推定結果に基づいて、負荷による放電又は充電器による充電を制御する。一例としては、負荷による放電中である場合に放電深度が所定の基準値を超えている場合には、二次電池と負荷との接続を遮断したり、あるいは制御信号により負荷の消費電力を低下させたりする(負荷がインバータを備えている場合に消費電力を低下させたり、複数の電力消費要素を含んでいる場合に一部の要素への電力供給を遮断する等)等して、負荷による電力消費を制御し(一次電池を用いる場合も同様)、また充電器による充電中である場合に充電状態が所定の基準値を超えている場合には、過充電を防ぐために充電器と二次電池の接続を遮断する等して、充電器による充電を制御する。
 このように、電池の複素インピーダンスを測定して充電状態又は放電深度を推定し、その結果をフィードバックして充放電を制御することにより、充電状態又は放電深度を適切な値へと導くことが可能となる。
 なお、ここでは複素インピーダンス特性比較部が複素インピーダンス特性曲線を作成するとしたが、この処理は複素インピーダンス特性決定部で行ってもよい。その他のデータ処理やデータの保存等も、上述のフィードバック制御と同様のフィードバック制御を実施可能であれば、どの回路部によって行ってもよい。また各回路部は複数の回路部により構成されていてもよいし、統合された1つの装置として構成されていてもよい。あるいは、複素インピーダンス特性決定部と複素インピーダンス特性比較部が統合されるなど、複数の回路部が1つの装置として統合されていてもよい。
 正極材料にオリビン型リン酸鉄リチウム(LiFePO4)を、負極材料にグラファイトカーボンを用い、有機電解液と、ポリエチレンのセパレータとを用いて作製された市販の巻回型リチウムイオン二次電池について、周波数を変えつつ複素インピーダンスを測定することにより複素インピーダンス特性曲線を作成した。なお、インピーダンス測定は、NF回路設計(株)製のELECTROCHEMICAL ANALYZER As-510-ECAと、SARVO ANALYZER FRA5014を用いて行った。
 実験の手順としては、まずリチウムイオン二次電池の充電状態が50%の状態で周波数を変えつつ複素インピーダンスを測定した後に、充電状態90%までリチウムイオン二次電池を充電し、その状態から10%ずつ放電して、各放電深度において周波数を変えつつ複素インピーダンスを測定し、これを放電深度が80%となるまで行った(図4)。次に、休止状態を挟んで、リチウムイオン二次電池を再び10%ずつ、90%の充電状態まで充電しつつ、各充電状態においては周波数を変えながら複素インピーダンスを測定した(図3)。最後に放電深度を50%に戻してインピーダンスを再度計測した。
 図3に充電状態20%,40%,60%,80%の複素インピーダンス測定結果グラフを,図4に放電深度10%,30%,50%,70%の複素インピーダンス測定結果グラフを、それぞれ示す(横軸が実数部、縦軸が虚数部。単位はmΩ)。グラフの左側が高周波側に、右側が低周波側に対応する。グラフから明らかなとおり、複素インピーダンスの実数部が概ね40mΩを超えたあたりから、複素インピーダンス特性曲線が、充電状態又は放電深度によって分離していることがわかる。複素インピーダンス特性曲線は、実数部が概ね40mΩ程度までは半円状のグラフとなり、これを超えるとワールブルグインピーダンスの周波数領域(概ね100mHz以下)に入って単調に増加するグラフとなっており、この単調増加部分において、異なる充電状態又は放電深度における複素インピーダンス特性曲線の分離が顕著である。10mHz,1mHzという、ワールブルグインピーダンスの周波数領域よりも更に低周波数の領域(図3,図4からわかるとおり、約10mHz以下の周波数領域において、複素インピーダンス特性曲線の傾きが変わっている。)において、複素インピーダンス特性曲線の分離は更に顕著となる。またグラフの形状に着目すれば、複素インピーダンス特性曲線における実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側において、複素インピーダンス特性曲線が、充電状態又は放電深度によって顕著に分離していることがわかる。
 測定により得られた複素インピーダンスの実数部、虚数部データのうち、主な周波数におけるデータを以下の表1(各充電状態について、周波数を変えつつ測定した複素インピーダンス実数部のデータ。図3に対応),表2(各充電状態について、周波数を変えつつ測定した複素インピーダンス虚数部のデータ。図3に対応),表3(各放電深度について、周波数を変えつつ測定した複素インピーダンス実数部のデータ。図4に対応),表4(各放電深度について、周波数を変えつつ測定した複素インピーダンス虚数部のデータ。図4に対応)に示す(複素インピーダンス実数部、虚数部の単位は全てmΩ)。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1~表4からわかるとおり、1000Hz~100Hz程度の高周波数領域における複素インピーダンスの実数部、虚数部の値は、充電状態又は放電深度が異なっても大きく変化しないが、1Hz~100mHz程度の周波数(表1,表3から分かるとおり、複素インピーダンスの実数部が概ね40mΩを超える周波数)から、充電状態又は放電深度に応じて虚数部の値が大きく変わり始め、特に周波数10mHz以下においては、その違いが顕著である。したがって、概ね100mHz以下、好ましくは10mHz以下の周波数領域での複素インピーダンス特性を比較することにより、充電状態又は放電深度を精度良く推定できると考えられる。図3,図4のようなグラフ形式、又は表1~表4のようなデータ形式のカタログと照合することにより、未知の充電状態又は放電深度を決定できるし、これらカタログを、複素インピーダンス測定時点の直流抵抗値(二次電池の劣化状態に対応)と対応付けて記録しておけば、充電状態又は放電深度が未知の二次電池についても直流抵抗を測定し、測定値と最も近い直流抵抗値に対応するカタログを用いて照合することにより、更に高精度で充電状態又は放電深度を推定できる。
 微分容量に基づく充電状態又は放電深度の推定
 電池の充電状態又は放電深度を推定するにあたっては、上述の複素インピーダンスにおける周波数依存性に加えて、例えば微分容量の充電状態又は放電深度に対する依存性を利用することもできる。図5に、リチウムイオン二次電池を放電させながら微分容量を測定したときの、放電深度(DOD)と微分容量(電圧の変化量ΔVに対する電荷Qの変化量(グラフでは電流Iで表示)の比I/ΔV。単位はファラド(F))との関係を描いたグラフを示す。ただし、微分容量の特性は一般に電池の劣化等によって変化するため、異なる充放電サイクル数(0サイクル、100サイクル、500サイクル)における微分容量特性をそれぞれグラフとしてプロットした。なお、実験に用いた電池は、正極材料にオリビン型リン酸鉄リチウム(LiFePO4)を、負極材料にグラファイトカーボンを用い、有機電解液と、ポリエチレンのセパレータとを用いて作製された市販の巻回型リチウムイオン二次電池である。
 電池の微分容量は一般に充電状態又は放電深度に依存して変化するため、微分容量の測定値から充電状態又は放電深度を推定することが可能である。したがって、複素インピーダンスの周波数依存性のみからでは充電状態又は放電深度を推定することが困難な場合であっても、微分容量の値を用いて充電状態又は放電深度を正確に推定できる場合がある。例えば、既に説明した容量の変化に伴う電位変動の電池放電カーブの傾きが、2つの異なる充電状態又は放電深度において類似している場合、複素インピーダンスの周波数依存性のみではその2つの異なる充電状態又は放電深度を区別することが困難な場合があるが、この場合には、2つの異なる充電状態又は放電深度のうち、微分容量の測定値から推定される充電状態又は放電深度に近いものを推定値として採用することができる。
