WO2016198604A1 - Dérivés d'exendine-4 non-acylée comme agonistes doubles du récepteur glp-1/glucagon - Google Patents

Dérivés d'exendine-4 non-acylée comme agonistes doubles du récepteur glp-1/glucagon Download PDF

Info

Publication number
WO2016198604A1
WO2016198604A1 PCT/EP2016/063305 EP2016063305W WO2016198604A1 WO 2016198604 A1 WO2016198604 A1 WO 2016198604A1 EP 2016063305 W EP2016063305 W EP 2016063305W WO 2016198604 A1 WO2016198604 A1 WO 2016198604A1
Authority
WO
WIPO (PCT)
Prior art keywords
pro
amino acid
acid residue
residue selected
inhibitors
Prior art date
Application number
PCT/EP2016/063305
Other languages
English (en)
Inventor
Dieter Kadereit
Michael Wagner
Martin Bossart
Katrin Lorenz
Torsten Haack
Andreas Evers
Original Assignee
Sanofi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi filed Critical Sanofi
Publication of WO2016198604A1 publication Critical patent/WO2016198604A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/57563Vasoactive intestinal peptide [VIP]; Related peptides

Definitions

  • the present invention relates to dual GLP-1 / glucagon receptor agonists and their medical use, for example in the treatment of disorders of the metabolic syndrome, including diabetes and obesity, as well as for reduction of excess food intake.
  • These dual GLP-1 / glucagon receptor agonists show reduced activity on the GIP receptor to reduce the risk of hypoglycemia. They are structurally derived from exendin-4 and show high stability under acidic conditions.
  • GLP-1 receptor agonists such as GLP-1 , liraglutide and exendin-4
  • FPG and PPG fasting and postprandial glucose
  • Liraglutide is a marketed chemically modified GLP-1 analog in which, among other modifications, a fatty acid is linked to a lysine in position 20 leading to a prolonged duration of action (Drucker DJ et al, Nature Drug Disc. Rev. 9, 267-268, 2010; Buse, J.B. et al., Lancet, 374:39-47, 2009).
  • the amino acid sequence of Liraglutide is shown as SEQ ID NO: 2.
  • Glucagon is a 29-amino acid peptide which is released into the bloodstream when circulating glucose is low. Glucagon's amino acid sequence is shown as SEQ ID NO: 3.
  • glucagon During hypoglycemia, when blood glucose levels drop below normal, glucagon signals the liver to break down glycogen and release glucose, causing an increase of blood glucose levels to reach a normal level. Recent publications suggest that glucagon has in addition beneficial effects on reduction of body fat mass, reduction of food intake, and increase of energy expenditure (KM Heppner, Physiology &
  • GIP glucose-dependent insulinotropic polypeptide
  • GIP and GLP-1 are the two gut enteroendocrine cell-derived hormones accounting for the in cretin effect, which accounts for over 70% of the insulin response to an oral glucose challenge (Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157).
  • GIP's amino acid sequence is shown as SEQ ID NO: 5.
  • YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ-OH Peptides which are based on the structures of GLP-1 or glucagon, and bind and activate both the glucagon and the GLP-1 receptor (Hjort et al. Journal of Biological Chemistry, 269, 30121-30124,1994; Day JW et al, Nature Chem Biol, 5: 749-757, 2009) and suppress body weight gain and reduce food intake are described in patent applications WO 2008/071972, WO 2008/101017, WO 2009/155258, WO
  • Exendin-4 is a 39 amino acid peptide which is produced by the salivary glands of the Gila monster (Heloderma suspectum) (Eng, J. et al., J. Biol. Chem., 267:7402- 05,1992). Exendin-4 is an activator of the GLP-1 receptor, whereas it shows low activation of the GIP receptor and does not activate the glucagon receptor (see Table
  • Table 1 Potencies of exendin-4 at human GLP-1 , GIP and Glucagon receptors (indicated in pM) at increasing concentrations and measuring the formed cAMP as described in Methods.
  • exendin-4 0.4 12500.0 >10000000
  • the amino acid sequence of exendin-4 is shown as SEQ ID NO: 4.
  • Exendin-4 shares many of the glucoregulatory actions observed with GLP-1. Clinical and nonclinical studies have shown that exendin-4 has several beneficial antidiabetic properties including a glucose dependent enhancement in insulin synthesis and secretion, glucose dependent suppression of glucagon secretion, slowing down gastric emptying, reduction of food intake and body weight, and an increase in beta- cell mass and markers of beta cell function (Gentilella R et al., Diabetes Obes
  • exendin-4 is resistant to cleavage by dipeptidyl peptidase-4 (DPP4) resulting in a longer half-life and duration of action in vivo (Eng J., Diabetes, 45 (Suppl 2):152A (abstract 554), 1996).
  • DPP4 dipeptidyl peptidase-4
  • Exendin-4 was also shown to be much more stable towards degradation by neutral endopeptidase (NEP), when compared to GLP-1 , glucagon or oxyntomodulin (Druce MR et al., Endocrinology, 150(4), 1712-1721 , 2009). Nevertheless, exendin-4 is chemically labile due to methionine oxidation in position 14 (Hargrove DM et al., Regul. Pept., 141 : 113-9, 2007) as well as deamidation and isomerization of asparagine in position 28 (WO 2004/035623).
  • exendin-4 derivatives which in addition to the agonistic activity at the GLP-1 receptor of native exendin-4 show agonistic activity at the glucagon receptor and which have - among others - the following modification: at position 28 a beta-alanine (Bal).
  • Bloom et al. disclose that peptides which bind and activate both the glucagon and the GLP-1 receptor can be constructed as hybrid molecules from glucagon and exendin-4, where the N-terminal part (e.g. residues 1-14 or 1-24) originates from glucagon and the C-terminal part (e.g. residues 15-39 or 25-39) originates from exendin-4.
  • Such peptides comprise glucagon ' s amino acid motif
  • exendin-4 derivatives with potentially improved biophysical properties as solubility or aggregation behaviour in solution.
  • the non- conservative replacement of an aromatic amino acid with a polar amino acid in position 13 of an exendin-4 analogue surprisingly leads to peptides with high activity on the glucagon receptor, keeping their activity on the GLP-1 receptor (see also WO2013/186240 .
  • the compounds of this invention carrying a beta-alanine (Bal) amino acid in position 28 show reduced activity on the GIP receptor compared to the corresponding derivatives with other amino acids, such as Ala at position 28, as shown in Example 5, Table 6.
  • a reduced activation of the GIP receptor is potentially beneficial as there are reports in the literature that high levels of GIP in diabetics might in some cases lead to more frequent episodes of hypoglycemia (T McLaughlin et al., J Clin Endocrinol Metab, 95, 1851-1855, 2010; A Hadji- Georgopoulos, J Clin Endocrinol Metab, 56, 648-652, 1983).
  • Compounds of this invention are designed to be more resistant to cleavage by neutral endopeptidase (NEP) and dipeptidyl peptidase-4 (DPP4), resulting in a longer ha If- life and duration of action in vivo, when compared with native GLP-1 and glucagon.
  • NEP neutral endopeptidase
  • DPP4 dipeptidyl peptidase-4
  • Compounds of this invention preferably are chemically stable not only at neutral pH, but also at pH 4.5. This property potentially allows co-formulation for a combination therapy with an insulin or insulin derivative.
  • exendin-4 derivatives which potently activate the GLP1 and the glucagon receptor.
  • exendin-4 derivatives - among other substitutions - methionine at position 14 is replaced by leucin
  • the invention provides a peptidic compound having the formula (I):
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro
  • X31 represents an amino acid residue selected from Pro, His and Trp
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents an amino acid residue selected from Ala, Pro and Lys,
  • X39 represents Ser or Pro-Pro-Pro
  • R 1 is NH 2 or OH
  • the compounds of the invention are GLP-1 and glucagon receptor agonists as determined by the observation that they are capable of stimulating intracellular cAMP formation.
  • the term "activity” as used herein preferably refers to the capability of a compound to activate the human GLP-1 receptor and the human glucagon receptor. More preferably the term “activity” as used herein refers to the capability of a compound to stimulate intracellular cAMP formation.
  • the term "relative activity” as used herein is understood to refer to the capability of a compound to activate a receptor in a certain ratio as compared to another receptor agonist or as compared to another receptor. The activation of the receptors by the agonists (e.g. by measuring the cAMP level) is determined as described herein, e.g. as described in the examples.
  • the compounds of the invention preferably have an EC 50 for hGLP-1 receptor of 100 pmo! or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less, more preferably of 10 pmol or less, more preferably of 9 pmol or less, more preferably of 8 pmol or less, more preferably of 7 pmol or less, more preferably of 6 pmol or less and/or an EC 50 for hGlucagon receptor of 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol
  • the EC 50 for both receptors is 100 pmol or less, more preferably of 90 pmol or less, more preferably of 80 pmol or less, more preferably of 70 pmol or less, more preferably of 60 pmol or less, more preferably of 50 pmol or less, more preferably of 40 pmol or less, more preferably of 30 pmol or less, more preferably of 25 pmol or less, more preferably of 20 pmol or less, more preferably of 15 pmol or less.
  • the EC 50 for hGLP-1 receptor, hGlucagon and hGIP receptor may be determined as described in the Methods herein and as used to generate the results described in Example 4.
  • the compounds of the invention have the ability to reduce the intestinal passage, increase the gastric content and/or to reduce the food intake of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods.
  • the compounds of the invention have the ability to reduce blood glucose level, and/or to reduce HbA1c levels of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods.
  • the compounds of the invention have the ability to reduce body weight of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person. Surprisingly, it was found that peptidic compounds of the formula (I) showed very potent GLP-1 and Glucagon receptor activation
  • the compounds of the invention preferably have a high stability when stored in solution.
  • Preferred assay conditions for determining the stability is storage for 7 days at 40°C in solution at acidic and/or physiological pH values, e.g., at an acidity range from pH 4 to 5, especially pH 4.5 and/or a more physiological range from pH 6 to 8, especially at pH 7.4 at 25°C or 40°C.
  • the remaining amount of peptide is determined by chromatographic analyses as described in the Methods.
  • the purity loss is no more than 20%, more preferably no more than 15%, even more preferably no more than 12% and even more preferably no more than 8%.
  • the compounds of the present invention comprise a peptide moiety which is a linear sequence of 39 or 41 amino carboxylic acids, particularly a-amino carboxylic acids linked by peptide, i.e. carboxamide bonds.
  • a further embodiment relates to a group of compounds, wherein
  • R 1 is NH 2 ,
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro,
  • X31 represents an amino acid residue selected from Pro, His and Trp,
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents an amino acid residue selected from Ala, Pro and Lys,
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents Gly
  • X31 represents an amino acid residue selected from Pro, His and Trp
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents an amino acid residue selected from Ala, Pro and Lys
  • X39 represents Ser or Pro-Pro-Pro
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents Gly
  • X31 represents Pro
  • X32 represents an amino acid residue selected from Ser, His and Pro
  • X34 represents Gly
  • X35 represents Ala
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents D-Ala
  • X31 represents Pro
  • X32 represents Pro
  • X34 represents D-Ala
  • X35 represents an amino acid residue selected from Ala and Pro
  • X39 represents Ser or Pro-Pro-Pro
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro
  • X31 represents Pro
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents an amino acid residue selected from Ala
  • Pro and Lys
  • X39 represents Ser or Pro-Pro-Pro
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents Gly
  • X32 represents Pro
  • X34 represents Gly
  • X35 represents an amino acid residue selected from Ala and Lys
  • X39 represents Ser
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents an amino acid residue selected from Gly and Pro
  • X31 represents Pro
  • X34 represents Gly
  • X35 represents Ala
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro
  • X31 represents an amino acid residue selected from Pro, His and Trp
  • X32 represents Pro
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents an amino acid residue selected from Ala, Pro and Lys, X39 represents Ser or Pro-Pro-Pro,
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents an amino acid residue selected from Gly and Pro
  • X31 represents Pro
  • X34 represents Gly
  • X35 represents Ala
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro
  • X31 represents an amino acid residue selected from Pro, His and Trp
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents Gly
  • X35 represents an amino acid residue selected from Ala, Pro and Lys, X39 represents Ser or Pro-Pro-Pro,
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents D-Ala
  • X31 represents Pro
  • X32 represents an amino acid residue selected from Ser and Pro
  • X34 represents D-Ala
  • X35 represents an amino acid residue selected from Ala and Pro
  • X39 represents Ser or Pro-Pro-Pro
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro,
  • X31 represents an amino acid residue selected from Pro, His and Trp
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents Ala
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X 5 represents Asp
  • X29 represents Gly
  • X31 represents an amino acid residue selected from Pro and His
  • X32 represents Pro
  • X34 represents Gly
  • X35 represents Lys
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents an amino acid residue selected from Gly and D-Ala
  • X31 represents Pro
  • X32 represents Pro
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents Pro
  • X39 represents Pro-Pro-Pro
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents an amino acid residue selected from Asp and Glu
  • X29 represents an amino acid residue selected from Gly, D-Ala and Pro
  • X31 represents an amino acid residue selected from Pro, His and Trp
  • X32 represents an amino acid residue selected from Ser, His, Pro and Arg
  • X34 represents an amino acid residue selected from Gly and D-Ala
  • X35 represents an amino acid residue selected from Ala
  • Pro and Lys
  • X39 represents Ser
  • R 1 represents NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X15 represents Asp
  • X29 represents an amino acid residue selected from Gly and Pro
  • X31 represents Pro
  • X32 represents Arg
  • X34 represents Gly
  • X35 represents Pro
  • Pv 1 represents NH 2
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 6-20, as well as salts and solvates thereof.
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 6-20 and 24-25 as well as salts and solvates thereof.
  • the invention further provides a nucleic acid (which may be DNA or RNA) encoding said compound, an expression vector comprising such a nucleic acid, and a host cell containing such a nucleic acid or expression vector.
  • the present invention provides a composition comprising a compound of the invention in admixture with a carrier.
  • the composition is a pharmaceutically acceptable composition and the carrier is a pharmaceutically acceptable carrier.
  • the compound of the invention may be in the form of a salt, e.g. a pharmaceutically acceptable salt or a solvate, e.g. a hydrate.
  • the present invention provides a composition for use in a method of medical treatment, particularly in human medicine.
  • the nucleic acid or the expression vector may be used as therapeutic agents, e.g. in gene therapy.
  • the compounds of formula (I) are suitable for therapeutic application without an additionally therapeutically effective agent. In other embodiments, however, the compounds are used together with at least one additional therapeutically active agent, as described in "combination therapy”.
  • the compounds of formula (I) are particularly suitable for the treatment or prevention of diseases or disorders caused by, associated with and/or accompanied by disturbances in carbohydrate and/or lipid metabolism, e.g. for the treatment or prevention of hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, obesity and metabolic syndrome. Further, the compounds of the invention are particularly suitable for the treatment or prevention of degenerative diseases, particularly neurodegenerative diseases.
  • the compounds described find use, inter alia, in preventing weight gain or promoting weight loss.
  • preventing is meant inhibiting or reducing when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of a disorder.
  • the compounds of the invention may cause a decrease in food intake and/or increase in energy expenditure, resulting in the observed effect on body weight.
  • the compounds of the invention may have a beneficial effect on circulating cholesterol levels, being capable of improving lipid levels, particularly LDL, as well as HDL levels (e.g. increasing HDL/LDL ratio).
  • the compounds of the invention can be used for direct or indirect therapy of any condition caused or characterised by excess body weight, such as the treatment and/or prevention of obesity, morbid obesity, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea. They may also be used for treatment and prevention of the metabolic syndrome, diabetes, hypertension, atherogenic dyslipidemia, atherosclerosis, arteriosclerosis, coronary heart disease, or stroke. Their effects in these conditions may be as a result of or associated with their effect on body weight, or may be independent thereof.
