WO2016199385A1 - Metal material aggregation-promoting layer, and water treatment device that uses same - Google Patents

Metal material aggregation-promoting layer, and water treatment device that uses same Download PDF

Info

Publication number
WO2016199385A1
WO2016199385A1 PCT/JP2016/002695 JP2016002695W WO2016199385A1 WO 2016199385 A1 WO2016199385 A1 WO 2016199385A1 JP 2016002695 W JP2016002695 W JP 2016002695W WO 2016199385 A1 WO2016199385 A1 WO 2016199385A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
water
treated
iron
particles
Prior art date
Application number
PCT/JP2016/002695
Other languages
French (fr)
Japanese (ja)
Inventor
哲章 平山
真二郎 野間
廣田 達哉
太輔 五百崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015116729 priority Critical
Priority to JP2015-116729 priority
Priority to JP2015176427 priority
Priority to JP2015-176427 priority
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016199385A1 publication Critical patent/WO2016199385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Abstract

The metal material aggregation-promoting layer (202) has a substrate (201), porous carrier layer (202) provided to the substrate, and adsorbent particles carried on the porous carrier layer and containing at least one type of trivalent ferrous ion compound selected from the group consisting of Fe2O3, Fe3O4, Fe(OH)3, and FeOOH. The water treatment device (100) has: treatment water flow channels (11, 12, 13) through which treatment water (W) containing at least one metal-related substance selected from the group consisting of metal ions, metal particles, metal oxide particles, and metal hydroxide particles; an oxidizer feed unit (4) for feeding an oxidizer (O) to the treatment water; and an aggregation-promoting unit (2) that has a metal material aggregation-promoting layer and that promotes the aggregation of metal-related substances by causing the metal-related substances contained in the treatment water to be adsorbed to the adsorption particles by the effect of the oxidizer.

