WO2016204204A1 - Pattern film forming device - Google Patents

Pattern film forming device Download PDF

Info

Publication number
WO2016204204A1
WO2016204204A1 PCT/JP2016/067860 JP2016067860W WO2016204204A1 WO 2016204204 A1 WO2016204204 A1 WO 2016204204A1 JP 2016067860 W JP2016067860 W JP 2016067860W WO 2016204204 A1 WO2016204204 A1 WO 2016204204A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
unit
pattern
substrate
mask
Prior art date
Application number
PCT/JP2016/067860
Other languages
French (fr)
Japanese (ja)
Inventor
伸明 高橋
赤木 清
豪 清水
善勝 佐藤
Original Assignee
コニカミノルタ株式会社
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 株式会社アルバック filed Critical コニカミノルタ株式会社
Priority to JP2017525276A priority Critical patent/JP6718445B2/en
Publication of WO2016204204A1 publication Critical patent/WO2016204204A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Definitions

  • the present invention relates to a pattern film forming apparatus for manufacturing a thin film base material by, for example, high-precision pattern film formation using a flexible belt-like base material.
  • Patent Document 1 a reference mark provided on a substrate that is continuously conveyed is detected by the first alignment system and the second alignment system, and the substrate is based on at least one of the expansion / contraction of the substrate or the conveyance speed and the reference mark.
  • a manufacturing apparatus that performs processing at a predetermined position is described.
  • the alignment of the film pattern processing is performed by detecting a marker in the vicinity of the processing region of the stopped base material.
  • the marker misalignment is caused by the base material stretching, the base material slipping with respect to the transport mechanism, and the like. If accumulated, the position of the marker on the base material at the time of stopping is out of the detection range of the detection mechanism, and there is a possibility that alignment cannot be performed or pattern processing cannot be performed in the processing region. .
  • the present invention has been made in view of the above circumstances, and suitably detects a substrate marker provided on a substrate at a pattern processing position when intermittently transporting a flexible belt-like substrate. It is an object of the present invention to provide a pattern film forming apparatus that can perform the above process.
  • a pattern film forming apparatus for performing pattern film formation on a flexible belt-like base material, wherein a base material transport unit transports the base material, and a film pattern processing is performed on a processing region of the base material at a pattern processing position.
  • a pattern processing unit to be performed; a first detection unit for detecting a base material marker provided for each processing region on the base material upstream of the pattern processing position; and the base material marker at the pattern processing position
  • a control unit that controls the base material transport unit and the pattern processing unit, and the control unit is configured so that the base material is stopped.
  • the substrate marker is calculated by calculating a conveyance distance to the pattern processing position and controlling the substrate conveyance unit based on the calculated conveyance distance.
  • a film pattern is formed in the processing region.
  • a pattern film forming apparatus characterized by performing processing. 2.
  • the pattern processing unit is provided between a material emitting unit that emits a thin film material to be subjected to film pattern processing to the processing region of the substrate, and between the material emitting unit and the substrate.
  • a mask for performing pattern processing and a mask driving unit that moves the mask, wherein the mask is provided with a mask marker, and the second detection unit includes the substrate marker and the mask
  • the control unit controls the mask driving unit based on a detection result of the second detection unit in a state in which the substrate is stopped, whereby the processing region of the mask and the substrate The thin film material is emitted to the processing region of the base material via the aligned mask by controlling the material emitting portion.
  • Pattern film forming apparatus according to the 1 that. 3. 3.
  • the pattern film forming apparatus according to 1 or 2 further comprising an accumulator that includes a plurality of the processing units and that absorbs a shift in a transport distance of the base material between the adjacent processing units. . 4). 4.
  • the substrate marker provided on the substrate can be suitably detected at the pattern processing position when intermittently transporting the flexible belt-like substrate.
  • FIG. 1 It is a schematic diagram which shows the thin film base material manufacturing apparatus which concerns on embodiment of this invention. It is a block diagram which shows the thin film base material manufacturing apparatus which concerns on embodiment of this invention.
  • (A) is a side view schematically showing the base material, the first imaging unit, the second imaging unit, and the mask, and (b) is a plan view schematically showing the base material and the mask. It is a schematic diagram which shows the operation example of a meandering correction
  • (A)-(d) is a schematic diagram for demonstrating the method of conveying a base material by calculating conveyance distance based on the imaging
  • FIG. 1 is a schematic diagram showing a thin film substrate manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a thin film substrate manufacturing apparatus according to an embodiment of the present invention.
  • a thin film substrate manufacturing apparatus 1 is an apparatus for manufacturing a thin film substrate by patterning a thin film on a substrate 2.
  • the thin film substrate manufacturing apparatus 1 includes thin film forming units 10X and 10Y, a meandering correction unit 20, and gate valves 30X and 30Y. Further, as shown in FIG. 2, the thin film substrate manufacturing apparatus 1 includes a roller driving unit 41, a mask driving unit 42, a touch plate driving unit 43, and a meandering correction unit 20 provided for each of the thin film forming units 10X and 10Y.
  • the roller drive parts 44a and 44b provided, the valve body drive part 45 provided for every gate valve 30X and 30Y, and the control part 50 which controls these each drive part are provided.
  • the thin film base material manufacturing apparatus 1 may be provided with three or more thin film formation parts, and may be provided with the formation part which forms films other than the thin film formed into a pattern.
  • the method of forming a thin film on the base material 2 is not limited to what is described later.
  • the thin film forming portions 10 ⁇ / b> X and 10 ⁇ / b> Y are examples of processing portions, and form a thin film in a pattern on a thin film forming region 2 c on a flexible belt-like substrate 2.
  • These thin film forming portions 10X and 10Y are provided in order of the thin film forming portion 10X and the thin film forming portion 10Y from the upstream side.
  • the thin film forming units 10X and 10Y include a chamber 11, a driving roller 12a, a touch roller 12b, driven rollers 13a and 13b, a dancer roller 14, a first imaging unit 15, and a second imaging unit 16a, respectively.
  • the inside of the chamber 11 of the thin film forming units 10X and 10Y can be maintained at a high vacuum by a vacuum suction unit (not shown).
  • the downstream end of the chamber 11 of the thin film forming unit 10X and the upstream end of the chamber 11 of the thin film forming unit 10Y communicate with each other so that the substrate 2 can be conveyed.
  • the driving roller 12 a is provided in the chamber 11.
  • the touch roller 12 b is a driven roller provided at a position facing the drive roller 12 a in the chamber 11.
  • the substrate 2 is sandwiched between the drive roller 12a and the touch roller 12b.
  • the control unit 50 shown in FIG. 2 controls the roller driving unit 41 to rotate the driving roller 12a and convey the base material 2 from the upstream side to the downstream side.
  • the drive roller 12 a, the touch roller 12 b, and the roller drive unit 41 constitute an example of a base material transport unit that transports the base material 2.
  • the driven rollers 13 a and 13 b are provided on the downstream side of the driving roller 12 a in the chamber 11.
  • the lower surface of the base material 2 is wound around the driven rollers 13a and 13b.
  • the dancer roller 14 is provided between the driven rollers 13 a and 13 b in the chamber 11.
  • the upper surface of the substrate 2 is wound around the dancer roller 14.
  • the dancer roller 14 is movable in a direction close to the driven rollers 13a and 13b and a direction away from the driven rollers 13a and 13b.
  • the driven rollers 13 a and 13 b and the dancer roller 14 constitute an example of an accumulator that absorbs the deviation in the transport distance of the base material 2.
  • the dancer roller 14 of the thin film forming unit 10X has a longer transport distance of the base material 2 in the thin film forming unit 10X and a shorter transport distance of the base material 2 in the thin film forming unit 10Y than the driven rollers 13a and 13b. To move away from each other to absorb the shift in the transport distance of the substrate 2. Further, when the transport distance of the base material 2 in the thin film forming portion 10X is short and the transport distance of the base material 2 in the thin film forming portion 10Y is long, the base material 2 moves in the direction approaching the driven rollers 13a and 13b. Absorbs the deviation of the transport distance of 2.
  • the first imaging unit 15 has a processing region (in this embodiment, a thin film) on the upstream side of the pattern processing position (in this embodiment, the pattern film formation position, that is, the position where the processing region is above the mask 18). It is an example of the 1st detection part which detects the base-material marker 2b provided in the base material 2 for every formation area 2c).
  • the first imaging unit 15 is a camera provided on the upstream side of the driving roller 12a in the chamber 11, and images the substrate marker 2b (see FIG. 3) provided on the substrate 2, and the imaging result. Is output to the control unit 50.
  • the second imaging units 16 a and 16 b are second detection units that detect the base material markers 2 a and 2 b at the pattern film formation position (that is, the position where the processing region is above the mask 18). It is an example.
  • the second imaging units 16a and 16b are cameras provided on the downstream side of the driving roller 12a in the chamber 11, and the base material markers 2a and 2b provided on the base material 2 (see FIG. 3B). ) And mask markers 18 a and 18 b (see FIG. 3B) provided on the mask 18, and the imaging result is output to the control unit 50.
  • the base material markers 2a and 2b of the base material 2 are arranged at positions that are diagonal to the thin film formation region 2c. That is, the plurality of substrate markers 2a are provided at one end in the width direction of the substrate 2, and the plurality of substrate markers 2b are provided at the other end in the width direction of the substrate 2.
  • the base material markers 2 a and 2 b corresponding to the thin film formation region 2 c are arranged so as to be shifted in the traveling direction of the base material 2.
  • the first photographing unit 15 photographs the base material marker 2 b provided on the upstream side among the base material markers 2 a and 2 b of the base material 2.
  • the mask markers 18 a and 18 b of the mask 18 are disposed at diagonal positions of the mask 18.
