WO2016194875A1 - Optical reflection film - Google Patents

Optical reflection film Download PDF

Info

Publication number
WO2016194875A1
WO2016194875A1 PCT/JP2016/065930 JP2016065930W WO2016194875A1 WO 2016194875 A1 WO2016194875 A1 WO 2016194875A1 JP 2016065930 W JP2016065930 W JP 2016065930W WO 2016194875 A1 WO2016194875 A1 WO 2016194875A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
water
resin
index layer
layer
Prior art date
Application number
PCT/JP2016/065930
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 畠沢
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017521937A priority Critical patent/JP6724912B2/en
Priority to CN201680031322.XA priority patent/CN107615117B/en
Publication of WO2016194875A1 publication Critical patent/WO2016194875A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical reflection film.
  • a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are laminated on the surface of a substrate by adjusting the optical film thickness can selectively reflect light of a specific wavelength.
  • a dielectric multilayer film is used, for example, as an optical reflection film installed on a building window or a vehicle member.
  • Such an optical reflection film transmits visible light and selectively shields near infrared rays, but the reflection wavelength can be controlled only by adjusting the film thickness and refractive index of each layer. Can be reflected.
  • a method of forming a multilayer body such as a dielectric multilayer film there is generally a method of laminating by a dry film forming method.
  • formation of a dielectric multilayer film by a dry film forming method requires a lot of manufacturing costs. Not practical. Practical methods include, for example, a method of applying and laminating a coating solution containing a mixture of a water-soluble resin and metal oxide particles by a wet coating method.
  • the method of manufacturing by simultaneously applying the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is excellent from the viewpoint of cost.
  • JP 2012-973 A discloses that a coating solution contains a cross-linking agent, and the water-soluble resin and the cross-linking agent are present at the interface between adjacent layers. And a method for suppressing the mixing of moisture is disclosed.
  • the water resistance of the laminate can be improved by using a water-soluble resin in combination with a crosslinking agent.
  • a crosslinking agent in the method described in Japanese Patent Application Laid-Open No. 2012-973, an unreacted crosslinking agent remains after coating and drying of the coating solution. Therefore, the crosslinking agent reacts with time to cause shrinkage due to post-curing of the coating film. Arise. As a result, it was found that the generation of cracks when exposed to a high humidity environment for a long period of time was further deteriorated. In order to carry out the reaction so that unreacted cross-linking agent does not remain, a high temperature close to 100 ° C. is necessary, which is not realistic because it exceeds the glass transition temperature of the resin base material.
  • the present invention has been made in view of the above circumstances, and in an optical reflective film having a refractive index layer containing a water-soluble resin, an optical film with little coating film failure and less cracking even when used for a long period of time.
  • An object is to provide a reflective film.
  • the present inventors have found that the object of the present invention can be achieved by adopting the following configuration.
  • a substrate A dielectric multilayer film in which low-refractive index layers and high-refractive index layers are alternately stacked, disposed on one surface of the substrate; At least one of the low refractive index layer and the high refractive index layer includes a water-soluble resin and a water-dispersible hydrophobic resin containing 5 to 55% by mass of a water-dispersible hydrophobic resin based on the total mass.
  • An optical reflection film which is a containing layer.
  • the water-dispersible hydrophobic resin-containing layer further contains an anionic surfactant, and the water-dispersible hydrophobic resin is an anionic emulsion resin.
  • the optical reflective film as described in 2.
  • the uppermost layer opposite to the side in contact with the base material is the water-dispersible hydrophobic resin-containing layer. Or 2.
  • the lowest layer in contact with the substrate is the water-dispersible hydrophobic resin-containing layer.
  • the top layer and the bottom layer of the dielectric multilayer film are low refractive index layers, and all the low refractive index layers are the water-dispersible hydrophobic resin-containing layers. ⁇ 4. The optical reflective film of any one of these.
  • the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is from 4000 to 6000.
  • One embodiment of the present invention includes a base material, and a dielectric multilayer film in which low refractive index layers and high refractive index layers are alternately stacked, which are disposed on one surface of the base material. At least one of the low refractive index layer and the high refractive index layer contains a water-soluble resin and a water-dispersible hydrophobic resin containing 5 to 55% by mass of a water-dispersible hydrophobic resin based on the total mass. It is an optical reflection film which is a resin containing layer.
  • an optical reflective film having a refractive index layer containing a water-soluble resin in an optical reflective film having a refractive index layer containing a water-soluble resin, an optical reflective film with few coating film failures and few cracks even when used for a long time can be obtained.
  • the optical reflective film of the present invention contains a water-soluble resin in at least one refractive index layer among the high refractive index layer and the low refractive index layer.
  • the optical reflective film containing the water-soluble resin has a problem that cracks occur with time.
  • the present inventors examined cracks in the optical reflection film, and reduced the expansion and contraction of the refractive index layer by using a predetermined amount of water-dispersible hydrophobic resin together with the water-soluble resin. It was found that cracking with time can be reduced.
  • a water-dispersible hydrophobic resin is added to a water-soluble resin, when the resin is fused and formed into a film, a membrane having higher hydrophobicity is obtained than when no water-dispersible hydrophobic resin is added. . Therefore, it is considered that the occurrence of cracks can be prevented because the expansion and contraction of the film due to the change in the amount of moisture in the atmosphere can be reduced.
  • the coating film can be softened by containing the emulsion resin, and coating film failure can be reduced.
  • combining an anionic surfactant with an anionic water-dispersible hydrophobic resin increases the stability of the water-dispersible hydrophobic resin in the coating solution and suppresses local agglomeration during coating film drying. It is considered that coating film failure can be further reduced.
  • the content of the water-dispersible hydrophobic resin by setting the content of the water-dispersible hydrophobic resin to 5 to 55% by mass with respect to the total mass (solid content mass) of the water-dispersible hydrophobic resin-containing layer, an excellent crack prevention effect can be obtained. can get. Moreover, coating film failure can be reduced.
  • the content of the water-dispersible hydrophobic resin is less than 5% by mass, fusion between the water-dispersible hydrophobic resins is reduced, and the effects of the present invention cannot be sufficiently obtained.
  • the content of the water-dispersible hydrophobic resin is more than 55% by mass, it is easy to form a void with the water-soluble resin and the coating film haze is likely to increase.
  • the content of the water-dispersible hydrophobic resin is more than 55% by mass, the viscosity of the coating solution is lowered during aqueous coating, particularly simultaneous multi-layer coating. Therefore, it is difficult to form a uniform coating film, and cracks with time are likely to occur. Also, coating film failure is likely to occur. Furthermore, mixing of the refractive index layers occurs due to a decrease in the viscosity of the coating solution, and haze is likely to occur.
  • the content of the water-dispersible hydrophobic resin is 10 to 40% by mass, more preferably 10 to 30% by mass, based on the total mass of the water-dispersible hydrophobic resin-containing layer.
  • the total amount is adjusted to be in the above range.
  • the content of at least one water-dispersible hydrophobic resin may be in the above range, but it is more preferable that all layers have the above range.
  • the components of the optical reflection film of the present invention will be described in detail.
  • the concept including both is referred to as a “refractive index layer”.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • An optical reflective film according to the present invention comprises a base material, and a dielectric multilayer film formed by alternately laminating low refractive index layers and high refractive index layers disposed on one surface of the base material. Have.
  • the optical reflective film according to the present invention includes a base material for supporting a dielectric multilayer film or the like.
  • various resin films can be used, such as polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate (PET), polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc.
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyvinyl chloride cellulose acetate
  • a polyester film is preferable. Although it does not specifically limit as a polyester film (henceforth polyester), It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • the thickness of the substrate used in the present invention is preferably 10 to 300 ⁇ m, particularly 20 to 150 ⁇ m.
  • two substrates may be stacked, and in this case, the type may be the same or different.
  • the base material preferably has a visible light region transmittance of 85% or more shown in JIS R3106-1998, and particularly preferably 90% or more.
  • the base material has the above transmittance or more, it is advantageous in that the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more (upper limit: 100%) when a laminated film is formed. preferable.
  • the base material using the resin or the like may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the base material can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the dielectric multilayer film has a configuration in which low refractive index layers and high refractive index layers are alternately stacked, and has at least one unit composed of a low refractive index layer and a high refractive index layer. Since the dielectric multilayer film includes the refractive index layers having different refractive indexes in this way, when light having a predetermined wavelength (for example, infrared light) is incident, at least a part of this light is It can reflect and can exhibit the shielding effect (and heat shielding effect in the case of infrared light).
  • a predetermined wavelength for example, infrared light
  • whether the refractive index layer constituting the dielectric multilayer film is a low refractive index layer or a high refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer.
  • the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer). Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
  • At least one refractive index layer of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film is 5 to 5 with respect to the water-soluble resin and the total mass of the refractive index layer. If it is a water dispersible hydrophobic resin containing layer containing 55 mass% water dispersible hydrophobic resin, there will be no restriction
  • a refractive index layer formed by a wet film forming method is preferably used from the viewpoint of manufacturing efficiency.
  • At least one of the high refractive index layer and the low refractive index layer preferably includes metal oxide particles, and both the high refractive index layer and the low refractive index layer include metal oxide particles. It is more preferable.
  • a water-soluble resin is used for at least one of the high refractive index layer and the low refractive index layer.
  • the refractive index layer of the optical reflection film formed by the wet film forming method is a coating film coated with a coating solution containing a water-soluble resin (usually containing an aqueous solvent such as water).
  • the water-soluble resin is preferable because it does not use an organic solvent, has a low environmental load, and has high flexibility, so that the durability of the film during bending is improved.
  • the water-soluble resin is preferably used particularly when metal oxide particles are included in at least one of the high refractive index layer and the low refractive index layer.
  • water-soluble means a G2 glass filter (maximum pores 40 to 50 ⁇ m) when dissolved in water so as to have a concentration of 0.5% by mass at the temperature at which the substance is most dissolved. This means that the mass of insoluble matter to be filtered out is within 50% by mass of the added polymer.
  • the layer is a low refractive index layer or a high refractive index layer is a relative one that is determined by the relationship with the adjacent refractive index layer.
  • the structure of a typical high refractive index layer and low refractive index layer among the refractive index layers that can be formed by the respective methods will be described below.
  • the high refractive index layer preferably contains a water-soluble resin.
  • metal oxide particles, a curing agent, a surfactant, and other additives may be included as necessary.
  • the water-soluble resin and metal oxide particles contained in the high refractive index layer are hereinafter referred to as “first water-soluble resin” and “first metal oxide particles” for convenience.
  • the refractive index of the first metal oxide particles is preferably higher than the refractive index of the second metal oxide particles contained in the low refractive index layer described later.
  • the difference in refractive index between the refractive index layers can be increased, and the transparency of the film is increased by reducing the number of layers. This is preferable because it can be performed.
  • stress relaxation works and film properties are improved.
  • the metal oxide particles may be contained in any one of the refractive index layers, but a preferable form is that at least the high refractive index layer includes metal oxide particles, and more preferable forms are the high refractive index layer and the low refractive index layer. All of the rate layers are in a form containing metal oxide particles.
  • the first water-soluble resin is not particularly limited, and polyvinyl alcohol resins, gelatin, celluloses, thickening polysaccharides, and polymers having reactive functional groups can be used. . Of these, it is preferable to use a polyvinyl alcohol-based resin.
  • Polyvinyl alcohol resin As the polyvinyl alcohol resin, ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate (unmodified polyvinyl alcohol), cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, vinyl alcohol Examples thereof include modified polyvinyl alcohol such as a polymer.
  • the modified polyvinyl alcohol may improve the film adhesion, water resistance, and flexibility.
  • Gelatin As the gelatin, various gelatins that have been widely used in the field of silver halide photographic light-sensitive materials can be applied. For example, acid-treated gelatin, alkali-treated gelatin, enzyme-treated gelatin that undergoes enzyme treatment in the production process of gelatin, a group having an amino group, imino group, hydroxyl group, carboxyl group as a functional group in the molecule, and a group that can react with it And gelatin derivatives modified by treatment with a reagent having
  • gelatin When gelatin is used, a gelatin hardener can be added as necessary.
  • a water-soluble cellulose derivative can be preferably used.
  • water-soluble cellulose derivatives such as carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; carboxylic acid group-containing celluloses such as carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose; Examples thereof include cellulose derivatives such as cellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
  • Thickening polysaccharides are saccharide polymers that have many hydrogen bonding groups in the molecule.
  • the thickening polysaccharide has a characteristic that the viscosity difference at low temperature and the viscosity at high temperature are large due to the difference in hydrogen bonding force between molecules depending on temperature.
  • the viscosity at 15 ° C. is usually 1.0 mPa ⁇ s or more, preferably 5.0 mPa ⁇ s or more, more preferably 10.0 mPa ⁇ s or more.
  • the thickening polysaccharide that can be used is not particularly limited, and examples include generally known natural polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides, and synthetic complex polysaccharides. The details of these polysaccharides can be referred to “Biochemical Dictionary (2nd edition), Tokyo Chemical Doujinshi”, “Food Industry”, Vol. 31, (1988), p.
  • polymers having reactive functional groups include polyvinylpyrrolidones; polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester Acrylic resins such as copolymers, acrylic acid-acrylic acid ester copolymers; styrene-acrylic acid copolymers, styrene-methacrylic acid copolymers, styrene-methacrylic acid-acrylic acid ester copolymers, styrene- ⁇ -Styrene acrylic resins such as methylstyrene-acrylic acid copolymer and styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer; styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate Copolymer
  • the above water-soluble resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the first water-soluble resin is preferably 1000 to 200000, more preferably 3000 to 40000.
  • the value measured by gel permeation chromatography (GPC) is adopted as the value of “weight average molecular weight”.
  • the content of the first water-soluble resin is preferably 5 to 50% by mass and more preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the first metal oxide particles are not particularly limited, but are preferably metal oxide particles having a refractive index of 2.0 to 3.0. Specifically, titanium oxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, water Examples thereof include magnesium oxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • the first metal oxide particles are preferably titanium oxide or zirconium oxide from the viewpoint of forming a transparent and high refractive index layer having a high refractive index. From the viewpoint of improving weather resistance, the first metal oxide particles are preferably a rutile type (tetragonal type). ) Titanium oxide is more preferable.
  • the titanium oxide may be in the form of core / shell particles coated with a silicon-containing hydrated oxide.
  • the core / shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on titanium oxide serving as a core.
  • the volume average particle diameter of the titanium oxide particles serving as the core portion is preferably more than 1 nm and less than 30 nm, and more preferably 4 nm or more and less than 30 nm.
  • the first metal oxide particles described above may be used alone or in combination of two or more.
  • the content of the first metal oxide particles is 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer from the viewpoint of increasing the refractive index difference from the low refractive index layer. It is preferably 20 to 77% by mass, more preferably 30 to 75% by mass.
  • the volume average particle diameter of the first metal oxide particles is preferably 30 nm or less, more preferably 1 to 30 nm, and even more preferably 5 to 15 nm.
  • a volume average particle size of 30 nm or less is preferred because it has less haze and is excellent in visible light transmittance.
  • the value measured by the following method is adopted as the value of “volume average particle diameter”. Specifically, arbitrary 1000 particles appearing on the cross section and surface of the refractive index layer are observed with an electron microscope to measure the particle diameter, and particles having particle diameters of d1, d2,. In the group of n1, n2... Ni... Nk metal oxide particles, where the volume per particle is vi, the volume average particle diameter (mv) is calculated by the following formula.
  • the curing agent has a function of reacting with the first water-soluble resin (preferably polyvinyl alcohol resin) contained in the high refractive index layer to form a hydrogen bond network.
  • first water-soluble resin preferably polyvinyl alcohol resin
  • the curing agent is not particularly limited as long as it causes a curing reaction with the first water-soluble resin, but in general, a compound having a group capable of reacting with the water-soluble resin or a different group possessed by the water-soluble resin.
  • stimulates mutual reaction is mentioned.
  • boric acid and its salt as a curing agent.
  • curing agents other than boric acid and its salt may be used.
  • boric acid and its salt mean oxygen acid and its salt having a boron atom as a central atom.
  • Specific examples include orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, octaboric acid, and salts thereof.
  • the content of the curing agent is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol resin, and 10 to 600 mg per 1 g of polyvinyl alcohol resin. It is more preferable that
  • Surfactant is not particularly limited, but includes amphoteric surfactant, cationic surfactant, anionic surfactant, nonionic surfactant, fluorosurfactant and silicon surfactant. Is mentioned. Among these, acrylic surfactants, silicon surfactants, or fluorine surfactants are used. As the surfactant, a surfactant containing a long-chain alkyl group is preferable, and a surfactant having an alkyl group having 6 to 20 carbon atoms is more preferable.
  • Zwitterionic surfactants include alkylbetaines, alkylamine oxides, cocamidopropyl betaines, lauramidopropyl betaines, palm kernel fatty acid amidopropyl betaines, cocoamphoacetic acid N, lauroamphoacetic acid Na, lauramidopropyl hydroxysultain, lauramide
  • Examples include propylamine oxide, myristamidopropylamine oxide, hydroxyalkyl (C12-14) hydroxyethyl sarcosine.
  • Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • An anionic surfactant is a surfactant in which a hydrophilic group is ionized to an anion in an aqueous solution
  • examples of the anionic surfactant include a sulfate ester salt, a sulfonate salt, a carboxylate salt, and a phosphate ester salt. It is done.
  • alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, polyoxyethylene aryl ether sulfate ester salt, alkylbenzene sulfonate salt, fatty acid salt, polyoxyethylene alkyl ether phosphate salt, and dipotassium alkenyl succinate can be used. .
  • anionic surfactants examples include, for example, Emar (registered trademark) manufactured by Kao Corporation, Hytenol (registered trademark) NF-08, NF-0825, NF-manufactured by Daiichi Kogyo Co., Ltd. 13, NF-17 (both polyoxyethylene styrenated phenyl ether ammonium sulfate) and the like, and examples of the sulfonate include Neo-Perex (registered trademark) and Perex (registered trademark) manufactured by Kao Corporation.
  • Examples of the carboxylate include Neo Haitenol (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd., and examples of the phosphate ester salt include Prisurf (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. .
  • a sulfate ester salt or a sulfonate salt is preferable from the viewpoint of miscibility with the liquid.
  • Nonionic surfactants include polyoxyethylene alkyl ethers (for example, Emulgen (registered trademark) manufactured by Kao Corporation), polyoxyethylene sorbitan fatty acid esters (for example, Leodol (registered trademark) TW series manufactured by Kao Corporation), glycerin.
  • examples include fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines, and alkyl alkanolamides.
  • polyoxyethylene alkyl ethers include polyoxyethylene mono 2-ethylhexyl ether, polyoxyethylene decyl ether (for example, Neugen (registered trademark) XL-40, XL-50, XL-60 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) Etc.) can also be used.
  • Fluorosurfactants include Surflon S-211, S-221, S-231, S-241, S-242, S-243, S-420 (manufactured by AGC Seimi Chemical Co., Ltd.), Megafac F-114 F-410, F-477, F-553 (manufactured by DIC Corporation), FC-430, FC-4430, FC-4432 (manufactured by 3M Corporation).
  • silicon surfactants examples include BYK-345, BYK-347, BYK-348, and BYK-349 (manufactured by Big Chemie Japan Co., Ltd.).
  • the high refractive index layer can also contain other additives.
  • other additives include amino acids and lithium compounds.
  • the low refractive index layer also preferably contains a water-soluble resin.
  • a water-soluble resin In addition, metal oxide particles, a curing agent, a surfactant, and other additives may be included as necessary.
  • the water-soluble resin and metal oxide particles contained in the low refractive index layer are hereinafter referred to as “second water-soluble resin” and “second metal oxide particles” for convenience.
  • Second water-soluble resin As the second water-soluble resin, the same one as the first water-soluble resin can be used.
  • the high refractive index layer and the low refractive index layer both use a polyvinyl alcohol resin as the first water-soluble resin and the second water-soluble resin
  • the polyvinyl alcohol resins having different saponification degrees are used. Is preferably used. Thereby, mixing of the interface is suppressed, the reflectance (for example, infrared reflectance (infrared shielding rate)) becomes better, and haze can be lowered.
  • degree of saponification means the ratio of hydroxy groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxy groups in the polyvinyl alcohol resin.
  • the content of the second water-soluble resin is preferably 3 to 60% by mass and more preferably 10 to 45% by mass with respect to 100% by mass of the solid content of the low refractive index layer.
  • the second metal oxide particles are not particularly limited, but it is preferable to use silica (silicon dioxide) such as synthetic amorphous silica or colloidal silica, and acidic colloidal silica sol. It is more preferable to use Further, from the viewpoint of further reducing the refractive index, hollow fine particles having pores inside the particles can be used as the second metal oxide particles, and it is particularly preferable to use hollow fine particles of silica (silicon dioxide). .
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • the second metal oxide particles may be surface-coated with a surface coating component.
  • the second metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer of the present invention preferably have an average particle diameter (number average; diameter) of 3 to 100 nm, preferably 3 to 50 nm. It is more preferable.
  • the “average particle diameter (number average; diameter)” of the metal oxide particles refers to 1,000 particles observed by an electron microscope on the particles themselves or on the cross section or surface of the refractive index layer. The particle diameter of any of the particles is measured and determined as a simple average value (number average).
  • the particle diameter of each particle is expressed by a diameter assuming a circle equal to the projected area.
  • the content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the total solid content of the low refractive index layer. More preferred is 45 to 65% by mass.
  • the above-described second metal oxide may be used alone or in combination of two or more from the viewpoint of adjusting the refractive index.
  • curing agent Surfactant, and Other Additives
  • the same materials as those for the high refractive index layer can be used, and the description thereof is omitted here.
  • the optical reflective film of the present invention is a water in which at least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film contains a water-soluble resin and a water-dispersible hydrophobic resin. It is a dispersible hydrophobic resin-containing layer, and contains 5 to 55% by mass (solid content mass) of the water-dispersible hydrophobic resin with respect to the total mass (solid content mass) of the water-dispersible hydrophobic resin-containing layer.
  • the water-dispersible hydrophobic resin-containing layer may be a high-refractive index layer or a low-refractive index layer as long as it includes a water-soluble resin and a predetermined amount of the water-dispersible hydrophobic resin.
  • the water-dispersible hydrophobic resin-containing layer has the same configuration as the above-described high-refractive index layer and low-refractive index layer except that it contains a predetermined amount of a water-dispersible hydrophobic resin described later. Can be done. Since water-dispersible hydrophobic resins generally have a low refractive index (about 1.5), if unfused water-dispersible hydrophobic resin remains, haze increases depending on the refractive index of the high refractive index layer. Because of concern, the water-dispersible hydrophobic resin-containing layer is preferably a low refractive index layer.
  • At least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film may be a water-dispersible hydrophobic resin-containing layer.
  • the lowermost layer in contact with the material or the uppermost layer on the side opposite to the substrate is a water-dispersible hydrophobic resin-containing layer. More preferably, all the low refractive index layers including the lowermost layer and the uppermost layer are water-dispersible hydrophobic resin-containing layers.
  • Water-dispersible hydrophobic resin The water-dispersible hydrophobic resin applied to the present invention is formed by fusing a hydrophobic polymer dispersed in an aqueous solvent when forming the refractive index layer in the optical reflective film manufacturing process. Resin.
  • the water-dispersible hydrophobic resin can be an emulsion resin.
  • Emulsion resin is a resin in which fine, for example, resin particles having an average particle size of 2.0 ⁇ m or less are dispersed in an emulsion in an aqueous medium, and an oil-soluble monomer is used as a polymer dispersant or the like. It can be obtained by emulsion polymerization using a dispersant.
  • Oil-soluble monomers that can be used are not particularly limited, but ethylene, propylene, butadiene, vinyl acetate and its partial hydrolyzate, vinyl ether, acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, Methacrylamide and derivatives thereof, styrene, divinylbenzene, vinyl chloride, vinylidene chloride, maleic acid, vinyl pyrrolidone, 1,6-hexamethylene diisocyanate and other diisocyanates, polyisocyanates, diols, polyols, dicarboxylic acids, etc. It is done.
  • the dispersant that can be used is not particularly limited.
  • a low-molecular dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt
  • polyoxyethylene nonyl examples thereof include polymer dispersants such as phenyl ether, polyethylene ethylene laurate, hydroxyethyl cellulose, and polyvinylpyrrolidone.
  • Examples of the resin to be emulsion-polymerized include acrylic resin, styrene-butadiene resin, ethylene-vinyl acetate resin, urethane resin, phenol resin, and acrylate resin.
  • emulsion resin commercially available products may be used.
  • mobile 718A, 710A, 731A, LDM7582, 5450, 6960 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Superflex registered trademark
  • 150 170, 300, 500M
  • Adekabon titer HUX-232, HUX-380, HUX-386, HUX-830, HUX-895
  • AE-116, AE-120A, AE-200A, AE-336B, AE-981A, AE-986B manufactured by E-Tech Co., Ltd.
  • ETERNACOLL UW-1005E, UW-5002, UW-5034E, UE-5502 manufactured by Ube Industries, Ltd.
  • any of an anionic emulsion resin, a cationic emulsion resin, and a nonionic emulsion resin can be used.
  • an anionic emulsion resin is used.
  • an anionic emulsion resin By adding an anionic emulsion resin to a coating solution in which inorganic particles such as metal oxide particles, a water-soluble resin, and a surfactant are dispersed in an aqueous solvent, and using an anionic surfactant as the surfactant. It is considered that the structural viscosity of the coating liquid is stabilized, the dispersion state is improved, and the increase in viscosity is suppressed. As a result, coating failure, particularly streaky coating failure, can be dramatically improved and product yields can be greatly increased.
  • anionic emulsion resin an anionic urethane emulsion resin, an anionic acrylic emulsion resin, an anionic styrene-acrylic copolymer emulsion resin, or the like can be preferably used.
  • anionic surfactant the same ones as described above can be used.
  • the particle diameter of the emulsion resin is not particularly limited, but the average particle diameter is preferably 1 to 100 nm, and more preferably 5 to 60 nm.
  • the average particle diameter of the emulsion resin can be measured by a dynamic light scattering method.
  • the refractive index of the emulsion resin is not particularly limited, but is preferably 1.3 to 1.7, more preferably 1.4 to 1.6. If it is the said range, since it becomes close to the refractive index of water-soluble resin, the haze of the optical reflection film obtained can be reduced.
  • the above-mentioned emulsion resin preferably has a glass transition temperature (Tg) of 20 ° C. or lower, more preferably ⁇ 30 to 10 ° C., from the viewpoint of enhancing flexibility.
  • Tg glass transition temperature
  • the water-dispersible hydrophobic resin-containing layer may contain metal oxide particles.
  • the metal oxide particles the same high refractive index layer and low refractive index layer as those described above can be used.
  • Water-soluble resin The water-dispersible hydrophobic resin-containing layer in the optical reflective film of the present invention contains a water-soluble resin.
  • a water-soluble resin those similar to the above-described high refractive index layer and low refractive index layer can be used.
  • the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is 1500 to 6000, more preferably 4000 to 6000.
  • the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is more preferably 4000 to 5000, and still more preferably 4500 to 5000. If the average degree of polymerization of the water-soluble resin is 1500 or more, it is possible to suppress the occurrence of haze due to diffusion of the water-soluble resin even when applied by the simultaneous multilayer coating method.
  • the average degree of polymerization of the water-soluble resin is 6000 or less, the viscosity of the coating solution does not become too high, which is suitable for the production of a dielectric multilayer film by coating.
  • the average degree of polymerization of the water-soluble resin in at least one water-dispersible hydrophobic resin-containing layer is preferably in the above range, and all water-dispersible hydrophobic properties
  • the average degree of polymerization of the water-soluble resin in the resin-containing layer is more preferably in the above range.
  • the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is preferably a polyvinyl alcohol resin.
  • the saponification degree of the polyvinyl alcohol-based resin is, for example, 70 to 99.5 mol%, and is preferably 80 to 95 mol%, more preferably 85 to 90 mol% from the viewpoint of further suppressing haze.
  • the average degree of polymerization of the water-soluble resin is the viscosity average degree of polymerization, and the average degree of polymerization of the polyvinyl alcohol-based resin can be measured according to Japanese Industrial Standard JIS K6726: 1994.
  • the uppermost layer opposite to the side in contact with the substrate is a water-dispersible hydrophobic resin-containing layer. More preferably, at this time, the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is 4000 to 6000. The average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is more preferably 4000 to 5000, and still more preferably 4500 to 5000. At this time, if the water-dispersible hydrophobic resin-containing layer contains an anionic emulsion resin and an anionic surfactant, the effects of the present invention can be obtained more remarkably.
  • At least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film may be a water-dispersible hydrophobic resin-containing layer.
  • the uppermost layer of the dielectric multilayer film is used as an optical reflector by being bonded to a substrate such as glass through an adhesive layer, for example, when the layer expands or contracts due to adsorption or desorption of moisture in the environment, The stress accompanying it tends to concentrate. Therefore, disposing a water-dispersible hydrophobic resin-containing layer that can suppress the adsorption and desorption of moisture in the environment as the uppermost layer is effective in improving the weather resistance of the optical reflective film.
  • the average polymerization degree of the water-soluble resin is, for example, 1500 or more, preferably 4000 or more, when it is applied by the simultaneous multilayer coating method. Even if it exists, it can suppress that water-soluble resin diffuses and a haze generate
  • the average degree of polymerization of the water-soluble resin is 6000 or less, the viscosity of the coating solution does not become too high, which is suitable for the production of a dielectric multilayer film by coating. More preferably, the average polymerization degree of the water-soluble resin is 4000 to 5000, and further preferably 4500 to 5000.
  • the lowermost layer in contact with the substrate is a water-dispersible hydrophobic resin-containing layer among the refractive index layers constituting the dielectric multilayer film.
  • the lowermost layer of the dielectric multilayer film is a layer in which the stress associated with the expansion and contraction of the layer due to the adsorption and desorption of moisture in the environment compared to the inner layer tends to concentrate.
  • a water-dispersible hydrophobic resin-containing layer is preferable. More preferably, both the uppermost layer and the lowermost layer are water-dispersible hydrophobic resin-containing layers. At this time, if the water-dispersible hydrophobic resin-containing layer contains an anionic emulsion resin and an anionic surfactant, the effects of the present invention can be obtained more remarkably.
  • the uppermost layer and the lowermost layer of the dielectric multilayer film are low refractive index layers, and all the low refractive index layers are water-dispersible hydrophobic resin-containing layers.
  • all the low refractive index layers are water-dispersible hydrophobic resin-containing layers.
  • the thickness of the water-dispersible hydrophobic resin-containing layer is not particularly limited, but when the water-dispersible hydrophobic resin-containing layer is a high refractive index layer, the thickness per layer may be 20 to 800 nm. Preferably, it is 50 to 500 nm. When the water-dispersible hydrophobic resin-containing layer is a low refractive index layer, the thickness per layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm.
  • the optical reflective film according to the present invention is an infrared shielding film that reflects infrared light, it is possible to design a large difference in refractive index between the low refractive index layer and the high refractive index layer with a small number of layers. It is preferable from the viewpoint that the infrared reflectance can be increased.
  • the difference in refractive index between the adjacent low refractive index layer and high refractive index layer may be 0.1 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, and particularly preferably 0.4 or more.
  • the refractive index difference between the high refractive index layer and the low refractive index layer in all the laminated bodies is within the above-mentioned preferable range.
  • the refractive index layers constituting the uppermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
  • the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, more preferably 75% or more, and further preferably 85% or more. is there.
  • the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the number of refractive index layers of the dielectric multilayer film (total number of high refractive index layers and low refractive index layers) is, for example, 6 to 500 layers, and 6 to 300 layers. Is preferred. In particular, when prepared by a wet film forming method, 6 to 50 layers are preferable, 8 to 40 layers are more preferable, 9 to 30 layers are further preferable, and 11 to 31 layers are preferable. It is particularly preferred. It is preferable that the number of refractive index layers of the dielectric multilayer film is in the above range because excellent heat shielding performance and transparency, suppression of film peeling and cracking, and the like can be realized. When the dielectric multilayer film has a plurality of high refractive index layers and / or low refractive index layers, each high refractive index layer and / or each low refractive index layer is the same, but different. It may be a thing.
  • the thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm. Further, the thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm.
  • the composition when measuring the thickness per layer, the composition may change continuously without having a clear interface at the boundary between the high refractive index layer and the low refractive index layer.
  • the above composition can be observed from the concentration profile of the metal oxide particles.
  • the metal oxide concentration profile is formed by etching from the surface to the depth direction using a sputtering method, and using an XPS surface analyzer, sputtering is performed at a rate of 0.5 nm / min, with the outermost surface being 0 nm. It can be seen by measuring the ratio. Further, the laminated film may be cut and the cut surface may be confirmed by measuring the atomic composition ratio with an XPS surface analyzer.
  • the XPS surface analyzer is not particularly limited, and any model can be used.
  • the XPS surface analyzer for example, ESCALAB-200R manufactured by VG Scientific, Inc. can be used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the optical reflective film according to the present invention may have an adhesive layer.
  • This pressure-sensitive adhesive layer is usually provided on the surface of the dielectric multilayer film opposite to the substrate, and a known release paper or separator may be further provided.
  • the configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • the pressure-sensitive adhesive for example, a polyester-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a polyvinyl acetate-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, nitrile rubber, or the like is used.
  • the optical reflective film of the present invention When the optical reflective film of the present invention is bonded to a window glass, water is sprayed on the window, and a method of applying the adhesive layer of the optical reflective film to the wet glass surface, the so-called water pasting method is repositioned, repositioned, etc. From the viewpoint of, it is preferably used. For this reason, an acrylic pressure-sensitive adhesive that has a weak adhesive force in the presence of water is preferably used.
  • the acrylic pressure-sensitive adhesive used may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable.
  • the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water
  • the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycid
  • acrylic pressure-sensitive adhesives examples include, for example, Coponil (registered trademark) series (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • This adhesive layer contains additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made.
  • additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made.
  • an ultraviolet absorber is effective in order to suppress deterioration of the optical reflection film due to ultraviolet rays.
  • the method for applying the adhesive is not particularly limited, and any known method can be used, for example, bar coating method, die coater method, comma coating method, gravure roll coater method, blade coater method, spray coater method, An air knife coating method, a dip coating method, a transfer method, and the like are preferably mentioned, and they can be used alone or in combination. However, it is preferable to carry out a roll method continuously from the viewpoint of economy and productivity. These can be appropriately formed into a solution in a solvent capable of dissolving the pressure-sensitive adhesive, or can be applied using a dispersed coating solution, and known solvents can be used.
  • the thickness of the adhesive layer is preferably in the range of usually about 1 to 100 ⁇ m from the viewpoint of the adhesive effect, the drying speed and the like.
  • the adhesive strength is preferably 2 to 30 N / 25 mm, more preferably 4 to 20 N / 25 mm, as measured by a 180 ° peel test described in JIS K6854.
  • the adhesive layer may be formed directly on the dielectric multilayer film by the previous coating method.
  • the adhesive layer may be applied to a release film and dried, and then the dielectric multilayer film is bonded.
  • the adhesive may be transferred.
  • the drying temperature at this time is preferably such that the residual solvent is reduced as much as possible.
  • the drying temperature and time are not specified, but a drying time of 10 seconds to 5 minutes is preferably provided at a temperature of 50 to 150 ° C. Is good.
  • a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like may be laminated as a surface protective layer for improving the scratch resistance.
  • a preferable example is a form in which a dielectric multilayer film and an adhesive layer are laminated in this order on the substrate surface, and a hard coat layer is coated on the substrate surface on the side opposite to the side where these layers are laminated. Can be mentioned.
  • curable resin used in the hard coat layer examples include a thermosetting resin and an ultraviolet curable resin.
  • an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred.
  • curable resins can be used alone or in combination of two or more.
  • ultraviolet curable resin examples include (meth) acrylate, urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, and oxetane resin, and these can also be used as a solvent-free resin composition.
  • the ultraviolet curable resin it is preferable to add a photopolymerization initiator to accelerate curing.
  • Photoinitiators include acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, thiuram compounds, fluoroamine compounds Etc. are used.
  • Specific examples of the photopolymerization initiator include 2,2′-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxydimethylphenyl ketone, 2-methyl-4′-methylthio-2-mori.
  • Acetophenones such as holinopropiophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone 1, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethylletal, etc.
  • These photopolymerization initiators may be used alone, in combination of two or more, or in a eutectic mixture.
  • acetophenones are preferably used from the viewpoints of stability of the curable composition and polymerization reactivity.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure (registered trademark) 819, 184, 907, 651 manufactured by BASF Japan Ltd., for example.
  • Irgacure registered trademark 819, 184, 907, 651 manufactured by BASF Japan Ltd., for example.
  • the thickness of the hard coat layer is preferably from 0.1 to 50 ⁇ m, more preferably from 1 to 20 ⁇ m, from the viewpoints of improving the hard coat properties and improving the transparency of the optical reflective film.
  • the method for forming the hard coat layer is not particularly limited. For example, after preparing a hard coat layer coating solution containing the above components, the coating solution is applied with a wire bar or the like, and the coating solution is cured with heat and / or UV. And a method of forming a hard coat layer.
  • the optical reflective film according to the present invention may have a layer (other layers) other than the layers described above.
  • an intermediate layer can be provided as the other layer.
  • the “intermediate layer” means a layer between the base material and the dielectric multilayer film, or a layer between the base material and the hard coat layer.
  • the constituent material of the intermediate layer include polyester resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyvinyl acetal resin, acrylic resin, urethane resin, and the like. Any of them may be used as long as they are satisfied.
  • the glass transition temperature (Tg) of the intermediate layer is preferably 30 to 120 ° C. because sufficient weather resistance can be obtained, and more preferably in the range of 30 to 90 ° C.
  • At least 1 unit comprised from a high refractive index layer and a low refractive index layer is formed on a base material, and a high refractive index layer or a low refractive index is formed. Any method can be used as long as at least one of the layers can be the above-described water-dispersible hydrophobic resin-containing layer.
  • a laminate dielectric multilayer film
  • a high refractive index layer and a low refractive index layer include the following: (1) A high refractive index layer coating solution is applied onto a substrate and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied and dried.
  • Forming a low refractive index layer and forming an optical reflective film (2) applying a low refractive index layer coating solution on a substrate and drying to form a low refractive index layer; A method of forming a high refractive index layer by applying a layer coating solution and drying to form an optical reflective film; (3) alternating a high refractive index layer coating solution and a low refractive index layer coating solution on a substrate A method of forming an optical reflective film comprising a high refractive index layer and a low refractive index layer; (4) a high refractive index layer coating solution and a low refractive index layer; A method of forming an optical reflective film including a high refractive index layer and a low refractive index layer by simultaneously applying a coating layer with a coating solution and drying;
  • the method (4) which is a simpler manufacturing process, is preferable. That is, it is preferable that the method for producing an optical reflective film of the present invention includes laminating the high refractive index layer and the low refractive index
  • the layers are stacked in an undried liquid state, so inter-layer mixing is more likely to occur.
  • the water-soluble resin is a polyvinyl alcohol resin
  • the saponification degree of the polyvinyl alcohol resin contained in the high refractive index layer is different from the saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer. It is known that the compatibility of polyvinyl alcohol resins having different degrees is low.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the solvent for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • an aqueous solvent can be used in order to use a water-soluble resin. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
  • esters such as e
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%.
  • volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
  • the concentration of the water-soluble resin in the high refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • concentration of the metal oxide particles in the high refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration of the water-soluble resin in the low refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • concentration of the metal oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass.
  • the method for preparing the high refractive index layer coating liquid and the low refractive index layer coating liquid is not particularly limited. It is done. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
  • the water-dispersible hydrophobic resin is added to the above-described high refractive index layer coating solution with a predetermined solid content concentration.
  • a water-dispersible hydrophobic resin-containing layer coating solution water-dispersible hydrophobic resin-containing high refractive index layer coating solution
  • a water-dispersible hydrophobic resin-containing layer that functions as a high refractive index layer can be obtained by applying and drying the water-dispersible hydrophobic resin-containing layer coating solution.
  • the water-dispersible hydrophobic resin is added to the final solid concentration in the low refractive index layer coating liquid as described above. Is added so as to be within a predetermined range to prepare a water-dispersible hydrophobic resin-containing layer coating solution (water-dispersible hydrophobic resin-containing low refractive index layer coating solution).
  • a water-dispersible hydrophobic resin-containing layer that functions as a low refractive index layer can be obtained by applying and drying the water-dispersible hydrophobic resin-containing layer coating solution.
  • the concentration of the water-dispersible hydrophobic resin in the water-dispersible hydrophobic resin-containing layer coating solution is not particularly limited, but the content of the water-dispersible hydrophobic resin in the water-dispersible hydrophobic resin-containing layer (solid content) ) Within the above range.
  • the optical reflective film of the present invention contains an anionic emulsion resin and an anionic surfactant in a water-dispersible hydrophobic resin-containing layer. Therefore, preferably, the optical reflective film of the present invention comprises a step of preparing a coating solution by dissolving or dispersing a water-soluble resin, an anionic surfactant, and an anionic emulsion resin in an aqueous solvent, and applying the coating solution. Thereby forming the water-dispersible hydrophobic resin-containing layer.
  • the temperature of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., and a temperature range of 30 to 45 ° C. Is more preferable.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is not particularly limited.
  • the preferable temperature range of the coating liquid is preferably 5 to 160 mPa ⁇ s, more preferably 60 to 140 mPa ⁇ s.
  • the preferable temperature range of the coating solution is preferably 5 to 1200 mPa ⁇ s, more preferably 25 to 500 mPa ⁇ s. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity at 15 ° C. of the coating solution is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, and further preferably 2,500 to 30,000 mPa ⁇ s.
  • the conditions for the coating and drying method are not particularly limited.
  • first, either one of the high refractive index layer coating solution and the low refractive index layer coating solution heated to 30 to 60 ° C. is used.
  • the other coating solution is coated on this layer and dried to form a laminated film precursor (unit).
  • the number of units necessary for expressing the desired optical reflection performance is sequentially applied and dried by the above method to obtain a laminated film precursor.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher.
  • drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C.
  • a film surface temperature of 5 to 100 ° C. preferably 10 to 50 ° C.
  • hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the rate-decreasing drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the conditions of the coating and drying method when performing simultaneous multilayer coating are as follows. After the simultaneous multilayer coating of the liquid and the low refractive index layer coating liquid, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 40 to 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
  • the set time is adjusted by adjusting the concentration of polyvinyl alcohol resin and metal oxide particles, and adding other components such as gelatin, pectin, agar, carrageenan, gellan gum and other known gelling agents. It can be adjusted by doing.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the coating thickness of the high refractive index layer coating solution and the low refractive index layer coating solution may be applied so as to have a preferable dry thickness as described above.
  • optical reflective film of the present invention can be applied to a wide range of fields. Therefore, one embodiment of the present invention is an optical reflector in which the above-described optical reflective film is provided on at least one surface of a substrate.
  • film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance.
  • the optical reflective film according to the present invention is suitable for a member that is bonded to a substrate such as glass or a glass substitute resin through the above-mentioned adhesive layer.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol.
  • examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics.
  • the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive layer that bonds the optical reflection film and the substrate is preferably installed so that the optical reflection film is on the sunlight (heat ray) incident surface side when bonded to a window glass or the like. Further, when the optical reflection film is sandwiched between the window glass and the base material, it can be sealed from ambient gas such as moisture, which is preferable for durability. Even if the optical reflective film of the present invention is installed outdoors or on the outside of a vehicle (for external application), it is preferable because of environmental durability.
  • silica-attached titanium dioxide sol a silica-attached titanium dioxide sol containing rutile titanium dioxide was prepared as follows.
  • a titanium dioxide sol (hereinafter, silica-attached titanium dioxide sol) (volume average particle diameter: 9 nm) was obtained.
  • the refractive index of the film coated with the high refractive index layer coating solution 1 was 1.80.
  • the measuring method of a refractive index is as follows (hereinafter the same).
  • ⁇ Preparation of low refractive index layer coating solution 1> A 31% by mass acidic colloidal silica 10% by mass aqueous solution (Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and a boric acid 3% by mass aqueous solution is heated.
  • a low-refractive-index layer coating solution 1 was prepared by adding 5 parts by weight of a surfactant in an amount of 5% by weight (SOFTAZOLINE LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) in this order at 40 ° C.
  • the refractive index of the film coated with the low refractive index layer coating solution 1 was 1.50.
  • Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1> A 13% by mass acidic colloidal silica 10% by mass aqueous solution (Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and a boric acid 3% by mass aqueous solution is heated.
  • Snowtex registered trademark
  • OXS primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.
  • PVA-224 polyvinyl alcohol
  • saponification degree: 87-89 mol% manufactured by Kuraray Co., Ltd.
  • the zeta potential was measured to confirm that the water-dispersed urethane resin was a nonionic resin.
  • the specific measurement method is as follows.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was 1.50.
  • each layer is alternately dried with a low-refractive index layer and a water-dispersible hydrophobic resin-containing low-refractive index layer, each having a thickness of 150 nm and a high refractive index.
  • a total of 19 layers were simultaneously applied so that the rate layer was 130 nm in each layer.
  • cold air of 10 ° C. was blown to set (thickening).
  • Example 1 After completion of the setting (thickening), warm air of 60 ° C. was blown and dried to produce the optical reflective film 1 of Example 1 consisting of a total of 19 layers.
  • the film thickness is measured (confirmed) by cutting the optical reflection film sample and measuring the abundance of the high refractive index material (TiO 2 ) and the low refractive index material (SiO 2 ) with the XPS surface analyzer. Thus, it was confirmed that the film thicknesses of the respective layers were ensured.
  • Example 2 Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2> Water dispersible hydrophobicity except that 18 parts by weight of 10% by weight aqueous solution of acidic colloidal silica, 6 parts by weight of 6% by weight aqueous solution of polyvinyl alcohol and 47 parts by weight of 6% by weight aqueous solution of water-dispersed urethane resin are used. In the same manner as the resin-containing low refractive index layer coating solution 1, a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 was prepared.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 was 1.50.
  • Example 1 Preparation of optical reflection film 1>
  • the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 prepared as described above. Except having changed, the optical reflection film 2 was produced like Example 1.
  • FIG. 1 Preparation of the optical reflective film 1
  • the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 prepared as described above. Except having changed, the optical reflection film 2 was produced like Example 1.
  • Example 3 Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 3>
  • 10 mass% aqueous solution of acidic colloidal silica is 19 mass parts
  • 6 mass% aqueous solution of polyvinyl alcohol is 38 mass parts
  • a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 3 was prepared in the same manner as in Example 1 except that the amount of the water-dispersed urethane resin aqueous solution was 18 parts by mass.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 3 was 1.50.
  • Example 1 Preparation of optical reflection film 1
  • the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 3 prepared as described above.
  • An optical reflective film 3 was produced in the same manner as in Example 1 except that the change was made.
  • Example 4 Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4>
  • 10 mass% aqueous solution of acidic colloidal silica was 19 mass parts
  • 6 mass% aqueous solution of polyvinyl alcohol was 38 mass parts
  • water 18 parts by mass of a 6% by mass aqueous solution of dispersed urethane resin was 1 part by mass of an anionic surfactant of 1 part by mass of a 5% by mass aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4 was prepared in the same manner as in Example 1 except that a 5% by mass aqueous solution of the agent (Hitenol NF-08, manufactured
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4 was 1.50.
  • Example 1 Preparation of the optical reflective film 1
  • the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4 prepared as described above.
  • An optical reflective film 4 was produced in the same manner as in Example 1 except that the change was made.
  • Example 5 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5>
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5 was 1.50.
  • the zeta potential was measured to confirm that the water-dispersed acrylic resin was an anionic resin.
  • the specific measurement method is the same as the measurement in the water-dispersed urethane resin.
  • Example 1 Preparation of optical reflection film 5>
  • the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5 prepared as described above.
  • An optical reflective film 5 was produced in the same manner as in Example 1 except that the change was made.
  • Example 6 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 6>
  • a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 6 was prepared in the same manner as in Example 1 except that NF-08 (Daiichi Kogyo Seiyaku Co., Ltd.) was changed.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 6 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 6 prepared as described above.
  • An optical reflective film 6 was produced in the same manner as in Example 1 except that the change was made.
  • Example 7 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 7>
  • 6 mass% aqueous solution of acidic colloidal silica is 18 mass parts
  • 6 mass% aqueous solution of polyvinyl alcohol is 6 mass parts
  • the particle size was changed to 55 nm (manufactured by Etec Co., Ltd.), and 1 part by weight of a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Da
  • a water-dispersible hydrophobic property was obtained in the same manner as in Example 1 except that the active agent was changed to a 5% by mass aqueous solution (Haitenol NF-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • the fat content low refractive index layer coating solution 7 was prepared.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 7 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was used as the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 7 prepared as described above.
  • An optical reflective film 7 was produced in the same manner as in Example 1 except that the change was made.
  • Example 8 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 8>
  • 10 mass% aqueous solution of acidic colloidal silica is 19 mass parts
  • 6 mass% aqueous solution of polyvinyl alcohol is 38 mass parts
  • the particle size was changed to 55 nm (manufactured by Etec Co., Ltd.), and 1 part by weight of a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by
  • a water-dispersible sparseness was obtained in the same manner as in Example 1, except that the active agent was changed to a 5% by mass aqueous solution (Haitenol NF-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). Sexual resin containing low refractive index layer coating solution 8 was prepared.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 8 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was used as the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 8 prepared as described above.
  • An optical reflective film 8 was produced in the same manner as in Example 1 except that the change was made.
  • Example 9 Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 9>
  • 10 mass% aqueous solution of acidic colloidal silica is 19 mass parts
  • 6 mass% aqueous solution of polyvinyl alcohol is 38 mass parts
  • a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 9 was prepared in the same manner as in Example 1 except that the average particle size was changed to 55 nm (manufactured by Etec Co., Ltd.).
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 9 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was used as the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 9 prepared as described above.
  • An optical reflective film 9 was produced in the same manner as in Example 1 except that the change was made.
  • Example 10 ⁇ Preparation of optical reflection film 10>
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • the dispersion liquid is changed to the hydrophobic resin-containing low refractive index layer coating solution 8, and the 19th layer from the base material side is replaced with the 11th layer from the base material side. Except for this, an optical reflective film 10 was produced in the same manner as in Example 1.
  • Example 11 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 10>
  • a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 1 part by weight of a 5% by weight aqueous solution (c) Tenor NF-08, was changed to Dai-ichi Kogyo Seiyaku Co., Ltd.) in the same manner as in Example 1, a water-dispersible hydrophobic resin containing low refractive index layer coating solution 10 was prepared.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 10 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to the above.
  • the 19th layer from the substrate side is replaced by the 11th layer from the substrate side, and the water-dispersible hydrophobic resin containing low
  • An optical reflective film 11 was produced in the same manner as in Example 1 except that the refractive index layer was used.
  • Example 12 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 11>
  • a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 1 part by weight of a 5% by weight aqueous solution (c) Tenor NF-08, except that the Dai-ichi Kogyo Seiyaku Co., Ltd.) in the same manner as in Example 1, a water-dispersible hydrophobic resin containing low refractive index layer coating solution 11 was prepared.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 11 was 1.50.
  • Example 1 production of the optical reflective film 1
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to the above.
  • the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 11 prepared in step 1 was used, and the 19th layer from the substrate side was changed to a water-dispersible hydrophobic resin-containing low-refractive index layer.
  • An optical reflection film 12 was produced in the same manner as in Example 1.
  • Example 13 ⁇ Preparation of optical reflection film 13>
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • the dispersion liquid hydrophobic resin-containing low refractive index layer coating solution 10 was changed, and the first and 19th layers from the substrate side were changed to water-dispersible hydrophobic resin-containing low refractive index layers,
  • An optical reflective film 13 was produced in the same manner as in Example 1.
  • Example 14 ⁇ Preparation of optical reflection film 14>
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • the dispersion liquid is changed to the hydrophobic resin-containing low refractive index layer coating solution 11, and further, the first layer and the 19th layer from the substrate side are water-dispersible hydrophobic resin-containing low refractive index layers,
  • An optical reflective film 14 was produced in the same manner as in Example 1.
  • Example 15 ⁇ Preparation of optical reflection film 15>
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • the dispersion liquid 11 was changed to the dispersion liquid 11 containing a low-refractive index layer, and all the low-refractive index layers were water-dispersible hydrophobic resin-containing low-refractive index layers.
  • an optical reflection film 15 was produced.
  • Example 1 Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 12>
  • Example 1 Preparation of Dispersible Hydrophobic Resin-Containing Low Refractive Index Layer Coating Liquid 1
  • 10% by weight aqueous solution of acidic colloidal silica is 31 parts by weight
  • 6% by weight aqueous solution of polyvinyl alcohol is 38 parts by weight.
  • a water-dispersible hydrophobic resin-containing low refractive index coating solution 1 in the same manner as the water-dispersible hydrophobic resin-containing low refractive index coating solution 1 except that the water-dispersed urethane resin 6 mass% aqueous solution is 1 part by mass. 12 was prepared.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 12 was 1.50.
  • Example 1 production of the optical reflective film 1
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • An optical reflection film 16 was produced in the same manner as in Example 1 except that the coating liquid 12 was changed to the dispersible hydrophobic resin-containing low refractive index layer.
  • Example 2 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 13>
  • the water-soluble resin was a 6% by weight aqueous solution of polyvinyl alcohol (trade name: PVA-210, average polymerization degree: 1000, saponification degree). : 88 mol%, manufactured by Kuraray Co., Ltd.) 38 parts by weight, water except that the 10% by weight aqueous solution of acidic colloidal silica was 31 parts by weight and the water-dispersed urethane resin 6% by weight aqueous solution was 1 part by weight.
  • a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 13 was prepared in the same manner as the dispersible hydrophobic resin-containing low refractive index layer coating solution 1.
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 13 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • the dispersion liquid is changed to the hydrophobic resin-containing low refractive index layer coating solution 13, and the 19th layer from the base material side is replaced with the 11th layer from the base material side.
  • an optical reflective film 17 was produced in the same manner as in Example 1.
  • Example 3 Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 14>
  • 10 mass% aqueous solution of acidic colloidal silica is 10 mass parts
  • 6 mass% aqueous solution of polyvinyl alcohol is 4 mass parts
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 14 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • An optical reflective film 18 was produced in the same manner as in Example 1 except that the coating liquid 14 was changed to the dispersible hydrophobic resin-containing low refractive index layer.
  • Example 4 ⁇ Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 15>
  • coating liquid 1 containing a low-refractive index resin-containing dispersive hydrophobic resin 9 parts by mass of 10% by weight aqueous solution of acidic colloidal silica and 6% by weight aqueous solution of polyvinyl alcohol (product) (Name: JM-23, average polymerization degree: 2300, saponification degree: 97 mol%, manufactured by Nippon Bibi-Poval Co., Ltd.) 4 parts by mass, water dispersion urethane resin 6 mass% aqueous solution 65 mass parts water dispersion acrylic
  • the refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 15 was 1.50.
  • Example 1 Production of the optical reflective film 1
  • the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water.
  • An optical reflecting film 19 was produced in the same manner as in Example 1 except that the coating liquid 15 was changed to the dispersible hydrophobic resin-containing low refractive index layer.
  • haze (%) was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. NDH2000 type
  • a haze value of an optical reflection film it should just be 2.5% or less, and it is preferable in it being 1.5% or less.
  • the optical reflective film samples produced in the above examples and comparative examples were visually observed, and the total number (number / 1000 m 2 ) of coating film failures (repelling and agglomerates) having a diameter of 2 mm or more was counted.
  • the average value of the sheets was calculated and evaluated according to the following evaluation criteria.
  • ⁇ , ⁇ ⁇ , and ⁇ can be used without any practical problem.
  • the following adhesive layer forming coating solution was applied to a silicone release surface of Nakamoto Pax separator NS23MA with a comma coater so that the dry film thickness was 10 ⁇ m, and dried at 90 ° C. for 1 minute. Thus, an adhesive layer was formed.
  • the film having the dielectric multilayer film formed thereon was bonded to this adhesive layer to form an adhesive layer on the dielectric multilayer film.
  • Adhesive Layer Forming Coating Solution Coronyl (registered trademark) N-6941M (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), which is a pressure-sensitive adhesive, Add 3% by mass, add 5% by mass of Tinuvin 477 (BASF Japan Co., Ltd.), which is an ultraviolet absorber, and dilute with ethyl acetate as a solvent so that the solid content becomes 10% by mass.
  • a forming coating solution was prepared.
  • This sample was subjected to a water jet of 18 minutes to xenon light having an intensity of 180 W / m 2 using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emitting light very close to sunlight) under conditions of 50 ° C. and 70% RH. Repeated 22 minutes of drying. Thereafter, whether or not film cracking occurred after exposure every 10 hours was visually confirmed and evaluated according to the following evaluation criteria.
  • the water-dispersible hydrophobic resin-containing layer having a water-soluble resin and a water-dispersible hydrophobic resin is included, and water is added to the solid mass of the water-dispersible hydrophobic resin-containing layer. It can be seen that the optical reflective films of Examples 1 to 15 containing 5 to 55 mass% of the dispersible hydrophobic resin are superior in weather resistance as compared with the optical reflective films of Comparative Examples 1 to 4. It was also found that coating film failure was reduced.
  • Example 5 to 8 using an anionic emulsion resin as the water-dispersible hydrophobic resin and containing an anionic surfactant, the coating film failure is further improved as compared with Examples 1 to 4 and 9.
  • Example 11 to 15 in which an anionic emulsion resin and a water-soluble resin having an average polymerization degree of 4000 to 6000 were used for the uppermost layer, the weather resistance was further improved and the haze was improved.
  • the lowermost layer also includes a water-dispersible hydrophobic resin-containing layer containing an anionic emulsion resin, and all the low refractive index layers including the uppermost layer and the lowermost layer are water-dispersible containing an anionic emulsion resin.
  • Example 15 in which the hydrophobic resin-containing layer was used it was found that the effect of improving the weather resistance was high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

