WO2016190397A1 - 鋼板及びその製造方法 - Google Patents

鋼板及びその製造方法 Download PDF

Info

Publication number
WO2016190397A1
WO2016190397A1 PCT/JP2016/065630 JP2016065630W WO2016190397A1 WO 2016190397 A1 WO2016190397 A1 WO 2016190397A1 JP 2016065630 W JP2016065630 W JP 2016065630W WO 2016190397 A1 WO2016190397 A1 WO 2016190397A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
carbides
ferrite
annealing
Prior art date
Application number
PCT/JP2016/065630
Other languages
English (en)
French (fr)
Other versions
WO2016190397A9 (ja
Inventor
匹田 和夫
高田 健
健悟 竹田
元仙 橋本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MX2017015085A priority Critical patent/MX2017015085A/es
Priority to JP2016559656A priority patent/JP6160783B2/ja
Priority to US15/576,653 priority patent/US10837077B2/en
Priority to CN201680030147.2A priority patent/CN107614728B/zh
Priority to ES16800101T priority patent/ES2769275T3/es
Priority to BR112017025030-6A priority patent/BR112017025030A2/ja
Priority to PL16800101T priority patent/PL3305931T3/pl
Priority to EP16800101.4A priority patent/EP3305931B1/en
Priority to KR1020177033292A priority patent/KR101988153B1/ko
Publication of WO2016190397A1 publication Critical patent/WO2016190397A1/ja
Publication of WO2016190397A9 publication Critical patent/WO2016190397A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts

Definitions

  • the present invention relates to a steel plate and a manufacturing method thereof.
  • Automotive parts, blades, and other machine parts are manufactured through processing steps such as punching, bending, and pressing.
  • processing steps such as punching, bending, and pressing.
  • it is necessary to improve the workability of the carbon steel plate as a raw material in order to improve and stabilize the product quality and reduce the manufacturing cost.
  • the carbon steel sheet may be deformed by high-speed rotation or the like, and may be broken due to insufficient ductility. Therefore, ductility after heat treatment is required.
  • a carbon steel plate is subjected to cold rolling and spheroidizing annealing, and a carbon steel plate is used as a soft material having good workability made of ferrite and spheroidized carbide. And until now, several techniques for improving the workability of carbon steel sheets have been proposed.
  • Patent Document 1 C: 0.15 to 0.90 mass%, Si: 0.40 mass% or less, Mn: 0.3 to 1.0 mass%, P: 0.03 mass% or less, Total Al: 0.10 mass% or less, Ti: 0.01 to 0.05 mass%, B: 0.0005 to 0.0050 mass%, N: 0.01 mass% or less, Cr: 1.2 mass%
  • a high-carbon steel sheet for precision punching having a structure in which carbides having an average carbide particle size of 0.4 to 1.0 ⁇ m and a spheroidization rate of 80% or more are dispersed in a ferrite matrix, and a notch tensile elongation is 20% or more; The manufacturing method is disclosed.
  • Patent Document 2 C: 0.3 to 1.3% by mass, Si: 1.0% by mass or less, Mn: 0.2 to 1.5% by mass, P: 0.02% by mass or less, S: 0.02% by mass or less, and carbide is dispersed so that the relationship of C GB / C IG ⁇ 0.8 is established between the carbide C GB on the ferrite grain boundary and the number of carbides C IG in the ferrite crystal grain
  • a medium and high carbon steel sheet excellent in workability and a method for producing the same are disclosed, characterized by having a texture that is made and having a cross-sectional hardness of 160 HV or less.
  • Patent Document 3 C: 0.30 to 1.00 mass%, Si: 1.0 mass% or less, Mn: 0.2 to 1.5 mass%, P: 0.02 mass% or less, S: A relationship of C GB / C IG ⁇ 0.8 holds between the carbide C GB on the ferrite grain boundary and the number of carbides C IG in the ferrite crystal grain including 0.02% by mass or less, and all carbides
  • a medium and high carbon steel sheet excellent in workability is disclosed, characterized by having a structure in which a carbide occupying 90% or more of the spheroidized carbide having a major axis / minor axis of 2 or less is dispersed in ferrite. .
  • S gb ⁇ S on / (S on + S in ) ⁇ ⁇ 100 (where S on : per unit area) of the carbides present, the total area occupied by the carbides present on the grain boundary, S in: out of the carbides present per unit area, the ferrite grain boundary carbides, which is defined by the total occupied area)
  • Patent Document 5 promotes the spheroidization of carbides and suppresses the grain growth of ferrite by performing appropriate hot-rolled sheet annealing on a hot-rolled sheet having a pearlite structure of almost 100%, It is characterized in that many carbides are present on the ferrite grain boundaries.
  • Patent Document 6 is a solid solution of ferrite by actively utilizing Si as a structural structure mainly composed of ferrite, the second phase with a low martensite fraction and mainly composed of carbides such as cementite. It is characterized by ensuring strength by strengthening and ensuring ductility by improving the work hardening ability of ferrite itself.
  • Patent Document 7 discloses a technique for producing a soft medium carbon steel sheet excellent in induction hardenability by controlling the ferrite grain size to 10 ⁇ m or more.
  • the manufacturing method disclosed in Patent Document 7 is characterized in that the ferrite grains of the steel sheet are coarsened by box annealing that is heated to 600 ° C. to 750 ° C., thereby softening the steel sheet.
  • the steel sheet disclosed in Patent Document 8 10 to 50% of the C content is graphitized, and the steel structure of the cross section is C weight% ⁇ 10 2 pieces / mm 2 or more C weight% of 3 ⁇ m-sized graphite particles. It is characterized in that it is a ferrite phase in which spheroidized cementite is dispersed, containing 10 3 / mm 2 or less.
  • the production method disclosed in Patent Document 8 is characterized in that a hot-rolled sheet is annealed in the range of 600 ° C. to 720 ° C. from the viewpoint of graphitization of the steel sheet.
  • the steel sheet disclosed in Patent Document 9 includes a bainite phase having an area ratio of 90% or more, and among all Fe-based carbides precipitated in the bainite phase, Fe precipitated in bainitic ferrite grains. It is characterized by having a structure in which the number ratio of the system carbide is 30% or more and the average particle diameter of the Fe system carbide precipitated in the bainitic ferrite grains is 150 nm or less.
  • Patent Documents 2 and 3 both describe that the low spheroidization rate of carbides precipitated at grain boundaries (referred to as “grain boundary carbides”) is a cause of deterioration of workability.
  • grain boundary carbides the low spheroidization rate of carbides precipitated at grain boundaries
  • Patent Documents 2 and 3 has a problem of improving workability by improving the spheroidization rate of grain boundary carbides.
  • the tissue factor is only defined, and the relationship between workability and mechanical properties is not studied.
  • Patent Documents 5 to 9 do not specify the conditions for the annealing process from the viewpoint of promoting the precipitation of carbides on the ferrite grain boundaries. Further, since the cooling conditions after the annealing process are not specified in Patent Documents 5 to 9, in the manufacturing methods disclosed in Patent Documents 5 to 9, the austenite generated after the annealing is transformed into pearlite and the steel sheet is hardened. There is a risk that the cold formability will be reduced.
  • Patent Document 10 after the finish-rolled steel sheet is wound at a winding temperature of 400 ° C. or higher and lower than 650 ° C., the first annealing at 680 ° C. or higher and 720 ° C. or lower and the second annealing at 730 ° C. or higher and 790 ° C. or lower are performed. It discloses that after annealing for the second time, the steel sheet is annealed at a cooling rate of 20 ° C./hr from the viewpoint of cementite spheroidization. However, in the manufacturing method of Patent Document 10, the finish rolling is finished at 600 ° C.
  • the present invention is based on the prior art, and an object of the present invention is to improve cold formability and post-heat treatment ductility in a steel sheet, and an object of the present invention is to provide a steel sheet that solves the problem and a method for manufacturing the same.
  • the cold formability refers to the deformability of a steel plate that can be easily plastically deformed into a required shape without defects when the steel plate is plastically deformed into a required shape by cold working or cold forging.
  • the ductility after heat treatment is the ductility of the steel plate after heat treatment.
  • the ferrite grain size is increased, and carbide (mainly cementite) is obtained.
  • carbide mainly cementite
  • the ferrite phase has low hardness and high ductility. Therefore, it is possible to improve the material formability by increasing the grain size in a structure mainly composed of ferrite.
  • carbides in the steel sheet are strong particles that prevent slipping, and by allowing carbides to exist at the ferrite grain boundaries, it is possible to prevent the propagation of slips across the crystal grain boundaries and suppress the formation of shear bands. It can improve the cold forgeability and at the same time improve the formability of the steel sheet.
  • cementite is a hard and brittle structure, and if it exists in the state of pearlite, which is a layered structure with ferrite, the steel becomes hard and brittle, so it must be present in a spherical shape. In consideration of cold forgeability and generation of cracks during forging, the particle size needs to be in an appropriate range.
  • the metal structure of the steel sheet after coiling after hot rolling becomes a bainite structure in which cementite is dispersed in fine pearlite or fine ferrite with a small lamellar spacing, so that the temperature is relatively low (400 ° C to 550 ° C). Take up with.
  • cementite dispersed in the ferrite is also easily spheroidized.
  • the cementite is partially spheroidized by annealing at a temperature just below the Ac1 point as the first stage annealing.
  • annealing is performed at a temperature between Ac1 point and Ac3 point (so-called two-phase region of ferrite and austenite), and a part of the ferrite grains is left, and a part thereof is austenite transformed. Thereafter, the ferrite grains left by slow cooling were grown, and austenite was transformed into ferrite by using the ferrite grains as a nucleus, so that cementite was precipitated at the grain boundaries while obtaining a large ferrite phase, and the above structure was found to be realized.
  • the present inventors have optimized the dispersion state of carbides in the steel sheet structure before cold working of the steel sheet with the optimized component composition and the manufacturing conditions in the integrated process from hot rolling to annealing.
  • the steel sheet structure can be controlled to allow carbides having an appropriate particle size to precipitate at the ferrite grain boundaries.
  • the present inventors have found that excellent cold formability and post-heat treatment ductility can be secured in a steel sheet when the ferrite grain size is 5 ⁇ m or more and the Vickers hardness is 170 or less.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • the component composition is mass%, C: 0.10 to 0.40%, Si: 0.30 to 1.00%, Mn: 0.30 to 1.00% Al: 0.001 to 0.10%, P: 0.02% or less, S: In a steel plate containing 0.01% or less, the balance being Fe and impurities,
  • the ratio (B / A) of the number of carbides (B) in the ferrite grain boundary to the number of carbides (A) in the ferrite grains exceeds 1,
  • the ferrite particle size is 5 ⁇ m or more and 50 ⁇ m or less,
  • the average particle size of the carbide is 0.4 ⁇ m or more and 2.0 ⁇ m or less, Perlite area ratio is 6% or less, A steel sheet having a Vickers hardness of 120HV or more and 170HV or less.
  • the steel sheet is further in mass%, N: 0.01% or less, O 2: Steel plate according to (1) above, containing 0.02% or less of one type or two or more types.
  • the steel sheet is further in mass%, Ti: 0.10% or less, Cr: 0.50% or less, Mo: 0.50% or less, B: 0.01% or less, Nb: 0.10% or less, V: 0.10% or less, Cu: 0.10% or less, W: 0.10% or less, Ta: 0.10% or less, Ni: 0.10% or less, Sn: 0.05% or less, Sb: 0.05% or less, As: 0.05% or less, Mg: 0.05% or less, Ca: 0.05% or less, Y: 0.05% or less, Zr: 0.05% or less, La: 0.05% or less, Ce: The steel plate according to (1) or (2) above, containing one or more of 0.05% or less.
  • a manufacturing method for manufacturing the steel sheet according to any one of (1) to (3) (I) The steel slab having the component composition described in any one of (1) to (3) is directly or once cooled and heated and then subjected to hot rolling, in a temperature range of 800 ° C to 900 ° C. The hot rolled steel sheet that has been finish-rolled is scraped at 400 ° C. or higher and 550 ° C. or lower, (Ii) The rolled hot-rolled steel sheet is taken out and subjected to pickling, and then subjected to a first stage annealing that is held in a temperature range of 650 ° C. to 720 ° C. for 3 hours to 60 hours, and further 725 ° C. or more.
  • a second step annealing is performed in which a second stage annealing is performed in a temperature range of 790 ° C. or lower and held for 3 hours or more and 50 hours or less,
  • (Iii) A method for producing a steel sheet, characterized in that the hot-rolled steel sheet after annealing is cooled to 650 ° C. at a cooling rate controlled to 1 ° C./hour or more and 30 ° C./hour or less and then cooled to room temperature.
  • the steel sheet of the present invention has high ductility after heat treatment, is excellent in plate formability before heat treatment, and can be suitably used for fatigue parts to which repeated stress is applied, such as automobile undercarriage structural parts.
  • % means mass%.
  • C is an element that forms carbides and is effective in strengthening steel and refining ferrite grains.
  • C is made 0.10% or more.
  • C is made 0.14% or more.
  • C exceeds 0.40%, the volume fraction of carbide increases, and cold formability and ductility after heat treatment decrease, so C is made 0.40% or less.
  • it is 0.38% or less.
  • Si 0.30 to 1.00%
  • Si is an element that affects the form of carbide and contributes to the improvement of ductility after heat treatment.
  • two-step annealing (hereinafter sometimes referred to as “two-stage annealing”) is used to austenite during annealing. It is necessary to generate a phase, once dissolve the carbide, and then slowly cool to promote precipitation of the carbide on the ferrite grain boundary.
  • the Si content is 0.30% or more. Preferably it is 0.35% or more.
  • the Si content is made 1.00% or less. Preferably it is 0.90% or less.
  • Mn is an element that controls the form of carbide in two-stage annealing. If it is less than 0.30%, it becomes difficult to generate carbides at the ferrite grain boundaries in the slow cooling after the two-stage annealing, so Mn is set to 0.30% or more. Preferably it is 0.33% or more. On the other hand, if it exceeds 1.00%, the hardness of the ferrite increases and the cold formability decreases, so Mn is made 1.00% or less. Preferably it is 0.96% or less.
  • Al 0.001 to 0.10%
  • Al is an element that acts as a deoxidizer and stabilizes ferrite. If the content is less than 0.001%, the above-described effect due to addition cannot be obtained sufficiently, so Al is made 0.001% or more. Preferably it is 0.004% or more. On the other hand, if it exceeds 0.10%, the number of carbides at the ferrite grain boundary decreases and the cold formability deteriorates, so Al is made 0.10% or less. Preferably it is 0.09% or less.
  • P is an element that segregates at the ferrite grain boundaries and suppresses the formation of carbides at the ferrite grain boundaries. Therefore, the content of P is preferably as low as possible, and may be 0%. However, if the content is reduced to less than 0.0001%, the refining cost is greatly increased, so it may be 0.0001% or more. The content of P may be 0.0013% or more. On the other hand, if P exceeds 0.02%, the formation of carbides at the ferrite grain boundaries is suppressed, the number of carbides decreases, and the cold formability deteriorates, so P is made 0.02% or less. Preferably it is 0.01% or less.
  • S is an element that forms non-metallic inclusions such as MnS. Since non-metallic inclusions are the starting point of cracking during cold forming, S is preferably as small as possible, and may be 0%. However, if the content is reduced to less than 0.0001%, the refining cost will be greatly increased. It may be 0001% or more. The S content may be 0.0012% or more. On the other hand, if it exceeds 0.01%, non-metallic inclusions are generated and the cold formability deteriorates, so S is made 0.01% or less. Preferably it is 0.009% or less.
  • the steel sheet of the present invention may contain the following elements in addition to the above elements.
  • N is an element that embrittles ferrite when present in a large amount. Therefore, N is preferably as small as possible, and the content of N may be 0, but if it is reduced to less than 0.0001%, the refining cost will be greatly increased, so it may be 0.0001% or more. The N content may be 0.0006% or more. On the other hand, if it exceeds 0.01%, ferrite becomes brittle and cold formability deteriorates, so N is made 0.01% or less. Preferably it is 0.007% or less.
  • O when present in a large amount, is an element that forms a coarse oxide. Therefore, O is preferably as small as possible, and may be 0%, but if it is reduced to less than 0.0001%, the refining cost will be greatly increased, so it may be 0.0001% or more. The O content may be 0.0011% or more. On the other hand, if it exceeds 0.02%, a coarse oxide is generated in the steel and becomes a starting point of cracking during cold forming, so O is made 0.02% or less. Preferably it is 0.01% or less.
  • the steel sheet of the present invention may further contain one or more of the following elements.
  • the content may be 0%.
  • Ti 0.10% or less
  • Ti is an element that forms a nitride and contributes to refinement of crystal grains. If it is less than 0.001%, the effect of addition cannot be sufficiently obtained, so Ti is preferably made 0.001% or more. More preferably, it is 0.005% or more. On the other hand, if it exceeds 0.10%, coarse Ti nitrides are produced and cold formability deteriorates, so Ti is made 0.10% or less. Preferably it is 0.07% or less.
  • Cr 0.50% or less
  • Cr is an element that contributes to the improvement of hardenability, stabilizes the carbide by concentrating on the carbide, and forms a stable carbide even in the austenite phase. If it is less than 0.001%, the effect of improving hardenability cannot be obtained, so Cr is preferably made 0.001% or more. More preferably, it is 0.007% or more. On the other hand, if it exceeds 0.50%, stable carbides are generated in the austenite phase, the dissolution of carbides is delayed during quenching, and the required quenching strength cannot be obtained, so Cr is 0.50% or less. Preferably it is 0.48% or less.
  • Mo 0.50% or less
  • Mo is an element that is effective in controlling the morphology of carbides, and is an element that contributes to improving ductility by refining the structure. If it is less than 0.001%, the effect of addition cannot be obtained, so Mo is preferably 0.001% or more. More preferably, it is 0.017% or more. On the other hand, if it exceeds 0.50%, the in-plane anisotropy of the r value is lowered and the cold formability is lowered, so Mo is made 0.50% or less. Preferably it is 0.45% or less.
  • B is an element that contributes to improving hardenability. If it is less than 0.0004%, the effect of addition cannot be obtained, so B is preferably made 0.0004% or more. More preferably, it is 0.0010% or more. On the other hand, if it exceeds 0.01%, a coarse B compound is produced and the cold formability deteriorates, so B is made 0.01% or less. Preferably it is 0.008% or less.
  • Nb is an element effective for controlling the form of carbides, and is an element that contributes to improving ductility by refining the structure. If it is less than 0.001%, the effect of addition cannot be obtained, so Nb is preferably 0.001% or more. More preferably, it is 0.002% or more. On the other hand, if it exceeds 0.10%, a large number of fine Nb carbides are generated, the strength is excessively increased, the number of carbides at the ferrite grain boundaries is decreased, and the cold formability is decreased. 10% or less. Preferably it is 0.09% or less.
  • V 0.10% or less
  • Nb is an element that is effective in controlling the morphology of carbides, and is an element that contributes to improving ductility by refining the structure. If it is less than 0.001%, the effect of addition cannot be obtained, so V is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.10%, a lot of fine V carbides are generated, the strength is excessively increased, the number of carbides at the ferrite grain boundaries is decreased, and the cold formability is decreased. 10% or less. Preferably it is 0.09% or less.
  • Cu is an element that segregates at the ferrite grain boundary, and is an element that contributes to improvement in strength by forming fine precipitates. If it is less than 0.001%, the effect of improving the strength cannot be obtained, so Cu is preferably made 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.10%, segregation to the ferrite grain boundary causes red heat embrittlement, and the productivity in hot rolling decreases, so it is made 0.10% or less. Preferably it is 0.09% or less.
  • W is an element effective for controlling the form of carbide. If less than 0.001%, the effect of addition cannot be obtained, so W is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.10%, a large number of fine W carbides are formed and the strength is excessively increased, and the number of carbides at the ferrite grain boundaries is reduced and the cold formability is lowered. 10% or less. Preferably it is 0.08% or less.
  • Ta 0.10% or less
  • Nb, V, and W is an element effective for controlling the morphology of carbides. If less than 0.001%, the effect of addition cannot be obtained, so Ta is preferably 0.001% or more. More preferably, it is 0.007% or more. On the other hand, if it exceeds 0.10%, a large number of fine Ta carbides are produced, the strength is excessively increased, the number of carbides at the ferrite grain boundaries is reduced, and the cold formability is lowered. 10% or less. Preferably, it is 0.09% or less.
  • Ni is an element effective for improving ductility. If it is less than 0.001%, the effect of addition cannot be obtained, so Ni is preferably made 0.001% or more. More preferably, it is 0.002% or more. On the other hand, if it exceeds 0.10%, the number of carbides at the ferrite grain boundary decreases and the cold formability deteriorates, so Ni is made 0.10% or less. Preferably it is 0.09% or less.
  • Sn is an element inevitably mixed from the steel raw material. Therefore, Sn is preferably as small as possible, and may be 0%. However, if it is reduced to less than 0.001%, the refining cost is greatly increased, so Sn may be 0.001% or more. The Sn content may be 0.002% or more. On the other hand, if it exceeds 0.05%, the ferrite becomes brittle and the cold formability deteriorates, so Sn is made 0.05% or less. Preferably, it is 0.04% or less.
  • Sb 0.05% or less
  • Sb is an element that is inevitably mixed from the steel raw material, segregates at the ferrite grain boundary, and reduces the number of carbides at the ferrite grain boundary. Therefore, Sb is preferably as small as possible, and may be 0%. However, if it is reduced to less than 0.001%, the refining cost increases significantly, so Sb may be 0.001% or more. The Sb content may be 0.002% or more. On the other hand, if it exceeds 0.05%, Sb segregates at the ferrite grain boundary, the number of carbides at the ferrite grain boundary decreases, and the cold formability deteriorates, so Sb is made 0.05% or less. Preferably it is 0.04% or less.
  • Mg is an element that can control the form of sulfide by addition of a small amount. If it is less than 0.0001%, the effect of addition cannot be obtained, so Mg is preferably 0.0001% or more. More preferably, it is 0.0008% or more. On the other hand, if it exceeds 0.05%, ferrite becomes brittle and cold formability deteriorates, so Mg is made 0.05% or less. Preferably it is 0.04% or less.
  • Ca is an element that can control the form of sulfide with a small amount of addition. If it is less than 0.001%, the effect of addition cannot be obtained, so Ca is preferably made 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.05%, coarse Ca oxide is generated and becomes a starting point of cracking during cold forming, so Ca is made 0.05% or less. Preferably it is 0.04% or less.
  • Y like Mg and Ca, is an element that can control the form of sulfide by addition of a trace amount. If it is less than 0.001%, the effect of addition cannot be obtained, so Y is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.05%, coarse Y oxide is generated and becomes a starting point of cracking during cold forming, so Y is set to 0.05% or less. Preferably it is 0.03% or less.
  • Zr 0.05% or less