  • the second imaging unit 16a images the substrate marker 2a corresponding to the mask marker 18a of the mask 18 and the thin film formation region 2c located above the mask 18. Further, the second imaging unit 16b images the mask marker 18b of the mask 18 and the substrate marker 2b corresponding to the thin film formation region 2c located above the mask 18.
  • the first photographing unit 15 photographs the substrate marker 2b on the upstream side of the substrate marker 2b photographed by the second photographing unit 16b. Further, the distance between the centers of the first imaging unit 15 and the second imaging unit 16b in the substrate conveyance direction of the imaging result is set to L. The distance L is also the distance between the first imaging unit 15 and the second imaging unit 16b (see FIG. 5).
  • the material emitting unit 17 is provided between the driving roller 12 a and the driven roller 13 a in the chamber 11 and below the base material 2.
  • the control unit 50 shown in FIG. 2 controls the material emitting unit 17 to emit a thin film material (for example, evaporated material) to the lower surface of the substrate 2 through the mask 18.
  • the mask 18 is provided between the driving roller 12 a and the driven roller 13 a in the chamber 11 and below the base material 2 and between the base material 2 and the material emitting portion 17.
  • the control unit 50 shown in FIG. 2 moves the mask 18 by controlling the mask driving unit 42.
  • the touch plate 19 is provided between the driving roller 12 a and the driven roller 13 a in the chamber 11 and at a position facing the mask 18 through the base material 2.
  • the control unit 50 shown in FIG. 2 moves the touch plate 19 by controlling the touch plate driving unit 43.
  • the material emitting unit 17, the mask 18, the touch plate 19, the mask driving unit 42, and the touch plate driving unit 43 constitute an example of a pattern processing unit that performs film pattern processing on the substrate 2 at the pattern processing position.
  • the meandering correction unit 20 corrects the meandering of the base material 2.
  • the meandering correction unit 20 is provided on the downstream side of the thin film forming unit 10Y.
  • the meandering correction unit 20 includes a chamber 21, driven rollers 21a, 21b, 21c, and 21d, meandering correction rollers 22a and 22b, and a meandering detection unit 23.
  • the driven rollers 21 a, 21 b, 21 c, 21 d are provided in the chamber 21.
  • the upper surface of the substrate 2 is wound around the driven rollers 21a and 21c, and the lower surface of the substrate 2 is wound around the driven rollers 21b and 21d.
  • the meandering correction rollers 22 a and 22 b are driven rollers provided between the driven rollers 21 b and 21 c in the chamber 21.
  • the upper surface of the base material 2 is wound around the meandering correction rollers 22a and 22b.
  • the meandering detection unit 23 is a capacitance sensor provided between the meandering correction rollers 22a and 22b in the chamber 21, and detects the position of the base material 2 (specifically, the position in the width direction) as shown in FIG. The detection result is output to the control unit 50 as the detection result of the meandering of the substrate 2.
  • the control unit 50 shown in FIG. 2 drives the roller driving units 44a and 44b based on the detection result of the meandering detection unit 23, thereby, as shown in FIG. The inclination of the axial direction of 22b is changed and the meandering of the base material 2 is corrected.
  • the gate valves 30X and 30Y are provided between adjacent chambers, and are opened (pseudo-sealed) by sandwiching the base material 2 and sealing (pseudo-sealing) the base material 2. It is a valve that can be switched between a closed valve state that maintains the vacuum state.
  • the gate valve 30 ⁇ / b> X is provided between the chamber 11 of the thin film forming unit 10 ⁇ / b> X and a chamber upstream of the chamber 11. That is, the gate valve 30X is a valve capable of sealing the inlet of the base material 2 in the thin film forming unit 10X.
  • the gate valve 30 ⁇ / b> Y is provided between the chamber 11 of the thin film forming unit 10 ⁇ / b> Y and the chamber 21 of the meandering correction unit 20. That is, the gate valve 30Y is a valve capable of sealing the outlet of the base material 2 in the thin film forming unit 10Y (in other words, the inlet of the base material 2 in the chamber 21 of the meandering correction unit 20).
  • the control part 50 shown in FIG. 2 moves the valve body 32 by controlling the valve body drive part 45, and switches the gate valves 30X and 30Y between the valve opening state and the valve closing state.
  • the control unit 50 rotates the driving roller 12a by controlling the roller driving unit 41 of the thin film forming units 10X and 10Y in a state where the gate valves 30X and 30Y are opened, and the base material 2 is moved from the upstream side.
  • the drive roller 12a After transporting downstream by a predetermined distance (an integral multiple of L shown in FIG. 5) and moving the most downstream base material marker 2b to the imaging region of the first imaging unit 15, the drive roller 12a is stopped, and the base The material 2 is stopped (first base material conveyance step).
  • the control unit 50 calculates the transport distance of the base material 2 based on the imaging result of the first imaging unit 15 in each of the thin film forming units 10X and 10Y (a transport distance calculating step). For example, as shown in FIG. 5A, when the base material marker 2b photographed by the first photographing unit 15 is shifted by d1 upstream from the base material conveyance direction center of the photographing result, The control unit 50 sets the next transport distance of the base material 2 to L + d1. Further, as shown in FIG. 5C, when the base material marker 2b photographed by the first photographing unit 15 is shifted by d2 downstream from the center of the photographing result in the base material conveyance direction, The control unit 50 sets the next transport distance of the base material 2 to Ld2.
  • the control unit 50 controls the roller driving unit 41 in each of the thin film forming units 10X and 10Y to rotate the driving roller 12a, thereby transporting the base material 2 from the upstream side to the downstream side.
  • the driving roller 12a is stopped and the base material 2 is stopped (second base material transport process).
  • the control unit 50 controls the roller driving unit 41 to move the base material 2 to the transport distance L + d1. (See FIG. 5B). With this operation, the second imaging units 16a and 16b can reliably image the base material markers 2a and 2b.
  • the control unit 50 controls the roller driving unit 41 to move the base material 2 to the transport distance L. -Transport only d2 (see FIG. 5D). With this operation, the second imaging units 16a and 16b can reliably image the base material markers 2a and 2b.
  • control unit 50 controls the valve body driving unit 45 of the gate valves 30X and 30Y to close the gate valves 30X and 30Y, and the inlet of the base material 2 and the thin film in the chamber 11 of the thin film forming unit 10X.
  • the outlet of the base material 2 in the chamber 12 of the forming unit 10Y is sealed (valve closing step).
  • the control unit 50 moves the mask 18 by controlling the mask driving unit 42 based on the imaging results of the second imaging units 16a and 16b in each of the thin film forming units 10X and 10Y.
  • the mask drive unit 42 and the touch plate drive unit 43 are controlled to bring the mask 18, the base material 2 and the touch plate 19 into close contact (positioning step).
  • the control unit 50 controls the mask driving unit 42 to move the mask 18 so that the mask markers 18a and 18b are adjacent to the substrate markers 2a and 2b, respectively ( (Refer FIG.3 (b)).
  • control unit 50 controls the material emitting unit 17 in each of the thin film forming units 10 ⁇ / b> X and 10 ⁇ / b> Y to emit the thin film material to the lower surface of the base material 2 through the mask 18 that has been aligned. Then, a patterned thin film is formed on the lower surface of the substrate 2 (for example, an evaporated organic material is deposited on the lower surface of the substrate 2) (thin film patterning step). Subsequently, the control unit 50 controls the mask driving unit 42 and the touch plate driving unit 43 to release the close contact between the mask 18, the base material 2, and the touch plate 19.
  • a conveyance distance calculation process is performed. The transport distance calculated here is used in the next second base material transport process.
  • control unit 50 opens the gate valves 30X and 30Y by controlling the valve body driving unit 45 in each of the gate valves 30X and 30Y (valve opening process).
  • the controller 50 returns to the above-described second base material transport step after the valve opening step, and manufactures the thin film base material by repeatedly executing the above steps.
  • the dancer roller 14 of the thin film forming unit 10X absorbs the shift in the transport distance.
  • the thin film substrate manufacturing apparatus 1 calculates the transport distance of the substrate 2 based on the imaging result of the substrate marker 2b on the upstream side of the pattern processing position, the processing region at the pattern processing position Deviation in the substrate transport direction can be prevented. Moreover, since the thin film base material manufacturing apparatus 1 is provided with the dancer roller 14 (accumulation) between adjacent 10X and 10Y, it can absorb the shift
  • the thin film may be an organic thin film or an inorganic thin film.
  • the processing section is not limited to the above-described thin film forming sections 10X and 10Y, and may be a film pattern process for a thin film (electrode or the like) other than the organic thin film.
  • the film pattern processing is not limited to the one in which the evaporating material or the like is emitted toward the base material 2 through the mask 18, and a laser beam is applied to the thin film previously formed on the base material 2 through the mask 18.
  • And pattern processing may be performed by removing a predetermined portion of the thin film.
  • shape of the mask 18 and the relative positional relationship between the base material markers 2a and 2b of the base material 2 and the mask markers 18a and 18b of the mask 18 are not limited to those illustrated.
  • the meandering detection unit 23 is not limited to a capacitance sensor, and may be a linear sensor or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Provided is a pattern film forming device that, when intermittently conveying a flexible band-like substrate, is capable of suitably detecting substrate markers provided on the substrate at a pattern processing position. The pattern film forming device (1) is equipped with thin-film forming units (10X), (10Y) each having a first imaging unit (15) for imaging substrate markers provided in each processing region on a substrate (2) and second imaging units (16a), (16b) for imaging the substrate markers at the pattern processing position. A control unit calculates the conveyance distance to the pattern processing position on the basis of the detection results from the first imaging unit (15). By controlling drive rollers (12) on the basis of the conveyance distance, the processing regions corresponding to the substrate markers are conveyed to the pattern processing position, and by controlling a material ejecting unit (17) and a mask (18) on the basis of the detection results from the second imaging units (16a), (16b), film pattern processing is performed on the processing regions.