[Problem] To provide an optical reflection film having a refractive index layer that includes a water-soluble resin, wherein there is little coating failure and little cracking even after a long period of use. [Solution] An optical reflection film that is provided with a substrate and a dielectric multilayer film disposed on one surface of the substrate and formed by alternately layering low refractive index layers and high refractive index layers. At least one of the low refractive index layers and high refractive index layers is a water-dispersible hydrophobic resin–containing layer that includes a water-soluble resin and 5–55 mass%, relative to the total mass of the layer, of a water-dispersible hydrophobic resin.

Description

光学反射フィルムOptical reflective film
 本発明は、光学反射フィルムに関する。 The present invention relates to an optical reflection film.
 一般に、高屈折率層と低屈折率層とを、それぞれ光学的膜厚を調整して基材の表面に積層させた誘電体多層膜は、特定の波長の光を選択的に反射することが知られている。このような誘電体多層膜は、例えば、建築物の窓や車両用部材などに設置される光学反射フィルムとして利用されている。このような光学反射フィルムは、可視光線を透過し、近赤外線を選択的に遮蔽するが、各層の膜厚や屈折率を調整するだけで、反射波長をコントロールすることができ、紫外線や可視光を反射することが可能である。 In general, a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are laminated on the surface of a substrate by adjusting the optical film thickness can selectively reflect light of a specific wavelength. Are known. Such a dielectric multilayer film is used, for example, as an optical reflection film installed on a building window or a vehicle member. Such an optical reflection film transmits visible light and selectively shields near infrared rays, but the reflection wavelength can be controlled only by adjusting the film thickness and refractive index of each layer. Can be reflected.
 誘電体多層膜のような積層体の形成方法として、一般的には乾式製膜法で積層する方法があるが、乾式製膜法による誘電体多層膜の形成は、多くの製造コストを要するため、実用的ではない。実用的な方法としては、例えば、水溶性樹脂および金属酸化物粒子の混合物を含む塗布液を、湿式塗布方式により塗布して積層する方法が挙げられる。特に、高屈折率層用の塗布液と低屈折率層用の塗布液とを同時重層塗布することによって製造する方法は、コストの面から優れている。 As a method of forming a multilayer body such as a dielectric multilayer film, there is generally a method of laminating by a dry film forming method. However, formation of a dielectric multilayer film by a dry film forming method requires a lot of manufacturing costs. Not practical. Practical methods include, for example, a method of applying and laminating a coating solution containing a mixture of a water-soluble resin and metal oxide particles by a wet coating method. In particular, the method of manufacturing by simultaneously applying the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is excellent from the viewpoint of cost.
 しかしながら、水溶性樹脂を含む塗布液の塗布によって複数の層を形成し、積層した積層体では、水分の吸脱着が容易に発生することが知られている。水分の吸脱着により各層が収縮、膨張を繰り返すことで、経時によりクラックが発生してしまう。 However, it is known that moisture absorption and desorption easily occurs in a laminated body in which a plurality of layers are formed by applying a coating solution containing a water-soluble resin. Cracks occur over time due to repeated shrinkage and expansion of each layer due to moisture absorption and desorption.
 水溶性樹脂を含む積層体の耐水性を改善するために、例えば、特開2012-973号公報には、塗布液に架橋剤を含有させ、隣接する層どうしの界面において水溶性樹脂と架橋剤とを架橋させることで層間を密着させ、水分の混入を抑制する方法が開示されている。 In order to improve the water resistance of a laminate comprising a water-soluble resin, for example, JP 2012-973 A discloses that a coating solution contains a cross-linking agent, and the water-soluble resin and the cross-linking agent are present at the interface between adjacent layers. And a method for suppressing the mixing of moisture is disclosed.
 上記特開2012-973号公報のように、水溶性樹脂に架橋剤を組み合わせて用いることで、積層体の耐水性を向上させることができる。しかしながら、特開2012-973号公報に記載される方法では、塗布液の塗布乾燥後に未反応の架橋剤が残留するため、この架橋剤が経時で反応することで塗膜の後硬化による収縮が生じる。その結果、高湿環境中に長期間さらした際のクラックの発生に関しては、より悪化してしまうことがわかった。未反応の架橋剤が残らないように反応させるためには100℃近い高温が必要であり、これは樹脂基材のガラス転移温度を越えてしまうので現実的ではない。 As described in JP 2012-973 A, the water resistance of the laminate can be improved by using a water-soluble resin in combination with a crosslinking agent. However, in the method described in Japanese Patent Application Laid-Open No. 2012-973, an unreacted crosslinking agent remains after coating and drying of the coating solution. Therefore, the crosslinking agent reacts with time to cause shrinkage due to post-curing of the coating film. Arise. As a result, it was found that the generation of cracks when exposed to a high humidity environment for a long period of time was further deteriorated. In order to carry out the reaction so that unreacted cross-linking agent does not remain, a high temperature close to 100 ° C. is necessary, which is not realistic because it exceeds the glass transition temperature of the resin base material.
 したがって、本発明は、上記事情を鑑みてなされたものであり、水溶性樹脂を含む屈折率層を有する光学反射フィルムにおいて、塗膜故障が少なく、長期間使用してもクラックの発生が少ない光学反射フィルムを提供することを目的とする。 Accordingly, the present invention has been made in view of the above circumstances, and in an optical reflective film having a refractive index layer containing a water-soluble resin, an optical film with little coating film failure and less cracking even when used for a long period of time. An object is to provide a reflective film.
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、下記構成を採ることにより本発明の目的が達成されることが判明した。 As a result of intensive studies to solve the above problems, the present inventors have found that the object of the present invention can be achieved by adopting the following configuration.
 すなわち、本発明の上記課題は、以下の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.基材と、
 前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、
 前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、全質量に対して5~55質量%の水分散性疎水性樹脂と、を含む水分散性疎水性樹脂含有層である、光学反射フィルム。
1. A substrate;
A dielectric multilayer film in which low-refractive index layers and high-refractive index layers are alternately stacked, disposed on one surface of the substrate;
At least one of the low refractive index layer and the high refractive index layer includes a water-soluble resin and a water-dispersible hydrophobic resin containing 5 to 55% by mass of a water-dispersible hydrophobic resin based on the total mass. An optical reflection film which is a containing layer.
 2.前記水分散性疎水性樹脂含有層がアニオン系界面活性剤をさらに含み、前記水分散性疎水性樹脂がアニオン性エマルジョン樹脂である、前記1.に記載の光学反射フィルム。 2. The water-dispersible hydrophobic resin-containing layer further contains an anionic surfactant, and the water-dispersible hydrophobic resin is an anionic emulsion resin. The optical reflective film as described in 2.
 3.前記誘電体多層膜において、前記基材に接する側と反対側の最上層が前記水分散性疎水性樹脂含有層である、前記1.または2.に記載の光学反射フィルム。 3. In the dielectric multilayer film, the uppermost layer opposite to the side in contact with the base material is the water-dispersible hydrophobic resin-containing layer. Or 2. The optical reflective film as described in 2.
 4.前記誘電体多層膜において、前記基材に接する最下層が前記水分散性疎水性樹脂含有層である、前記1.~3.のいずれか1項に記載の光学反射フィルム。 4. In the dielectric multilayer film, the lowest layer in contact with the substrate is the water-dispersible hydrophobic resin-containing layer. ~ 3. The optical reflective film of any one of these.
 5.前記誘電体多層膜の最上層および最下層が低屈折率層であり、すべての低屈折率層が前記水分散性疎水性樹脂含有層である、前記1.~4.のいずれか1項に記載の光学反射フィルム。 5. The top layer and the bottom layer of the dielectric multilayer film are low refractive index layers, and all the low refractive index layers are the water-dispersible hydrophobic resin-containing layers. ~ 4. The optical reflective film of any one of these.
 6.前記水分散性疎水性樹脂含有層の前記水溶性樹脂の平均重合度が4000~6000である、前記1.~5.のいずれか1項に記載の光学反射フィルム。 6. 1. The average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is from 4000 to 6000. ~ 5. The optical reflective film of any one of these.
 7.水溶性樹脂、アニオン系界面活性剤、およびアニオン性エマルジョン樹脂を水系溶媒に溶解または分散させて塗布液を調製する段階と、
 前記塗布液を塗布することによって前記水分散性疎水性樹脂含有層を形成する段階と、
を含む、前記2.に記載の光学反射フィルムの製造方法。
7). A step of preparing a coating solution by dissolving or dispersing a water-soluble resin, an anionic surfactant, and an anionic emulsion resin in an aqueous solvent;
Forming the water-dispersible hydrophobic resin-containing layer by applying the coating liquid;
Including the above 2. The manufacturing method of the optical reflection film of description.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明の一形態は、基材と、前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、全質量に対して5~55質量%の水分散性疎水性樹脂と、を含む水分散性疎水性樹脂含有層である、光学反射フィルムである。 One embodiment of the present invention includes a base material, and a dielectric multilayer film in which low refractive index layers and high refractive index layers are alternately stacked, which are disposed on one surface of the base material. At least one of the low refractive index layer and the high refractive index layer contains a water-soluble resin and a water-dispersible hydrophobic resin containing 5 to 55% by mass of a water-dispersible hydrophobic resin based on the total mass. It is an optical reflection film which is a resin containing layer.
 本発明によれば、水溶性樹脂を含む屈折率層を有する光学反射フィルムにおいて、塗膜故障が少なく、長期間使用してもクラックの発生が少ない光学反射フィルムが得られうる。 According to the present invention, in an optical reflective film having a refractive index layer containing a water-soluble resin, an optical reflective film with few coating film failures and few cracks even when used for a long time can be obtained.
 本発明の光学反射フィルムは、高屈折率層および低屈折率層のうち少なくとも1つの屈折率層に水溶性樹脂を含有する。ここで、上述のように、水溶性樹脂を含む光学反射フィルムにおいては経時でクラックが発生する問題がある。 The optical reflective film of the present invention contains a water-soluble resin in at least one refractive index layer among the high refractive index layer and the low refractive index layer. Here, as described above, the optical reflective film containing the water-soluble resin has a problem that cracks occur with time.
 そこで、本発明者らは、光学反射フィルムのクラック(割れ)について検討したところ、水溶性樹脂とともに、所定の量の水分散性疎水性樹脂を用いることで、屈折率層の膨張、収縮を低減でき、経時でのクラック発生を低減できることを見出した。水溶性樹脂に水分散性疎水性樹脂を加えると、この樹脂が融着して造膜されたとき、水分散性疎水性樹脂を加えなかった場合と比べて、疎水性が強い膜が得られる。そのため、大気中の水分量変化による膜の膨張、収縮を低減できるため、クラックの発生が防止できるものと考えられる。また、エマルジョン樹脂を含有することにより塗布膜が柔軟化し、塗膜故障が低減されうる。特にアニオン系界面活性剤とアニオン性の水分散性疎水性樹脂を組み合わせることで、水分散性疎水性樹脂の塗布液中の安定性が上昇し、塗膜乾燥時の局所的な凝集等が抑制され、塗膜故障がより低減できるものと考えられる。 Therefore, the present inventors examined cracks in the optical reflection film, and reduced the expansion and contraction of the refractive index layer by using a predetermined amount of water-dispersible hydrophobic resin together with the water-soluble resin. It was found that cracking with time can be reduced. When a water-dispersible hydrophobic resin is added to a water-soluble resin, when the resin is fused and formed into a film, a membrane having higher hydrophobicity is obtained than when no water-dispersible hydrophobic resin is added. . Therefore, it is considered that the occurrence of cracks can be prevented because the expansion and contraction of the film due to the change in the amount of moisture in the atmosphere can be reduced. Moreover, the coating film can be softened by containing the emulsion resin, and coating film failure can be reduced. In particular, combining an anionic surfactant with an anionic water-dispersible hydrophobic resin increases the stability of the water-dispersible hydrophobic resin in the coating solution and suppresses local agglomeration during coating film drying. It is considered that coating film failure can be further reduced.
 ここで、水分散性疎水性樹脂の含有量を、水分散性疎水性樹脂含有層の全質量(固形分質量)に対して、5~55質量%とすることで、優れたクラック防止効果が得られる。また、塗膜故障が低減されうる。水分散性疎水性樹脂の含有量が5質量%未満であると、水分散性疎水性樹脂同士の融着が少なくなり、本発明の効果が十分に得られない。一方、水分散性疎水性樹脂の含有量が55質量%よりも多くなると、水溶性樹脂とボイドを形成しやすくなり塗膜ヘイズが上昇しやすい。また、水分散性疎水性樹脂の含有量が55質量%よりも多くなると、水系塗布、特に同時重層塗布する際に塗布液の粘度低下が発生する。そのため、均一な塗膜の形成が難しく、経時でのクラックが発生しやすくなってしまう。また、塗膜故障も生じやすい。さらに、塗布液の粘度低下によって屈折率層どうしの混合が生じ、ヘイズが発生しやすくなる。好ましくは、水分散性疎水性樹脂の含有量は、水分散性疎水性樹脂含有層の全質量に対して10~40質量%であり、さらに好ましくは10~30質量%である。2種類以上の水分散性疎水性樹脂を用いる場合、その合計量が上記範囲となるように調整する。2以上の水分散性疎水性樹脂含有層を含む場合、少なくとも1層の水分散性疎水性樹脂の含有量が上記範囲であればよいが、すべての層で上記範囲であることがより好ましい。 Here, by setting the content of the water-dispersible hydrophobic resin to 5 to 55% by mass with respect to the total mass (solid content mass) of the water-dispersible hydrophobic resin-containing layer, an excellent crack prevention effect can be obtained. can get. Moreover, coating film failure can be reduced. When the content of the water-dispersible hydrophobic resin is less than 5% by mass, fusion between the water-dispersible hydrophobic resins is reduced, and the effects of the present invention cannot be sufficiently obtained. On the other hand, when the content of the water-dispersible hydrophobic resin is more than 55% by mass, it is easy to form a void with the water-soluble resin and the coating film haze is likely to increase. On the other hand, when the content of the water-dispersible hydrophobic resin is more than 55% by mass, the viscosity of the coating solution is lowered during aqueous coating, particularly simultaneous multi-layer coating. Therefore, it is difficult to form a uniform coating film, and cracks with time are likely to occur. Also, coating film failure is likely to occur. Furthermore, mixing of the refractive index layers occurs due to a decrease in the viscosity of the coating solution, and haze is likely to occur. Preferably, the content of the water-dispersible hydrophobic resin is 10 to 40% by mass, more preferably 10 to 30% by mass, based on the total mass of the water-dispersible hydrophobic resin-containing layer. When two or more types of water-dispersible hydrophobic resins are used, the total amount is adjusted to be in the above range. When two or more water-dispersible hydrophobic resin-containing layers are included, the content of at least one water-dispersible hydrophobic resin may be in the above range, but it is more preferable that all layers have the above range.
 以下、本発明の光学反射フィルムの構成要素について、詳細に説明する。なお、以下では、低屈折率層および高屈折率層を区別しない場合は、両者を含む概念として「屈折率層」と称する。 Hereinafter, the components of the optical reflection film of the present invention will be described in detail. Hereinafter, when the low refractive index layer and the high refractive index layer are not distinguished, the concept including both is referred to as a “refractive index layer”.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で行う。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 〔光学反射フィルム〕
 本発明に係る光学反射フィルムは、基材と、前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有する。
[Optical reflection film]
An optical reflective film according to the present invention comprises a base material, and a dielectric multilayer film formed by alternately laminating low refractive index layers and high refractive index layers disposed on one surface of the base material. Have.
 [基材]
 本発明に係る光学反射フィルムは、誘電体多層膜などを支持するための基材を含む。基材としては、種々の樹脂フィルムを用いることができ、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。
[Base material]
The optical reflective film according to the present invention includes a base material for supporting a dielectric multilayer film or the like. As the substrate, various resin films can be used, such as polyolefin films (polyethylene, polypropylene, etc.), polyester films (polyethylene terephthalate (PET), polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc. A polyester film is preferable. Although it does not specifically limit as a polyester film (henceforth polyester), It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components.
 主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。 The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 本発明に用いられる基材の厚みは、10~300μm、特に20~150μmであることが好ましい。また、基材は、2枚重ねたものであってもよく、この場合、その種類が同じでも異なってもよい。 The thickness of the substrate used in the present invention is preferably 10 to 300 μm, particularly 20 to 150 μm. In addition, two substrates may be stacked, and in this case, the type may be the same or different.
 基材は、JIS R3106-1998で示される可視光領域の透過率が85%以上であることが好ましく、特に90%以上であることが好ましい。基材が上記透過率以上であることにより、積層フィルムとしたときのJIS R3106-1998で示される可視光領域の透過率を50%以上(上限:100%)にするという点で有利であり、好ましい。 The base material preferably has a visible light region transmittance of 85% or more shown in JIS R3106-1998, and particularly preferably 90% or more. When the base material has the above transmittance or more, it is advantageous in that the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more (upper limit: 100%) when a laminated film is formed. preferable.
 また、上記樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。 In addition, the base material using the resin or the like may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
 基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The base material can be manufactured by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 [誘電体多層膜]
 誘電体多層膜は、低屈折率層と高屈折率層とが交互に積層されてなる構成を有するものであり、低屈折率層と高屈折率層からなるユニットを少なくとも1つ有する。誘電体多層膜がこのように異なる屈折率を有する屈折率層を含む構成であることにより、所定の波長を有する光(例えば、赤外光)が入射した場合に、少なくともこの光の一部を反射して遮蔽効果(ひいては赤外光の場合には遮熱効果)を発揮することができる。
[Dielectric multilayer film]
The dielectric multilayer film has a configuration in which low refractive index layers and high refractive index layers are alternately stacked, and has at least one unit composed of a low refractive index layer and a high refractive index layer. Since the dielectric multilayer film includes the refractive index layers having different refractive indexes in this way, when light having a predetermined wavelength (for example, infrared light) is incident, at least a part of this light is It can reflect and can exhibit the shielding effect (and heat shielding effect in the case of infrared light).
 本形態において、誘電体多層膜を構成する屈折率層が、低屈折率層であるか高屈折率層であるかは、隣接する屈折率層との屈折率の対比によって判断される。具体的には、ある屈折率層を基準層としたとき、当該基準層に隣接する屈折率層が基準層より屈折率が低ければ、基準層は高屈折率層である(隣接層は低屈折率層である)と判断される。一方、基準層より隣接層の屈折率が高ければ、基準層は低屈折率層である(隣接層は高屈折率層である)と判断される。したがって、屈折率層が高屈折率層であるか低屈折率層であるかは、隣接層が有する屈折率との関係で定まる相対的なものであり、ある屈折率層は、隣接層との関係によって高屈折率層にも低屈折率層にもなりうる。 In this embodiment, whether the refractive index layer constituting the dielectric multilayer film is a low refractive index layer or a high refractive index layer is determined by comparing the refractive index with the adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer. On the other hand, if the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer). Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
 屈折率層としては、誘電体多層膜を構成する高屈折率層および低屈折率層のうち、少なくとも1つの屈折率層が、水溶性樹脂と、前記屈折率層の全質量に対して5~55質量%の水分散性疎水性樹脂と、を含む水分散性疎水性樹脂含有層であれば特に制限はなく、当該技術分野において用いられる公知の屈折率層が用いられうる。公知の屈折率層としては、例えば、製造効率の観点から、湿式製膜法を用いて形成する屈折率層が好ましく用いられる。 As the refractive index layer, at least one refractive index layer of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film is 5 to 5 with respect to the water-soluble resin and the total mass of the refractive index layer. If it is a water dispersible hydrophobic resin containing layer containing 55 mass% water dispersible hydrophobic resin, there will be no restriction | limiting in particular, The well-known refractive index layer used in the said technical field may be used. As the known refractive index layer, for example, a refractive index layer formed by a wet film forming method is preferably used from the viewpoint of manufacturing efficiency.
 さらに、反射特性の観点から、高屈折率層および低屈折率層の少なくとも一方が、金属酸化物粒子を含むことが好ましく、高屈折率層および低屈折率層の両方が金属酸化物粒子を含むことがより好ましい。 Further, from the viewpoint of reflection characteristics, at least one of the high refractive index layer and the low refractive index layer preferably includes metal oxide particles, and both the high refractive index layer and the low refractive index layer include metal oxide particles. It is more preferable.
 また、上述のように、本発明の光学反射フィルムの誘電体多層膜において、高屈折率層および低屈折率層の少なくとも一層に水溶性樹脂を用いる。また、湿式製膜法によって形成される光学反射フィルムの屈折率層は、水溶性樹脂を含有する塗布液(通常は水等の水系溶媒を含む)を塗布した塗膜であることが好ましい。水溶性樹脂は、有機溶剤を用いないため、環境負荷が少なく、また、柔軟性が高いため、屈曲時の膜の耐久性が向上するため好ましい。水溶性樹脂は、特に、高屈折率層および前記低屈折率層の少なくとも一層に金属酸化物粒子を含む場合に好適に使用される。 Further, as described above, in the dielectric multilayer film of the optical reflecting film of the present invention, a water-soluble resin is used for at least one of the high refractive index layer and the low refractive index layer. Moreover, it is preferable that the refractive index layer of the optical reflection film formed by the wet film forming method is a coating film coated with a coating solution containing a water-soluble resin (usually containing an aqueous solvent such as water). The water-soluble resin is preferable because it does not use an organic solvent, has a low environmental load, and has high flexibility, so that the durability of the film during bending is improved. The water-soluble resin is preferably used particularly when metal oxide particles are included in at least one of the high refractive index layer and the low refractive index layer.
 なお、本明細書において「水溶性」とは、物質が最も溶解する温度で、0.5質量%の濃度となるように水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に、濾別される不溶物の質量が加えた高分子の50質量%以内であることを意味する。 In this specification, “water-soluble” means a G2 glass filter (maximum pores 40 to 50 μm) when dissolved in water so as to have a concentration of 0.5% by mass at the temperature at which the substance is most dissolved. This means that the mass of insoluble matter to be filtered out is within 50% by mass of the added polymer.
 上述のように、低屈折率層であるか高屈折率層であるかは、隣接する屈折率層との関係で定まる相対的なものであり、ある屈折率層は低屈折率層にも高屈折率層にもなりうるが、以下、それぞれの方法で形成されうる屈折率層のうち、代表的な高屈折率層および低屈折率層の構成について説明する。 As described above, whether the layer is a low refractive index layer or a high refractive index layer is a relative one that is determined by the relationship with the adjacent refractive index layer. The structure of a typical high refractive index layer and low refractive index layer among the refractive index layers that can be formed by the respective methods will be described below.
 (高屈折率層)
 高屈折率層は、好ましくは水溶性樹脂を含む。その他必要に応じて、金属酸化物粒子、硬化剤、界面活性剤、その他の添加剤を含んでいてもよい。なお、高屈折率層に含まれる水溶性樹脂および金属酸化物粒子を、便宜上、以下では「第1の水溶性樹脂」および「第1の金属酸化物粒子」とそれぞれ称する。
(High refractive index layer)
The high refractive index layer preferably contains a water-soluble resin. In addition, metal oxide particles, a curing agent, a surfactant, and other additives may be included as necessary. The water-soluble resin and metal oxide particles contained in the high refractive index layer are hereinafter referred to as “first water-soluble resin” and “first metal oxide particles” for convenience.
 この際、第1の金属酸化物粒子の屈折率は、後述の低屈折率層に含まれる第2の金属酸化物粒子の屈折率より高い方が好ましい。高屈折率層および/または低屈折率層に金属酸化物粒子を含有することにより、各屈折率層間の屈折率差を大きくすることができ、積層数が低減されることでフィルムの透明度を上げることが出来るため好ましい。また、応力緩和が働き、膜物性(屈曲時および高温高湿時の屈曲性)が向上する等の利点がある。金属酸化物粒子は、いずれかの屈折率層に含有させればよいが、好適な形態は、少なくとも高屈折率層が金属酸化物粒子を含み、より好適な形態は高屈折率層および低屈折率層のいずれもが金属酸化物粒子を含む形態である。 At this time, the refractive index of the first metal oxide particles is preferably higher than the refractive index of the second metal oxide particles contained in the low refractive index layer described later. By containing metal oxide particles in the high refractive index layer and / or the low refractive index layer, the difference in refractive index between the refractive index layers can be increased, and the transparency of the film is increased by reducing the number of layers. This is preferable because it can be performed. In addition, there is an advantage that stress relaxation works and film properties (flexibility at the time of bending and high temperature and high humidity) are improved. The metal oxide particles may be contained in any one of the refractive index layers, but a preferable form is that at least the high refractive index layer includes metal oxide particles, and more preferable forms are the high refractive index layer and the low refractive index layer. All of the rate layers are in a form containing metal oxide particles.
 (1)第1の水溶性樹脂
 第1の水溶性樹脂としては、特に制限されないが、ポリビニルアルコール系樹脂、ゼラチン、セルロース類、増粘多糖類、および反応性官能基を有するポリマーが用いられうる。これらのうち、ポリビニルアルコール系樹脂を用いることが好ましい。
(1) First water-soluble resin The first water-soluble resin is not particularly limited, and polyvinyl alcohol resins, gelatin, celluloses, thickening polysaccharides, and polymers having reactive functional groups can be used. . Of these, it is preferable to use a polyvinyl alcohol-based resin.
 ポリビニルアルコール系樹脂
 前記ポリビニルアルコール系樹脂としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコール(未変性ポリビニルアルコール)、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマー等の変性ポリビニルアルコールが挙げられる。なお、変性ポリビニルアルコールにより、膜の密着性、耐水性、柔軟性が改良される場合がある。
Polyvinyl alcohol resin As the polyvinyl alcohol resin, ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate (unmodified polyvinyl alcohol), cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, vinyl alcohol Examples thereof include modified polyvinyl alcohol such as a polymer. The modified polyvinyl alcohol may improve the film adhesion, water resistance, and flexibility.
 ゼラチン
 ゼラチンとしては、従来、ハロゲン化銀写真感光材料分野で広く用いられてきた各種ゼラチンを適用することができる。例えば、酸処理ゼラチン、アルカリ処理ゼラチン、ゼラチンの製造過程で酵素処理をする酵素処理ゼラチン、分子中に官能基としてのアミノ基、イミノ基、ヒドロキシル基、カルボキシル基を有し、それと反応し得る基を持った試薬で処理し改質したゼラチン誘導体等が挙げられる。
Gelatin As the gelatin, various gelatins that have been widely used in the field of silver halide photographic light-sensitive materials can be applied. For example, acid-treated gelatin, alkali-treated gelatin, enzyme-treated gelatin that undergoes enzyme treatment in the production process of gelatin, a group having an amino group, imino group, hydroxyl group, carboxyl group as a functional group in the molecule, and a group that can react with it And gelatin derivatives modified by treatment with a reagent having
 なお、ゼラチンを用いる場合、必要に応じてゼラチンの硬膜剤を添加することもできる。 When gelatin is used, a gelatin hardener can be added as necessary.
 セルロース類
 セルロース類としては、水溶性のセルロース誘導体を好ましく用いることができる。例えば、カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロース誘導体;カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、カルボキシエチルセルロース等のカルボン酸基含有セルロース類;ニトロセルロース、セルロースアセテートプロピオネート、酢酸セルロース、セルロース硫酸エステル等のセルロース誘導体が挙げられる。
Cellulose As the cellulose, a water-soluble cellulose derivative can be preferably used. For example, water-soluble cellulose derivatives such as carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; carboxylic acid group-containing celluloses such as carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose; Examples thereof include cellulose derivatives such as cellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
 増粘多糖類
 増粘多糖類は、糖類の重合体であり、分子内に水素結合基を多数有するものである。当該増粘多糖類は、温度による分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きいという特性を有する。また、増粘多糖類に金属酸化物粒子を添加すると、低温時にその金属酸化物粒子との水素結合によると思われる粘度上昇を起こす。その粘度上昇幅は、15℃における粘度が、通常、1.0mPa・s以上であり、好ましくは5.0mPa・s以上であり、より好ましくは10.0mPa・s以上である。
Thickening polysaccharides Thickening polysaccharides are saccharide polymers that have many hydrogen bonding groups in the molecule. The thickening polysaccharide has a characteristic that the viscosity difference at low temperature and the viscosity at high temperature are large due to the difference in hydrogen bonding force between molecules depending on temperature. In addition, when metal oxide particles are added to the thickening polysaccharide, the viscosity is increased due to hydrogen bonding with the metal oxide particles at low temperatures. As for the viscosity increase range, the viscosity at 15 ° C. is usually 1.0 mPa · s or more, preferably 5.0 mPa · s or more, more preferably 10.0 mPa · s or more.
 用いられうる増粘多糖類としては、特に制限はなく、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類、合成複合多糖類が挙げられる。これら多糖類の詳細については、「生化学辞典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。 The thickening polysaccharide that can be used is not particularly limited, and examples include generally known natural polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides, and synthetic complex polysaccharides. The details of these polysaccharides can be referred to “Biochemical Dictionary (2nd edition), Tokyo Chemical Doujinshi”, “Food Industry”, Vol. 31, (1988), p.
