WO2016203880A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2016203880A1
WO2016203880A1 PCT/JP2016/064302 JP2016064302W WO2016203880A1 WO 2016203880 A1 WO2016203880 A1 WO 2016203880A1 JP 2016064302 W JP2016064302 W JP 2016064302W WO 2016203880 A1 WO2016203880 A1 WO 2016203880A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
circumferential groove
width direction
circumferential
Prior art date
Application number
PCT/JP2016/064302
Other languages
English (en)
French (fr)
Inventor
正志 山口
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US15/575,612 priority Critical patent/US20180281525A1/en
Priority to EP16811355.3A priority patent/EP3312024B1/en
Priority to CN201680034561.0A priority patent/CN107735268B/zh
Publication of WO2016203880A1 publication Critical patent/WO2016203880A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • B60C2011/0376Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/039Continuous ribs provided at the shoulder portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a tire having a plurality of circumferential grooves in a tread portion.
  • the tread portion of the tire When the vehicle is running, the tread portion of the tire generates heat and the temperature of the tread portion rises.
  • the temperature of the tread portion is a main factor affecting the durability of the tread portion, and in order to improve the durability of the tread portion, it is necessary to cope with the temperature rise of the tread portion.
  • the influence of the heat generation is increased due to concentration of heat generation at the end portion of the belt (or the belt reinforcing layer).
  • a protrusion is formed mainly on the groove bottom of the circumferential groove located on the outermost side in the tire width direction to improve the heat transfer coefficient of the circumferential groove.
  • the tread portion on the outer side in the tire width direction is cooled by the heat radiation of the outermost circumferential groove, and the rise in the temperature of the tread portion is suppressed.
  • the shape in the circumferential groove becomes complicated, and it becomes difficult to form the circumferential groove.
  • the heat dissipation of the circumferential groove may be affected. Therefore, the conventional tire has room for improvement from the viewpoint of more reliably increasing the cooling effect of the tread portion by the outermost circumferential groove.
  • Patent Document 1 Conventionally, there is known a tire that suppresses an increase in temperature of a tread portion by a block groove formed in a shoulder block row (see Patent Document 1).
  • Patent Document 1 it is necessary to form the block groove on the tread surface of the block along the tire circumferential direction. Therefore, depending on the shape of the block and the performance required for the block, the block groove may not be formed.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to improve the heat dissipation performance of the circumferential groove located on the outermost side in the tire width direction and to cool the tread portion by the outermost circumferential groove. It is to increase the effect.
  • the present invention includes four or more circumferential grooves including a first circumferential groove located on the outermost side in the tire width direction and a second circumferential groove adjacent to the inner side in the tire width direction of the first circumferential groove.
  • Tire When the vehicle travels, an airflow in the direction opposite to the tire rotation direction is generated in the first circumferential groove and the second circumferential groove.
  • the tire includes a first land portion disposed on the outer side in the tire width direction of the first circumferential groove, a second land portion disposed on the inner side in the tire width direction of the second circumferential groove, the first circumferential groove, and the first A plurality of widths extending between the two circumferential grooves inclining with respect to the tire width direction, each having a first end opening in the first circumferential groove and a second end opening in the second circumferential groove. And a plurality of blocks defined between the first circumferential groove and the second circumferential groove by a direction groove, a first circumferential groove, a second circumferential groove, and a plurality of width direction grooves.
  • the first end portion of each width direction groove is located upstream of the second end portion of each width direction groove in the airflow direction.
  • the heat dissipation of the circumferential groove located on the outermost side in the tire width direction can be improved, and the cooling effect of the tread portion by the outermost circumferential groove can be enhanced.
  • the tire according to the present embodiment is a pneumatic tire for a vehicle (for example, a heavy load tire or a passenger car tire), and is formed in a known structure by a general tire constituent member. That is, the tire includes a pair of bead portions, a pair of sidewall portions located outside the tire radius of the pair of bead portions, a tread portion in contact with a road surface, and a pair located between the tread portion and the pair of sidewall portions. Has a shoulder.
  • the tire includes a pair of bead cores, a carcass disposed between the pair of bead cores, a belt disposed on the outer peripheral side of the carcass, and a tread rubber having a predetermined tread pattern.
  • FIG. 1 is a perspective view of a tire 1 according to the first embodiment.
  • FIG. 2 is a plan view showing a tread pattern of the tire 1 of the first embodiment, and a part of the tire circumferential direction S of the tread portion 11 in a state where the tire 1 shown in FIG. 1 is rotated 90 ° counterclockwise. Is schematically shown.
  • the tire 1 is a tire in which the rotation direction when the vehicle moves forward is specified, and rotates in the tire rotation direction R when the vehicle moves forward.
  • the tire rotation direction R is designated corresponding to the tread pattern of the tire 1, and the tire 1 is mounted on the vehicle so that the tire rotation direction R is suitable.
  • the tire equatorial plane 12 is located at the center of the tread portion 11 in the tire width direction K, and the shoulder portion 13 of the tire 1 is located outside the tread portion 11 in the tire width direction K.
  • the tire 1 includes a plurality of circumferential grooves 20, 21, a plurality of land portions 15, 16, 17, a plurality of widthwise grooves 30, and a plurality of blocks 40 in the tread portion 11. Yes.
  • the plurality of circumferential grooves 20 and 21 are main grooves (circumferential main grooves) extending in the tire circumferential direction S, and are formed continuously along the tire circumferential direction S, respectively.
  • the tire 1 includes four or more circumferential grooves 20 and 21 including a first circumferential groove 20 and a second circumferential groove 21.
  • the first circumferential groove 20 is located on the outermost side in the tire width direction K among the plurality of circumferential grooves 20, 21, and the second circumferential groove 21 is in the tire width direction K of the first circumferential groove 20. Adjacent to the inside.
  • the plurality of circumferential grooves 20 and 21 include two first circumferential grooves 20 and two second circumferential grooves 21, and the tire 1 includes four circumferential grooves 20 and 21.
  • the first circumferential groove 20 is an outer circumferential groove disposed on the outer side (shoulder portion 13 side) in the tire width direction K of the second circumferential groove 21, and on the both sides of the tire equatorial plane 12, in the second circumferential direction. It is formed between the groove 21 and the shoulder portion 13 (tread end).
  • the second circumferential groove 21 is an inner circumferential groove disposed on the inner side of the first circumferential groove 20 in the tire width direction K.
  • the first circumferential groove 20 and the tire equatorial plane are formed on both sides of the tire equatorial plane 12. 12 is formed.
  • the tire 1 includes two first circumferential grooves 20 located on the inner side in the tire width direction K of both shoulder portions 13 and two second circumferential grooves 21 located on both sides of the tire equatorial plane 12 in the tire width direction K. It has. A pair of first circumferential grooves 20 and second circumferential grooves 21 are disposed between the tire equator surface 12 and the shoulder portion 13 on both sides of the tire equator surface 12. Further, the first circumferential groove 20 and the second circumferential groove 21 are straight grooves and extend linearly in the tire circumferential direction S without being bent or curved.
  • the plurality of land portions 15, 16, and 17 are convex portions that are partitioned into the tread portion 11 by the plurality of circumferential grooves 20 and 21, and extend in the tire circumferential direction S along the circumferential grooves 20 and 21.
  • the plurality of land portions 15, 16, and 17 include two first land portions 15, one second land portion 16, and two third land portions 17.
  • the first land portion 15 is partitioned by the first circumferential groove 20 and is disposed outside the first circumferential groove 20 in the tire width direction K.
  • the first land portion 15 is a shoulder land portion disposed on the outermost side (the shoulder portion 13 side) in the tire width direction K among the plurality of land portions 15, 16, and 17, and the tire width of the third land portion 17. Located outside the direction K.
  • the second land portion 16 is partitioned by two second circumferential grooves 21 and is disposed inside the second circumferential groove 21 in the tire width direction K.