Description

パターン成膜装置Pattern deposition system
 本発明は、可撓性を有する帯状の基材を用いて、例えば、高精度パターン成膜により薄膜基材を製造するパターン成膜装置に関する。 The present invention relates to a pattern film forming apparatus for manufacturing a thin film base material by, for example, high-precision pattern film formation using a flexible belt-like base material.
 特許文献1には、連続搬送される基板上に設けられた基準マークを第1アライメント系及び第2アライメント系で検出し、基板の伸縮又は搬送速度の少なくとも一方と基準マークとに基づいて、基板の所定の位置に処理を行う製造装置が記載されている。 In Patent Document 1, a reference mark provided on a substrate that is continuously conveyed is detected by the first alignment system and the second alignment system, and the substrate is based on at least one of the expansion / contraction of the substrate or the conveyance speed and the reference mark. A manufacturing apparatus that performs processing at a predetermined position is described.
国際公開2009/157154号International Publication No. 2009/157154
 しかし、基材に対して高い精度で膜パターン加工を行うためには、基材を間欠搬送し、停止した基材の加工領域に対して膜パターン加工を行う必要がある。この場合には、停止した基材の加工領域近傍のマーカーを検出することによって膜パターン加工のアライメントを行うことになるが、基材の伸び、搬送機構に対する基材の滑り等によってマーカーの位置ズレが蓄積すると、停止時の基材のマーカーの位置が、検出機構の検出範囲から外れてしまい、アライメントを行うことができなかったり、加工領域にパターン加工を行うことができなかったりするおそれがある。 However, in order to perform film pattern processing on the substrate with high accuracy, it is necessary to intermittently convey the substrate and perform film pattern processing on the stopped processing region of the substrate. In this case, the alignment of the film pattern processing is performed by detecting a marker in the vicinity of the processing region of the stopped base material. However, the marker misalignment is caused by the base material stretching, the base material slipping with respect to the transport mechanism, and the like. If accumulated, the position of the marker on the base material at the time of stopping is out of the detection range of the detection mechanism, and there is a possibility that alignment cannot be performed or pattern processing cannot be performed in the processing region. .
 本発明は、前記事情に鑑みて創案されたものであり、可撓性を有する帯状の基材を間欠搬送する際に、パターン加工位置において基材に設けられた基材マーカーを好適に検出することが可能なパターン成膜装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and suitably detects a substrate marker provided on a substrate at a pattern processing position when intermittently transporting a flexible belt-like substrate. It is an object of the present invention to provide a pattern film forming apparatus that can perform the above process.
 前記課題を解決するための本発明は、以下の構成を備える。
1.可撓性を有する帯状の基材にパターン成膜を行うパターン成膜装置であって、前記基材を搬送する基材搬送部と、パターン加工位置において前記基材の加工領域に膜パターン加工を行うパターン加工部と、前記パターン加工位置よりも上流側において、前記基材に前記加工領域ごとに設けられた基材マーカーを検出する第一の検出部と、前記パターン加工位置において前記基材マーカーを検出する第二の検出部と、を有する処理部と、前記基材搬送部及び前記パターン加工部を制御する制御部と、を備え、前記制御部は、前記基材が停止した状態における前記第一の検出部の検出結果に基づいて、前記パターン加工位置までの搬送距離を算出し、算出された前記搬送距離に基づいて前記基材搬送部を制御することによって、前記基材マーカーに対応する前記加工領域を前記パターン加工位置まで搬送し、前記基材が停止した状態における前記第二の検出部の検出結果に基づいて前記パターン加工部を制御することによって、前記加工領域に膜パターン加工を行うことを特徴とするパターン成膜装置。
2.前記パターン加工部は、膜パターン加工が行われる薄膜の材料を、前記基材の前記加工領域へ出射する材料出射部と、前記材料出射部と前記基材との間に設けられており、膜パターン加工を行うためのマスクと、前記マスクを移動させるマスク駆動部と、を備え、前記マスクには、マスクマーカーが設けられており、前記第二の検出部は、前記基材マーカー及び前記マスクマーカーを検出し、前記制御部は、前記基材が停止した状態における前記第二の検出部の検出結果に基づいて前記マスク駆動部を制御することによって、前記マスクと前記基材の前記加工領域との位置合わせを行い、前記材料出射部を制御することによって、前記薄膜の材料を、位置合わせが行われた前記マスクを介して前記基材の前記加工領域へ出射することを特徴とする前記1に記載のパターン成膜装置。
3.複数の前記処理部を備え、隣り合う前記処理部間には、前記基材の搬送距離のズレを吸収するアキュームが設けられていることを特徴とする前記1又は2に記載のパターン成膜装置。
4.前記基材の幅方向の蛇行を補正する蛇行補正部を備えることを特徴とする前記1から3のいずれかに記載のパターン成膜装置。
The present invention for solving the above-described problems has the following configuration.
1. A pattern film forming apparatus for performing pattern film formation on a flexible belt-like base material, wherein a base material transport unit transports the base material, and a film pattern processing is performed on a processing region of the base material at a pattern processing position. A pattern processing unit to be performed; a first detection unit for detecting a base material marker provided for each processing region on the base material upstream of the pattern processing position; and the base material marker at the pattern processing position And a control unit that controls the base material transport unit and the pattern processing unit, and the control unit is configured so that the base material is stopped. Based on the detection result of the first detection unit, the substrate marker is calculated by calculating a conveyance distance to the pattern processing position and controlling the substrate conveyance unit based on the calculated conveyance distance. By transporting the corresponding processing region to the pattern processing position and controlling the pattern processing unit based on the detection result of the second detection unit in a state where the substrate is stopped, a film pattern is formed in the processing region. A pattern film forming apparatus characterized by performing processing.
2. The pattern processing unit is provided between a material emitting unit that emits a thin film material to be subjected to film pattern processing to the processing region of the substrate, and between the material emitting unit and the substrate. A mask for performing pattern processing; and a mask driving unit that moves the mask, wherein the mask is provided with a mask marker, and the second detection unit includes the substrate marker and the mask By detecting a marker, the control unit controls the mask driving unit based on a detection result of the second detection unit in a state in which the substrate is stopped, whereby the processing region of the mask and the substrate The thin film material is emitted to the processing region of the base material via the aligned mask by controlling the material emitting portion. Pattern film forming apparatus according to the 1 that.
3. 3. The pattern film forming apparatus according to 1 or 2, further comprising an accumulator that includes a plurality of the processing units and that absorbs a shift in a transport distance of the base material between the adjacent processing units. .
4). 4. The pattern film forming apparatus according to any one of 1 to 3, further comprising a meandering correction unit that corrects meandering in the width direction of the base material.
 本発明によると、可撓性を有する帯状の基材を間欠搬送する際に、パターン加工位置において基材に設けられた基材マーカーを好適に検出することができる。 According to the present invention, the substrate marker provided on the substrate can be suitably detected at the pattern processing position when intermittently transporting the flexible belt-like substrate.
本発明の実施形態に係る薄膜基材製造装置を示す模式図である。It is a schematic diagram which shows the thin film base material manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る薄膜基材製造装置を示すブロック図である。It is a block diagram which shows the thin film base material manufacturing apparatus which concerns on embodiment of this invention. (a)は、基材、第一の撮影部、第二の撮影部及びマスクを模式的に示す側面図、(b)は、基材及びマスクを模式的に示す平面図である。(A) is a side view schematically showing the base material, the first imaging unit, the second imaging unit, and the mask, and (b) is a plan view schematically showing the base material and the mask. 蛇行補正部の動作例を示す模式図である。It is a schematic diagram which shows the operation example of a meandering correction | amendment part. (a)~(d)は、第一の撮影部の撮影結果に基づいて搬送距離を算出して基材を搬送する手法を説明するための模式図である。(A)-(d) is a schematic diagram for demonstrating the method of conveying a base material by calculating conveyance distance based on the imaging | photography result of a 1st imaging | photography part.
 本発明の実施形態について、本発明のパターン成膜装置を、薄膜基材を製造する薄膜基材製造装置に適用した場合を例にとり、適宜図面を参照しながら詳細に説明する。以下の説明において、「上流/下流」といった方向は、薄膜基材製造装置によって移動する基材を基準とする。すなわち、基材が進行する方向が「下流側」である。 Embodiments of the present invention will be described in detail with reference to the drawings as appropriate, taking as an example the case of applying the pattern film forming apparatus of the present invention to a thin film substrate manufacturing apparatus for manufacturing a thin film substrate. In the following description, directions such as “upstream / downstream” are based on the base material that is moved by the thin film base material manufacturing apparatus. That is, the direction in which the base material travels is “downstream”.
 まず、本発明の実施形態に係る薄膜基材製造装置の構成について説明する。図1は、本発明の実施形態に係る薄膜基材製造装置を示す模式図である。図2は、本発明の実施形態に係る薄膜基材製造装置を示すブロック図である。 First, the configuration of a thin film substrate manufacturing apparatus according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing a thin film substrate manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a block diagram showing a thin film substrate manufacturing apparatus according to an embodiment of the present invention.
<薄膜基材製造装置>