 反応性官能基を有するポリマー
 反応性官能基を有するポリマーとしては、例えば、ポリビニルピロリドン類;ポリアクリル酸、アクリル酸-アクリロニトリル共重合体、アクリル酸カリウム-アクリロニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂;スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂;スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体;酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体;およびこれらの塩が挙げられる。これらのうち、ポリビニルピロリドン類およびこれを含有する共重合体を用いることが好ましい。
Polymers having reactive functional groups Examples of polymers having reactive functional groups include polyvinylpyrrolidones; polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester Acrylic resins such as copolymers, acrylic acid-acrylic acid ester copolymers; styrene-acrylic acid copolymers, styrene-methacrylic acid copolymers, styrene-methacrylic acid-acrylic acid ester copolymers, styrene-α -Styrene acrylic resins such as methylstyrene-acrylic acid copolymer and styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer; styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate Copolymer, styrene -2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer; And vinyl acetate-based copolymers such as vinyl acetate-maleic acid ester copolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-acrylic acid copolymer; and salts thereof. Of these, polyvinylpyrrolidones and copolymers containing the same are preferably used.
 上述の水溶性樹脂は、単独で用いても、2種以上を混合して用いてもよい。 The above water-soluble resins may be used alone or in combination of two or more.
 第1の水溶性樹脂の重量平均分子量は、1000~200000であることが好ましく、3000~40000であることがより好ましい。なお、本明細書において、「重量平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した値を採用するものとする。 The weight average molecular weight of the first water-soluble resin is preferably 1000 to 200000, more preferably 3000 to 40000. In the present specification, the value measured by gel permeation chromatography (GPC) is adopted as the value of “weight average molecular weight”.
 第1の水溶性樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%であることが好ましく、10~40質量%であることがより好ましい。 The content of the first water-soluble resin is preferably 5 to 50% by mass and more preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
 (2)第1の金属酸化物粒子
 第1の金属酸化物粒子としては、特に制限されないが、屈折率が2.0~3.0である金属酸化物粒子であることが好ましい。具体的には、酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。これらのうち、第1の金属酸化物粒子は、透明で屈折率の高い高屈折率層を形成する観点から酸化チタン、酸化ジルコニウムであることが好ましく、耐候性向上の観点からルチル型(正方晶形)酸化チタンであることがより好ましい。
(2) First Metal Oxide Particles The first metal oxide particles are not particularly limited, but are preferably metal oxide particles having a refractive index of 2.0 to 3.0. Specifically, titanium oxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, water Examples thereof include magnesium oxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Among these, the first metal oxide particles are preferably titanium oxide or zirconium oxide from the viewpoint of forming a transparent and high refractive index layer having a high refractive index. From the viewpoint of improving weather resistance, the first metal oxide particles are preferably a rutile type (tetragonal type). ) Titanium oxide is more preferable.
 また、酸化チタンは、含ケイ素の水和酸化物で被覆されたコア・シェル粒子の形態であってもよい。当該コア・シェル粒子は、酸化チタン粒子の表面を、コアとなる酸化チタンに含ケイ素の水和酸化物からなるシェルが被覆してなる構造を有する。この際のコアの部分となる酸化チタン粒子の体積平均粒子径は、1nm超30nm未満であることが好ましく、4nm以上30nm未満であることがより好ましい。かようなコア・シェル粒子を含有させることで、シェル層の含ケイ素の水和酸化物と水溶性樹脂との相互作用により、高屈折率層と低屈折率層との層間混合が抑制されうる。 Further, the titanium oxide may be in the form of core / shell particles coated with a silicon-containing hydrated oxide. The core / shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on titanium oxide serving as a core. In this case, the volume average particle diameter of the titanium oxide particles serving as the core portion is preferably more than 1 nm and less than 30 nm, and more preferably 4 nm or more and less than 30 nm. By including such core / shell particles, the intermixing of the high refractive index layer and the low refractive index layer can be suppressed by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. .
 上述の第1の金属酸化物粒子は、単独で用いても、2種以上を混合して用いてもよい。 The first metal oxide particles described above may be used alone or in combination of two or more.
 第1の金属酸化物粒子の含有量は、低屈折率層との屈折率差が大きくなる観点から、高屈折率層の固形分100質量%に対して、15~80質量%であることが好ましく、20~77質量%であることがより好ましく、30~75質量%であることがさらに好ましい。 The content of the first metal oxide particles is 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer from the viewpoint of increasing the refractive index difference from the low refractive index layer. It is preferably 20 to 77% by mass, more preferably 30 to 75% by mass.
 また、第1の金属酸化物粒子は、体積平均粒子径が30nm以下であることが好ましく、1~30nmであることがより好ましく、5~15nmであることがさらに好ましい。体積平均粒子径が30nm以下であると、ヘイズが少なく可視光透過性に優れることから好ましい。なお、本明細書において、「体積平均粒子径」の値は、以下の方法によって測定した値を採用するものとする。具体的には、屈折率層の断面や表面に現れた任意の1000個の粒子を電子顕微鏡で観察して粒子径を測定し、それぞれd1、d2……di……dkの粒子径を持つ粒子がそれぞれn1、n2……ni……nk個存在する金属酸化物粒子の集団において、粒子1個当りの体積をviとした場合に、下記式により体積平均粒子径(mv)を算出する。 The volume average particle diameter of the first metal oxide particles is preferably 30 nm or less, more preferably 1 to 30 nm, and even more preferably 5 to 15 nm. A volume average particle size of 30 nm or less is preferred because it has less haze and is excellent in visible light transmittance. In the present specification, the value measured by the following method is adopted as the value of “volume average particle diameter”. Specifically, arbitrary 1000 particles appearing on the cross section and surface of the refractive index layer are observed with an electron microscope to measure the particle diameter, and particles having particle diameters of d1, d2,. In the group of n1, n2... Ni... Nk metal oxide particles, where the volume per particle is vi, the volume average particle diameter (mv) is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (3)硬化剤
 硬化剤は、高屈折率層に含有される第1の水溶性樹脂(好ましくは、ポリビニルアルコール系樹脂)と反応して、水素結合のネットワークを形成する機能を有する。
(3) Curing Agent The curing agent has a function of reacting with the first water-soluble resin (preferably polyvinyl alcohol resin) contained in the high refractive index layer to form a hydrogen bond network.
 硬化剤としては、第1の水溶性樹脂と硬化反応を起こすものであれば特に制限はないが、一般的には、水溶性樹脂と反応しうる基を有する化合物または水溶性樹脂が有する異なる基同士の反応を促進するような化合物が挙げられる。 The curing agent is not particularly limited as long as it causes a curing reaction with the first water-soluble resin, but in general, a compound having a group capable of reacting with the water-soluble resin or a different group possessed by the water-soluble resin. The compound which accelerates | stimulates mutual reaction is mentioned.
 具体例として、第1の水溶性樹脂としてポリビニルアルコール系樹脂を用いる場合には、硬化剤としてホウ酸およびその塩を用いることが好ましい。また、ホウ酸およびその塩以外の公知の硬化剤を使用してもよい。 As a specific example, when a polyvinyl alcohol-based resin is used as the first water-soluble resin, it is preferable to use boric acid and its salt as a curing agent. Moreover, you may use well-known hardening | curing agents other than boric acid and its salt.
 なお、ホウ酸およびその塩とは、硼素原子を中心原子とする酸素酸およびその塩のことを意味する。具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸、八ホウ酸、およびこれらの塩が挙げられる。 In addition, boric acid and its salt mean oxygen acid and its salt having a boron atom as a central atom. Specific examples include orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, octaboric acid, and salts thereof.
 硬化剤の含有量は、高屈折率層の固形分100質量%に対して、1~10質量%であることが好ましく、2~6質量%であることがより好ましい。 The content of the curing agent is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
 特に、第1の水溶性樹脂としてポリビニルアルコール系樹脂を使用する場合の硬化剤の総使用量は、ポリビニルアルコール系樹脂1g当たり1~600mgであることが好ましく、ポリビニルアルコール系樹脂1g当たり10~600mgであることがより好ましい。 In particular, when the polyvinyl alcohol resin is used as the first water-soluble resin, the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol resin, and 10 to 600 mg per 1 g of polyvinyl alcohol resin. It is more preferable that
 界面活性剤
 界面活性剤としては、特に制限されないが、両性イオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤およびシリコン系界面活性剤が挙げられる。これらのうち、アクリル系界面活性剤、シリコン系界面活性剤、またはフッ素系界面活性剤が用いられる。界面活性剤としては、長鎖アルキル基を含有する界面活性剤が好ましく、炭素数6~20のアルキル基を有する界面活性剤がより好ましい。
Surfactant Surfactant is not particularly limited, but includes amphoteric surfactant, cationic surfactant, anionic surfactant, nonionic surfactant, fluorosurfactant and silicon surfactant. Is mentioned. Among these, acrylic surfactants, silicon surfactants, or fluorine surfactants are used. As the surfactant, a surfactant containing a long-chain alkyl group is preferable, and a surfactant having an alkyl group having 6 to 20 carbon atoms is more preferable.
 両性イオン系界面活性剤としては、アルキルベタイン、アルキルアミンオキサイド、コカミドプロピルベタイン、ラウラミドプロピルベタイン、パーム核脂肪酸アミドプロピルベタイン、ココアンホ酢酸N、ラウロアンホ酢酸Na、ラウラミドプロピルヒドロキシスルタイン、ラウラミドプロピルアミンオキシド、ミリスタミドプロピルアミンオキシド、ヒドロキシアルキル(C12-14)ヒドロキシエチルサルコシンが挙げられる。 Zwitterionic surfactants include alkylbetaines, alkylamine oxides, cocamidopropyl betaines, lauramidopropyl betaines, palm kernel fatty acid amidopropyl betaines, cocoamphoacetic acid N, lauroamphoacetic acid Na, lauramidopropyl hydroxysultain, lauramide Examples include propylamine oxide, myristamidopropylamine oxide, hydroxyalkyl (C12-14) hydroxyethyl sarcosine.
 カチオン系界面活性剤としては、アルキルアミン塩、第4級アンモニウム塩が挙げられる。 Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.
 アニオン系界面活性剤は、親水基が水溶液中でアニオンに電離する界面活性剤であり、アニオン系界面活性剤としては、硫酸エステル塩、スルホン酸塩、カルボン酸塩、リン酸エステル塩等が挙げられる。例えば、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアリールエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、アルケニルコハク酸ジカリウムが用いられうる。市販のアニオン系界面活性剤としては、例えば硫酸エステル塩としては花王株式会社製のエマール(登録商標)、第一工業株式会社製のハイテノール(登録商標)NF-08、NF-0825、NF-13、NF-17(いずれもポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム)などが挙げられ、スルホン酸塩としては花王株式会社製のネオペレックス(登録商標)、ペレックス(登録商標)が挙げられる。カルボン酸塩としては、第一工業製薬株式会社製のネオハイテノール(登録商標)が挙げられ、リン酸エステル塩としては、第一工業製薬株式会社製のプライサーフ(登録商標)等が挙げられる。本発明では硫酸エステル塩あるいはスルホン酸塩であることが液との混合性の観点からは好ましい。 An anionic surfactant is a surfactant in which a hydrophilic group is ionized to an anion in an aqueous solution, and examples of the anionic surfactant include a sulfate ester salt, a sulfonate salt, a carboxylate salt, and a phosphate ester salt. It is done. For example, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, polyoxyethylene aryl ether sulfate ester salt, alkylbenzene sulfonate salt, fatty acid salt, polyoxyethylene alkyl ether phosphate salt, and dipotassium alkenyl succinate can be used. . Examples of commercially available anionic surfactants include, for example, Emar (registered trademark) manufactured by Kao Corporation, Hytenol (registered trademark) NF-08, NF-0825, NF-manufactured by Daiichi Kogyo Co., Ltd. 13, NF-17 (both polyoxyethylene styrenated phenyl ether ammonium sulfate) and the like, and examples of the sulfonate include Neo-Perex (registered trademark) and Perex (registered trademark) manufactured by Kao Corporation. Examples of the carboxylate include Neo Haitenol (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd., and examples of the phosphate ester salt include Prisurf (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. . In the present invention, a sulfate ester salt or a sulfonate salt is preferable from the viewpoint of miscibility with the liquid.
 ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル(例えば、花王株式会社製エマルゲン(登録商標))、ポリオキシエチレンソルビタン脂肪酸エステル(例えば、花王株式会社製レオドール(登録商標)TWシリーズ)、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミドが挙げられる。または、ポリオキシエチレンアルキルエーテルとしては、ポリオキシエチレンモノ2-エチルヘキシルエーテル、ポリオキシエチレンデシルエーテル(例えば、第一工業製薬株式会社製ノイゲン(登録商標)XL-40、XL-50、XL-60など)を用いることもできる。 Nonionic surfactants include polyoxyethylene alkyl ethers (for example, Emulgen (registered trademark) manufactured by Kao Corporation), polyoxyethylene sorbitan fatty acid esters (for example, Leodol (registered trademark) TW series manufactured by Kao Corporation), glycerin. Examples include fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines, and alkyl alkanolamides. Alternatively, polyoxyethylene alkyl ethers include polyoxyethylene mono 2-ethylhexyl ether, polyoxyethylene decyl ether (for example, Neugen (registered trademark) XL-40, XL-50, XL-60 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) Etc.) can also be used.
 フッ素系界面活性剤としては、サーフロンS-211、S-221、S-231、S-241、S-242、S-243、S-420(AGCセイミケミカル株式会社製)、メガファックF-114、F-410、F-477、F-553(DIC株式会社製)、FC-430、FC-4430、FC-4432(3M社製)が挙げられる。 Fluorosurfactants include Surflon S-211, S-221, S-231, S-241, S-242, S-243, S-420 (manufactured by AGC Seimi Chemical Co., Ltd.), Megafac F-114 F-410, F-477, F-553 (manufactured by DIC Corporation), FC-430, FC-4430, FC-4432 (manufactured by 3M Corporation).
 シリコン系界面活性剤としては、BYK-345、BYK-347、BYK-348、BYK-349(ビックケミー・ジャパン株式会社製)が挙げられる。 Examples of silicon surfactants include BYK-345, BYK-347, BYK-348, and BYK-349 (manufactured by Big Chemie Japan Co., Ltd.).
 高屈折率層は、その他の添加剤をも含みうる。その他の添加剤としては、アミノ酸、リチウム化合物等が挙げられる。また、特開昭57-74193号公報、特開昭57-87988号公報、特開昭62-261476号公報に記載の紫外線吸収剤;特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、特開平3-13376号公報等に記載の退色防止剤;特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、特開平4-219266号公報等に記載の蛍光増白剤;硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤;消泡剤;ジエチレングリコール等の潤滑剤;防腐剤;防黴剤;帯電防止剤;マット剤;熱安定剤;酸化防止剤;難燃剤;結晶核剤;無機粒子;有機粒子;減粘剤;滑剤;赤外線吸収剤;色素;顔料等の公知の各種添加剤等がその他の添加剤として使用されてもよい。 The high refractive index layer can also contain other additives. Examples of other additives include amino acids and lithium compounds. Further, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, JP-A-62-261476; JP-A-57-74192, JP-A-57-87989 No. 5, JP-A-60-72785, JP-A 61-146591, JP-A-1-95091, JP-A-3-13376, etc .; Optical brighteners described in JP-A No. 59-52689, JP-A 62-280069, JP-A 61-242871, JP-A 4-219266, etc .; sulfuric acid, phosphoric acid , Acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters; antifoaming agents; lubricants such as diethylene glycol; antiseptics; antifungal agents; antistatic agents; matting agents; Antioxidants; Flame retardants; Crystal nucleating agents; Inorganic particles; Organic particles; Thickeners; Lubricants; Infrared absorbers; Dyes; Various known additives such as pigments may be used as other additives. .
 (低屈折率層)
 低屈折率層もまた、好ましくは水溶性樹脂を含む。その他必要に応じて、金属酸化物粒子、硬化剤、界面活性剤、その他の添加剤を含んでいてもよい。なお、低屈折率層に含まれる水溶性樹脂および金属酸化物粒子を、便宜上、以下では「第2の水溶性樹脂」および「第2の金属酸化物粒子」とそれぞれ称する。
(Low refractive index layer)
The low refractive index layer also preferably contains a water-soluble resin. In addition, metal oxide particles, a curing agent, a surfactant, and other additives may be included as necessary. The water-soluble resin and metal oxide particles contained in the low refractive index layer are hereinafter referred to as “second water-soluble resin” and “second metal oxide particles” for convenience.
 (1)第2の水溶性樹脂
 第2の水溶性樹脂としては、第1の水溶性樹脂と同様のものが用いられうる。
(1) Second water-soluble resin As the second water-soluble resin, the same one as the first water-soluble resin can be used.
 この際、高屈折率層および低屈折率層が、第1の水溶性樹脂および第2の水溶性樹脂として、ともにポリビニルアルコール系樹脂を使用する場合には、それぞれ鹸化度の異なるポリビニルアルコール系樹脂を用いることが好ましい。これにより、界面の混合が抑制され、反射率(例えば赤外反射率(赤外遮蔽率))がより良好となり、ヘイズが低くなりうる。なお、本明細書において「鹸化度」とは、ポリビニルアルコール系樹脂中のアセチルオキシ基(原料の酢酸ビニル由来のもの)とヒドロキシ基との合計数に対するヒドロキシ基の割合を意味する。 At this time, when the high refractive index layer and the low refractive index layer both use a polyvinyl alcohol resin as the first water-soluble resin and the second water-soluble resin, the polyvinyl alcohol resins having different saponification degrees are used. Is preferably used. Thereby, mixing of the interface is suppressed, the reflectance (for example, infrared reflectance (infrared shielding rate)) becomes better, and haze can be lowered. In the present specification, “degree of saponification” means the ratio of hydroxy groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxy groups in the polyvinyl alcohol resin.
 第2の水溶性樹脂の含有量は、低屈折率層の固形分100質量%に対して、3~60質量%であることが好ましく、10~45質量%であることがより好ましい。 The content of the second water-soluble resin is preferably 3 to 60% by mass and more preferably 10 to 45% by mass with respect to 100% by mass of the solid content of the low refractive index layer.
 (2)第2の金属酸化物粒子
 第2の金属酸化物粒子としては、特に制限されないが、合成非晶質シリカ、コロイダルシリカ等のシリカ(二酸化ケイ素)を用いることが好ましく、酸性のコロイダルシリカゾルを用いることがより好ましい。また、屈折率をより低減させる観点から、第2の金属酸化物粒子として、粒子の内部に空孔を有する中空微粒子を用いることができ、特にシリカ(二酸化ケイ素)の中空微粒子を用いることが好ましい。
(2) Second metal oxide particles The second metal oxide particles are not particularly limited, but it is preferable to use silica (silicon dioxide) such as synthetic amorphous silica or colloidal silica, and acidic colloidal silica sol. It is more preferable to use Further, from the viewpoint of further reducing the refractive index, hollow fine particles having pores inside the particles can be used as the second metal oxide particles, and it is particularly preferable to use hollow fine particles of silica (silicon dioxide). .
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理されたものであってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 また、第2の金属酸化物粒子は、表面被覆成分により表面コーティングされていてもよい。 The second metal oxide particles may be surface-coated with a surface coating component.
 本発明の低屈折率層に含まれる第2の金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒子径(個数平均;直径)が3~100nmであることが好ましく、3~50nmであることがより好ましい。なお、本明細書中、金属酸化物粒子の「平均粒子径(個数平均;直径)」は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒子径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒子径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The second metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer of the present invention preferably have an average particle diameter (number average; diameter) of 3 to 100 nm, preferably 3 to 50 nm. It is more preferable. In the present specification, the “average particle diameter (number average; diameter)” of the metal oxide particles refers to 1,000 particles observed by an electron microscope on the particles themselves or on the cross section or surface of the refractive index layer. The particle diameter of any of the particles is measured and determined as a simple average value (number average). Here, the particle diameter of each particle is expressed by a diameter assuming a circle equal to the projected area.
 低屈折率層における第2の金属酸化物粒子の含有量は、低屈折率層の全固形分100質量%に対して、0.1~70質量%であることが好ましく、30~70質量%であることがより好ましく、45~65質量%であることがさらに好ましい。 The content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the total solid content of the low refractive index layer. More preferred is 45 to 65% by mass.
 上述の第2の金属酸化物は、屈折率を調整する等の観点から、単独で用いても、2種以上を組み合わせて用いてもよい。 The above-described second metal oxide may be used alone or in combination of two or more from the viewpoint of adjusting the refractive index.
 硬化剤、界面活性剤、その他の添加剤
 硬化剤、界面活性剤、その他の添加剤としては、高屈折率層と同様のものが用いられうることからここでは説明を省略する。
Curing Agent, Surfactant, and Other Additives As the curing agent, surfactant, and other additives, the same materials as those for the high refractive index layer can be used, and the description thereof is omitted here.
 (水分散性疎水性樹脂含有層)
 本発明の光学反射フィルムは、上述のように、誘電体多層膜を構成する高屈折率層および低屈折率層のうち少なくとも1層が、水溶性樹脂と水分散性疎水性樹脂とを含む水分散性疎水性樹脂含有層であり、前記水分散性疎水性樹脂含有層の全質量(固形分質量)に対して5~55質量%(固形分質量)の水分散性疎水性樹脂を含む。
(Water-dispersible hydrophobic resin-containing layer)
As described above, the optical reflective film of the present invention is a water in which at least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film contains a water-soluble resin and a water-dispersible hydrophobic resin. It is a dispersible hydrophobic resin-containing layer, and contains 5 to 55% by mass (solid content mass) of the water-dispersible hydrophobic resin with respect to the total mass (solid content mass) of the water-dispersible hydrophobic resin-containing layer.
 前記水分散性疎水性樹脂含有層は、水溶性樹脂と所定の量の水分散性疎水性樹脂を含む層であれば、高屈折率層であっても低屈折率層であってもよい。前記水分散性疎水性樹脂含有層としては、後述の水分散性疎水性樹脂を所定の量で含有させることを除いては、上記の高屈折率層および低屈折率層と同様の構成が採用されうる。一般的に水分散性疎水性樹脂は低屈折率(1.5程度)であるため、未融着の水分散性疎水性樹脂が残存した場合、高屈折率層の屈折率によってはヘイズ上昇が懸念されるため、前記水分散性疎水性樹脂含有層は低屈折率層であることが好ましい。 The water-dispersible hydrophobic resin-containing layer may be a high-refractive index layer or a low-refractive index layer as long as it includes a water-soluble resin and a predetermined amount of the water-dispersible hydrophobic resin. The water-dispersible hydrophobic resin-containing layer has the same configuration as the above-described high-refractive index layer and low-refractive index layer except that it contains a predetermined amount of a water-dispersible hydrophobic resin described later. Can be done. Since water-dispersible hydrophobic resins generally have a low refractive index (about 1.5), if unfused water-dispersible hydrophobic resin remains, haze increases depending on the refractive index of the high refractive index layer. Because of concern, the water-dispersible hydrophobic resin-containing layer is preferably a low refractive index layer.
 また、本発明の光学反射フィルムは、誘電体多層膜を構成する高屈折率層および低屈折率層のうち少なくとも1層が水分散性疎水性樹脂含有層であればよいが、好ましくは、基材に接する最下層、または基材と反対側の最上層が水分散性疎水性樹脂含有層である。より好ましくは、前記最下層および前記最上層を含むすべての低屈折率層が水分散性疎水性樹脂含有層である。 In the optical reflective film of the present invention, at least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film may be a water-dispersible hydrophobic resin-containing layer. The lowermost layer in contact with the material or the uppermost layer on the side opposite to the substrate is a water-dispersible hydrophobic resin-containing layer. More preferably, all the low refractive index layers including the lowermost layer and the uppermost layer are water-dispersible hydrophobic resin-containing layers.
 水分散性疎水性樹脂
 本発明に適用される水分散性疎水性樹脂は、水系溶媒に分散された疎水性ポリマーが、光学反射フィルムの製造工程における屈折率層の成膜時に融着して形成される樹脂である。
Water-dispersible hydrophobic resin The water-dispersible hydrophobic resin applied to the present invention is formed by fusing a hydrophobic polymer dispersed in an aqueous solvent when forming the refractive index layer in the optical reflective film manufacturing process. Resin.
 前記水分散性疎水性樹脂は、エマルジョン樹脂でありうる。エマルジョン樹脂とは、水系媒体中に微細な、例えば、平均粒子径が2.0μm以下の樹脂粒子がエマルジョン状態で分散されている樹脂であって、油溶性のモノマーを、高分子分散剤などの分散剤を用いてエマルジョン重合して得られる。 The water-dispersible hydrophobic resin can be an emulsion resin. Emulsion resin is a resin in which fine, for example, resin particles having an average particle size of 2.0 μm or less are dispersed in an emulsion in an aqueous medium, and an oil-soluble monomer is used as a polymer dispersant or the like. It can be obtained by emulsion polymerization using a dispersant.
 用いられうる油溶性のモノマーは、特に制限されないが、エチレン、プロピレン、ブタジエン、酢酸ビニルおよびその部分加水分解物、ビニルエーテル、アクリル酸およびそのエステル類、メタクリル酸およびそのエステル類、アクリルアミドおよびその誘導体、メタクリルアミドおよびその誘導体、スチレン、ジビニルベンゼン、塩化ビニル、塩化ビニリデン、マレイン酸、ビニルピロリドン、1,6-ヘキサメチレンジイソシアネート等のジイソシアネート類、ポリイソシアネート類、ジオール類、ポリオール類、ジカルボン酸類などが挙げられる。 Oil-soluble monomers that can be used are not particularly limited, but ethylene, propylene, butadiene, vinyl acetate and its partial hydrolyzate, vinyl ether, acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, Methacrylamide and derivatives thereof, styrene, divinylbenzene, vinyl chloride, vinylidene chloride, maleic acid, vinyl pyrrolidone, 1,6-hexamethylene diisocyanate and other diisocyanates, polyisocyanates, diols, polyols, dicarboxylic acids, etc. It is done.
 また、用いられうる分散剤は、特に制限されないが、例えば、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。 The dispersant that can be used is not particularly limited. For example, in addition to a low-molecular dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt, polyoxyethylene nonyl is used. Examples thereof include polymer dispersants such as phenyl ether, polyethylene ethylene laurate, hydroxyethyl cellulose, and polyvinylpyrrolidone.
 上記のエマルジョン重合される樹脂としては、例えばアクリル樹脂、スチレン-ブタジエン樹脂、エチレン-酢酸ビニル樹脂、ウレタン樹脂、フェノール樹脂、アクリル酸エステル樹脂等が挙げられる。 Examples of the resin to be emulsion-polymerized include acrylic resin, styrene-butadiene resin, ethylene-vinyl acetate resin, urethane resin, phenol resin, and acrylate resin.
 エマルジョン樹脂としては、市販されているものを用いてもよく、例えば、モビニール718A、710A、731A、LDM7582、5450、6960(日本合成化学工業株式会社製)、スーパーフレックス(登録商標)150、170、300、500M(第一工業製薬株式会社製)、アデカボンタイターHUX-232、HUX-380、HUX-386、HUX-830、HUX-895(株式会社ADEKA製)、AE-116、AE-120A、AE-200A、AE-336B、AE-981A、AE-986B(株式会社イーテック製)、ETERNACOLL UW-1005E、UW-5002、UW-5034E、UE-5502(宇部興産株式会社製)、およびアクリットUW-309、UW-319SX、UW-520(大成ファインケミカル株式会社製)などが挙げられる。 As the emulsion resin, commercially available products may be used. For example, mobile 718A, 710A, 731A, LDM7582, 5450, 6960 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Superflex (registered trademark) 150, 170, 300, 500M (Daiichi Kogyo Seiyaku Co., Ltd.), Adekabon titer HUX-232, HUX-380, HUX-386, HUX-830, HUX-895 (manufactured by ADEKA Corporation), AE-116, AE-120A, AE-200A, AE-336B, AE-981A, AE-986B (manufactured by E-Tech Co., Ltd.), ETERNACOLL UW-1005E, UW-5002, UW-5034E, UE-5502 (manufactured by Ube Industries, Ltd.), and Acrito UW- 309, UW-319SX, W-520 (Taisei Fine Chemical Co., Ltd.), and the like.
 エマルジョン樹脂としては、アニオン性エマルジョン樹脂、カチオン性エマルジョン樹脂、ノニオン性エマルジョン樹脂のいずれも用いられうるが、本発明の光学反射フィルムにおける水分散性疎水性樹脂含有層においては、アニオン性エマルジョン樹脂を、アニオン系界面活性剤と組み合わせて用いることが好ましい。 As the emulsion resin, any of an anionic emulsion resin, a cationic emulsion resin, and a nonionic emulsion resin can be used. In the water-dispersible hydrophobic resin-containing layer in the optical reflective film of the present invention, an anionic emulsion resin is used. , And preferably used in combination with an anionic surfactant.
 金属酸化物粒子のような無機粒子、水溶性樹脂、および界面活性剤を水系溶媒に分散させた塗布液において、アニオン性エマルジョン樹脂を加え、さらに界面活性剤としてアニオン系界面活性剤を用いることで、塗布液の構造粘性が安定化し、分散状態が良好になって粘度の上昇が抑制されるものと考えられる。その結果、塗膜故障、特に筋状の塗膜故障が劇的に改善され、製品の収率が大幅に向上しうる。 By adding an anionic emulsion resin to a coating solution in which inorganic particles such as metal oxide particles, a water-soluble resin, and a surfactant are dispersed in an aqueous solvent, and using an anionic surfactant as the surfactant. It is considered that the structural viscosity of the coating liquid is stabilized, the dispersion state is improved, and the increase in viscosity is suppressed. As a result, coating failure, particularly streaky coating failure, can be dramatically improved and product yields can be greatly increased.
 ここで、アニオン性エマルジョン樹脂としては、アニオン性ウレタンエマルジョン樹脂、アニオン性アクリルエマルジョン樹脂、アニオン性スチレン-アクリル共重合エマルジョン樹脂などが好ましく用いられうる。アニオン系界面活性剤としては、上記と同様のものを用いることができる。 Here, as the anionic emulsion resin, an anionic urethane emulsion resin, an anionic acrylic emulsion resin, an anionic styrene-acrylic copolymer emulsion resin, or the like can be preferably used. As the anionic surfactant, the same ones as described above can be used.
 エマルジョン樹脂の粒子径は特に制限されないが、平均粒子径が1~100nmであることが好ましく、5~60nmであることがより好ましい。エマルジョン樹脂が上記平均粒子径を有することにより、得られる光学反射フィルムのヘイズが低減され、透明性が向上しうる。エマルジョン樹脂の平均粒子径は、動的光散乱法によって測定することができる。 The particle diameter of the emulsion resin is not particularly limited, but the average particle diameter is preferably 1 to 100 nm, and more preferably 5 to 60 nm. When emulsion resin has the said average particle diameter, the haze of the optical reflection film obtained can be reduced and transparency can improve. The average particle diameter of the emulsion resin can be measured by a dynamic light scattering method.
 エマルジョン樹脂の屈折率も特に制限されないが、1.3~1.7であることが好ましく、1.4~1.6であることがより好ましい。上記範囲であれば、水溶性樹脂の屈折率に近くなるため、得られる光学反射フィルムのヘイズが低減されうる。 The refractive index of the emulsion resin is not particularly limited, but is preferably 1.3 to 1.7, more preferably 1.4 to 1.6. If it is the said range, since it becomes close to the refractive index of water-soluble resin, the haze of the optical reflection film obtained can be reduced.
 上述したエマルジョン樹脂は、柔軟性を高める観点から、ガラス転移温度(Tg)が20℃以下であることが好ましく、-30~10℃であることがより好ましい。 The above-mentioned emulsion resin preferably has a glass transition temperature (Tg) of 20 ° C. or lower, more preferably −30 to 10 ° C., from the viewpoint of enhancing flexibility.
 金属酸化物粒子
 水分散性疎水性樹脂含有層は、金属酸化物粒子を含んでもよい。金属酸化物粒子は上記の高屈折率層および低屈折率層と同様のものが用いられうる。
