WO2016206330A1 - 一种施工立井吊桶运动状态监测系统及方法 - Google Patents

一种施工立井吊桶运动状态监测系统及方法 Download PDF

Info

Publication number
WO2016206330A1
WO2016206330A1 PCT/CN2015/098165 CN2015098165W WO2016206330A1 WO 2016206330 A1 WO2016206330 A1 WO 2016206330A1 CN 2015098165 W CN2015098165 W CN 2015098165W WO 2016206330 A1 WO2016206330 A1 WO 2016206330A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
construction
carriage
relative
shaft
Prior art date
Application number
PCT/CN2015/098165
Other languages
English (en)
French (fr)
Inventor
曹国华
王彦栋
朱真才
牛岩军
彭维红
王乃格
王进杰
刘善增
沈刚
张骥
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2015395790A priority Critical patent/AU2015395790B2/en
Publication of WO2016206330A1 publication Critical patent/WO2016206330A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B19/00Mining-hoist operation
    • B66B19/06Applications of signalling devices

Definitions

  • the invention relates to a vertical shaft bucket monitoring system and method, in particular to a construction vertical shaft bucket motion state monitoring system and method.
  • Buckets are a type of transportation tool commonly used in vertical shaft construction. They are mainly used to transport people and materials between the ground, the hanging plate and the bottom of the well. Due to roundness error of the skywheel, wind load in the wellbore, etc., the bucket will be deflected during operation. This yaw will seriously threaten the safety of the bucket operation, which in turn threatens the safety of personnel and equipment during the construction of the shaft. However, there is currently no effective way to monitor the yaw of the bucket in real time, which has hidden hidden dangers for the safe production of vertical shaft construction.
  • the object of the present invention is to provide a monitoring system and method for the movement condition of a construction vertical shaft bucket, which solves the problem that the movement state of the bucket cannot be monitored during the operation of the construction vertical shaft bucket. Real-time and visualize the monitoring of the movement state of the construction shaft bucket, and automate the judgment of the dangerous state of the bucket.
  • the present invention provides a construction vertical bucket movement state monitoring system, which comprises a dynamic signal acquisition and launch system installed on a carriage, a wireless signal transmission system installed on the well wall, and a computer set installed in the control room. Control center.
  • the dynamic signal acquisition and transmission system comprises: a laser displacement sensor mounted on the carriage, two industrial cameras mounted on both sides of the carriage, a light source for supplementing light, and a terminal collection and emission controller placed on the carriage.
  • the terminal acquisition and emission controller is coupled to an industrial camera, a light source, and a laser displacement sensor.
  • the laser displacement sensors have two units, which are horizontally arranged on the carriage.
  • the two laser displacement sensors measure the directions perpendicular to each other, and measure the distance between the two mutually perpendicular directions of the carriage relative to the construction shaft wall.
  • the terminal collection transmission controller and the wireless mesh node of the wireless signal transmission system are connected by wireless.
  • the terminal collection and emission controller is composed of a battery pack, a single-chip controller, a video capture card and a mesh network client;
  • the battery pack is responsible for the entire terminal acquisition and emission controller and a laser displacement sensor mounted on the carriage, and is mounted on the carriage.
  • the single-chip microcomputer controls the terminal to collect the coordination of each part of the transmission controller according to the setting program and is responsible for communicating with the laser displacement sensor directly;
  • the video capture card converts the analog signal collected by the industrial camera into a digital format And passed to the mesh network client;
  • the mesh network client communicates with the host computer through the mesh network.
  • the image data generated by the industrial camera and the distance data generated by the laser displacement sensor are uploaded to the control host through the terminal acquisition and emission controller; the terminal acquisition transmission controller can recognize whether the image captured by the industrial camera is in a stationary state for a long time, and determine the industrial camera acquisition.
  • the image signal transmission is suspended while the image is in a stationary state for a long time to save power.
  • the wireless signal transmission system includes a plurality of wireless mesh nodes distributed on the construction well wall, the wireless mesh node and the terminal collection transmission controller are connected by wireless; the wireless mesh node is used to displace the industrial camera and the laser
  • the information collected by the sensor is transmitted to the computer centralized control center and the control signal is transmitted to the dynamic signal acquisition and transmission system.
  • the computer centralized control center comprises a control host and a wireless signal collector; the control host is connected with the wireless signal collector; and the wireless signal collector uploads the data signal received by the wireless to the control host.
  • a method for monitoring the movement state of a construction vertical bucket collects the image signals of the two industrial cameras into the bucket for comprehensive analysis, and restores the bucket with respect to the industrial parameters calibrated by two industrial cameras in advance.