 図1に示すように、本発明の実施形態に係る薄膜基材製造装置1は、基材2上に薄膜をパターン成膜することによって薄膜基材を製造するための装置である。薄膜基材製造装置1は、薄膜形成部10X,10Yと、蛇行補正部20と、ゲートバルブ30X,30Yと、を備える。さらに、薄膜基材製造装置1は、図2に示すように、薄膜形成部10X,10Yごとに設けられたローラー駆動部41、マスク駆動部42及びタッチプレート駆動部43と、蛇行補正部20に設けられたローラー駆動部44a,44bと、ゲートバルブ30X,30Yごとに設けられた弁体駆動部45と、これら各駆動部を制御する制御部50と、を備える。
<Thin film substrate manufacturing equipment>
As shown in FIG. 1, a thin film substrate manufacturing apparatus 1 according to an embodiment of the present invention is an apparatus for manufacturing a thin film substrate by patterning a thin film on a substrate 2. The thin film substrate manufacturing apparatus 1 includes thin film forming units 10X and 10Y, a meandering correction unit 20, and gate valves 30X and 30Y. Further, as shown in FIG. 2, the thin film substrate manufacturing apparatus 1 includes a roller driving unit 41, a mask driving unit 42, a touch plate driving unit 43, and a meandering correction unit 20 provided for each of the thin film forming units 10X and 10Y. The roller drive parts 44a and 44b provided, the valve body drive part 45 provided for every gate valve 30X and 30Y, and the control part 50 which controls these each drive part are provided.
 なお、薄膜基材製造装置1は、3以上の薄膜形成部を備えてもよく、パターン成膜される薄膜以外の膜を形成する形成部を備えていてもよい。また、基材2上に薄膜を形成する手法は、後記するものに限定されない。 In addition, the thin film base material manufacturing apparatus 1 may be provided with three or more thin film formation parts, and may be provided with the formation part which forms films other than the thin film formed into a pattern. Moreover, the method of forming a thin film on the base material 2 is not limited to what is described later.
<薄膜形成部>
 図1に示すように、薄膜形成部10X,10Yは、処理部の例であって、可撓性を有する帯状の基材2上の薄膜形成領域2cに薄膜をパターン成膜する。これら薄膜形成部10X,10Yは、上流側から薄膜形成部10X、薄膜形成部10Yの順に設けられている。
 薄膜形成部10X,10Yは、それぞれ、チャンバー11と、駆動ローラー12aと、タッチローラー12bと、従動ローラー13a,13bと、ダンサローラー14と、第一の撮影部15と、第二の撮影部16a,16bと、材料出射部17と、マスク18と、タッチプレート19と、を備える。
 なお、薄膜形成部10X,10Yのチャンバー11の内部は、図示しない真空吸引部によって高真空に維持可能である。また、薄膜形成部10Xのチャンバー11の下流端部と薄膜形成部10Yのチャンバー11の上流端部とは、基材2を搬送可能となるように連通している。
<Thin film forming part>
As shown in FIG. 1, the thin film forming portions 10 </ b> X and 10 </ b> Y are examples of processing portions, and form a thin film in a pattern on a thin film forming region 2 c on a flexible belt-like substrate 2. These thin film forming portions 10X and 10Y are provided in order of the thin film forming portion 10X and the thin film forming portion 10Y from the upstream side.
The thin film forming units 10X and 10Y include a chamber 11, a driving roller 12a, a touch roller 12b, driven rollers 13a and 13b, a dancer roller 14, a first imaging unit 15, and a second imaging unit 16a, respectively. , 16b, a material emitting portion 17, a mask 18, and a touch plate 19.
Note that the inside of the chamber 11 of the thin film forming units 10X and 10Y can be maintained at a high vacuum by a vacuum suction unit (not shown). The downstream end of the chamber 11 of the thin film forming unit 10X and the upstream end of the chamber 11 of the thin film forming unit 10Y communicate with each other so that the substrate 2 can be conveyed.
 駆動ローラー12aは、チャンバー11内に設けられている。タッチローラー12bは、チャンバー11内の駆動ローラー12aと対向する位置に設けられた従動ローラーである。基材2は、駆動ローラー12aとタッチローラー12bとによって挟持されている。
 図2に示す制御部50は、ローラー駆動部41を制御することによって駆動ローラー12aを回転させ、基材2を上流側から下流側へと搬送する。
 駆動ローラー12a、タッチローラー12b及びローラー駆動部41は、基材2を搬送する基材搬送部の例を構成する。
The driving roller 12 a is provided in the chamber 11. The touch roller 12 b is a driven roller provided at a position facing the drive roller 12 a in the chamber 11. The substrate 2 is sandwiched between the drive roller 12a and the touch roller 12b.
The control unit 50 shown in FIG. 2 controls the roller driving unit 41 to rotate the driving roller 12a and convey the base material 2 from the upstream side to the downstream side.
The drive roller 12 a, the touch roller 12 b, and the roller drive unit 41 constitute an example of a base material transport unit that transports the base material 2.
 図1に示すように、従動ローラー13a,13bは、チャンバー11内の駆動ローラー12aよりも下流側に設けられている。従動ローラー13a,13bには、基材2の下面が巻回されている。 As shown in FIG. 1, the driven rollers 13 a and 13 b are provided on the downstream side of the driving roller 12 a in the chamber 11. The lower surface of the base material 2 is wound around the driven rollers 13a and 13b.
 ダンサローラー14は、チャンバー11内の従動ローラー13a,13b間に設けられている。ダンサローラー14には、基材2の上面が巻回されている。ダンサローラー14は、従動ローラー13a,13bに対して近接する方向と離間する方向とに移動可能である。 The dancer roller 14 is provided between the driven rollers 13 a and 13 b in the chamber 11. The upper surface of the substrate 2 is wound around the dancer roller 14. The dancer roller 14 is movable in a direction close to the driven rollers 13a and 13b and a direction away from the driven rollers 13a and 13b.
 従動ローラー13a,13b及びダンサローラー14は、基材2の搬送距離のズレを吸収するアキュームの例を構成する。例えば、薄膜形成部10Xのダンサローラー14は、薄膜形成部10Xにおける基材2の搬送距離が長く、薄膜形成部10Yにおける基材2の搬送距離が短い場合には、従動ローラー13a,13bに対して離間する方向に移動して基材2の搬送距離のズレを吸収する。また、薄膜形成部10Xにおける基材2の搬送距離が短く、薄膜形成部10Yにおける基材2の搬送距離が長い場合には、従動ローラー13a,13bに対して近接する方向に移動して基材2の搬送距離のズレを吸収する。 The driven rollers 13 a and 13 b and the dancer roller 14 constitute an example of an accumulator that absorbs the deviation in the transport distance of the base material 2. For example, the dancer roller 14 of the thin film forming unit 10X has a longer transport distance of the base material 2 in the thin film forming unit 10X and a shorter transport distance of the base material 2 in the thin film forming unit 10Y than the driven rollers 13a and 13b. To move away from each other to absorb the shift in the transport distance of the substrate 2. Further, when the transport distance of the base material 2 in the thin film forming portion 10X is short and the transport distance of the base material 2 in the thin film forming portion 10Y is long, the base material 2 moves in the direction approaching the driven rollers 13a and 13b. Absorbs the deviation of the transport distance of 2.
 第一の撮影部15は、パターン加工位置(本実施形態では、パターン成膜位置、すなわち、加工領域がマスク18の上方となる位置)よりも上流側において、加工領域(本実施形態では、薄膜形成領域2c)ごとに基材2に設けられた基材マーカー2bを検出する第一の検出部の例である。第一の撮影部15は、チャンバー11内の駆動ローラー12aよりも上流側に設けられたカメラであり、基材2上に設けられた基材マーカー2b(図3参照)を撮影し、撮影結果を制御部50へ出力する。 The first imaging unit 15 has a processing region (in this embodiment, a thin film) on the upstream side of the pattern processing position (in this embodiment, the pattern film formation position, that is, the position where the processing region is above the mask 18). It is an example of the 1st detection part which detects the base-material marker 2b provided in the base material 2 for every formation area 2c). The first imaging unit 15 is a camera provided on the upstream side of the driving roller 12a in the chamber 11, and images the substrate marker 2b (see FIG. 3) provided on the substrate 2, and the imaging result. Is output to the control unit 50.
 図1に示すように、第二の撮影部16a,16bは、パターン成膜位置(すなわち、加工領域がマスク18の上方となる位置)において基材マーカー2a,2bを検出する第二の検出部の例である。第二の撮影部16a,16bは、チャンバー11内の駆動ローラー12aよりも下流側に設けられたカメラであり、基材2上に設けられた基材マーカー2a,2b(図3(b)参照)及びマスク18上に設けられたマスクマーカー18a,18b(図3(b)参照)を撮影し、撮影結果を制御部50へ出力する。 As shown in FIG. 1, the second imaging units 16 a and 16 b are second detection units that detect the base material markers 2 a and 2 b at the pattern film formation position (that is, the position where the processing region is above the mask 18). It is an example. The second imaging units 16a and 16b are cameras provided on the downstream side of the driving roller 12a in the chamber 11, and the base material markers 2a and 2b provided on the base material 2 (see FIG. 3B). ) And mask markers 18 a and 18 b (see FIG. 3B) provided on the mask 18, and the imaging result is output to the control unit 50.
 図3(b)に示すように、基材2の基材マーカー2a,2bは、薄膜形成領域2cの対角となる位置に配置されている。すなわち、複数の基材マーカー2aが、基材2の幅方向一端部に等間隔に設けられており、複数の基材マーカー2bが、基材2の幅方向他端部に等間隔に設けられており、薄膜形成領域2cに対応する基材マーカー2a,2bは、基材2の進行方向にずれて配置されている。第一の撮影部15は、基材2の基材マーカー2a,2bのうち、上流側に設けられた基材マーカー2bを撮影する。 As shown in FIG. 3B, the base material markers 2a and 2b of the base material 2 are arranged at positions that are diagonal to the thin film formation region 2c. That is, the plurality of substrate markers 2a are provided at one end in the width direction of the substrate 2, and the plurality of substrate markers 2b are provided at the other end in the width direction of the substrate 2. The base material markers 2 a and 2 b corresponding to the thin film formation region 2 c are arranged so as to be shifted in the traveling direction of the base material 2. The first photographing unit 15 photographs the base material marker 2 b provided on the upstream side among the base material markers 2 a and 2 b of the base material 2.
 マスク18のマスクマーカー18a,18bは、当該マスク18の対角となる位置に配置されている。 The mask markers 18 a and 18 b of the mask 18 are disposed at diagonal positions of the mask 18.