Metal oxide particles The water-dispersible hydrophobic resin-containing layer may contain metal oxide particles. As the metal oxide particles, the same high refractive index layer and low refractive index layer as those described above can be used.
 水溶性樹脂
 本発明の光学反射フィルムにおける水分散性疎水性樹脂含有層は、水溶性樹脂を含む。水溶性樹脂としては、上記の高屈折率層および低屈折率層と同様のものが用いられうる。
Water-soluble resin The water-dispersible hydrophobic resin-containing layer in the optical reflective film of the present invention contains a water-soluble resin. As the water-soluble resin, those similar to the above-described high refractive index layer and low refractive index layer can be used.
 好ましくは、前記水分散性疎水性樹脂含有層中の水溶性樹脂の平均重合度が1500~6000であり、より好ましくは4000~6000である。前記水分散性疎水性樹脂含有層中の水溶性樹脂の平均重合度は4000~5000であることがさらに好ましく、4500~5000であることがさらにより好ましい。水溶性樹脂の平均重合度が1500以上であれば、同時重層塗布法によって塗布した場合であっても水溶性樹脂が拡散してヘイズが発生することを抑制することができる。また、水溶性樹脂の平均重合度が6000以下であれば、塗布液の粘度が高くなりすぎないため、塗布による誘電体多層膜の作製に適する。複数の水分散性疎水性樹脂含有層を有する場合、少なくとも1層の水分散性疎水性樹脂含有層における水溶性樹脂の平均重合度が上記範囲であることが好ましく、すべての水分散性疎水性樹脂含有層における水溶性樹脂の平均重合度が上記範囲であることがより好ましい。 Preferably, the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is 1500 to 6000, more preferably 4000 to 6000. The average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is more preferably 4000 to 5000, and still more preferably 4500 to 5000. If the average degree of polymerization of the water-soluble resin is 1500 or more, it is possible to suppress the occurrence of haze due to diffusion of the water-soluble resin even when applied by the simultaneous multilayer coating method. In addition, when the average degree of polymerization of the water-soluble resin is 6000 or less, the viscosity of the coating solution does not become too high, which is suitable for the production of a dielectric multilayer film by coating. In the case of having a plurality of water-dispersible hydrophobic resin-containing layers, the average degree of polymerization of the water-soluble resin in at least one water-dispersible hydrophobic resin-containing layer is preferably in the above range, and all water-dispersible hydrophobic properties The average degree of polymerization of the water-soluble resin in the resin-containing layer is more preferably in the above range.
 また、前記水分散性疎水性樹脂含有層中の水溶性樹脂は、ポリビニルアルコール系樹脂であることが好ましい。これにより、水分散性疎水性樹脂の分散性が安定化し、ヘイズの上昇が抑制されうる。ポリビニルアルコール系樹脂の鹸化度は、例えば70~99.5モル%であり、ヘイズがより一層抑えられるという観点から、好ましくは80~95モル%であり、より好ましくは85~90モル%である。なお、水溶性樹脂の平均重合度は粘度平均重合度であり、ポリビニルアルコール系樹脂の平均重合度は、日本工業規格JIS K6726:1994に準じて測定することができる。 The water-soluble resin in the water-dispersible hydrophobic resin-containing layer is preferably a polyvinyl alcohol resin. Thereby, the dispersibility of the water-dispersible hydrophobic resin is stabilized, and an increase in haze can be suppressed. The saponification degree of the polyvinyl alcohol-based resin is, for example, 70 to 99.5 mol%, and is preferably 80 to 95 mol%, more preferably 85 to 90 mol% from the viewpoint of further suppressing haze. . The average degree of polymerization of the water-soluble resin is the viscosity average degree of polymerization, and the average degree of polymerization of the polyvinyl alcohol-based resin can be measured according to Japanese Industrial Standard JIS K6726: 1994.
 さらに、本発明の好ましい実施形態は、誘電体多層膜を構成する屈折率層のうち、基材に接する側と反対側の最上層が水分散性疎水性樹脂含有層である。より好ましくは、この際、前記水分散性疎水性樹脂含有層中の水溶性樹脂の平均重合度が4000~6000である。前記水分散性疎水性樹脂含有層中の水溶性樹脂の平均重合度は4000~5000であることがさらに好ましく、4500~5000であることがさらにより好ましい。この際、前記水分散性疎水性樹脂含有層がアニオン性エマルジョン樹脂とアニオン系界面活性剤とを含むものであれば本発明の効果がより顕著に得られうる。 Furthermore, in a preferred embodiment of the present invention, among the refractive index layers constituting the dielectric multilayer film, the uppermost layer opposite to the side in contact with the substrate is a water-dispersible hydrophobic resin-containing layer. More preferably, at this time, the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is 4000 to 6000. The average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is more preferably 4000 to 5000, and still more preferably 4500 to 5000. At this time, if the water-dispersible hydrophobic resin-containing layer contains an anionic emulsion resin and an anionic surfactant, the effects of the present invention can be obtained more remarkably.
 上述のように、本発明の光学反射フィルムにおいては、誘電体多層膜を構成する高屈折率層および低屈折率層のうち少なくとも1層が水分散性疎水性樹脂含有層であればよいが、誘電体多層膜の最上層は、例えば粘着層を介してガラスなどの基体に接着されて光学反射体として用いられる場合、環境中の水分の吸着、脱離による層の膨張、収縮が発生すると、それに伴う応力が集中しやすい。そのため、最上層に環境中の水分の吸着、脱離が抑制されうる水分散性疎水性樹脂含有層を配置することが光学反射フィルムの耐候性を向上させる上で効果的である。 As described above, in the optical reflective film of the present invention, at least one of the high refractive index layer and the low refractive index layer constituting the dielectric multilayer film may be a water-dispersible hydrophobic resin-containing layer. When the uppermost layer of the dielectric multilayer film is used as an optical reflector by being bonded to a substrate such as glass through an adhesive layer, for example, when the layer expands or contracts due to adsorption or desorption of moisture in the environment, The stress accompanying it tends to concentrate. Therefore, disposing a water-dispersible hydrophobic resin-containing layer that can suppress the adsorption and desorption of moisture in the environment as the uppermost layer is effective in improving the weather resistance of the optical reflective film.
 水溶性樹脂を含む塗布液を塗布することによって誘電体多層膜を作製する場合、水溶性樹脂の平均重合度が例えば1500以上、好ましくは4000以上であれば、同時重層塗布法によって塗布した場合であっても水溶性樹脂が拡散してヘイズが発生することを抑制することができる。また、水溶性樹脂の平均重合度が6000以下であれば、塗布液の粘度が高くなりすぎないため、塗布による誘電体多層膜の作製に適する。より好ましくは、水溶性樹脂の平均重合度は4000~5000であり、さらに好ましくは4500~5000である。 When a dielectric multilayer film is produced by applying a coating solution containing a water-soluble resin, the average polymerization degree of the water-soluble resin is, for example, 1500 or more, preferably 4000 or more, when it is applied by the simultaneous multilayer coating method. Even if it exists, it can suppress that water-soluble resin diffuses and a haze generate | occur | produces. In addition, when the average degree of polymerization of the water-soluble resin is 6000 or less, the viscosity of the coating solution does not become too high, which is suitable for the production of a dielectric multilayer film by coating. More preferably, the average polymerization degree of the water-soluble resin is 4000 to 5000, and further preferably 4500 to 5000.
 また、本発明のさらに好ましい実施形態は、誘電体多層膜を構成する屈折率層のうち、基材に接する最下層が水分散性疎水性樹脂含有層である。誘電体多層膜の最下層は、内側の層と比較して環境中の水分の吸着、脱離による層の膨張、収縮が発生すると、それに伴う応力が集中しやすい層であるため、最下層を水分散性疎水性樹脂含有層とすることが好ましい。より好ましくは、最上層と最下層のいずれもが水分散性疎水性樹脂含有層である。この際、前記水分散性疎水性樹脂含有層がアニオン性エマルジョン樹脂とアニオン系界面活性剤とを含むものであれば本発明の効果がより顕著に得られうる。 In a further preferred embodiment of the present invention, the lowermost layer in contact with the substrate is a water-dispersible hydrophobic resin-containing layer among the refractive index layers constituting the dielectric multilayer film. The lowermost layer of the dielectric multilayer film is a layer in which the stress associated with the expansion and contraction of the layer due to the adsorption and desorption of moisture in the environment compared to the inner layer tends to concentrate. A water-dispersible hydrophobic resin-containing layer is preferable. More preferably, both the uppermost layer and the lowermost layer are water-dispersible hydrophobic resin-containing layers. At this time, if the water-dispersible hydrophobic resin-containing layer contains an anionic emulsion resin and an anionic surfactant, the effects of the present invention can be obtained more remarkably.
 本発明の好ましい実施形態は、前記誘電体多層膜の最上層および最下層が低屈折率層であり、すべての低屈折率層が水分散性疎水性樹脂含有層である。このようにすることで、水溶性樹脂を用いた誘電体多層膜において、環境中の水分量の変動に伴う水分の吸着、脱離をさらに低減することができるため、高湿下に長期間さらした場合のクラックの発生がより低減できる。このとき、水分散性疎水性樹脂含有層中の水溶性樹脂の平均重合度が4000~6000とすると、すべての低屈折率層に水分散性疎水性樹脂を含む場合であってもヘイズの上昇が生じにくい。 In a preferred embodiment of the present invention, the uppermost layer and the lowermost layer of the dielectric multilayer film are low refractive index layers, and all the low refractive index layers are water-dispersible hydrophobic resin-containing layers. In this way, in a dielectric multilayer film using a water-soluble resin, moisture adsorption and desorption associated with fluctuations in the amount of moisture in the environment can be further reduced. The occurrence of cracks can be further reduced. At this time, if the average degree of polymerization of the water-soluble resin in the water-dispersible hydrophobic resin-containing layer is 4000 to 6000, the haze increases even when all the low-refractive index layers contain the water-dispersible hydrophobic resin. Is unlikely to occur.
 水分散性疎水性樹脂含有層の厚さは特に制限されないが、水分散性疎水性樹脂含有層が高屈折率層である場合、その1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。また、水分散性疎水性樹脂含有層が低屈折率層である場合、その1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。 The thickness of the water-dispersible hydrophobic resin-containing layer is not particularly limited, but when the water-dispersible hydrophobic resin-containing layer is a high refractive index layer, the thickness per layer may be 20 to 800 nm. Preferably, it is 50 to 500 nm. When the water-dispersible hydrophobic resin-containing layer is a low refractive index layer, the thickness per layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm.
 [光学特性]
 本発明に係る光学反射フィルムが赤外光を反射する赤外遮蔽フィルムである場合には、低屈折率層と高屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができるという観点から好ましい。本形態では、低屈折率層および高屈折率層から構成される積層ユニットの少なくとも1つにおいて、隣接する低屈折率層と高屈折率層との屈折率差が0.1以上であることが好ましく、0.3以上であることがより好ましく、0.35以上であることがさらに好ましく、0.4以上であることが特に好ましい。高屈折率層および低屈折率層の積層体を複数有する場合には、全ての積層体における高屈折率層と低屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、この場合でも誘電多層膜の最上層や最下層を構成する屈折率層に関しては、上記好適な範囲外の構成であってもよい。
[optical properties]
When the optical reflective film according to the present invention is an infrared shielding film that reflects infrared light, it is possible to design a large difference in refractive index between the low refractive index layer and the high refractive index layer with a small number of layers. It is preferable from the viewpoint that the infrared reflectance can be increased. In this embodiment, in at least one of the laminated units composed of the low refractive index layer and the high refractive index layer, the difference in refractive index between the adjacent low refractive index layer and high refractive index layer may be 0.1 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, and particularly preferably 0.4 or more. In the case of having a plurality of laminated bodies of high refractive index layers and low refractive index layers, it is preferable that the refractive index difference between the high refractive index layer and the low refractive index layer in all the laminated bodies is within the above-mentioned preferable range. However, even in this case, the refractive index layers constituting the uppermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
 本形態の光学反射フィルムの光学特性として、JIS R3106-1998で示される可視光領域の透過率が50%以上であることが好ましく、より好ましくは75%以上であり、さらに好ましくは85%以上である。また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 As an optical characteristic of the optical reflection film of this embodiment, the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, more preferably 75% or more, and further preferably 85% or more. is there. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 誘電体多層膜の屈折率層の層数(高屈折率層および低屈折率層の総層数)としては、上記の観点から、例えば、6~500層であり、6~300層であることが好ましい。また、特に湿式製膜法で作製する場合、6~50層であることが好ましく、8~40層であることがより好ましく、9~30層であることがさらに好ましく、11~31層であることが特に好ましい。誘電体多層膜の屈折率層の層数が上記範囲にあると、優れた遮熱性能および透明性、膜剥がれやひび割れの抑制等が実現されうることから好ましい。なお、誘電体多層膜が、複数の高屈折率層および/または低屈折率層を有する場合には、各高屈折率層および/または各低屈折率層はそれぞれ同じものであっても、異なるものであってもよい。 From the above viewpoint, the number of refractive index layers of the dielectric multilayer film (total number of high refractive index layers and low refractive index layers) is, for example, 6 to 500 layers, and 6 to 300 layers. Is preferred. In particular, when prepared by a wet film forming method, 6 to 50 layers are preferable, 8 to 40 layers are more preferable, 9 to 30 layers are further preferable, and 11 to 31 layers are preferable. It is particularly preferred. It is preferable that the number of refractive index layers of the dielectric multilayer film is in the above range because excellent heat shielding performance and transparency, suppression of film peeling and cracking, and the like can be realized. When the dielectric multilayer film has a plurality of high refractive index layers and / or low refractive index layers, each high refractive index layer and / or each low refractive index layer is the same, but different. It may be a thing.
 高屈折率層の1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。また、低屈折率層の1層当たりの厚さは、20~800nmであることが好ましく、50~500nmであることがより好ましい。 The thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm. Further, the thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 500 nm.
 ここで、1層あたりの厚さを測定する場合、高屈折率層および低屈折率層の境界において明確な界面を持たず、連続的に組成が変化する場合がある。このような組成が連続的に変化するような界面領域においては、最大屈折率-最小屈折率=Δnとした場合、2層間の最小屈折率+Δn/2の地点を層界面とみなすものとする。 Here, when measuring the thickness per layer, the composition may change continuously without having a clear interface at the boundary between the high refractive index layer and the low refractive index layer. In such an interface region where the composition changes continuously, when the maximum refractive index−the minimum refractive index = Δn, the point of the minimum refractive index + Δn / 2 between the two layers is regarded as the layer interface.
 なお、高屈折率層および低屈折率層が金属酸化物粒子を含む場合には、当該金属酸化物粒子の濃度プロファイルにより上記組成を観察することができる。当該金属酸化物濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで見ることができる。また、積層膜を切断して、切断面をXPS表面分析装置で原子組成比を測定することで確認してもよい。 When the high refractive index layer and the low refractive index layer contain metal oxide particles, the above composition can be observed from the concentration profile of the metal oxide particles. The metal oxide concentration profile is formed by etching from the surface to the depth direction using a sputtering method, and using an XPS surface analyzer, sputtering is performed at a rate of 0.5 nm / min, with the outermost surface being 0 nm. It can be seen by measuring the ratio. Further, the laminated film may be cut and the cut surface may be confirmed by measuring the atomic composition ratio with an XPS surface analyzer.
 XPS表面分析装置は、特に制限されず、いかなる機種も使用することができる。当該XPS表面分析装置としては、例えば、VGサイエンティフィックス社製ESCALAB-200Rを用いることができる。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定する。 The XPS surface analyzer is not particularly limited, and any model can be used. As the XPS surface analyzer, for example, ESCALAB-200R manufactured by VG Scientific, Inc. can be used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
 [粘着層]
 本発明に係る光学反射フィルムは、粘着層を有していてもよい。この粘着層は通常、誘電体多層膜の基材とは反対側の面に設けられ、さらに公知の剥離紙またはセパレータがさらに設けられていてもよい。粘着層の構成としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。
[Adhesive layer]
The optical reflective film according to the present invention may have an adhesive layer. This pressure-sensitive adhesive layer is usually provided on the surface of the dielectric multilayer film opposite to the substrate, and a known release paper or separator may be further provided. The configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
 粘着剤としては、例えば、ポリエステル系粘着剤、ウレタン系粘着剤、ポリ酢酸ビニル系粘着剤、アクリル系粘着剤、ニトリルゴム等が用いられる。 As the pressure-sensitive adhesive, for example, a polyester-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a polyvinyl acetate-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, nitrile rubber, or the like is used.
 本発明の光学反射フィルムは、窓ガラスに貼り合わせる場合、窓に水を吹き付け、濡れた状態のガラス面に光学反射フィルムの粘着層を合わせる貼り方、いわゆる水貼り法が張り直し、位置直し等の観点で好適に用いられる。そのため、水が存在する湿潤下では粘着力が弱い、アクリル系粘着剤が好ましく用いられる。 When the optical reflective film of the present invention is bonded to a window glass, water is sprayed on the window, and a method of applying the adhesive layer of the optical reflective film to the wet glass surface, the so-called water pasting method is repositioned, repositioned, etc. From the viewpoint of, it is preferably used. For this reason, an acrylic pressure-sensitive adhesive that has a weak adhesive force in the presence of water is preferably used.
 使用されるアクリル系粘着剤は、溶剤系およびエマルジョン系どちらでもよいが、粘着力等を高め易いことから、溶剤系粘着剤が好ましく、その中でも溶液重合で得られたものが好ましい。このような溶剤系アクリル系粘着剤を溶液重合で製造する場合の原料としては、例えば、骨格となる主モノマーとして、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステル、凝集力を向上させるためのコモノマーとして、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等、さらに架橋を促進し、安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するために官能基含有モノマーとして、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等が挙げられる。粘着層には、主ポリマーとして、特に高タック性を要するため、ブチルアクリレート等のような低いガラス転移温度(Tg)を有するものが特に有用である。 The acrylic pressure-sensitive adhesive used may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable. Examples of the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water Examples of the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycidyl methacrylate. Since the adhesive layer requires a particularly high tack property as the main polymer, those having a low glass transition temperature (Tg) such as butyl acrylate are particularly useful.
 上記アクリル系粘着剤の市販品としては、たとえば、コーポニール(登録商標)シリーズ(日本合成化学工業株式会社製)等が挙げられる。 Examples of commercially available acrylic pressure-sensitive adhesives include, for example, Coponil (registered trademark) series (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 この粘着層には、添加剤として、例えば安定剤、界面活性剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を含有させることもできる。特に、窓貼用として使用する場合は、紫外線による光学反射フィルムの劣化を抑制するためにも、紫外線吸収剤の添加は有効である。 This adhesive layer contains additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made. In particular, when used for window sticking, the addition of an ultraviolet absorber is effective in order to suppress deterioration of the optical reflection film due to ultraviolet rays.
 粘着剤の塗工方法としては、特に制限されず、任意の公知の方法が使用でき、例えば、バーコート法、ダイコーター法、コンマコーティング法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、転写法等が好ましく挙げられ、単独または組合せて用いることができるが、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。これらは適宜、粘着剤を溶解できる溶媒にて溶液にする、または分散させた塗布液を用いて塗工することが出来、溶媒としては公知の物を使用することが出来る。 The method for applying the adhesive is not particularly limited, and any known method can be used, for example, bar coating method, die coater method, comma coating method, gravure roll coater method, blade coater method, spray coater method, An air knife coating method, a dip coating method, a transfer method, and the like are preferably mentioned, and they can be used alone or in combination. However, it is preferable to carry out a roll method continuously from the viewpoint of economy and productivity. These can be appropriately formed into a solution in a solvent capable of dissolving the pressure-sensitive adhesive, or can be applied using a dispersed coating solution, and known solvents can be used.
 また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。 In addition, the thickness of the adhesive layer is preferably in the range of usually about 1 to 100 μm from the viewpoint of the adhesive effect, the drying speed and the like.
 粘着力は、JISK6854記載の180°剥離試験にて測定した剥離強度が2~30N/25mmであることが好ましく、4~20N/25mmであることがより好ましい。 The adhesive strength is preferably 2 to 30 N / 25 mm, more preferably 4 to 20 N / 25 mm, as measured by a 180 ° peel test described in JIS K6854.
 粘着層の形成は、先の塗工方式にて、直接誘電体多層膜に塗工してもよく、また、一度剥離フィルムに塗工して乾燥させた後、誘電体多層膜を貼り合せて粘着剤を転写させてもよい。この時の乾燥温度は、残留溶剤ができるだけ少なくなることが好ましく、そのためには乾燥温度や時間は特定されないが、好ましくは50~150℃の温度で、10秒~5分の乾燥時間を設けることがよい。 The adhesive layer may be formed directly on the dielectric multilayer film by the previous coating method. Alternatively, the adhesive layer may be applied to a release film and dried, and then the dielectric multilayer film is bonded. The adhesive may be transferred. The drying temperature at this time is preferably such that the residual solvent is reduced as much as possible. For this purpose, the drying temperature and time are not specified, but a drying time of 10 seconds to 5 minutes is preferably provided at a temperature of 50 to 150 ° C. Is good.
 [ハードコート層]
 本発明の光学反射フィルムは、耐擦過性を高めるための表面保護層として、熱や紫外線などで硬化する樹脂を含むハードコート層を積層してもよい。例えば、基材表面に誘電体多層膜、粘着層の順に積層し、さらにこれらの層が積層されている側とは逆の側の基材表面にハードコート層を塗設する形態が好ましい一例として挙げられる。
[Hard coat layer]
In the optical reflective film of the present invention, a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like may be laminated as a surface protective layer for improving the scratch resistance. For example, a preferable example is a form in which a dielectric multilayer film and an adhesive layer are laminated in this order on the substrate surface, and a hard coat layer is coated on the substrate surface on the side opposite to the side where these layers are laminated. Can be mentioned.
 ハードコート層で使用される硬化樹脂としては、熱硬化型樹脂や紫外線硬化型樹脂が挙げられるが、成形が容易なことから、紫外線硬化型樹脂が好ましく、その中でも鉛筆硬度が少なくとも2Hのものがより好ましい。かような硬化型樹脂は、単独でもまたは2種以上組み合わせても用いることができる。 Examples of the curable resin used in the hard coat layer include a thermosetting resin and an ultraviolet curable resin. However, an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred. Such curable resins can be used alone or in combination of two or more.
 紫外線硬化型樹脂としては(メタ)アクリレート、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、エポキシ樹脂、オキセタン樹脂が挙げられ、これらは無溶剤型の樹脂組成物としても使用できる。 Examples of the ultraviolet curable resin include (meth) acrylate, urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, and oxetane resin, and these can also be used as a solvent-free resin composition.
 上記紫外線硬化型樹脂を用いる場合、硬化促進のために、光重合開始剤を添加することが好ましい。 When using the ultraviolet curable resin, it is preferable to add a photopolymerization initiator to accelerate curing.
 光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、チウラム化合物類、フルオロアミン化合物などが用いられる。光重合開始剤の具体例としては、2,2’-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-ヒドロキシジメチルフェニルケトン、2-メチル-4’-メチルチオ-2-モリホリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モリホリノフェニル)-ブタノン1などのアセトフェノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルレタールなどのベンゾイン類、ベンゾフェノン、2,4’-ジクロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、p-クロロベンゾフェノンなどのベンゾフェノン類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、アントラキノン類、チオキサントン類などがある。これらの光重合開始剤は単独で用いてもよいし、2種以上組合せや、共融混合物であってもよい。特に、硬化性組成物の安定性や重合反応性等からアセトフェノン類を用いることが好ましい。 Photoinitiators include acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, thiuram compounds, fluoroamine compounds Etc. are used. Specific examples of the photopolymerization initiator include 2,2′-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxydimethylphenyl ketone, 2-methyl-4′-methylthio-2-mori. Acetophenones such as holinopropiophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone 1, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethylletal, etc. Benzoin, benzophenone, 2,4'-dichlorobenzophenone, 4,4'-dichlorobenzophenone, benzophenones such as p-chlorobenzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, an Rakinon such, there is such as thioxanthones. These photopolymerization initiators may be used alone, in combination of two or more, or in a eutectic mixture. In particular, acetophenones are preferably used from the viewpoints of stability of the curable composition and polymerization reactivity.
 このような光重合開始剤は市販品を用いてもよく、例えば、例えば、BASFジャパン株式会社製のイルガキュア(登録商標)819、184、907、651などが好ましい例示として挙げられる。 Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure (registered trademark) 819, 184, 907, 651 manufactured by BASF Japan Ltd., for example.
 ハードコート層の厚みは、ハードコート性の向上と、光学反射フィルムの透明性の向上という観点から、0.1~50μmが好ましく、1~20μmがより好ましい。 The thickness of the hard coat layer is preferably from 0.1 to 50 μm, more preferably from 1 to 20 μm, from the viewpoints of improving the hard coat properties and improving the transparency of the optical reflective film.
 ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱および/またはUVで塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。 The method for forming the hard coat layer is not particularly limited. For example, after preparing a hard coat layer coating solution containing the above components, the coating solution is applied with a wire bar or the like, and the coating solution is cured with heat and / or UV. And a method of forming a hard coat layer.
 [その他の層]
 本発明に係る光学反射フィルムは、上述した層以外の層(その他の層)を有していてもよい。例えば、その他の層として、中間層を設けることができる。ここで「中間層」とは、基材と誘電体多層膜との間の層や、基材とハードコート層との間の層を意味する。中間層の構成材料としては、ポリエステル樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアセタール樹脂、アクリル樹脂、ウレタン樹脂などが挙げられ、添加剤の相溶性、Tgが低い物質が好ましいが、それを満たしていればいずれを用いてもよい。中間層のガラス転移温度(Tg)は、30~120℃であれば、十分な耐候性が得られるため好ましく、より好ましくは、30~90℃の範囲である。
[Other layers]
The optical reflective film according to the present invention may have a layer (other layers) other than the layers described above. For example, an intermediate layer can be provided as the other layer. Here, the “intermediate layer” means a layer between the base material and the dielectric multilayer film, or a layer between the base material and the hard coat layer. Examples of the constituent material of the intermediate layer include polyester resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyvinyl acetal resin, acrylic resin, urethane resin, and the like. Any of them may be used as long as they are satisfied. The glass transition temperature (Tg) of the intermediate layer is preferably 30 to 120 ° C. because sufficient weather resistance can be obtained, and more preferably in the range of 30 to 90 ° C.
 [光学反射フィルムの製造方法]
 本発明の光学反射フィルムの製造方法について特に制限はなく、基材上に、高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ形成し、高屈折率層または低屈折率層のうち少なくとも1層を上述の水分散性疎水性樹脂含有層とすることができるものであれば、いかなる方法でも用いられうる。
[Method for producing optical reflection film]
There is no restriction | limiting in particular about the manufacturing method of the optical reflection film of this invention, At least 1 unit comprised from a high refractive index layer and a low refractive index layer is formed on a base material, and a high refractive index layer or a low refractive index is formed. Any method can be used as long as at least one of the layers can be the above-described water-dispersible hydrophobic resin-containing layer.
 具体的には高屈折率層と低屈折率層とを交互に塗布、乾燥して積層体(誘電体多層膜)を形成することが好ましい。具体的には以下の形態が挙げられる;(1)基材上に、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成した後、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成し、光学反射フィルムを形成する方法;(2)基材上に、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成した後、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成し、光学反射フィルムを形成する方法;(3)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを交互に逐次重層塗布した後乾燥して、高屈折率層、および低屈折率層を含む光学反射フィルムを形成する方法;(4)基材上に、高屈折率層塗布液と、低屈折率層塗布液とを同時重層塗布し、乾燥して、高屈折率層、および低屈折率層を含む光学反射フィルムを形成する方法;などが挙げられる。なかでも、より簡便な製造プロセスとなる上記(4)の方法が好ましい。すなわち、本発明の光学反射フィルムの製造方法は、同時重層塗布法により前記高屈折率層と前記低屈折率層とを積層することを含むことが好ましい。 Specifically, it is preferable to form a laminate (dielectric multilayer film) by alternately applying and drying a high refractive index layer and a low refractive index layer. Specific examples include the following: (1) A high refractive index layer coating solution is applied onto a substrate and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied and dried. Forming a low refractive index layer and forming an optical reflective film; (2) applying a low refractive index layer coating solution on a substrate and drying to form a low refractive index layer; A method of forming a high refractive index layer by applying a layer coating solution and drying to form an optical reflective film; (3) alternating a high refractive index layer coating solution and a low refractive index layer coating solution on a substrate A method of forming an optical reflective film comprising a high refractive index layer and a low refractive index layer; (4) a high refractive index layer coating solution and a low refractive index layer; A method of forming an optical reflective film including a high refractive index layer and a low refractive index layer by simultaneously applying a coating layer with a coating solution and drying;Among these, the method (4), which is a simpler manufacturing process, is preferable. That is, it is preferable that the method for producing an optical reflective film of the present invention includes laminating the high refractive index layer and the low refractive index layer by a simultaneous multilayer coating method.