  • the three-dimensional coordinate parameters of the camera coordinates are calculated according to the position data obtained by the laser displacement sensor, and the coordinates of the carriage relative to the construction shaft are calculated, and finally the position coordinates of the bucket relative to the construction shaft are comprehensively calculated;
  • the method includes the following steps:
  • Camera calibration Two industrial cameras are accurately calibrated using a checkerboard standard calibrator; the internal parameter matrix and outer parameter matrix of the industrial camera and the eigenmatrix and basic matrix between the two industrial cameras are obtained;
  • the control host sends out signals to control the continuous motion images of the two industrial cameras to collect the vertical construction bucket, and the laser displacement sensor collects the position data of the carriage relative to the construction shaft wall;
  • Analyze the position of the bucket Determine the position of the bucket in the image obtained in step 2 by using the Mean-Shift tracking model, identify the attitude of the bucket according to the inherent angular feature of the bucket, and calculate the bucket according to the calibration parameters of the industrial camera obtained in step 1. Spatial three-dimensional coordinates, the coordinates of the carriage relative to the construction shaft are calculated according to the position data obtained by the laser displacement sensor, and finally the position coordinates of the bucket relative to the construction shaft are comprehensively calculated;
  • step 5 Dynamic measurement and data storage: The image obtained in step 2 is continuously analyzed according to step 4 to obtain the spatial position information of the bucket at different times, thereby obtaining the movement condition of the bucket; and analyzing the movement position data of the bucket to obtain the bucket The speed, acceleration, and yaw frequency parameters of the motion are saved in the control host;
  • Monitoring display the control host displays the image of the bucket obtained in step 2 and the movement parameters of the bucket obtained in step 5 on the screen of the control panel to monitor the movement of the bucket;
  • step 6 Data research and alarm: According to the bucket motion parameter obtained in step 6, it is judged whether the bucket is in the normal motion state; once the bucket swing amplitude exceeds the set threshold, the alarm program alarm is started.
  • the specific method for calculating the position coordinates of the bucket is: when the position of the bucket relative to the industrial camera coordinates is P'(x, y, z), the coordinate position of the carriage relative to the construction shaft is Q(x, y), and the industrial camera coordinate system is The conversion matrix of the construction vertical shaft coordinate system is T. Since the industrial camera is fixed on the carriage, the position coordinates of the bucket relative to the construction shaft:
  • the beneficial effect is that due to the adoption of the above scheme, the construction of the construction vertical crane bucket motion state monitoring system is installed.
  • the well can monitor and record the movement state of the bucket in real time during the running process of the bucket, and timely alarm when the swinging amplitude of the bucket is too large, thus realizing the visualization, automation and intelligence of the monitoring of the movement state of the construction shaft bucket.
  • the construction vertical shaft movement state monitoring system and method have high reliability and automation degree.
  • the machine vision technology is used to judge the position of the construction vertical shaft bucket, and the monitoring image is quickly uploaded to the control host through the wireless mesh node in real time to ensure the system. Real time.
  • the whole system can monitor the movement state of the vertical construction bucket and alarm the abnormal state automatically, ensuring the safe operation of the construction vertical bucket.
  • FIG. 1 is a layout view of a monitoring system for a moving state of a construction shaft crane according to the present invention.
  • FIG. 2 is a schematic block diagram of a method for monitoring the movement state of a construction vertical shaft bucket according to the present invention.
  • FIG. 3 is a composition diagram of a terminal acquisition controller of the present invention.
  • FIG. 1 is a layout diagram of a construction vertical bucket movement state monitoring system, which includes a dynamic signal acquisition and launch system installed on the carriage 1, a wireless signal transmission system installed on the well wall, and a computer set installed in the control room. Control center.
  • the dynamic signal acquisition and transmission system includes a laser displacement sensor 9 mounted on the carriage 1, two industrial cameras mounted on both sides of the carriage, two sets of light sources 3 for filling light, and two sets of light sources placed on the carriage 1.
  • the terminal collects the transmitting controller 4, and the terminal collecting transmitting controller 4 is coupled with the industrial camera 2, the light source 3, and the laser displacement sensor 9.
  • laser displacement sensors 9 There are two laser displacement sensors 9 in total, two laser displacement sensors 9 are horizontally arranged on the carriage, and two laser displacement sensors 9 are perpendicular to each other, and two carriages 1 in the vertical direction are respectively measured relative to the construction. The distance from the shaft wall.
  • the terminal collection and emission controller 4 is composed of a battery pack, a single chip controller, a video capture card and a mesh network client.