 第二の撮影部16aは、マスク18のマスクマーカー18a及び当該マスク18の上方に位置する薄膜形成領域2cに対応する基材マーカー2aを撮影する。また、第二の撮影部16bは、マスク18のマスクマーカー18b及び当該マスク18の上方に位置する薄膜形成領域2cに対応する基材マーカー2bを撮影する。また、第一の撮影部15は、第二の撮影部16bによって撮影される基材マーカー2bよりも一つ上流側の基材マーカー2bを撮影する。また、第一の撮影部15の第二の撮影部16bとの撮影結果の基材搬送方向中心間の距離は、Lに設定されている。距離Lは、第一の撮影部15と第二の撮影部16bとの距離でもある(図5参照)。 The second imaging unit 16a images the substrate marker 2a corresponding to the mask marker 18a of the mask 18 and the thin film formation region 2c located above the mask 18. Further, the second imaging unit 16b images the mask marker 18b of the mask 18 and the substrate marker 2b corresponding to the thin film formation region 2c located above the mask 18. The first photographing unit 15 photographs the substrate marker 2b on the upstream side of the substrate marker 2b photographed by the second photographing unit 16b. Further, the distance between the centers of the first imaging unit 15 and the second imaging unit 16b in the substrate conveyance direction of the imaging result is set to L. The distance L is also the distance between the first imaging unit 15 and the second imaging unit 16b (see FIG. 5).
 材料出射部17は、チャンバー11内の駆動ローラー12aと従動ローラー13aとの間であって、基材2の下側に設けられている。
 図2に示す制御部50は、材料出射部17を制御することによって、薄膜の材料(例えば、蒸発した材料)をマスク18を介して基材2の下面へ出射する。
The material emitting unit 17 is provided between the driving roller 12 a and the driven roller 13 a in the chamber 11 and below the base material 2.
The control unit 50 shown in FIG. 2 controls the material emitting unit 17 to emit a thin film material (for example, evaporated material) to the lower surface of the substrate 2 through the mask 18.
 マスク18は、チャンバー11内の駆動ローラー12aと従動ローラー13aとの間であって、基材2の下側かつ基材2と材料出射部17との間に設けられている。
 図2に示す制御部50は、マスク駆動部42を制御することによってマスク18を移動させる。
The mask 18 is provided between the driving roller 12 a and the driven roller 13 a in the chamber 11 and below the base material 2 and between the base material 2 and the material emitting portion 17.
The control unit 50 shown in FIG. 2 moves the mask 18 by controlling the mask driving unit 42.
 タッチプレート19は、チャンバー11内の駆動ローラー12aと従動ローラー13aとの間であって、基材2を介してマスク18と対向する位置に設けられている。
 図2に示す制御部50は、タッチプレート駆動部43を制御することによってタッチプレート19を移動させる。
 材料出射部17、マスク18、タッチプレート19、マスク駆動部42及びタッチプレート駆動部43は、パターン加工位置において基材2に膜パターン加工を行うパターン加工部の例を構成する。
The touch plate 19 is provided between the driving roller 12 a and the driven roller 13 a in the chamber 11 and at a position facing the mask 18 through the base material 2.
The control unit 50 shown in FIG. 2 moves the touch plate 19 by controlling the touch plate driving unit 43.
The material emitting unit 17, the mask 18, the touch plate 19, the mask driving unit 42, and the touch plate driving unit 43 constitute an example of a pattern processing unit that performs film pattern processing on the substrate 2 at the pattern processing position.
<蛇行補正部>
 図1に示すように、蛇行補正部20は、基材2の蛇行を補正する。蛇行補正部20は、薄膜形成部10Yの下流側に設けられている。
 蛇行補正部20は、チャンバー21と、従動ローラー21a,21b,21c,21dと、蛇行補正ローラー22a,22bと、蛇行検出部23と、を備える。
<Meandering correction unit>
As shown in FIG. 1, the meandering correction unit 20 corrects the meandering of the base material 2. The meandering correction unit 20 is provided on the downstream side of the thin film forming unit 10Y.
The meandering correction unit 20 includes a chamber 21, driven rollers 21a, 21b, 21c, and 21d, meandering correction rollers 22a and 22b, and a meandering detection unit 23.
 従動ローラー21a,21b,21c,21dは、チャンバー21内に設けられている。従動ローラー21a,21cには、基材2の上面が巻回されており、従動ローラー21b,21dには、基材2の下面が巻回されている。 The driven rollers 21 a, 21 b, 21 c, 21 d are provided in the chamber 21. The upper surface of the substrate 2 is wound around the driven rollers 21a and 21c, and the lower surface of the substrate 2 is wound around the driven rollers 21b and 21d.
 蛇行補正ローラー22a,22bは、チャンバー21内の従動ローラー21b,21c間に設けられた従動ローラーである。蛇行補正ローラー22a,22bには、基材2の上面が巻回されている。 The meandering correction rollers 22 a and 22 b are driven rollers provided between the driven rollers 21 b and 21 c in the chamber 21. The upper surface of the base material 2 is wound around the meandering correction rollers 22a and 22b.
 蛇行検出部23は、チャンバー21内の蛇行補正ローラー22a,22b間に設けられたキャパシタンスセンサーであり、図4に示すように、基材2の位置(詳細には、幅方向の位置)を検出し、検出結果を基材2の蛇行の検出結果として制御部50へ出力する。
 図2に示す制御部50は、蛇行検出部23の検出結果に基づいてローラー駆動部44a,44bを駆動することによって、図4に示すように、基材2の搬送方向に対する蛇行補正ローラー22a,22bの軸方向の傾斜を変更し、基材2の蛇行を補正する。
The meandering detection unit 23 is a capacitance sensor provided between the meandering correction rollers 22a and 22b in the chamber 21, and detects the position of the base material 2 (specifically, the position in the width direction) as shown in FIG. The detection result is output to the control unit 50 as the detection result of the meandering of the substrate 2.
The control unit 50 shown in FIG. 2 drives the roller driving units 44a and 44b based on the detection result of the meandering detection unit 23, thereby, as shown in FIG. The inclination of the axial direction of 22b is changed and the meandering of the base material 2 is corrected.
<ゲートバルブ>
 図1に示すように、ゲートバルブ30X,30Yは、隣り合うチャンバー間に設けられており、基材2を搬送可能な開弁状態と、基材2を挟み込んで密封(疑似密封)し、チャンバーの真空状態を維持する閉弁状態と、を切替可能な弁である。ゲートバルブ30Xは、薄膜形成部10Xのチャンバー11と当該チャンバー11よりも上流側のチャンバーとの間に設けられている。すなわち、ゲートバルブ30Xは、薄膜形成部10Xにおける基材2の入口を密封可能な弁である。また、ゲートバルブ30Yは、薄膜形成部10Yのチャンバー11と蛇行補正部20のチャンバー21との間に設けられている。すなわち、ゲートバルブ30Yは、薄膜形成部10Yにおける基材2の出口(換言すると、蛇行補正部20のチャンバー21における基材2の入口)を密封可能な弁である。
 図2に示す制御部50は、弁体駆動部45を制御することによって、弁体32を移動させ、ゲートバルブ30X,30Yを開弁状態と閉弁状態とに切り替える。
<Gate valve>
As shown in FIG. 1, the gate valves 30X and 30Y are provided between adjacent chambers, and are opened (pseudo-sealed) by sandwiching the base material 2 and sealing (pseudo-sealing) the base material 2. It is a valve that can be switched between a closed valve state that maintains the vacuum state. The gate valve 30 </ b> X is provided between the chamber 11 of the thin film forming unit 10 </ b> X and a chamber upstream of the chamber 11. That is, the gate valve 30X is a valve capable of sealing the inlet of the base material 2 in the thin film forming unit 10X. The gate valve 30 </ b> Y is provided between the chamber 11 of the thin film forming unit 10 </ b> Y and the chamber 21 of the meandering correction unit 20. That is, the gate valve 30Y is a valve capable of sealing the outlet of the base material 2 in the thin film forming unit 10Y (in other words, the inlet of the base material 2 in the chamber 21 of the meandering correction unit 20).
The control part 50 shown in FIG. 2 moves the valve body 32 by controlling the valve body drive part 45, and switches the gate valves 30X and 30Y between the valve opening state and the valve closing state.
<薄膜基材の製造方法>
 続いて、薄膜基材製造装置1による薄膜基材の製造方法について、図1及び図2を参照して説明する。まず、制御部50は、ゲートバルブ30X,30Yが開弁した状態において、薄膜形成部10X,10Yのローラー駆動部41を制御することによって、駆動ローラー12aを回転させ、基材2を上流側から下流側へと所定距離(図5に示すLの整数倍)だけ搬送させて最下流の基材マーカー2bを第一の撮影部15の撮影領域に移動させた後、駆動ローラー12aを止め、基材2を停止させる(第一の基材搬送工程)。
<Method for producing thin film substrate>
Then, the manufacturing method of the thin film base material by the thin film base material manufacturing apparatus 1 is demonstrated with reference to FIG.1 and FIG.2. First, the control unit 50 rotates the driving roller 12a by controlling the roller driving unit 41 of the thin film forming units 10X and 10Y in a state where the gate valves 30X and 30Y are opened, and the base material 2 is moved from the upstream side. After transporting downstream by a predetermined distance (an integral multiple of L shown in FIG. 5) and moving the most downstream base material marker 2b to the imaging region of the first imaging unit 15, the drive roller 12a is stopped, and the base The material 2 is stopped (first base material conveyance step).
 続いて、制御部50は、薄膜形成部10X,10Yのそれぞれにおいて、第一の撮影部15の撮影結果に基づいて、基材2の搬送距離を算出する(搬送距離算出工程)。
 例えば、図5(a)に示すように、第一の撮影部15によって撮影された基材マーカー2bが、撮影結果の基材搬送方向中心よりも上流側にd1だけずれている場合には、制御部50は、次回の基材2の搬送距離を、L+d1とする。
 また、図5(c)に示すように、第一の撮影部15によって撮影された基材マーカー2bが、撮影結果の基材搬送方向中心よりも下流側にd2だけずれている場合には、制御部50は、次回の基材2の搬送距離を、L-d2とする。
Subsequently, the control unit 50 calculates the transport distance of the base material 2 based on the imaging result of the first imaging unit 15 in each of the thin film forming units 10X and 10Y (a transport distance calculating step).
For example, as shown in FIG. 5A, when the base material marker 2b photographed by the first photographing unit 15 is shifted by d1 upstream from the base material conveyance direction center of the photographing result, The control unit 50 sets the next transport distance of the base material 2 to L + d1.
Further, as shown in FIG. 5C, when the base material marker 2b photographed by the first photographing unit 15 is shifted by d2 downstream from the center of the photographing result in the base material conveyance direction, The control unit 50 sets the next transport distance of the base material 2 to Ld2.
 続いて、制御部50は、薄膜形成部10X,10Yのそれぞれにおいて、ローラー駆動部41を制御することによって、駆動ローラー12aを回転させ、基材2を上流側から下流側へと算出された搬送距離だけ搬送させた後、駆動ローラー12aを止め、基材2を停止させる(第二の基材搬送工程)。