  • Preferred medical uses include delaying or preventing disease progression in type 2 diabetes, treating metabolic syndrome, treating obesity or preventing overweight, for decreasing food intake, increase energy expenditure, reducing body weight, delaying the progression from impaired glucose tolerance (IGT) to type 2 diabetes; delaying the progression from type 2 diabetes to insulin-requiring diabetes; regulating appetite; inducing satiety; preventing weight regain after successful weight loss;
  • ITT impaired glucose tolerance
  • treating a disease or state related to overweight or obesity treating bulimia; treating binge eating; treating atherosclerosis, hypertension, type 2 diabetes, IGT,
  • dyslipidemia cardiovascular disease
  • coronary heart disease hepatic steatosis
  • treatment of beta-blocker poisoning use for inhibition of the motility of the gastrointestinal tract, useful in connection with investigations of the gastrointestinal tract using techniques such as X-ray, CT- and N R-scanning.
  • Further preferred medical uses include treatment or prevention of degenerative disorders, particularly neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g.
  • neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g.
  • Creutzfeldt-Jacob disease multiple sclerosis, telangiectasia, Batten disease, corticobasal degeneration, corticobasal degeneration, subacute combined degeneration of spinal cord, Tabes dorsalis, Tay-Sachs disease, toxic encephalopathy, infantile Refsum disease, Refsum disease,
  • neuroacanthocytosis Niemann-Pick disease, Lyme disease, Machado-Joseph disease, Sandhoff disease, Shy-Drager syndrome, wobbly hedgehog syndrome, proteopathy, cerebral ⁇ -amyloid angiopathy, retinal ganglion cell degeneration in glaucoma, synucleinopathies, tauopathies, frontotemporal lobar degeneration
  • FTLD FTLD
  • dementia dementia
  • cadasil syndrome hereditary cerebral hemorrhage
  • amyloidosis Alexander disease, seipinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, serpinopathies, AL (light chain) amyloidosis (primary systemic amyloidosis), AH (heavy chain) amyloidosis, AA (secondary) amyloidosis, aortic medial amyloidosis, ApoAI amyloidosis, ApoAII amyloidosis, ApoAIV
  • amyloidosis familial amyloidosis of the Finnish type (FAF), Lysozyme amyloidosis, Fibrinogen amyloidosis, Dialysis amyloidosis, Inclusion body myositis/myopathy, Cataracts, Retinitis pigmentosa with rhodopsin mutations, medullary thyroid carcinoma, cardiac atrial amyloidosis, pituitary prolactinoma, Hereditary lattice corneal dystrophy, Cutaneous lichen amyloidosis, Mallory bodies, corneal lactoferrin amyloidosis, pulmonary alveolar proteinosis, odontogenic (Pindborg) tumor amyloid, cystic fibrosis, sickle cell disease or critical illness myopathy (CIM).
  • FAF Finnish type
  • Lysozyme amyloidosis Fibrinogen amyloidosis
  • Dialysis amyloidosis Dialysis amyloid
  • Further medical uses include treatment of hyperglycemia, type 2 diabetes, obesity, particularly Type 2 diabetes.
  • amino acid sequences of the present invention contain the conventional one letter and three letter codes for naturally occurring amino acids, as well as generally accepted three letter codes for other amino acids, such as Aib (a-aminoisobutyric acid).
  • HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (SEQ ID NO: 4).
  • the invention provides peptidic compounds as defined above.
  • the peptidic compounds of the present invention comprise a linear backbone of amino carboxylic acids linked by peptide, i.e. carboxamide bonds.
  • the amino carboxylic acids are a-amino carboxylic acids and more preferably L-a-amino carboxylic acids, unless indicated otherwise.
  • the peptidic compounds preferably comprise a backbone sequence of 39 to 41 amino carboxylic acids.
  • sequence of the peptidic moiety (I) differs from native exendin-4 at least at nine of those positions which are stated to allow variation.
  • Amino acids within the peptide moiety (I) can be considered to be numbered consecutively from 1 to 39 in the conventional N-terminal to C-terminal direction.
  • Reference to a ..position" within peptidic moiety (I) should be constructed accordingly, as should reference to positions within native exendin-4 and other molecules, e.g., in exendin-4, His is at position 1 , Gly at position 2, Met at position 14, ... and Ser at position 39.
  • the present invention provides a composition
  • a composition comprising a compound of the invention as described herein, or a salt or solvate thereof, in admixture with a carrier.
  • the invention also provides the use of a compound of the present invention for use as a medicament, particularly for the treatment of a condition as described in the specification.
  • the invention also provides a composition wherein the composition is a
  • peptides that are described in this invention. These methods include but are not limited to synthetic approaches and recombinant gene expression. Thus, one way of preparing these peptides is the synthesis in solution or on a solid support and subsequent isolation and purification. A different way of preparing the peptides is gene expression in a host cell in which a DNA sequence encoding the peptide has been introduced.
  • the gene expression can be achieved without utilizing a cell system.
  • the methods described above may also be combined in any way.
  • a preferred way to prepare the peptides of the present invention is solid phase synthesis on a suitable resin.
  • Solid phase peptide synthesis is a well-established methodology (see for example: Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, III., 1984; E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989).
  • Solid phase synthesis is initiated by attaching an N-terminally protected amino acid with its carboxy terminus to an inert solid support carrying a cleavable linker.
  • This solid support can be any polymer that allows coupling of the initial amino acid, e.g. a trityl resin, a chlorotrityl resin, a Wang resin or a Rink resin in which the linkage of the carboxy group (or carboxamide for Rink resin) to the resin is sensitive to acid (when Fmoc strategy is used).
  • the polymer support must be stable under the conditions used to deprotect the a-amino group during the peptide synthesis. After the first amino acid has been coupled to the solid support, the a-amino protecting group of this amino acid is removed. The remaining protected amino acids are then coupled one after the other in the order represented by the peptide sequence using appropriate amide coupling reagents, for example BOP
  • the liberated N-terminus can be functionalized with groups other than amino acids, for example carboxylic acids, etc.
  • a lysine may be protected with an ivDde protecting group (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603) which is labile to a very nucleophilic base, for example 4% hydrazine in DMF (dimethyl formamide).
  • the ivDde ([1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl) group can be selectively removed using 4% hydrazine in DMF and the corresponding free amino group can then be further modified, e.g. by acylation.
  • the lysine can alternatively be coupled to a protected amino acid and the amino group of this amino acid can then be deprotected resulting in another free amino group which can be acylated or attached to further amino acids.
  • peptide is cleaved from the resin. This can be achieved by using King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the raw material can then be purified by chromatography, e.g. preparative RP-HPLC, if necessary.
  • the term “potency” or “in vitro potency” is a measure for the ability of a compound to activate the receptors for GLP-1 , glucagon or optionally GIP in a cell- based assay. Numerically, it is expressed as the "EC50 value", which is the effective concentration of a compound that induces a half maximal increase of response (e.g. formation of intracellular cAMP) in a dose-response experiment.
  • Metabolic syndrome is a combination of medical disorders that, when occurring together, increase the risk of developing type 2 diabetes, as well as atherosclerotic vascular disease, e.g. heart disease and stroke.
  • Defining medical parameters for the metabolic syndrome include diabetes mellitus, impaired glucose tolerance, raised fasting glucose, insulin resistance, urinary albumin secretion, central obesity, hypertension, elevated triglycerides, elevated LDL cholesterol and reduced HDL cholesterol.
  • Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health and life expectancy and due to its increasing prevalence in adults and children it has become one of the leading preventable causes of death in modern world. It increases the likelihood of various other diseases, including heart disease, type 2 diabetes, obstructive sleep apnoe, certain types of cancer, as well as osteoarthritis, and it is most commonly caused by a combination of excess food intake, reduced energy expenditure, as well as genetic susceptibility.
  • Diabetes mellitus often simply called diabetes, is a group of metabolic diseases in which a person has high blood sugar levels, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced.