  • Zr is an element that can control the form of sulfide by adding a small amount. If it is less than 0.001%, the effect of addition cannot be obtained, so Zr is preferably 0.001% or more. More preferably, it is 0.004% or more. On the other hand, if it exceeds 0.05%, coarse Zr oxide is generated and becomes a starting point of cracking during cold forming, so Zr is made 0.05% or less. Preferably it is 0.04% or less.
  • La is an element that can control the form of sulfide by adding a small amount, but is also an element that segregates at the ferrite grain boundary and reduces the number of carbides at the ferrite grain boundary. If it is less than 0.001%, the effect of controlling the form of sulfide cannot be obtained, so La is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.05%, it segregates at the ferrite grain boundary, the number of carbides at the ferrite grain boundary decreases, and the cold formability deteriorates, so La is made 0.05% or less. Preferably it is 0.04% or less.
  • Ce is an element that can control the form of sulfide by addition of a small amount, but is also an element that segregates at the ferrite grain boundary and reduces the number of carbides at the ferrite grain boundary. If it is less than 0.001%, the effect of controlling the form of sulfide cannot be obtained, so Ce is preferably 0.001% or more. More preferably, it is 0.003% or more. On the other hand, if it exceeds 0.05%, it segregates at the ferrite grain boundary, the number of carbides at the ferrite grain boundary decreases, and the cold formability deteriorates, so Ce is made 0.05% or less. Preferably it is 0.04% or less.
  • the balance of the above component composition is Fe and inevitable impurities.
  • the ratio (B / A) of the number of carbides (B) in the ferrite grain boundary to the number of carbides (A) in the ferrite grains exceeds 1, and (b ) Ferrite particle size is 5 ⁇ m or more and 50 ⁇ m or less, (c) carbide average particle size is 0.4 ⁇ m or more and 2.0 ⁇ m or less, (d) pearlite area ratio is 6% or less, (e) Vickers hardness
  • the characteristic requirement is that the length is 120 HV or more and 170 HV or less.
  • the steel sheet of the present invention can have excellent cold formability and post-heat treatment ductility by providing the above-mentioned component composition and the characteristic requirements of the above (a) to (e). This is a new finding found by the present inventors. This will be described below.
  • the structure of the steel sheet of the present invention is substantially a structure composed of ferrite and carbide.
  • the ratio (B / A) of the number of carbides (B) in the ferrite grain boundary to the number of carbides (A) in the ferrite grains (B / A) exceeds 1.
  • the carbide is a compound obtained by substituting Fe atoms in the cementite with an alloy element such as Mn or Cr, or an alloy carbide (M 23 C 6 , M 6 C, MC, etc. [M: Fe and other metal elements added as alloys]).
  • a shear band is formed in the macro structure of the steel sheet, and slip deformation is concentrated near the shear band. Slip deformation is accompanied by dislocation growth, and a region having a high dislocation density is formed in the vicinity of the shear band. As the amount of strain applied to the steel sheet increases, slip deformation is promoted and the dislocation density increases. In order to improve the cold formability, it is effective to suppress the formation of shear bands.
  • a shear band is understood as a phenomenon in which a slip generated in a certain crystal grain overcomes the grain boundary and continuously propagates to adjacent crystal grains. Therefore, in order to suppress the formation of shear bands, it is necessary to prevent the propagation of slip across the grain boundary.
  • Carbides in the steel sheet are strong particles that prevent slipping, and by allowing the carbides to exist at the ferrite grain boundaries, it is possible to prevent the propagation of slips across the crystal grain boundaries and suppress the formation of shear bands. It becomes possible to improve cold formability.
  • the present inventors did not adopt the above observation method as a general analysis method, and searched for a simpler and more accurate evaluation index. As a result, if the ratio (B / A) of the number of carbides (B) in the ferrite grain boundary to the number of carbides (A) in the ferrite grains is used as an index, the cold formability can be quantitatively evaluated, and It has been found that when the ratio (B / A) exceeds 1, the cold formability is remarkably improved.
  • Any of buckling, folding, and folding that occurs during cold forming of a steel sheet is caused by the localization of strain associated with the formation of a shear band. Formation and strain localization are mitigated, and buckling, folding, and folding are suppressed.
  • the cold formability can be improved by setting the ferrite grain size to 5 ⁇ m or more. If the ferrite particle size is less than 5 ⁇ m, the hardness increases and cracks and cracks are likely to occur during cold forming, so the ferrite particle size is set to 5 ⁇ m or more. Preferably it is 7 micrometers or more. On the other hand, if the ferrite grain size exceeds 50 ⁇ m, the number of carbides at the grain boundaries that suppress the propagation of slip is reduced and the cold formability is lowered, so the ferrite grain size is set to 50 ⁇ m or less. Preferably it is 38 micrometers or less.
  • the average particle size of the carbide contained in the structure of the steel sheet of the present invention is less than 0.4 ⁇ m, the hardness of the steel plate is remarkably increased and the cold formability is lowered. 4 ⁇ m or more. Preferably it is 0.6 micrometer or more.
  • the average particle diameter of the carbide contained in the structure of the steel sheet of the present invention exceeds 2.0 ⁇ m, the carbide becomes the starting point of cracking during cold forming, so the average particle diameter of the carbide is 2.0 ⁇ m or less. . Preferably it is 1.95 ⁇ m or less.
  • the pearlite area ratio exceeds 6%, the hardness of the steel sheet is remarkably increased and the cold formability is lowered. Therefore, the pearlite area ratio is set to 6% or less. Preferably it is 5% or less.
  • the cold formability can be improved by setting the Vickers hardness of the steel sheet to 120 HV or more and 170 HV or less. If the Vickers hardness is less than 120 HV, buckling is likely to occur during cold forming, so the Vickers hardness is 120 HV or more. Preferably it is 130HV or more. On the other hand, if the Vickers hardness exceeds 170 HV, the ductility is lowered and internal cracking is likely to occur during cold forming, so the Vickers hardness is set to 170 HV or less. Preferably it is 160HV or less.
  • Carbide is observed with a scanning electron microscope. Prior to observation, a sample for tissue observation was wet-polished with emery paper and polished with diamond abrasive grains having an average particle size of 1 ⁇ m, and the observation surface was finished to a mirror surface, and the tissue was then washed with a 3% nitric acid-alcohol solution. Etch.
  • the magnification for observation is selected from among magnifications of 3000 times so that the structure of ferrite and carbide can be distinguished.
  • a plurality of fields of view of 30 ⁇ m ⁇ 40 ⁇ m in the 1/4 layer thickness are randomly photographed at the selected magnification. For example, eight or more areas that do not overlap each other are photographed.
  • carbonized_material is measured.
  • the area of the carbide included in the analysis region may be measured in detail using image analysis software (for example, Win ROOF manufactured by Mitani Corporation).
  • image analysis software for example, Win ROOF manufactured by Mitani Corporation.
  • carbides having an area of 0.01 ⁇ m 2 or less are excluded from evaluation targets.
  • the number of carbides present in the ferrite grain boundary is counted using the above-described structure image, and the number of carbides in the ferrite grain boundary is subtracted from the total number of carbides to calculate the number of carbides in the ferrite grain. Based on the counted and calculated number of carbides, the ratio (B / A) of the number of carbides (B) in the ferrite grain boundaries to the number of carbides (A) in the ferrite grains is calculated. Carbides having an area of 0.01 ⁇ m 2 or less are not counted.
  • the ferrite grain size was determined by polishing the observation surface of the sample to a mirror surface and etching with a 3% nitric acid-alcohol solution, and observing the etched structure with an optical microscope or scanning electron microscope. Can be measured by applying the line segment method.
  • the production method of the present invention is characterized by consistently managing the conditions of the hot rolling process, the condition of the scraping process, and the condition of the two-stage annealing process to control the structure of the steel sheet.
  • a steel piece obtained by continuously casting molten steel having the required composition is directly or after cooling and heated to hot rolling, and finishes the hot rolling in the temperature range of 800 ° C to 900 ° C. To do.
  • a steel sheet structure composed of fine pearlite and bainite can be obtained.
  • the hot rolled steel sheet that has been subjected to the finish rolling is scraped off in a temperature range of 400 ° C. or higher and 550 ° C. or lower.
  • the hot-rolled steel sheet that has been scraped off is discharged, pickled, and then subjected to two-stage annealing. After annealing, the steel sheet is cooled to 650 ° C. at a cooling rate controlled to 1 ° C./hour to 30 ° C./hour, and then to room temperature. Allow to cool.
  • the hot-rolled steel sheet is held in a temperature range of 650 ° C. or more and 720 ° C. or less for 3 hours or more and 60 hours or less in the first-stage annealing step, and in the second-stage annealing step, 725 ° C. or more.
  • the heating temperature is preferably 1000 ° C. or more and 1250 ° C. or less, and the heating time is preferably 0.5 hours or more and 3 hours or less.
  • the steel slab temperature is preferably 1000 ° C. or higher and 1250 ° C. or lower.
  • the billet temperature or billet heating temperature is preferably 1250 ° C. or less, and the billet heating time is preferably 3 hours or less. More preferably, it is 1200 degrees C or less and 2.5 hours or less.
  • the billet temperature or billet heating temperature is preferably 1000 ° C. or more, and the billet heating time is preferably 0.5 hours or more. More preferably, it is 1050 ° C. or more and 1 hour or more.
  • finishing temperature shall be 800 degreeC or more. Preferably it is 830 ° C or more.
  • finishing temperature exceeds 900 ° C, a thick scale is generated while passing through the Run Out Table (ROT). Due to this scale, wrinkles are generated on the steel sheet surface, and cracks start from the wrinkles during cold forming. Will occur. For this reason, finishing temperature shall be 900 degrees C or less. Preferably it is 870 degrees C or less.
  • the cooling rate is preferably 10 ° C./second or more and 100 ° C./second or less.
  • the cooling rate is preferably 10 ° C./second or more. More preferably, it is 15 ° C./second or more.
  • the cooling rate is preferably 100 ° C./second or less. More preferably, it is 90 ° C./second or less.
  • the cooling rate is determined at each water injection section from the time when the hot-rolled steel sheet after finish rolling passes through the non-water injection section and is subjected to water cooling in the water injection section to the time when it is cooled on the ROT to the target temperature of scooping. It refers to the cooling capacity received from the cooling equipment, and does not indicate the average cooling rate from the water injection start point to the temperature taken by the take-up machine.
  • the cutting temperature is 400 ° C. or higher and 550 ° C. or lower. If the milling temperature is less than 400 ° C., the austenite that has not been transformed before the milling is transformed into hard martensite, and when the hot-rolled steel sheet coil is discharged, cracks occur in the surface layer of the hot-rolled steel sheet, Formability is reduced.
  • the scraping temperature is set to 400 ° C. or higher. Preferably it is 430 degreeC or more.
  • the harvesting temperature exceeds 550 ° C, pearlite with large lamella spacing is generated, and thick needle-like carbide with high thermal stability is generated. This acicular carbide remains even after two-stage annealing.
  • the cutting temperature is 550 ° C. or less. Preferably it is 520 degrees C or less.
  • ⁇ ⁇ Take out the hot-rolled steel sheet coil, pickle it, and then perform two-step annealing (two-step annealing) to keep it in two temperature ranges.
  • two-step annealing two-step annealing
  • the hot-rolled steel sheet is not cold-rolled until the two-stage annealing step and the cooling step after the two-step annealing process are completed after the hot-rolled steel sheet coil is dispensed.
  • the ferrite grains are refined and the steel sheet is difficult to soften, and the Vickers hardness of the steel sheet may not be 120 HV or more and 170 HV or less.
  • the first stage annealing is performed in the temperature range below the A C1 point.
  • the carbide is coarsened and the alloy elements are concentrated to increase the thermal stability of the carbide.
  • the temperature is raised to a temperature range from A C1 point to A 3 point, and austenite is generated in the structure. Thereafter, it is slowly cooled to transform austenite into ferrite, and the carbon concentration in the austenite is increased.
  • a temperature range of A less than point C1 the thermal stabilization of carbides is promoted, the temperature range below A C1 points or more A 3 points above
  • the number of residual carbides can be increased by holding at.
  • the annealing temperature in the first stage annealing is 650 ° C. or more and 720 ° C. or less. If the first stage annealing temperature is less than 650 ° C., the carbide is not sufficiently stabilized, and it becomes difficult to leave the carbide in the austenite during the second stage annealing. For this reason, the first stage annealing temperature is set to 650 ° C. or higher. Preferably it is 670 degreeC or more. On the other hand, if the first-stage annealing temperature exceeds 720 ° C., austenite is generated before the stability of the carbide is increased, and it becomes difficult to control the above-described structure change. Therefore, the first-stage annealing temperature is set to 720 ° C. or less. . Preferably it is 700 degrees C or less.
  • the annealing time in the first stage annealing is 3 hours or more and 60 hours or less. If the first stage annealing time is less than 3 hours, the carbide is not sufficiently stabilized, and it is difficult to leave the carbide in the austenite during the second stage annealing. For this reason, the first stage annealing time is set to 3 hours or more. Preferably it is 5 hours or more. On the other hand, if the first stage annealing time exceeds 60 hours, the carbide cannot be further stabilized, and the productivity is further lowered. Therefore, the first stage annealing time is set to 60 hours or less. Preferably it is 55 hours or less.
  • An annealing temperature (second stage annealing temperature) in the second stage annealing is set to 725 ° C. or more and 790 ° C. or less. If the second stage annealing temperature is less than 725 ° C., the amount of austenite produced is small, and the number of carbides (B) at the ferrite grain boundaries decreases. For this reason, the second stage annealing temperature is set to 725 ° C. or higher. Preferably it is 715 degrees C or less.
  • the second stage annealing temperature exceeds 790 ° C., it becomes difficult to leave the carbides in the austenite and it becomes difficult to control the above-described structure change, so the second stage annealing temperature is set to 790 ° C. or less. Preferably it is 770 degrees C or less.
  • the annealing time in the second stage annealing is 3 hours or more and 50 hours or less. If the second stage annealing time is less than 3 hours, the amount of austenite produced is small, and the carbides in the ferrite grains are not sufficiently dissolved, making it difficult to increase the number of carbides at the ferrite grain boundaries. For this reason, the second stage annealing time is set to 3 hours or more. Preferably it is 6 hours or more. On the other hand, if the second stage annealing time exceeds 50 hours, it becomes difficult to leave the carbide in the austenite, so the second stage annealing time is set to 50 hours or less. Preferably it is 45 hours or less.
  • the steel sheet is cooled to 650 ° C. at a cooling rate controlled to 1 ° C./hour or more and 30 ° C./hour or less.
  • the austenite produced by the second stage annealing is gradually cooled to transform it into ferrite, and carbon is adsorbed on the carbide remaining in the austenite.
  • the cooling rate is low, if it is less than 1 ° C./hour, the time required for cooling increases and the productivity decreases, so the cooling rate is 1 ° C./hour or more. Preferably, it is 5 ° C./hour or more.
  • the cooling rate exceeds 30 ° C./hour, austenite is transformed into pearlite, the hardness of the steel sheet is increased, and the cold formability is lowered. Therefore, the cooling rate is 30 ° C./hour or less. Preferably it is 26 degrees C / hour or less.
  • the annealed steel sheet After the annealed steel sheet is cooled to 650 ° C. at the above cooling rate, it is cooled to room temperature.
  • the cooling rate In cooling to room temperature, the cooling rate is not particularly limited.
  • the first-stage annealing and the second-stage annealing may be either box annealing or continuous annealing. Box annealing may be performed using a box-type annealing furnace. Further, the atmosphere in the two-stage annealing is not particularly limited to a specific atmosphere. For example, any atmosphere of 95% or more nitrogen atmosphere, 95% or more hydrogen atmosphere, or air atmosphere may be used.
  • the ferrite grain boundary substantially has the structure of ferrite and spheroidized carbide having a particle diameter of 5 ⁇ m or more and 50 ⁇ m or less, and the number of carbides (A) in the ferrite grains. It is possible to obtain a steel sheet that has a ratio (B / A) of the number of carbides (B) of greater than 1 and a Vickers hardness of 120 HV or more and 170 HV or less and excellent in cold formability and post-heat treatment ductility.
  • the conditions in the examples are examples of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 In order to investigate the influence of the component composition, continuous casting casting of the component composition shown in Table 1-1, Table 1-2 (component composition of the steel plate of the present invention) and Table 2-1, Table 2-2 (component composition of the comparative steel plate)
  • the pieces (steel pieces) were subjected to the steps from the hot rolling step to the two-step annealing step under the following conditions, and samples for characteristic evaluation shown in Table 3 (Invention Steels A-1 to Z-1) And comparative steels AA-1 to AZ-1).
  • the steel pieces of Nos. A to Z in Table 1-1 and Table 1-2 all have the composition of the steel sheet of the present invention.
  • the composition of the steel slabs of Nos. AA to AZ in Table 2-1 and Table 2-2 are all outside the range of the composition of the steel sheet of the present invention.
  • each steel slab having the composition shown in Tables 1 and 2 was heated at 1240 ° C. for 1.8 hours and then subjected to hot rolling, and finish rolling was completed at a finishing temperature of 820 ° C. Thereafter, the steel sheet was cooled on the ROT at a cooling rate of 45 ° C./second, and scraped off at a scraping temperature of 510 ° C. to produce a hot-rolled steel sheet coil. Next, the hot-rolled steel sheet coil is discharged, and after pickling, the hot-rolled steel sheet coil after pickling is charged into a box-type annealing furnace to perform first-stage annealing, and 95% hydrogen and 5% nitrogen are added.
  • the annealing atmosphere was controlled so that it was included, heated from room temperature to 705 ° C. and held for 36 hours, and the temperature distribution in the hot-rolled steel sheet coil was made uniform. Then, in order to perform the second stage annealing, it is heated to 760 ° C. and held for 10 hours, then cooled to 650 ° C. at a cooling rate of 10 ° C./hour, and then cooled to room temperature for furnace evaluation. A sample of was prepared.
  • the structure of the sample was observed by the method described above, and the ferrite particle size and the number of carbides were measured.
  • the sample was placed in an atmospheric annealing furnace, and held at 950 ° C. for 20 minutes. After holding, oil cooling at 50 ° C. was performed. Thereafter, tempering was performed so that the hardness was 400 HV.
  • the ductility after heat treatment was obtained by searching the surface of the sample after annealing, preparing a JIS No. 5 test piece having a thickness of 2 mm, and conducting a tensile test at room temperature. A tensile test was performed at a test speed of 3 mm / min with a distance between the gauge points of 50 mm. 10% or more was considered good.
  • Table 3 shows ferrite grain size ( ⁇ m), Vickers hardness (HV), ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grain (number of grain boundary carbides / number of carbides in grain), and heat treatment. It shows the backward ductility (%).
  • the comparative steel sheet AA-1 has a large amount of Si
  • the comparative steel sheet AB-1 has a large amount of C
  • the comparative steel sheet AD-1 has a large amount of Mn
  • the Vickers hardness is 170 HV. Is over.
  • Comparative steel AH-1 Small amount of C in Comparative steel AH-1, for A 3 points higher, quenching is impossible.
  • the comparative steel sheet AE-1 not only the amount of Si was small and the Vickers hardness was less than 120 HV, but also the ductility after heat treatment was lowered.
  • the component composition is outside the range of the component composition of the steel plate of the present invention, so the ductility after heat treatment is reduced.
  • No. A-2 to Z-2 test steel sheets were prepared as follows. That is, first, each of the steel slabs Nos. A to Z having the composition shown in Table 1-1 and Table 1-2 was heated at 1240 ° C. for 1.8 hours and then subjected to hot rolling, as shown in Table 4. The hot-rolled steel sheet coil having a thickness of 3.0 mm was completed after finishing the hot rolling and rolling at the cooling rate of 45 ° C./second on the ROT at the cooling conditions shown in Table 4. Manufactured.
  • the hot-rolled steel sheet coil was pickled and then subjected to a two-step box annealing under the annealing conditions shown in Table 4.
  • Material for property evaluation with a thickness of 3.0 mm is collected from the hot-rolled steel sheet after annealing, and ferrite grain boundary carbides with respect to the ferrite grain size ( ⁇ m), Vickers hardness (HV), and the number of carbides in the ferrite grains.
  • the number ratio (number of grain boundary carbides / number of carbides in grains) and ductility after heat treatment (%) were measured. The results are shown in Table 5.
  • the Vickers hardness is 170 HV or less, and the ratio of the number of carbides in the ferrite grain boundary to the number of carbides in the ferrite grains exceeds 1. Since hardness is an index of cold formability, it can be seen that all the steel sheets of the present invention are excellent in cold formability. Furthermore, since all the steel sheets of the present invention have a ductility after heat treatment of 10% or more, it can be understood that the steel sheet after heat treatment is good.
  • the manufacturing conditions are outside the range of the manufacturing conditions of the manufacturing method of the present invention, the Vickers hardness is increased.
  • the number of grain boundary carbides / number of intragranular carbides also decreases.
  • this invention has a high applicability in steel plate manufacture and utilization industry.