Description

金属材料凝集促進層、及びそれを用いた水処理装置Metal material aggregation promoting layer and water treatment apparatus using the same
 本発明は、被処理水を浄化するための金属材料凝集促進層、及びそれを用いた水処理装置に関する。 The present invention relates to a metal material aggregation promoting layer for purifying water to be treated, and a water treatment apparatus using the same.
 従来から、被処理水を浄化するための水処理装置の開発が進められている。水処理装置に関しては、例えば、次の特許文献1に開示されているものが挙げられる。 Conventionally, development of a water treatment apparatus for purifying treated water has been promoted. As for the water treatment apparatus, for example, the one disclosed in the following Patent Document 1 can be mentioned.
特開2007-99612号公報JP 2007-99612 A
 特許文献1に開示されているような従来の水処理装置は、一般に、公共の水処理施設で水の浄化を行うことが前提とされている地域で使用することが想定されている。 The conventional water treatment apparatus as disclosed in Patent Document 1 is generally assumed to be used in an area where it is assumed that water purification is performed in a public water treatment facility.
 一方、社会基盤の整備が進んでいない新興国等においては、公共の水処理施設を有していない地域も多く存在する。このような地域においては、各家庭に水処理装置を設置することにより、水を浄化したいというニーズがある。特に、被処理水中に含まれている金属イオンなどの金属関連物質を、家庭に設置された水処理装置によって除去したいというニーズがある。ただ、家庭の水需要に見合った処理時間で金属関連物質を被処理水から除去するためには、従来の水処理装置の原理によれば、大型の貯留槽を設ける必要性が生じてしまう。 On the other hand, in emerging countries where social infrastructure has not been developed, there are many areas that do not have public water treatment facilities. In such an area, there is a need to purify water by installing a water treatment device in each household. In particular, there is a need to remove metal-related substances such as metal ions contained in the water to be treated by a water treatment device installed in the home. However, in order to remove the metal-related substances from the water to be treated in a treatment time corresponding to household water demand, it becomes necessary to provide a large storage tank according to the principle of the conventional water treatment apparatus.
 しかしながら、一般家庭においては、大型の水処理装置を設置するために適した大きさのスペースを有していない場合が多い。そのため、前述のニーズに応えるためには、大型の貯留槽を設けることなく、被処理水中に含まれる金属関連物質を必要とされる程度まで十分に除去することが可能な水処理装置が必要になる。したがって、小さなスペースで被処理水中に含まれる金属関連物質を効率的に除去することができる水処理装置が求められている。 However, in general households, there are many cases where a space of a size suitable for installing a large water treatment apparatus is not provided. Therefore, in order to meet the above-mentioned needs, a water treatment device that can sufficiently remove metal-related substances contained in the water to be treated to a required level without providing a large storage tank is required. Become. Therefore, there is a need for a water treatment apparatus that can efficiently remove metal-related substances contained in water to be treated in a small space.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、金属イオン、金属粒子、金属酸化物粒子、及び金属水酸化物粒子などの金属関連物質の除去を効率的に行うことが可能な金属材料凝集促進層、及びそれを用いた水処理装置を提供することである。 The present invention has been made in view of such problems of the conventional technology. An object of the present invention is to provide a metal material aggregation promoting layer capable of efficiently removing metal-related substances such as metal ions, metal particles, metal oxide particles, and metal hydroxide particles, and It is to provide a used water treatment device.
 上記課題を解決するために、本発明の第一の態様に係る金属材料凝集促進層は、基材と、基材の表面に設けられた多孔質担体層とを有する。さらに金属材料凝集促進層は、多孔質担体層に担持され、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含む吸着粒子を有する。 In order to solve the above problems, the metal material aggregation promoting layer according to the first aspect of the present invention includes a base material and a porous carrier layer provided on the surface of the base material. Furthermore, the metal material aggregation promoting layer is supported on the porous carrier layer and includes at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH. Has adsorbed particles.
 本発明の第二の態様に係る水処理装置は、金属イオン、金属粒子、金属酸化物粒子及び金属水酸化物粒子からなる群より選ばれた少なくとも一つの金属関連物質を含む被処理水が流れる被処理水流路と、被処理水に酸化剤を供給する酸化剤供給部とを有する。さらに水処理装置は、第一の態様に係る金属材料凝集促進層を有し、酸化剤の作用によって被処理水に含まれる金属関連物質を吸着粒子に吸着させることにより、金属関連物質の凝集を促進させる凝集促進部を有する。 In the water treatment apparatus according to the second aspect of the present invention, treated water containing at least one metal-related substance selected from the group consisting of metal ions, metal particles, metal oxide particles, and metal hydroxide particles flows. It has a to-be-treated water flow path and an oxidant supply unit for supplying an oxidant to the to-be-treated water. Further, the water treatment apparatus has the metal material aggregation promoting layer according to the first aspect, and adsorbs the metal-related substance contained in the water to be treated to the adsorbed particles by the action of the oxidizing agent, thereby aggregating the metal-related substance. It has an aggregation promoting part to promote.
図1は、本発明の実施形態に係る水処理装置の全体構成を説明するための模式図である。Drawing 1 is a mimetic diagram for explaining the whole water treatment equipment composition concerning an embodiment of the present invention. 図2は、本発明の実施形態に係る水処理装置における水処理の原理を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining the principle of water treatment in the water treatment apparatus according to the embodiment of the present invention. 図3は、本発明の実施形態に係る金属材料凝集促進層の構造を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the structure of the metal material aggregation promoting layer according to the embodiment of the present invention. 図4は、本発明の実施形態に係る水処理装置の凝集促進部において、酸化剤の酸化作用によって、三価の鉄イオンが、多孔質担体に担持された鉄酸化物又は鉄水酸化物に吸着されることを説明するための模式図である。FIG. 4 shows that in the aggregation promoting part of the water treatment apparatus according to the embodiment of the present invention, trivalent iron ions are converted into iron oxide or iron hydroxide supported on the porous carrier by the oxidizing action of the oxidizing agent. It is a schematic diagram for demonstrating being adsorbed. 図5は、本発明の実施形態に係る他の例の水処理装置の全体構成を説明するための模式図である。Drawing 5 is a mimetic diagram for explaining the whole water treatment apparatus composition of other examples concerning the embodiment of the present invention. 図6は、本発明の実施形態1に係る水処理装置の全体構造を説明するための模式図である。FIG. 6 is a schematic diagram for explaining the overall structure of the water treatment apparatus according to Embodiment 1 of the present invention. 図7は、本発明の実施形態1に係る水処理装置の酸化剤供給部及び混合部の構造を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining the structures of the oxidant supply unit and the mixing unit of the water treatment apparatus according to Embodiment 1 of the present invention. 図8は、本発明の実施形態2に係る水処理装置の全体構造を説明するための模式図であって、被処理水が順方向に流れることを示す図である。FIG. 8 is a schematic diagram for explaining the overall structure of the water treatment apparatus according to Embodiment 2 of the present invention, and is a view showing that the water to be treated flows in the forward direction. 図9は、本発明の実施形態2に係る水処理装置の全体構造を説明するための模式図であって、被処理水が逆方向に流れることを示す図である。FIG. 9 is a schematic diagram for explaining the entire structure of the water treatment apparatus according to Embodiment 2 of the present invention, and is a diagram showing that the water to be treated flows in the reverse direction. 図10は、本発明の実施形態3に係る水処理装置の全体構造を説明するための模式図である。FIG. 10 is a schematic diagram for explaining the overall structure of a water treatment device according to Embodiment 3 of the present invention. 図11は、実施例における水処理装置の全体構成を説明するための模式図である。Drawing 11 is a mimetic diagram for explaining the whole water treatment device composition in an example. 図12は、実施例2における、処理水に残存する鉄の濃度と被処理水に投入した塩素濃度との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the concentration of iron remaining in treated water and the concentration of chlorine introduced into treated water in Example 2. 図13は、実施例2における、処理水に残存する遊離塩素の濃度と被処理水に投入した塩素濃度との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the concentration of free chlorine remaining in the treated water and the concentration of chlorine added to the treated water in Example 2. 図14は、実施例3に関し、被処理水の流量が0.2L/min、0.5L/min、0.75L/min、1L/min、1.5L/min、2mL/minの場合における、処理水に残存する鉄の濃度と鉄化合物を担持した活性炭量との関係を示すグラフである。FIG. 14 relates to Example 3 when the flow rate of the water to be treated is 0.2 L / min, 0.5 L / min, 0.75 L / min, 1 L / min, 1.5 L / min, 2 mL / min. It is a graph which shows the relationship between the density | concentration of the iron which remains in a treated water, and the amount of activated carbon which carry | supported the iron compound.
 以下、図面を参照しながら、本実施形態の水処理装置100を説明する。以下の説明においては、同一の機能を有する部位には同一の参照番号が付されており、その同一の機能の説明は、特に必要がなければ繰り返さない。 Hereinafter, the water treatment apparatus 100 of the present embodiment will be described with reference to the drawings. In the following description, portions having the same function are denoted by the same reference numerals, and description of the same function will not be repeated unless particularly necessary.
 以下の実施形態の説明においては、金属関連物質という用語が用いられる。金属関連物質は、金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHからなる群より選ばれた1又は2以上の物質を意味する。また、被処理水Wは、金属関連物質である金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHのうちの少なくともいずれか1つを含むものとする。 In the following description of the embodiment, the term metal-related substance is used. The metal-related substance means one or more substances selected from the group consisting of metal ions M + , metal particles M, metal oxide particles MO, and metal hydroxide particles MOH. Moreover, the to-be-processed water W shall contain at least any one of the metal ion M <+> which is a metal related substance, the metal particle M, the metal oxide particle MO, and the metal hydroxide particle MOH.
 また、金属関連物質である金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHのいずれもが、多孔質担体に担持されている金属酸化物粒子及び金属水酸化物粒子の少なくともいずれか1つに吸着される。そのため、本明細書においては、金属関連物質を吸着する機能を有する金属酸化物粒子及び金属水酸化物粒子を吸着粒子と呼ぶ。 In addition, metal ions M + , metal particles M, metal oxide particles MO, and metal hydroxide particles MOH, which are metal-related substances, are all supported on a porous carrier. Adsorbed to at least one of the object particles. Therefore, in this specification, metal oxide particles and metal hydroxide particles having a function of adsorbing metal-related substances are referred to as adsorption particles.
 図1に示すように、本実施形態の水処理装置100は、被処理水Wが流れる被処理水流路11,12,13を備えている。被処理水流路11と被処理水流路12との間には、混合部1が接続されている。被処理水流路12と被処理水流路13との間には、凝集促進部2が接続されている。混合部1には、酸化剤供給部4から酸化剤Oが供給される。凝集促進部2から被処理水流路13へ流れ出た被処理水Wは、フィルタ部3によってろ過され、供給流路14を経由して、処理済みの水として水栓等に至る。 As shown in FIG. 1, the water treatment apparatus 100 of the present embodiment includes treated water flow paths 11, 12, and 13 through which treated water W flows. The mixing unit 1 is connected between the treated water channel 11 and the treated water channel 12. The aggregation promoting unit 2 is connected between the treated water channel 12 and the treated water channel 13. The mixing unit 1 is supplied with the oxidizing agent O from the oxidizing agent supply unit 4. The treated water W that has flowed out from the aggregation promoting unit 2 to the treated water channel 13 is filtered by the filter unit 3 and reaches the faucet or the like as treated water via the supply channel 14.
 図2に示すように、水処理装置100においては、金属関連物質を含む被処理水Wが、被処理水流路11から混合部1へ流れ込む。つまり、金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHを含む被処理水Wが、被処理水流路11から混合部1へ流れ込む。なお、被処理水Wに含まれる金属関連物質において、金属イオンMは、例えば、二価の鉄イオン(Fe2+)及び三価の鉄イオン(Fe3+)である。金属粒子Mは、例えば、鉄(Fe)の粒子である。金属酸化物粒子MOは、例えば、鉄酸化物(FeO,Fe,Fe)の粒子である。金属水酸化物粒子MOHは、鉄水酸化物(Fe(OH),Fe(OH),FeO(OH))の粒子である。 As shown in FIG. 2, in the water treatment apparatus 100, the water to be treated W containing a metal-related substance flows into the mixing unit 1 from the water flow path 11 to be treated. That is, the water to be treated W including the metal ions M + , the metal particles M, the metal oxide particles MO, and the metal hydroxide particles MOH flows into the mixing unit 1 from the water to be treated flow path 11. In the metal-related substance contained in the water to be treated W, the metal ions M + are, for example, divalent iron ions (Fe 2+ ) and trivalent iron ions (Fe 3+ ). The metal particles M are, for example, iron (Fe) particles. The metal oxide particles MO are, for example, iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ) particles. The metal hydroxide particles MOH are particles of iron hydroxide (Fe (OH) 2 , Fe (OH) 3 , FeO (OH)).
 酸化剤供給部4は、酸化剤Oを混合部1へ供給する。混合部1は、被処理水流路11を流れる被処理水Wと酸化剤供給部4から供給された酸化剤Oとを混合するように構成されている。混合部1から流れ出た被処理水Wは、被処理水流路12を経由して凝集促進部2へ流れ込む。 The oxidant supply unit 4 supplies the oxidant O to the mixing unit 1. The mixing unit 1 is configured to mix the water to be treated W flowing through the water channel 11 to be treated and the oxidant O supplied from the oxidant supply unit 4. The treated water W flowing out from the mixing unit 1 flows into the aggregation promoting unit 2 via the treated water flow path 12.
 酸化剤Oは、被処理水W中において、金属関連物質に対し酸化作用を生じさせる。具体的には、金属関連物質が二価の鉄イオンの場合には、三価の鉄イオンに酸化させる作用を有する。このような酸化剤Oは、オゾン又は塩素を含むことが好ましい。オゾン及び塩素は被処理水Wに容易に添加でき、金属関連物質を効率的に酸化させるため、好ましく用いることができる。 The oxidizing agent O causes an oxidizing action on the metal-related substance in the water to be treated W. Specifically, when the metal-related substance is a divalent iron ion, it has an action of oxidizing to a trivalent iron ion. Such an oxidizing agent O preferably contains ozone or chlorine. Ozone and chlorine can be easily used because they can be easily added to the water to be treated W and efficiently oxidize metal-related substances.