  • the most common types of diabetes are: (1) type 1 diabetes, where the body fails to produce insulin; (2) type 2 diabetes (T2DM), where the body fails to use insulin properly, combined with an increase in insulin deficiency over time, and (3) gestational diabetes, where women develop diabetes due to their pregnancy. All forms of diabetes increase the risk of long-term complications, which typically develop after many years.
  • macrovascular disease arising from atherosclerosis of larger blood vessels
  • microvascular disease arising from damage of small blood vessels.
  • macrovascular disease conditions are ischemic heart disease, myocardial infarction, stroke and peripheral vascular disease.
  • microvascular diseases are diabetic retinopathy, diabetic nephropathy, as well as diabetic neuropathy.
  • the receptors for GLP-1 and GIP as well as glucagon are members of the family of 7-transmembrane-spanning, heterotrime c G-protein coupled receptors. They are structurally related to each other and share not only a significant level of sequence identity, but have also similar mechanisms of ligand recognition and intracellular signaling pathways.
  • GLP-1 , GIP and glucagon share regions of high sequence identity/similarity.
  • GLP-1 and glucagon are produced from a common precursor, preproglucagon, which is differentially processed in a tissue-specific manner to yield e.g. GLP-1 in intestinal endocrine cells and glucagon in alpha cells of pancreatic islets.
  • GIP is derived from a larger proGIP prohormone precursor and is synthesized and released from K-cells located in the small intestine.
  • the peptidic incretin hormones GLP-1 and GIP are secreted by intestinal endocrine cells in response to food and account for up to 70% of meal-stimulated insulin secretion.
  • targeting of the GLP-1 receptor with suitable agonists offers an attractive approach for treatment of metabolic disorders, including diabetes.
  • the receptor for GLP-1 is distributed widely, being found mainly in pancreatic islets, brain, heart, kidney and the gastrointestinal tract. In the pancreas, GLP-1 acts in a strictly glucose-dependent manner by increasing secretion of insulin from beta cells.
  • GIP GLP-1 receptors
  • the receptor for GIP is broadly expressed in peripheral tissues including pancreatic islets, adipose tissue, stomach, small intestine, heart, bone, lung, kidney, testis, adrenal cortex, pituitary, endothelial cells, trachea, spleen, thymus, thyroid and brain. Consistent with its biological function as incretin hormone, the pancreatic ⁇ -cell express the highest levels of the receptor for GIP in humans. There is some clinical evidence that the G IP-receptor mediated signaling could be impaired in patients with T2DM but G IP-action is shown to be reversible and can be restored with improvement of the diabetic status.
  • Glucagon is a 29 amino acid peptide hormone that is produced by pancreatic alpha cells and released into the bloodstream when circulating glucose is low.
  • An important physiological role of glucagon is to stimulate glucose output in the liver, which is a process providing the major counter-regulatory mechanism for insulin in maintaining glucose homeostasis in vivo.
  • Glucagon receptors are however also expressed in extra-hepatic tissues such as kidney, heart, adipocytes, lymphoblasts, brain, retina, adrenal gland and
  • glucagon receptors might be useful in the treatment of obesity and the metabolic syndrome.
  • Oxyntomodulin is a peptide hormone consisting of glucagon with an eight amino acids encompassing C-terminal extension. Like GLP-1 and glucagon, it is pre-formed in preproglucagon and cleaved and secreted in a tissue-specific manner by endocrinal cells of the small bowel. Oxyntomodulin is known to stimulate both, the receptors for GLP-1 and glucagon and is therefore the prototype of a dual agonist (see Pocai, Molecular Metabolism 2013; 3:241-51).
  • GLP-1 is known for its anti-diabetic effects
  • GLP-1 and glucagon are both known for their food intake-suppressing effects
  • glucagon is also a mediator of additional energy expenditure, it is conceivable that a combination of the activities of the two hormones in one molecule can yield a powerful medication for treatment of the metabolic syndrome and in particular its components diabetes and obesity.
  • the compounds of the invention may be used for treatment of
  • the compounds of the invention are agonists for the receptors for GLP-1 and for glucagon (e.g. "dual agonists") with reduced activity on the GIP receptor and may provide therapeutic benefit to address a clinical need for targeting the metabolic syndrome by allowing simultaneous treatment of diabetes and obesity.
  • Further disease states and health conditions which could be treated with the compounds of the invention are obesity-linked inflammation, obesity-linked gallbladder disease and obesity-induced sleep apnea. Although all these conditions could be associated directly or indirectly with obesity, the effects of the compounds of the invention may be mediated in whole or in part via an effect on body weight, or independent thereof.
  • diseases to be treated are neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease, or other degenerative diseases as described above.
  • the compounds are useful in the treatment or prevention of hyperglycemia, type 2 diabetes, obesity.
  • the compounds of the invention are useful in the treatment or prevention of hepatosteatosis, preferably non-alcoholic liver-disease (NAFLD) and non-alcoholic steatohepatitis (NASH).
  • NAFLD non-alcoholic liver-disease
  • NASH non-alcoholic steatohepatitis
  • exendin-4 Compared to GLP-1 , glucagon and oxyntomodulin, exendin-4 has beneficial physicochemical properties, such as solubility and stability in solution and under physiological conditions (including enzymatic stability towards degradation by enzymes, such as DPP4 or NEP), which results in a longer duration of action in vivo. Therefore, the pure GLP-1 receptor agonist exendin-4 might serve as good starting scaffold to obtain exendin-4 analogues with dual GLP-1/glucagon receptor agonism.
  • exendin-4 has been shown to be chemically labile due to methionine oxidation in position 14 as well as deamidation and isomerization of asparagine in position 28. Therefore, stability might be further improved by substitution of methionine at position 14 and the avoidance of sequences that are known to be prone to degradation via aspartimide formation, especially Asp-Gly or Asn-Gly at positions 28 and 29.
  • composition indicates a mixture containing ingredients that are compatible when mixed and which may be administered.
  • a pharmaceutical composition may include one or more medicinal drugs. Additionally, the
  • compositions may include carriers, buffers, acidifying agents, alkalizing agents, solvents, adjuvants, tonicity adjusters, emollients, expanders, preservatives, physical and chemical stabilizers e.g. surfactants, antioxidants and other components, whether these are considered active or inactive ingredients.
  • Guidance for the skilled in preparing pharmaceutical compositions may be found, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical Excipients, PhP, May 2013 update.
  • exendin-4 peptide derivatives of the present invention are administered in conjunction with an acceptable pharmaceutical carrier, diluent, or excipient as part of a pharmaceutical composition.
  • an acceptable pharmaceutical carrier is a carrier which is physiologically acceptable (e.g. physiologically acceptable pH) while retaining the therapeutic properties of the substance with which it is administered.
  • compositions are known to one skilled in the art and described, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical excipients, PhP, May 2013 update.
  • One exemplary pharmaceutically acceptable carrier is physiological saline solution.
  • carriers are selected from the group of buffers (e.g. citrate/citric acid), acidifying agents (e.g. hydrochloric acid), alkalizing agents (e.g. sodium hydroxide), preservatives (e.g. phenol), co-solvents (e.g. polyethylene glycol 400), tonicity adjusters (e.g. mannitol), stabilizers (e.g. surfactant, antioxidants, amino acids). Concentrations used are in a range that is physiologically acceptable.
  • Acceptable pharmaceutical carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration.
  • the compounds of the present invention will typically be administered parenterally.
  • pharmaceutically acceptable salt means salts of the compounds of the invention which are safe and effective for use in mammals.
  • Pharmaceutically acceptable salts may include, but are not limited to, acid addition salts and basic salts.
  • acid addition salts include chloride, sulfate, hydrogen sulfate, (hydrogen) phosphate, acetate, citrate, tosylate or mesylate salts.
  • basic salts include salts with inorganic cations, e.g. alkaline or alkaline earth metal salts such as sodium, potassium, magnesium or calcium salts and salts with organic cations such as amine salts. Further examples of pharmaceutically acceptable salts are described in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins or in Handbook of