 図2のシステムに上記微分容量を利用した充電状態、放電深度の推定を採用する場合は、複素インピーダンス特性決定部(以下、微分容量決定部として機能する。)において電圧計、電流計等の測定機器により微分容量を測定すればよい。一例においては、図5に示すようなさまざまな放電深度、又は充電状態における微分容量値を予め測定しておいた測定結果を微分容量のカタログとして複素インピーダンス特性比較部(以下、微分容量比較部として機能する。)のメモリに保存しておく。微分容量の測定値をこのカタログと照合することで、電池の充電状態又は放電深度を推定することができる(微分容量の測定値に最も近い微分容量値を有するカタログ中の点を特定し、その点における充電状態又は放電深度の値を推定値とする等)。このとき好ましくは、電池の直流抵抗値から推定される各々の劣化状態に応じて、さまざまな放電深度又は充電状態における微分容量値を予め測定しておいた測定結果を、微分容量のカタログとして各々作成しておく。具体的には、微分容量のカタログを作成するときに当該電池の直流抵抗も測定しておき、直流抵抗と図5中のグラフのような微分容量のカタログをセットで保存しておく(図5は、異なる劣化状態に応じた3つのカタログを含んでいる。)。当該電池を長時間使用により劣化させた上で直流抵抗を測定し微分容量のカタログを作成するという作業を繰り返すことにより、さまざまな直流抵抗と対応する微分容量のカタログのセットが得られる。充電状態又は放電深度が未知の二次電池について、微分容量からこれらを推定するにあたっては、当該電池の直流抵抗を測定した上で、この直流抵抗測定値と最も近い直流抵抗に対応する微分容量のカタログを用いて照合を行うことにより推定精度を更に向上できる。
 図2のシステムによって充電状態又は放電深度を推定する際、複素インピーダンス特性決定部が電池の現在の微分容量値を測定し、測定結果を複素インピーダンス特性比較部へと送信する。複素インピーダンス特性比較部は、そのメモリに保存された微分容量のカタログに含まれる、種々の充電状態又は放電深度に対応する微分容量値と、受信した現在の微分容量測定値とを比較して、電池の現在の充電状態又は放電深度を推定する。劣化状態をも考慮した推定を行う場合には、複素インピーダンス特性決定部から受信した直流抵抗測定値から劣化状態を推定し(さまざまな累積使用期間の電池における直流抵抗値データを予め保持しておき、複素インピーダンス特性決定部から受信した直流抵抗値データに最も近い直流抵抗値データに対応する累積使用期間に基づいて劣化状態を推定する等)、当該受信した直流抵抗値と最も近い直流抵抗値に対応する微分容量のカタログを用いる。なお、図2に関連して既に述べたとおり、電池が負荷に接続されている場合は、放電中であるとして、現在の微分容量値を、図5のような放電深度について作成された微分容量のカタログと比較し、電池が充電器に接続されている場合は、充電中であるとして、現在の微分容量を、充電状態について同様に作成された微分容量のカタログと比較する。
 複素インピーダンス特性比較部は、このようにして微分容量の測定値からも充電状態又は放電深度を推定できる。既に説明した複素インピーダンスの周波数依存性に基づいて推定した充電状態又は放電深度を、そのように微分容量の測定値から推定した充電状態又は放電深度と比較することにより、充電状態又は放電深度を更に正確に推定できる。微分容量の測定値からの充電状態又は放電深度の推定は、複素インピーダンスの周波数依存性に基づく充電状態又は放電深度の推定と組み合わせるのではなく、単独で行ってもよい。すなわち、微分容量への依存性のみからも充電状態又は放電深度を推定することが可能である。なお、図5のグラフ中で概ねDOD30%~40%付近に現れる微分容量のピークは、電池の劣化状態(サイクル数)に応じて変動しており、この微分容量のピークが変動することを管理することで,劣化具合の診断が可能であると推定される。
 複素インピーダンス特性に基づく電池の健全性評価
 図3,図4に例を示す複素インピーダンス特性曲線を利用して、電池の健全性を評価することも可能である。図6aは、図3に示したグラフ中、SOC20%の複素インピーダンス特性曲線について、約100mHz以下の周波数に対応する部分(ワールブルグインピーダンスの周波数領域に対応し、またグラフの形状に着目すれば、複素インピーダンス特性曲線における実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側に対応する。)を延長したときの横軸との交点を示したグラフであり、健全性評価の原理を示している。
 上記延長部分上の、複素インピーダンスの虚数部がゼロとなる点(横軸との交点A)における複素インピーダンスの実数部は、既に述べたとおり電池の内部抵抗の総和に対応すると考えられるため、多数の充放電サイクルを繰り返した二次電池や何らかの理由で健全性が悪化した一次電池において、上記A点が以前よりも左側(複素インピーダンスの実数部が低くなる側)に移動した場合、電池内部で何らかの要因により内部抵抗が低下したと推定される。内部抵抗が低下する一因としては電池内部でのショートが挙げられるのであり、すなわちA点における複素インピーダンス実数部の低下は電池内部でのショートの兆しと捉えることができる。そのように健全性が悪化した電池の運用を続ければ、ショートによる電池の発火、爆発等、重大なアクシデントの恐れがあるため、上記実数部の低下が検知された場合には電池の健全性が悪化したと判定して直ちに電池の運用を停止する、あるいは大幅に制限する等の制御を行うことが好ましい。
 図6bに、複素インピーダンス特性曲線を利用して電池の健全性を評価するための別の原理を示す。図6bにおいては、図3に示したグラフ中、SOC20%の複素インピーダンス特性曲線について、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長したときの横軸との交点が示されている。複素インピーダンス特性曲線における半円弧状部分をフィッティングし、延長することで得られる線上の虚数部がゼロとなる点(横軸との交点B)における複素インピーダンスの実数部も、上記A点における実数部と同様に電池内部でのショート等により低下すると考えられ、すなわちB点における複素インピーダンス実数部の低下も電池内部でのショートの兆しと捉えることができる。フィッティングを用いる手法の一例としては、決定された複素インピーダンスに対して、電池内部を模擬する等価回路を構築し、等価回路を用いることによりインピーダンス情報をフィッティングさせて計算することにより電池内部の抵抗成分を求めて、この抵抗成分を上記B点の実数部と同様に健全性評価に用いることも可能である。
 図7に、そのような電池の健全性評価、及び運用制御をするためのシステムの構成概略図を示す。図2と同様に二次電池用のシステムとして示されており、一次電池用のシステムを同様に構成する場合には充電器は不要である。なお、図2のシステムと同様の構成については適宜説明を省略する。
 二次電池には、図2のシステムと同様にスイッチ切り替えにより負荷又は充電器が接続されており、オンボードの放電又は充電動作が行われている。二次電池に対しては図2のシステムと同様に複素インピーダンス特性決定部が接続されており、既に説明したとおり周波数を変えつつ二次電池の複素インピーダンスが測定される。複素インピーダンス特性は直流法で決定してもよいことや、複素インピーダンス特性決定部の具体的構成も、図2に関連して既に説明したとおりである。