Abstract

本発明は、冷間成形性と熱処理後延性に優れた鋼板とその製造方法を提供する。本発明の鋼板は、成分組成が、質量%で、C:0.10~0.40%、Si:0.30~1.00%、Mn:0.30~1.00%、Al:0.001~0.10%、P:0.0001~0.02%、S:0.0001~0.01%を含有し、残部がFe及び不純物からなる鋼板において、フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)が1を超え、フェライト粒径が5μm以上50μm以下であり、炭化物の平均粒子径が0.4μm以上2.0μm以下であり、パーライト面積率が6%以下であり、ビッカース硬さが120HV以上170HV以下であることを特徴とする。

Description

鋼板及びその製造方法
 本発明は、鋼板及びその製造方法に関する。
 自動車用部品、刃物、その他機械部品は、打抜き、曲げ、プレス加工等の加工工程を経て製造される。その加工工程において、製品品質の向上と安定化や、製造コストの低減を図るには、素材である炭素鋼板の加工性を向上させる必要がある。特に、駆動系部品を加工する場合、炭素鋼板が高速回転等により変形し、また、延性不足により破断することがあるので、熱処理後における延性が必要となる。
 一般に、炭素鋼板には、冷間圧延と球状化焼鈍が施され、フェライトと球状化炭化物からなる加工性の良い軟質素材として、炭素鋼板が用いられている。そして、これまで、炭素鋼板の加工性を改善する技術が幾つか提案されている。
 例えば、特許文献1には、C:0.15~0.90質量%、Si:0.40質量%以下、Mn:0.3~1.0質量%、P:0.03質量%以下、全Al:0.10質量%以下、Ti:0.01~0.05質量%、B:0.0005~0.0050質量%、N:0.01質量%以下、Cr:1.2質量%以下を含み、平均炭化物粒径0.4~1.0μmで球状化率80%以上の炭化物がフェライトマトリックスに分散した組織をもち、切欠き引張伸びが20%以上の精密打抜き用高炭素鋼板とその製造法が開示されている。
 特許文献2には、C:0.3~1.3質量%、Si:1.0質量%以下、Mn:0.2~1.5質量%、P:0.02質量%以下、S:0.02質量%以下を含有し、フェライト結晶粒界上の炭化物CGBとフェライト結晶粒内の炭化物数CIGの間にCGB/CIG≦0.8の関係が成り立つように炭化物を分散させた組織を有し、断面硬さが160HV以下であることを特徴とする加工性に優れた中・高炭素鋼板及びその製造法が開示されている。
 特許文献3には、C:0.30~1.00質量%、Si:1.0質量%以下、Mn:0.2~1.5質量%、P:0.02質量%以下、S:0.02質量%以下を含み、フェライト結晶粒界上の炭化物CGBとフェライト結晶粒内の炭化物数CIGの間に、CGB/CIG≦0.8の関係が成り立つとともに、全ての炭化物の90%以上を、長軸/短軸が2以下の球状化炭化物で占める炭化物がフェライト中に分散した組織を有することを特徴とする加工性に優れた中・高炭素鋼板が開示されている。
 これらの従来技術においては、フェライト粒内における炭化物の割合が多いほど加工性が良くなることを前提としている。
 特許文献4には、C:0.1~0.5質量%、Si:0.5質量%以下、Mn:0.2~1.5質量%、P:0.03質量%以下、S:0.02質量%以下からなる組成と、フェライト及び炭化物を主体とする組織を有し、Sgb={Son/(Son+Sin)}×100(ここで、Son:単位面積あたりに存在する炭化物のうち、粒界上に存在する炭化物の総占有面積、Sin:単位面積あたりに存在する炭化物のうち、粒内に存在する炭化物の総占有面積)で定義されるフェライト粒界炭化物量Sgbが40%以上であることを特徴とするFB加工性、金型寿命、及び、FB加工後の成形加工性に優れた鋼板が開示されている。
 特許文献5に記載の技術は、ほぼ100%のパーライト組織を有する熱延板に適正な熱延板焼鈍を施すことにより、炭化物の球状化を促進するとともに、フェライトの粒成長を抑制して、炭化物の多くをフェライト結晶粒界上に存在させることを特徴としている。
 特許文献6に記載の技術は、フェライトを主体とし、第二相を、マルテンサイト分率を低く抑え、セメンタイト等の炭化物を主体とする組織構成として、Siを積極活用することでフェライトの固溶強化による強度を確保し、フェライト自体の加工硬化能向上による延性の確保することを特徴としている。
 特許文献7は、フェライト粒径を10μm以上に制御することによって、高周波焼き入れ性に優れた軟質中炭素鋼板を製造する技術を開示している。特許文献7に開示された製造方法は、600℃~750℃まで加熱する箱焼鈍によって鋼板のフェライト粒を粗大化させて、鋼板の軟質化を図ることを特徴としている。
 特許文献8に開示された鋼板は、C含有量の10~50%が黒鉛化され、断面の鋼組織が、大きさ3μmの黒鉛粒子をC重量%×102個/mm2以上C重量%×103個/mm2以下含んだ、球状化セメンタイトの分散したフェライト相であることを特徴としている。特許文献8に開示された製造方法は、鋼板の黒鉛化の観点から、熱延板を600℃~720℃の範囲で焼鈍することを特徴としている。
 特許文献9に開示された鋼板は、面積率で90%以上のベイナイト相を含み、該ベイナイト相中に析出している全Fe系炭化物のうち、ベイニティックフェライト粒内に析出しているFe系炭化物の個数比率が30%以上、前記ベイニティックフェライト粒内に析出しているFe系炭化物の平均粒径が150nm以下である組織を有することを特徴としている。
 特許文献10に開示された鋼板は、鋼板表層から板厚方向200μmまでの領域において、(110)面が鋼板表面に対して±5°以内の平行度におさまる結晶方位の集積度が2.5以上であることを特徴としている。
特許第4465057号公報 特許第4974285号公報 特許第5197076号公報 特許第5194454号公報 特開2007-270330号公報 特開2012-36497号公報 特開2012-62496号公報 特開平8-120405号公報 特開2015-160986号公報 特開2015-117406号公報
 特許文献1に記載の技術では、フェライト粒径と炭化物の粗大化を狙い、軟質化のためにAC1点以上の温度で焼鈍を行なっているが、AC1点以上の温度で焼鈍を行った場合、焼鈍中に、棒状・板状の炭化物が析出する。この炭化物は、加工性を低下させると言われているので、硬さを低下させることができても、加工性には不利に作用する。
 特許文献2及び3には、いずれも、粒界に析出する炭化物(「粒界炭化物」という。)の球状化率が低いことが加工性を悪化させる原因であることが記載されている。しかし、特許文献2及び3に記載の技術は、いずれも粒界炭化物の球状化率の向上による加工性の向上を課題としていない。特許文献4に記載の技術では、組織因子が規定されているのみで、加工性と機械特性の関係は検討されていない。
 特許文献5乃至9には、フェライト粒界への炭化物の析出の促進という観点から焼鈍工程の条件が特定されていない。また、特許文献5乃至9には前記焼鈍工程後の冷却条件が特定されていないため、特許文献5乃至9に開示された製造方法では、焼鈍後に生成したオーステナイトがパーライトに変態して鋼板の硬さが増して、冷間成形性が低下するおそれがある。
 特許文献10は、仕上げ圧延後の鋼板を400℃以上650℃未満の巻き取り温度で巻き取った後、680℃以上720℃以下の1回目の焼鈍と、730℃以上790℃以下で2回目の焼鈍を行い、2回目の焼鈍後に、セメンタイトの球状化率の観点から、20℃/hrの冷却速度で鋼板を焼鈍することを開示している。しかし、特許文献10の製造方法では、仕上げ圧延を600℃以上、Ae3-20℃未満で終了させているので、フェライト及びオーステナイトの2相域で鋼板を圧延することになる。そのため、圧延後にフェライト相とパーライト相が生成し、圧延後の鋼板中の炭化物の分散状態が不均一になり、硬さが上昇するおそれがある。
 本発明は、従来技術を踏まえ、鋼板において、冷間成形性と熱処理後延性を向上させることを課題とし、該課題を解決する鋼板とその製造方法を提供することを目的とする。
 ここで、前記の冷間成形性は、鋼板を、冷間加工や冷間鍛造等で所要の形状に塑性変形させる際、欠陥のない所要の形状に容易に塑性変形し得る鋼板の変形能を意味する。また、前記の熱処理後延性は、熱処理後の鋼板の延性である。
 上記の課題を解決し、駆動系部品等の素材に適した鋼板を得るためには、焼入れ性を高めるのに必要なCを含有した鋼板において、フェライトの粒径を大きくし、炭化物(主としてセメンタイト)を適切な粒径とし、パーライト組織を少なくすればよいことが理解できる。これは、以下の理由による。
 フェライト相は硬度が低く、延性が高い。したがって、フェライトを主体とした組織で、その粒径を大きくすることにより、素材成形性を高めることが可能となる。
 炭化物は、金属組織中に適切に分散させることにより、素材成形性を維持しつつ、優れた耐摩耗性や転動疲労特性を付与することができるので、駆動系部品にはなくてはならない組織である。また、鋼板中の炭化物は、すべりを妨げる強固な粒子であり、炭化物をフェライト粒界に存在させることで、結晶粒界を越えるすべりの伝播を防止して、剪断帯の形成を抑制することができ、冷間鍛造性を向上させ、同時に、鋼板の成形性も向上させる。
 ただし、セメンタイトは硬くて脆い組織であり、フェライトとの層状組織であるパーライトの状態で存在すると、鋼が硬く、脆くなるので、球状で存在させる必要がある。冷間鍛造性や、鍛造時のき裂の発生を考慮すると、その粒径は適切な範囲である必要がある。
 しかしながら、上記の組織を実現するための製造方法はこれまでに開示されていない。そこで、本発明者らは、上記の組織を実現するための製造方法について鋭意研究した。
 その結果、熱間圧延後の巻取り後の鋼板の金属組織をラメラ間隔の小さい微細なパーライトまたは細かなフェライト中にセメンタイトが分散したベイナイト組織にするため、比較的低温(400℃~550℃)で巻取る。比較的低温で巻取ることにより、フェライト中に分散したセメンタイトも球状化し易くなる。続いて、1段目の焼鈍としてAc1点直下の温度での焼鈍でセメンタイトを部分的に球状化する。次いで、2段目の焼鈍としてAc1点とAc3点間の温度(いわゆるフェライトとオーステナイトの二相域)での焼鈍で、フェライト粒の一部を残しつつ、一部をオーステナイト変態させる。その後緩冷却して残したフェライト粒を成長させつつ、そこを核にしてオーステナイトをフェライト変態させることにより、大きなフェライト相を得つつ粒界にセメンタイトを析出させ、上記組織の実現できることを見出した。
 すなわち、焼入れ性と成形性を同時に満足する鋼板の製造方法は、熱延条件や焼鈍条件などを単一にて工夫しても実現困難であり、熱延・焼鈍工程などのいわゆる一貫工程にて最適化を達成することにより実現可能であることを知見した。
 このように、本発明者らは、成分組成を最適化した鋼板の冷間加工前の鋼板組織における炭化物の分散状態と熱延から焼鈍に至る一貫工程における製造条件とを連携して最適化することにより前記鋼板組織を制御して、適切な粒径の炭化物をフェライト粒界に析出させできることを見出した。
 また、本発明者らは、フェライト粒径を5μm以上とし、ビッカース硬さを170以下とすれば、鋼板において、優れた冷間成形性と熱処理後延性を確保できることを見出した。
 本発明は、上記知見に基づいてなされたもので、その要旨は次のとおりである。
 (1)成分組成が、質量%で、
C :0.10~0.40%、
Si:0.30~1.00%、
Mn:0.30~1.00%、
Al:0.001~0.10%、
P :0.02%以下、
S :0.01%以下
を含有し、残部がFe及び不純物からなる鋼板において、
 フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)が1を超え、
 フェライト粒径が5μm以上50μm以下であり、
 炭化物の平均粒子径が0.4μm以上2.0μm以下であり、
 パーライト面積率が6%以下であり、
 ビッカース硬さが120HV以上170HV以下であることを特徴とする鋼板。
 (2)前記鋼板が、さらに、質量%で、
N :0.01%以下、
O :0.02%以下
の1種又は2種以上を含有することを特徴とする前記(1)に記載の鋼板。
 (3)前記鋼板が、さらに、質量%で、
Ti:0.10%以下、
Cr:0.50%以下、
Mo:0.50%以下、
B :0.01%以下、
Nb:0.10%以下、
V :0.10%以下、
Cu:0.10%以下、
W :0.10%以下、
Ta:0.10%以下、
Ni:0.10%以下、
Sn:0.05%以下、
Sb:0.05%以下、
As:0.05%以下、
Mg:0.05%以下、
Ca:0.05%以下、
Y :0.05%以下、
Zr:0.05%以下、
La:0.05%以下、
Ce:0.05%以下
の1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の鋼板。
 (4)前記(1)~(3)のいずれかに記載の鋼板を製造する製造方法であって、
(i)前記(1)~(3)のいずれかに記載の成分組成の鋼片を、直接、又は、一旦冷却後加熱して熱間圧延に供し、800℃以上900℃以下の温度域で仕上げ圧延を完了した熱延鋼板を400℃以上550℃以下で捲き取り、
(ii)巻き取った熱延鋼板を払い出し、酸洗を施した後、650℃以上720℃以下の温度域で3時間以上60時間以下保持する1段目の焼鈍を施し、さらに、725℃以上790℃以下の温度域で3時間以上50時間以下保持する2段目の焼鈍を施す、2段ステップ型の焼鈍を施し、
(iii)上記焼鈍後の熱延鋼板を、1℃/時間以上30℃/時間以下に制御した冷却速度で650℃まで冷却し、次いで、室温まで冷却する
ことを特徴とする鋼板の製造方法。
 (5)前記熱間圧延に供する鋼片の温度が1000~1250℃であることを特徴とする前記(4)に記載の鋼板の製造方法。
 本発明によれば、冷間成形性と熱処理後延性に優れた鋼板とその製造方法を提供することができる。本発明鋼板は、熱処理後に高延性を有し、熱処理前の板成形性に優れており、繰返し応力が掛かる疲労部品、例えば自動車足廻り構造部品等に好適に利用することができる。
 まず、本発明鋼板の成分組成の限定理由について説明する。以下、%は、質量%を意味する。
[C:0.10~0.40%]
 Cは、炭化物を形成し、鋼の強化及びフェライト粒の微細化に有効な元素である。冷間成形時、鋼板表面に梨地が発生することを抑制し、冷間成形品の表面美観を確保するためには、フェライト粒の粗大化を抑制する必要がある。0.10%未満では、炭化物の体積率が不足し、焼鈍中、フェライト粒の粗大化を抑制できないので、Cは0.10%以上とする。好ましくは0.14%以上である。一方、Cが0.40%を超えると、炭化物の体積率が増加し、冷間成形性及び熱処理後延性が低下するので、Cは0.40%以下とする。好ましくは0.38%以下である。
[Si:0.30~1.00%]
 Siは、炭化物の形態に影響を及ぼし、熱処理後の延性の向上に寄与する元素である。フェライト粒内の炭化物の個数を低減し、フェライト粒界の炭化物の個数を増大するためには、2段ステップ型の焼鈍(以下「2段焼鈍」ということがある。)により、焼鈍中にオーステナイト相を生成させ、一旦、炭化物を溶解した後、徐冷し、フェライト粒界への炭化物の析出を促進する必要がある。
 Siが0.30%未満であると、添加による前記効果が十分に得られないので、Siは0.30%以上とする。好ましくは0.35%以上である。一方、1.00%を超えると、フェライトの固溶強化により硬さが上昇して冷間成形性が低下し、割れが発生し易くなる他、A3点が上昇して、焼入温度を高くする必要があるので、Siは1.00%以下とする。好ましくは0.90%以下である。
[Mn:0.30~1.00%]
 Mnは、2段焼鈍において、炭化物の形態を制御する元素である。0.30%未満では、2段焼鈍後の徐冷において、フェライト粒界に、炭化物を生成させることが困難となるので、Mnは0.30%以上とする。好ましくは0.33%以上である。一方、1.00%を超えると、フェライトの硬度が増大し、冷間成形性が低下するので、Mnは1.00%以下とする。好ましくは0.96%以下である。
[Al:0.001~0.10%]
 Alは、脱酸剤として作用するとともに、フェライトを安定化する元素である。0.001%未満では、添加による前記効果が十分に得られないので、Alは0.001%以上とする。好ましくは0.004%以上である。一方、0.10%を超えると、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Alは0.10%以下とする。好ましくは0.09%以下である。
[P:0.02%以下]
 Pは、フェライト粒界に偏析し、フェライト粒界における炭化物の生成を抑制する作用をなす元素である。それ故、Pの含有量は、少ないほど好ましく、0%でも良いが、0.0001%未満に低減すると、精錬コストが大幅に増加するので、0.0001%以上としても良い。Pの含有量は0.0013%以上であっても良い。一方、Pが0.02%を超えると、フェライト粒界における炭化物の生成が抑制されて、炭化物の個数が減少し、冷間成形性が低下するので、Pは0.02%以下とする。好ましくは0.01%以下である。