  • solvate means complexes of the compounds of the invention or salts thereof with solvent molecules, e.g. organic solvent molecules and/or water.
  • the exendin-4 derivative in monomeric or oligomeric form.
  • terapéuticaally effective amount of a compound refers to a nontoxic but sufficient amount of the compound to provide the desired effect.
  • the amount of a compound of the formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient.
  • An appropriate "effective" amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation
  • the "therapeutically effective amount” of a compound of the formula (I) is about 0.01 to 50 mg/dose, preferably 0.1 to 10 mg/dose.
  • compositions of the invention are those suitable for parenteral (for example subcutaneous, intramuscular, intradermal or intravenous), oral, rectal, topical and peroral (for example sublingual) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case.
  • Suitable pharmaceutical compositions may be in the form of separate units, for example capsules, tablets and powders in vials or ampoules, each of which contains a defined amount of the compound; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion. It may be provided in single dose injectable form, for example in the form of a pen.
  • the compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.
  • the pharmaceutical composition may be provided together with a device for application, for example together with a syringe, an injection pen or an autoinjector.
  • a device for application for example together with a syringe, an injection pen or an autoinjector.
  • Such devices may be provided separate from a pharmaceutical composition or p refilled with the pharmaceutical composition.
  • the compounds of the present invention can be widely combined with other pharmacologically active compounds, such as all drugs mentioned in the Rote Liste 2015, e.g. with all weight-reducing agents or appetite suppressants mentioned in the Rote Liste 2015, chapter 1 , all lipid-lowering agents mentioned in the Rote Liste 2015, chapter 58, all
  • the active ingredient combinations can be used especially for a synergistic improvement in action. They can be applied either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. When the active ingredients are administered by separate administration of the active ingredients, this can be done simultaneously or successively. Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 2011.
  • active substances which are suitable for such combinations include in particular those which for example potentiate the therapeutic effect of one or more active substances with respect to one of the indications mentioned and/or which allow the dosage of one or more active substances to be reduced.
  • Therapeutic agents which are suitable for combinations include, for example, antidiabetic agents such as:
  • Insulin and insulin derivatives for example: glargine / Lantus ® , 270 - 330U/mL of insulin glargine (EP 2387989 A ), 300U/ml_ of insulin glargine (EP 2387989 A), glulisin /Apidra ® , detemir / Levemir ® , lispro / Humalog ® / Liprolog ® , degludec / degludecPlus, aspart, basal insulin and analogues (e.g.LY- 2605541 , LY2963016, NN1436), PEGylated insulin lispro, Humulin ® , Linjeta, SuliXen ® , NN1045, insulin plus symlin, PE0139, fast-acting and short-acting insulins (e.g.
  • Linjeta PH20, NN1218, HinsBet
  • API-002 hydrogel
  • oral, inhalable, transdermal and sublingual insulins e.g. Exubera ® , Nasulin ® , Afrezza, tregopil, TPM 02, Capsulin, Oral-lyn ® , Cobalamin ® oral insulin, ORMD-0801 ,
  • GLP-1 , GLP-1 analogues and GLP-1 receptor agonists for example: lixisenatide / AVE00 0 / ZP10 / lyxumia, exenatide / exendin-4 / Byetta / Bydureon / ITCA 650 / AC-2993, liraglutide / Victoza, semaglutide, taspoglutide, syncria / albiglutide, dulaglutide, rExendin-4 (recombinant exendin-4), CJC-1134-PC, PB-1023, TTP- 054, langlenatide / H -11260C, CM-3, GLP-1 Eligen, ORMD-0901 , NN-9924, NN- 9926, NN-9927, no
  • GLP-1 and GLP-1 analogues may optionally also be bound to a polymer.
  • DPP-4 also referred to as DDP-IV or dipeptidylpeptidase IV
  • DDP-IV dipeptidylpeptidase IV inhibitors
  • alogliptin / Nesina Trajenta / linagliptin / BI-1356 / Ondero / Trajenta / Tradjenta / Trayenta / Tradzenta
  • saxagliptin / Onglyza sitagliptin / Januvia / Xelevia / Tesave / Janumet / Velmetia, Galvus / vildagliptin, anagliptin, gemigliptin, teneligliptin, melogliptin, trelagliptin, DA- 1229, omarigliptin / MK-3102, KM-223, evogliptin, ARI-2243, PBL-1427, pinoxacin.
  • SGLT2 sodium glucose transporter 2 inhibitors, for example: Invokana / canaglifozin, Forxiga / dapagliflozin, remoglifozin, sergliflozin, empagliflozin, ipragliflozin, tofogliflozin, luseogliflozin, LX-4211 , ertuglifozin / PF-04971729, RO- 4998452, EGT-0001442, KGA-3235 / DSP-3235, LIK066, SBM-TFC-039; dual SGLT2/SGLT1 inhibitors; biguanides (e.g. metformin, buformin, phenformin), thiazolidinediones (e.g.
  • biguanides e.g. metformin, buformin, phenformin
  • thiazolidinediones e.g.
  • glibenclamide glimepiride/Amaryl, glipizide
  • meglitinides e.g. nateglinide, repaglinide, mitiglinide
  • alpha-glucosidase inhibitors e.g. acarbose, miglitol, voglibose
  • amylin and amylin analogues e.g. pramlintide, Symlin
  • GPR119 G protein-coupled receptor 119
  • GSK-263A GSK-263A, PSN-821 , MBX-2982, APD-597, ZYG-19, DS-8500
  • GPR40 agonists e.g. fasiglifam / TAK- 875, TUG-424, P-1736, JTT-851 , GW9508
  • GPR120 agonists GPR142 agonists
  • systemic or low-absorbabie TGR5 transmembrane G protein-coupled receptor 5
  • Cycloset bromocriptine mesylate
  • inhibitors of 11-beta-HSD 11 -beta-hydroxysteroid dehydrogenase
  • activators of glucokinase e.g. TTP-399, AMG-151 , TAK-329, GKM-001
  • inhibitors of DGAT diacylglycerol acyltransferase; e.g. LCQ-908
  • inhibitors of protein tyrosine- phosphatase 1 e.g.
  • trodusquemine inhibitors of glucose-6-phosphatase, inhibitors of fructose- 1 ,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrokinase, alpha2-antagonists, CCR-2 (C-C motif receptor 2) antagonists, SGLT-1 inhibitors (e.g. LX-2761), modulators of glucose transporter- 4, somatostatin receptor 3 agonists.
  • SGLT-1 inhibitors e.g. LX-2761
  • One or more lipid lowering agents are also suitable as combination partners, such as for example: HMG-CoA (3-hydroxy-3-methyl-glutaryl coenzyme A)reductase inhibitors (e.g. simvastatin, atorvastatin), fibrates (e.g. bezafibrate, fenofibrate), nicotinic acid and the derivatives thereof (e.g. niacin), nicotinic acid receptor 1 agonists, PPAR (peroxisome proliferator-activated receptor)-(alpha, gamma or alpha/gamma) agonists or modulators (e.g.
  • HMG-CoA 3-hydroxy-3-methyl-glutaryl coenzyme A)reductase inhibitors
  • simvastatin e.g. simvastatin, atorvastatin
  • fibrates e.g. bezafibrate, fenofibrate
  • ACAT acyl-CoA cholesterol acyltransferase inhibitors
  • avasimibe cholesterol absorption inhibitors
  • ezetimibe cholesterol absorption inhibitors
  • Bile acid-binding substances e.g. cholestyramine
  • bile acid-binding substances e.g. ileal bile acid transport (I BAT) inhibitors
  • MTP microsomal triglyceride transfer protein
  • PCSK9 proprotein
  • LDL (low density lipoprotein) receptor up-regulators by liver selective thyroid hormone receptor ⁇ agonists, HDL (high density lipoprotein)-raising compounds such as: CETP inhibitors (e.g. torcetrapib, anacetrapid, dalcetrapid, evacetrapid, JTT-302, DRL-17822, TA-8995) or ABC1 regulators; lipid metabolism modulators; PLA2 inhibitors, ApoA-l (apolipoprotein A1) enhancers, thyroid hormone receptor agonists, cholesterol synthesis inhibitors, omega-3 fatty acids and derivatives thereof,.
  • Other suitable combination partners are one or more active substances for the treatment of obesity, such as for example: sibutramine, tesofensine, orlistat
  • tetrahydrolipstatinj antagonists of the cannabinoid-1 receptor, MCH-1 (melanin- concentrating hormone 1) receptor antagonists, MC4 (melanocortin 4) receptor agonists and partial agonists, NPY5 (neuropeptide Y 5) or NPY2 antagonists (e.g. velneperit), NPY4 agonists, beta-3-agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor (e.g.
  • lorcaserin or the combinations of bupropione/naltrexone (CONTRAVE) , bupropione/zonisamide (EMPATIC), bupropione/phentermine, pramlintide/metreleptin, or phentermine/topiramate (QNEXA).
  • CONTRAVE bupropione/naltrexone
  • EMPATIC bupropione/zonisamide
  • QNEXA phentermine/topiramate
  • gastrointestinal peptides such as Peptide YY 3-36 (PYY3-36) or analogues thereof, pancreatic polypeptide (PP) or analogues thereof,glucagon receptor agonists or antagonists, GIP receptor agonists or antagonists, dual GLP-1/GIP agonists, dual GLP-1/glucagon agonists, ghrelin antagonists or inverse agonists, xenin and analogues thereof.
  • lipase inhibitors lipase inhibitors, angiogenesis inhibitors, H3 antagonists, AgRP (Agouti-related protein inhibitors, triple monoamine uptake inhibitors (norepinephrine and
  • MetAP2 methionine aminopeptidase type 2 inhibitors
  • nasal formulation of the calcium channel blocker diltiazem antisense molecules against production of fibroblast growth factor receptor 4, prohibitin targeting peptide-1.