  • the battery pack is responsible for the entire terminal acquisition and emission controller, the laser displacement sensor mounted on the carriage, the industrial camera and the light source installed on both sides of the carriage; the single-chip microcomputer controls the terminal to collect the coordination of each part of the transmission controller according to the setting program.
  • the video capture card converts the analog signal collected by the industrial camera into a digital format and transmits it to the mesh network client; the mesh network client communicates with the host computer through the mesh network.
  • the image data generated by the industrial camera 2 and the distance data generated by the laser displacement sensor 9 are uploaded to the control host 6 through the terminal acquisition and emission controller 4; the terminal acquisition transmission controller 4 can recognize whether the image captured by the industrial camera 2 is in a stationary state for a long time.
  • the image signal transmission is suspended to save power when it is determined that the image captured by the industrial camera 2 is in a stationary state for a long time; the terminal collection transmission controller 4 is powered by the battery, and the terminal controller 4 issues a replacement battery when the battery quality of the terminal controller 4 is too low. Request to replace the terminal controller 4 when the carriage 1 rises to the ground Pool.
  • the wireless signal transmission system includes a plurality of wireless mesh nodes 5 distributed on the construction well wall, and the wireless mesh node 5 is configured to transmit the information collected by the image acquisition system to the computer centralized control center and transmit the control signals to the image acquisition system. .
  • the computer centralized control center includes a control host 6 and a wireless signal collector 7; the wireless signal collector 7 uploads the data signal received through the wireless to the control host 6.
  • a monitoring method for the movement state of the construction vertical shaft bucket the terminal collection and emission controller control host 6 collects the image signals of the two industrial cameras 2 to the bucket for comprehensive analysis, and restores the bucket 8 with respect to the parameters obtained by calibrating the two industrial cameras 2 in advance.
  • the three-dimensional coordinate parameter of the industrial camera 2 coordinates calculates the coordinates of the carriage 1 with respect to the construction shaft based on the position data obtained by the laser displacement sensor 9, and finally calculates the position coordinates of the bucket 8 with respect to the construction shaft.
  • the control host 6 also has functions such as data storage and fault alarm;
  • the monitoring method for the movement condition of the vertical shaft bucket can be implemented according to FIG. 2, and the method mainly comprises the following steps:
  • Camera calibration Two industrial cameras 2 are accurately calibrated using a checkerboard standard calibrator to obtain an internal parameter matrix and an outer parameter matrix of the industrial camera 2 and an eigenmatrix and a base matrix between the two industrial cameras 2;
  • the control host 6 sends out signals to control the continuous motion images of the two industrial cameras 2 to collect the vertical construction bucket 8 , and the laser displacement sensor collects the position data of the carriage 1 relative to the construction shaft wall;
  • the position of the bucket 8 in the image obtained in the step 2 is determined by the Mean-Shift tracking model, and the posture of the bucket 8 is identified according to the inherent angular feature of the bucket 8, and the calibration parameters of the industrial camera 2 obtained according to the step 1 are obtained.
  • step 2 Dynamic measurement and data storage: The image obtained in step 2 is continuously analyzed according to step 4 to obtain spatial position information of the bucket 8 at different times, thereby obtaining the movement condition of the bucket 8. Through the analysis of the movement condition of the bucket 8, the motion parameters such as the speed, the acceleration, the yaw frequency of the bucket 8 are obtained, and the obtained data is saved in the control host 6;
  • monitoring display the control host 6 displays the image of the bucket 8 obtained in step 2 and the motion parameter of the bucket 8 obtained in step 5 on the screen of the control host 6 to monitor the movement of the bucket 8;
  • step 6 Data judgment and alarm: According to the movement parameter of the bucket 8 obtained in step 6, it is judged whether the bucket 8 is in a normal motion state, and once the swing amplitude of the bucket 8 is found to exceed the set threshold, the alarm program alarm is started.
  • the specific method of calculating the coordinates of the bucket position when the position of the bucket relative to the industrial camera coordinates is P'(x, y, z), slip
  • the coordinate position of the frame relative to the construction shaft is Q(x, y), and the conversion matrix of the industrial camera coordinate system to the construction vertical shaft coordinate system is T. Since the industrial camera is fixed on the carriage, the position of the bucket relative to the construction shaft is coordinate:
  • the terminal controller 4 determines whether to turn on the illumination source 3 according to the scene illumination condition, so as to save power when illumination is not required.
  • the terminal controller 4 monitors the power of the terminal controller 4 in real time, sends a signal to the control host 6 when the battery power is lower than the set value, and replaces the battery after the carriage 1 rises to the ground.