 例えば、図5(a)に示すように基材マーカー2bが上流側にd1だけずれている場合には、制御部50は、ローラー駆動部41を制御することによって、基材2を搬送距離L+d1だけ搬送する(図5(b)参照)。かかる動作により、第二の撮影部16a,16bは、基材マーカー2a,2bを確実に撮影することができる。
 また、図5(c)に示すように基材マーカー2bが下流側にd2だけずれている場合には、制御部50は、ローラー駆動部41を制御することによって、基材2を搬送距離L―d2だけ搬送する(図5(d)参照)。かかる動作により、第二の撮影部16a,16bは、基材マーカー2a,2bを確実に撮影することができる。
Subsequently, the control unit 50 controls the roller driving unit 41 in each of the thin film forming units 10X and 10Y to rotate the driving roller 12a, thereby transporting the base material 2 from the upstream side to the downstream side. After transporting only the distance, the driving roller 12a is stopped and the base material 2 is stopped (second base material transport process).
For example, as shown in FIG. 5A, when the base material marker 2b is shifted by d1 upstream, the control unit 50 controls the roller driving unit 41 to move the base material 2 to the transport distance L + d1. (See FIG. 5B). With this operation, the second imaging units 16a and 16b can reliably image the base material markers 2a and 2b.
5C, when the base material marker 2b is shifted by d2 downstream, the control unit 50 controls the roller driving unit 41 to move the base material 2 to the transport distance L. -Transport only d2 (see FIG. 5D). With this operation, the second imaging units 16a and 16b can reliably image the base material markers 2a and 2b.
 続いて、制御部50は、ゲートバルブ30X,30Yの弁体駆動部45を制御することによって、ゲートバルブ30X,30Yを閉弁し、薄膜形成部10Xのチャンバー11における基材2の入口と薄膜形成部10Yのチャンバー12における基材2の出口とを密封する(閉弁工程)。 Subsequently, the control unit 50 controls the valve body driving unit 45 of the gate valves 30X and 30Y to close the gate valves 30X and 30Y, and the inlet of the base material 2 and the thin film in the chamber 11 of the thin film forming unit 10X. The outlet of the base material 2 in the chamber 12 of the forming unit 10Y is sealed (valve closing step).
 続いて、制御部50は、薄膜形成部10X,10Yのそれぞれにおいて、第二の撮影部16a,16bの撮影結果に基づいてマスク駆動部42を制御することによって、マスク18を移動させてマスク18と基材2との位置合わせを行った後に、マスク駆動部42及びタッチプレート駆動部43を制御することによって、マスク18と、基材2と、タッチプレート19とを密着させる(位置合わせ工程)。本実施形態では、かかる位置合わせ工程において、制御部50は、マスク駆動部42を制御することによって、マスクマーカー18a,18bがそれぞれ基材マーカー2a,2bと隣り合うようにマスク18を移動させる(図3(b)参照)。
 続いて、制御部50は、薄膜形成部10X,10Yのそれぞれにおいて、材料出射部17を制御することによって、薄膜の材料を位置合わせが行われたマスク18を介して基材2の下面に出射し、パターニングされた薄膜を基材2の下面に形成する(例えば、蒸発有機材料を基材2の下面に蒸着させる)(薄膜パターニング工程)。
 続いて、制御部50は、マスク駆動部42及びタッチプレート駆動部43を制御することによって、マスク18と、基材2と、タッチプレート19との密着を解除する。
Subsequently, the control unit 50 moves the mask 18 by controlling the mask driving unit 42 based on the imaging results of the second imaging units 16a and 16b in each of the thin film forming units 10X and 10Y. After the alignment between the base plate 2 and the base material 2, the mask drive unit 42 and the touch plate drive unit 43 are controlled to bring the mask 18, the base material 2 and the touch plate 19 into close contact (positioning step). . In the present embodiment, in the alignment step, the control unit 50 controls the mask driving unit 42 to move the mask 18 so that the mask markers 18a and 18b are adjacent to the substrate markers 2a and 2b, respectively ( (Refer FIG.3 (b)).
Subsequently, the control unit 50 controls the material emitting unit 17 in each of the thin film forming units 10 </ b> X and 10 </ b> Y to emit the thin film material to the lower surface of the base material 2 through the mask 18 that has been aligned. Then, a patterned thin film is formed on the lower surface of the substrate 2 (for example, an evaporated organic material is deposited on the lower surface of the substrate 2) (thin film patterning step).
Subsequently, the control unit 50 controls the mask driving unit 42 and the touch plate driving unit 43 to release the close contact between the mask 18, the base material 2, and the touch plate 19.
 また、制御部50は、前記閉弁工程~薄膜パターニング工程と同時に、マスク18上に搬送された薄膜形成領域2cの一つ上流側の薄膜形成領域2cに対応する基材マーカー2bに関して、前記した搬送距離算出工程を実行する。ここで算出された搬送距離は、次回の第二の基材搬送工程で用いられる。 In addition, the control unit 50 described above regarding the base material marker 2b corresponding to the thin film forming region 2c on the upstream side of the thin film forming region 2c conveyed onto the mask 18 simultaneously with the valve closing step to the thin film patterning step. A conveyance distance calculation process is performed. The transport distance calculated here is used in the next second base material transport process.
 続いて、制御部50は、ゲートバルブ30X,30Yのそれぞれにおいて、弁体駆動部45を制御することによって、ゲートバルブ30X,30Yを開弁する(開弁工程)。制御部50は、開弁工程の後に前記した第二の基材搬送工程に戻り、前記各工程を繰り返し実行することによって薄膜基材を製造する。 Subsequently, the control unit 50 opens the gate valves 30X and 30Y by controlling the valve body driving unit 45 in each of the gate valves 30X and 30Y (valve opening process). The controller 50 returns to the above-described second base material transport step after the valve opening step, and manufactures the thin film base material by repeatedly executing the above steps.
 ここで、基材2に伸び等が発生した場合には、薄膜形成部10Xにおいて算出される搬送距離と薄膜形成部10Yにおいて算出される搬送距離とに差が生じることがある。かかる場合には、薄膜形成部10Xのダンサローラー14が搬送距離のズレを吸収する。 Here, when elongation or the like occurs in the base material 2, there may be a difference between the transport distance calculated in the thin film forming unit 10X and the transport distance calculated in the thin film forming unit 10Y. In such a case, the dancer roller 14 of the thin film forming unit 10X absorbs the shift in the transport distance.
 本発明の実施形態に係る薄膜基材製造装置1は、パターン加工位置の上流側での基材マーカー2bの撮影結果に基づいて基材2の搬送距離を算出するので、パターン加工位置における加工領域の基材搬送方向のズレを防止することができる。
 また、薄膜基材製造装置1は、隣り合う10X,10Y間にダンサローラー14(アキューム)を備えるので、搬送距離のズレを吸収することができる。
 また、薄膜基材製造装置1は、蛇行補正部20を備えるので、パターン加工位置における加工領域(薄膜形成領域2c)の基材幅方向のズレを防止することができる。
Since the thin film substrate manufacturing apparatus 1 according to the embodiment of the present invention calculates the transport distance of the substrate 2 based on the imaging result of the substrate marker 2b on the upstream side of the pattern processing position, the processing region at the pattern processing position Deviation in the substrate transport direction can be prevented.
Moreover, since the thin film base material manufacturing apparatus 1 is provided with the dancer roller 14 (accumulation) between adjacent 10X and 10Y, it can absorb the shift | offset | difference of a conveyance distance.
Moreover, since the thin film base material manufacturing apparatus 1 includes the meandering correction unit 20, it is possible to prevent the processing region (thin film formation region 2c) in the base material width direction from being shifted at the pattern processing position.
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、薄膜は、有機薄膜であってもよく、無機薄膜であってもよい。すなわち、処理部は、前記した薄膜形成部10X,10Yに限定されず、有機薄膜以外の薄膜(電極等)を膜パターン加工するものであってもよい。また、膜パターン加工は、蒸発材料等をマスク18を介して基材2に向けて出射するものに限定されず、基材2上に予め形成された薄膜に対し、マスク18を介してレーザ光を照射し、薄膜の所定部位を除去することでパターン加工するものであってもよい。また、マスク18の形状、及び、基材2の基材マーカー2a,2bとマスク18のマスクマーカー18a,18bの相対的な位置関係は、図示したものに限定されない。また、蛇行検出部23は、キャパシタンスセンサーに限定されず、リニアセンサー等であってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably. For example, the thin film may be an organic thin film or an inorganic thin film. That is, the processing section is not limited to the above-described thin film forming sections 10X and 10Y, and may be a film pattern process for a thin film (electrode or the like) other than the organic thin film. Further, the film pattern processing is not limited to the one in which the evaporating material or the like is emitted toward the base material 2 through the mask 18, and a laser beam is applied to the thin film previously formed on the base material 2 through the mask 18. , And pattern processing may be performed by removing a predetermined portion of the thin film. Further, the shape of the mask 18 and the relative positional relationship between the base material markers 2a and 2b of the base material 2 and the mask markers 18a and 18b of the mask 18 are not limited to those illustrated. Further, the meandering detection unit 23 is not limited to a capacitance sensor, and may be a linear sensor or the like.
 1   薄膜基材製造装置(パターン成膜装置)
 2   基材
 2a,2b 基材マーカー
 10X,10Y 薄膜形成部(処理部)
 12a 駆動ローラー(基材搬送部)
 13a,13b 従動ローラー(アキューム)
 14  ダンサローラー(アキューム)
 15  第一の撮影部(第一の検出部)
 16a,16b 第二の撮影部(第二の検出部)
 17  材料出射部
 18  マスク
 18a,18b マスクマーカー
 20  蛇行補正部
 42  マスク駆動部
 50  制御部
1 Thin film substrate manufacturing equipment (pattern film forming equipment)
2 Base material 2a, 2b Base material marker 10X, 10Y Thin film formation part (processing part)
12a Drive roller (base material transport unit)
13a, 13b Follower roller (Accum)
14 Dancer Roller (Accum)
15 First imaging unit (first detection unit)
16a, 16b Second imaging unit (second detection unit)
17 Material emitting part 18 Mask 18a, 18b Mask marker 20 Meander correction part 42 Mask drive part 50 Control part

Claims (4)

  1.  可撓性を有する帯状の基材にパターン成膜を行うパターン成膜装置であって、
     前記基材を搬送する基材搬送部と、
     パターン加工位置において前記基材の加工領域に膜パターン加工を行うパターン加工部と、
     前記パターン加工位置よりも上流側において、前記基材に前記加工領域ごとに設けられた基材マーカーを検出する第一の検出部と、
     前記パターン加工位置において前記基材マーカーを検出する第二の検出部と、
     を有する処理部と、
     前記基材搬送部及び前記パターン加工部を制御する制御部と、
     を備え、
     前記制御部は、
     前記基材が停止した状態における前記第一の検出部の検出結果に基づいて、前記パターン加工位置までの搬送距離を算出し、
     算出された前記搬送距離に基づいて前記基材搬送部を制御することによって、前記基材マーカーに対応する前記加工領域を前記パターン加工位置まで搬送し、
     前記基材が停止した状態における前記第二の検出部の検出結果に基づいて前記パターン加工部を制御することによって、前記加工領域に膜パターン加工を行う
     ことを特徴とするパターン成膜装置。
    A pattern film forming apparatus for forming a film on a flexible belt-shaped substrate,
    A base material transport unit for transporting the base material;
    A pattern processing unit that performs film pattern processing on the processing region of the substrate at a pattern processing position;
    On the upstream side of the pattern processing position, a first detection unit for detecting a base material marker provided for each processing region on the base material,
    A second detection unit for detecting the substrate marker at the pattern processing position;
    A processing unit having
    A control unit for controlling the substrate transport unit and the pattern processing unit;
    With
    The controller is
    Based on the detection result of the first detection unit in a state where the base material is stopped, the transport distance to the pattern processing position is calculated,
    By controlling the substrate transport unit based on the calculated transport distance, the processing region corresponding to the substrate marker is transported to the pattern processing position,
    A pattern film forming apparatus that performs film pattern processing on the processing region by controlling the pattern processing unit based on a detection result of the second detection unit in a state where the base material is stopped.
  2.  前記パターン加工部は、
     膜パターン加工が行われる薄膜の材料を、前記基材の前記加工領域へ出射する材料出射部と、
     前記材料出射部と前記基材との間に設けられており、膜パターン加工を行うためのマスクと、
     前記マスクを移動させるマスク駆動部と、
     を備え、
     前記マスクには、マスクマーカーが設けられており、
     前記第二の検出部は、前記基材マーカー及び前記マスクマーカーを検出し、
     前記制御部は、前記基材が停止した状態における前記第二の検出部の検出結果に基づいて前記マスク駆動部を制御することによって、前記マスクと前記基材の前記加工領域との位置合わせを行い、前記材料出射部を制御することによって、前記薄膜の材料を、位置合わせが行われた前記マスクを介して前記基材の前記加工領域へ出射する
     ことを特徴とする請求項1に記載のパターン成膜装置。
    The pattern processing section is
    A material emitting portion for emitting a thin film material to be subjected to film pattern processing to the processing region of the base material;
    Provided between the material emitting portion and the base material, and a mask for performing film pattern processing;
    A mask driver for moving the mask;
    With
    The mask is provided with a mask marker,
    The second detection unit detects the substrate marker and the mask marker,
    The control unit is configured to align the mask and the processing region of the base material by controlling the mask driving unit based on a detection result of the second detection unit in a state where the base material is stopped. The material of the thin film is emitted to the processing region of the base material through the mask that has been aligned by performing and controlling the material emitting unit. Pattern deposition system.
  3.  複数の前記処理部を備え、
     隣り合う前記処理部間には、前記基材の搬送距離のズレを吸収するアキュームが設けられている
     ことを特徴とする請求項1又は請求項2に記載のパターン成膜装置。
    A plurality of the processing units;
    The pattern film forming apparatus according to claim 1, wherein an accumulator that absorbs a shift in a conveyance distance of the base material is provided between the adjacent processing units.
  4.  前記基材の幅方向の蛇行を補正する蛇行補正部を備える
     ことを特徴とする請求項1から請求項3のいずれか一項に記載のパターン成膜装置。
    The pattern film forming apparatus according to any one of claims 1 to 3, further comprising a meandering correction unit that corrects meandering in the width direction of the base material.
PCT/JP2016/067860 2015-06-15 2016-06-15 Pattern film forming device WO2016204204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525276A JP6718445B2 (en) 2015-06-15 2016-06-15 Pattern deposition equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-120395 2015-06-15
JP2015120395 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016204204A1 true WO2016204204A1 (en) 2016-12-22