 酸化剤Oとしては塩素系薬剤が好ましく、特に被処理水Wの内部で次亜塩素酸が生成するものが好ましい。酸化剤Oとしては、次亜塩素酸ナトリウム、次亜塩素酸カルシウム及び塩素化イソシアヌル酸からなる群より選ばれる少なくとも一つを用いることができる。次亜塩素酸カルシウムとしては、さらし粉(有効塩素30%)及び高度さらし粉(有効塩素70%))の少なくとも一つを用いることができる。塩素化イソシアヌル酸としては、トリクロロイソシアヌル酸ナトリウム、トリクロロイソシアヌル酸カリウム、ジクロロイソシアヌル酸ナトリウム、及びジクロロイソシアヌル酸カリウムからなる群より選ばれる少なくとも一つを用いることができる。この中でも、次亜塩素酸ナトリウムは液体であり、定量ポンプによる注入方式を用いて被処理水Wに定量的に添加できるため、特に好ましく用いることができる。また、無機系の高度さらし粉は被処理水Wに対する溶解度が非常に高いため、高い酸化作用を発揮することができる。 As the oxidizing agent O, a chlorine-based chemical is preferable, and one in which hypochlorous acid is generated inside the water to be treated W is particularly preferable. As the oxidizing agent O, at least one selected from the group consisting of sodium hypochlorite, calcium hypochlorite and chlorinated isocyanuric acid can be used. As calcium hypochlorite, at least one of bleached powder (effective chlorine 30%) and highly bleached powder (effective chlorine 70%) can be used. As the chlorinated isocyanuric acid, at least one selected from the group consisting of sodium trichloroisocyanurate, potassium trichloroisocyanurate, sodium dichloroisocyanurate, and potassium dichloroisocyanurate can be used. Among these, sodium hypochlorite is a liquid and can be particularly preferably used because it can be quantitatively added to the water to be treated W by using an injection method using a metering pump. Moreover, since the inorganic advanced bleaching powder has very high solubility in the water to be treated W, it can exhibit a high oxidizing action.
 図3に示すように、凝集促進部2は金属材料凝集促進層200を備え、金属材料凝集促進層200には、被処理水流路12を経由して酸化剤Oが添加された被処理水Wが流れ込む。そして、金属材料凝集促進層200は、基材201と、基材201の内部に設けられた多孔質担体層202とを備える。 As shown in FIG. 3, the aggregation promoting unit 2 includes a metal material aggregation promoting layer 200, and the metal material aggregation promoting layer 200 is treated water W to which an oxidant O is added via the treated water channel 12. Flows in. The metal material aggregation promoting layer 200 includes a base material 201 and a porous carrier layer 202 provided inside the base material 201.
 基材201は、被処理水流路12から流れ込んだ被処理水Wが多孔質担体層202を透過し、被処理水流路13から流れ出るように、多孔質担体層202を保持する。基材201としては、例えば、内部に多孔質担体層202を保持できる空間を有する筒体や箱体を用いることができる。また、基材201としては、表面に多孔質担体層202を保持できる枠体を用いることができる。なお、図3に示す凝集促進部2は、金属材料凝集促進層200における基材201の上面に被処理水流路12が接続され、基材201の下面に被処理水流路13が接続されている。そして、基材201の内部に保持され、多孔質担体層202を構成する多孔質担体Cが被処理水流路13に流れ出ないように、網203を設けている。 The base material 201 holds the porous carrier layer 202 so that the water W to be treated flowing from the water channel 12 to be treated permeates the porous carrier layer 202 and flows out from the water channel 13 to be treated. As the base material 201, for example, a cylinder or a box having a space capable of holding the porous carrier layer 202 can be used. Moreover, as the base material 201, a frame that can hold the porous carrier layer 202 on the surface can be used. In the aggregation promoting unit 2 shown in FIG. 3, the treated water flow path 12 is connected to the upper surface of the base material 201 in the metal material aggregation promoting layer 200, and the treated water flow path 13 is connected to the lower surface of the base material 201. . And the net | network 203 is provided so that the porous support | carrier C which is hold | maintained inside the base material 201 and comprises the porous support | carrier layer 202 may not flow into the to-be-processed water flow path 13. FIG.
 多孔質担体層202は、表面に吸着粒子Aを担持する多孔質担体Cを含んでいる。多孔質担体Cは、活性炭、シリカ、セラミックス及びゼオライトからなる群より選ばれる少なくとも一つを用いることができる。多孔質担体Cは、酸化剤Oを含む被処理水Wの流速を一定以上に維持する開口率を有している。また、多孔質担体Cは、金属関連物質M,M,MO,MOHの除去に必要な吸着粒子Aを担持するために十分な表面積及び吸着性を有している。 The porous carrier layer 202 includes a porous carrier C carrying adsorbed particles A on the surface. As the porous carrier C, at least one selected from the group consisting of activated carbon, silica, ceramics, and zeolite can be used. The porous carrier C has an opening ratio that maintains the flow rate of the water to be treated W containing the oxidizing agent O at a certain level or higher. Further, the porous carrier C has a surface area and adsorbability sufficient to support the adsorbed particles A necessary for removing the metal-related substances M + , M, MO, and MOH.
 吸着粒子Aは、金属酸化物粒子及び金属水酸化物粒子の少なくともいずれか一方を含む。具体的には、吸着粒子Aは、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含む。 The adsorbed particles A include at least one of metal oxide particles and metal hydroxide particles. Specifically, the adsorbed particles A contain at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH.
 凝集促進部2は、被処理水流路12から酸化剤Oを含む被処理水Wを受け入れる。凝集促進部2は、酸化剤Oの作用によって被処理水Wに含まれる金属関連物質を吸着粒子Aへ吸着させる。それにより、凝集促進部2は、多孔質担体Cの表面で、金属関連物質に由来する金属酸化物粒子MO及び金属水酸化物粒子MOHからなる混合粒子の凝集を促進させる。 The aggregation promoting unit 2 receives the water to be treated W containing the oxidant O from the water channel to be treated 12. The aggregation promoting unit 2 adsorbs the metal-related substance contained in the water to be treated W to the adsorbed particles A by the action of the oxidizing agent O. Thereby, the aggregation promoting part 2 promotes the aggregation of the mixed particles composed of the metal oxide particles MO and the metal hydroxide particles MOH derived from the metal-related substance on the surface of the porous carrier C.
 具体的には、図2に示すように、被処理水Wに含まれる金属関連物質が鉄イオン、鉄粒子、鉄酸化物、及び鉄水酸化物である場合、酸化剤Oの酸化作用によって鉄イオンは三価の鉄イオン(Fe3+)に酸化される。そして、三価の鉄イオン、鉄粒子、鉄酸化物、及び鉄水酸化物は、吸着粒子Aに含まれる三価の鉄イオン化合物が核となり、吸着粒子Aの表面に吸着する。その結果、吸着粒子Aの表面で、金属関連物質は、直径φが1μm以上の鉄酸化物の粒子及び鉄水酸化物等からなる凝集物MDAへ成長する。なお、三価の鉄イオンは、吸着粒子Aに吸着されるが、被処理水Wに含まれる二価の鉄イオン(Fe2+)は、多孔質担体Cを構成する活性炭の表面に吸着され、凝集物MDAへ成長する。 Specifically, as shown in FIG. 2, when the metal-related substances contained in the water to be treated W are iron ions, iron particles, iron oxide, and iron hydroxide, iron is oxidized by the oxidizing action of the oxidizing agent O. The ions are oxidized to trivalent iron ions (Fe 3+ ). The trivalent iron ions, iron particles, iron oxide, and iron hydroxide are adsorbed on the surface of the adsorbed particles A with the trivalent iron ion compound contained in the adsorbed particles A serving as a nucleus. As a result, on the surface of the adsorbed particles A, the metal-related substance grows into an aggregate MDA composed of iron oxide particles having a diameter φ of 1 μm or more, iron hydroxide, and the like. Although trivalent iron ions are adsorbed on the adsorbed particles A, divalent iron ions (Fe 2+ ) contained in the water to be treated W are adsorbed on the surface of the activated carbon constituting the porous carrier C, Grows into aggregate MDA.
 ここで、吸着粒子Aを構成する金属と、被処理水Wに含まれる金属関連物質を構成する金属とが同一元素であることが好ましい。この場合、吸着粒子Aは、高い金属関連物質の吸着効果を有していると考えられる。ただし、吸着粒子Aは、被処理水Wにおける金属関連物質を吸着することができればよい。したがって、吸着粒子Aを構成する金属と金属関連物質を構成する金属とが同一元素でなくてもよい。 Here, it is preferable that the metal constituting the adsorbed particles A and the metal constituting the metal-related substance contained in the water to be treated W are the same element. In this case, the adsorbed particles A are considered to have a high metal-related substance adsorption effect. However, the adsorbed particles A only need to be able to adsorb metal-related substances in the water to be treated W. Therefore, the metal constituting the adsorbed particles A and the metal constituting the metal-related substance may not be the same element.
 多孔質担体Cの表面で凝集した凝集物MDAは、ある程度の大きさ以上になると、図2に示すように、被処理水Wの水流によって多孔質担体Cの表面から脱離し、被処理水Wと共に下流へ流れる。つまり、凝集物MDAを含む被処理水Wは、凝集促進部2から被処理水流路13を経由してフィルタ部3へ流れ込む。 When the aggregate MDA aggregated on the surface of the porous carrier C becomes larger than a certain size, it is detached from the surface of the porous carrier C by the water flow of the water to be treated W as shown in FIG. And flows downstream. That is, the to-be-treated water W containing the aggregate MDA flows into the filter unit 3 from the aggregation promoting unit 2 via the to-be-treated water flow path 13.
 フィルタ部3は、凝集促進部2の下流に設けられ、凝集促進部2から被処理水Wと共に流れてきた凝集物MDAを捕捉する。本実施形態においては、フィルタ部3は、砂ろ過部である。このフィルタ部3によれば、被処理水Wから凝集物MDAを除去することができる。その結果、フィルタ部3の下流においては、金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHの凝集物MDAが除去された処理済の水が生成される。この処理済の水は、供給流路14を経由して水栓まで供給される。 The filter unit 3 is provided downstream of the aggregation promoting unit 2 and captures the aggregate MDA that has flowed from the aggregation promoting unit 2 together with the water to be treated W. In this embodiment, the filter part 3 is a sand filtration part. According to the filter unit 3, the aggregate MDA can be removed from the water to be treated W. As a result, in the downstream of the filter unit 3, treated water from which the aggregate MDA of the metal ions M + , the metal particles M, the metal oxide particles MO, and the metal hydroxide particles MOH has been removed is generated. This treated water is supplied to the faucet via the supply channel 14.
 次に、図4を用いて、被処理水W中の鉄イオンの除去に着目して、本実施形態の水処理装置100と比較例の水処理装置との相違を説明する。 Next, the difference between the water treatment apparatus 100 of the present embodiment and the water treatment apparatus of the comparative example will be described using FIG. 4 while focusing on the removal of iron ions in the water W to be treated.
 図4の(a)に示すように、比較例の水処理装置において、被処理水Wは酸素(O)を含むが、酸化剤Oを含まない。多孔質担体Cとして活性炭を用いた場合、活性炭は二価の鉄イオン(Fe2+)を吸着しやすい性質を有する。ここで、二価の鉄イオンが水中で酸化されて三価の鉄イオン(Fe3+)になった場合、三価の鉄イオンは瞬時に酸素と結合し、微粒子状の酸化鉄に変化する。しかし、活性炭は鉄イオンよりも酸化鉄微粒子を吸着し難いため、結果的に三価の鉄イオンは吸着されずに活性炭を通過してしまう場合が多い。 As shown in (a) of FIG. 4, the water treatment device of the comparative example, the water to be treated W is an oxygen (O 2), containing no oxidizing agent O. When activated carbon is used as the porous carrier C, the activated carbon has a property of easily adsorbing divalent iron ions (Fe 2+ ). Here, when a divalent iron ion is oxidized in water to become a trivalent iron ion (Fe 3+ ), the trivalent iron ion instantaneously binds to oxygen and changes to fine-particle iron oxide. However, activated carbon is less likely to adsorb iron oxide particles than iron ions, and as a result, trivalent iron ions often pass through the activated carbon without being adsorbed.
 このように、二価の鉄イオンは多孔質担体Cに吸着されるが、三価の鉄イオンは酸素と結合して数nmレベルの酸化鉄粒子となることから、多孔質担体Cを通過してしまう。このような数nmレベルの酸化鉄粒子を除去するには逆浸透膜(RO膜)などを用いなければならず、コストが大きく増大してしまう。また、数nmレベルの酸化鉄粒子は凝集剤を用いて粗大化させることは可能であるが、粗大化のために長時間放置する必要があることから、除去効率が大きく低下してしまう。 Thus, although the divalent iron ions are adsorbed on the porous carrier C, the trivalent iron ions are combined with oxygen to form iron oxide particles of several nm level, so that they pass through the porous carrier C. End up. In order to remove such iron oxide particles of several nm level, a reverse osmosis membrane (RO membrane) or the like must be used, which greatly increases the cost. Further, although the iron oxide particles of several nm level can be coarsened using a flocculant, it is necessary to leave for a long time for coarsening, so that the removal efficiency is greatly reduced.
 一方、本実施形態の水処理装置100では、図4の(b)に示すように、酸化剤Oが被処理水W中に供給された場合、二価の鉄イオンは三価の鉄イオンに酸化される。そして、三価の鉄イオンは、凝集促進部2に存在する吸着粒子Aに吸着される。つまり、吸着粒子Aは、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含んでいる。被処理水W中の三価の鉄イオンは、吸着粒子Aにおける三価の鉄イオン化合物との親和性が高いことから、三価の鉄イオン化合物が核となり、吸着粒子Aの表面に吸着する。その結果、吸着粒子Aの表面で、被処理水W中の鉄イオンが凝集し、鉄酸化物や鉄水酸化物の凝集物MDAが生成する。また、酸化剤Oによって酸化されなかった二価の鉄イオンは多孔質担体Cに吸着され、多孔質担体Cの表面に存在する吸着粒子Aと凝集物MDAを生成する。 On the other hand, in the water treatment apparatus 100 of the present embodiment, as shown in FIG. 4B, when the oxidizing agent O is supplied into the water to be treated W, the divalent iron ions are converted into trivalent iron ions. Oxidized. The trivalent iron ions are adsorbed by the adsorbed particles A present in the aggregation promoting part 2. That is, the adsorbed particles A contain at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH. Since the trivalent iron ions in the water to be treated W have high affinity with the trivalent iron ion compound in the adsorbed particles A, the trivalent iron ion compound serves as a nucleus and is adsorbed on the surface of the adsorbed particles A. . As a result, iron ions in the water W to be treated aggregate on the surface of the adsorbed particles A, and iron oxide or iron hydroxide aggregate MDA is generated. In addition, the divalent iron ions not oxidized by the oxidant O are adsorbed on the porous carrier C, and adsorbed particles A and aggregate MDA existing on the surface of the porous carrier C are generated.
 ここで、凝集物MDAの粒子径が数μmレベルとなった後に、凝集物MDAは吸着粒子Aの表面から脱離する。つまり、被処理水W中の鉄イオンは鉄酸化物や鉄水酸化物の凝集物MDAとして、吸着粒子Aの表面に凝集する。そして、凝集物MDAが数μm以上となった場合には、被処理水Wの水流により吸着粒子Aの表面から脱離し、フィルタ部3に到達する。ただ、凝集物MDAは数μm以上となっているため、逆浸透膜を用いなくても、例えば砂ろ過等で容易に除去することが可能となる。 Here, the aggregate MDA desorbs from the surface of the adsorbed particles A after the particle diameter of the aggregate MDA reaches a level of several μm. That is, iron ions in the water to be treated W aggregate on the surface of the adsorbed particles A as iron oxide or iron hydroxide aggregate MDA. When the aggregate MDA becomes several μm or more, the aggregate MDA is detached from the surface of the adsorbed particles A by the water flow of the water to be treated W and reaches the filter unit 3. However, since the aggregate MDA is several μm or more, it can be easily removed by, for example, sand filtration without using a reverse osmosis membrane.