 複素インピーダンスの測定結果は、複素インピーダンス特性決定部から健全性評価部(図2の複素インピーダンス特性比較部と同様に、プロセッサ、メモリ、制御・通信回路等を適宜備えている。以下、それらについての記載は省略する。)へと送信される。
 図6aを用いて説明した原理に基づく場合、健全性評価部は、複素インピーダンス特性決定部から受信した、二次電池における現在の複素インピーダンス測定値から複素インピーダンス特性曲線を作成し、そのワールブルグインピーダンスの周波数領域に対応する部分(一例においては、約100mHz以下の周波数における複素インピーダンスの周波数依存性を示す部分。あるいは、複素インピーダンス実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側の部分)を延長することで得られる線上の、複素インピーダンス虚数部がゼロとなるA点(図6a参照)における複素インピーダンスの実数部を決定する。一方で健全性評価部のメモリには、当該二次電池について過去に同様の方法で決定された複素インピーダンスの実数部が保存されている。健全性評価部は、現在の複素インピーダンス測定値から得られる複素インピーダンス特性曲線において上記のとおり決定された実数部と、当該二次電池について上記のとおり過去に決定された実数部とを比較することにより、当該二次電池の健全性を評価する。
 一方、図6bを用いて説明した原理に基づく場合、健全性評価部は、複素インピーダンス特性決定部から受信した、二次電池における現在の複素インピーダンス測定値から複素インピーダンス特性曲線を作成し、実数部の上昇に伴う虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点B(図6b参照)における複素インピーダンスの実数部を決定する。一方で健全性評価部のメモリには、当該二次電池について過去に同様の方法で決定された複素インピーダンスの実数部が保存されている。健全性評価部は、現在の複素インピーダンス測定値から得られる複素インピーダンス特性曲線において上記のとおり決定された実数部と、当該二次電池について上記のとおり過去に決定された実数部とを比較することにより、当該二次電池の健全性を評価する。フィッティングを用いる手法の一例としては、既に述べたとおり等価回路を用いる手法を挙げることができ、等価回路を用いたフィッティングにより計算で求めた抵抗成分を健全性評価に用いてもよい。この場合、健全性評価部のメモリには過去に同様の方法で決定された抵抗成分が保存されており、現在の抵抗成分と過去の抵抗成分とを比較することにより二次電池の健全性を評価する。B点における複素インピーダンス実数部と同様に上記等価回路を用いたフィッティングにより計算で求めた抵抗成分を用いることができる点は以下においても同様であり、以下では説明を適宜省略する。
 なお、上記A点又はB点の位置(あるいは上記等価回路を用いたフィッティングにより計算で求めた抵抗成分)は、二次電池のSOCやDODによっても一般に変動しうると考えられるため、現在のA点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)と過去に決定された実数部(あるいは上記抵抗成分)とを比較するにあたっては、同じSOC又はDODにおける実数部(あるいは上記抵抗成分)を比較することが好ましい。この場合、健全性評価部のメモリには、当該二次電池のさまざまなSOC及びDODの値(本発明の推定手法、あるいは従来の手法を含む、任意の手法で予め決定する。)と、当該SOC又はDODにおける過去のA点又はB点での複素インピーダンス実数部(あるいは上記抵抗成分)(予め、図7のシステムを用いる等して決定しておく。)と、をセットでカタログとして保存しておく。(現在の)二次電池の健全性を評価するにあたって、健全性評価部は、当該二次電池における現在のSOC又はDOD(本発明の推定手法、あるいは従来の手法を含む、任意の手法で予め決定する。例えば図2のシステムで決定し、健全性評価部にデータとして予め送信されていてもよいし、健全性評価部が図2の複素インピーダンス特性比較部としても機能することにより、自らSOC又はDODを推定してもよい。健全性評価部が自ら推定する場合には、図2のシステムと同様に、二次電池が負荷と充電器のどちらに接続されているかは、例えばその接続を切り替えるスイッチ制御回路から健全性評価部に送信される信号により通知される。)と等しい、あるいは最も近いSOC又はDODに対応する、カタログ中の過去のA点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)を、現在の複素インピーダンス測定値から得られる複素インピーダンス特性曲線において上記のとおり決定されたA点又はB点の複素インピーダンス実数部(あるいは上記抵抗成分)と比較することにより、当該二次電池の健全性を評価する。
 健全性評価の具体例としては、A点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)が過去のものよりも低下した場合に電池の健全性が悪化したと判定し、A点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)が過去と同様であれば健全性に変化がないと判定することが可能である。また、未使用の電池において決定された、上記A点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)(予め健全性評価部のメモリに保存されているとする。)と比較して、現在の当該実数部(あるいは上記抵抗成分)が一定割合以上低下していた場合には、特にショートの危険性が高く健全性が大幅に悪化したと判定する等、具体的な健全性評価の態様は任意である。
 健全性の判定結果を表わす信号は、健全性評価部から運用制御部(プロセッサ、メモリ、制御・通信回路等からなる。)へと送信される。運用制御部は、この判定結果に基づいて二次電池の運用を制御する。一例として、上記A点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)が低下して健全性が悪化したとの判定結果を運用制御部が受信した場合、運用制御部は二次電池と負荷又は充電器との接続を切断して二次電池の運用を中止する。あるいは、上記A点又はB点における複素インピーダンス実数部(あるいは上記抵抗成分)が一定割合以上低下したことを示す判定結果を受信した場合に限り二次電池の運用を中止し、上記実数部(あるいは上記抵抗成分)の低下が上記一定割合未満であった場合には、一部の負荷又は充電器のみとの接続を切断して運用を制限する等の制御も可能である。
 このように、電池の健全性を評価し、判定結果に応じて電池の運用を制御することにより、ショートを未然に防止する等、安全な電池の運用が可能となる。
 なお、ここでは健全性判定部が複素インピーダンス特性曲線を作成するとしたが、この処理は複素インピーダンス特性決定部で行ってもよい。その他のデータ処理やデータの保存等も、上述のフィードバック制御と同様のフィードバック制御を実施可能であれば、どの回路部によって行ってもよい。また各回路部は複数の回路部により構成されていてもよいし、統合された1つの装置として構成されていてもよい。あるいは、複素インピーダンス特性決定部と健全性評価部が統合されるなど、複数の回路部が1つの装置として統合されていてもよい。
 電池の充電状態や健全性の悪化傾向を正確に把握し、これを制御に反映させること、及び電池の安全な運用が、長く産業界から要望されていた。エネルギー利用効率を向上させた社会を実現し、人類のサステイナビリティを向上させるために、本発明の技術は広く利用可能である。