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种施工立井吊桶运动状态监测系统及方法。系统包括安装在滑架(1)上的动态信号采集发射系统,安装在井壁上的无线信号传输系统,安装在控制机房的计算机集控中心。动态信号采集发射系统包括激光位移传感器(9)、工业相机(2)、光源(3)、终端采集发射控制器(4);无线信号传输系统包括多个分布于施工井壁的无线mesh节点(5);计算机集控中心包括控制主机(6)和无线信号采集器(7)。吊桶状态监测方法,包括摄像机标定、图像采集、图像数据上传、分析吊桶位置;动态测量与数据保存;监测显示;数据研判与报警。该系统和方法的优点是:能够实时监测立井施工吊桶的运动状态并对异常状态自动报警,确保了施工立井吊桶的安全运行。

Description

一种施工立井吊桶运动状态监测系统及方法 技术领域
本发明涉及一种立井吊桶监测系统及方法,特别涉及一种施工立井吊桶运动状态监测系统及方法。
背景技术
吊桶是立井施工中经常使用到的一种运输工具,主要用于在地面、吊盘和井底之间运送人员和物料。由于天轮存在圆度误差、井筒内的风载等原因会造成吊桶在运行中产生偏摆。这种偏摆会严重威胁吊桶运行的安全,进而威胁到立井施工过程中的人员和设备安全。但是目前尚无有效办法实时监测吊桶的偏摆,给立井施工安全生产埋下了隐患。
发明内容
本发明的目的是提供一种施工立井吊桶运动状态监测系统及方法,解决在施工立井吊桶运行过程中无法对吊桶的运动状态进行监测的问题。实现施工立井吊桶运动状态监测的实时化、可视化,对吊桶危险状态判断的自动化。
为实现上述目的,本发明一种施工立井吊桶运动状态监测系统,该系统包括安装在滑架上的动态信号采集发射系统,安装在井壁上的无线信号传输系统,安装在控制机房的计算机集控中心。
所述的动态信号采集发射系统包括:安装在滑架上的激光位移传感器、安装在滑架两侧的两台工业相机、用于补光的光源、放置在滑架上的终端采集发射控制器;终端采集发射控制器与工业相机、光源和激光位移传感器相联接。
所述的激光位移传感器共有两台,水平布置于滑架上,两台激光位移传感器测量方向相互垂直,分别测量两个相互垂直方向上的滑架相对于施工立井井壁的距离。
所述的终端采集发射控制器与无线信号传输系统的无线mesh节点通过无线进行联接。
所述的终端采集发射控制器由电池组、单片机控制器、视频采集卡和mesh网络客户端组成;电池组负责整个终端采集发射控制器以及安装在滑架上的激光位移传感器、安装在滑架两侧的工业相机、光源的供电;单片机根据设定程序控制终端采集发射控制器各部分的协调并负责和直接和激光位移传感器通信;视频采集卡将工业相机采集到的模拟信号转换为数字格式并传给mesh网络客户端;mesh网络客户端通过mesh网络和上位机通信。
工业相机产生的图像数据和激光位移传感器产生的距离数据通过终端采集发射控制器上传至控制主机;终端采集发射控制器能够识别工业相机采集的图像是否长时间处于静止状态,在确定工业相机采集的图像长时间处于静止状态时暂停图像信号的传输以节省电能。
所述的无线信号传输系统包括多个分布于施工井壁的无线mesh节点,无线mesh节点与终端采集发射控制器通过无线进行联接;无线mesh节点用于将工业相机和激光位移 传感器采集到的信息传输到计算机集控中心以及将控制信号传输到动态信号采集发射系统。
所述的计算机集控中心包括控制主机和无线信号采集器;控制主机和无线信号采集器相连接;无线信号采集器将通过无线接收到的数据信号上传至控制主机。
一种施工立井吊桶运动状态监测方法,该方法的终端采集发射控制器控制主机将两台工业相机采集到吊桶图像信号进行综合分析,利用事先对两台工业相机标定得到的参数还原吊桶相对于工业相机坐标的三维坐标参数,根据激光位移传感器得到的位置数据计算出滑架相对于施工立井的坐标,最后综合计算出吊桶相对于施工立井的位置坐标;