 上述のように、吸着粒子Aは、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含むことが好ましい。ただ、吸着粒子Aは、Fe(OH)及びFeOOHの少なくともいずれか一方を含むことがより好ましい。Fe(OH)及びFeOOHは、三価の鉄イオンとの親和性が特に高いことから、凝集物MDAを生成しやすくなり、被処理水Wから金属関連物質を効率的に除去することが可能となる。 As described above, the adsorbed particles A preferably include at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH. However, it is more preferable that the adsorbed particles A contain at least one of Fe (OH) 3 and FeOOH. Fe (OH) 3 and FeOOH have a particularly high affinity with trivalent iron ions, so it becomes easy to produce aggregate MDA and metal-related substances can be efficiently removed from the water to be treated W. It becomes.
 なお、被処理水W中に鉄水酸化物(Fe(OH))、鉄酸化物(Fe)、及び鉄(Fe)の粒子が含まれている場合には、鉄水酸化物、鉄酸化物及び鉄の粒子は多孔質担体Cを通過してしまう。しかしながら、吸着粒子Aは、鉄水酸化物、鉄酸化物及び鉄の粒子も吸着することができるため、凝集物MDAとして除去することが可能となる。 In addition, when the to-be-treated water W contains particles of iron hydroxide (Fe (OH) 3 ), iron oxide (Fe 2 O 3 ), and iron (Fe), iron hydroxide Iron oxide and iron particles pass through the porous carrier C. However, since the adsorbed particles A can also adsorb iron hydroxide, iron oxide and iron particles, it can be removed as an aggregate MDA.
 被処理水Wは、金属関連物質として、鉄の他にヒ素やマンガン、シリカ、アルミナなどを含む場合がある。シリカ及びアルミナは、懸濁成分として水質を悪化させる。ただ、これらの金属関連物質は、鉄イオンにより巻き込まれる形で吸着粒子Aの表面に凝集することができるため、鉄と共に凝集物MDAを形成して除去することが可能となる。 The treated water W may contain arsenic, manganese, silica, alumina, etc. in addition to iron as a metal-related substance. Silica and alumina deteriorate water quality as a suspended component. However, since these metal-related substances can be aggregated on the surface of the adsorbed particles A in a form of being engulfed by iron ions, it becomes possible to form and remove the aggregate MDA together with iron.
 本実施形態の水処理装置100によれば、三価の鉄イオン化合物を含む吸着粒子が高密度に存在する多孔質担体層202に、酸化剤と共に鉄イオンを含む被処理水Wを通過させる。それにより、二価の鉄イオンは、多孔質担体Cの表面に吸着される。また、三価の鉄イオンは、多孔質担体Cの表面に付着した吸着粒子Aとしての鉄酸化物の粒子又は鉄水酸化物の粒子等に吸着される。その結果、多孔質担体Cの表面で、金属関連物質の凝集が促進される。これによれば、被処理水Wに含まれる鉄イオンの価数によらず、必要とされる程度まで鉄イオンを除去することができる。 According to the water treatment apparatus 100 of the present embodiment, the water to be treated W containing iron ions together with the oxidizing agent is passed through the porous carrier layer 202 where the adsorbed particles containing the trivalent iron ion compound are present at high density. Thereby, divalent iron ions are adsorbed on the surface of the porous carrier C. In addition, trivalent iron ions are adsorbed on iron oxide particles or iron hydroxide particles as adsorbed particles A attached to the surface of the porous carrier C. As a result, aggregation of the metal-related substance is promoted on the surface of the porous carrier C. According to this, iron ions can be removed to the required level regardless of the valence of the iron ions contained in the water to be treated W.
 図5を用いて、本実施形態の他の例における水処理装置100の全体構成を説明する。図5に示すように、他の例の水処理装置100においては、酸化剤Oは塩素を含んでいる。塩素を含む酸化剤Oは、上述のように金属関連物質の凝集の促進を行うと共に、被処理水Wの殺菌を行うことができる。また、他の例の水処理装置100においては、鉄の繊維材料が混合部1に設置されている。それにより、混合部1において、鉄イオン及び鉄の粒子が被処理水Wに供給される。なお、鉄の粒子は、被処理水W中において、鉄イオン、鉄酸化物の粒子、及び鉄水酸化物の粒子に変化するものもある。 The whole structure of the water treatment apparatus 100 in another example of the present embodiment will be described with reference to FIG. As shown in FIG. 5, in the water treatment apparatus 100 of another example, the oxidizing agent O contains chlorine. As described above, the oxidizing agent O containing chlorine can promote the aggregation of the metal-related substances and can sterilize the water W to be treated. Moreover, in the water treatment apparatus 100 of another example, the iron fiber material is installed in the mixing unit 1. Thereby, in the mixing unit 1, iron ions and iron particles are supplied to the water to be treated W. The iron particles may be changed into iron ions, iron oxide particles, and iron hydroxide particles in the water to be treated W.
 一般に、水処理装置100が使用される環境においては、被処理水Wとなる原水は、金属関連物質として、金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHのうちの少なくとも一つを含んでいる。例えば、当該原水は、鉄イオン、鉄の粒子、鉄酸化物の粒子及び鉄水酸化物の粒子のうちの少なくとも一つを含んでいる。この場合、水処理装置100では、上述のように塩素の酸化作用及び金属材料凝集促進層200によって、原水から三価の鉄イオン、鉄の粒子、鉄酸化物の粒子、及び鉄水酸化物の粒子を除去することができる。なお、二価の鉄イオンは、多孔質担体Cの吸着作用により、原水から除去される。 In general, in an environment where the water treatment apparatus 100 is used, raw water to be treated water W is metal ions M + , metal particles M, metal oxide particles MO, and metal hydroxide particles MOH as metal-related substances. Including at least one of For example, the raw water contains at least one of iron ions, iron particles, iron oxide particles, and iron hydroxide particles. In this case, in the water treatment apparatus 100, trivalent iron ions, iron particles, iron oxide particles, and iron hydroxide particles are separated from the raw water by the chlorine oxidizing action and the metal material aggregation promoting layer 200 as described above. Particles can be removed. The divalent iron ions are removed from the raw water by the adsorption action of the porous carrier C.
 一方、被処理水Wとなる原水が鉄イオン、鉄の粒子、鉄酸化物の粒子、及び鉄水酸化物の粒子のいずれも殆ど含んでいない場合がある。上述のように、ヒ素やマンガン、シリカ、アルミナなど鉄以外の金属関連物質は、鉄イオンに巻き込まれる形で吸着粒子Aの表面に凝集して除去されるため、原水が鉄を含まない場合には、これらの金属関連物質が除去され難くなる可能性がある。そのため、被処理水Wに意図的に鉄を添加し、これらの金属関連物質を除去しやすくすることが好ましい。図5に示す水処理装置100では、被処理水Wに鉄を供給するための繊維材料を混合部1に設けている。 On the other hand, the raw water to be treated water W may not contain any of iron ions, iron particles, iron oxide particles, and iron hydroxide particles. As described above, metal-related substances other than iron, such as arsenic, manganese, silica, and alumina, are aggregated and removed on the surface of the adsorbed particles A in a form of being involved in iron ions, so that the raw water does not contain iron. May be difficult to remove these metal-related substances. Therefore, it is preferable to intentionally add iron to the water to be treated W to easily remove these metal-related substances. In the water treatment apparatus 100 shown in FIG. 5, a fiber material for supplying iron to the treated water W is provided in the mixing unit 1.
 図5に示される例では、鉄の繊維材料と塩素とが反応することによって、二価の鉄イオン及び三価の鉄イオンが被処理水Wに溶け出す。また、被処理水W中において、三価の鉄イオン、鉄の粒子、鉄酸化物の粒子、及び鉄水酸化物の粒子は、金属材料凝集促進層200中の吸着粒子Aに吸着される。この場合においても、吸着粒子Aは、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含む。 In the example shown in FIG. 5, the divalent iron ions and the trivalent iron ions dissolve into the water W to be treated by the reaction between the iron fiber material and chlorine. Further, in the water to be treated W, trivalent iron ions, iron particles, iron oxide particles, and iron hydroxide particles are adsorbed by the adsorbed particles A in the metal material aggregation promoting layer 200. Also in this case, the adsorbed particles A contain at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH.
 本実施形態の他の例の水処理装置100は、被処理水Wに対し、鉄の繊維材料から鉄イオン、鉄の粒子、鉄酸化物の粒子、及び鉄水酸化物の粒子を積極的に添加している。それにより、吸着粒子Aの表面で、鉄酸化物の粒子及び鉄水酸化物の粒子の凝集を意図的に促進し、ヒ素やマンガン、シリカ、アルミナなど鉄以外の金属関連物質を除去することが可能となる。 The water treatment apparatus 100 according to another example of the present embodiment actively applies iron ions, iron particles, iron oxide particles, and iron hydroxide particles from the iron fiber material to the water W to be treated. It is added. Thereby, the aggregation of iron oxide particles and iron hydroxide particles is intentionally promoted on the surface of the adsorbed particles A, and metal-related substances other than iron such as arsenic, manganese, silica, and alumina can be removed. It becomes possible.
 上記した本実施形態の他の例の水処理装置100によれば、塩素の酸化作用により、大型の貯留槽を設けることなく、必要とされる程度まで、被処理水Wから金属関連物質を除去することができる。そのため、水処理装置100によれば、金属関連物質の除去のスペース効率を向上させることができる。また、鉄の繊維材料が鉄イオンとして被処理水Wに溶け出すことを利用して、被処理水Wから微細粒子を除去することができる。 According to the water treatment apparatus 100 of another example of the present embodiment described above, metal-related substances are removed from the water to be treated W to the required level without providing a large storage tank due to the oxidizing action of chlorine. can do. Therefore, according to the water treatment apparatus 100, the space efficiency of the removal of metal-related substances can be improved. Further, the fine particles can be removed from the water to be treated W by utilizing the fact that the iron fiber material dissolves into the water to be treated W as iron ions.
 以下、本実施形態の水処理装置100の具体的構成を説明する。 Hereinafter, a specific configuration of the water treatment apparatus 100 of the present embodiment will be described.
 (実施形態1)
 図6及び図7を用いて、実施形態1の水処理装置100を説明する。図6に示すように、実施形態1の水処理装置100においては、凝集促進部2とフィルタ部3とが1つの貯留槽10内に設けられている。そして、被処理水流路13は、貯留槽10内に設けられており、貯留槽10内の凝集促進部2とフィルタ部3との境界部である。
(Embodiment 1)
The water treatment apparatus 100 of Embodiment 1 is demonstrated using FIG.6 and FIG.7. As shown in FIG. 6, in the water treatment apparatus 100 of the first embodiment, the aggregation promoting unit 2 and the filter unit 3 are provided in one storage tank 10. And the to-be-processed water flow path 13 is provided in the storage tank 10, and is a boundary part of the aggregation promotion part 2 and the filter part 3 in the storage tank 10. FIG.
 被処理水流路11には、ポンプP1が設けられている。ポンプP1は、井戸等から被処理水Wを混合部1へ送る。貯留槽10内においては、混合部1から流れ出た被処理水Wは、被処理水流路12を経由して、貯留槽10の上部から貯留槽10内へ流れ込む。貯留槽10内では、上方から下方へ向かって被処理水Wが流れ落ちる。このとき、流れ落ちる被処理水Wは、凝集促進部2とフィルタ部3とを通過する。その後、処理済の水は、貯留槽10の下部から外部へ流れ出て、供給流路14を経由して、水栓へ供給される。 The pump P1 is provided in the to-be-treated water flow path 11. The pump P1 sends the water to be treated W from the well or the like to the mixing unit 1. In the storage tank 10, the water to be treated W that has flowed out of the mixing unit 1 flows into the storage tank 10 from the upper part of the storage tank 10 via the water to be treated flow path 12. In the storage tank 10, the to-be-processed water W flows down from the upper side to the lower side. At this time, the to-be-treated water W flowing down passes through the aggregation promoting unit 2 and the filter unit 3. Thereafter, the treated water flows out from the lower part of the storage tank 10 and is supplied to the faucet via the supply channel 14.
 実施形態1においては、混合部1及び酸化剤供給部4が一体化されている。混合部1は、蓋部22を有する混合酸化タンク23を備えている。酸化剤供給部4は、混合部1内に設置された酸化剤Oとしてのタブレット状の塩素系薬剤24そのものである。混合部1内には、タブレット状の塩素系薬剤24と共に、被処理水Wへ鉄イオン及び鉄粒子を供給する繊維状の鉄25が設置されている。 In Embodiment 1, the mixing unit 1 and the oxidant supply unit 4 are integrated. The mixing unit 1 includes a mixed oxidation tank 23 having a lid 22. The oxidizing agent supply unit 4 is a tablet-like chlorine-based chemical 24 itself as the oxidizing agent O installed in the mixing unit 1. In the mixing unit 1, a fibrous iron 25 that supplies iron ions and iron particles to the water to be treated W is installed together with the tablet-like chlorine-based chemical 24.
 図7に示すように、混合部1内においては、被処理水Wが被処理水流路11から混合酸化タンク23内の空間21へ吹き出される。その後、被処理水Wは、混合酸化タンク23の下部に設置されているタブレット状の塩素系薬剤24と繊維状の鉄25とに接触する。それにより、タブレット状の塩素系薬剤24と繊維状の鉄25とは、被処理水Wへ、酸化剤O、並びに鉄イオン及び鉄粒子を供給する。 As shown in FIG. 7, in the mixing unit 1, the water to be treated W is blown from the water flow path 11 to the space 21 in the mixed oxidation tank 23. Thereafter, the water to be treated W comes into contact with the tablet-like chlorinated chemical 24 and the fibrous iron 25 installed at the lower part of the mixed oxidation tank 23. Thereby, the tablet-like chlorinated medicine 24 and the fibrous iron 25 supply the oxidant O, iron ions, and iron particles to the water to be treated W.
 なお、タブレット状の塩素系薬剤24と繊維状の鉄25とは、混合酸化タンク23から被処理水流路12へ至る経路に設けられた網26によって捕捉されるため、下流の被処理水流路12へ流されてしまうことはない。塩素系薬剤24としては、塩素化イソシアヌル酸を用いることが好ましく、例えばジクロロイソシアヌル酸ナトリウムやトリクロロイソシアヌル酸ナトリウムを用いることがより好ましく、トリクロロイソシアヌル酸ナトリウムを用いることが特に好ましい。トリクロロイソシアヌル酸ナトリウムは水に対する溶解度が低いため、タブレット状の塩素系薬剤24として用いた場合、少量の薬剤を長期に亘り継続して添加することが可能となる。 In addition, since the tablet-like chlorinated chemical | medical agent 24 and the fibrous iron 25 are capture | acquired by the net | network 26 provided in the path | route from the mixed oxidation tank 23 to the to-be-processed water flow path 12, it is downstream of the to-be-processed water flow path 12 Will not be swept away. As the chlorinated chemical 24, chlorinated isocyanuric acid is preferably used, for example, sodium dichloroisocyanurate or sodium trichloroisocyanurate is more preferably used, and sodium trichloroisocyanurate is particularly preferably used. Since sodium trichloroisocyanurate has low solubility in water, when used as a tablet-like chlorinated drug 24, a small amount of drug can be continuously added over a long period of time.
 このように、実施形態1では、混合酸化タンク23に塩素系薬剤24と繊維状の鉄25を近接して配置している。そのため、塩素系薬剤24の効果により鉄25から、鉄イオン、鉄、鉄酸化物及び鉄水酸化物が溶出しやすくなり、被処理水Wに対する酸化剤O、並びに鉄イオン、鉄、鉄酸化物及び鉄水酸化物の添加を効率的に行うことが可能となる。また、上述のように、被処理水Wとなる原水が鉄イオン、鉄、鉄酸化物、及び鉄水酸化物を殆ど含んでいない場合であっても、実施形態1の水処理装置100を用いることで、被処理水Wに意図的に鉄を添加できる。その結果、ヒ素やマンガン、シリカ、アルミナなど鉄以外の金属関連物質を除去することが可能となる。 As described above, in the first embodiment, the chlorine-based chemical 24 and the fibrous iron 25 are arranged close to the mixed oxidation tank 23. Therefore, iron ions, iron, iron oxides, and iron hydroxides are easily eluted from the iron 25 due to the effect of the chlorine-based chemical 24, and the oxidizing agent O for the water to be treated W, as well as iron ions, iron, iron oxides. In addition, iron hydroxide can be efficiently added. In addition, as described above, the water treatment apparatus 100 according to the first embodiment is used even when the raw water to be treated water W contains almost no iron ions, iron, iron oxide, and iron hydroxide. Thus, iron can be intentionally added to the water to be treated W. As a result, metal-related substances other than iron such as arsenic, manganese, silica, and alumina can be removed.