  • the second land portion 16 is a central land portion disposed in the central region of the tread portion 11 including the tire equator plane 12, and is between the two second circumferential grooves 21 (between the two third land portions 17).
  • the tire equator plane 12 is located at the center of the second land portion 16.
  • the third land portion 17 is partitioned by the first circumferential groove 20 and the second circumferential groove 21 and is disposed between the first circumferential groove 20 and the second circumferential groove 21.
  • the third land portion 17 is an intermediate land portion disposed in an intermediate region of the tread portion 11 between the tire equatorial plane 12 and the shoulder portion 13, and is located between the first land portion 15 and the second land portion 16. .
  • the first land portion 15 and the second land portion 16 are rib-like land portions extending in the tire circumferential direction S.
  • the rib-shaped land portion is a land portion partitioned in a rib shape by a circumferential groove, and in addition to a land portion (continuous land portion) continuously extending in the tire circumferential direction S without being divided in the tire circumferential direction S,
  • channel or sipe whose width is 1.0 mm or less is included.
  • a groove or sipe that does not divide the land portion in the tire circumferential direction S may be formed in the rib-like land portion, and a groove or sipe having a width that divides the land portion in the tire circumferential direction S is 1.0 mm or less. May be formed.
  • the first land portion 15 and the second land portion 16 are rib-like land portions that continuously extend in the tire circumferential direction S, and are partitioned only by the circumferential grooves 20 and 21.
  • the third land portion 17 is a block row (intermittent land portion) composed of a plurality of blocks 40, and has a plurality of blocks 40 arranged in parallel in the tire circumferential direction S and a plurality of widthwise grooves 30.
  • the plurality of widthwise grooves 30 are lateral grooves (lag grooves) formed between the first circumferential groove 20 and the second circumferential groove 21, and are between the first circumferential groove 20 and the second circumferential groove 21. Thus, it extends with an inclination with respect to the tire width direction K.
  • the first circumferential grooves 20, the second circumferential grooves 21, and the bottom surfaces of the plurality of widthwise grooves 30 are smooth surfaces without irregularities, and the first circumferential grooves 20, the second circumferential grooves 21, and The depths of the plurality of width direction grooves 30 are the same depth.
  • the plurality of widthwise grooves 30 are arranged separately in the tire circumferential direction S and divide the third land portion 17 in the tire circumferential direction S.
  • the plurality of widthwise grooves 30 each have a first end portion 31 and a second end portion 32, and open to the first circumferential groove 20 and the second circumferential groove 21.
  • the first end 31 is one end (first opening) of the widthwise groove 30 that opens to the first circumferential groove 20
  • the second end 32 is the widthwise direction that opens to the second circumferential groove 21. This is the other end (second opening) of the groove 30.
  • a plurality of blocks 40 are partitioned between the first circumferential groove 20 and the second circumferential groove 21 by the first circumferential groove 20, the second circumferential groove 21, and the plurality of width direction grooves 30.
  • 40 is formed in a predetermined polygonal shape (here, a parallelogram shape) as viewed from the outside in the tire radial direction.
  • the tire 1 includes a plurality of blocks 40 and a plurality of width direction grooves 30 formed in the third land portion 17.
  • the plurality of blocks 40 are arranged adjacent to each other in the tire circumferential direction S in order, and the plurality of widthwise grooves 30 are positioned between the blocks 40 adjacent to each other in the tire circumferential direction S.
  • the first circumferential groove 20 extends along the outer wall surface of the plurality of blocks 40 in the tire width direction K
  • the second circumferential groove 21 extends along the inner wall surface of the plurality of blocks 40 in the tire width direction K. Extend.
  • the tire 1 is attached to the vehicle and rotates in the tire rotation direction R as the vehicle travels (forward).
  • airflow in a predetermined direction is generated in the first circumferential groove 20 and the second circumferential groove 21.
  • the airflow is a relative air flow (wind) generated by the rotation of the tire 1 and is generated in a direction opposite to the tire rotation direction R.
  • the arrow F shown in FIGS. 1 and 2 is the direction of the airflow generated in the first circumferential groove 20 and the second circumferential groove 21, and the airflow in the same direction is the first circumferential groove 20 and the second circumferential direction. It occurs in the groove 21.
  • the air flows from the upstream side G in the airflow direction F toward the downstream side H in the airflow direction F to cool the tread portion 11.
  • the air flow is controlled by the plurality of width direction grooves 30 formed between the first circumferential groove 20 and the second circumferential groove 21, and the first circumferential groove 20 and the first circumferential groove 20.
  • the heat dissipation of the two circumferential grooves 21 is adjusted.
  • channel 20 located in the outermost side of the tire width direction K is improved.
  • each width direction groove 30 is located on the upstream side G in the airflow direction F with respect to the second end portion 32 of each width direction groove 30.
  • the position of the first end portion 31 in the tire circumferential direction S is the tire circumferential direction S of the second end portion 32. It is located on the upstream side G in the airflow direction F than the position.
  • each width direction groove 30 of the plurality of width direction grooves 30 is inclined with respect to the tire width direction K at an angle E within a range of 10 to 60 °.
  • the width direction groove 30 is inclined inward of the tire width direction K with respect to the tire circumferential direction S toward the downstream side H in the airflow direction F, and is not bent or curved, and is predetermined with respect to the tire width direction K. It extends linearly in a direction inclined at an angle E.
  • the position (opening position) at which the width direction groove 30 is connected to the second circumferential groove 21 is provided on the downstream side H in the airflow direction F from the position at which the width direction groove 30 is connected to the first circumferential groove 20.
  • FIG. 3 is a diagram for explaining the airflow Q during vehicle travel.
  • FIG. 3A shows the airflow Q around the first end portion 31 of the width direction groove 30 by arrows.
  • FIG. 3B has shown the airflow Q in the periphery of the 1st edge part 31 when the width direction groove
  • channel 30 is made parallel to the tire width direction K with the arrow.
  • the block 40 has a corner 41 formed at a position where the width direction groove 30 on the downstream side H in the airflow direction F opens into the first circumferential groove 20.
  • the corner portion 41 of the block 40 is formed at a position where the wall surface of the block 40 in the first circumferential groove 20 and the wall surface of the block 40 in the width direction groove 30 intersect.
  • the wall surface of the block 40 is formed toward different directions with the corner portion 41 as a boundary.
  • the widthwise groove 30 When the widthwise groove 30 is parallel to the tire width direction K (see FIG. 3B), the airflow Q in the first circumferential groove 20 is easily separated from the wall surface of the block 40 at the corner 41 of the block 40, and the air is mainly Then, the air flows in the first circumferential groove 20 toward the downstream side H. As a result, it is difficult for air to flow into the width direction groove 30 from the first end portion 31.
  • the widthwise groove 30 is inclined with respect to the tire width direction K (see FIG. 3A)
  • the air in the first circumferential groove 20 is blocked at the corner 41 of the block 40 due to the Coanda effect. It becomes easy to flow along 40 wall surfaces.
  • the air flow Q flows along the wall surface of the block 40, and air flows from the first end portion 31 into the width direction groove 30.
  • the pressure of air decreases around the corner 41 of the block 40, and the velocity of the air flow Q in the first circumferential groove 20 increases.
  • the heat transfer coefficient at the groove bottom of the first circumferential groove 20 increases, and the heat radiation by the first circumferential groove 20 increases.
  • the air flow Q in the first circumferential groove 20 promotes cooling of the tread portion 11.
  • FIG. 4 is a graph showing the heat transfer coefficient M1 of the first circumferential groove 20 and the heat transfer coefficient M2 of the second circumferential groove 21, and the angle E of the widthwise groove 30 with respect to the tire width direction K and the heat transfer coefficient M1.
  • M2 is shown.
  • the heat transfer coefficient M1 is an average heat transfer coefficient per unit area at the groove bottom of the first circumferential groove 20
  • the heat transfer coefficient M2 is an average heat transfer per unit area at the groove bottom of the second circumferential groove 21. Rate.