该方法包括以下步骤:
1)摄像机标定:使用棋盘状标准标定物分别对两台工业相机进行精确标定;得到工业相机的内参数矩阵和外参数矩阵以及两台工业相机之间的本征矩阵和基础矩阵;
2)数据采集:控制主机发出信号控制两台工业相机采集立井施工吊桶的连续运动图像,同时激光位移传感器采集滑架相对于施工立井井壁的位置数据;
3)数据上传:通过终端控制器、无线mesh节点和无线信号采集器将工业相机采集到的吊桶图像数据以及激光位移传感器采集滑架相对于施工立井的位置数据上传到的控制主机中;
4)分析吊桶位置:采用Mean-Shift跟踪模型确定吊桶在步骤2中得到的图像中的位置,根据吊桶自身固有的棱角特征识别吊桶的姿态,根据步骤1得到的工业相机标定参数计算出吊桶的空间三维坐标,根据激光位移传感器得到的位置数据计算出滑架相对于施工立井的坐标,最后综合计算出吊桶相对于施工立井的位置坐标;
5)动态测量与数据保存:对在步骤2中得到的图像连续按照步骤4进行分析得到吊桶于不同时刻的空间位置信息,从而得到吊桶的运动情况;通过对吊桶运动位置数据的分析,得到吊桶运动的速度、加速度、偏摆频率参数,将得到的数据保存在控制主机中;
6)监测显示:控制主机将步骤2得到的吊桶图像和步骤5得到的吊桶运动参数显示在控制主机屏幕上以便于监测吊桶运动情况;
7)数据研判与报警:根据步骤6得到的吊桶运动参数判断吊桶是否处于正常运动状态;一旦发现吊桶摆动幅度超过设定阈值即启动报警程序报警。
计算吊桶位置坐标的具体方法,当吊桶相对于工业相机坐标的位置是P′(x,y,z),滑架相对于施工立井的坐标位置是Q(x,y),工业相机坐标系到施工立井坐标系的转换矩阵为T,由于工业相机是固定在滑架上的,因此吊桶相对于施工立井的位置坐标:
Figure PCTCN2015098165-appb-000001
有益效果,由于采用了上述方案,安装了施工立井吊桶运动状态监测系统的施工立 井能够在吊桶运行过程中实时监测并记录吊桶的运动状态,并在发生吊桶摆动幅度过大时及时报警,实现了施工立井吊桶运动状态监测的可视化、自动化、智能化。
优点:该施工立井吊桶运动状态监测系统及方法可靠性和自动化程度高,同时使用了机器视觉技术对施工立井吊桶进行位置判断,通过无线mesh节点将监测图像实时快速上传至控制主机,保证了系统的实时性。整套系统能够实时监测立井施工吊桶的运动状态并对异常状态自动报警,确保了施工立井吊桶的安全运行。
附图说明
图1是本发明一种施工立井吊桶运动状态监测系统布置图。
图2是本发明一种施工立井吊桶运动状态监测方法示意框图。
图3是本发明终端采集控制器组成图。
图中:1、滑架;2、工业相机;3、光源;4、终端采集发射控制器;5、无线mesh节点;6、控制主机;7、无线信号采集器;8、吊桶;9、激光位移传感器。
具体实施方式
以下结合附图和具体实例对本发明一种施工立井吊桶动态测量系统及方法作详细具体描述。
实施例:图1是施工立井吊桶运动状态监测系统布置图,该系统包括安装在滑架1上的动态信号采集发射系统,安装在井壁上的无线信号传输系统,安装在控制机房的计算机集控中心。
所述的动态信号采集发射系统包括安装在滑架1上激光位移传感器9、安装在滑架两侧的两台工业相机2、用于补光的两组光源3和放置在滑架1上的的终端采集发射控制器4,终端采集发射控制器4与工业相机2、光源3以及激光位移传感器9相联接。
所述的激光位移传感器9共有两台,两台激光位移传感器9水平布置于滑架上,两台激光位移传感器9测量方向相互垂直,分别测量两个相互垂直方向上的滑架1相对于施工立井井壁的距离。