  • angiotensin II receptor antagonists e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
  • ACE angiotensin-converting enzyme
  • antagonists centrally acting hypertensives, antagonists of the alpha-2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors and others or combinations thereof are suitable.
  • this invention relates to the use of a compound according to the invention or a physiologically acceptable salt thereof combined with at least one of the active substances described above as a combination partner, for preparing a medicament which is suitable for the treatment or prevention of diseases or conditions which can be affected by binding to the receptors for GLP-1 and glucagon and by modulating their activity.
  • This is preferably a disease in the context of the metabolic syndrome, particularly one of the diseases or conditions listed above, most particularly diabetes or obesity or complications thereof.
  • this invention relates to a medicament which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.
  • the compound according to the invention, or physiologically acceptable salt or solvate thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as so-called kit-of- parts.
  • Figure 1 Effect of acute s.c. administration of compound SEQ ID NO: 6 at 100 pg/kg on 24h profile of blood glucose of diabetic db/db mice. Data are mean ⁇ SEM.
  • Figure 2. Effect of s.c. administration of compound SEQ ID NO: 6 at 100 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice calculated as relative change from baseline. Data are mean ⁇ SEM..
  • Figure 3 Effect of s.c. administration of compound SEQ ID NO: 7 and 9 at 100 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice calculated as relative change from baseline. Data are mean ⁇ SEM..
  • Rink-Amide resins (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)- phenoxyacetamido-norleucylaminomethyl resin, Merck Biosciences; 4-[(2,4- Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxy acetamido methyl resin, Agilent Technologies) were used for the synthesis of peptide amides with loadings in the range of 0.3-0.4 mmol/g.
  • Fmoc protected natural amino acids were purchased from Protein Technologies Inc., Senn Chemicals, Merck Biosciences, Novabiochem, Iris Biotech, Nagase or Bachem The following standard amino acids were used throughout the syntheses: Fmoc-L- Ala-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc- L-Cys(Trt)-OH, Fmoc-L-Gln(Trt)-OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L- His(Trt)-OH, Fmoc-L-lle-OH, Fmoc-L-Leu-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Met- OH, F
  • Method A detection at 210 - 225 nm, coupled to a mass analyser Waters LCT Premier, electrospray positive ion mode
  • Method B detection at 214 nm column: Waters ACQU1TY UPLC CSHTM C18 1.7 i (150 x 2.1 mm) at 50 °C solvent: H 2 O+0.05%TFA : ACN+0.035%TFA (flow 0.5 ml/min)
  • the crude peptides were purified either on an Akta Purifier System or on a Jasco semiprep HPLC System. Preparative RP-C18-HPLC columns of different sizes and with different flow rates were used depending on the amount of crude peptide to be purified. Acetonitrile + 0.05 to 0.1 % TFA (B) and water + 0.05 to 0.1 % TFA (A) were employed as eluents. Alternatively, a buffer system consisting of acetonitrile and water with minor amounts of acetic acid was used. Product-containing fractions were collected and lyophilized to obtain the purified product, typically as TFA or acetate salt.
  • % remaining peptide [(peak area peptide t7) x 100] / peak area peptide tO
  • the amount of soluble degradation products was calculated from the comparison of the sum of the peak areas from all observed impurities reduced by the sum of peak areas observed at tO (i.e. to determine the amount of newly formed peptide-related species). This value was given in percentual relation to the initial amount of peptide at tO, following the equation:
  • % new soluble degradation products ⁇ [(peak area sum of impurities t7) - (peak area sum of impurities tO)] x 100 ⁇ / peak area peptide tO
  • the potential difference from the sum of "% remaining peptide" and "% soluble degradation products" to 100% reflects the amount of peptide which did not remain soluble upon stress conditions including non-soluble degradation products and oligomers and/or fibrils, which have been removed from analysis by centrifugation, following the equation:
  • the target concentration was 10mg pure compound/ml.
  • UPLC-UV analytical method B
  • UPLC-UV analytical method B
  • the solubility was then determined by comparison of the UV peak area of the peptide with the UV peak areas obtained of a stock solution of the peptide at a concentration of 1.2 mg/mL in Dimethyl sulfoxide (DMSO) or a variable amount of acetonitrile obtained through 2 hours of gentle agitation, an optical control that all of the compound was dissolved and 20min of centrifugation at 3000 RCF (relative centrifugal acceleration).
  • DMSO Dimethyl sulfoxide
  • 62AM4PEJ based on HTRF (Homogenous Time Resolved Fluorescence).
  • HTRF Homogenous Time Resolved Fluorescence
  • cells were split into T175 culture flasks and grown overnight to near confluency in medium (DMEM / 10% FBS). Medium was then removed and cells washed with PBS lacking calcium and magnesium, followed by proteinase treatment with accutase (Sigma-Aldrich cat. no. A6964). Detached cells were washed and resuspended in assay buffer (1 x HBSS; 20 mM HEPES, 0.1 % BSA, 2 mM IBMX) and cellular density determined.
  • mice are treated twice daily s.c. in the morning and in the evening, respectively, at the beginning and the end of the light phase with either vehicle or exendin-4 derivatives for 4 weeks. Body weight is recorded daily. Two days before start of treatment and on day 26, total fat mass is measured by nuclear magnetic resonance (QNMR). Statistical analyses are performed with Everstat 6.0 by repeated measures two-way ANOVA and Dunnetts post-hoc analyses (glucose profile) and 1-way-ANOVA, followed by Dunnetts post-hoc test (body weight, body fat). Differences versus vehicle-treated DIO control mice are considered statistically significant at the p ⁇ 0.05 level.
  • Example 1 The invention is further illustrated by the following examples.
  • Example 1 Example 1 :
  • the solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4- (2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.5 mmol/g.
  • the Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation.
  • the peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the crude product was purified via preparative HPLC e.g. on a Waters column (XBridge, BEH130, Prep C18 5 ⁇ ) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
  • the solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4- (2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g.
  • the Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation.
  • the peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the crude product was purified via preparative HPLC e.g. on a Waters column (XBridge, BEH130, Prep C18 5 ⁇ ) using an acetonitrile/water gradient (both buffers with 0.1% TFA).
  • Table 3 list of synthesized peptides and comparison of calculated vs. found molecular weight (analyzed with analytical method A)
  • inventive exendin-4 derivatives carrying a Bal amino acid in position 28 has been tested versus corresponding compounds having in these positions an alanine residue and having otherwise identical amino acid sequence.
  • the reference pair compounds and the corresponding EC50 values at GLP-1 , Glucagon and GIP receptors (indicated in pM) are given in Table 6.
  • the inventive exendin-4 derivatives show a reduced activity on the GIP receptor compared to the
  • Female db/db-mice received 100 pg/kg of SEQ ID NO: 6 or phosphate buffered saline (vehicle control) subcutaneously, at time 0 min.
  • SEQ ID NO: 6 lowered glucose values by ⁇ 15 mmol/l glucose after 240 min. See figure .
  • Example 7 Chronic effects on weight in female diet-induced obese (DIP) C57BL/6 mice after subcutaneous treatment
  • mice Female obese C57BL/6 mice were treated for 4 weeks twice daily subcutaneously with 100 pg/kg SEQ ID NO: 6, 100 pg/kg SEQ ID NO: 7, 100 pg/kg SEQ ID NO: 9, or vehicle. Body weight was recorded daily.
  • SEQ ID NO: 6 Treatment with SEQ ID NO: 6, SEQ ID NO: 7, or SEQ ID NO: 9 showed a decreased body weight gain when compared to vehicle DIO control mice. See figures 2 and 3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Vascular Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne des agonistes doubles du récepteur GLP-1 / glucagon et leur utilisation médicale, par exemple pour le traitement de troubles du syndrome métabolique, notamment le diabète et l'obésité, et la réduction d'apports alimentaires excessifs.
PCT/EP2016/063305 2015-06-12 2016-06-10 Dérivés d'exendine-4 non-acylée comme agonistes doubles du récepteur glp-1/glucagon WO2016198604A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15305899 2015-06-12
EP15305899.5 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016198604A1 true WO2016198604A1 (fr) 2016-12-15

Family

ID=53398002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/063305 WO2016198604A1 (fr) 2015-06-12 2016-06-10 Dérivés d'exendine-4 non-acylée comme agonistes doubles du récepteur glp-1/glucagon

Country Status (1)

Country Link
WO (1) WO2016198604A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764004B2 (en) 2015-10-26 2017-09-19 Eli Lilly And Company Glucagon receptor agonists
US10253079B2 (en) 2012-12-21 2019-04-09 Sanofi Functionalized Exendin-4 derivatives
US10758592B2 (en) 2012-10-09 2020-09-01 Sanofi Exendin-4 derivatives as dual GLP1/glucagon agonists
US10806797B2 (en) 2015-06-05 2020-10-20 Sanofi Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate
CN112469731A (zh) * 2018-07-23 2021-03-09 伊莱利利公司 Gip/glp1共激动剂化合物
EP4091625A1 (fr) * 2021-05-22 2022-11-23 Adocia Compositions comprenant des hormones à brève durée d'action pour traiter ou prévenir l'obésité et pompes comprenant ladite composition
WO2022248419A3 (fr) * 2021-05-22 2023-03-23 Adocia Compositions comprenant des hormones à action courte pour le traitement ou la prévention de l'obésité et pompes comprenant ladite composition
CN116063455A (zh) * 2022-07-04 2023-05-05 北京惠之衡生物科技有限公司 一种glp-1受体和gcg受体共激动多肽衍生物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081418A1 (fr) * 2007-01-05 2008-07-10 Covx Technologies Ireland Limited Composés agonistes du récepteur de la protéine 1 de type glucagon (glp-1r)
WO2009035540A2 (fr) * 2007-09-07 2009-03-19 Ipsen Pharma S.A.S. Analogues d'exendine-4 et exendine-3
US20130336893A1 (en) * 2012-06-14 2013-12-19 Sanofi Exedin-4 Peptide Analogues