Claims (25)

  1.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスのうちワールブルグインピーダンスの周波数依存性を、前記電池の既知の充電状態又は放電深度に対応するワールブルグインピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定する段階と
     を備えた方法。
  2.  ワールブルグインピーダンスの周波数依存性の前記比較に加えて、ワールブルグインピーダンスの周波数領域よりも更に低い周波数領域においても、前記決定された複素インピーダンスの周波数依存性を、前記既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性と比較することにより、充電状態又は放電深度の前記推定を行うよう構成された、請求項1に記載の方法。
  3.  前記電池の直流抵抗を決定し、該電池の劣化状態を推定する段階を更に備え、
     前記電池の前記充電状態又は放電深度を推定する前記段階は、決定された前記複素インピーダンスの周波数依存性を、前記推定した前記劣化状態に対応する該電池の既知の充電状態又は放電深度に対応する複素インピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定する段階である
     請求項1又は2に記載の方法。
  4.  推定された前記電池の充電状態又は放電深度に応じて、該電池に接続された充電源による充電を制御するか、又は該電池に接続された電力消費要素の電力消費を制御する段階を更に備えた
     請求項1乃至3のいずれか一項に記載の方法。
  5.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスのうち、約100mHz以下の周波数における該複素インピーダンスの周波数依存性を、前記電池の既知の充電状態又は放電深度に対応する、約100mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定する段階と
     を備えた方法。
  6.  前記電池の前記充電状態又は放電深度を推定する前記段階は、決定された前記複素インピーダンスのうち、約10mHz以下の周波数における該複素インピーダンスの周波数依存性を、該電池の既知の充電状態又は放電深度に対応する、約10mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定する段階である
     請求項5に記載の方法。
  7.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線における該実数部の上昇に伴う該虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側において、該複素インピーダンス特性曲線を、前記電池の既知の充電状態又は放電深度に対応する複素インピーダンス特性曲線と比較して、該電池の充電状態又は放電深度を推定する段階と
     を備えた方法。
  8.  電池の微分容量を決定する段階と、
     前記決定された微分容量と、前記電池の微分容量の充電状態又は放電深度への依存性とを比較して、該電池の充電状態又は放電深度を推定する段階と
     を備えた方法。
  9.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうちワールブルグインピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、前記電池の健全性を評価する段階と
     を備えた方法。
  10.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち約100mHz以下の周波数における該複素インピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、前記電池の健全性を評価する段階と
     を備えた方法。
  11.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、該実数部の上昇に伴う該虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、前記電池の健全性を評価する段階と
     を備えた方法。
  12.  前記電池の健全性を評価する段階は、前記複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部が低下したことに基づいて該電池の健全性が悪化したと判定する段階を含む、
     請求項9乃至11のいずれか一項に記載の方法。
  13.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、該実数部の上昇に伴う該虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、前記電池の健全性を評価する段階と
     を備えた方法。
  14.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する段階と、
     決定された前記複素インピーダンスに対して、前記電池内部を模擬する等価回路を構築し、該等価回路を用いることによりインピーダンス情報をフィッティングさせて計算することにより求めた該電池内部の抵抗成分を用いて、該電池の健全性を評価する段階と
     を備えた方法。
  15.  評価された前記電池の健全性に応じて該電池の運用を制御する段階を更に備えた
     請求項9乃至14のいずれか一項に記載の方法。
  16.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスのうちワールブルグインピーダンスの周波数依存性を、前記電池の既知の充電状態又は放電深度に対応するワールブルグインピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定する、複素インピーダンス特性比較部と
     を備えたシステム。
  17.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスのうち、約100mHz以下の周波数における該複素インピーダンスの周波数依存性を、前記電池の既知の充電状態又は放電深度に対応する、約100mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定する、複素インピーダンス特性比較部と
     を備えたシステム。
  18.  前記複素インピーダンス特性比較部は、決定された前記複素インピーダンスのうち、約10mHz以下の周波数における該複素インピーダンスの周波数依存性を、該電池の既知の充電状態又は放電深度に対応する、約10mHz以下の周波数における複素インピーダンスの周波数依存性と比較して、該電池の充電状態又は放電深度を推定するよう構成された
     請求項17に記載のシステム。
  19.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線における該実数部の上昇に伴う該虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側において、該複素インピーダンス特性曲線を、前記電池の既知の充電状態又は放電深度に対応する複素インピーダンス特性曲線と比較して、該電池の充電状態又は放電深度を推定する、複素インピーダンス特性比較部と