所述的终端采集发射控制器4由电池组、单片机控制器、视频采集卡和mesh网络客户端组成。电池组负责整个终端采集发射控制器以及安装在滑架上的激光位移传感器、安装在滑架两侧的工业相机、光源的供电;单片机根据设定程序控制终端采集发射控制器各部分的协调并负责和直接和激光位移传感器通信;视频采集卡将工业相机采集到的模拟信号转换为数字格式并传给mesh网络客户端;mesh网络客户端通过mesh网络和上位机通信。
工业相机2产生的图像数据和激光位移传感器9产生的距离数据通过终端采集发射控制器4上传至控制主机6;终端采集发射控制器4能够识别工业相机2采集的图像是否长时间处于静止状态,在确定工业相机2采集的图像长时间处于静止状态时暂停图像信号的传输以节省电能;终端采集发射控制器4采用电池供电,在终端控制器4电池电量过低时终端控制器4发出更换电池请求,待滑架1上升至地面时更换终端控制器4电 池。
所述的无线信号传输系统包括多个分布于施工井壁的无线mesh节点5,无线mesh节点5用于将图像采集系统采集到的信息传输到计算机集控中心以及将控制信号传输到图像采集系统。
所述的计算机集控中心包括控制主机6和无线信号采集器7;无线信号采集器7将通过无线接收到的数据信号上传至控制主机6。
一种施工立井吊桶运动状态监测方法,终端采集发射控制器控制主机6将两台工业相机2采集到吊桶图像信号进行综合分析,利用事先对两台工业相机2标定得到的参数还原吊桶8相对于工业相机2坐标的三维坐标参数,根据激光位移传感器9得到的位置数据计算出滑架1相对于施工立井的坐标,最后综合计算出吊桶8相对于施工立井的位置坐标。控制主机6还具有数据储存、故障报警等功能;
在完成上述系统的安装后即可根据图2实施施工立井吊桶运动状态监测方法,该方法的主要由以下步骤组成:
1)摄像机标定:使用棋盘状标准标定物分别对两台工业相机2进行精确标定,得到工业相机2的内参数矩阵和外参数矩阵以及两台工业相机2之间的本征矩阵和基础矩阵;
2)数据采集:控制主机6发出信号控制两台工业相机2采集立井施工吊桶8的连续运动图像,同时激光位移传感器采集滑架1相对于施工立井井壁的位置数据;
3)数据上传:通过终端控制器4、无线mesh节点5和无线信号采集器7将工业相机2采集到的吊桶8图像数据以及光位移传感器采集滑架相对于施工立井的位置数据上传到的控制主机6中;
4)分析吊桶位置:采用Mean-Shift跟踪模型确定吊桶8在步骤2中得到的图像中的位置,根据吊桶8自身固有的棱角特征识别吊桶8的姿态,根据步骤1得到的工业相机2标定参数计算出吊桶8相对于工业相机2坐标的三维坐标参数,根据激光位移传感器得到的位置数据计算出滑架1相对于施工立井的坐标,最后综合计算出吊桶8相对于施工立井的位置坐标;
5)动态测量与数据保存:对在步骤2中得到的图像连续按照步骤4进行分析得到吊桶8于不同时刻的空间位置信息,从而得到吊桶8的运动情况。通过对吊桶8运动情况的分析,得到吊桶8运动的速度、加速度、偏摆频率等运动参数,将得到的数据保存在控制主机6中;
6)监测显示:控制主机6将步骤2得到的吊桶8图像和步骤5得到的吊桶8运动参数显示在控制主机6屏幕上以便于监测吊桶8运动情况;
7)数据研判与报警:根据步骤6得到的吊桶8运动参数判断吊桶8是否处于正常运动状态,一旦发现吊桶8摆动幅度超过设定阈值即启动报警程序报警。
计算吊桶位置坐标的具体方法:当吊桶相对于工业相机坐标的位置是P′(x,y,z),滑 架相对于施工立井的坐标位置是Q(x,y),工业相机坐标系到施工立井坐标系的转换矩阵为T,由于工业相机是固定在滑架上的,因此吊桶相对于施工立井的位置坐标:
Figure PCTCN2015098165-appb-000002
在图像采集过程中终端控制器4根据现场照明状况决定是否开启照明光源3,以便于在不需要照明时节约电能。
在系统工作过程中终端控制器4实时监测终端控制器4的电量,在电池电量低于设定值时向控制主机6发出信号,并在滑架1上升到地面后更换电池。