[S:0.01%以下]
 Sは、MnSなどの非金属介在物を形成する元素である。非金属介在物は、冷間成形時に割れの起点となるので、Sは、少ないほど好ましく、0%でも良いが、0.0001%未満に低減すると、精錬コストが大幅に増加するので、0.0001%以上としても良い。Sの含有量は0.0012%以上としても良い。一方、0.01%を超えると、非金属介在物が生成し、冷間成形性が低下するので、Sは0.01%以下とする。好ましくは0.009%以下である。
 本発明鋼板は、上記元素の他、次の元素を含有してもよい。
[N:0.01%以下]
 Nは、多量に存在すると、フェライトを脆化させる元素である。それ故、Nは、少ないほど好ましく、Nの含有量は0でも良いが、0.0001%未満に低減すると、精錬コストが大幅に増加するので、0.0001%以上として良い。Nの含有量は0.0006%以上としても良い。一方、0.01%を超えると、フェライトが脆化し、冷間成形性が低下するので、Nは0.01%以下とする。好ましくは0.007%以下である。
[O:0.02%以下]
 Oは、多量に存在すると、粗大な酸化物を形成する元素である。それ故、Oは、少ないほど好ましく、0%でも良いが、0.0001%未満に低減すると、精錬コストが大幅に増加するので、0.0001%以上として良い。Oの含有量は0.0011%以上として良い。一方、0.02%を超えると、鋼中に粗大な酸化物が生成し、冷間成形時に割れの起点となるので、Oは0.02%以下とする。好ましくは0.01%以下である。
 本発明鋼板においては、上記元素の他、さらに、次の元素を、1種又は2種以上含有してもよい。尚、以下の元素は、本発明の効果を得るために必須ではないので、含有量は0%でもよい。
[Ti:0.10%以下]
 Tiは、窒化物を形成し、結晶粒の微細化に寄与する元素である。0.001%未満では、添加による効果が十分に得られないので、Tiは0.001%以上とすることが好ましい。より好ましくは0.005%以上である。一方、0.10%を超えると、粗大なTi窒化物が生成し、冷間成形性が低下するので、Tiは0.10%以下とする。好ましくは0.07%以下である。
[Cr:0.50%以下]
 Crは、焼入れ性の向上に寄与する一方で、炭化物に濃化して炭化物を安定化し、オーステナイト相内でも安定な炭化物を形成する元素である。0.001%未満では、焼入れ性向上効果が得られないので、Crは0.001%以上とすることが好ましい。より好ましくは0.007%以上である。一方、0.50%を超えると、オーステナイト相内で安定な炭化物が生成し、焼入れ時に炭化物の溶解が遅れ、所要の焼入れ強度が得られないので、Crは0.50%以下とする。好ましくは0.48%以下である。
[Mo:0.50%以下]
 Moは、Mnと同様に、炭化物の形態制御に有効な元素であり、また、組織を微細化して延性の向上に寄与する元素である。0.001%未満では、添加による効果が得られないので、Moは0.001%以上とすることが好ましい。より好ましくは0.017%以上である。一方、0.50%を超えると、r値の面内異方性が低下し、冷間成形性が低下するので、Moは0.50%以下とする。好ましくは0.45%以下である。
[B:0.01%以下]
 Bは、焼入れ性の向上に寄与する元素である。0.0004%未満では、添加による効果が得られないので、Bは0.0004%以上とすることが好ましい。より好ましくは0.0010%以上である。一方、0.01%を超えると、粗大なB化物が生成し、冷間成形性が低下するので、Bは0.01%以下とする。好ましくは0.008%以下である。
[Nb:0.10%以下]
 Nbは、炭化物の形態制御に有効な元素であり、また、組織を微細化して延性の向上に寄与する元素である。0.001%未満では、添加による効果が得られないので、Nbは0.001%以上とすることが好ましい。より好ましくは0.002%以上である。一方、0.10%を超えると、微細なNb炭化物が多数生成して、強度が上昇しすぎるとともに、フェライト粒界の炭化物の個数が低下し、冷間成形性が低下するので、Nbは0.10%以下とする。好ましくは0.09%以下である。
[V:0.10%以下]
 Vも、Nbと同様に、炭化物の形態制御に有効な元素であり、また、組織を微細化して延性の向上に寄与する元素である。0.001%未満では、添加による効果が得られないので、Vは0.001%以上とすることが好ましい。より好ましくは0.004%以上である。一方、0.10%を超えると、微細なV炭化物が多数生成して、強度が上昇しすぎるとともに、フェライト粒界の炭化物の個数が低下し、冷間成形性が低下するので、Vは0.10%以下とする。好ましくは0.09%以下である。
[Cu:0.10%以下]
 Cuは、フェライト粒界に偏析する元素であり、また、微細な析出物を形成して強度の向上に寄与する元素である。0.001%未満では、強度向上の効果が得られないので、Cuは0.001%以上とすることが好ましい。より好ましくは0.004%以上である。一方、0.10%を超えると、フェライト粒界への偏析が赤熱脆性を招き、熱間圧延での生産性が低下するので、0.10%以下とする。好ましくは0.09%以下である。
[W:0.10%以下]
 Wも、Nb、Vと同様に、炭化物の形態制御に有効な元素である。0.001%未満では、添加による効果が得られないので、Wは0.001%以上とすることが好ましい。より好ましくは0.003%以上である。一方、0.10%を超えると、微細なW炭化物が多数生成して強度が上昇しすぎるとともに、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Wは0.10%以下とする。好ましくは0.08%以下である。
[Ta:0.10%以下]
 Taも、Nb、V、Wと同様に、炭化物の形態制御に有効な元素である。0.001%未満では、添加による効果が得られないので、Taは0.001%以上とすることが好ましい。より好ましくは0.007%以上である。一方、0.10%を超えると、微細なTa炭化物が多数生成し、強度が上昇しすぎるとともに、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Taは0.10%以下とする。好ましくは、0.09%以下である。
[Ni:0.10%以下]
 Niは、延性の向上に有効な元素である。0.001%未満では、添加による効果が得られないので、Niは0.001%以上とすることが好ましい。より好ましくは0.002%以上である。一方、0.10%を超えると、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Niは0.10%以下とする。好ましくは0.09%以下である。
[Sn:0.05%以下]
 Snは、鋼原料から不可避的に混入する元素である。それ故、Snは、少ないほど好ましいので、0%であっても良いが、0.001%未満に低減すると、精錬コストが大幅に増加するので、Snは0.001%以上としても良い。Snの含有量は、0.002%以上としても良い。一方、0.05%を超えると、フェライトが脆化して、冷間成形性が低下するので、Snは0.05%以下とする。好ましくは、0.04%以下である。
[Sb:0.05%以下]
 Sbは、Snと同様に、鋼原料から不可避的に混入して、フェライト粒界に偏析し、フェライト粒界の炭化物の個数を低減する元素である。それ故、Sbは、少ないほど好ましいので、0%であっても良い。但し、0.001%未満に低減すると、精錬コストが大幅に増加するので、Sbは0.001%以上としても良い。Sbの含有量は0.002%以上としても良い。一方、0.05%を超えると、Sbがフェライト粒界に偏析し、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Sbは0.05%以下とする。好ましくは0.04%以下である。
[As:0.05%以下]
 Asは、Sn、Sbと同様に、鋼原料から不可避的に混入し、フェライト粒界に偏析する元素である。それ故、Asは、少ないほど好ましいので、0%であっても良い。但し、0.001%未満に低減すると、精錬コストが大幅に増加するので、Asは0.001%以上としても良い。好ましくは0.002%以上としても良い。一方、0.05%を超えると、Asがフェライト粒界に偏析し、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Asは0.05%以下とする。好ましくは0.04%以下である。
[Mg:0.05%以下]
 Mgは、微量の添加で硫化物の形態を制御できる元素である。0.0001%未満では、添加による効果が得られないので、Mgは0.0001%以上とすることが好ましい。より好ましくは0.0008%以上である。一方、0.05%を超えると、フェライトが脆化し、冷間成形性が低下するので、Mgは0.05%以下とする。好ましくは0.04%以下である。
[Ca:0.05%以下]
 Caは、Mgと同様に、微量の添加で硫化物の形態を制御できる元素である。0.001%未満では、添加による効果が得られないので、Caは0.001%以上とすることが好ましい。より好ましくは0.003%以上である。一方、0.05%を超えると、粗大なCa酸化物が生成し、冷間成形時に割れの起点となるので、Caは0.05%以下とする。好ましくは0.04%以下である。
[Y:0.05%以下]
 Yは、Mg、Caと同様に、微量の添加で硫化物の形態を制御できる元素である。0.001%未満では、添加による効果が得られないので、Yは0.001%以上とすることが好ましい。より好ましくは0.003%以上である。一方、0.05%を超えると、粗大なY酸化物が生成し、冷間成形時に割れの起点となるので、Yは0.05%以下とする。好ましくは0.03%以下である。
[Zr:0.05%以下]
 Zrは、Mg、Ca、Yと同様に、微量の添加で硫化物の形態を制御できる元素である。0.001%未満では、添加による効果が得られないので、Zrは0.001%以上とすることが好ましい。より好ましくは0.004%以上である。一方、0.05%を超えると、粗大なZr酸化物が生成し、冷間成形時に割れの起点となるので、Zrは0.05%以下とする。好ましくは0.04%以下である。
[La:0.05%以下]
 Laは、微量の添加で硫化物の形態を制御できる元素であるが、フェライト粒界に偏析し、フェライト粒界の炭化物の個数を低減する元素でもある。0.001%未満では、硫化物の形態制御効果が得られないので、Laは0.001%以上とすることが好ましい。より好ましくは0.003%以上である。一方、0.05%を超えると、フェライト粒界に偏析し、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Laは0.05%以下とする。好ましくは0.04%以下である。
[Ce:0.05%以下]
 Ceは、Laと同様に、微量の添加で硫化物の形態を制御できる元素であるが、フェライト粒界に偏析し、フェライト粒界の炭化物の個数を低減する元素でもある。0.001%未満では、硫化物の形態制御効果が得られないので、Ceは0.001%以上とすることが好ましい。より好ましくは0.003%以上である。一方、0.05%を超えると、フェライト粒界に偏析し、フェライト粒界の炭化物の個数が減少し、冷間成形性が低下するので、Ceは0.05%以下とする。好ましくは0.04%以下である。
 なお、本発明鋼板において、上記成分組成の残部はFe及び不可避不純物である。
 本発明鋼板においては、上記成分組成に加え、(a)フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)が1を超え、(b)フェライト粒径が5μm以上50μm以下であり、(c)炭化物の平均粒子径が0.4μm以上2.0μm以下であり、(d)パーライト面積率が6%以下であり、(e)ビッカース硬さが120HV以上170HV以下であることを特徴要件とする。
 本発明鋼板は、上記成分組成に加え、上記(a)乃至(e)の特徴要件を備えることにより、優れた冷間成形性と熱処理後延性を有することができる。このことは、本発明者らが見いだした新規な知見である。以下、説明する。
[特徴要件(a)]
 本発明鋼板の組織は、実質的に、フェライトと炭化物で構成される組織である。そして、フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)が1を超える組織とする。
 なお、炭化物は、鉄と炭素の化合物であるセメンタイト(Fe3C)に加え、セメンタイト中のFe原子を、Mn、Cr等の合金元素で置換した化合物や、合金炭化物(M236、M6C、MC等[M:Fe、及び、その他合金として添加した金属元素])である。
 鋼板を所定の形状に成形する際、鋼板のマクロ組織には剪断帯が形成され、剪断帯の近傍で、すべり変形が集中して起きる。すべり変形は転位の増殖を伴い、剪断帯の近傍には、転位密度の高い領域が形成される。鋼板に付与する歪量の増加に伴い、すべり変形が促進され、転位密度が増加する。冷間成形性を向上させるためには、剪断帯の形成を抑制することが効果的である。
 ミクロ組織の観点では、剪断帯の形成は、ある一つの結晶粒で発生したすべりが、結晶粒界を乗り越えて、隣接の結晶粒に連続的に伝播する現象として理解される。よって、剪断帯の形成を抑制するには、結晶粒界を越えるすべりの伝播を防ぐ必要がある。鋼板中の炭化物は、すべりを妨げる強固な粒子であり、炭化物をフェライト粒界に存在させることで、結晶粒界を越えるすべりの伝播を防止して、剪断帯の形成を抑制することができ、冷間成形性を向上させることが可能となる。
 理論及び原則に基づくと、冷間成形性は、フェライト粒界の炭化物の被覆率の影響を強く受けると考えられ、その高精度な測定が求められる。しかし、3次元空間におけるフェライト粒界の炭化物の被覆率の測定には、走査型電子顕微鏡内にてFIBによるサンプル切削と観察を繰り返し行う、シリアルセクショニングSEM観察、又は、3次元EBSP観察が必須となり、膨大な測定時間を要するとともに、技術ノウハウの蓄積が不可欠となる。
 本発明者らは、上記観察手法を一般的な分析手法ではないとして採用せず、より簡便で精度の高い評価指標を探索した。その結果、フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)を指標とすれば、冷間成形性を定量的に評価できること、及び、前記比率(B/A)が1を超えると、冷間成形性が著しく向上することを見出した。
 鋼板の冷間成形時に起きる、座屈、折込み、たたみ込みのいずれも、剪断帯の形成に伴う歪の局所化により引き起こされるものであるので、フェライト粒界に炭化物を存在させることにより、剪断帯の形成及び歪の局所化が緩和され、座屈、折込み、たたみ込みの発生が抑制される。
[特徴要件(b)]
 焼鈍後の鋼板組織において、フェライト粒径を5μm以上とすることで、冷間成形性を改善することができる。フェライト粒径が5μm未満であると、硬さが増加して、冷間成形時に亀裂やクラックが発生し易くなるので、フェライト粒径は5μm以上とする。好ましくは7μm以上である。一方、フェライト粒径が50μmを超えると、すべりの伝播を抑制する結晶粒界の炭化物の個数が減少し、冷間成形性が低下するので、フェライト粒径は50μm以下とする。好ましくは38μm以下である。
[特徴要件(c)]
 本発明鋼板の組織に含有される炭化物の平均粒子径が0.4μm未満であると、鋼板の硬さが著しく増加し、冷間成形性が低下するので、前記炭化物の平均粒子径は0.4μm以上とする。好ましくは0.6μm以上である。一方、本発明鋼板の組織に含有される炭化物の平均粒子径が2.0μmを超えると、冷間成形時に炭化物が亀裂の起点となるので、前記炭化物の平均粒子径は2.0μm以下とする。好ましくは1.95μm以下である。
[特徴要件(d)]
 パーライト面積率が6%を超えると、鋼板の硬さが著しく増加し、冷間成形性が低下するので、パーライト面積率は6%以下とする。好ましくは5%以下である。
[特徴要件(e)]
 鋼板のビッカース硬さを120HV以上170HV以下とすることで、冷間成形性を向上させることができる。ビッカース硬さが120HV未満であると、冷間成形時に座屈が発生し易くなるので、ビッカース硬さは120HV以上とする。好ましくは130HV以上である。一方、ビッカース硬さが170HVを超えると、延性が低下し、冷間成形時に内部割れが起き易くなるので、ビッカース硬さは170HV以下とする。好ましくは160HV以下である。
 続いて、上記組織の観察及び測定方法について説明する。
 炭化物の観察は、走査型電子顕微鏡で行なう。観察に先立ち、組織観察用の試料を、エメリー紙による湿式研磨及び1μmの平均粒子サイズをもつダイヤモンド砥粒により研磨し、観察面を鏡面に仕上げた後、3%硝酸-アルコール溶液にて組織をエッチングする。観察の倍率は、3000倍の中で、フェライトと炭化物の組織を判別できる倍率を選択する。選択した倍率で、板厚1/4層における30μm×40μmの複数の視野をランダムに撮影する。例えば、互いに重複しない領域を8枚以上撮影する。