     を備えたシステム。
  20.  電池の微分容量を決定する微分容量決定部と、
     前記決定された微分容量と、前記電池の微分容量の充電状態又は放電深度への依存性とを比較して、該電池の充電状態又は放電深度を推定する、微分容量比較部と
     を備えたシステム。
  21.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうちワールブルグインピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、前記電池の健全性を評価する、健全性評価部と
     を備えたシステム。
  22.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち約100mHz以下の周波数における該複素インピーダンスの周波数依存性を示す部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンスの実数部を用いて、前記電池の健全性を評価する、健全性評価部と
     を備えたシステム。
  23.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、該実数部の上昇に伴う該虚数部の変化が下降から上昇へと転じる周波数よりも低周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンス実数部を用いて、前記電池の健全性を評価する、健全性評価部と
     を備えたシステム。
  24.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスの実数部と虚数部との相関関係を表わす複素インピーダンス特性曲線のうち、該実数部の上昇に伴う該虚数部の変化が下降から上昇へと転じる周波数よりも高周波数側の部分を延長することで得られる線上の、複素インピーダンスの虚数部がゼロとなる点における複素インピーダンス実数部を用いて、前記電池の健全性を評価する、健全性評価部と
     を備えたシステム。
  25.  電池の正極負極間での、複数の周波数に対する複素インピーダンスを決定する、複素インピーダンス特性決定部と、
     決定された前記複素インピーダンスに対して、前記電池内部を模擬する等価回路を構築し、該等価回路を用いることによりインピーダンス情報をフィッティングさせて計算することにより求めた該電池内部の抵抗成分を用いて、該電池の健全性を評価する、健全性評価部と
     を備えたシステム。
PCT/JP2016/068904 2015-06-26 2016-06-24 電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム WO2016208745A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/739,566 US10534038B2 (en) 2015-06-26 2016-06-24 Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
DE112016002873.3T DE112016002873T5 (de) 2015-06-26 2016-06-24 Verfahren und System zum Schätzen eines Ladezustands oder einer Entladungstiefe von Batterien und Verfahren und System zur Beurteilung des Zustands von Batterien
JP2017525458A JP7018609B2 (ja) 2015-06-26 2016-06-24 電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-129293 2015-06-26
JP2015129293 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208745A1 true WO2016208745A1 (ja) 2016-12-29

Family

ID=57585186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068904 WO2016208745A1 (ja) 2015-06-26 2016-06-24 電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム

Country Status (5)

Country Link
US (1) US10534038B2 (ja)
JP (2) JP7018609B2 (ja)
DE (1) DE112016002873T5 (ja)
TW (2) TWI752787B (ja)
WO (1) WO2016208745A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318822A (zh) * 2017-12-18 2018-07-24 合肥国轩高科动力能源有限公司 一种锂电池极片和隔膜电导率的测量方法及系统
JP2018128383A (ja) * 2017-02-09 2018-08-16 トヨタ自動車株式会社 電池状態推定装置
TWI636272B (zh) * 2017-04-26 2018-09-21 鴻準科技股份有限公司 Battery monitoring system
CN108627771A (zh) * 2017-03-22 2018-10-09 丰田自动车株式会社 电池状态推测装置
CN109164397A (zh) * 2018-09-21 2019-01-08 华北电力大学(保定) 考虑充电速率和环境温度的锂电池寿命损耗评估方法
JP2019061924A (ja) * 2017-09-28 2019-04-18 プライムアースEvエナジー株式会社 二次電池のイオン濃度推定方法及びイオン濃度推定装置
WO2021028707A1 (ja) * 2019-08-12 2021-02-18 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
CN112485686A (zh) * 2019-09-12 2021-03-12 东莞新能德科技有限公司 确定电池阻抗的方法、电子装置及计算机可读存储介质
EP3812780A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state from gradients of electrical impedance measurements
EP3812781A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state of an electrochemical battery
EP3812783A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state from electrical impedance measurements using convolutional neural network means
EP3812779A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Analyzing electrical impedance measurements of an electrochemical battery
EP3812782A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a temperature of an electrochemical battery
JP2021077569A (ja) * 2019-11-12 2021-05-20 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
JP6968302B1 (ja) * 2020-08-04 2021-11-17 三菱電機株式会社 蓄電池内部状態推定装置及び蓄電池内部状態推定方法
US11428745B2 (en) * 2017-08-23 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
WO2023114882A1 (en) * 2021-12-15 2023-06-22 Element Energy, Inc. Methods and systems for detecting variations in minor total-impedance contributors in electrochemical cells

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189118B2 (en) * 2016-06-06 2019-01-29 GM Global Technology Operations LLC Method and apparatus for evaluating an ultrasonic weld junction
JP6605008B2 (ja) * 2017-10-20 2019-11-13 本田技研工業株式会社 電源システム及び車両
TWI657639B (zh) 2017-12-04 2019-04-21 Industrial Technology Research Institute 電池放電流程決定方法和系統
TWI649573B (zh) 2017-12-04 2019-02-01 財團法人工業技術研究院 電池內短路阻抗之偵測方法和系統
EP3505946B1 (en) * 2017-12-27 2023-03-15 Primearth EV Energy Co., Ltd. Battery state estimation device and battery state estimation method
EP3766156A1 (en) * 2018-03-16 2021-01-20 Total Solar International System, device, and method for off-grid microgrids management
DE102018209461A1 (de) * 2018-06-13 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum impedanzgesteuerten Schnellladen, Steuereinheit für ein Ladesystem, Energiespeicher und Arbeitsvorrichtung
EP3833993A4 (en) * 2018-08-06 2022-04-20 The Regents of the University of Michigan ELECTRODE DIAGNOSTICS FOR LITHIUM-ION BATTERY
US10989760B2 (en) * 2018-12-27 2021-04-27 Bloom Energy Corporation System and method for impedance testing DC power sources
WO2020236013A1 (en) * 2019-05-20 2020-11-26 Waikatolink Limited Battery performance assessment method and apparatus
CN111064253A (zh) * 2019-12-30 2020-04-24 上海电力大学 一种基于平均离散Fréchet距离的电池健康度快速评估方法
US11498446B2 (en) * 2020-01-06 2022-11-15 Ford Global Technologies, Llc Plug-in charge current management for battery model-based online learning
WO2021212002A1 (en) * 2020-04-17 2021-10-21 Iontra LLC Systems and methods for battery charging
WO2021257593A1 (en) * 2020-06-16 2021-12-23 Black & Decker Inc. Battery charger
CN116918131A (zh) * 2020-07-24 2023-10-20 亚德诺半导体国际无限责任公司 使用阻抗光谱法跟踪不可再充电电池的充电状态
CN111999666B (zh) * 2020-08-11 2023-01-17 东莞维科电池有限公司 一种锂离子电芯扩散阻抗的定量测试方法
DE102020127259A1 (de) * 2020-10-15 2022-04-21 Audi Aktiengesellschaft Verfahren sowie Steuervorrichtung zum impedanzbasierten Bestimmen eines Ladezustands zumindest einer Batteriezelle sowie Kraftfahrzeug
CN112444754B (zh) * 2020-11-18 2023-01-06 国网上海市电力公司 基于动态阻抗的电池健康状态估算方法、系统
JP7214253B2 (ja) * 2021-05-12 2023-01-30 東洋システム株式会社 電池性能評価装置および電池性能評価方法
CN113866643B (zh) * 2021-09-24 2023-05-30 湖北亿纬动力有限公司 一种电池分容方法以及装置
KR102650095B1 (ko) * 2021-11-30 2024-03-21 주식회사 민테크 이차전지의 불량 검출 방법 및 장치
JP2024006331A (ja) * 2022-07-01 2024-01-17 株式会社東芝 電池の充電方法、診断方法、充電器、診断システム、充電プログラム及び診断プログラム
CN116047326A (zh) * 2023-01-28 2023-05-02 宁德新能源科技有限公司 电池状态检测方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158444A (ja) * 2010-02-04 2011-08-18 Gs Yuasa Corp 二次電池の残存容量検出方法および装置
JP2013537638A (ja) * 2010-08-27 2013-10-03 インペリアル イノヴェイションズ リミテッド 電気自動車、ハイブリッド電気自動車、および他の用途でのバッテリ監視
WO2015005141A1 (ja) * 2013-07-10 2015-01-15 アルプス・グリーンデバイス株式会社 蓄電装置状態推定方法
JP2015076958A (ja) * 2013-10-08 2015-04-20 トヨタ自動車株式会社 蓄電システム
JP2015081800A (ja) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 バッテリのパラメータ推定装置及びパラメータ推定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241275A (en) * 1991-05-31 1993-08-31 At&T Bell Laboratories Method of measuring remaining capacity of a storage cell by comparing impedance plot characteristics
KR100262465B1 (ko) 1998-06-25 2000-08-01 박찬구 펄스전류의 전압 응답신호를 이용한 전지용량 측정방법 및 측정장치
JP3598873B2 (ja) 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP4100020B2 (ja) 2002-04-01 2008-06-11 トヨタ自動車株式会社 車両用電源装置
JP2003317810A (ja) 2002-04-18 2003-11-07 Toyota Motor Corp 電池の特性評価方法
JP4825410B2 (ja) 2004-10-01 2011-11-30 株式会社リコー イオン伝導性液体の製造方法、イオン伝導性液体、イオン伝導体の製造方法、及びイオン伝導体
CN101184648B (zh) * 2005-05-27 2012-08-08 Lg化学株式会社 通过利用电池的内部电阻估算电池最大功率的方法和装置
JP5135806B2 (ja) 2007-01-24 2013-02-06 パナソニック株式会社 流体の流れ計測装置
US8754611B2 (en) * 2008-04-11 2014-06-17 Apple Inc. Diffusion-limited adaptive battery charging
JP2012212513A (ja) 2011-03-30 2012-11-01 Toyota Motor Corp リチウム二次電池の状態検出方法
JP5595981B2 (ja) * 2011-06-15 2014-09-24 愛三工業株式会社 電池制御方法及び電池制御システム
US20130179103A1 (en) * 2012-01-06 2013-07-11 Industrial Technology Research Institute Battery analysis device and method thereof
WO2013115038A1 (ja) * 2012-01-31 2013-08-08 プライムアースEvエナジー株式会社 電池状態検出装置
JP5975274B2 (ja) * 2012-07-27 2016-08-23 トヨタ自動車株式会社 電極の検査方法およびその利用
JP5354416B1 (ja) 2012-11-05 2013-11-27 東洋システム株式会社 二次電池評価方法および評価プログラム
WO2014076839A1 (ja) 2012-11-19 2014-05-22 新神戸電機株式会社 蓄電池電圧平準化装置および蓄電池状態監視システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158444A (ja) * 2010-02-04 2011-08-18 Gs Yuasa Corp 二次電池の残存容量検出方法および装置
JP2013537638A (ja) * 2010-08-27 2013-10-03 インペリアル イノヴェイションズ リミテッド 電気自動車、ハイブリッド電気自動車、および他の用途でのバッテリ監視
WO2015005141A1 (ja) * 2013-07-10 2015-01-15 アルプス・グリーンデバイス株式会社 蓄電装置状態推定方法
JP2015076958A (ja) * 2013-10-08 2015-04-20 トヨタ自動車株式会社 蓄電システム
JP2015081800A (ja) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 バッテリのパラメータ推定装置及びパラメータ推定方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128383A (ja) * 2017-02-09 2018-08-16 トヨタ自動車株式会社 電池状態推定装置
CN108627771A (zh) * 2017-03-22 2018-10-09 丰田自动车株式会社 电池状态推测装置
TWI636272B (zh) * 2017-04-26 2018-09-21 鴻準科技股份有限公司 Battery monitoring system
US11428745B2 (en) * 2017-08-23 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
JP2019061924A (ja) * 2017-09-28 2019-04-18 プライムアースEvエナジー株式会社 二次電池のイオン濃度推定方法及びイオン濃度推定装置
CN108318822A (zh) * 2017-12-18 2018-07-24 合肥国轩高科动力能源有限公司 一种锂电池极片和隔膜电导率的测量方法及系统
CN109164397A (zh) * 2018-09-21 2019-01-08 华北电力大学(保定) 考虑充电速率和环境温度的锂电池寿命损耗评估方法
CN109164397B (zh) * 2018-09-21 2021-03-30 华北电力大学(保定) 考虑充电速率和环境温度的锂电池寿命损耗评估方法
WO2021028707A1 (ja) * 2019-08-12 2021-02-18 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
US11614493B2 (en) 2019-08-12 2023-03-28 Nissan Motor Co., Ltd. Secondary battery short-circuiting assessment device, short-circuiting assessment method, and short-circuiting assessment system
CN114222927A (zh) * 2019-08-12 2022-03-22 日产自动车株式会社 二次电池的短路估计装置、短路估计方法及短路估计系统
CN112485686A (zh) * 2019-09-12 2021-03-12 东莞新能德科技有限公司 确定电池阻抗的方法、电子装置及计算机可读存储介质
EP3812779A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Analyzing electrical impedance measurements of an electrochemical battery
US11474158B2 (en) 2019-10-23 2022-10-18 NOVUM engineerING GmbH Analyzing electrical impedance measurements of an electromechanical battery
EP3812780A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state from gradients of electrical impedance measurements