Claims (8)

  1. 一种施工立井吊桶运动状态监测系统,其特征是:该系统包括安装在滑架(1)上的动态信号采集发射系统,安装在井壁上的无线信号传输系统,安装在控制机房的计算机集控中心。
  2. 根据权利要求1所述的施工立井吊桶运动状态监测系统,其特征是:所述的动态信号采集发射系统包括:安装在滑架(1)上的激光位移传感器(9)、安装在滑架(1)两侧的工业相机(2)、用于补光的光源(3)、放置在滑架(1)上的终端采集发射控制器(4),终端采集发射控制器(4)与工业相机(2)、光源(3)和激光位移传感器(9)相联接。
  3. 根据权利要求2所述的施工立井吊桶运动状态监测系统,其特征是:所述的激光位移传感器共有两台,水平布置于滑架上,两台激光位移传感器测量方向相互垂直,分别测量两个相互垂直方向上的滑架相对于施工立井井壁的距离。
  4. 根据权利要求2所述的施工立井吊桶运动状态监测系统,其特征是:所述的终端采集发射控制器(4)与无线信号传输系统的无线mesh节点(5)通过无线进行联接。
  5. 根据权利要求1所述的施工立井吊桶运动状态监测系统,其特征是:所述的无线信号传输系包括多个分布于施工井壁的无线mesh节点(5),无线mesh节点(5)与终端采集发射控制器(4)通过无线进行联接。
  6. 根据权利要求1所述的施工立井吊桶运动状态监测系统,其特征是:所述的计算机集控中心包括控制主机(6)和无线信号采集器(7),控制主机(6)和无线信号采集器(7)相连接;无线信号采集器将通过无线接收到的数据信号上传至控制主机。
  7. 权利要求1所述的一种施工立井吊桶运动状态监测方法,其特征是:该方法的终端采集发射控制器控制主机将两台工业相机采集到吊桶图像信号进行综合分析,利用事先对两台工业相机标定得到的参数还原吊桶相对于工业相机坐标的三维坐标参数,根据激光位移传感器得到的位置数据计算出滑架相对于施工立井的坐标,最后综合计算出吊桶相对于施工立井的位置坐标;
    该方法包括以下步骤:
    1)摄像机标定:使用棋盘状标准标定物分别对两台工业相机(2)进行精确标定,得到工业相机(2)的内参数矩阵和外参数矩阵以及两台工业相机(2)之间的本征矩阵和基础矩阵;
    2)数据采集:控制主机(6)发出信号控制两台工业相机(2)采集施工立井吊桶(8)的连续运动图像,同时激光位移传感器(9)采集滑架(1)相对于施工立井的位置数据;
    3)数据上传:通过终端控制器(4)、无线mesh节点(5)和无线信号采集器(7)将工业相机(2)采集到的吊桶(8)图像数据以及激光位移传感器采集滑架(1)相对于施工立井的位置数据上传到的控制主机(6)中;
    4)分析吊桶位置:采用Mean-Shift跟踪模型确定吊桶(8)在步骤2中得到的图像中的位置,根据吊桶(8)自身固有的棱角特征识别吊桶(8)的姿态,根据步骤1得到的工业相机(2)标定参数计算出吊桶(8)相对于工业相机(2)坐标的三维坐标参数,根据激光位移传感器得到的位置数据计算出滑架(1)相对于施工立井的坐标,最后综合计算出吊桶(8)相对于施工立井的位置坐标;
    5)动态测量与数据保存:对在步骤2中得到的图像连续按照步骤4进行分析得到吊桶(8)于不同时刻的空间位置信息,即吊桶(8)的运动情况。通过对吊桶(8)运动情况的分析,得到吊桶(8)运动的速度、加速度、偏摆频率等运动参数,将得到的数据保存在控制主机(6)中;
    6)监测显示:控制主机(6)将步骤2得到的吊桶(8)图像和步骤5得到的吊桶(8)运动参数显示在控制主机(6)屏幕上以便于监测吊桶(8)运动情况;
    7)数据研判与报警:根据步骤6得到的吊桶(8)运动参数判断吊桶(8)是否处于正常运动状态,一旦发现吊桶(8)摆动幅度超过设定阈值即启动报警程序报警。
  8. 根据权利要求1所述的一种施工立井吊桶运动状态监测方法,其特征是:计算吊桶位置坐标的具体方法,当吊桶相对于工业相机坐标的位置是P′(x,y,z),滑架相对于施工立井的坐标位置是Q(x,y),工业相机坐标系到施工立井坐标系的转换矩阵为T,由于工业相机是固定在滑架上的,因此吊桶相对于施工立井的位置坐标:
    Figure PCTCN2015098165-appb-100001
PCT/CN2015/098165 2015-06-26 2015-12-22 一种施工立井吊桶运动状态监测系统及方法 WO2016206330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015395790A AU2015395790B2 (en) 2015-06-26 2015-12-22 System and method for monitoring motion state of bucket of construction vertical shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510363260.X 2015-06-26
CN201510363260.XA CN104973479B (zh) 2015-06-26 2015-06-26 一种施工立井吊桶运动状态监测系统及方法

Publications (1)

Publication Number Publication Date
WO2016206330A1 true WO2016206330A1 (zh) 2016-12-29

Family

ID=54270528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098165 WO2016206330A1 (zh) 2015-06-26 2015-12-22 一种施工立井吊桶运动状态监测系统及方法

Country Status (3)