 同時重層塗布した場合、未乾燥の液状態で重ねられるため、層間混合等がより起こりやすい。しかしながら、水溶性樹脂がポリビニルアルコール系樹脂である場合、高屈折率層に含まれるポリビニルアルコール系樹脂の鹸化度と、低屈折率層に含まれるポリビニルアルコール系樹脂の鹸化度とが異なる場合、鹸化度が異なるポリビニルアルコール系樹脂の相溶性が低いことが知られている。そのため、高屈折率層と低屈折率層とが未乾燥の液状態で重ねられた際に各層が多少混合したとしても、乾燥過程で溶媒である水が揮発して濃縮されると、鹸化度が異なるポリビニルアルコール系樹脂同士が相分離を起こし、各層の界面の面積を最小にしようとする力が働くようになるため、相間混合が抑制され、界面の乱れも小さくなる。そのため、所望の波長領域の光反射特性に優れ、ヘイズの少ない光学反射フィルムが得られうる。 When simultaneous multilayer coating is applied, the layers are stacked in an undried liquid state, so inter-layer mixing is more likely to occur. However, when the water-soluble resin is a polyvinyl alcohol resin, the saponification degree of the polyvinyl alcohol resin contained in the high refractive index layer is different from the saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer. It is known that the compatibility of polyvinyl alcohol resins having different degrees is low. Therefore, even when the high refractive index layer and the low refractive index layer are stacked in an undried liquid state, even if the layers are mixed somewhat, if the solvent water is volatilized and concentrated in the drying process, the saponification degree Polyvinyl alcohol resins having different values cause phase separation, and a force to minimize the area of the interface of each layer is exerted, so interphase mixing is suppressed and interface disturbance is reduced. Therefore, an optical reflection film having excellent light reflection characteristics in a desired wavelength region and less haze can be obtained.
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791. A slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
 高屈折率層塗布液および低屈折率層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、水溶性樹脂を用いるために、水系溶媒を用いることができる。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。 The solvent for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In the present invention, an aqueous solvent can be used in order to use a water-soluble resin. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水系溶媒が好ましく、水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒がより好ましく、水が特に好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができるからである。 When using a mixed solvent of water and a small amount of an organic solvent, the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%. Here, by setting it to 80% by mass or more, volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
 高屈折率層塗布液中の水溶性樹脂の濃度は、0.5~10質量%であることが好ましい。また、高屈折率層塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the water-soluble resin in the high refractive index layer coating solution is preferably 0.5 to 10% by mass. The concentration of the metal oxide particles in the high refractive index layer coating solution is preferably 1 to 50% by mass.
 低屈折率層塗布液中の水溶性樹脂の濃度は、0.5~10質量%であることが好ましい。また、低屈折率層塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the water-soluble resin in the low refractive index layer coating solution is preferably 0.5 to 10% by mass. The concentration of the metal oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass.
 高屈折率層塗布液および低屈折率層塗布液の調製方法は、特に制限されず、例えば、金属酸化物粒子、水溶性樹脂、硬化剤などを水系溶媒に添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。 The method for preparing the high refractive index layer coating liquid and the low refractive index layer coating liquid is not particularly limited. It is done. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
 高屈折率層のうち少なくとも1層を水分散性疎水性樹脂含有層とする場合、上記のような高屈折率層塗布液に、水分散性疎水性樹脂を最終的な固形分濃度が所定の範囲になるように添加して、水分散性疎水性樹脂含有層塗布液(水分散性疎水性樹脂含有高屈折率層塗布液)を作製すればよい。上記水分散性疎水性樹脂含有層塗布液を塗布、乾燥させることで高屈折率層として機能する水分散性疎水性樹脂含有層を得ることができる。 When at least one of the high refractive index layers is a water-dispersible hydrophobic resin-containing layer, the water-dispersible hydrophobic resin is added to the above-described high refractive index layer coating solution with a predetermined solid content concentration. A water-dispersible hydrophobic resin-containing layer coating solution (water-dispersible hydrophobic resin-containing high refractive index layer coating solution) may be prepared so as to fall within the range. A water-dispersible hydrophobic resin-containing layer that functions as a high refractive index layer can be obtained by applying and drying the water-dispersible hydrophobic resin-containing layer coating solution.
 同様に、低屈折率層のうち少なくとも1層を水分散性疎水性樹脂含有層とする場合、上記のような低屈折率層塗布液に、水分散性疎水性樹脂を最終的な固形分濃度が所定の範囲になるように添加して、水分散性疎水性樹脂含有層塗布液(水分散性疎水性樹脂含有低屈折率層塗布液)を作製すればよい。上記水分散性疎水性樹脂含有層塗布液を塗布、乾燥させることで低屈折率層として機能する水分散性疎水性樹脂含有層を得ることができる。 Similarly, when at least one of the low refractive index layers is a water-dispersible hydrophobic resin-containing layer, the water-dispersible hydrophobic resin is added to the final solid concentration in the low refractive index layer coating liquid as described above. Is added so as to be within a predetermined range to prepare a water-dispersible hydrophobic resin-containing layer coating solution (water-dispersible hydrophobic resin-containing low refractive index layer coating solution). A water-dispersible hydrophobic resin-containing layer that functions as a low refractive index layer can be obtained by applying and drying the water-dispersible hydrophobic resin-containing layer coating solution.
 また、水分散性疎水性樹脂含有層塗布液中の水分散性疎水性樹脂の濃度は特に制限されないが、水分散性疎水性樹脂含有層における水分散性疎水性樹脂の含有量(固形分含量)が上述の範囲になるように調節する。 The concentration of the water-dispersible hydrophobic resin in the water-dispersible hydrophobic resin-containing layer coating solution is not particularly limited, but the content of the water-dispersible hydrophobic resin in the water-dispersible hydrophobic resin-containing layer (solid content) ) Within the above range.
 上述のように、本発明の光学反射フィルムの好ましい形態は、水分散性疎水性樹脂含有層にアニオン性エマルジョン樹脂とアニオン系界面活性剤とを含む。したがって、好ましくは、本発明の光学反射フィルムは、水溶性樹脂、アニオン系界面活性剤、およびアニオン性エマルジョン樹脂を水系溶媒に溶解または分散させて塗布液を調製する段階と、前記塗布液を塗布することによって前記水分散性疎水性樹脂含有層を形成する段階と、を含む。 As described above, a preferred form of the optical reflective film of the present invention contains an anionic emulsion resin and an anionic surfactant in a water-dispersible hydrophobic resin-containing layer. Therefore, preferably, the optical reflective film of the present invention comprises a step of preparing a coating solution by dissolving or dispersing a water-soluble resin, an anionic surfactant, and an anionic emulsion resin in an aqueous solvent, and applying the coating solution. Thereby forming the water-dispersible hydrophobic resin-containing layer.
 同時重層塗布を行う際の高屈折率層塗布液および低屈折率層塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 When using the slide bead coating method, the temperature of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., and a temperature range of 30 to 45 ° C. Is more preferable. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の高屈折率層塗布液と低屈折率層塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~160mPa・sの範囲が好ましく、さらに好ましくは60~140mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, the preferable temperature range of the coating liquid is preferably 5 to 160 mPa · s, more preferably 60 to 140 mPa · s. When the curtain coating method is used, the preferable temperature range of the coating solution is preferably 5 to 1200 mPa · s, more preferably 25 to 500 mPa · s. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは2,500~30,000mPa・sである。 Further, the viscosity at 15 ° C. of the coating solution is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, and further preferably 2,500 to 30,000 mPa · s.
 塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30~60℃に加温した高屈折率層塗布液および低屈折率層塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して積層膜前駆体(ユニット)を形成する。次に、所望の光学反射性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥するのが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にするのが好ましい。 The conditions for the coating and drying method are not particularly limited. For example, in the case of the sequential coating method, first, either one of the high refractive index layer coating solution and the low refractive index layer coating solution heated to 30 to 60 ° C. is used. After coating and drying on a substrate to form a layer, the other coating solution is coated on this layer and dried to form a laminated film precursor (unit). Next, the number of units necessary for expressing the desired optical reflection performance is sequentially applied and dried by the above method to obtain a laminated film precursor. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. Further, drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section <the temperature of the rate-decreasing drying section. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、高屈折率層塗布液および低屈折率層塗布液を30~60℃に加温して、基材上に高屈折率層塗布液および低屈折率層塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、40~80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 In addition, the conditions of the coating and drying method when performing simultaneous multilayer coating are as follows. After the simultaneous multilayer coating of the liquid and the low refractive index layer coating liquid, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 40 to 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性を低下させたり、またゲル化する工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。なお、高屈折率層と低屈折率層との間の中間層の高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。 The time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
 セット時間の調整は、ポリビニルアルコール系樹脂の濃度や金属酸化物粒子の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。 The set time is adjusted by adjusting the concentration of polyvinyl alcohol resin and metal oxide particles, and adding other components such as gelatin, pectin, agar, carrageenan, gellan gum and other known gelling agents. It can be adjusted by doing.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 高屈折率層塗布液および低屈折率層塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。 The coating thickness of the high refractive index layer coating solution and the low refractive index layer coating solution may be applied so as to have a preferable dry thickness as described above.
 <光学反射体>
 本発明の光学反射フィルムは、幅広い分野に応用することができる。よって、本発明の一実施形態は、上記の光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体である。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが例えば上記の粘着層を介してガラスもしくはガラス代替樹脂等の基体に貼合されている部材には好適である。
<Optical reflector>
The optical reflective film of the present invention can be applied to a wide range of fields. Therefore, one embodiment of the present invention is an optical reflector in which the above-described optical reflective film is provided on at least one surface of a substrate. For example, film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance. In particular, the optical reflective film according to the present invention is suitable for a member that is bonded to a substrate such as glass or a glass substitute resin through the above-mentioned adhesive layer.
 基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm~5cmである。 Specific examples of the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol. Examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics. The type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination. The substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like. The thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
 光学反射フィルムと基体とを貼り合わせる粘着層は、窓ガラスなどに貼り合わせたとき、光学反射フィルムが日光(熱線)入射面側にあるように設置することが好ましい。また光学反射フィルムを窓ガラスと基材との間に挟持すると、水分等周囲ガスから封止でき耐久性に好ましい。本発明の光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。 The adhesive layer that bonds the optical reflection film and the substrate is preferably installed so that the optical reflection film is on the sunlight (heat ray) incident surface side when bonded to a window glass or the like. Further, when the optical reflection film is sandwiched between the window glass and the base material, it can be sealed from ambient gas such as moisture, which is preferable for durability. Even if the optical reflective film of the present invention is installed outdoors or on the outside of a vehicle (for external application), it is preferable because of environmental durability.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented. Unless otherwise specified, each operation is performed at room temperature (25 ° C.).
 ≪光学反射フィルムの作製≫
 (実施例1)
 〈高屈折率層塗布液1の調製〉
 下記の手順に従い、高屈折率層塗布液1を調製した。
≪Preparation of optical reflective film≫
(Example 1)
<Preparation of high refractive index layer coating solution 1>
A high refractive index layer coating solution 1 was prepared according to the following procedure.
 (シリカ付着二酸化チタンゾルの調製)
 はじめに、ルチル型二酸化チタンを含有するシリカ付着二酸化チタンゾルを以下のように調製した。
(Preparation of silica-attached titanium dioxide sol)
First, a silica-attached titanium dioxide sol containing rutile titanium dioxide was prepared as follows.
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒子径:5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学工業株式会社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、固形分濃度が二酸化チタンに対して6質量%のSiOを表面に付着させた二酸化チタンゾル(以下、シリカ付着二酸化チタンゾル)(体積平均粒子径:9nm)を得た。 After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.), 90 ° C. Heated. Next, 0.5 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 0.5 mass%) was gradually added. Then, heat treatment was performed at 175 ° C. for 18 hours in an autoclave, and after cooling, the resultant was concentrated with an ultrafiltration membrane, thereby attaching SiO 2 having a solid content concentration of 6% by mass to titanium dioxide on the surface. A titanium dioxide sol (hereinafter, silica-attached titanium dioxide sol) (volume average particle diameter: 9 nm) was obtained.
 (高屈折率層塗布液1の調製)
 上記の手順で得られたシリカ付着二酸化チタンゾル(20質量%)113質量部に対して、クエン酸水溶液(1.92質量%)を48質量部加え、ポリビニルアルコール(株式会社クラレ製、PVA-117、平均重合度1700、鹸化度:97.5~99モル%、8質量%)を113質量部加えて撹拌し、最後に界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル株式会社製)0.4質量部を加えて、高屈折率層塗布液1を調製した。
(Preparation of high refractive index layer coating solution 1)
48 parts by mass of an aqueous citric acid solution (1.92% by mass) is added to 113 parts by mass of the silica-attached titanium dioxide sol (20% by mass) obtained by the above procedure, and polyvinyl alcohol (PVA-117, manufactured by Kuraray Co., Ltd.) is added. , Average polymerization degree 1700, saponification degree: 97.5-99 mol%, 8 mass%) was added and stirred, and finally a 5 mass% aqueous solution of surfactant (Softazoline LSB-R, Kawaken Fine Chemical Co., Ltd.) 0.4 parts by mass) was added to prepare a high refractive index layer coating solution 1.
 上記高屈折率層塗布液1を塗布した膜の屈折率は1.80であった。なお、屈折率の測定方法は下記の通りである(以下同様)。 The refractive index of the film coated with the high refractive index layer coating solution 1 was 1.80. In addition, the measuring method of a refractive index is as follows (hereinafter the same).
 〈各層の単膜屈折率の測定〉
 屈折率を測定するため、基材上に上記高屈折率層塗布液1を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。日立製の分光光度計 U-4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5°正反射の条件にて可視光領域(400nm~700nm)の反射率の測定を行い、結果より屈折率を求めた。
<Measurement of single-film refractive index of each layer>
In order to measure the refractive index, a sample in which the high refractive index layer coating solution 1 was applied as a single layer on a substrate was prepared, and this sample was cut into 10 cm × 10 cm, and then the refractive index was determined according to the following method. . Using Hitachi spectrophotometer U-4100 (solid sample measurement system), the surface opposite to the measurement surface (back surface) of each sample is roughened and then light absorption is performed with a black spray. Then, reflection of light on the back surface was prevented, and the reflectance in the visible light region (400 nm to 700 nm) was measured under the condition of 5 ° regular reflection, and the refractive index was obtained from the result.
 〈低屈折率層塗布液1の調製〉
 31質量部の酸性コロイダルシリカの10質量%水溶液(スノーテックス(登録商標)OXS、一次粒子径:5.4nm、日産化学工業株式会社製)を40℃に加熱し、ホウ酸3質量%水溶液を3質量部を加え、さらに水溶性樹脂として39質量部のポリビニルアルコールの6質量%水溶液(PVA-224、平均重合度:2400、鹸化度:87~89モル%、株式会社クラレ製)と、1質量部の界面活性剤の5質量%水溶液(ソフタゾリンLSB-R、川研ファインケミカル株式会社製)とを40℃でこの順に添加し、低屈折率層塗布液1を調製した。
<Preparation of low refractive index layer coating solution 1>
A 31% by mass acidic colloidal silica 10% by mass aqueous solution (Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and a boric acid 3% by mass aqueous solution is heated. 3 parts by weight were added, and 39 parts by weight of a 6% by weight aqueous solution of polyvinyl alcohol (PVA-224, average degree of polymerization: 2400, degree of saponification: 87 to 89% by mole, manufactured by Kuraray Co., Ltd.) A low-refractive-index layer coating solution 1 was prepared by adding 5 parts by weight of a surfactant in an amount of 5% by weight (SOFTAZOLINE LSB-R, manufactured by Kawaken Fine Chemical Co., Ltd.) in this order at 40 ° C.
 上記低屈折率層塗布液1を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the low refractive index layer coating solution 1 was 1.50.
 〈水分散性疎水性樹脂含有低屈折率層塗布液1の調製〉
 13質量部の酸性コロイダルシリカの10質量%水溶液(スノーテックス(登録商標)OXS、一次粒子径:5.4nm、日産化学工業株式会社製)を40℃に加熱し、ホウ酸3質量%水溶液を3質量部加え、さらに水溶性樹脂として35質量部のポリビニルアルコールの6質量%水溶液(PVA-224、平均重合度:2400、鹸化度:87~89モル%、株式会社クラレ製)と、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)と、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)とを40℃でこの順に添加し、水分散性疎水性樹脂含有低屈折率層塗布液1を調製した。
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1>
A 13% by mass acidic colloidal silica 10% by mass aqueous solution (Snowtex (registered trademark) OXS, primary particle size: 5.4 nm, manufactured by Nissan Chemical Industries, Ltd.) is heated to 40 ° C., and a boric acid 3% by mass aqueous solution is heated. In addition to 3 parts by mass, as a water-soluble resin, 35 parts by mass of a 6% by weight aqueous solution of polyvinyl alcohol (PVA-224, average polymerization degree: 2400, saponification degree: 87-89 mol%, manufactured by Kuraray Co., Ltd.), 3 parts by mass 6 parts by weight of a water-dispersed urethane resin (Adekabon titer HUX-830, average particle size = 100 nm, manufactured by ADEKA Corporation) and 1 part by weight of a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40) And Daiichi Kogyo Seiyaku Co., Ltd.) were added in this order at 40 ° C. to prepare a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1.
 なお、上記水分散ウレタン樹脂がノニオン性の樹脂であることをゼータ電位を測定して確認した。具体的な測定方法は下記の通りである。 The zeta potential was measured to confirm that the water-dispersed urethane resin was a nonionic resin. The specific measurement method is as follows.
 装置:Malvern社 ゼータサイザーナノZSP
 測定方式:電気泳動光散乱法
 試料調整:水分散性疎水性樹脂を質量%で1%に希釈したものを測定。
Device: Malvern Zetasizer Nano ZSP
Measurement method: electrophoretic light scattering method Sample preparation: Measured by diluting a water-dispersible hydrophobic resin to 1% by mass%.
 上記水分散性疎水性樹脂含有低屈折率層塗布液1を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was 1.50.
 〈光学反射フィルム1の作製〉
 19層重層塗布可能なスライドホッパー塗布装置を用いて、上記で調製した高屈折率層塗布液1、低屈折率層塗布液1、および水分散性疎水性樹脂含有低屈折率層塗布液1を、それぞれ、40℃に調節した。40℃に加温した基材である160mm幅で厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層)上に、最下層と最上層は低屈折率層とし、基材側から11層目を水分散性疎水性樹脂含有低屈折率層とした以外はそれぞれ交互に、乾燥時の膜厚が低屈折率層および水分散性疎水性樹脂含有低屈折率層は各層150nm、高屈折率層は各層130nmになるように、計19層の同時重層塗布を行った。塗布直後、10℃の冷風を吹き付けてセット(増粘)させた。
<Preparation of optical reflection film 1>
Using a slide hopper coating apparatus capable of coating 19 layers, the above prepared high refractive index layer coating solution 1, low refractive index layer coating solution 1, and water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 , Respectively, adjusted to 40 ° C. On the polyethylene terephthalate film (Toyobo A4300: double-sided easy adhesion layer) 160 mm wide and 50 μm thick, which is a base material heated to 40 ° C., the lowermost layer and the uppermost layer are low refractive index layers. Except for the layer being a water-dispersible hydrophobic resin-containing low-refractive index layer, each layer is alternately dried with a low-refractive index layer and a water-dispersible hydrophobic resin-containing low-refractive index layer, each having a thickness of 150 nm and a high refractive index. A total of 19 layers were simultaneously applied so that the rate layer was 130 nm in each layer. Immediately after application, cold air of 10 ° C. was blown to set (thickening).
 セット(増粘)完了後、60℃の温風を吹き付けて乾燥させて、計19層からなる実施例1の光学反射フィルム1を作製した。 After completion of the setting (thickening), warm air of 60 ° C. was blown and dried to produce the optical reflective film 1 of Example 1 consisting of a total of 19 layers.
 なお、膜厚の測定(確認)は、光学反射フィルム試料を切断して切断面をXPS表面分析装置で高屈折率材料(TiO)と低屈折率材料(SiO)の存在量を測定することで、上記各層の膜厚が確保されていることが確認できた。 The film thickness is measured (confirmed) by cutting the optical reflection film sample and measuring the abundance of the high refractive index material (TiO 2 ) and the low refractive index material (SiO 2 ) with the XPS surface analyzer. Thus, it was confirmed that the film thicknesses of the respective layers were ensured.
 (実施例2)
 〈水分散性疎水性樹脂含有低屈折率層塗布液2の調製〉
 酸性コロイダルシリカの10質量%水溶液を18質量部とし、ポリビニルアルコールの6質量%水溶液を6質量部とし、水分散ウレタン樹脂6質量%水溶液を47質量部としたこと以外は、水分散性疎水性樹脂含有低屈折率層塗布液1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液2を調製した。
(Example 2)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2>
Water dispersible hydrophobicity except that 18 parts by weight of 10% by weight aqueous solution of acidic colloidal silica, 6 parts by weight of 6% by weight aqueous solution of polyvinyl alcohol and 47 parts by weight of 6% by weight aqueous solution of water-dispersed urethane resin are used. In the same manner as the resin-containing low refractive index layer coating solution 1, a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液2を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 was 1.50.
 〈光学反射フィルム2の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液2に変更したことを除いては、実施例1と同様にして光学反射フィルム2を作製した。
<Preparation of optical reflection film 2>
In Example 1 (preparation of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 2 prepared as described above. Except having changed, the optical reflection film 2 was produced like Example 1. FIG.
 (実施例3)
 〈水分散性疎水性樹脂含有低屈折率層塗布液3の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を19質量部とし、ポリビニルアルコールの6質量%水溶液を38質量部とし、水分散ウレタン樹脂6質量%水溶液を18質量部としたこと以外は、実施例1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液3を調製した。
(Example 3)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 3>
In Example 1 (preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 10 mass% aqueous solution of acidic colloidal silica is 19 mass parts, and 6 mass% aqueous solution of polyvinyl alcohol is 38 mass parts, A water-dispersible hydrophobic resin-containing low refractive index layer coating solution 3 was prepared in the same manner as in Example 1 except that the amount of the water-dispersed urethane resin aqueous solution was 18 parts by mass.
 上記水分散性疎水性樹脂含有低屈折率層塗布液3を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 3 was 1.50.
 〈光学反射フィルム3の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液3に変更したことを除いては、実施例1と同様にして光学反射フィルム3を作製した。
<Preparation of optical reflection film 3>
In Example 1 (preparation of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 3 prepared as described above. An optical reflective film 3 was produced in the same manner as in Example 1 except that the change was made.
 (実施例4)
 〈水分散性疎水性樹脂含有低屈折率層塗布液4の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を19質量部としポリビニルアルコールの6質量%水溶液を38質量部とし、水分散ウレタン樹脂6質量%水溶液を18質量部とし、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)としたこと以外は実施例1と同様にして水分散性疎水性樹脂含有低屈折率層塗布液4を調製した。
Example 4
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4>
In Example 1 (Preparation of Dispersible Hydrophobic Resin-Containing Low Refractive Index Layer Coating Liquid 1), 10 mass% aqueous solution of acidic colloidal silica was 19 mass parts, 6 mass% aqueous solution of polyvinyl alcohol was 38 mass parts, water 18 parts by mass of a 6% by mass aqueous solution of dispersed urethane resin, and 1 part by mass of an anionic surfactant of 1 part by mass of a 5% by mass aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) A water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4 was prepared in the same manner as in Example 1 except that a 5% by mass aqueous solution of the agent (Hitenol NF-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used. .
 上記水分散性疎水性樹脂含有低屈折率層塗布液4を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4 was 1.50.
 〈光学反射フィルム4の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液4に変更したことを除いては、実施例1と同様にして光学反射フィルム4を作製した。
<Preparation of Optical Reflective Film 4>
In Example 1 (preparation of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 4 prepared as described above. An optical reflective film 4 was produced in the same manner as in Example 1 except that the change was made.
 (実施例5)
 〈水分散性疎水性樹脂含有低屈折率層塗布液5の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)を3質量部の水分散アクリル樹脂6質量%水溶液(AE-116、平均粒子径=80nm、株式会社イーテック製)に変更し、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)に変更したこと以外は実施例1と同様にして水分散性疎水性樹脂含有低屈折率層塗布液5を調製した。
(Example 5)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5>
In Example 1 (preparation of coating liquid 1 containing a low-refractive index layer containing a dispersible hydrophobic resin), 3 parts by mass of a water-dispersed urethane resin 6% by mass aqueous solution (Adekabon titer HUX-830, average particle size = 100 nm, ADEKA Co., Ltd.) was changed to 3 parts by weight of a water-dispersed acrylic resin 6% by weight aqueous solution (AE-116, average particle size = 80 nm, manufactured by Etec Co., Ltd.), and 5 parts by weight of 1 part by weight of a nonionic surfactant. Other than changing the aqueous solution (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) to 1 part by mass of a 5% by weight aqueous solution of anionic surfactant (Hitenol NF-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) In the same manner as in Example 1, a water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液5を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5 was 1.50.
 なお、上記水分散アクリル樹脂がアニオン性の樹脂であることをゼータ電位を測定して確認した。具体的な測定方法は上記水分散ウレタン樹脂における測定と同様である。 The zeta potential was measured to confirm that the water-dispersed acrylic resin was an anionic resin. The specific measurement method is the same as the measurement in the water-dispersed urethane resin.
 〈光学反射フィルム5の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液5に変更したことを除いては、実施例1と同様にして光学反射フィルム5を作製した。
<Preparation of optical reflection film 5>
In Example 1 (preparation of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 5 prepared as described above. An optical reflective film 5 was produced in the same manner as in Example 1 except that the change was made.
 (実施例6)