  • the heat transfer coefficient M1 of the first circumferential groove 20 is higher than the heat transfer coefficient M2 of the second circumferential groove 21 by inclining the widthwise groove 30 with respect to the tire width direction K. .
  • the heat transfer coefficient M1 of the first circumferential groove 20 becomes higher than the heat transfer coefficient M1 when the angle E of the width direction groove 30 is 0 °.
  • the angle E of the width direction groove 30 When the angle E of the width direction groove 30 is 45 °, the heat transfer coefficient M1 of the first circumferential direction groove 20 is the highest. On the other hand, as the angle E of the width direction groove 30 becomes smaller, the Coanda effect at the corner portion 41 of the block 40 becomes lower and the heat transfer coefficient M1 of the first circumferential groove 20 becomes relatively lower. Further, under the condition that the negative ratio regarding the width direction groove 30 is constant, it is necessary to keep the area of the groove bottom of the width direction groove 30 constant even if the angle E of the width direction groove 30 is changed. Therefore, as the angle E of the width direction groove 30 increases, the groove width of the width direction groove 30 becomes narrower.
  • the inflow resistance of air into the width direction groove 30 increases, and the heat transfer coefficient M1 of the first circumferential groove 20 becomes relatively low.
  • the angle E of the width direction groove 30 is 10 ° or more
  • the heat transfer coefficient M1 of the first circumferential groove 20 is compared with the heat transfer coefficient M1 when the angle E of the width direction groove 30 is 0 °. 20% higher.
  • the heat dissipation of the first circumferential groove 20 and the second circumferential groove 21 can be adjusted by controlling the air flow Q during vehicle travel.
  • the speed of the airflow Q can be made quick and heat dissipation can be accelerated
  • first land portion 15 and the second land portion 16 are rib-like land portions, the outflow of air from the first circumferential groove 20 and the second circumferential groove 21 is suppressed, and the first circumferential groove 20 and Due to the air flow Q in the second circumferential groove 21, heat dissipation of the tread portion 11 is further promoted. Since the groove bottom surfaces of the first circumferential groove 20, the second circumferential groove 21, and the plurality of widthwise grooves 30 are smooth surfaces, the turbulence of the airflow Q at each groove bottom is prevented, and the velocity of the airflow Q is reduced. Will be faster. When the first circumferential groove 20 and the second circumferential groove 21 extend linearly in the tire circumferential direction S, the air in the first circumferential groove 20 and the second circumferential groove 21 flows smoothly, and the velocity of the air flow Q Is even faster.
  • the angle E of the width direction groove 30 When the angle E of the width direction groove 30 is smaller than 10 °, there is a possibility that a sufficient Coanda effect cannot be obtained at the corner portion 41 of the block 40. Moreover, when the angle E of the width direction groove
  • the first land portion 15 and the second land portion 16 may be land portions other than the rib-shaped land portion. Further, the first circumferential groove 20 and the second circumferential groove 21 may be zigzag grooves extending in the tire circumferential direction S in a zigzag shape.
  • the tires of the second to ninth embodiments are examples in which a part of the tread pattern is changed, and have the same operations and effects as the tire 1 of the first embodiment. Therefore, in the following, description of the same items as those already described is omitted.
  • the same names and reference numerals as those of the tire 1 are used for the components corresponding to the components of the tire 1, and detailed description of each component is omitted.
  • FIG. 5 is a plan view showing a tread pattern of the tire 2 according to the second embodiment, and shows a tread pattern on one side (the upper side in FIG. 5) of the tire equatorial plane 12.
  • the groove width of each width direction groove 30 gradually increases from the inner side to the outer side in the tire width direction K. Therefore, the groove width W1 of the first end portion 31 of the width direction groove 30 is wider than the groove width W2 of the second end portion 32 of the width direction groove 30 (W1> W2). Further, the groove width of the width direction groove 30 is widest at the first end portion 31, gradually becomes narrower from the first end portion 31 toward the second end portion 32, and becomes narrowest at the second end portion 32.
  • FIG. 6 is a graph showing the heat transfer coefficient M3 of the first circumferential groove 20 and the heat transfer coefficient M4 of the second circumferential groove 21, and the relationship between the groove width ratio of the widthwise groove 30 and the heat transfer coefficients M3 and M4. Is shown.
  • the groove width ratio of the width direction groove 30 is the ratio of the groove width W1 of the first end portion 31 to the groove width W2 of the second end portion 32 ((W1 / W2) ⁇ 100).
  • the heat transfer coefficient M3 of the first circumferential groove 20 is increased and the second circumferential groove
  • the heat transfer coefficient M4 of 21 is also increased. Further, when the groove width ratio of the width direction groove 30 is increased, the heat transfer coefficients M3 and M4 are increased.
  • the air in the first circumferential groove 20 is likely to flow into the first end portion 31 of the widthwise groove 30, and the air pressure is reliably around the corner portion 41 of the block 40. descend. Therefore, the speed of the air flow Q in the first circumferential groove 20 is increased, and the heat transfer coefficient at the groove bottom of the first circumferential groove 20 is increased. Therefore, the cooling effect of the tread portion 11 by the first circumferential groove 20 can be further enhanced.
  • FIG. 7 is a plan view showing a tread pattern of the tire 3 of the third embodiment, and shows a tread pattern on one side of the tire equatorial plane 12.
  • Each block 40 of the plurality of blocks 40 has an inclined wall surface 42 formed from the first circumferential groove 20 toward the widthwise groove 30.
  • the inclined wall surface 42 is an outer inclined wall surface formed outside the block 40 in the tire width direction K (on the first circumferential groove 20 side), and the width direction groove 30 on the downstream side H in the airflow direction F is in the first circumferential direction.
  • the inclined wall surface 42 of the block 40 is inclined inward in the tire width direction K with respect to the tire circumferential direction S toward the downstream side H in the airflow direction F.
  • FIG. 8 is a graph showing the heat transfer coefficients M5 and M6 of the first circumferential groove 20, and shows the relationship between the inclination angle of the inclined wall surface 42 and the heat transfer coefficients M5 and M6.
  • the inclination angle of the inclined wall surface 42 is an angle of the inclined wall surface 42 with respect to the tire circumferential direction S.
  • the heat transfer coefficient M5 is the heat transfer coefficient of the first circumferential groove 20 when the angle E of the width direction groove 30 is 20 °
  • the heat transfer coefficient M6 is when the angle E of the width direction groove 30 is 0 °. This is the heat transfer coefficient of the first circumferential groove 20.
  • the heat transfer coefficient M5 of the first circumferential groove 20 is increased. Further, the heat transfer coefficient M5 is higher than the heat transfer coefficient M6 when the angle E of the width direction groove 30 is 0 °.
  • the Coanda effect at the corner portion 41 of the block 40 is increased by the inclined wall surface 42, and the air pressure is further reduced around the corner portion 41. Therefore, the speed of the air flow Q in the first circumferential groove 20 is increased, and the heat transfer coefficient at the groove bottom of the first circumferential groove 20 is increased. Therefore, the cooling effect of the tread portion 11 by the first circumferential groove 20 can be further enhanced.
  • FIG. 9 is a plan view showing a tread pattern of the tire 4 of the fourth embodiment, and shows a tread pattern on one side of the tire equatorial plane 12. As illustrated, in the tire 4 of the fourth embodiment, only the shape of a part of the block 40 is different from the tire 3 of the third embodiment.
  • Each block 40 of the plurality of blocks 40 has an inclined wall surface 43 formed from the second circumferential groove 21 toward the width direction groove 30 in addition to the inclined wall surface 42 that is the outer inclined wall surface (first inclined wall surface). .