 (実施形態2)
 図8及び図9を用いて、実施形態2の水処理装置100を説明する。水処理装置100は、流路切替弁50と排水口17とをさらに備えている。流路切替弁50は、被処理水流路12と供給流路14とに接続されている。混合部1と流路切替弁50とは、被処理水流路12aによって接続されている。流路切替弁50と貯留槽10とは、被処理水流路12bによって接続されている。また、貯留槽10と流路切替弁50とは、供給流路14aによって接続されている。流路切替弁50と蛇口16とは、供給流路14bによって接続されている。流路切替弁50は、排水口17にも接続されている。流路切替弁50は、いわゆる五方弁である。
(Embodiment 2)
The water treatment apparatus 100 of Embodiment 2 is demonstrated using FIG.8 and FIG.9. The water treatment apparatus 100 further includes a flow path switching valve 50 and a drain port 17. The flow path switching valve 50 is connected to the treated water flow path 12 and the supply flow path 14. The mixing part 1 and the flow path switching valve 50 are connected by the to-be-processed water flow path 12a. The flow path switching valve 50 and the storage tank 10 are connected by the to-be-processed water flow path 12b. The storage tank 10 and the flow path switching valve 50 are connected by a supply flow path 14a. The flow path switching valve 50 and the faucet 16 are connected by a supply flow path 14b. The flow path switching valve 50 is also connected to the drain port 17. The flow path switching valve 50 is a so-called five-way valve.
 流路切替弁50は、図8に示される被処理水Wが凝集促進部2からフィルタ部3へ向かう順方向Xに流れる状態と、図9に示される被処理水Wがフィルタ部3から凝集促進部2へ向かう逆方向Yに流れる状態とを切り替える。順方向Xの流れの場合においては、図8に示すように、被処理水Wは、混合部1、流路切替弁50、凝集促進部2、フィルタ部3、流路切替弁50、及び蛇口16をこの順番で流れる。逆方向Yの流れの場合においては、図9に示すように、被処理水Wは、混合部1、流路切替弁50、フィルタ部3、凝集促進部2、流路切替弁50、及び排水口17をこの順番で流れる。 In the flow path switching valve 50, the water to be treated W shown in FIG. 8 flows in the forward direction X from the aggregation promoting unit 2 to the filter unit 3, and the water to be treated W shown in FIG. The state which flows in the reverse direction Y toward the promotion part 2 is switched. In the case of the flow in the forward direction X, as shown in FIG. 8, the water to be treated W is mixed with the mixing unit 1, the channel switching valve 50, the aggregation promoting unit 2, the filter unit 3, the channel switching valve 50, and the faucet. 16 flows in this order. In the case of the flow in the reverse direction Y, as shown in FIG. 9, the water to be treated W is mixed with the mixing unit 1, the channel switching valve 50, the filter unit 3, the aggregation promoting unit 2, the channel switching valve 50, and the drainage. It flows through the mouth 17 in this order.
 排水口17は、被処理水Wが逆方向Yに流れる状態において凝集促進部2の下流に位置付けられ、被処理水Wを外部へ排出する。そのため、水処理装置100によれば、フィルタ部3を逆流洗浄することが可能になる。また、フィルタ部3の逆流洗浄のときに、フィルタ部3に付着している吸着粒子Aが凝集促進部2に吸着されている吸着粒子Aに吸着される。その結果、凝集促進部2の吸着粒子Aの能力を回復させることができる。 The drain port 17 is positioned downstream of the aggregation promoting unit 2 in a state where the treated water W flows in the reverse direction Y, and discharges the treated water W to the outside. Therefore, according to the water treatment apparatus 100, the filter unit 3 can be backwashed. Further, when the filter unit 3 is back-washed, the adsorbed particles A adhering to the filter unit 3 are adsorbed by the adsorbed particles A adsorbed to the aggregation promoting unit 2. As a result, the ability of the adsorbed particles A of the aggregation promoting unit 2 can be recovered.
 ここで、凝集促進部2は、例えば一群の粒状体を含む多孔質担体Cを有し、フィルタ部3は、例えば一群の砂粒を含む砂ろ過部を有している。凝集促進部2の一群の粒状体の密度は、フィルタ部3の一群の砂粒の密度よりも小さい。したがって、貯留槽10内の水の中で、凝集促進部2の一群の粒状体は、フィルタ部3の一群の砂粒よりも上側に位置付けられる。また、凝集促進部2を構成する一群の粒状体とフィルタ部3を構成する一群の砂粒とは、互いに上下方向において並ぶように堆積されている。そのため、水処理装置100を小型化することが可能になっている。また、フィルタ部3を逆流洗浄しても、凝集促進部2を構成する一群の粒状体とフィルタ部3を構成する一群の砂粒とは、重力により自然に互いの配置を維持する。 Here, the aggregation promoting unit 2 has a porous carrier C including, for example, a group of particles, and the filter unit 3 includes a sand filtering unit including, for example, a group of sand particles. The density of the group of granules in the aggregation promoting unit 2 is smaller than the density of the group of sand particles in the filter unit 3. Therefore, in the water in the storage tank 10, the group of particles in the aggregation promoting unit 2 is positioned above the group of sand particles in the filter unit 3. In addition, the group of granular bodies constituting the aggregation promoting part 2 and the group of sand grains constituting the filter part 3 are deposited so as to be aligned in the vertical direction. Therefore, the water treatment apparatus 100 can be reduced in size. In addition, even when the filter unit 3 is backwashed, the group of granulates constituting the aggregation promoting unit 2 and the group of sand particles constituting the filter unit 3 naturally maintain their mutual arrangement due to gravity.
 フィルタ部3を構成する一群の砂粒は、例えばマンガン砂である。そして、マンガン砂の密度は、2.57~2.67g/cmである。マンガン砂のマンガン付着量は、0.3mg/g以上である。ただし、フィルタ部3は、一般のろ過砂(2.5g/cm)で形成されていてもよい。また、凝集促進部2を構成する一群の粒状体を含む多孔質担体Cの密度は、例えば、活性炭の場合0.5g/cmであり、ゼオライトの場合0.9~1.1/cmであり、シリカの場合2.2g/cmであり、セラミックスの場合0.7g/cmである。 The group of sand grains constituting the filter unit 3 is, for example, manganese sand. The density of manganese sand is 2.57 to 2.67 g / cm 3 . The manganese adhesion amount of manganese sand is 0.3 mg / g or more. However, the filter part 3 may be formed with general filter sand (2.5 g / cm 3 ). Further, the density of the porous carrier C including a group of particles constituting the aggregation promoting portion 2 is, for example, 0.5 g / cm 3 in the case of activated carbon and 0.9 to 1.1 / cm 3 in the case of zeolite. In the case of silica, it is 2.2 g / cm 3 , and in the case of ceramics, it is 0.7 g / cm 3 .
 (実施形態3)
 図10を用いて、実施形態3の水処理装置100を説明する。水処理装置100は、混合部1の上流の被処理水流路11に設けられ、被処理水Wに含まれる還元剤としてのアンモニアを吸着する還元剤吸着部18をさらに備えている。そのため、混合部1における酸化剤Oが被処理水W中のアンモニアの酸化のために消費されてしまうことを抑制することができる。還元剤吸着部18は、ナトリウムイオンを含み、そのナトリウムイオンと被処理水W中のアンモニウムイオンとを置換することにより、被処理水W中のアンモニアを吸着するゼオライトである。
(Embodiment 3)
The water treatment apparatus 100 of Embodiment 3 is demonstrated using FIG. The water treatment apparatus 100 further includes a reducing agent adsorbing unit 18 that is provided in the to-be-treated water channel 11 upstream of the mixing unit 1 and adsorbs ammonia as a reducing agent contained in the to-be-treated water W. Therefore, it can suppress that the oxidizing agent O in the mixing part 1 is consumed for the oxidation of the ammonia in the to-be-treated water W. The reducing agent adsorption unit 18 is a zeolite that contains sodium ions and adsorbs ammonia in the water W to be treated by substituting the sodium ions and ammonium ions in the water W to be treated.
 水処理装置100は、ゼオライトのアンモニア吸着効果を再生する再生液供給部19を備えている。再生液供給部19は、ゼオライトに塩化ナトリウムを含む再生液を供給することにより、還元剤吸着部18に新たなナトリウムイオンを吸着させる。それにより、還元剤吸着部18によるアンモニアの吸着効果を維持することができる。 The water treatment apparatus 100 includes a regenerating liquid supply unit 19 that regenerates the ammonia adsorption effect of zeolite. The regenerating liquid supply unit 19 causes the reducing agent adsorbing unit 18 to adsorb new sodium ions by supplying a regenerating liquid containing sodium chloride to the zeolite. Thereby, the adsorption effect of ammonia by the reducing agent adsorption unit 18 can be maintained.
 以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.
[実施例1]
 まず、次のように、多孔質担体としての活性炭へ、吸着粒子としての鉄化合物を担持した。はじめに、内径がΦ50mm、容量1Lの円筒型処理槽に、活性炭を300mL入れた。なお、活性炭は、粒子径Φが0.5mm~2.3mmのものを用いた。次に、円筒型処理槽の内部の活性炭に、二価の鉄イオンを0.7ppm含む水と次亜塩素酸ナトリウム溶液とを連続通水し、処理槽内で活性炭、水及び次亜塩素酸ナトリウム溶液が十分接触するようにした。水の通水流量は6L/minとし、次亜塩素酸ナトリウム溶液の注入量は処理槽内の遊離塩素濃度が5ppmで維持されるように定量制御を行った。この水及び次亜塩素酸ナトリウム溶液の注入処理を10時間行い、活性炭へ鉄化合物を担持した。
[Example 1]
First, an iron compound as adsorbed particles was supported on activated carbon as a porous carrier as follows. First, 300 mL of activated carbon was placed in a cylindrical processing tank having an inner diameter of Φ50 mm and a capacity of 1 L. Note that activated carbon having a particle diameter Φ of 0.5 mm to 2.3 mm was used. Next, water containing 0.7 ppm of divalent iron ions and sodium hypochlorite solution are continuously passed through the activated carbon inside the cylindrical treatment tank, and the activated carbon, water and hypochlorous acid are treated in the treatment tank. The sodium solution was in good contact. The water flow rate was 6 L / min, and the amount of sodium hypochlorite solution injected was quantitatively controlled so that the free chlorine concentration in the treatment tank was maintained at 5 ppm. The water and the sodium hypochlorite solution were injected for 10 hours, and the iron compound was supported on the activated carbon.
 次に、上述のようにして得られた、鉄化合物を担持した活性炭を用い、図11に示す水処理装置を作製した。そして、金属材料凝集促進層の除鉄性能を確認するため、従来技術との比較を行った。従来技術として、酸化剤で鉄の凝集を促して粒成長させた後に、ろ過砂でろ過する高速ろ過と比較した。 Next, a water treatment apparatus shown in FIG. 11 was produced using activated carbon carrying an iron compound obtained as described above. And in order to confirm the iron removal performance of a metal material aggregation promotion layer, it compared with the prior art. Compared with conventional high-speed filtration, which promotes agglomeration of iron with an oxidizer and grows grains, and then filters with filtration sand.
 比較実験は、図11で示される水処理装置を用いて行った。凝集促進部及び砂ろ過槽には、内径Φが50mmで容量が1Lの円筒型の容器を用いた。そして、当該容器の内部に、ろ過砂利(Φ2~4mm)を100mLと、鉄化合物を担持した活性炭を300mL入れ、金属材料凝集促進層を備える凝集促進部を作製した。なお、ろ過砂利は、粒子径Φが2mm~4mmのものを使用した。さらに、当該容器の内部に、ろ過砂利を100mLと、マンガン砂(Φ0.35mm)を300mL入れ、砂ろ過槽を作製した。なお、ろ過砂利は、粒子径Φが2mm~4mmのものを使用し、マンガン砂は、粒子径Φが0.35mmのものを使用した。 The comparative experiment was performed using the water treatment apparatus shown in FIG. A cylindrical container having an inner diameter Φ of 50 mm and a capacity of 1 L was used for the aggregation promoting part and the sand filtration tank. Then, 100 mL of filtration gravel (Φ2 to 4 mm) and 300 mL of activated carbon carrying an iron compound were placed inside the container, and an aggregation promoting part including a metal material aggregation promoting layer was produced. The filter gravel used had a particle diameter Φ of 2 mm to 4 mm. Furthermore, 100 mL of filtration gravel and 300 mL of manganese sand (Φ0.35 mm) were placed inside the container to prepare a sand filtration tank. The filter gravel used had a particle diameter Φ of 2 mm to 4 mm, and the manganese sand used had a particle diameter Φ of 0.35 mm.
 そして図11に示すように、被処理水流路を用いて、凝集促進部を砂ろ過槽の上流側に配置し、凝集促進部の上流側に、被処理水としての原水の供給ポンプと、酸化剤の定量注入機構を設けた。酸化剤は、塩素濃度が10、000ppmの次亜塩素酸ナトリウム溶液を用いた。なお、次亜塩素酸の注入機構と凝集促進部の間と、凝集促進部と砂ろ過槽の間にバイパスライン(BL)を設けた。BLの容量は1Lとなっており、BLと凝集促進部のどちらの流路を通っても、合計容量は同じになるようにしてある。 And as shown in FIG. 11, using the to-be-processed water flow path, the aggregation promoting part is arranged on the upstream side of the sand filtration tank, and on the upstream side of the aggregation promoting part, raw water supply pump as the to-be-processed water, and oxidation A mechanism for quantitative injection of the agent was provided. As the oxidizing agent, a sodium hypochlorite solution having a chlorine concentration of 10,000 ppm was used. In addition, the bypass line (BL) was provided between the injection | pouring mechanism of hypochlorous acid, the aggregation promotion part, and between the aggregation promotion part and the sand filtration tank. The capacity of BL is 1L, and the total capacity is the same regardless of whether the flow path of BL or the aggregation promoting part is passed.
 実験項目としては、凝集促進部の有無と塩素供給の有無の組み合わせからなる計4通りを行った。従来技術である高速ろ過は、凝集促進部が無く、かつ、酸化剤としての塩素が有りの場合に相当する。また、本実施形態に係る凝集促進部を用いたろ過は、凝集促進部が有り、かつ、塩素が有りの場合に相当する。なお、原水としては、鉄濃度が0.72ppmの水を用い、原水流量は1L/minとした。塩素供給を行う場合は、投入量が30ppmになるよう制御した。 The test items were a total of four types consisting of a combination of presence / absence of an aggregation promoting part and presence / absence of chlorine supply. The conventional high-speed filtration corresponds to the case where there is no aggregation promoting part and chlorine as an oxidizing agent is present. Further, the filtration using the aggregation promoting unit according to the present embodiment corresponds to the case where the aggregation promoting unit is present and chlorine is present. As raw water, water having an iron concentration of 0.72 ppm was used, and the raw water flow rate was 1 L / min. When supplying chlorine, the amount of input was controlled to be 30 ppm.
 表1では、各々の処理水に含まれる鉄濃度を示す。従来技術である高速ろ過(凝集促進部無、塩素有)では、鉄濃度が0.47ppmとなった。これは、一部の鉄は塩素の効果で粒成長して砂ろ過部によりろ過されるが、十分な除鉄を行うには粒成長の時間、つまり砂ろ過槽の前段の容量が不足した結果と考えられる。 Table 1 shows the iron concentration contained in each treated water. In the conventional high-speed filtration (with no aggregation promoting part and with chlorine), the iron concentration was 0.47 ppm. This is because some iron is grain-grown by the effect of chlorine and filtered by the sand filtration part, but the grain growth time, that is, the capacity of the previous stage of the sand filtration tank is insufficient to perform sufficient iron removal. it is conceivable that.