 〈水分散性疎水性樹脂含有低屈折率層塗布液6の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、3質量部の水分散ウレタン樹脂6質量%水溶液を3質量部の水分散アクリル樹脂6質量%水溶液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更し、1質量部のノニオン系界面活性剤の5質量%水溶液を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)に変更したこと以外は実施例1と同様にして水分散性疎水性樹脂含有低屈折率層塗布液6を調製した。
(Example 6)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 6>
In Example 1 (Preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 3 parts by mass of a water-dispersed urethane resin 6% by mass aqueous solution and 3 parts by mass of a water-dispersed acrylic resin 6% by mass aqueous solution (AE) -120A, average particle size = 55 nm, manufactured by Etec Co., Ltd. 1 mass part of a 5% by weight aqueous solution of a nonionic surfactant is converted to 1 part by weight of a 5% by weight aqueous solution of anionic surfactant (Hitenol) A water-dispersible hydrophobic resin-containing low refractive index layer coating solution 6 was prepared in the same manner as in Example 1 except that NF-08 (Daiichi Kogyo Seiyaku Co., Ltd.) was changed.
 上記水分散性疎水性樹脂含有低屈折率層塗布液6を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 6 was 1.50.
 〈光学反射フィルム6の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液6に変更したことを除いては、実施例1と同様にして光学反射フィルム6を作製した。
<Preparation of optical reflection film 6>
In Example 1 (production of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was changed to the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 6 prepared as described above. An optical reflective film 6 was produced in the same manner as in Example 1 except that the change was made.
 (実施例7)
 〈水分散性疎水性樹脂含有低屈折率層塗布液7の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの6質量%水溶液を18質量部とし、ポリビニルアルコールの6質量%水溶液を6質量部とし、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)を47質量部の水分散アクリル樹脂6質量%水溶液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更し、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)に変更したこと以外は、実施例1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液7を調製した。
(Example 7)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 7>
In Example 1 (preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 6 mass% aqueous solution of acidic colloidal silica is 18 mass parts, 6 mass% aqueous solution of polyvinyl alcohol is 6 mass parts, 3 parts by weight of a water-dispersed urethane resin 6% by weight aqueous solution (Adekabon titer HUX-830, average particle size = 100 nm, manufactured by ADEKA Corporation) 47 parts by weight of a water-dispersed acrylic resin 6% by weight aqueous solution (AE-120A, average) The particle size was changed to 55 nm (manufactured by Etec Co., Ltd.), and 1 part by weight of a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 1 part by weight of an anionic interface. A water-dispersible hydrophobic property was obtained in the same manner as in Example 1 except that the active agent was changed to a 5% by mass aqueous solution (Haitenol NF-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). The fat content low refractive index layer coating solution 7 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液7を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 7 was 1.50.
 〈光学反射フィルム7の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液7に変更したことを除いては、実施例1と同様にして光学反射フィルム7を作製した。
<Preparation of optical reflection film 7>
In Example 1 (production of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 was used as the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 7 prepared as described above. An optical reflective film 7 was produced in the same manner as in Example 1 except that the change was made.
 (実施例8)
 〈水分散性疎水性樹脂含有低屈折率層塗布液8の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を19質量部とし、ポリビニルアルコールの6質量%水溶液を38質量部とし、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)を18質量部の水分散アクリル樹脂6質量%水溶液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更し、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)に変更したこと以外は、実施例1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液8を調製した。
(Example 8)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 8>
In Example 1 (preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 10 mass% aqueous solution of acidic colloidal silica is 19 mass parts, and 6 mass% aqueous solution of polyvinyl alcohol is 38 mass parts, 3 parts by weight of a water-dispersed urethane resin 6% by weight aqueous solution (Adekabon titer HUX-830, average particle size = 100 nm, manufactured by ADEKA Corporation) 18 parts by weight of a water-dispersed acrylic resin 6% by weight aqueous solution (AE-120A, average) The particle size was changed to 55 nm (manufactured by Etec Co., Ltd.), and 1 part by weight of a 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 1 part by weight of an anionic interface. A water-dispersible sparseness was obtained in the same manner as in Example 1, except that the active agent was changed to a 5% by mass aqueous solution (Haitenol NF-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). Sexual resin containing low refractive index layer coating solution 8 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液8を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 8 was 1.50.
 〈光学反射フィルム8の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液8に変更したことを除いては、実施例1と同様にして光学反射フィルム8を作製した。
<Preparation of optical reflection film 8>
In Example 1 (production of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was used as the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 8 prepared as described above. An optical reflective film 8 was produced in the same manner as in Example 1 except that the change was made.
 (実施例9)
 〈水分散性疎水性樹脂含有低屈折率層塗布液9の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を19質量部とし、ポリビニルアルコールの6質量%水溶液を38質量部とし、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)を18質量部の水分散アクリル樹脂6質量%水溶液液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更したこと以外は、実施例1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液9を調製した。
Example 9
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 9>
In Example 1 (preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 10 mass% aqueous solution of acidic colloidal silica is 19 mass parts, and 6 mass% aqueous solution of polyvinyl alcohol is 38 mass parts, 3 parts by weight of a water-dispersed urethane resin 6% by weight aqueous solution (Adekabon titer HUX-830, average particle size = 100 nm, manufactured by ADEKA Corporation) was added 18 parts by weight of a water-dispersed acrylic resin 6% by weight aqueous solution (AE-120A, A water-dispersible hydrophobic resin-containing low refractive index layer coating solution 9 was prepared in the same manner as in Example 1 except that the average particle size was changed to 55 nm (manufactured by Etec Co., Ltd.).
 上記水分散性疎水性樹脂含有低屈折率層塗布液9を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 9 was 1.50.
 〈光学反射フィルム9の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層塗布液1を、上記の通り調製した水分散性疎水性樹脂含有低屈折率層塗布液9に変更したことを除いては、実施例1と同様にして光学反射フィルム9を作製した。
<Preparation of optical reflection film 9>
In Example 1 (production of the optical reflective film 1), the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 1 was used as the water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 9 prepared as described above. An optical reflective film 9 was produced in the same manner as in Example 1 except that the change was made.
 (実施例10)
 〈光学反射フィルム10の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液8に変更し、さらに、基材側から11層目に代えて、基材側から19層目を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム10を作製した。
(Example 10)
<Preparation of optical reflection film 10>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. The dispersion liquid is changed to the hydrophobic resin-containing low refractive index layer coating solution 8, and the 19th layer from the base material side is replaced with the 11th layer from the base material side. Except for this, an optical reflective film 10 was produced in the same manner as in Example 1.
 (実施例11)
 〈水分散性疎水性樹脂含有低屈折率層塗布液10の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を19質量部とし、水溶性樹脂をポリビニルアルコールの6質量%水溶液(JC-40、平均重合度:4000、鹸化度:99モル%、日本酢ビ・ポバール株式会社製)38質量部に変更し、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)を18質量部の水分散アクリル樹脂6質量%水溶液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更し、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)に変更したこと以外は、実施例1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液10を調製した。
(Example 11)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 10>
In Example 1 (preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 19 parts by mass of 10% by weight aqueous solution of acidic colloidal silica was used, and 6% by weight aqueous solution of polyvinyl alcohol (JC -40, average degree of polymerization: 4000, degree of saponification: 99 mol%, manufactured by Nihon Ventures & Poval Co., Ltd.) 38 parts by mass, 3 parts by mass of water-dispersed urethane resin 6% by mass aqueous solution (Adekabon titer HUX- 830, average particle size = 100 nm, manufactured by ADEKA Corporation) was changed to 18 parts by mass of an aqueous dispersion acrylic resin 6% by mass aqueous solution (AE-120A, average particle size = 55 nm, manufactured by Etec Co., Ltd.). A 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 1 part by weight of a 5% by weight aqueous solution (c) Tenor NF-08, was changed to Dai-ichi Kogyo Seiyaku Co., Ltd.) in the same manner as in Example 1, a water-dispersible hydrophobic resin containing low refractive index layer coating solution 10 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液10を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 10 was 1.50.
 〈光学反射フィルム11の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から上記で作製した水分散性疎水性樹脂含有低屈折率層塗布液10に変更し、さらに、基材側から11層目に代えて、基材側から19層目を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム11を作製した。
<Preparation of optical reflection film 11>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to the above. In addition to the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 10 prepared in Step 1, the 19th layer from the substrate side is replaced by the 11th layer from the substrate side, and the water-dispersible hydrophobic resin containing low An optical reflective film 11 was produced in the same manner as in Example 1 except that the refractive index layer was used.
 (実施例12)
 〈水分散性疎水性樹脂含有低屈折率層塗布液11の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を19質量部とし、水溶性樹脂をポリビニルアルコールの6質量%水溶液(JP-45、平均重合度:4500、鹸化度:99モル%、日本酢ビ・ポバール株式会社製)38質量部に変更し、3質量部の水分散ウレタン樹脂6質量%水溶液(アデカボンタイターHUX-830、平均粒子径=100nm、ADEKA株式会社製)を18質量部の水分散アクリル樹脂6質量%水溶液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更し、1質量部のノニオン系界面活性剤の5質量%水溶液(ノイゲンXL-40、第一工業製薬株式会社製)を1質量部のアニオン系界面活性剤の5質量%水溶液(ハイテノールNF-08、第一工業製薬株式会社製)としたこと以外は、実施例1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液11を調製した。
Example 12
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 11>
In the above Example 1 (Preparation of coating liquid 1 for low refractive index layer containing dispersible hydrophobic resin), 19 parts by mass of 10% by weight aqueous solution of acidic colloidal silica and 19% by weight aqueous solution of polyvinyl alcohol (JP) -45, average degree of polymerization: 4500, degree of saponification: 99 mol%, manufactured by Nihon Acetate Bipoval Co., Ltd.) 38 parts by mass, 3 parts by mass of water-dispersed urethane resin 6% by mass aqueous solution (Adekabon titer HUX- 830, average particle size = 100 nm, manufactured by ADEKA Corporation) was changed to 18 parts by mass of an aqueous dispersion acrylic resin 6% by mass aqueous solution (AE-120A, average particle size = 55 nm, manufactured by Etec Co., Ltd.). A 5% by weight aqueous solution of a nonionic surfactant (Neugen XL-40, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 1 part by weight of a 5% by weight aqueous solution (c) Tenor NF-08, except that the Dai-ichi Kogyo Seiyaku Co., Ltd.) in the same manner as in Example 1, a water-dispersible hydrophobic resin containing low refractive index layer coating solution 11 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液11を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 11 was 1.50.
 〈光学反射フィルム12の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から上記で作製した水分散性疎水性樹脂含有低屈折率層塗布液11に変更し、さらに、基材側から19層目を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム12を作製した。
<Preparation of Optical Reflective Film 12>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to the above. The water-dispersible hydrophobic resin-containing low-refractive index layer coating solution 11 prepared in step 1 was used, and the 19th layer from the substrate side was changed to a water-dispersible hydrophobic resin-containing low-refractive index layer. An optical reflection film 12 was produced in the same manner as in Example 1.
 (実施例13)
 〈光学反射フィルム13の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液10に変更し、さらに、基材側から1層目および19層目を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム13を作製した。
(Example 13)
<Preparation of optical reflection film 13>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. The dispersion liquid hydrophobic resin-containing low refractive index layer coating solution 10 was changed, and the first and 19th layers from the substrate side were changed to water-dispersible hydrophobic resin-containing low refractive index layers, An optical reflective film 13 was produced in the same manner as in Example 1.
 (実施例14)
 〈光学反射フィルム14の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液11に変更し、さらに、基材側から1層目および19層目を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム14を作製した。
(Example 14)
<Preparation of optical reflection film 14>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. The dispersion liquid is changed to the hydrophobic resin-containing low refractive index layer coating solution 11, and further, the first layer and the 19th layer from the substrate side are water-dispersible hydrophobic resin-containing low refractive index layers, An optical reflective film 14 was produced in the same manner as in Example 1.
 (実施例15)
 〈光学反射フィルム15の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液11に変更し、さらに、すべての低屈折率層を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム15を作製した。
(Example 15)
<Preparation of optical reflection film 15>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. The same as in Example 1 except that the dispersion liquid 11 was changed to the dispersion liquid 11 containing a low-refractive index layer, and all the low-refractive index layers were water-dispersible hydrophobic resin-containing low-refractive index layers. Thus, an optical reflection film 15 was produced.
 (比較例1)
 〈水分散性疎水性樹脂含有低屈折率層塗布液12の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を31質量部とし、ポリビニルアルコールの6質量%水溶液を38質量部とし、水分散ウレタン樹脂6質量%水溶液を1質量部としたこと以外は、水分散性疎水性樹脂含有低屈折率層塗布液1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液12を調製した。
(Comparative Example 1)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 12>
In Example 1 (Preparation of Dispersible Hydrophobic Resin-Containing Low Refractive Index Layer Coating Liquid 1), 10% by weight aqueous solution of acidic colloidal silica is 31 parts by weight, and 6% by weight aqueous solution of polyvinyl alcohol is 38 parts by weight. A water-dispersible hydrophobic resin-containing low refractive index coating solution 1 in the same manner as the water-dispersible hydrophobic resin-containing low refractive index coating solution 1 except that the water-dispersed urethane resin 6 mass% aqueous solution is 1 part by mass. 12 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液12を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 12 was 1.50.
 〈光学反射フィルム16の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液12に変更したことを除いては、実施例1と同様にして光学反射フィルム16を作製した。
<Preparation of optical reflection film 16>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. An optical reflection film 16 was produced in the same manner as in Example 1 except that the coating liquid 12 was changed to the dispersible hydrophobic resin-containing low refractive index layer.
 (比較例2)
 〈水分散性疎水性樹脂含有低屈折率層塗布液13の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、水溶性樹脂をポリビニルアルコールの6質量%水溶液(商品名:PVA-210、平均重合度:1000、鹸化度:88モル%、株式会社クラレ製)38質量部に変更し、酸性コロイダルシリカの10質量%水溶液を31質量部とし、水分散ウレタン樹脂6質量%水溶液を1質量部としたこと以外は、水分散性疎水性樹脂含有低屈折率層塗布液1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液13を調製した。
(Comparative Example 2)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 13>
In Example 1 (Preparation of coating liquid 1 containing a low-refractive index layer containing a dispersible hydrophobic resin), the water-soluble resin was a 6% by weight aqueous solution of polyvinyl alcohol (trade name: PVA-210, average polymerization degree: 1000, saponification degree). : 88 mol%, manufactured by Kuraray Co., Ltd.) 38 parts by weight, water except that the 10% by weight aqueous solution of acidic colloidal silica was 31 parts by weight and the water-dispersed urethane resin 6% by weight aqueous solution was 1 part by weight. A water-dispersible hydrophobic resin-containing low refractive index layer coating solution 13 was prepared in the same manner as the dispersible hydrophobic resin-containing low refractive index layer coating solution 1.
 上記水分散性疎水性樹脂含有低屈折率層塗布液13を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 13 was 1.50.
 〈光学反射フィルム17の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液13に変更し、さらに、基材側から11層目に代えて、基材側から19層目を水分散性疎水性樹脂含有低屈折率層としたことを除いては、実施例1と同様にして光学反射フィルム17を作製した。
<Preparation of optical reflection film 17>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. The dispersion liquid is changed to the hydrophobic resin-containing low refractive index layer coating solution 13, and the 19th layer from the base material side is replaced with the 11th layer from the base material side. Except for this, an optical reflective film 17 was produced in the same manner as in Example 1.
 (比較例3)
 〈水分散性疎水性樹脂含有低屈折率層塗布液14の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を10質量部とし、ポリビニルアルコールの6質量%水溶液を4質量部とし、水分散ウレタン樹脂6質量%水溶液を65質量部としたこと以外は、水分散性疎水性樹脂含有低屈折率層塗布液1と同様にして、水分散性疎水性樹脂含有低屈折率層塗布液14を調製した。
(Comparative Example 3)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 14>
In Example 1 (preparation of coating liquid 1 having a low refractive index layer containing a dispersible hydrophobic resin), 10 mass% aqueous solution of acidic colloidal silica is 10 mass parts, 6 mass% aqueous solution of polyvinyl alcohol is 4 mass parts, A water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1 in the same manner as the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 1, except that the water-dispersible urethane resin 6 mass% aqueous solution was 65 parts by mass. 14 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液14を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 14 was 1.50.
 〈光学反射フィルム18の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液14に変更したことを除いては、実施例1と同様にして光学反射フィルム18を作製した。
<Preparation of optical reflection film 18>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. An optical reflective film 18 was produced in the same manner as in Example 1 except that the coating liquid 14 was changed to the dispersible hydrophobic resin-containing low refractive index layer.
 (比較例4)
 〈水分散性疎水性樹脂含有低屈折率層塗布液15の調製〉
 上記実施例1(分散性疎水性樹脂含有低屈折率層塗布液1の調製)において、酸性コロイダルシリカの10質量%水溶液を9質量部とし、水溶性樹脂をポリビニルアルコールの6質量%水溶液(商品名:JM-23、平均重合度:2300、鹸化度:97モル%、日本酢ビ・ポバール社製)4質量部に変更し、水分散ウレタン樹脂6質量%水溶液を65質量部の水分散アクリル樹脂6質量%水溶液(AE-120A、平均粒子径=55nm、株式会社イーテック製)に変更し、ノニオン系界面活性剤を使用しなかったこと以外は実施例1と同様にして水分散性疎水性樹脂含有低屈折率層塗布液15を調製した。
(Comparative Example 4)
<Preparation of water-dispersible hydrophobic resin-containing low refractive index layer coating solution 15>
In Example 1 (preparation of coating liquid 1 containing a low-refractive index resin-containing dispersive hydrophobic resin), 9 parts by mass of 10% by weight aqueous solution of acidic colloidal silica and 6% by weight aqueous solution of polyvinyl alcohol (product) (Name: JM-23, average polymerization degree: 2300, saponification degree: 97 mol%, manufactured by Nippon Bibi-Poval Co., Ltd.) 4 parts by mass, water dispersion urethane resin 6 mass% aqueous solution 65 mass parts water dispersion acrylic A water-dispersible hydrophobic property was obtained in the same manner as in Example 1 except that the resin was changed to a 6% by mass aqueous solution (AE-120A, average particle size = 55 nm, manufactured by Etec Co., Ltd.) and no nonionic surfactant was used. A resin-containing low refractive index layer coating solution 15 was prepared.
 上記水分散性疎水性樹脂含有低屈折率層塗布液15を塗布した膜の屈折率は1.50であった。 The refractive index of the film coated with the water-dispersible hydrophobic resin-containing low refractive index layer coating solution 15 was 1.50.
 〈光学反射フィルム19の作製〉
 上記実施例1(光学反射フィルム1の作製)において、水分散性疎水性樹脂含有低屈折率層を構成するための塗布液を、水分散性疎水性樹脂含有低屈折率層塗布液1から水分散性疎水性樹脂含有低屈折率層塗布液15に変更したことを除いては、実施例1と同様にして光学反射フィルム19を作製した。
<Preparation of optical reflection film 19>
In Example 1 (production of the optical reflective film 1), the coating liquid for constituting the water-dispersible hydrophobic resin-containing low refractive index layer was changed from the water-dispersible hydrophobic resin-containing low refractive index layer coating liquid 1 to water. An optical reflecting film 19 was produced in the same manner as in Example 1 except that the coating liquid 15 was changed to the dispersible hydrophobic resin-containing low refractive index layer.
 ≪評価≫
 (ヘイズの測定)
 上記実施例および比較例で製造した光学反射フィルム試料について、ヘイズメーター(日本電色工業社製のNDH2000型)を用いてヘイズ(%)を測定し、光学反射フィルム試料10枚の平均値を算出した。なお、光学反射フィルムのヘイズ値としては、2.5%以下であればよく、1.5%以下であると好ましい。
≪Evaluation≫
(Measure haze)
About the optical reflective film sample manufactured by the said Example and comparative example, haze (%) was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. NDH2000 type | mold), and the average value of ten optical reflective film samples was computed. did. In addition, as a haze value of an optical reflection film, it should just be 2.5% or less, and it is preferable in it being 1.5% or less.
 (塗膜故障の有無の観察)
 上記実施例および比較例で製造した光学反射フィルム試料を目視にて観察し、直径2mm以上の塗膜故障(はじき、凝集物)の総数(個/1000m)を計数し、光学反射フィルム試料10枚の平均値を算出し、以下の評価基準に従って評価した。
(Observation of coating failure)
The optical reflective film samples produced in the above examples and comparative examples were visually observed, and the total number (number / 1000 m 2 ) of coating film failures (repelling and agglomerates) having a diameter of 2 mm or more was counted. The average value of the sheets was calculated and evaluated according to the following evaluation criteria.
 ○:10個/1000m以下、
 ○△:10個/1000m超、100個/1000m以下、
 △:100個/1000m超、500個/1000m以下、
 ×:500個/1000m超。
○: 10 pieces / 1000 m 2 or less,
○ △: 10 pieces / 1000 m 2 or more, 100 pieces / 1000 m 2 or less,
Δ: 100 pieces / 1000 m 2 or more, 500 pieces / 1000 m 2 or less,
X: More than 500 pieces / 1000 m 2 .
 なお、○、○△、△は実用上問題なく使用できる。 In addition, ○, ○ △, and △ can be used without any practical problem.
 (耐候性試験)
 上記実施例および比較例で製造した光学反射フィルムを、それぞれ厚さ3mmの青色ガラスに粘着層を介して貼り付けた。
(Weather resistance test)
The optical reflective films produced in the above Examples and Comparative Examples were each attached to blue glass having a thickness of 3 mm via an adhesive layer.
 具体的には、下記粘着層形成塗布液を中本パックス製セパレータ NS23MAのシリコーン離型面に対して、コンマコーターにて乾燥膜厚が10μmになるように塗工し、90℃、1分間乾燥して粘着層を形成した。この粘着層に、上記にて誘電体多層膜を形成したフィルムを貼りあわせ、誘電体多層膜上に粘着層を形成した。 Specifically, the following adhesive layer forming coating solution was applied to a silicone release surface of Nakamoto Pax separator NS23MA with a comma coater so that the dry film thickness was 10 μm, and dried at 90 ° C. for 1 minute. Thus, an adhesive layer was formed. The film having the dielectric multilayer film formed thereon was bonded to this adhesive layer to form an adhesive layer on the dielectric multilayer film.
 粘着層形成塗布液の調製
 粘着剤であるコーポニール(登録商標)N-6941M(日本合成化学工業株式会社製)に対して、硬化剤であるコロネートL-55E(日本ポリウレタン工業株式会社製)を3質量%添加し、さらに紫外線吸収剤であるチヌビン477(BASFジャパン株式会社製)を5質量%添加し、溶媒としての酢酸エチルで固形分が10質量%になるように希釈して、粘着層形成塗布液を調製した。
Preparation of Adhesive Layer Forming Coating Solution Coronyl (registered trademark) N-6941M (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), which is a pressure-sensitive adhesive, Add 3% by mass, add 5% by mass of Tinuvin 477 (BASF Japan Co., Ltd.), which is an ultraviolet absorber, and dilute with ethyl acetate as a solvent so that the solid content becomes 10% by mass. A forming coating solution was prepared.
 この試料を50℃70%RHの条件でキセノンウェザーメーター(スガ試験機社製;太陽光に極めて近似した光を発する)を用いて180W/mの強度のキセノン光に18分の水噴射と22分の乾燥を繰り返し暴露した。その後、10時間ごとに曝露後にフィルムに膜割れが発生したかどうかを目視にて確認し、以下の評価基準に従って評価した。 This sample was subjected to a water jet of 18 minutes to xenon light having an intensity of 180 W / m 2 using a xenon weather meter (manufactured by Suga Test Instruments Co., Ltd .; emitting light very close to sunlight) under conditions of 50 ° C. and 70% RH. Repeated 22 minutes of drying. Thereafter, whether or not film cracking occurred after exposure every 10 hours was visually confirmed and evaluated according to the following evaluation criteria.
 A:膜割れが発生していない、
 B:わずかに膜割れが発生している、
 C:目視で十分わかる膜割れが発生している、
 D:フィルム全体に明らかに膜割れが発生している。
A: No film breakage,
B: Slight film cracking has occurred,
C: A film crack that can be sufficiently visually confirmed has occurred,
D: Membrane cracks are clearly generated in the entire film.
 以上の評価でC以上となった点をクラック発生時間とした。評価結果を下記の表1に示す。 The point at which the above evaluation was C or higher was defined as the crack occurrence time. The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1の結果から、水溶性樹脂と、水分散性疎水性樹脂とを有する水分散性疎水性樹脂含有層を有し、上記水分散性疎水性樹脂含有層の固形分質量に対して水分散性疎水性樹脂を5~55質量%含む実施例1~15の光学反射フィルムは、比較例1~4の光学反射フィルムに比べて、耐候性に優れることがわかる。また、塗膜故障も低減されることがわかった。 From the results of Table 1 above, the water-dispersible hydrophobic resin-containing layer having a water-soluble resin and a water-dispersible hydrophobic resin is included, and water is added to the solid mass of the water-dispersible hydrophobic resin-containing layer. It can be seen that the optical reflective films of Examples 1 to 15 containing 5 to 55 mass% of the dispersible hydrophobic resin are superior in weather resistance as compared with the optical reflective films of Comparative Examples 1 to 4. It was also found that coating film failure was reduced.
 さらに、水分散性疎水性樹脂としてアニオン性エマルジョン樹脂を用い、アニオン系界面活性剤を含む実施例5~8は、実施例1~4、9に比べて塗膜故障がより改善される。 Furthermore, in Examples 5 to 8 using an anionic emulsion resin as the water-dispersible hydrophobic resin and containing an anionic surfactant, the coating film failure is further improved as compared with Examples 1 to 4 and 9.
 また、最上層にアニオン性エマルジョン樹脂と、平均重合度が4000~6000の水溶性樹脂とを用いた実施例11~15では、耐候性がさらに向上すると同時にヘイズも改善された。特に最下層もアニオン性エマルジョン樹脂を含む水分散性疎水性樹脂含有層とした実施例13、14や、最上層および最下層を含むすべての低屈折率層をアニオン性エマルジョン樹脂を含む水分散性疎水性樹脂含有層とした実施例15では、耐候性を向上させる効果が高いことがわかった。 Further, in Examples 11 to 15 in which an anionic emulsion resin and a water-soluble resin having an average polymerization degree of 4000 to 6000 were used for the uppermost layer, the weather resistance was further improved and the haze was improved. In particular, Examples 13 and 14 in which the lowermost layer also includes a water-dispersible hydrophobic resin-containing layer containing an anionic emulsion resin, and all the low refractive index layers including the uppermost layer and the lowermost layer are water-dispersible containing an anionic emulsion resin. In Example 15 in which the hydrophobic resin-containing layer was used, it was found that the effect of improving the weather resistance was high.
 なお、本出願は、2015年6月1日に出願された日本特許出願第2015-111712号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2015-111712 filed on June 1, 2015, the disclosure of which is incorporated by reference in its entirety.