  • the inclined wall surface 43 is an inner inclined wall surface (second inclined wall surface) formed on the inner side of the block 40 in the tire width direction K (second circumferential groove 21 side), and the widthwise groove on the upstream side G in the airflow direction F. 30 is formed in the corner
  • the inclined wall surface 43 of the block 40 is inclined inward in the tire width direction K with respect to the tire circumferential direction S toward the downstream side H in the airflow direction F.
  • the inclined wall surface 43 makes it easy for air to flow into the second circumferential groove 21 from the width direction groove 30, and to the downstream side H in the airflow direction F within the second circumferential groove 21. Flows smoothly. Therefore, the speed of the air flow Q in the second circumferential groove 21 is increased, and the heat transfer coefficient at the groove bottom of the second circumferential groove 21 is increased. Therefore, the cooling effect of the tread portion 11 by the second circumferential groove 21 can be enhanced.
  • FIG. 10 is a perspective view of the tire 5 of the fifth embodiment
  • FIG. 11 is a perspective view showing a part of the tread pattern formed on the tire 5 of the fifth embodiment.
  • the first land portion 15 is a block row (intermittent land portion) composed of a plurality of blocks 50, and is disposed apart from the plurality of blocks 50 arranged in parallel in the tire circumferential direction S in the tire circumferential direction S.
  • a plurality of lug grooves 51 are provided.
  • the lug groove 51 extends in the tire width direction K and is formed from the first circumferential groove 20 to the shoulder portion 13.
  • the plurality of blocks 50 are arranged adjacent to each other in the tire circumferential direction S in order, and the plurality of lug grooves 51 are positioned between the blocks 50 adjacent to each other in the tire circumferential direction S. Further, the lug groove 51 is formed outside the first circumferential groove 20 in the tire width direction K and opens into the first circumferential groove 20.
  • the tire 5 includes a raised portion 52 formed in each lug groove 51.
  • the raised portion 52 is raised from the groove bottom of the lug groove 51, and connects the groove walls (wall surfaces of the block 50) on both sides of the lug groove 51.
  • the raised portion 52 is a tie bar, and at least a part of the lug groove 51 is shallower than the first circumferential groove 20 by the raised portion 52.
  • the raised portion 52 of the lug groove 51 can prevent the air flowing through the first circumferential groove 20 from flowing out through the lug groove 51. As a result, the air flow Q can be concentrated in the first circumferential groove 20. Further, the raised portion 52 can suppress the lug groove 51 from affecting the air flow Q of the first circumferential groove 20.
  • FIG. 12 is a perspective view of the tire 6 of the sixth embodiment. As illustrated, in the tire 6 of the sixth embodiment, only the second land portion 16 is different from the tire 5 of the fifth embodiment.
  • the tire 6 includes a sipe 22 formed in the second land portion 16.
  • FIG. 13 is a perspective view of the tire 7 of the seventh embodiment. As illustrated, in the tire 7 of the seventh embodiment, only the first circumferential groove 20 and the second circumferential groove 21 are different from the tire 6 of the sixth embodiment.
  • the first circumferential groove 20 and the second circumferential groove 21 are zigzag grooves extending in a zigzag shape in the tire circumferential direction S.
  • FIG. 14 is a perspective view of the tire 8 of the eighth embodiment. As illustrated, in the tire 8 of the eighth embodiment, only the block 40 is different from the tire 6 of the sixth embodiment. Similar to the tire 3 of the third embodiment, the block 40 of the tire 8 has inclined wall surfaces 42 formed at the corners 41.