 得られた組織画像について、炭化物の面積を測定する。炭化物の面積から円相当直径(=2×√(面積/3.14))を求め、その平均値を炭化物粒子径とする。炭化物の面積の測定には、画像解析ソフト(例えば、三谷商事株式会社製Win ROOF)を用いて、解析領域に含まれる炭化物の面積を詳細に測定しても良い。なお、ノイズによる測定誤差の拡大を抑えるため、面積が0.01μm2以下の炭化物は評価の対象から除外する。
 前述の組織画像を用いてフェライト粒界に存在する炭化物の個数を計数し、全炭化物数から、フェライト粒界の炭化物の数を引算し、フェライト粒内の炭化物の個数を算出する。計数及び算出した炭化物の個数に基づいて、フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)を算出する。尚、面積が0.01μm2以下の炭化物は、カウントしない。
 フェライト粒径は、前述の手順で、試料の観察面を鏡面に研磨した後、3%硝酸-アルコール溶液でエッチングし、エッチングした組織を、光学顕微鏡又は走査型電子顕微鏡で観察し、撮影した画像に線分法を適用して測定することができる。
 次に、本発明製造方法について説明する。
 本発明製造方法は、熱間圧延工程の条件、捲き取り工程の条件及び2段焼鈍工程の条件を一貫して連携管理し、鋼板の組織制御を行なうことを特徴とする。
 所要の成分組成の溶鋼を連続鋳造した鋼片を、直接、又は、一旦冷却後加熱して熱間圧延に供し、800℃以上900℃以下の温度域で、前記熱間圧延の仕上げ圧延を完了する。このような熱間圧延を上記鋼片に施すことで、微細パーライトとベイナイトからなる鋼板組織を得ることができる。
 前記仕上げ圧延を完了した熱延鋼板を400℃以上550℃以下の温度域で捲き取る。捲き取った熱延鋼板を払い出し、酸洗を施した後、2段焼鈍を施し、焼鈍後、1℃/時間以上30℃/時間以下に制御した冷却速度で650℃まで冷却し、次いで、室温まで冷却する。
 前記2段焼鈍工程は、熱延鋼板を、1段目の焼鈍工程において、650℃以上720℃以下の温度域で3時間以上60時間以下保持し、2段目の焼鈍工程において、725℃以上790℃以下の温度域で3時間以上50時間以下保持する焼鈍工程である。
 以下に、熱間圧延工程(特に、仕上げ圧延工程)及び捲き取り工程について詳細に説明する。
[熱間圧延工程]
 鋼片を一旦冷却後加熱して熱間圧延に供する場合、加熱温度は1000℃以上1250℃以下が好ましく、加熱時間は0.5時間以上3時間以下が好ましい。鋼片を、直接、熱間圧延に供する場合、鋼片温度は1000℃以上1250℃以下が好ましい。
 鋼片温度又は鋼片加熱温度が1250℃を超え、又は、鋼片加熱時間が3時間を超えると、鋼片表層からの脱炭が著しく、焼入れ前の加熱時に、鋼板表層のオーステナイト粒が異常に成長し冷間成形性が低下する。このため、鋼片温度又は鋼片加熱温度は1250℃以下が好ましく、鋼片加熱時間は3時間以下が好ましい。より好ましくは1200℃以下、2.5時間以下である。
 鋼片温度又は鋼片加熱温度が1000℃未満であり、又は、鋼片加熱時間が0.5時間未満であると、鋳造で生成したミクロ偏析やマクロ偏析が解消せず、鋼片内部に、SiやMn等の合金元素が局所的に濃化した領域が残存し冷間成形性が低下する。このため、鋼片温度又は鋼片加熱温度は1000℃以上が好ましく、鋼片加熱時間は0.5時間以上が好ましい。より好ましくは1050℃以上、1時間以上である。
[熱間圧延における仕上げ圧延工程]
 熱間圧延の仕上げ圧延は、800℃以上900℃以下の温度域で完了する。仕上げ温度が800℃未満であると、鋼板の変形抵抗が増加して、圧延負荷が著しく上昇し、また、ロール磨耗量が増大して、生産性が低下する。そのため、本発明において仕上げ温度は800℃以上とする。好ましくは830℃以上である。
 仕上げ温度が900℃を超えると、Run Out Table(ROT)を通過中に分厚いスケールが生成し、このスケールに起因して、鋼板表面に疵が発生し、冷間成形時に、疵を起点として亀裂が発生する。このため、仕上げ温度は900℃以下とする。好ましくは870℃以下である。
[仕上げ圧延後、熱延鋼板の捲き取り工程までの温度条件]
 仕上げ圧延後の熱延鋼板をROTで冷却する際、冷却速度は10℃/秒以上100℃/秒以下が好ましい。冷却速度が10℃/秒未満であると、冷却途中に分厚いスケールが生成し、それに起因する疵の発生を抑制できないので、冷却速度は10℃/秒以上が好ましい。より好ましくは15℃/秒以上である。
 鋼板の表層から内部にわたり、100℃/秒を超える冷却速度で冷却すると、最表層部が過剰に冷却されて、ベイナイトやマルテンサイトなどの低温変態組織が生じる。捲き取り後、100℃~室温に冷却された熱延鋼板コイルを払い出す際、低温変態組織に微小クラックが発生する。この微小クラックを、酸洗で取り除くことは難しい。そして、冷間成形時に、微小クラックを起点に亀裂が発生する。最表層部にベイナイトやマルテンサイトなどの低温変態組織が生じるのを抑制するため、冷却速度は100℃/秒以下が好ましい。より好ましくは90℃/秒以下である。
 なお、上記冷却速度は、仕上げ圧延後の熱延鋼板が無注水区間を通過後、注水区間で水冷却を受ける時点から、捲取りの目標温度までROT上で冷却される時点において、各注水区間の冷却設備から受ける冷却能を指しており、注水開始点から捲取機により捲取られる温度までの平均冷却速度を示すものではない。
[捲き取り工程]
 捲取温度は400℃以上550℃以下とする。捲取温度が400℃未満であると、捲取り前に未変態であったオーステナイトが硬いマルテンサイトに変態し、熱延鋼板コイルの払い出し時に、熱延鋼板の表層にクラックが発生し、冷間成形性が低下する。上記変態を抑制するため、捲取温度は400℃以上とする。好ましくは430℃以上である。
 捲取温度が550℃を超えると、ラメラ間隔の大きなパーライトが生成し、熱的安定性の高い、分厚い針状炭化物が生成する。この針状炭化物は2段焼鈍後も残留する。鋼板の冷間成形時、この針状炭化物を起点として亀裂が発生するので、捲取温度は550℃以下とする。好ましくは520℃以下である。
 以下に、本発明製造方法の2段焼鈍工程について更に詳細に説明する。
 熱延鋼板コイルを払い出し、酸洗を施した後、2つの温度域に保持する2段ステップ型の焼鈍(2段焼鈍)を施す。熱延鋼板に2段焼鈍を施すことにより、炭化物の安定性を制御して、フェライト粒界における炭化物の生成を促進するとともに、フェライト粒界の炭化物の球状化率を高めることができる。尚、熱延鋼板コイルを払い出し後、2段焼鈍工程及び2段焼鈍工程後の冷却工程が完了するまで、前記熱延鋼板を冷間圧延しない。冷間圧延によって、フェライト粒が細粒化されて、鋼板が軟質化され難くなり、鋼板のビッカース硬さが120HV以上170HV以下にならないおそれがある。
[1段目の焼鈍工程]
 1段目の焼鈍は、AC1点以下の温度域で行なう。この焼鈍により、炭化物を粗大化させるとともに、合金元素を濃化させ、炭化物の熱的安定性を高める。その後、AC1点以上A3点以下の温度域に昇温し、オーステナイトを組織中に生成させる。その後、徐冷して、オーステナイトをフェライトに変態させ、オーステナイト中の炭素濃度を高める。
 徐冷により、オーステナイトに残存する炭化物に炭素原子が吸着し、炭化物とオーステナイトがフェライトの粒界を覆い、最終的に、鋼板組織を、フェライトの粒界に球状化炭化物が多数存在する組織にすることができる。
 AC1点以上A3点以下の温度域での保持の際、残留炭化物が少ないと、冷却中に、パーライト、及び、棒状炭化物、板状炭化物が生成する。パーライト、及び、棒状炭化物、板状炭化物が生成すると、鋼板の冷間成形が著しく低下する。したがって、AC1点以上A3点以下の温度域での保持で、残留炭化物の個数を増加することが、冷間成形性を向上させるうえで重要である。
 前述の1段目の焼鈍工程で形成する鋼板組織においては、AC1点未満の温度域で、炭化物の熱的安定化が促進されるので、前述のAC1点以上A3点以下の温度域での保持で、残留炭化物の個数の増加を図ることができる。
 1段目の焼鈍における焼鈍温度(1段目焼鈍温度)は650℃以上720℃以下とする。1段目焼鈍温度が650℃未満であると、炭化物の安定化が十分でなく、2段目の焼鈍時に、オーステナイト中に炭化物を残存させることが困難となる。このため、1段目焼鈍温度は650℃以上とする。好ましくは670℃以上である。一方、1段目焼鈍温度が720℃を超えると、炭化物の安定性が上昇する前にオーステナイトが生成し、前述の組織変化の制御が難しくなるので、1段目焼鈍温度は720℃以下とする。好ましくは700℃以下である。
 1段目の焼鈍における焼鈍時間(1段目焼鈍時間)は3時間以上60時間以下とする。1段目焼鈍時間が3時間未満であると、炭化物の安定化が十分ではなく、2段目の焼鈍時に、オーステナイト中に炭化物を残存させることが困難となる。このため、1段目焼鈍時間は3時間以上とする。好ましくは5時間以上である。一方、1段目焼鈍時間が60時間を超えると、炭化物のより安定化は見込めず、さらに、生産性が低下するので、1段目焼鈍時間は60時間以下とする。好ましくは55時間以下である。
[2段目の焼鈍工程]
 2段目の焼鈍における焼鈍温度(2段目焼鈍温度)は725℃以上790℃以下とする。2段目焼鈍温度が725℃未満であると、オーステナイトの生成量が少なく、フェライト粒界における炭化物の個数(B)が低下する。このため、2段目焼鈍温度は725℃以上とする。好ましくは715℃以下である。一方、2段目焼鈍温度が790℃を超えると、炭化物をオーステナイトに残存させることが困難となり、前述の組織変化の制御が難しくなるので、2段目焼鈍温度は790℃以下とする。好ましくは770℃以下である。
 2段目の焼鈍における焼鈍時間(2段目焼鈍時間)は3時間以上50時間以下とする。2段目焼鈍時間が3時間未満では、オーステナイトの生成量が少なく、かつ、フェライト粒内の炭化物の溶解が十分でなく、フェライト粒界の炭化物の個数を増加させることが困難となる。このため、2段目焼鈍時間は3時間以上とする。好ましくは6時間以上である。一方、2段目焼鈍時間が50時間を超えると、炭化物をオーステナイトに残存させることが困難となるので、2段目焼鈍時間は50時間以下とする。好ましくは45時間以下である。
 2段焼鈍の後、鋼板を、1℃/時間以上30℃/時間以下に制御した冷却速度で650℃まで冷却する。2段目の焼鈍で生成したオーステナイトを徐冷して、フェライトに変態させるとともに、オーステナイトに残存した炭化物へ炭素を吸着させる。冷却速度は遅い方が好ましいが、1℃/時間未満では、冷却に要する時間が増大し、生産性が低下するので、冷却速度は1℃/時間以上とする。好ましくは5℃/時間以上である。
 一方、冷却速度が30℃/時間を超えると、オーステナイトがパーライトに変態し、鋼板の硬さが増して、冷間成形性が低下するので、冷却速度は30℃/時間以下とする。好ましくは26℃/時間以下である。
 焼鈍後の鋼板を、上記冷却速度で650℃まで冷却した後は、室温まで冷却する。室温までの冷却において、冷却速度は特に限定されない。
 尚、1段目の焼鈍及び2段目の焼鈍は、箱焼鈍或いは連続焼鈍のいずれであっても良い。箱焼鈍は、箱型焼鈍炉を用いて行っても良い。また、2段焼鈍における雰囲気は、特に、特定の雰囲気に限定されない。例えば、95%以上窒素の雰囲気、95%以上水素の雰囲気、大気雰囲気のいずれの雰囲気でもよい。
 以上説明したように、本発明製造方法によれば、実質的に、粒径5μm以上50μm以下のフェライトと球状化炭化物の組織を有し、フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)が1を超え、さらに、ビッカース硬さが120HV以上170HV以下の、冷間成形性と熱処理後延性に優れる鋼板を得ることができる。
 次に、実施例の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した条件の一例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいて、種々の条件を採用し得るものである。
 (実施例1)
 成分組成の影響を調べるため、表1-1、表1-2(本発明鋼板の成分組成)及び表2-1、表2-2(比較鋼板の成分組成)に示す成分組成の連続鋳造鋳片(鋼片)に対して、以下の条件で熱間圧延工程から2段焼鈍工程までの工程を実施して、表3に示される特性評価用の試料(発明鋼A-1~Z-1及び比較鋼AA-1~AZ-1)を作製した。尚、表1-1、表1-2のNo.A~Zの鋼片は、いずれも本発明鋼板の成分組成を有して。一方、表2-1、表2-2のNo.AA~AZの鋼片の成分組成は、いずれも本発明鋼板の成分組成の範囲外である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 すなわち、表1及び表2に示す成分組成のそれぞれの鋼片を1240℃で1.8時間加熱した後、熱間圧延に供し、仕上げ温度820℃にて仕上げ圧延を完了した。その後、その後、ROT上で45℃/秒の冷却速度で冷却し、捲取温度510℃にて捲き取りを行って熱延鋼板コイルを製造した。次に、前記熱延鋼板コイルを払い出し、酸洗後、1段目の焼鈍を行うために酸洗後の熱延鋼板コイルを箱型焼鈍炉に装入し、95%水素及び5%窒素を含むように焼鈍雰囲気を制御して、室温から705℃に加熱し36時間保持して、熱延鋼板コイル内の温度分布を均一化した。その後、2段目の焼鈍を行うために760℃まで加熱して10時間保持し、その後、650℃まで、10℃/時間の冷却速度で冷却し、次いで、室温まで炉冷し、特性評価用の試料を作製した。
 上記試料の組織を、前述した方法で観察し、フェライト粒径、及び、炭化物の個数を測定した。次いで、上記試料を雰囲気焼鈍炉に装入し、950℃で、20分保定し、保定後、50℃の油冷を行った。その後、硬さが400HVになるように焼戻しを行った。熱処理後延性は、焼鈍理後の試料の表面を検索し、板厚2mmのJIS5号試験片を作製し、室温で引張試験を行って求めた。標点間距離を50mmとし、試験速度3mm/minにて引張試験を行った。10%以上を良好とした。
 表3に、フェライト粒径(μm)、ビッカース硬さ(HV)、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率(粒界炭化物数/粒内炭化物数)、及び、熱処理後延性(%)を示す。
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、本発明鋼板(A-1~Z-1)においては、いずれも、ビッカース硬さが170HV以下であり、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率(粒界炭化物数/粒内炭化物数)が1を超えている。硬さは冷間成形性の指標であることから、本発明鋼板(A-1~Z-1)は、冷間成形性に優れていることが解る。
 これに対して、比較鋼板AA-1においてはSi量が多く、比較鋼板AB-1においてはC量が多く、比較鋼板AD-1においてはMn量が多く、いずれにおいても、ビッカース硬さが170HVを超えている。
 比較鋼板AH-1においてC量が少なく、A3点が高いため、焼入が不可能であった。比較鋼板AE-1においてはSi量が少なく、ビッカース硬さが120HV未満となっただけでなく、熱処理後延性が低下した。他の比較鋼板においては、成分組成が、本発明鋼板の成分組成の範囲外であるため、熱処理後延性が低下している。
 (実施例2)
 熱間圧延の仕上げ圧延、鋼板の捲取工程及び2段焼鈍工程のそれぞれの条件の影響を調べるため、以下のようにNo.A-2~Z-2の試験用鋼板を作製した。すなわち、まず、表1-1及び表1-2に示す成分組成の鋼片No.A~Zのそれぞれを、1240℃で1.8時間加熱した後、熱間圧延に供し、表4に示す条件で、熱間圧延の仕上げ圧延を完了し、その後、ROT上で45℃/秒の冷却速度で冷却し、表4に示す捲取温度で捲き取り、板厚3.0mmの熱延鋼板コイルを製造した。
 前記熱延鋼板コイルを酸洗後、表4に示す焼鈍条件で、2段ステップ型の箱焼鈍を施した。焼鈍後の熱延鋼板から、板厚3.0mmの特性評価用の資料を採取し、フェライト粒径(μm)、ビッカース硬さ(HV)、フェライト粒内の炭化物の個数に対するフェライト粒界の炭化物の個数の比率(粒界炭化物数/粒内炭化物数)、及び、熱処理後延性(%)を測定した。結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、本発明鋼板においては、いずれも、ビッカース硬さが170HV以下であり、フェライト粒内の炭化物個数に対するフェライト粒界の炭化物個数の比率が1を超えている。硬さは冷間成形性の指標であることから、本発明鋼板はいずれも、冷間成形性に優れていることが解る。さらに、本発明鋼板はいずれも、10%以上の熱処理後延性を有するので、熱処理後延性に関して良好であることが解る。
 これに対して、比較鋼板においては、製造条件が、本発明製造方法の製造条件の範囲外であることから、ビッカース硬さが上昇している。また、一部の比較鋼板においては、粒界炭化物数/粒内炭化物数も低下している。
Figure JPOXMLDOC01-appb-T000007
 前述したように、本発明によれば、冷間成形性と熱処理後延性に優れた鋼板とその製造方法を提供することができる。よって、本発明は、鋼板製造及び利用産業において利用可能性が高いものである。

Claims (5)

  1.  成分組成が、質量%で、
    C :0.10~0.40%、
    Si:0.30~1.00%、
    Mn:0.30~1.00%、
    Al:0.001~0.10%、
    P :0.02%以下、
    S :0.01%以下
    を含有し、残部がFe及び不純物からなる鋼板において、
     フェライト粒内の炭化物の個数(A)に対するフェライト粒界の炭化物の個数(B)の比率(B/A)が1を超え、
     フェライト粒径が5μm以上50μm以下であり、
     炭化物の平均粒子径が0.4μm以上2.0μm以下であり、
     パーライト面積率が6%以下であり、
     ビッカース硬さが120HV以上170HV以下であることを特徴とする鋼板。
  2.  前記鋼板が、さらに、質量%で、
    N :0.01%以下、
    O :0.02%以下
    の1種又は2種以上を含有することを特徴とする請求項1に記載の鋼板。
  3.  前記鋼板が、さらに、質量%で、
    Ti:0.10%、
    Cr:0.50%、
    Mo:0.50%、
    B :0.01%、
    Nb:0.10%、
    V :0.10%、
    Cu:0.10%、
    W :0.10%、
    Ta:0.10%、
    Ni:0.10%、
    Sn:0.05%、
    Sb:0.05%、
    As:0.05%、
    Mg:0.05%、
    Ca:0.05%、
    Y :0.05%、
    Zr:0.05%、
    La:0.05%、
    Ce:0.05%
    の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の鋼板。
  4.  請求項1乃至3のいずれか1項に記載の鋼板を製造する製造方法であって、
    (i)請求項1乃至3のいずれか1項に記載の成分組成の鋼片を、直接、又は、一旦冷却後加熱して熱間圧延に供し、800℃以上900℃以下の温度域で仕上げ圧延を完了した熱延鋼板を400℃以上550℃以下で捲き取り、
    (ii)巻き取った熱延鋼板を払い出し、酸洗を施した後、650℃以上720℃以下の温度域で3時間以上60時間以下保持する1段目の焼鈍を施し、さらに、725℃以上790℃以下の温度域で3時間以上50時間以下保持する2段目の焼鈍を施す、2段ステップ型の焼鈍を施し、
    (iii)上記焼鈍後の熱延鋼板を、1℃/時間以上30℃/時間以下に制御した冷却速度で650℃まで冷却し、次いで、室温まで冷却する
    ことを特徴とする鋼板の製造方法。
  5.  前記熱間圧延に供する鋼片の温度が1000~1250℃であることを特徴とする請求項4に記載の鋼板の製造方法。
PCT/JP2016/065630 2015-05-26 2016-05-26 鋼板及びその製造方法 WO2016190397A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2017015085A MX2017015085A (es) 2015-05-26 2016-05-26 Lamina de acero y metodo de fabricacion de la misma.
JP2016559656A JP6160783B2 (ja) 2015-05-26 2016-05-26 鋼板及びその製造方法
US15/576,653 US10837077B2 (en) 2015-05-26 2016-05-26 Steel sheet and method for production thereof
CN201680030147.2A CN107614728B (zh) 2015-05-26 2016-05-26 钢板及其制造方法
ES16800101T ES2769275T3 (es) 2015-05-26 2016-05-26 Chapa de acero y procedimiento para su fabricación
BR112017025030-6A BR112017025030A2 (ja) 2015-05-26 2016-05-26 A steel plate and a manufacturing method for the same
PL16800101T PL3305931T3 (pl) 2015-05-26 2016-05-26 Blacha stalowa cienka i sposób jej wytwarzania
EP16800101.4A EP3305931B1 (en) 2015-05-26 2016-05-26 Steel sheet and manufacturing method therefor
KR1020177033292A KR101988153B1 (ko) 2015-05-26 2016-05-26 강판 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-106739 2015-05-26
JP2015106739 2015-05-26

Publications (2)

Publication Number Publication Date
WO2016190397A1 true WO2016190397A1 (ja) 2016-12-01
WO2016190397A9 WO2016190397A9 (ja) 2017-08-10

Family

ID=57394048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065630 WO2016190397A1 (ja) 2015-05-26 2016-05-26 鋼板及びその製造方法

Country Status (11)

Country Link
US (1) US10837077B2 (ja)
EP (1) EP3305931B1 (ja)
JP (1) JP6160783B2 (ja)
KR (1) KR101988153B1 (ja)
CN (1) CN107614728B (ja)
BR (1) BR112017025030A2 (ja)
ES (1) ES2769275T3 (ja)
MX (1) MX2017015085A (ja)
PL (1) PL3305931T3 (ja)
TW (1) TWI605133B (ja)
WO (1) WO2016190397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923234A (zh) * 2017-08-31 2019-06-21 日本制铁株式会社 渗碳用钢板以及渗碳用钢板的制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070912B1 (ja) * 2015-04-10 2017-02-01 新日鐵住金株式会社 成形時の冷間加工性に優れた鋼板及びその製造方法
BR112017024692A2 (ja) * 2015-05-26 2018-07-24 Nippon Steel & Sumitomo Metal Corporation A steel plate and a manufacturing method for the same
ES2769275T3 (es) 2015-05-26 2020-06-25 Nippon Steel Corp Chapa de acero y procedimiento para su fabricación
CN107735505B (zh) * 2015-06-17 2019-10-18 日本制铁株式会社 钢板及制造方法
WO2019044970A1 (ja) * 2017-08-31 2019-03-07 新日鐵住金株式会社 浸炭用鋼板、及び、浸炭用鋼板の製造方法
WO2019093429A1 (ja) 2017-11-08 2019-05-16 日本製鉄株式会社 鋼板
CN109926500B (zh) * 2019-01-07 2020-11-24 安徽力源数控刃模具制造有限公司 一种合金铝板压弧模具材料及其加工工艺
CN110029264A (zh) * 2019-04-12 2019-07-19 江苏利淮钢铁有限公司 一种低成本40CrV工具钢及其生产方法
CN110284064B (zh) * 2019-07-18 2021-08-31 西华大学 一种高强度含硼钢及其制备方法
CN112575242B (zh) * 2019-09-27 2022-06-24 宝山钢铁股份有限公司 一种合金结构用钢及其制造方法
CN111394654B (zh) * 2020-04-23 2021-08-03 辽宁科技学院 一种添加La微合金的热压成形钢板及其制备方法
CN114763590B (zh) * 2021-01-11 2023-03-14 宝山钢铁股份有限公司 一种高均匀延伸率的耐磨钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270324A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk ファインブランキング加工性に優れた鋼板およびその製造方法
JP2008069452A (ja) * 2006-08-16 2008-03-27 Jfe Steel Kk 高炭素熱延鋼板およびその製造方法
JP2010280929A (ja) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd 窒化処理および高周波焼入処理が施される用途に供される鋼材
JP2012062496A (ja) * 2010-09-14 2012-03-29 Nippon Steel Corp 高周波焼入れ性優れた軟質中炭素鋼板
JP2013127100A (ja) * 2011-12-19 2013-06-27 Jfe Steel Corp 加工性に優れた高強度鋼板およびその製造方法

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110870B2 (ja) 1972-11-17 1976-04-07
FR2297718A1 (fr) 1975-01-20 1976-08-13 Promecan Sisson Lehmann Appareillage de commande d'un elemen
JPS5194454A (en) 1975-02-17 1976-08-19 Hiatsuenzaino nagasasokuteihoho
KR940002139B1 (ko) 1991-11-30 1994-03-18 삼성중공업 주식회사 침탄 기어 제조용 보론 처리강
JPH06116679A (ja) 1992-10-06 1994-04-26 Sumitomo Metal Ind Ltd 冷間加工性と浸炭焼入性に優れた鋼及び浸炭焼入方法
JP3297788B2 (ja) 1994-10-19 2002-07-02 住友金属工業株式会社 穴拡げ性と二次加工性に優れた高炭素薄鋼板及びその製造方法
JP3319684B2 (ja) 1996-01-23 2002-09-03 日産自動車株式会社 浸炭かさ歯車用鋼材、高靱性浸炭かさ歯車及びその製造方法
JPH09316540A (ja) 1996-05-27 1997-12-09 Aichi Steel Works Ltd 冷鍛性に優れた輪郭高周波焼入用機械構造用鋼の製造方法及び冷間鍛造部品の製造方法
JP3629851B2 (ja) 1996-11-28 2005-03-16 大同特殊鋼株式会社 プラズマ浸炭用冷間工具鋼
JP3266902B2 (ja) 1997-01-14 2002-03-18 住友金属工業株式会社 高炭素冷延鋼帯の製造方法
JPH10265840A (ja) 1997-03-25 1998-10-06 Aichi Steel Works Ltd 冷間鍛造部品の製造方法
EP0980444A1 (en) 1997-05-08 2000-02-23 The Timken Company Steel compositions and methods of processing for producing cold-formed and carburized components with fine-grained microstructures
JP3468048B2 (ja) 1997-08-26 2003-11-17 住友金属工業株式会社 成形性に優れた高炭素冷延鋼板の製造方法
JP3909939B2 (ja) 1997-09-08 2007-04-25 日新製鋼株式会社 伸びフランジ性に優れた中・高炭素鋼板の製造方法
JP3848444B2 (ja) 1997-09-08 2006-11-22 日新製鋼株式会社 局部延性および焼入れ性に優れた中・高炭素鋼板
JP3909950B2 (ja) 1998-03-25 2007-04-25 日新製鋼株式会社 伸びフランジ性に優れた中・高炭素鋼板の製造方法
JP3909949B2 (ja) * 1998-03-25 2007-04-25 日新製鋼株式会社 伸びフランジ性に優れた中・高炭素鋼板の製造法
JP4465057B2 (ja) 1999-03-16 2010-05-19 日新製鋼株式会社 精密打抜き用高炭素鋼板
JP3800902B2 (ja) 1999-03-19 2006-07-26 Jfeスチール株式会社 面内異方性の小さい加工用高炭素鋼板およびその製造方法
JP2000328172A (ja) 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 深絞り面内異方性の小さい高炭素冷延鋼帯とその製造方法
JP4048675B2 (ja) 1999-06-30 2008-02-20 Jfeスチール株式会社 焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板およびその製造方法
JP2001073033A (ja) 1999-09-03 2001-03-21 Nisshin Steel Co Ltd 局部延性に優れた中・高炭素鋼板の製造方法
TW512175B (en) * 2000-04-04 2002-12-01 Nippon Steel Corp Hot-rolled steel wire and rod used for machine structural use without annealing and method for producing the same
KR100543956B1 (ko) * 2000-09-21 2006-01-23 신닛뽄세이테쯔 카부시키카이샤 형상 동결성이 우수한 강판 및 그 제조방법
JP3879459B2 (ja) 2001-08-31 2007-02-14 Jfeスチール株式会社 高焼入れ性高炭素熱延鋼板の製造方法
JP4028719B2 (ja) 2001-11-26 2007-12-26 新日本製鐵株式会社 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP2004027355A (ja) 2001-11-14 2004-01-29 Sumitomo Metal Ind Ltd 疲労き裂進展抵抗特性に優れた鋼材とその製造方法
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP4319940B2 (ja) 2004-04-27 2009-08-26 新日本製鐵株式会社 加工性と、焼入れ性、熱処理後の靭性の優れた高炭素鋼板
JP2006213951A (ja) 2005-02-02 2006-08-17 Sanyo Special Steel Co Ltd 冷間加工性に優れ、浸炭時の結晶粒の粗大化を防止し、耐衝撃特性、耐衝撃疲労特性に優れた浸炭部品用鋼
JP4738028B2 (ja) 2005-03-15 2011-08-03 日新製鋼株式会社 被削性に優れた中・高炭素鋼板の製造方法
JP5194454B2 (ja) 2006-01-31 2013-05-08 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
WO2007088985A1 (ja) 2006-01-31 2007-08-09 Jfe Steel Corporation ファインブランキング加工性に優れた鋼板およびその製造方法
JP5292698B2 (ja) * 2006-03-28 2013-09-18 Jfeスチール株式会社 極軟質高炭素熱延鋼板およびその製造方法
JP2007270331A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk ファインブランキング加工性に優れた鋼板およびその製造方法
JP4992275B2 (ja) 2006-03-31 2012-08-08 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
JP5076347B2 (ja) 2006-03-31 2012-11-21 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
JP4992277B2 (ja) 2006-03-31 2012-08-08 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
JP2008274416A (ja) 2007-03-30 2008-11-13 Nippon Steel Corp 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法
JP4974285B2 (ja) 2007-06-06 2012-07-11 日新製鋼株式会社 加工性に優れた中・高炭素鋼板及びその製造方法
JP5030280B2 (ja) 2007-07-20 2012-09-19 日新製鋼株式会社 焼入れ性、疲労特性、靭性に優れた高炭素鋼板及びその製造方法
JP5197076B2 (ja) 2008-03-11 2013-05-15 日新製鋼株式会社 加工性に優れた中・高炭素鋼板およびその製造方法
JP5068689B2 (ja) 2008-04-24 2012-11-07 新日本製鐵株式会社 穴広げ性に優れた熱延鋼板
JP5652844B2 (ja) 2009-03-30 2015-01-14 日新製鋼株式会社 高加工性浸炭用鋼板
JP5458649B2 (ja) 2009-04-28 2014-04-02 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP5064525B2 (ja) 2010-02-18 2012-10-31 新日本製鐵株式会社 異方性が小さく焼入性に優れた高炭素鋼板及びその製造方法
JP5765092B2 (ja) 2010-07-15 2015-08-19 Jfeスチール株式会社 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
JP5655436B2 (ja) 2010-08-31 2015-01-21 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
MX348196B (es) * 2010-10-22 2017-06-05 Nippon Steel & Sumitomo Metal Corp Metodo para fabricar cuerpo estampado en caliente que tiene pared vertical y cuerpo estampado en caliente que tiene pared vertical.
JP5965117B2 (ja) 2011-08-15 2016-08-03 山陽特殊製鋼株式会社 耐結晶粒粗大化特性および加工性ならびに靱性に優れた浸炭部品用の機械構造用鋼
CN103764862B (zh) 2011-09-09 2016-12-07 新日铁住金株式会社 中碳钢板、淬火构件以及它们的制造方法
KR101654492B1 (ko) * 2012-09-27 2016-09-05 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
CN102899564A (zh) 2012-11-16 2013-01-30 内蒙古包钢钢联股份有限公司 一种超深冲Ti+Nb-IF钢冷轧及退火工艺
JP5812048B2 (ja) 2013-07-09 2015-11-11 Jfeスチール株式会社 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP5599921B1 (ja) 2013-07-10 2014-10-01 パナソニック株式会社 三次元形状造形物の製造方法
CN103469089B (zh) * 2013-09-11 2016-01-27 马鞍山市安工大工业技术研究院有限公司 一种饼形晶粒深冲双相钢板及其制备方法
JP6439248B2 (ja) 2013-12-18 2018-12-19 新日鐵住金株式会社 打ち抜き性に優れる中・高炭素鋼板およびその製造方法
JP6056790B2 (ja) 2014-02-27 2017-01-11 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP6354271B2 (ja) 2014-04-08 2018-07-11 新日鐵住金株式会社 低温靭性と均一伸びと穴拡げ性に優れた引張強度780MPa以上の高強度熱延鋼板及びその製造方法
JP6070912B1 (ja) 2015-04-10 2017-02-01 新日鐵住金株式会社 成形時の冷間加工性に優れた鋼板及びその製造方法
CN107614726B (zh) 2015-05-26 2020-02-07 日本制铁株式会社 钢板及其制造方法
BR112017024692A2 (ja) 2015-05-26 2018-07-24 Nippon Steel & Sumitomo Metal Corporation A steel plate and a manufacturing method for the same
ES2769275T3 (es) 2015-05-26 2020-06-25 Nippon Steel Corp Chapa de acero y procedimiento para su fabricación
CN107735505B (zh) 2015-06-17 2019-10-18 日本制铁株式会社 钢板及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270324A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk ファインブランキング加工性に優れた鋼板およびその製造方法
JP2008069452A (ja) * 2006-08-16 2008-03-27 Jfe Steel Kk 高炭素熱延鋼板およびその製造方法
JP2010280929A (ja) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd 窒化処理および高周波焼入処理が施される用途に供される鋼材
JP2012062496A (ja) * 2010-09-14 2012-03-29 Nippon Steel Corp 高周波焼入れ性優れた軟質中炭素鋼板
JP2013127100A (ja) * 2011-12-19 2013-06-27 Jfe Steel Corp 加工性に優れた高強度鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923234A (zh) * 2017-08-31 2019-06-21 日本制铁株式会社 渗碳用钢板以及渗碳用钢板的制造方法
CN109923234B (zh) * 2017-08-31 2021-03-30 日本制铁株式会社 渗碳用钢板以及渗碳用钢板的制造方法
US11639536B2 (en) 2017-08-31 2023-05-02 Nippon Steel Corporation Steel sheet for carburizing, and method for manufacturing steel sheet for carburizing

Also Published As

Publication number Publication date
CN107614728B (zh) 2020-04-21
EP3305931A4 (en) 2018-12-12
PL3305931T3 (pl) 2020-06-01
ES2769275T3 (es) 2020-06-25
US10837077B2 (en) 2020-11-17
US20180127848A1 (en) 2018-05-10
KR101988153B1 (ko) 2019-06-12
TWI605133B (zh) 2017-11-11
KR20170138509A (ko) 2017-12-15
MX2017015085A (es) 2018-05-07
TW201708558A (zh) 2017-03-01
CN107614728A (zh) 2018-01-19
JPWO2016190397A1 (ja) 2017-06-15
JP6160783B2 (ja) 2017-07-12
EP3305931A1 (en) 2018-04-11
EP3305931B1 (en) 2019-12-11
WO2016190397A9 (ja) 2017-08-10
BR112017025030A2 (ja) 2018-08-07

Similar Documents

Publication Publication Date Title
JP6160783B2 (ja) 鋼板及びその製造方法
JP6119924B1 (ja) 鋼板及びその製造方法
JP6206601B2 (ja) 鋼板及び製造方法
JP6119923B1 (ja) 鋼板及びその製造方法
JP6515332B2 (ja) 被切削性及び焼入れ焼戻し後の耐摩耗特性に優れる低炭素鋼板及びその製造方法
JP6070912B1 (ja) 成形時の冷間加工性に優れた鋼板及びその製造方法
JP6583587B2 (ja) 浸炭用鋼板、及び、浸炭用鋼板の製造方法
KR20190060805A (ko) 침탄용 강판, 및 침탄용 강판의 제조 방법
KR20200039611A (ko) 침탄용 강판, 및 침탄용 강판의 제조 방법
JP6519012B2 (ja) 冷間成形性と熱処理後靭性に優れた低炭素鋼板及び製造方法
JP6690792B1 (ja) 鋼板及びその製造方法、並びに成形体
JP2018070963A (ja) 軸受部品およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559656

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033292

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576653

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015085

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016800101

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025030

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025030

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171122