Claims (7)

  1.  基材と、
     前記基材の一方の面上に配置された、低屈折率層と高屈折率層とが交互に積層されてなる誘電体多層膜と、を有し、
     前記低屈折率層および前記高屈折率層のうち少なくとも1層は、水溶性樹脂と、全質量に対して5~55質量%の水分散性疎水性樹脂と、を含む水分散性疎水性樹脂含有層である、光学反射フィルム。
    A substrate;
    A dielectric multilayer film in which low-refractive index layers and high-refractive index layers are alternately stacked, disposed on one surface of the substrate;
    At least one of the low refractive index layer and the high refractive index layer includes a water-soluble resin and a water-dispersible hydrophobic resin containing 5 to 55% by mass of a water-dispersible hydrophobic resin based on the total mass. An optical reflection film which is a containing layer.
  2.  前記水分散性疎水性樹脂含有層がアニオン系界面活性剤をさらに含み、前記水分散性疎水性樹脂がアニオン性エマルジョン樹脂である、請求項1に記載の光学反射フィルム。 The optical reflective film according to claim 1, wherein the water-dispersible hydrophobic resin-containing layer further contains an anionic surfactant, and the water-dispersible hydrophobic resin is an anionic emulsion resin.
  3.  前記誘電体多層膜において、前記基材に接する側と反対側の最上層が前記水分散性疎水性樹脂含有層である、請求項1または2に記載の光学反射フィルム。 The optical reflective film according to claim 1 or 2, wherein in the dielectric multilayer film, the uppermost layer opposite to the side in contact with the substrate is the water-dispersible hydrophobic resin-containing layer.
  4.  前記誘電体多層膜において、前記基材に接する最下層が前記水分散性疎水性樹脂含有層である、請求項1~3のいずれか1項に記載の光学反射フィルム。 The optical reflective film according to any one of claims 1 to 3, wherein in the dielectric multilayer film, a lowermost layer in contact with the substrate is the water-dispersible hydrophobic resin-containing layer.
  5.  前記誘電体多層膜の最上層および最下層が低屈折率層であり、すべての低屈折率層が前記水分散性疎水性樹脂含有層である、請求項1~4のいずれか1項に記載の光学反射フィルム。 The top layer and the bottom layer of the dielectric multilayer film are low refractive index layers, and all the low refractive index layers are the water-dispersible hydrophobic resin-containing layers. Optical reflective film.
  6.  前記水分散性疎水性樹脂含有層の前記水溶性樹脂の平均重合度が4000~6000である、請求項1~5のいずれか1項に記載の光学反射フィルム。 The optical reflective film according to any one of claims 1 to 5, wherein the water-soluble resin in the water-dispersible hydrophobic resin-containing layer has an average polymerization degree of 4000 to 6000.
  7.  水溶性樹脂、アニオン系界面活性剤、およびアニオン性エマルジョン樹脂を水系溶媒に溶解または分散させて塗布液を調製する段階と、
     前記塗布液を塗布することによって前記水分散性疎水性樹脂含有層を形成する段階と、
    を含む、請求項2に記載の光学反射フィルムの製造方法。
    A step of preparing a coating solution by dissolving or dispersing a water-soluble resin, an anionic surfactant, and an anionic emulsion resin in an aqueous solvent;
    Forming the water-dispersible hydrophobic resin-containing layer by applying the coating liquid;
    The manufacturing method of the optical reflection film of Claim 2 containing this.
PCT/JP2016/065930 2015-06-01 2016-05-30 Optical reflection film WO2016194875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017521937A JP6724912B2 (en) 2015-06-01 2016-05-30 Optical reflective film
CN201680031322.XA CN107615117B (en) 2015-06-01 2016-05-30 Optical reflective film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-111712 2015-06-01
JP2015111712 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016194875A1 true WO2016194875A1 (en) 2016-12-08