  • FIG. 15 is a perspective view of the tire 9 of the ninth embodiment. As illustrated, in the tire 9 of the ninth embodiment, only the block 40 is different from the tire 8 of the eighth embodiment. Similar to the tire 4 of the fourth embodiment, the block 40 of the tire 9 is formed on the corner 44 on the inner side in the tire width direction K in addition to the inclined wall surface 42 formed on the corner 41 on the outer side in the tire width direction K. An inclined wall surface 43 is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤ幅方向の最外側に位置する周方向溝の放熱性を向上させて、周方向溝によるトレッド部の冷却効果を高くする。 第1周方向溝(20)は、タイヤ幅方向(K)の最外側に位置し、第2周方向溝(21)は、第1周方向溝(20)のタイヤ幅方向(K)の内側に隣接する。第1陸部(15)は、第1周方向溝(20)のタイヤ幅方向(K)の外側に配置され、第2陸部(16)は、第2周方向溝(21)のタイヤ幅方向(K)の内側に配置される。複数の幅方向溝(30)は、タイヤ幅方向(K)に対して傾斜して延び、それぞれ第1周方向溝(20)に開口する第1端部(31)と第2周方向溝(21)に開口する第2端部(32)とを有する。各幅方向溝(30)の第1端部(31)は、各幅方向溝(30)の第2端部(32)よりも気流方向(F)の上流側(G)に位置する。

Description

タイヤ
 本発明は、トレッド部に複数の周方向溝を備えたタイヤに関する。
 車両走行時には、タイヤのトレッド部が発熱して、トレッド部の温度が上昇する。トレッド部の温度はトレッド部の耐久性に影響する主要な因子であり、トレッド部の耐久性を向上するためには、トレッド部の温度上昇に対処する必要がある。特に、トレッド中央部側に比べて、タイヤ幅方向外側のトレッド部では、ベルト(又は、ベルト補強層)の端部に発熱が集中する等して、発熱の影響が大きくなる。
 これに対し、従来のタイヤでは、主に、タイヤ幅方向の最外側に位置する周方向溝の溝底に突起物を形成して、周方向溝の熱伝達率を向上させている。車両走行時には、最外側の周方向溝の放熱により、タイヤ幅方向外側のトレッド部が冷却されて、トレッド部の温度の上昇が抑制される。ところが、突起物の形成に伴い、周方向溝内の形状が複雑になり、周方向溝を形成し難くなる。また、突起物が破損した場合には、周方向溝の放熱性に影響が生じることがある。従って、従来のタイヤに関しては、最外側の周方向溝によるトレッド部の冷却効果をより確実に高くする観点から、改良の余地がある。
 また、従来、ショルダーブロック列に形成したブロック溝により、トレッド部の温度の上昇を抑制するタイヤが知られている(特許文献1参照)。
 ところが、特許文献1に記載された従来のタイヤでは、ブロック溝をブロックの踏面にタイヤ周方向に沿って形成する必要がある。そのため、ブロックの形状やブロックに求められる性能によっては、ブロック溝を形成できないことがある。
特開2010-125998号公報
 本発明は、前記従来の問題に鑑みなされたもので、その目的は、タイヤ幅方向の最外側に位置する周方向溝の放熱性を向上させて、最外側の周方向溝によるトレッド部の冷却効果を高くすることである。
 本発明は、タイヤ幅方向の最外側に位置する第1周方向溝と第1周方向溝のタイヤ幅方向内側に隣接する第2周方向溝とを含む4つ以上の周方向溝を備えたタイヤである。車両走行時に、タイヤ回転方向の反対方向の気流が第1周方向溝と第2周方向溝内に生じる。タイヤは、第1周方向溝のタイヤ幅方向外側に配置された第1陸部と、第2周方向溝のタイヤ幅方向内側に配置された第2陸部と、第1周方向溝と第2周方向溝の間でタイヤ幅方向に対して傾斜して延び、それぞれ第1周方向溝に開口する第1端部と第2周方向溝に開口する第2端部とを有する複数の幅方向溝と、第1周方向溝、第2周方向溝、及び、複数の幅方向溝により、第1周方向溝と第2周方向溝の間に区画された複数のブロックと、を備える。各幅方向溝の第1端部は、各幅方向溝の第2端部よりも気流方向の上流側に位置する。
 本発明によれば、タイヤ幅方向の最外側に位置する周方向溝の放熱性を向上させて、最外側の周方向溝によるトレッド部の冷却効果を高くすることができる。
第1実施形態のタイヤの斜視図である。 第1実施形態のタイヤのトレッドパターンを示す平面図である。 車両走行時の気流について説明するための図である。 第1周方向溝の熱伝達率と第2周方向溝の熱伝達率を示すグラフである。 第2実施形態のタイヤのトレッドパターンを示す平面図である。 第1周方向溝の熱伝達率と第2周方向溝の熱伝達率を示すグラフである。 第3実施形態のタイヤのトレッドパターンを示す平面図である。 第1周方向溝の熱伝達率を示すグラフである。 第4実施形態のタイヤのトレッドパターンを示す平面図である。 第5実施形態のタイヤの斜視図である。 第5実施形態のタイヤに形成されたトレッドパターンの一部を示す斜視図である。 第6実施形態のタイヤの斜視図である。 第7実施形態のタイヤの斜視図である。 第8実施形態のタイヤの斜視図である。 第9実施形態のタイヤの斜視図である。
 本発明のタイヤの一実施形態について、図面を参照して説明する。
 本実施形態のタイヤは、車両用の空気入りタイヤ(例えば、重荷重用タイヤ、乗用車用タイヤ)であり、一般的なタイヤ構成部材により、周知の構造に形成されている。即ち、タイヤは、一対のビード部と、一対のビード部のタイヤ半径外側に位置する一対のサイドウォール部と、路面に接するトレッド部と、トレッド部と一対のサイドウォール部の間に位置する一対のショルダー部を備えている。また、タイヤは、一対のビードコアと、一対のビードコアの間に配置されたカーカスと、カーカスの外周側に配置されたベルトと、所定のトレッドパターンを有するトレッドゴムを備えている。
 (第1実施形態)
 図1は、第1実施形態のタイヤ1の斜視図である。図2は、第1実施形態のタイヤ1のトレッドパターンを示す平面図であり、図1に示すタイヤ1を左回りに90°回転させた状態で、トレッド部11のタイヤ周方向Sの一部を模式的に示している。
 なお、タイヤ1は、車両前進時の回転方向が指定されるタイヤであり、車両前進時にタイヤ回転方向Rに回転する。タイヤ回転方向Rは、タイヤ1のトレッドパターンに対応して指定され、タイヤ1は、タイヤ回転方向Rが適合するように車両に装着される。また、タイヤ赤道面12は、トレッド部11のタイヤ幅方向Kの中央部に位置し、タイヤ1のショルダー部13は、トレッド部11のタイヤ幅方向Kの外側に位置する。
 図示のように、タイヤ1は、トレッド部11に、複数の周方向溝20、21と、複数の陸部15、16、17と、複数の幅方向溝30と、複数のブロック40を備えている。複数の周方向溝20、21は、タイヤ周方向Sに延びる主溝(周方向主溝)であり、それぞれタイヤ周方向Sに沿って連続して形成されている。また、タイヤ1は、第1周方向溝20と第2周方向溝21を含む4つ以上の複数の周方向溝20、21を備えている。第1周方向溝20は、複数の周方向溝20、21の中でタイヤ幅方向Kの最外側に位置し、第2周方向溝21は、第1周方向溝20のタイヤ幅方向Kの内側に隣接する。ここでは、複数の周方向溝20、21は、2つの第1周方向溝20と2つの第2周方向溝21からなり、タイヤ1は、4つの周方向溝20、21を備えている。
 第1周方向溝20は、第2周方向溝21のタイヤ幅方向Kの外側(ショルダー部13側)に配置された外側周方向溝であり、タイヤ赤道面12の両側で、第2周方向溝21とショルダー部13(トレッド端)の間に形成されている。第2周方向溝21は、第1周方向溝20のタイヤ幅方向Kの内側に配置された内側周方向溝であり、タイヤ赤道面12の両側で、第1周方向溝20とタイヤ赤道面12の間に形成されている。タイヤ1は、両ショルダー部13のタイヤ幅方向Kの内側に位置する2つの第1周方向溝20と、タイヤ赤道面12のタイヤ幅方向Kの両側に位置する2つ第2周方向溝21を備えている。一対の第1周方向溝20と第2周方向溝21が、タイヤ赤道面12の両側において、タイヤ赤道面12とショルダー部13の間に配置される。また、第1周方向溝20と第2周方向溝21は、ストレート溝であり、屈曲又は湾曲せずに、タイヤ周方向Sに直線状に延びる。
 複数の陸部15、16、17は、複数の周方向溝20、21によりトレッド部11に区画された凸部であり、周方向溝20、21に沿って、タイヤ周方向Sに延びる。また、複数の陸部15、16、17は、2つの第1陸部15と、1つの第2陸部16と、2つの第3陸部17からなる。第1陸部15は、第1周方向溝20により区画されて、第1周方向溝20のタイヤ幅方向Kの外側に配置されている。第1陸部15は、複数の陸部15、16、17の中でタイヤ幅方向Kの最外側(ショルダー部13側)に配置されたショルダー陸部であり、第3陸部17のタイヤ幅方向Kの外側に位置する。