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081418A1 (fr) * 2007-01-05 2008-07-10 Covx Technologies Ireland Limited Composés agonistes du récepteur de la protéine 1 de type glucagon (glp-1r)
WO2009035540A2 (fr) * 2007-09-07 2009-03-19 Ipsen Pharma S.A.S. Analogues d'exendine-4 et exendine-3
US20130336893A1 (en) * 2012-06-14 2013-12-19 Sanofi Exedin-4 Peptide Analogues

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
B. FINAN ET AL: "Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans", SCIENCE TRANSLATIONAL MEDICINE, vol. 5, no. 209, 209RA151, 30 October 2013 (2013-10-30), pages 26pp, XP055154610, ISSN: 1946-6234, DOI: 10.1126/scitranslmed.3007218 *
DAY JONATHAN W ET AL: "A new glucagon and GLP-1 co-agonist eliminates obesity in rodents", NATURE CHEMICAL BIOLOGY, vol. 5, no. 10, 1 October 2009 (2009-10-01), NATURE PUB. GROUP, pages 749 - 757, XP002558889, ISSN: 1552-4450, [retrieved on 20090713], DOI: 10.1038/NCHEMBIO.209 *
FINAN BRIAN ET AL: "A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents.", vol. 21, no. 1, January 2015 (2015-01-01), pages 27 - 36+3, XP002743282, ISSN: 1546-170X, Retrieved from the Internet <URL:http://www.nature.com/nm/journal/v21/n1/full/nm.3761.html> [retrieved on 20150811] *
FINAN BRIAN ET AL: "Supplementary Information to A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents.", January 2015 (2015-01-01), XP002751322, Retrieved from the Internet <URL:http://www.nature.com/nm/journal/v21/n1/extref/nm.3761-S1.pdf> [retrieved on 20150811] *
HADJI-GEORGOPOULOS A ET AL: "INCREASED GASTRIC INHIBITORY POLY PEPTIDE LEVELS IN PATIENTS WITH SYMPTOMATIC POST PRANDIAL HYPO GLYCEMIA", JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, vol. 56, no. 4, 1983, pages 648 - 652, XP009185725, ISSN: 0021-972X *
KAZAKOS KYRIAKOS: "Incretin effect: GLP-1, GIP, DPP4", DIABETES RESEARCH AND CLINICAL PRACTICE, vol. 93, no. Suppl. 1, August 2011 (2011-08-01), pages S32 - S36, XP002743284 *
LEE CLARE J ET AL: "Hormonal Response to a Mixed-Meal Challenge After Reversal of Gastric Bypass for Hypoglycemia", JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, vol. 98, no. 7, July 2013 (2013-07-01), pages E1208 - E1212, XP002743285 *
LORENZ MARTIN ET AL: "Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 23, no. 14, 16 May 2013 (2013-05-16), PERGAMON, AMSTERDAM, NL, pages 4011 - 4018, XP028573319, ISSN: 0960-894X, DOI: 10.1016/J.BMCL.2013.05.022 *
MCLAUGHLIN TRACEY ET AL: "Reversible Hyperinsulinemic Hypoglycemia after Gastric Bypass: A Consequence of Altered Nutrient Delivery", JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, vol. 95, no. 4, April 2010 (2010-04-01), pages 1851 - 1855, XP002743279, ISSN: 0021-972X *
MEIER JJ, NAUCK MA: "Incretin-based therapies: where will we be 50 years from now?", DIABETOLOGIA, vol. 58, 21 May 2015 (2015-05-21), Germany, pages 1745 - 1750, XP002743286, ISSN: 1432-0428, Retrieved from the Internet <URL:http://rd.springer.com/article/10.1007%2Fs00125-015-3608-6> [retrieved on 20150811], DOI: 10.1007/s00125-015-3608-6pubmed:25994073 *
TASYUREK HALE M ET AL: "Incretins: Their physiology and application in the treatment of diabetes mellitus", DIABETES-METABOLISM RESEARCH AND REVIEWS, vol. 30, no. 5, July 2014 (2014-07-01), pages 354 - 371, XP002743283 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758592B2 (en) 2012-10-09 2020-09-01 Sanofi Exendin-4 derivatives as dual GLP1/glucagon agonists
US10253079B2 (en) 2012-12-21 2019-04-09 Sanofi Functionalized Exendin-4 derivatives
US10806797B2 (en) 2015-06-05 2020-10-20 Sanofi Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate
US9764004B2 (en) 2015-10-26 2017-09-19 Eli Lilly And Company Glucagon receptor agonists
US9884093B2 (en) 2015-10-26 2018-02-06 Eli Lilly And Company Glucagon receptor agonists
CN112469731A (zh) * 2018-07-23 2021-03-09 伊莱利利公司 Gip/glp1共激动剂化合物
EP4091625A1 (fr) * 2021-05-22 2022-11-23 Adocia Compositions comprenant des hormones à brève durée d'action pour traiter ou prévenir l'obésité et pompes comprenant ladite composition
WO2022248419A3 (fr) * 2021-05-22 2023-03-23 Adocia Compositions comprenant des hormones à action courte pour le traitement ou la prévention de l'obésité et pompes comprenant ladite composition
CN116063455A (zh) * 2022-07-04 2023-05-05 北京惠之衡生物科技有限公司 一种glp-1受体和gcg受体共激动多肽衍生物及其应用
CN116063455B (zh) * 2022-07-04 2023-10-24 北京惠之衡生物科技有限公司 一种glp-1受体和gcg受体共激动多肽衍生物及其应用

Similar Documents

Publication Publication Date Title
US10253079B2 (en) Functionalized Exendin-4 derivatives
US9694053B2 (en) Dual GLP-1/glucagon receptor agonists
EP3080150B1 (fr) Analogues peptidiques d&#39;exendine-4 en tant qu&#39;agonistes du récepteur gip/glp-1 double
EP3080154B1 (fr) Agonistes doubles du récepteur glp-1/gip
EP3129395B1 (fr) Dérivés d&#39;exendine-4 utilisés en tant qu&#39;agonistes doubles des récepteurs du glp1/glucagon peptidiques
AU2015243611B2 (en) Dual GLP-1 / glucagon receptor agonists derived from exendin-4
US9750788B2 (en) Non-acylated exendin-4 peptide analogues
AU2015243612B2 (en) Peptidic dual GLP-1 / Glucagon Receptor Agonists derived from Exendin-4
US20160168225A1 (en) Exendin-4 peptide analogues as dual glp-1/glucagon receptor agonists
WO2016198624A1 (fr) Dérivés d&#39;exendine 4 utilisés en tant qu&#39;agonistes trigonaux des récepteurs du glp-1/glucagon/gip
US20150166625A1 (en) Exendin-4 Peptide Analogues
WO2016198604A1 (fr) Dérivés d&#39;exendine-4 non-acylée comme agonistes doubles du récepteur glp-1/glucagon
WO2016198628A1 (fr) Dérivés d&#39;exendine-4 non-acylée comme agonistes doubles du récepteur glp -1/glucagon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16732508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16732508

Country of ref document: EP

Kind code of ref document: A1