Family

ID=57545653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067860 WO2016204204A1 (en) 2015-06-15 2016-06-15 Pattern film forming device

Country Status (3)

Country Link
JP (1) JP6718445B2 (en)
TW (1) TW201712133A (en)
WO (1) WO2016204204A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970637B2 (en) 2018-03-27 2021-11-24 日東電工株式会社 Film manufacturing equipment and double-sided laminated film manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076690A (en) * 2007-09-20 2009-04-09 Fuji Electric Systems Co Ltd Thin film manufacturing apparatus and thin film manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076690A (en) * 2007-09-20 2009-04-09 Fuji Electric Systems Co Ltd Thin film manufacturing apparatus and thin film manufacturing method

Also Published As

Publication number Publication date
JP6718445B2 (en) 2020-07-08
JPWO2016204204A1 (en) 2018-03-29
TW201712133A (en) 2017-04-01

Similar Documents

Publication Publication Date Title
US8541163B2 (en) Transporting method, transporting apparatus, exposure method, and exposure apparatus
KR101739672B1 (en) Alignment device and alignment method
KR101816327B1 (en) Substrate processing device
US20120103255A1 (en) Alignment method, alignment apparatus, and organic el element manufacturing apparatus
WO2016080235A1 (en) Vapor deposition device, vapor deposition method, and method for manufacturing organic electroluminescence element
JP4304165B2 (en) Exposure method and exposure apparatus
WO2014013927A1 (en) Vapor deposition device and vapor deposition method
JP2013211139A (en) Deposition device and deposition method
WO2016204204A1 (en) Pattern film forming device
KR101781245B1 (en) Film exposure method
JP2011091275A (en) Aligner apparatus and semiconductor treatment facility equipped with the same
JP2016197629A5 (en)
WO2016204202A1 (en) Production method for organic electroluminescent elements
JP2017220496A (en) Processing system, and article manufacturing method
WO2016114178A1 (en) Exposure device
JP5762903B2 (en) Exposure equipment
JP7350029B2 (en) Transport equipment and film forming equipment
JP6703532B2 (en) Gate valve
WO2013121625A1 (en) Substrate delivery device, substrate processing device and substrate processing method
JP6035035B2 (en) Substrate transport apparatus and substrate transport method
WO2018199066A1 (en) Sheet conveying device and sheet conveying method
JP4738887B2 (en) Exposure equipment
KR101658957B1 (en) Roll to roll vacuum evaporation system for a flexible substrate
JP5605770B2 (en) Display element manufacturing method and display element manufacturing apparatus
JPWO2016204201A1 (en) Method for manufacturing organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811678

Country of ref document: EP

Kind code of ref document: A1