 第2陸部16は、2つの第2周方向溝21により区画されて、第2周方向溝21のタイヤ幅方向Kの内側に配置されている。第2陸部16は、タイヤ赤道面12を含むトレッド部11の中央領域に配置された中央陸部であり、2つの第2周方向溝21の間(2つの第3陸部17の間)に位置する。タイヤ赤道面12は、第2陸部16の中央部に位置する。第3陸部17は、第1周方向溝20と第2周方向溝21により区画されて、第1周方向溝20と第2周方向溝21の間に配置されている。第3陸部17は、タイヤ赤道面12とショルダー部13の間のトレッド部11の中間領域に配置された中間陸部であり、第1陸部15と第2陸部16の間に位置する。
 第1陸部15と第2陸部16は、タイヤ周方向Sに延びるリブ状陸部である。リブ状陸部は、周方向溝によりリブ状に区画された陸部であり、タイヤ周方向Sに分断されずにタイヤ周方向Sに連続して延びる陸部(連続陸部)に加えて、幅が1.0mm以下の溝又はサイプによりタイヤ周方向Sに分断された陸部を含む。従って、リブ状陸部には、陸部をタイヤ周方向Sに分断しない溝又はサイプが形成されていてもよく、陸部をタイヤ周方向Sに分断する幅が1.0mm以下の溝又はサイプが形成されていてもよい。ここでは、第1陸部15と第2陸部16は、タイヤ周方向Sに連続して延びるリブ状陸部であり、周方向溝20、21のみにより区画される。
 第3陸部17は、複数のブロック40からなるブロック列(断続陸部)であり、タイヤ周方向Sに並列して配置された複数のブロック40と、複数の幅方向溝30を有する。複数の幅方向溝30は、第1周方向溝20と第2周方向溝21の間に形成された横溝(ラグ溝)であり、第1周方向溝20と第2周方向溝21の間で、タイヤ幅方向Kに対して傾斜して延びる。第1周方向溝20、第2周方向溝21、及び、複数の幅方向溝30の溝底面は凹凸部のない平滑面であり、第1周方向溝20、第2周方向溝21、及び、複数の幅方向溝30の深さは同じ深さである。
 複数の幅方向溝30は、タイヤ周方向Sに離して配置されて、第3陸部17をタイヤ周方向Sに分断する。また、複数の幅方向溝30は、それぞれ第1端部31と第2端部32を有し、第1周方向溝20と第2周方向溝21に開口する。第1端部31は、第1周方向溝20に開口する幅方向溝30の一端部(第1開口部)であり、第2端部32は、第2周方向溝21に開口する幅方向溝30の他端部(第2開口部)である。第1周方向溝20、第2周方向溝21、及び、複数の幅方向溝30により、複数のブロック40が第1周方向溝20と第2周方向溝21の間に区画され、各ブロック40がタイヤ半径方向外側からみて所定の多角形状(ここでは、平行四辺形状)に形成される。
 このように、タイヤ1は、第3陸部17に形成された複数のブロック40及び複数の幅方向溝30を備えている。複数のブロック40は、タイヤ周方向Sに順に隣接して配置され、複数の幅方向溝30は、それぞれタイヤ周方向Sに隣接するブロック40の間に位置する。第1周方向溝20は、複数のブロック40のタイヤ幅方向Kの外側の壁面に沿って延び、第2周方向溝21は、複数のブロック40のタイヤ幅方向Kの内側の壁面に沿って延びる。
 タイヤ1は、車両に装着されて、車両の走行(前進)に伴い、タイヤ回転方向Rに回転する。車両の前進による車両走行時(タイヤ回転時)には、所定方向の気流が第1周方向溝20と第2周方向溝21内に生じる。気流は、タイヤ1の回転により生じる相対的な空気の流れ(風)であり、タイヤ回転方向Rの反対方向に生じる。図1、図2に示す矢印Fが、第1周方向溝20と第2周方向溝21内に生じる気流の方向であり、同じ方向の気流が、第1周方向溝20と第2周方向溝21内に生じる。第1周方向溝20と第2周方向溝21内で、空気は、気流方向Fの上流側Gから気流方向Fの下流側Hに向かって流れて、トレッド部11を冷却する。
 第1実施形態のタイヤ1では、第1周方向溝20と第2周方向溝21の間に形成された複数の幅方向溝30により、気流を制御して、第1周方向溝20と第2周方向溝21の放熱性を調整する。これにより、タイヤ幅方向Kの最外側に位置する第1周方向溝20の放熱性を向上させている。
 具体的には、各幅方向溝30の第1端部31は、各幅方向溝30の第2端部32よりも気流方向Fの上流側Gに位置する。第1周方向溝20と第2周方向溝21の間に位置する全ての幅方向溝30において、第1端部31のタイヤ周方向Sの位置は、第2端部32のタイヤ周方向Sの位置よりも気流方向Fの上流側Gに位置する。また、複数の幅方向溝30の各幅方向溝30は、タイヤ幅方向Kに対して、10~60°の範囲内の角度Eで傾斜する。幅方向溝30は、気流方向Fの下流側Hに向かって、タイヤ周方向Sに対してタイヤ幅方向Kの内側に傾斜し、屈曲又は湾曲せずに、タイヤ幅方向Kに対して所定の角度Eで傾斜する方向に直線状に延びる。幅方向溝30が第2周方向溝21に接続する位置(開口位置)は、幅方向溝30が第1周方向溝20に接続する位置よりも気流方向Fの下流側Hに設けられる。
 図3は、車両走行時の気流Qについて説明するための図であり、図3Aは、幅方向溝30の第1端部31の周辺における気流Qを矢印で示している。また、図3Bは、幅方向溝30をタイヤ幅方向Kに平行にしたときの第1端部31の周辺における気流Qを矢印で示している。
 図示のように、ブロック40は、気流方向Fの下流側Hの幅方向溝30が第1周方向溝20に開口する位置に形成された角部41を有する。ブロック40の角部41は、第1周方向溝20内のブロック40の壁面と幅方向溝30内のブロック40の壁面とが交わる位置に形成されている。ブロック40の壁面は、角部41を境界として、異なる方向に向かって形成されている。
 幅方向溝30がタイヤ幅方向Kに平行なときには(図3B参照)、第1周方向溝20内の気流Qは、ブロック40の角部41でブロック40の壁面から離れ易く、空気は、主に、第1周方向溝20内を下流側Hに向かって流れる。その結果、空気が第1端部31から幅方向溝30の内部に流入し難い。これに対し、幅方向溝30がタイヤ幅方向Kに対して傾斜しているときには(図3A参照)、第1周方向溝20内の空気は、コアンダ効果により、ブロック40の角部41でブロック40の壁面に沿って流れ易くなる。その結果、気流Qがブロック40の壁面に沿い、空気が第1端部31から幅方向溝30の内部に流入する。同時に、ブロック40の角部41の周辺で空気の圧力が低下し、第1周方向溝20内の気流Qの速度が速くなる。これに伴い、第1周方向溝20の溝底における熱伝達率が高くなり、第1周方向溝20による放熱が増加する。また、第1周方向溝20内の気流Qにより、トレッド部11の冷却が促進される。
 図4は、第1周方向溝20の熱伝達率M1と第2周方向溝21の熱伝達率M2を示すグラフであり、タイヤ幅方向Kに対する幅方向溝30の角度Eと熱伝達率M1、M2の関係を示している。熱伝達率M1は、第1周方向溝20の溝底における単位面積あたりの平均熱伝達率であり、熱伝達率M2は、第2周方向溝21の溝底における単位面積あたりの平均熱伝達率である。
 図示のように、幅方向溝30をタイヤ幅方向Kに対して傾斜させることで、第1周方向溝20の熱伝達率M1は、第2周方向溝21の熱伝達率M2よりも高くなる。また、幅方向溝30の傾斜により、第1周方向溝20の熱伝達率M1は、幅方向溝30の角度Eが0°のときの熱伝達率M1に比べて高くなる。
 幅方向溝30の角度Eが45°であるときに、第1周方向溝20の熱伝達率M1は最も高くなる。これに対し、幅方向溝30の角度Eが小さくなるほど、ブロック40の角部41におけるコアンダ効果が低くなり、第1周方向溝20の熱伝達率M1が相対的に低くなる。また、幅方向溝30に関するネガティブ比を一定にする条件の下では、幅方向溝30の角度Eを変化させても、幅方向溝30の溝底の面積を一定に維持する必要がある。そのため、幅方向溝30の角度Eが大きくなるほど、幅方向溝30の溝幅が狭くなる。これに伴い、幅方向溝30への空気の流入抵抗が大きくなり、第1周方向溝20の熱伝達率M1が相対的に低くなる。幅方向溝30の角度Eが10°以上の角度であるときには、第1周方向溝20の熱伝達率M1は、幅方向溝30の角度Eが0°のときの熱伝達率M1に比べて20%以上高くなる。
 以上説明したように、第1実施形態のタイヤ1では、車両走行時の気流Qを制御して、第1周方向溝20と第2周方向溝21の放熱性を調整することができる。また、タイヤ幅方向Kの最外側に位置する第1周方向溝20内で、気流Qの速度を速くして、放熱を促進することができる。従って、第1周方向溝20の放熱性を向上させて、第1周方向溝20によるトレッド部11の冷却効果を高くすることができる。これに伴い、タイヤ幅方向Kの外側で、トレッド部11を冷却して、トレッド部11の温度の上昇を抑制することができる。
 第1陸部15と第2陸部16がリブ状陸部であるため、第1周方向溝20と第2周方向溝21から空気が流出するのが抑制され、第1周方向溝20と第2周方向溝21内の気流Qにより、トレッド部11の放熱がより促進される。第1周方向溝20、第2周方向溝21、及び、複数の幅方向溝30の溝底面は平滑面であるため、各溝底での気流Qの乱れが防止されて、気流Qの速度がより速くなる。第1周方向溝20と第2周方向溝21がタイヤ周方向Sに直線状に延びるときには、第1周方向溝20と第2周方向溝21の空気が円滑に流れて、気流Qの速度が更に速くなる。