 これに対して、砂ろ過槽の前に凝集促進部を用いた場合(凝集促進部有、塩素有)では、鉄濃度が0.16ppmとなっており、除鉄性能の向上が確認された。これは、凝集促進部が鉄の凝集を加速し、ろ過される鉄の量が増加した結果と考えられ、凝集促進部の除鉄処理に対する効果が確認された。また、凝集促進部のみを用いた場合(凝集促進部有、塩素無)でも鉄濃度の低下はわずかながら起こっており、凝集促進部単体での粒成長加速効果も確認された。 On the other hand, when the aggregation promoting part was used in front of the sand filtration tank (with the aggregation promoting part and with chlorine), the iron concentration was 0.16 ppm, and it was confirmed that the iron removal performance was improved. This is considered to be a result of the aggregation promoting part accelerating iron aggregation and increasing the amount of iron to be filtered, and the effect of the aggregation promoting part on the iron removal treatment was confirmed. Further, even when only the aggregation promoting part was used (with the aggregation promoting part, without chlorine), the iron concentration was slightly reduced, and the effect of accelerating the grain growth of the aggregation promoting part alone was also confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように、本実施形態の凝集促進部を砂ろ過槽の上流に備えることで、酸化剤のみを用いた場合よりも鉄の粒成長が加速され、ろ過による除鉄性能が大幅に向上することが確認された。 As described above, by providing the agglomeration promoting portion of the present embodiment upstream of the sand filtration tank, iron grain growth is accelerated as compared with the case of using only the oxidizing agent, and the iron removal performance by filtration is greatly improved. It was confirmed.
[実施例2]
 実施例1で説明した通り、凝集促進部を用いた除鉄処理では、酸化剤(塩素)を用いることで鉄の粒成長がさらに加速されることが確認されている。次に、塩素の必要量を調べるため、実施例1の水処理装置を用いて投入塩素濃度を10ppm、20ppm、30ppm、40ppmと変化させ、得られる処理水中の鉄濃度及び遊離塩素濃度の評価を行った。なお、実施例1と同じように、鉄化合物を担持した活性炭の量は300mLとし、被処理水の流量は1L/minとした。
[Example 2]
As described in Example 1, it has been confirmed that in the iron removal treatment using the aggregation promoting part, the grain growth of iron is further accelerated by using an oxidizing agent (chlorine). Next, in order to investigate the required amount of chlorine, the input chlorine concentration was changed to 10 ppm, 20 ppm, 30 ppm, and 40 ppm using the water treatment apparatus of Example 1, and the evaluation of the iron concentration and free chlorine concentration in the obtained treated water was performed. went. As in Example 1, the amount of activated carbon carrying an iron compound was 300 mL, and the flow rate of water to be treated was 1 L / min.
 図12に示すように、投入塩素量が30ppm以上の場合には、処理水中の鉄濃度が0.2ppm程度まで低下した。日本における鉄の水質基準が0.3ppm以下であることから、これを満たす水質まで除鉄処理できたことになる。また、図13に示すように、処理水中の遊離塩素濃度は、投入塩素量が30ppm以上で急増することが確認された。これらの結果から、本実施例では、遊離塩素が一定濃度(2~5ppm)以上であることにより、凝集促進部での粒成長効果がより発揮できることが分かった。 As shown in FIG. 12, when the input chlorine amount was 30 ppm or more, the iron concentration in the treated water decreased to about 0.2 ppm. Since the water quality standard for iron in Japan is 0.3 ppm or less, it is possible to remove iron to a quality that satisfies this requirement. Moreover, as shown in FIG. 13, it was confirmed that the free chlorine concentration in treated water increases rapidly when the amount of input chlorine is 30 ppm or more. From these results, it was found that in this example, when the free chlorine is at a certain concentration (2 to 5 ppm) or more, the effect of grain growth in the aggregation promoting part can be exhibited more.
 ここで、鉄の酸化以外で塩素が消費される要因としては、被処理水中に含まれるアンモニアや有機物などの分解が考えられる。今回の実施例で用いた原水にはアンモニア成分が含まれていることが分かっており、投入塩素の多くはアンモニア成分の酸化に消費されたと考えられる。本実施形態の水処理装置が処理する原水の水質は、設置される場所などケースごとに異なることが想定され、有機物などの含有量も一定ではない。そのため、投入塩素量は、処理する原水の水質に合わせて、その都度調整する必要がある。 Here, as a factor that consumes chlorine other than iron oxidation, decomposition of ammonia and organic substances contained in the water to be treated can be considered. It is known that the raw water used in this example contains an ammonia component, and it is considered that most of the input chlorine was consumed for the oxidation of the ammonia component. The quality of raw water treated by the water treatment apparatus of the present embodiment is assumed to be different for each case such as the place where it is installed, and the content of organic matter and the like is not constant. Therefore, the amount of input chlorine must be adjusted each time according to the quality of raw water to be treated.
[実施例3]
 実施例3では、凝集促進部の性能に対する、被処理水の流量、及び鉄化合物を担持した活性炭の量の影響を調べた。まず、鉄化合物を担持した活性炭量がそれぞれ50mL、100mL、200mL、300mLである凝集促進部を作製し、各凝集促進部を用いて実施例1の水処理装置を得た。そして、当該水処理装置に、鉄濃度が0.72ppmの原水を0.2L/min、0.5L/min、0.75L/min、1L/min、1.5L/min、2mL/minの流量で通水し、除鉄性能を調べた。図14では、各流量における、処理水に残存する鉄の濃度と鉄化合物を担持した活性炭量との関係を示している。なお、被処理水への投入塩素濃度は40ppmとした。
[Example 3]
In Example 3, the influence of the flow rate of water to be treated and the amount of activated carbon supporting an iron compound on the performance of the aggregation promoting portion was examined. First, the aggregation promotion part whose activated carbon amounts which carry | supported the iron compound are 50 mL, 100 mL, 200 mL, and 300 mL, respectively was produced, and the water treatment apparatus of Example 1 was obtained using each aggregation promotion part. And the flow rate of 0.2 L / min, 0.5 L / min, 0.75 L / min, 1 L / min, 1.5 L / min, and 2 mL / min of raw water whose iron concentration is 0.72 ppm to the said water treatment apparatus. The iron removal performance was examined. FIG. 14 shows the relationship between the concentration of iron remaining in the treated water and the amount of activated carbon carrying an iron compound at each flow rate. Note that the concentration of chlorine added to the water to be treated was 40 ppm.
 図14に示すように、活性炭量が50mL、100mL、200mL、300mLの全てにおいて、被処理水の流量を変化させても、処理水中の鉄濃度を低減できることが分かる。特に、活性炭量が50mL及び100mLの場合には、各流量においてそれぞれ良好な除鉄結果が得られた。また、流速に関しては、活性炭量が100mLにおいて、0.75L/minの場合に最もよい除鉄性能を示した。なお、図14に示す除鉄性能の違いは、投入した塩素が活性炭に消費されることに起因した結果と考えられ、被処理水の流量や活性炭量は、先述の遊離塩素濃度を保てる範囲に調整することが好ましいと考えられる。 As shown in FIG. 14, it can be seen that the iron concentration in the treated water can be reduced even if the flow rate of the water to be treated is changed in all the activated carbon amounts of 50 mL, 100 mL, 200 mL, and 300 mL. In particular, when the amount of activated carbon was 50 mL and 100 mL, good iron removal results were obtained at each flow rate. Regarding the flow rate, the best iron removal performance was shown when the amount of activated carbon was 0.75 L / min at 100 mL. Note that the difference in iron removal performance shown in FIG. 14 is considered to be the result of consumption of the input chlorine by activated carbon, and the flow rate of the water to be treated and the amount of activated carbon are within the range where the above-mentioned free chlorine concentration can be maintained. It is considered preferable to adjust.
 以上のように、除鉄性能に対して、活性炭量及び被処理水の流量は一定の関係があるものの、凝集促進部を使用することで効果的に除鉄できることが分かる。また、今回の実験は、鉄濃度が0.72ppm程度の原水を用いているが、原水中の鉄濃度が異なれば図14の結果も変わってくることが十分想定されることから、最終的な水処理装置の設計は実際の原水の仕様にあわせて行う必要がある。 As described above, although the amount of activated carbon and the flow rate of the water to be treated have a certain relation to the iron removal performance, it can be seen that iron removal can be effectively performed by using the aggregation promoting part. In addition, although this experiment uses raw water having an iron concentration of about 0.72 ppm, it is sufficiently assumed that the result of FIG. 14 changes if the iron concentration in the raw water is different. It is necessary to design the water treatment equipment according to the actual raw water specifications.
 以下、本実施形態に係る金属材料凝集促進層及び水処理装置の特徴的構成及びそれにより得られる効果を記載する。 Hereinafter, the characteristic configurations of the metal material aggregation promoting layer and the water treatment apparatus according to this embodiment and the effects obtained thereby will be described.
(1)金属材料凝集促進層200は、基材201と、基材201に設けられた多孔質担体層202とを有する。さらに金属材料凝集促進層200は、多孔質担体層202に担持され、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含む吸着粒子を有する。このような構成によれば、被処理水Wに含まれる金属関連物質M,M,MO,MOHを吸着粒子の表面で吸着し凝集させることができる。その結果、金属関連物質の凝集物MDAの粒子径が数μmレベルとなるため、被処理水Wから容易に分離し、被処理水Wに含まれる金属関連物質の濃度を低減することが可能となる。 (1) The metal material aggregation promoting layer 200 includes a base material 201 and a porous carrier layer 202 provided on the base material 201. Further, the metal material aggregation promoting layer 200 is supported on the porous carrier layer 202 and is at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH. Adsorbed particles. According to such a configuration, the metal-related substances M + , M, MO, and MOH contained in the water to be treated W can be adsorbed and aggregated on the surface of the adsorbed particles. As a result, since the particle diameter of the metal-related substance aggregate MDA is on the order of several micrometers, it is possible to easily separate from the treated water W and reduce the concentration of the metal-related substance contained in the treated water W. Become.
(2)吸着粒子は、Fe(OH)及びFeOOHの少なくともいずれか一方を含む。Fe(OH)及びFeOOHは、金属関連物質との親和性が高く、容易に吸着することができるため、金属関連物質の凝集物MDAを効率的に生成することが可能となる。 (2) The adsorbed particles contain at least one of Fe (OH) 3 and FeOOH. Since Fe (OH) 3 and FeOOH have a high affinity with a metal-related substance and can be easily adsorbed, an aggregate MDA of the metal-related substance can be efficiently generated.
(3)多孔質担体層202は活性炭を含む。活性炭は比表面積が高いため、吸着粒子を高濃度で担持することができる。また、活性炭は二価の鉄イオンを吸着するため、被処理水中の二価の鉄イオンを容易に除去することができる。 (3) The porous carrier layer 202 contains activated carbon. Since activated carbon has a high specific surface area, the adsorbed particles can be supported at a high concentration. Moreover, since activated carbon adsorbs divalent iron ions, divalent iron ions in the water to be treated can be easily removed.
(4)水処理装置100は、被処理水流路11,12,13、酸化剤供給部4、及び凝集促進部2を備えている。被処理水流路11,12,13は、金属イオンM、金属粒子M、金属酸化物粒子MO、及び金属水酸化物粒子MOHからなる群より選ばれた少なくとも一つの金属関連物質を含む被処理水Wが流れる。酸化剤供給部4は、被処理水Wに酸化剤Oを供給する。凝集促進部2は、金属材料凝集促進層200を有し、酸化剤Oの作用によって被処理水Wに含まれる金属関連物質を吸着粒子Aに吸着させることにより、金属関連物質の凝集を促進させる。 (4) The water treatment apparatus 100 includes treated water flow paths 11, 12, 13, an oxidant supply unit 4, and an aggregation promoting unit 2. The to-be-treated water channels 11, 12, and 13 contain at least one metal-related substance selected from the group consisting of metal ions M + , metal particles M, metal oxide particles MO, and metal hydroxide particles MOH. Water W flows. The oxidant supply unit 4 supplies the oxidant O to the treated water W. The aggregation promoting unit 2 has a metal material aggregation promoting layer 200 and promotes the aggregation of the metal-related substances by causing the adsorbed particles A to adsorb the metal-related substances contained in the water to be treated W by the action of the oxidizing agent O. .
 上記の構成によれば、金属関連物質を吸着した金属酸化物粒子の凝集物MDAを含む被処理水Wが凝集促進部2から流出する。したがって、凝集促進部2の下流に設けられたフィルタ部3によって凝集物MDAを捕捉すれば、被処理水Wから金属関連物質をより多く除去することができる。したがって、被処理水Wからの金属関連物質の除去のスペース効率を向上させることができる。 According to the above configuration, the water to be treated W including the metal oxide particle agglomerates MDA adsorbing the metal-related substances flows out from the aggregation promoting unit 2. Therefore, if the aggregate MDA is captured by the filter unit 3 provided downstream of the aggregation promoting unit 2, more metal-related substances can be removed from the water to be treated W. Therefore, the space efficiency of the removal of the metal-related substance from the treated water W can be improved.
(5)酸化剤Oは、オゾン又は塩素を含んでいてもよい。これによれば、被処理水Wの殺菌と金属関連物質の凝集の促進との双方を行うことができる。 (5) The oxidizing agent O may contain ozone or chlorine. According to this, both sterilization of the to-be-processed water W and acceleration | stimulation of aggregation of a metal related substance can be performed.
(6)水処理装置100は、凝集促進部2の下流に設けられ、被処理水Wと共に凝集促進部2から流れてきた金属関連物質の凝集物MDAをろ過するフィルタ部3をさらに備えていることが好ましい。これによれば、フィルタ部3によって、被処理水Wから金属関連物質の凝集物MDAを除去することができる。その結果、金属関連物質の凝集物MDAが除去された水を生成することができる。 (6) The water treatment apparatus 100 further includes a filter unit 3 that is provided downstream of the aggregation promoting unit 2 and that filters the metal-related substance aggregate MDA flowing from the aggregation promoting unit 2 together with the water to be treated W. It is preferable. According to this, the filter part 3 can remove the metal-related substance aggregate MDA from the water to be treated W. As a result, water from which the aggregate MDA of the metal-related substance is removed can be generated.
 特願2015-116729号(出願日:2015年6月9日)及び特願2015-176427号(出願日:2015年9月8日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2015-116729 (application date: June 9, 2015) and Japanese Patent Application No. 2015-176427 (application date: September 8, 2015) are incorporated herein by reference.
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As described above, the contents of the present embodiment have been described according to the examples. However, the present embodiment is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible. is there.
 本発明によれば、金属イオン、金属粒子、金属酸化物粒子、及び金属水酸化物粒子からなる群より選ばれた1又は2以上の金属関連物質の除去のスペース効率を向上させることができる。 According to the present invention, the space efficiency of removing one or more metal-related substances selected from the group consisting of metal ions, metal particles, metal oxide particles, and metal hydroxide particles can be improved.
 2 凝集促進部
 3 フィルタ部
 4 酸化剤供給部
 11,12,13 被処理水流路
 100 水処理装置
 200 金属材料凝集促進層
 201 基材
 202 多孔質担体層
 A 吸着粒子
 MDA 凝集物
 O 酸化剤
 W 被処理水
DESCRIPTION OF SYMBOLS 2 Aggregation promotion part 3 Filter part 4 Oxidant supply part 11, 12, 13 Water flow path 100 Water treatment apparatus 200 Metal material aggregation promotion layer 201 Base material 202 Porous support layer A Adsorbed particle MDA Aggregate O Oxidant W Treated water

Claims (6)

  1.  基材と、
     前記基材に設けられた多孔質担体層と、
     前記多孔質担体層に担持され、Fe、Fe、Fe(OH)及びFeOOHからなる群より選ばれる少なくとも一種の三価の鉄イオン化合物を含む吸着粒子と、
     を有する、金属材料凝集促進層。
    A substrate;
    A porous carrier layer provided on the substrate;
    Adsorbed particles supported on the porous carrier layer and containing at least one trivalent iron ion compound selected from the group consisting of Fe 2 O 3 , Fe 3 O 4 , Fe (OH) 3 and FeOOH;
    A metal material aggregation promoting layer.
  2.  前記吸着粒子は、Fe(OH)及びFeOOHの少なくともいずれか一方を含む、請求項1に記載の金属材料凝集促進層。 2. The metal material aggregation promoting layer according to claim 1, wherein the adsorption particles include at least one of Fe (OH) 3 and FeOOH.
  3.  前記多孔質担体層は活性炭を含む、請求項1又は2に記載の金属材料凝集促進層。 The metal material aggregation promoting layer according to claim 1 or 2, wherein the porous carrier layer contains activated carbon.
  4.  金属イオン、金属粒子、金属酸化物粒子及び金属水酸化物粒子からなる群より選ばれた少なくとも一つの金属関連物質を含む被処理水が流れる被処理水流路と、
     前記被処理水に酸化剤を供給する酸化剤供給部と、
     請求項1乃至3のいずれか一項に記載の金属材料凝集促進層を有し、前記酸化剤の作用によって前記被処理水に含まれる前記金属関連物質を前記吸着粒子に吸着させることにより、前記金属関連物質の凝集を促進させる凝集促進部と、
     を有する、水処理装置。
    A treated water flow path through which treated water containing at least one metal-related substance selected from the group consisting of metal ions, metal particles, metal oxide particles and metal hydroxide particles flows;
    An oxidant supply unit for supplying an oxidant to the water to be treated;
    The metal material aggregation accelerating layer according to any one of claims 1 to 3, wherein the metal-related substance contained in the water to be treated is adsorbed on the adsorbed particles by the action of the oxidizing agent. An aggregation promoting part that promotes aggregation of metal-related substances;
    Having a water treatment device.
  5.  前記酸化剤はオゾン又は塩素を含む、請求項4に記載の水処理装置。 The water treatment apparatus according to claim 4, wherein the oxidizing agent contains ozone or chlorine.
  6.  前記凝集促進部の下流に設けられ、前記被処理水と共に前記凝集促進部から流れてきた前記金属関連物質の凝集物をろ過するフィルタ部をさらに備える、請求項4又は5に記載の水処理装置。 The water treatment device according to claim 4, further comprising a filter unit that is provided downstream of the aggregation promoting unit and filters aggregates of the metal-related substances that have flowed from the aggregation promoting unit together with the water to be treated. .
PCT/JP2016/002695 2015-06-09 2016-06-03 Metal material aggregation-promoting layer, and water treatment device that uses same WO2016199385A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015116729 2015-06-09
JP2015-116729 2015-06-09
JP2015176427 2015-09-08
JP2015-176427 2015-09-08