EP3812782A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a temperature of an electrochemical battery
EP3812781A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state of an electrochemical battery
EP3812783A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state from electrical impedance measurements using convolutional neural network means
US11280841B2 (en) 2019-10-23 2022-03-22 NOVUM engineerING GmbH Estimating a temperature of an electrochemical battery
US11385294B2 (en) 2019-10-23 2022-07-12 NOVUM engineerING GmbH Estimating a battery state from gradients of electrical impedance measurements
US11385296B2 (en) 2019-10-23 2022-07-12 NOVUM engineerING GmbH Estimating a battery state of an electrochemical battery
JP2021077569A (ja) * 2019-11-12 2021-05-20 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
JP7391621B2 (ja) 2019-11-12 2023-12-05 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
WO2022029892A1 (ja) * 2020-08-04 2022-02-10 三菱電機株式会社 蓄電池内部状態推定装置及び蓄電池内部状態推定方法
JP6968302B1 (ja) * 2020-08-04 2021-11-17 三菱電機株式会社 蓄電池内部状態推定装置及び蓄電池内部状態推定方法
WO2023114882A1 (en) * 2021-12-15 2023-06-22 Element Energy, Inc. Methods and systems for detecting variations in minor total-impedance contributors in electrochemical cells

Also Published As

Publication number Publication date
TW201710702A (zh) 2017-03-16
JP7093934B2 (ja) 2022-07-01
TWI727957B (zh) 2021-05-21
JP7018609B2 (ja) 2022-02-14
US10534038B2 (en) 2020-01-14
DE112016002873T5 (de) 2018-03-08
US20180321326A1 (en) 2018-11-08
TWI752787B (zh) 2022-01-11
JPWO2016208745A1 (ja) 2018-05-24
TW202127052A (zh) 2021-07-16
JP2020204616A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP7093934B2 (ja) 電池の充電状態又は放電深度を推定する方法及びシステム、及び、電池の健全性を評価する方法及びシステム
US10393819B2 (en) Method and apparatus for estimating state of battery
Burke et al. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications
EP2762907B1 (en) Apparatus and method for estimating state of charge of battery
EP2559095B1 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
JP5804523B2 (ja) バッテリー充電状態を判定するためのシステム及び方法
Lashway et al. Adaptive battery management and parameter estimation through physics-based modeling and experimental verification
JP7065435B2 (ja) 電池管理装置、電池システム、及び電池管理方法
CN106451592B (zh) 电池充放电的控制方法、电池充放电的控制设备和电动车
WO2013115038A1 (ja) 電池状態検出装置
JP5743634B2 (ja) 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
JP2023523370A (ja) リチウムメッキを検出するための方法及び装置、並びに分極比率を取得するための方法及び装置
US10302706B2 (en) Apparatus for calculating state of charge of storage battery
EP3141919A2 (en) Open circuit voltage estimating device and method
KR101944751B1 (ko) 배터리 재사용 수명 진단 방법
US10794961B2 (en) Internal state estimating device
CN110573370A (zh) 用于诊断电池劣化的装置和方法
JP4954791B2 (ja) 蓄電デバイスの電圧予測方法
JP2014238948A (ja) 二次電池のインピーダンスの評価方法
JP6893164B2 (ja) 電池状態測定装置及び電池状態測定方法
RU2533328C1 (ru) Способ определения остаточной емкости аккумулятора
JP2020079764A (ja) 二次電池の状態判定方法
KR102020044B1 (ko) 배터리 충전 시스템 및 이를 이용한 배터리 모듈의 최대용량 충전 제어방법
WO2020085097A1 (ja) 電池制御装置
CN104965177A (zh) 电池电芯的电荷状态的估计和再调整的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15739566

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017525458

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002873

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814514

Country of ref document: EP

Kind code of ref document: A1