Family

ID=57440248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065930 WO2016194875A1 (en) 2015-06-01 2016-05-30 Optical reflection film

Country Status (3)

Country Link
JP (1) JP6724912B2 (en)
CN (1) CN107615117B (en)
WO (1) WO2016194875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207563A1 (en) * 2017-05-10 2018-11-15 コニカミノルタ株式会社 Light-reflecting film and method for producing light-reflecting film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102532479B1 (en) 2018-09-27 2023-05-16 도요보 가부시키가이샤 multilayer laminated film
US12001040B2 (en) 2018-09-27 2024-06-04 Toyobo Co., Ltd Multilayer laminate film
KR102642890B1 (en) * 2018-09-27 2024-03-05 도요보 가부시키가이샤 multi-layer laminated film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123766A (en) * 2002-09-30 2004-04-22 Toto Ltd Composition for coating
JP2010053200A (en) * 2008-08-27 2010-03-11 National Institute Of Advanced Industrial Science & Technology Light reflecting material
JP2012215733A (en) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc Infrared shield film and infrared shield body
WO2013058141A1 (en) * 2011-10-20 2013-04-25 コニカミノルタホールディングス株式会社 Infrared shielding film and infrared shield using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123766A (en) * 2002-09-30 2004-04-22 Toto Ltd Composition for coating
JP2010053200A (en) * 2008-08-27 2010-03-11 National Institute Of Advanced Industrial Science & Technology Light reflecting material
JP2012215733A (en) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc Infrared shield film and infrared shield body
WO2013058141A1 (en) * 2011-10-20 2013-04-25 コニカミノルタホールディングス株式会社 Infrared shielding film and infrared shield using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207563A1 (en) * 2017-05-10 2018-11-15 コニカミノルタ株式会社 Light-reflecting film and method for producing light-reflecting film

Also Published As

Publication number Publication date
JPWO2016194875A1 (en) 2018-03-22
CN107615117B (en) 2020-05-19
JP6724912B2 (en) 2020-07-15
CN107615117A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2013111735A1 (en) Optical film
JP6724912B2 (en) Optical reflective film
JP6673219B2 (en) Laminated film
JP6834984B2 (en) Optical reflective film
WO2018207563A1 (en) Light-reflecting film and method for producing light-reflecting film
WO2014199872A1 (en) Infrared shielding film, infrared shielding body using the same, and heat-ray reflecting laminated glass
WO2015115329A1 (en) Optical film
WO2014188831A1 (en) Ultraviolet shielding film
WO2014171494A1 (en) Optical reflective film, method for manufacturing same, and optical reflector using same
WO2016010049A1 (en) Laminated film and method for producing same
WO2016133022A1 (en) Heat shielding film
JP6344069B2 (en) Optical reflective film
JP2015125168A (en) Dielectric multilayer film
JP6787336B2 (en) Optical reflective film and optical reflector
JP2016155256A (en) Heat shielding film, and method for producing the same
JP6683249B2 (en) Optical reflective film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
WO2017077810A1 (en) Light reflecting film
JP6326780B2 (en) Window pasting film
JP2017203965A (en) Optical reflection film in roll state
JPWO2015037514A1 (en) Method for producing dielectric multilayer film
JP6672984B2 (en) Optical reflection film, method for manufacturing optical reflection film, and optical reflector
JP2016090878A (en) Optical reflection film
JPWO2019240003A1 (en) Optical property control film and display device using it
JPWO2019193907A1 (en) Manufacturing method of optical articles and optical articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803310

Country of ref document: EP

Kind code of ref document: A1