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201680040651.0A CN107848848B (en) 2015-06-09 2016-06-03 Metal material flocculation promoting layer and water treatment device using same
JP2017523103A JP6519934B2 (en) 2015-06-09 2016-06-03 Metal material aggregation promoting layer, and water treatment apparatus using the same
KR1020177030282A KR102027103B1 (en) 2015-06-09 2016-06-03 Metallic material aggregation promoting layer, and water treatment apparatus using the same

Publications (1)

Publication Number Publication Date
WO2016199385A1 true WO2016199385A1 (en) 2016-12-15

Family

ID=57503214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002695 WO2016199385A1 (en) 2015-06-09 2016-06-03 Metal material aggregation-promoting layer, and water treatment device that uses same

Country Status (4)

Country Link
JP (1) JP6519934B2 (en)
KR (1) KR102027103B1 (en)
CN (1) CN107848848B (en)
WO (1) WO2016199385A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155120A1 (en) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 Method for manufacturing iron supporting activated carbon for water treatment device
WO2019159917A1 (en) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 Water treatment apparatus
WO2020202808A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Water treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207519A (en) * 1981-04-28 1982-12-20 Amf Inc Filter
JPH07100496A (en) * 1993-10-01 1995-04-18 Takashi Mae Water-receiving type well-water quality improving device
JP2004521728A (en) * 2000-11-07 2004-07-22 オーテーヴェー エスア Treatment method for water containing manganese

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107154A (en) * 1976-03-05 1977-09-08 Ebara Infilco Co Ltd Removing system for iron and manganese from water
CN86102044A (en) * 1986-03-25 1987-10-14 哈尔滨建筑工程学院 Make coagulating agent with irony in the underground water
US7429551B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Adsorbents for removing heavy metals
WO2005082524A1 (en) * 2003-12-16 2005-09-09 Calgon Carbon Corporation Method for removing contaminants from fluid streams
FR2839507B1 (en) * 2002-05-07 2004-07-23 Omnium Traitement Valorisa PROCESS FOR TREATING WATERS CONTAINING IRON, MANGANESE AND ARSENIC
JP4043412B2 (en) * 2003-06-30 2008-02-06 東西化学産業株式会社 Water treatment method
JP2007099612A (en) * 2005-09-06 2007-04-19 National Institute Of Advanced Industrial & Technology Mesoporous carbon bead with uniform particle diameter, method and apparatus for producing the same, and water-treating catalyst using the mesoporous carbon bead as carrier, device for evaluating performance of the catalyst, and practical wastewater treatment plant using the catalyst
US7378372B2 (en) * 2005-10-11 2008-05-27 Layne Christensen Company Filter and sorbent for removal of contaminants from a fluid
JP2010155196A (en) * 2008-12-26 2010-07-15 Kawamoto Pump Mfg Co Ltd Filtration apparatus
JP4707752B2 (en) * 2009-05-27 2011-06-22 壽昭 落合 Water treatment method and water treatment system
JP5693992B2 (en) * 2011-02-14 2015-04-01 新日鐵住金株式会社 Method for recovering dissolved iron from wastewater containing various metal ions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207519A (en) * 1981-04-28 1982-12-20 Amf Inc Filter
JPH07100496A (en) * 1993-10-01 1995-04-18 Takashi Mae Water-receiving type well-water quality improving device
JP2004521728A (en) * 2000-11-07 2004-07-22 オーテーヴェー エスア Treatment method for water containing manganese

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155120A1 (en) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 Method for manufacturing iron supporting activated carbon for water treatment device
WO2019159917A1 (en) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 Water treatment apparatus
WO2020202808A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Water treatment apparatus

Also Published As

Publication number Publication date
JP6519934B2 (en) 2019-05-29
CN107848848A (en) 2018-03-27
KR102027103B1 (en) 2019-11-04
KR20170130505A (en) 2017-11-28
JPWO2016199385A1 (en) 2018-02-22
CN107848848B (en) 2020-10-20

Similar Documents

Publication Publication Date Title
Choo et al. Use of a photocatalytic membrane reactor for the removal of natural organic matter in water: Effect of photoinduced desorption and ferrihydrite adsorption
WO2016199385A1 (en) Metal material aggregation-promoting layer, and water treatment device that uses same
KR101426925B1 (en) Water treatment method and water treatment system
JP2006513851A (en) Method and system for the treatment of liquid effluents, especially containing suspended contaminants
KR100955914B1 (en) Device and Method for Producing Drinking Water by Treating Waste Water
US20100255559A1 (en) Apparatus and process for treating an aqueous solution containing biological contaminants
US20100230332A1 (en) Adsorption apparatus for wastewater
JP5524299B2 (en) Membrane filtration system
JP6846656B2 (en) Water treatment equipment
WO2004063097A1 (en) Method of adding active carbon in water purification and method of water purification
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
JP6865399B2 (en) Method for manufacturing iron-supported activated carbon for water treatment equipment
JP2011131191A (en) Membrane filtration system
WO2020202808A1 (en) Water treatment apparatus
JPH105743A (en) Water purifying filter
JP4821170B2 (en) Ultrapure water production equipment
JP3063863U (en) Water purification reduction device
JP2016522411A (en) Method and system for removing radionuclides from water
WO2019159917A1 (en) Water treatment apparatus
WO2021149581A1 (en) Water purification device and water purification method
KR20210063161A (en) Method for preparing oxidation catalyst for water treatment and its application
JP5808945B2 (en) Equipment for removing radioactive pollutants
Mao et al. Adsorptive removal of fluoride from aqueous solution by a PES/LDH blend flat-sheet membrane
Zahoor et al. Removal of Surfactant Cetyldimethylethyl Ammonium Bromide from Water using Adsorption in Combination with a Membrane Pilot Plant
KR100250510B1 (en) Water treatment apparatus using a ceramic and electric current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523103

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030282

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807095

Country of ref document: EP

Kind code of ref document: A1