Country Link
CN (1) CN104973479B (zh)
AU (1) AU2015395790B2 (zh)
WO (1) WO2016206330A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973479B (zh) * 2015-06-26 2017-07-25 中国矿业大学 一种施工立井吊桶运动状态监测系统及方法
CN105174007A (zh) * 2015-10-13 2015-12-23 中国华冶科工集团有限公司 凿井吊桶运动状态测试方法及装置
WO2018041815A1 (de) * 2016-08-30 2018-03-08 Inventio Ag Verfahren zur analyse und messsystem zum vermessen eines aufzugschachts einer aufzuganlage
CN106698130A (zh) * 2016-12-15 2017-05-24 中国矿业大学 导轨绳导向的提升滑架横向摆动在线监测装置及方法
CN106800233B (zh) * 2017-01-17 2019-03-08 江苏建筑职业技术学院 一种基于吊桶运行安全综合防护系统的障碍物的探测方法
CN106744221B (zh) * 2017-01-17 2019-04-05 江苏建筑职业技术学院 一种吊桶运行安全综合防护系统及其防护方法
CN111140235B (zh) * 2020-04-07 2020-07-07 中国铁建重工集团股份有限公司 一种竖井掘进机的出渣控制方法、出渣系统、出渣设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065280A (zh) * 2010-11-02 2011-05-18 徐州翔和电气设备有限公司 新型井筒无线网络移动视频监测装置
CN202864605U (zh) * 2012-10-25 2013-04-10 武汉利德测控技术股份有限公司 矿井罐笼动态检测系统
CN203120063U (zh) * 2013-04-09 2013-08-07 山东黄金矿业(玲珑)有限公司 一种竖井提升机罐道无线移动视频监查装置
CN103502132A (zh) * 2011-02-22 2014-01-08 西马格特宝有限公司 具有测量数值的无线电传输的线缆负载测量部件
CN203998492U (zh) * 2014-08-12 2014-12-10 铜陵有色金属集团铜冠矿山建设股份有限公司 滑架与吊桶分离检测装置
CN104973479A (zh) * 2015-06-26 2015-10-14 中国矿业大学 一种施工立井吊桶运动状态监测系统及方法
CN204917506U (zh) * 2015-06-26 2015-12-30 中国矿业大学 一种施工立井吊桶运动状态监测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497658B2 (ja) * 2007-12-07 2014-05-21 オーチス エレベータ カンパニー エレベータ昇降路を測量する方法および装置
US9096411B2 (en) * 2012-01-04 2015-08-04 Mitsubishi Electric Research Laboratories, Inc. Elevator rope sway estimation
CN104192687B (zh) * 2014-08-06 2017-02-08 南京北路自动化系统有限责任公司 一种罐笼监控装置
CN104386583B (zh) * 2014-11-07 2017-09-19 中国矿业大学 一种施工立井吊盘稳车运行故障监测系统及方法
CN104555636B (zh) * 2014-11-24 2017-06-09 中国矿业大学 一种立井罐道钢丝绳的摆动检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065280A (zh) * 2010-11-02 2011-05-18 徐州翔和电气设备有限公司 新型井筒无线网络移动视频监测装置
CN103502132A (zh) * 2011-02-22 2014-01-08 西马格特宝有限公司 具有测量数值的无线电传输的线缆负载测量部件
CN202864605U (zh) * 2012-10-25 2013-04-10 武汉利德测控技术股份有限公司 矿井罐笼动态检测系统
CN203120063U (zh) * 2013-04-09 2013-08-07 山东黄金矿业(玲珑)有限公司 一种竖井提升机罐道无线移动视频监查装置
CN203998492U (zh) * 2014-08-12 2014-12-10 铜陵有色金属集团铜冠矿山建设股份有限公司 滑架与吊桶分离检测装置
CN104973479A (zh) * 2015-06-26 2015-10-14 中国矿业大学 一种施工立井吊桶运动状态监测系统及方法
CN204917506U (zh) * 2015-06-26 2015-12-30 中国矿业大学 一种施工立井吊桶运动状态监测系统

Also Published As

Publication number Publication date
AU2015395790B2 (en) 2018-03-01
AU2015395790A1 (en) 2017-01-12
CN104973479B (zh) 2017-07-25
CN104973479A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2016206330A1 (zh) 一种施工立井吊桶运动状态监测系统及方法
CN111442759B (zh) 一种综采工作面设备位姿统一监测系统
CN108731788A (zh) 一种高空作业臂低频振动视觉检测装置及方法
CN112291735A (zh) 一种基于uwb的可视化工程智能监测系统及方法
CN109736894A (zh) 一种用于煤矿巷道围岩灾害的监测系统、监测方法及预警方法
CN106092049A (zh) 杆塔倾斜智能图像在线监测系统
CN110245734A (zh) 基于轨道式巡检机器人的隧道结构病害识别系统与方法
CN114604761B (zh) 实现智能塔吊辅助的操控安全性警示系统及方法
CN207390860U (zh) 建筑塔吊智能辅助系统
CN111341068A (zh) 一种基于深度学习的钻井现场危险区域预警系统与方法
CN114604766B (zh) 用于智能塔吊的物料堆码空间图像识别分析方法和装置
CN112882446A (zh) 基于bim平台的大型空间钢结构可视化施工监控系统
CN108821117B (zh) 一种智慧型桥面吊机
CN109668540A (zh) 一种货架倾斜监测报警装置
CN207268846U (zh) 电力巡检机器人
CN114604763B (zh) 用于智能塔吊吊钩导向的电磁定位装置及方法
CN114604772B (zh) 用于任务时态模型的智能塔吊集群协同控制方法及系统
US20190085523A1 (en) Real-time monitoring system for float-over installation
CN111268527A (zh) 电梯机械故障监测方法及系统
CN114408748A (zh) 用于智能塔吊远程控制的状态数据监控传输系统及方法
CN113606437A (zh) 一种计算机机房全天候巡检装置
CN115272888A (zh) 一种基于数字孪生的5g+无人机输电线路巡检方法及系统
CN110885019A (zh) 一种基于bim模型的塔吊监测与实时报警系统
CN114604773B (zh) 用于智能塔吊的安全性警示辅助系统及方法
CN114604771B (zh) 用于智能塔吊的物料传输优化路径规划方法和系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015395790

Country of ref document: AU

Date of ref document: 20151222

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896213

Country of ref document: EP

Kind code of ref document: A1