 幅方向溝30の角度Eが10°よりも小さいときには、ブロック40の角部41で充分なコアンダ効果が得られない虞がある。また、幅方向溝30の角度Eが60°よりも大きいときには、第1周方向溝20内の気流Qの速度に影響が生じる虞がある。これに対し、幅方向溝30の角度Eが10~60°の範囲内の角度であるときには、ブロック40の角部41で充分なコアンダ効果が得られ、第1周方向溝20内の気流Qの速度を確実に速くすることができる。
 なお、第1陸部15と第2陸部16は、リブ状陸部以外の陸部であってもよい。また、第1周方向溝20と第2周方向溝21はタイヤ周方向Sにジグザグ状に延びるジグザグ溝であってもよい。
 次に、第2~第9実施形態のタイヤについて説明する。第2~第9実施形態のタイヤは、トレッドパターンの一部を変更した例であり、第1実施形態のタイヤ1と同様の作用・効果を有する。従って、以下では、既に説明した事項と同じ事項の説明は省略する。また、第2~第9実施形態のタイヤに関して、タイヤ1の構成に相当する構成にはタイヤ1の構成と同じ名称と符号を用い、各構成の詳細な説明は省略する。
 (第2実施形態)
 図5は、第2実施形態のタイヤ2のトレッドパターンを示す平面図であり、タイヤ赤道面12の一方側(図5では、上側)のトレッドパターンを示している。
 図示のように、第2実施形態のタイヤ2では、複数の幅方向溝30の溝幅のみが、第1実施形態のタイヤ1と相違する。各幅方向溝30の溝幅は、タイヤ幅方向Kの内側から外側に向かって次第に広くなる。そのため、幅方向溝30の第1端部31の溝幅W1は、幅方向溝30の第2端部32の溝幅W2よりも広い(W1>W2)。また、幅方向溝30の溝幅は、第1端部31において最も広く、第1端部31から第2端部32に向かって次第に狭くなり、第2端部32において最も狭くなる。
 図6は、第1周方向溝20の熱伝達率M3と第2周方向溝21の熱伝達率M4を示すグラフであり、幅方向溝30の溝幅比率と熱伝達率M3、M4の関係を示している。幅方向溝30の溝幅比率は、第2端部32の溝幅W2に対する第1端部31の溝幅W1の比率((W1/W2)×100)である。
 図示のように、幅方向溝30の溝幅をタイヤ幅方向Kの内側から外側に向かって広くすることで、第1周方向溝20の熱伝達率M3が高くなるとともに、第2周方向溝21の熱伝達率M4も高くなる。また、幅方向溝30の溝幅比率を大きくすると、熱伝達率M3、M4が高くなる。
 第2実施形態のタイヤ2では、第1周方向溝20内の空気が幅方向溝30の第1端部31に流入し易くなり、ブロック40の角部41の周辺で空気の圧力が確実に低下する。そのため、第1周方向溝20内の気流Qの速度がより速くなり、第1周方向溝20の溝底における熱伝達率が高くなる。従って、第1周方向溝20によるトレッド部11の冷却効果を更に高くすることができる。
 (第3実施形態)
 図7は、第3実施形態のタイヤ3のトレッドパターンを示す平面図であり、タイヤ赤道面12の一方側のトレッドパターンを示している。
 図示のように、第3実施形態のタイヤ3では、ブロック40の一部の形状のみが、第1実施形態のタイヤ1と相違する。複数のブロック40の各ブロック40は、第1周方向溝20から幅方向溝30に向かって形成された傾斜壁面42を有する。傾斜壁面42は、ブロック40のタイヤ幅方向Kの外側(第1周方向溝20側)に形成された外側傾斜壁面であり、気流方向Fの下流側Hの幅方向溝30が第1周方向溝20に開口する位置のブロック40の角部41に形成されている。また、ブロック40の傾斜壁面42は、気流方向Fの下流側Hに向かって、タイヤ周方向Sに対してタイヤ幅方向Kの内側に傾斜する。
 図8は、第1周方向溝20の熱伝達率M5、M6を示すグラフであり、傾斜壁面42の傾斜角度と熱伝達率M5、M6の関係を示している。傾斜壁面42の傾斜角度は、タイヤ周方向Sに対する傾斜壁面42の角度である。熱伝達率M5は、幅方向溝30の角度Eが20°のときの第1周方向溝20の熱伝達率であり、熱伝達率M6は、幅方向溝30の角度Eが0°のときの第1周方向溝20の熱伝達率である。
 図示のように、ブロック40に傾斜壁面42を形成することで、第1周方向溝20の熱伝達率M5が高くなる。また、熱伝達率M5は、幅方向溝30の角度Eが0°のときの熱伝達率M6に比べて高くなる。
 第3実施形態のタイヤ3では、傾斜壁面42により、ブロック40の角部41におけるコアンダ効果が高くなり、角部41の周辺で空気の圧力がより低下する。そのため、第1周方向溝20内の気流Qの速度がより速くなり、第1周方向溝20の溝底における熱伝達率が高くなる。従って、第1周方向溝20によるトレッド部11の冷却効果を更に高くすることができる。
 (第4実施形態)
 図9は、第4実施形態のタイヤ4のトレッドパターンを示す平面図であり、タイヤ赤道面12の一方側のトレッドパターンを示している。
 図示のように、第4実施形態のタイヤ4では、ブロック40の一部の形状のみが、第3実施形態のタイヤ3と相違する。複数のブロック40の各ブロック40は、外側傾斜壁面(第1傾斜壁面)である傾斜壁面42に加えて、第2周方向溝21から幅方向溝30に向かって形成された傾斜壁面43を有する。傾斜壁面43は、ブロック40のタイヤ幅方向Kの内側(第2周方向溝21側)に形成された内側傾斜壁面(第2傾斜壁面)であり、気流方向Fの上流側Gの幅方向溝30が第2周方向溝21に開口する位置のブロック40の角部44に形成されている。また、ブロック40の傾斜壁面43は、気流方向Fの下流側Hに向かって、タイヤ周方向Sに対してタイヤ幅方向Kの内側に傾斜する。
 第4実施形態のタイヤ4では、傾斜壁面43により、空気が、幅方向溝30から第2周方向溝21に流入し易くなり、第2周方向溝21内で気流方向Fの下流側Hに円滑に流れる。そのため、第2周方向溝21内の気流Qの速度が速くなり、第2周方向溝21の溝底における熱伝達率が高くなる。従って、第2周方向溝21によるトレッド部11の冷却効果を高くすることができる。
 (第5実施形態)
 図10は、第5実施形態のタイヤ5の斜視図であり、図11は、第5実施形態のタイヤ5に形成されたトレッドパターンの一部を示す斜視図である。
 図示のように、第5実施形態のタイヤ5では、第1陸部15のみが、第1実施形態のタイヤ1と相違する。第1陸部15は、複数のブロック50からなるブロック列(断続陸部)であり、タイヤ周方向Sに並列して配置された複数のブロック50と、タイヤ周方向Sに離して配置された複数のラグ溝51を有する。ラグ溝51は、タイヤ幅方向Kに延び、第1周方向溝20からショルダー部13まで形成されている。複数のブロック50は、タイヤ周方向Sに順に隣接して配置され、複数のラグ溝51は、それぞれタイヤ周方向Sに隣接するブロック50の間に位置する。また、ラグ溝51は、第1周方向溝20のタイヤ幅方向Kの外側に形成されて、第1周方向溝20に開口する。
 タイヤ5は、各ラグ溝51内に形成された隆起部52を備えている。隆起部52は、ラグ溝51の溝底から隆起して、ラグ溝51の両側の溝壁(ブロック50の壁面)を連結する。ここでは、隆起部52は、タイバーであり、ラグ溝51の少なくとも一部は、隆起部52により第1周方向溝20よりも浅くなっている。ラグ溝51の隆起部52により、第1周方向溝20内を流れる空気がラグ溝51を通して流出するのを抑制することができる。その結果、気流Qを第1周方向溝20に集中することができる。また、隆起部52により、ラグ溝51が第1周方向溝20の気流Qに影響するのを抑制することができる。
 (第6実施形態)
 図12は、第6実施形態のタイヤ6の斜視図である。
 図示のように、第6実施形態のタイヤ6では、第2陸部16のみが、第5実施形態のタイヤ5と相違する。タイヤ6は、第2陸部16に形成されたサイプ22を備えている。
 (第7実施形態)
 図13は、第7実施形態のタイヤ7の斜視図である。
 図示のように、第7実施形態のタイヤ7では、第1周方向溝20と第2周方向溝21のみが、第6実施形態のタイヤ6と相違する。第1周方向溝20と第2周方向溝21は、タイヤ周方向Sにジグザグ状に延びるジグザグ溝である。
 (第8実施形態)
 図14は、第8実施形態のタイヤ8の斜視図である。
 図示のように、第8実施形態のタイヤ8では、ブロック40のみが、第6実施形態のタイヤ6と相違する。第3実施形態のタイヤ3と同様に、タイヤ8のブロック40は、角部41に形成された傾斜壁面42を有する。
 (第9実施形態)
 図15は、第9実施形態のタイヤ9の斜視図である。
 図示のように、第9実施形態のタイヤ9では、ブロック40のみが、第8実施形態のタイヤ8と相違する。第4実施形態のタイヤ4と同様に、タイヤ9のブロック40は、タイヤ幅方向Kの外側の角部41に形成された傾斜壁面42に加えて、タイヤ幅方向Kの内側の角部44に形成された傾斜壁面43を有する。
 1~9・・・タイヤ、11・・・トレッド部、12・・・タイヤ赤道面、13・・・ショルダー部、15・・・第1陸部、16・・・第2陸部、17・・・第3陸部、20・・・第1周方向溝、21・・・第2周方向溝、22・・・サイプ、30・・・幅方向溝、31・・・第1端部、32・・・第2端部、40・・・ブロック、41・・・角部、42・・・傾斜壁面、43・・・傾斜壁面、44・・・角部、50・・・ブロック、51・・・ラグ溝、52・・・隆起部、F・・・気流方向、G・・・上流側、H・・・下流側、K・・・タイヤ幅方向、Q・・・気流、R・・・タイヤ回転方向、S・・・タイヤ周方向。

Claims (7)

  1.  タイヤ幅方向の最外側に位置する第1周方向溝と第1周方向溝のタイヤ幅方向内側に隣接する第2周方向溝とを含む4つ以上の周方向溝を備え、
     車両走行時に、タイヤ回転方向の反対方向の気流が第1周方向溝と第2周方向溝内に生じるタイヤであって、
     第1周方向溝のタイヤ幅方向外側に配置された第1陸部と、
     第2周方向溝のタイヤ幅方向内側に配置された第2陸部と、
     第1周方向溝と第2周方向溝の間でタイヤ幅方向に対して傾斜して延び、それぞれ第1周方向溝に開口する第1端部と第2周方向溝に開口する第2端部とを有する複数の幅方向溝と、
     第1周方向溝、第2周方向溝、及び、複数の幅方向溝により、第1周方向溝と第2周方向溝の間に区画された複数のブロックと、を備え、
     各幅方向溝の第1端部は、各幅方向溝の第2端部よりも気流方向の上流側に位置するタイヤ。
  2.  請求項1に記載されたタイヤにおいて、
     第1陸部と第2陸部は、タイヤ周方向に延びるリブ状陸部であるタイヤ。
  3.  請求項1又は2に記載されたタイヤにおいて、
     第1周方向溝、第2周方向溝、及び、複数の幅方向溝の溝底面は、平滑面であるタイヤ。
  4.  請求項1ないし3のいずれかに記載されたタイヤにおいて、
     第1周方向溝と第2周方向溝は、タイヤ周方向に直線状に延びるタイヤ。
  5.  請求項1ないし4のいずれかに記載されたタイヤにおいて、
     各幅方向溝は、タイヤ幅方向に対して、10~60°の範囲内の角度で傾斜するタイヤ。
  6.  請求項1ないし5のいずれかに記載されたタイヤにおいて、
     各幅方向溝の溝幅は、タイヤ幅方向の内側から外側に向かって広くなるタイヤ。
  7.  請求項1ないし6のいずれかに記載されたタイヤにおいて、
     各ブロックは、気流方向の下流側の幅方向溝が第1周方向溝に開口する位置の角部に形成され、気流方向の下流側に向かって、タイヤ周方向に対してタイヤ幅方向内側に傾斜する傾斜壁面を有するタイヤ。
PCT/JP2016/064302 2015-06-16 2016-05-13 タイヤ WO2016203880A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/575,612 US20180281525A1 (en) 2015-06-16 2016-05-13 Tire
EP16811355.3A EP3312024B1 (en) 2015-06-16 2016-05-13 Tire for a vehicle
CN201680034561.0A CN107735268B (zh) 2015-06-16 2016-05-13 轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121057A JP6534300B2 (ja) 2015-06-16 2015-06-16 タイヤ
JP2015-121057 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016203880A1 true WO2016203880A1 (ja) 2016-12-22

Family

ID=57545144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064302 WO2016203880A1 (ja) 2015-06-16 2016-05-13 タイヤ

Country Status (5)

Country Link
US (1) US20180281525A1 (ja)
EP (1) EP3312024B1 (ja)
JP (1) JP6534300B2 (ja)
CN (1) CN107735268B (ja)
WO (1) WO2016203880A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254313A (ja) * 1992-03-16 1993-10-05 Bridgestone Corp 空気入りタイヤ
JPH09156316A (ja) * 1995-12-04 1997-06-17 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2000094907A (ja) * 1998-09-21 2000-04-04 Toyo Tire & Rubber Co Ltd 空気入りラジアルタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357462A3 (en) * 1988-09-02 1990-12-05 Bridgestone Corporation Pneumatic tires
JPH03279005A (ja) * 1990-03-28 1991-12-10 Bridgestone Corp 空気入りラジアルタイヤ
US5733393A (en) * 1996-01-17 1998-03-31 The Goodyear Tire & Rubber Company Tire having good diverse properties
JP4114713B2 (ja) * 2001-11-30 2008-07-09 横浜ゴム株式会社 空気入りタイヤ
JP4262286B1 (ja) * 2007-10-23 2009-05-13 住友ゴム工業株式会社 空気入りタイヤ
JP5803859B2 (ja) * 2012-09-06 2015-11-04 横浜ゴム株式会社 空気入りタイヤ
JP6092748B2 (ja) * 2013-10-11 2017-03-08 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254313A (ja) * 1992-03-16 1993-10-05 Bridgestone Corp 空気入りタイヤ
JPH09156316A (ja) * 1995-12-04 1997-06-17 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2000094907A (ja) * 1998-09-21 2000-04-04 Toyo Tire & Rubber Co Ltd 空気入りラジアルタイヤ

Also Published As

Publication number Publication date
EP3312024B1 (en) 2020-04-01
CN107735268A (zh) 2018-02-23
JP2017001646A (ja) 2017-01-05
US20180281525A1 (en) 2018-10-04
JP6534300B2 (ja) 2019-06-26
EP3312024A4 (en) 2018-06-06
EP3312024A1 (en) 2018-04-25
CN107735268B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6111808B2 (ja) 空気入りタイヤ
US20160023518A1 (en) Pneumatic tire
JP2015209169A (ja) 空気入りタイヤ
WO2014185198A1 (ja) 空気入りタイヤ
WO2014142346A1 (ja) 空気入りタイヤ
JP6611373B2 (ja) タイヤ
US11827060B2 (en) Heavy load tire
US20170197472A1 (en) Tire
JP5557821B2 (ja) 空気入りタイヤ
JP6569591B2 (ja) 空気入りタイヤ
WO2016203880A1 (ja) タイヤ
US20190232721A1 (en) Tire
CN113924216B (zh) 充气轮胎
JP6735131B2 (ja) タイヤ
JP6717802B2 (ja) タイヤ
JP6236857B2 (ja) 空気入りタイヤ
JP6717803B2 (ja) タイヤ
WO2014167859A1 (ja) 空気入りタイヤ
US11331954B2 (en) Heavy duty tire
JP6161947B2 (ja) タイヤ
JP7074586B2 (ja) 空気入りタイヤ
WO2013088717A1 (ja) 空気入りタイヤ
WO2019116611A1 (ja) 重荷重用タイヤ
JP6029957B2 (ja) 空気入りタイヤ
JP2014213830A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575612

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE