WO2016187787A1 - 光纤测量方法、装置和系统 - Google Patents

光纤测量方法、装置和系统 Download PDF

Info

Publication number
WO2016187787A1
WO2016187787A1 PCT/CN2015/079728 CN2015079728W WO2016187787A1 WO 2016187787 A1 WO2016187787 A1 WO 2016187787A1 CN 2015079728 W CN2015079728 W CN 2015079728W WO 2016187787 A1 WO2016187787 A1 WO 2016187787A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
tested
modulation
detection
light
Prior art date
Application number
PCT/CN2015/079728
Other languages
English (en)
French (fr)
Inventor
刘伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15892868.9A priority Critical patent/EP3252427B1/en
Priority to PCT/CN2015/079728 priority patent/WO2016187787A1/zh
Priority to CN201580028688.7A priority patent/CN106415195B/zh
Publication of WO2016187787A1 publication Critical patent/WO2016187787A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3118Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR using coded light-pulse sequences

Definitions

  • Embodiments of the present invention relate to optical fiber technologies, and in particular, to a fiber optic measurement method, apparatus, and system.
  • Optical Time Domain Reflectometer is a precision optoelectronic integrated instrument made by backscattering caused by Rayleigh scattering and Fresnel reflection when light is transmitted through an optical fiber. It is widely used in the maintenance and construction of optical cable lines, and can measure the length of optical fiber, transmission attenuation of optical fiber, joint attenuation and fault location.
  • OTDR Optical Time Domain Reflectometer
  • a portion of the scattered or reflected light is returned to the OTDR by the OTDR.
  • the detectors measure them as time or fiber curves at different locations within the fiber.
  • Optical Line Protection is a subsystem for constructing automatic switching protection based on fiber links.
  • the device usually has six optical ports.
  • the OLP can split the optical pulse, and after splitting.
  • the optical pulses can be transmitted through two optical fiber links respectively, and the OTDR detecting device receives the light reflected from the two optical fiber links respectively.
  • the above two paths of reflected light are received by the OTDR detecting device and interfere with each other, so that the fiber curve measured by the OTDR detecting device is a curve reflected by the mixed light, and cannot represent the characteristics of any one fiber link. If the OTDR detection device and the accessory device are respectively set on the two fiber links, the two fiber links are separately measured to obtain a single fiber curve, which affects the performance of the system and increases the cost, which is not conducive to many Measurement of a fiber link.
  • Embodiments of the present invention provide a fiber optic measurement method, apparatus, and system for implementing measurement of a single fiber link in a multi-path fiber link and minimizing the impact on system performance.
  • an embodiment of the present invention provides a fiber measurement method, including:
  • the detection control parameters including to be tested Number N of fiber links, fiber detection distance, duration and optical pulse width, and modulation parameters, N is a positive integer greater than or equal to 2;
  • Corresponding fiber curve wherein, in at least N-1 fiber detection, each time the fiber detection is performed, the light that is about to enter a fiber link to be tested is attenuated and modulated by the modulation device according to the modulation parameter, and each time The modulated light corresponds to a different fiber link to be tested, and the attenuation modulation is used to modulate the light in an attenuated manner;
  • N 2;
  • N times of fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquiring and acquiring N total fiber curves including:
  • modulating by the modulating device, the light that is about to enter one of the fiber links to be tested is attenuated according to the modulation parameter, performing second fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquiring and acquiring the second total fiber. curve.
  • N 2;
  • N times of fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquiring and acquiring N total fiber curves including:
  • modulating by the modulating device, the light that is about to enter one of the fiber links to be tested is attenuated according to the modulation parameter, performing the first fiber detection according to the fiber detection distance, the duration and the optical pulse width, and acquiring and acquiring the first total fiber. curve;
  • modulating by the modulating device, the light that is about to enter another fiber link to be tested according to the modulation parameter, performing second fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquiring the second total Fiber curve.
  • a parameter acquisition response is fed back to the control and communication device.
  • any one of the first to the third possible implementation manners of the first aspect, in the fourth possible implementation manner of the first aspect, the detecting the distance, the duration, and the light according to the optical fiber The pulse width is N times of fiber detection, and after acquiring N total fiber curves, the method further includes:
  • the acquisition success indicator is fed back to the control and communication device.
  • an embodiment of the present invention provides a fiber measurement method, including:
  • each time the light that is about to enter a fiber link to be tested is attenuated and modulated according to the modulation parameter, and the light corresponding to each modulated light is to be processed.
  • the fiber link is not the same;
  • a modulation response is fed back to the control and communication device.
  • the attenuating and modulating the light that is to enter a fiber link to be tested according to the modulation parameter includes:
  • the attenuation of the light that is about to enter the one fiber link to be tested is adjusted according to the power attenuation value, and modulated.
  • the attenuation of the light entering the N fiber links to be tested is respectively adjusted to a minimum value, which is the minimum attenuation value of the modulation device.
  • an embodiment of the present invention provides a fiber measurement method, including:
  • the detecting control parameter includes the number N of the fiber link to be tested, the fiber detecting distance, the duration and the optical pulse width, and the modulation parameter, where N is greater than or equal to 2
  • N is greater than or equal to 2
  • the OTDR detecting device performs N times of fiber detection according to the fiber detection distance, duration, and optical pulse width, acquires and acquires N total fiber curves, and adopts a pre-N according to the N total fiber curves and the modulation parameters. Setting a curve algorithm to obtain a fiber curve of each of the N fiber links to be tested;
  • an embodiment of the present invention provides an optical time domain reflectometer OTDR detecting apparatus, including:
  • An acquiring module configured to acquire a detection control parameter sent by the control and the communication device, where the detection control parameter includes the number N of the fiber link to be tested, the fiber detection distance, the duration and the optical pulse width, and the modulation parameter, where N is greater than or equal to 2 Positive integer
  • a detecting module configured to perform N times of fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquire and acquire N total fiber curves, where the total fiber curve includes light reflected in each of the N fiber links to be tested a fiber curve corresponding to the light formed by the convergence, wherein, in at least N-1 fiber detection, each time the fiber detection is performed, the light that is about to enter a fiber link to be tested is first attenuated by the modulation device according to the modulation parameter. Modulating, and each time the modulated light corresponds to a different fiber link to be tested, the attenuation modulation is used to modulate the light in an attenuated manner;
  • a calculation module configured to calculate, according to the N total fiber curves and the modulation parameter, a fiber curve of each of the N optical fiber links to be tested by using a preset curve algorithm, and feed back the fiber curve to the control And communication devices.
  • N 2;
  • the detecting module is configured to perform a first fiber detection according to the fiber detection distance, the duration, and the optical pulse width, and acquire and acquire a first total fiber curve; and the modulation device is about to enter one of the parameters according to the modulation parameter.
  • the light of the optical fiber link is measured for attenuation modulation, and the second optical fiber detection is performed according to the detection distance, the duration and the optical pulse width of the optical fiber, and the second total optical fiber curve is acquired.
  • N 2;
  • the detecting module is configured to perform attenuation modulation on light that is to enter one of the fiber links to be tested according to the modulation parameter by using the modulation device, and perform the first fiber according to the fiber detection distance, duration, and optical pulse width. Detecting, acquiring and acquiring a first total fiber curve; and modulating, by the modulating device, attenuation of light that is about to enter another fiber link to be tested according to the modulation parameter, according to the fiber detection distance, duration, and optical pulse width Secondary fiber detection, acquisition and acquisition of the second total fiber curve.
  • any one of the first to the second possible implementation manners of the fourth aspect in a third possible implementation manner of the fourth aspect, the method further includes:
  • a sending module configured to feed back a parameter acquisition response to the control and communication device.
  • the sending module is further configured to The control and communication device feedbacks the acquisition success indicator.
  • an embodiment of the present invention provides a modulation apparatus, including:
  • An acquiring module configured to acquire a modulation parameter sent by the control and communication device, and a number N of the fiber links to be tested, where N is a positive integer greater than or equal to 2;
  • An attenuation modulation module for attenuating and modulating light that is about to enter a fiber link to be tested according to the modulation parameter in at least N-1 fiber detection of the optical time domain reflectometer OTDR detection device, and each time The modulated optical fiber corresponds to the same fiber link to be tested;
  • a sending module configured to feed back a modulation response to the control and communication device.
  • the attenuation modulation module is configured to acquire, according to the modulation parameter, a power attenuation value corresponding to the fiber link to be tested;
  • the power attenuation value adjusts the attenuation of the light that is about to enter the fiber link to be tested and modulates.
  • the attenuation modulation module is further configured to enter N optical fiber links to be tested The attenuation of the light is separately adjusted to a minimum value, which is the minimum attenuation value of the modulation device.
  • an embodiment of the present invention provides a control and communication apparatus, including:
  • a sending module configured to send a sounding control parameter to the optical time domain reflectometer OTDR detecting device, where the detecting control parameter includes the number N of the fiber link to be tested, the fiber detecting distance, the duration and the optical pulse width, and the modulation parameter, where N is greater than Or a positive integer equal to 2, so that the OTDR detecting device performs N times of fiber detection according to the fiber detection distance, duration, and optical pulse width, acquires and acquires N total fiber curves, and according to the N total fiber curves and
  • the modulation parameter is calculated by using a preset curve algorithm to obtain a fiber curve of each of the N fiber links to be tested; and transmitting the modulation parameter and the number N of the fiber link to be tested to the modulation device, so that the modulation The device attenuates the light that is about to enter a fiber link to be tested according to the modulation parameter in at least N-1 fiber detection of the OTDR detecting device.
  • an embodiment of the present invention provides a fiber optic measurement system, including: optical time domain reflection An OTDR detecting device, a modulating device, and a control and communication device, wherein the OTDR detecting device adopts the device according to any one of the first aspect to the fourth aspect of the fourth aspect;
  • the optical fiber measuring method, device and system attenuates and modulates the light that will enter the N fiber links to be tested one by one, and inversely calculates a single fiber link to be tested according to the total fiber curve obtained by the N times of fiber detection.
  • the fiber curve enables measurement of a single fiber link in a multi-fiber link at a relatively low cost and minimizes the impact on system performance.
  • FIG. 1 is a schematic structural view of an embodiment of an optical fiber measuring system according to the present invention.
  • FIG. 2 is a flow chart of an embodiment of a fiber measuring method of the present invention
  • FIG. 3 is a flow chart of another embodiment of a method for measuring an optical fiber according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of an OTDR detecting apparatus according to the present invention.
  • FIG. 6 is a schematic structural view of another embodiment of an OTDR detecting device according to the present invention.
  • Figure 7 is a schematic structural view of an embodiment of a modulation apparatus according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a control and communication apparatus according to the present invention.
  • FIG. 9 is a schematic structural view of another embodiment of the optical fiber measuring system of the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of an optical fiber measurement system according to the present invention.
  • the system of the present embodiment includes: an OTDR detection device, a control and communication device, a modulation device, an OLP, and an optical amplification (Optical Amplifier). :OA).
  • the OLP has six optical ports, wherein the optical fiber link of the transmission channel (Tx) is divided into two, and the optical fiber link of the receiving channel (Rx) is combined into one.
  • the control and communication device controls the entire measurement process, can receive the user's input, bind each port of the OTDR detection device and the modulation device, and send relevant information to the OTDR detection device and the modulation device; control the OTDR detection device and the modulation device according to Start and stop a fiber detection in sequence; display the back calculation result of the OTDR detection device.
  • the modulation device can use the lowest cost VOA modulation board.
  • the device has n independent optical layer interfaces, and each interface can modulate one independent fiber link to be tested.
  • the OTDR detection device on the left side measures the reflected light in the Tx.
  • the modulation device attenuates and modulates the two fiber links to be tested, and the OTDR detection device performs two fiber detections to obtain two total fiber curves. Then, according to the preset curve algorithm, the fiber curve of obtaining a single fiber link to be tested is calculated.
  • FIG. 2 is a flowchart of an embodiment of a method for measuring an optical fiber according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • Step 101 Acquire a detection control parameter sent by the control and communication device, where the detection control parameter includes the number N of the fiber link to be tested, the fiber detection distance, the duration and the optical pulse width, and the modulation parameter, where N is greater than or equal to 2. Integer
  • the executive body of this embodiment may be an OTDR detecting device.
  • the OTDR detecting device can learn information such as the distance to be tested, the duration of the probe, and the pulse width of the light entering the fiber link to be tested according to the detection control parameter, and according to the information, the corresponding reflected light is collected.
  • the optical fiber curves of the optical fiber links to be tested can be obtained by the method of this embodiment.
  • Step 102 Perform N-time fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquire and obtain N total fiber curves, where the total fiber curve includes light and reflection after being reflected in the N fiber links to be tested. a fiber curve corresponding to the formed light, wherein, in at least N-1 fiber detection, each time the fiber detection is performed, the light that is about to enter a fiber link to be tested is attenuated and modulated by the modulation device according to the modulation parameter. And each time the modulated light corresponds to a different fiber link to be tested, the attenuation modulation is used to modulate the light in an attenuated manner;
  • the light After being split, the light enters the N fiber links to be tested, and the light formed by the reflection in the N fiber links to be tested is received by the OTDR detection device. Since the OTDR detection device can only acquire and acquire the total fiber curve, The total fiber curve acquires the respective fiber curves of the N fiber links to be tested, and can perform N times of fiber detection to obtain a total of N total fiber curves, and in the N times of fiber detection for obtaining the N total fiber curves, each time The modulation device only attenuates the light that is about to enter one of the fiber links to be tested, and the fiber link corresponding to each modulation is also different.
  • the OTDR detection device collects and acquires N total fibers. Curve, where the first is the total fiber curve Fiber_all_1 that the modulation device adjusts the attenuation on the N fiber links to be tested to a minimum, and the other N-1 total fiber curves increase the light of one of the fiber links to be tested. Attenuation, for example, a total fiber curve with each attenuation increasing by 0.5 dB while the light remaining in the fiber link under test remains at a minimum attenuation.
  • the N total fiber curves acquired by the OTDR detecting device in the N times of fiber detection are generated based on different attenuation modulations of different fiber links to be tested.
  • Step 103 Calculate, according to the N total fiber curves and the modulation parameters, a fiber curve of each of the N fiber links to be tested by using a preset curve algorithm, and feed back the fiber curve to the control and communication. Device.
  • the OTDR detecting device can calculate the optical fiber curves of the N optical fiber links to be tested by using a preset curve algorithm by using the attenuation relationship between the N fiber links to be tested and the relationship with the total fiber curve. Let the curve algorithm combine the influence of N total fiber curves and modulation parameters to inversely calculate the fiber curve of a single fiber link to be tested.
  • the optical fiber curve of a single fiber link to be tested is inversely calculated by attenuating and modulating the light of the fiber link to be tested one by one, and calculating the fiber curve of the fiber link to be tested according to the total fiber curve obtained by the N fiber detection.
  • the cost of implementing a single fiber link in a multi-path fiber link minimizes the impact on system performance.
  • the modulation device Attenuates the light that is about to enter the first fiber link to be tested to ATT1, and the light that is about to enter the second fiber link to be tested.
  • Attenuation is ATT2, ATT1 and ATT2 can be minimum attenuation
  • the value, the unit of attenuation is dB
  • the OTDR detection device performs the first fiber detection according to the fiber detection distance, the duration and the optical pulse width, and acquires the first total fiber curve as Fiber_all_1, and the total fiber curve is in milliwatts (mW);
  • the modulation device attenuates the light that is about to enter the first fiber link to be tested to ATT3
  • Fiber_all_1 Fiber(1)VOA ATT1 +Fiber(2)VOA ATT2
  • Fiber_all_2 Fiber(1)VOA ATT3 +Fiber(2)VOA ATT4
  • Fiber(1)VOA ATT1 represents the fiber curve of the first fiber link to be tested after being attenuated by ATT1
  • Fiber(2) VOA ATT2 represents the fiber curve of the second fiber link to be tested after being attenuated by ATT2, and the like is similar here. No longer.
  • Fiber_all_2 Fiber(1)VOA ATT1 (mW)+Fiber(2)VOA ATT2 (mW)-2x(dB)
  • Fiber_all_1-Fiber_all_2 Fiber(2)VOA ATT2 -Fiber(2)VOA (ATT2+X) (1)
  • the fiber curves of the first fiber link to be tested and the second fiber link to be tested can be calculated as follows:
  • Fiber(1)VOA ATT1 Fiber_all_1-Fiber(2)VOA ATT2 (3)
  • the OTDR detecting device may perform attenuation modulation on one of the optical fiber links to be tested by using the modulating device as described above, that is, according to the modulation device by the modulating device.
  • the parameter attenuates the light that is to enter one of the fiber links to be tested, performs the first fiber detection according to the fiber detection distance, the duration and the optical pulse width, and acquires and acquires the first total fiber curve;
  • the modulation parameter attenuates the light that is about to enter another fiber link to be tested, performs a second fiber detection according to the fiber detection distance, duration, and optical pulse width, and acquires a second total fiber curve.
  • the modulating device that is, according to the Performing the first fiber detection on the fiber detection distance, the duration and the optical pulse width, acquiring and acquiring the first total fiber curve; and modulating, by the modulation device, the light that is about to enter one of the fiber links to be tested is attenuated and modulated according to the modulation parameter,
  • the second fiber detection is performed according to the fiber detection distance, the duration and the optical pulse width, and the second total fiber curve is acquired.
  • Fiber(1)VOA ATT1 Fiber_all_1-(Fiber(2)VOA ATT2 +Fiber(3)VOA ATT3 +Fiber(4)VOA ATT4 )
  • the method further comprises feeding back a parameter acquisition response to the control and communication device.
  • the method further includes feeding back the collection success identifier to the control and communication device.
  • FIG. 3 is a flowchart of another embodiment of a method for measuring an optical fiber according to the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • Step 201 Acquire a modulation parameter sent by the control and communication device and the number N, N of the fiber link to be tested is a positive integer greater than or equal to 2;
  • the execution subject of this embodiment may be a modulation device.
  • This embodiment corresponds to the method embodiment shown in FIG. 2, and its implementation principle and technical effects are similar, and details are not described herein again.
  • Step 202 In at least N-1 optical fiber detection of the optical time domain reflectometer OTDR detecting device, each time the light that is about to enter a fiber link to be tested is attenuated and modulated according to the modulation parameter, and the light is modulated each time.
  • the corresponding fiber links to be tested are different.
  • Step 203 Feedback a modulation response to the control and communication device.
  • the light that is about to enter a fiber link to be tested is attenuated and modulated according to the modulation parameter
  • the specific implementation method may be: acquiring, according to the modulation parameter, the corresponding fiber link to be tested. a power attenuation value; adjusting, according to the power attenuation value, attenuation of light that is about to enter the fiber link to be tested, and modulating.
  • the modulating means can attenuate the light by adjusting the attenuation value of the light that is about to enter a fiber link to be tested.
  • the method further includes: respectively adjusting attenuation of light entering the N fiber links to be tested to a minimum value, where the minimum value is a minimum attenuation value of the modulation device.
  • the modulating device minimizes the corresponding attenuation modulation on each fiber link to be tested, so that each fiber link to be tested is in a minimum insertion loss state, thereby reducing the impact on system performance.
  • FIG. 4 is a flowchart of still another embodiment of a method for measuring an optical fiber according to the present invention. As shown in FIG. 4, the method in this embodiment may include:
  • Step 301 Send a sounding control parameter to the optical time domain reflectometer OTDR detecting device, where the sounding control parameter includes the number N of the fiber link to be tested, the fiber detecting distance, the duration and the optical pulse width, and the modulation parameter, where N is greater than or equal to a positive integer of 2, so that the OTDR detecting device performs N times of fiber detection according to the fiber detection distance, duration and optical pulse width, acquires and acquires N total fiber curves, and according to the N total fiber curves and the modulation
  • the parameter is calculated by using a preset curve algorithm to obtain a fiber curve of each of the N fiber links to be tested;
  • the executive body of this embodiment may be a control and communication device.
  • This embodiment corresponds to the method embodiment shown in FIG. 2, and its implementation principle and technical effects are similar, and details are not described herein again.
  • Step 302 Send, to the modulation device, the modulation parameter and the number N of the optical fiber links to be tested, so that the modulation device is at least N-1 optical fiber detection of the OTDR detection device, The modulation parameter attenuates the light that is about to enter a fiber link to be tested.
  • the optical fiber curve of a single fiber link to be tested is inversely calculated by attenuating and modulating the light of the fiber link to be tested one by one, and calculating the fiber curve of the fiber link to be tested according to the total fiber curve obtained by the N fiber detection. Cost to achieve measurement of a single fiber link in a multi-path fiber link, and Reduce the impact on system performance.
  • FIG. 5 is a schematic structural diagram of an embodiment of an OTDR detecting apparatus according to the present invention.
  • the apparatus of this embodiment may include: an obtaining module 11, a detecting module 12, and a calculating module 13, wherein the obtaining module 11 is configured to Obtaining a detection control parameter sent by the control and communication device, where the detection control parameter includes the number N of the fiber link to be tested, the fiber detection distance, the duration and the optical pulse width, and the modulation parameter, where N is a positive integer greater than or equal to 2;
  • the module 12 is configured to perform N times of fiber detection according to the fiber detection distance, the duration, and the optical pulse width, and acquire and acquire N total fiber curves, where the total fiber curve includes light reflected in the N pieces of the fiber link to be tested.
  • a fiber curve corresponding to the light formed by the convergence wherein, in at least N-1 fiber detection, each time the fiber detection is performed, the light that is about to enter a fiber link to be tested is first attenuated by the modulation device according to the modulation parameter. Modulating, and each time the modulated light corresponds to a different fiber link to be tested, the attenuation modulation is used to modulate the light in an attenuated manner; 13. The method is used to calculate, according to the N total fiber curves and the modulation parameters, a fiber curve of each of the N optical fiber links to be tested, and feed the fiber curve to the control and Communication device.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the detection module 12 is configured to perform the first fiber detection according to the fiber detection distance, the duration, and the optical pulse width, and acquire and acquire the first total fiber curve;
  • the modulation parameter attenuates and modulates the light that is to enter one of the fiber links to be tested, performs the second fiber detection according to the fiber detection distance, the duration and the optical pulse width, and acquires the second total fiber curve.
  • the detection module 12 is configured to perform attenuation modulation on the light that is to enter one of the optical fiber links to be tested according to the modulation parameter by the modulation device, and detect the distance and duration according to the optical fiber.
  • the first fiber detection with the optical pulse width acquiring and acquiring the first total fiber curve; and modulating, by the modulating device, the light that is about to enter another fiber link to be tested according to the modulation parameter, and detecting according to the fiber
  • the second fiber detection is performed by distance, duration and optical pulse width, and the second total fiber curve is acquired.
  • FIG. 6 is a schematic structural diagram of another embodiment of the OTDR detecting apparatus of the present invention.
  • the apparatus of the present embodiment may further include: a sending module 14 on the basis of the apparatus structure shown in FIG.
  • the sending module 14 is configured to feed back a parameter acquisition response to the control and communication device; It is also used to feed back the acquisition success indicator to the control and communication device.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of an embodiment of a modulation apparatus according to the present invention.
  • the apparatus of this embodiment may include: an acquisition module 21, an attenuation modulation module 22, and a transmission module 23, wherein the acquisition module 21 is configured to Acquiring the modulation parameter sent by the control and communication device and the number N, N of the fiber link to be tested is a positive integer greater than or equal to 2; the attenuation modulation module 22 is configured to be at least N- of the optical time domain reflectometer OTDR detecting device In the optical fiber detection, the light that is to enter a fiber link to be tested is attenuated and modulated according to the modulation parameter, and the optical fiber link to be tested is different for each modulated light; the sending module 23 is used for A modulation response is fed back to the control and communication device.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the attenuation modulation module 22 is specifically configured to acquire, according to the modulation parameter, a power attenuation value corresponding to the link of the fiber to be tested; and adjust the power attenuation value to enter the fiber link to be tested. The attenuation of the light is modulated.
  • the attenuation modulation module 22 is further configured to adjust the attenuation of the light that is about to enter the N fiber links to be tested to a minimum value, where the minimum value is the minimum attenuation value of the modulation device.
  • FIG. 8 is a schematic structural diagram of an embodiment of a control and communication apparatus according to the present invention.
  • the apparatus of this embodiment may include: a sending module 31, configured to detect an optical time domain reflectometer OTDR.
  • the device sends a probe control parameter, where the probe control parameter includes the number N of the fiber link to be tested, the fiber detection distance, the duration and the optical pulse width, and the modulation parameter, where N is a positive integer greater than or equal to 2, so that the OTDR is detected.
  • the device performs N times of fiber detection according to the fiber detection distance, duration and optical pulse width, acquires and acquires N total fiber curves, and calculates and obtains N pieces according to the N total fiber curves and the modulation parameters by using a preset curve algorithm.
  • Determining a respective fiber curve of the fiber link to be tested Determining a respective fiber curve of the fiber link to be tested; transmitting the modulation parameter and the number N of the fiber link to be tested to the modulation device, so that the modulation device is at least N-1 times in the OTDR detecting device
  • light that is about to enter a fiber link to be tested is attenuated and modulated each time according to the modulation parameter.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural view of another embodiment of the optical fiber measuring system of the present invention, as shown in FIG.
  • the system of the present embodiment includes: an OTDR detecting device 41, a modulating device 42, and a control and communication device 43, wherein the OTDR detecting device 41 can adopt the structure of the device embodiment shown in FIG. 5 or FIG.
  • the technical solution of the method embodiment shown in FIG. 2 is similar to the technical effect, and is not described here again; the modulation device 42 can adopt the structure of the device embodiment shown in FIG. 7, and correspondingly, FIG. 3 can be executed.
  • the technical solution of the method embodiment is similar to the technical effect, and is not described herein again; the control and communication device 43 can adopt the structure of the device embodiment shown in FIG. 8 , and correspondingly, FIG. 4 can be executed.
  • the technical solution of the method embodiment is similar, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种光纤测量方法,包括:获取控制和通信装置发送的探测控制参数(101);根据光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同(102);根据N个总光纤曲线和调制参数采用预设曲线算法计算获取N条待测光纤链路各自的光纤曲线,并将光纤曲线反馈给控制和通信装置(103)。还提供了光纤测量装置和系统。

Description

光纤测量方法、装置和系统 技术领域
本发明实施例涉及光纤技术,尤其涉及一种光纤测量方法、装置和系统。
背景技术
光学时域反射仪(Optical Time Domain Reflectometer,简称:OTDR)是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。当光脉冲在光纤内传输时,会由于光纤本身的性质,例如连接器、接合点、弯曲或其它类似的结构而产生散射或反射,其中一部分散射或反射的光会返回到OTDR中,由OTDR探测装置来测量,它们就作为光纤内不同位置上的时间或光纤曲线。
光线路保护单板(Optical Line Protection,简称:OLP)是用于构建基于光纤链路进行自动切换保护的子系统,该器件通常具有6个光端口,OLP可以对光脉冲进行分光,而分光后的光脉冲可以分别通过两路光纤链路进行传输,OTDR探测装置接收两路光纤链路分别反射回来的光。
但是,上述两路反射光都被OTDR探测装置接收,彼此之间相互干扰,导致OTDR探测装置测量出的光纤曲线是混合光反映出的曲线,不能代表任何一路光纤链路的特征。如果通过分别在两路光纤链路上设置OTDR探测装置和配套装置,以对两条光纤链路分别进行测量从而得到单路光纤曲线,又会影响系统的性能,使成本增加,还不利于多条光纤链路的测量。
发明内容
本发明实施例提供一种光纤测量方法、装置和系统,以实现多路光纤链路中单条光纤链路的测量,并尽可能减少对系统性能的影响。
第一方面,本发明实施例提供一种光纤测量方法,包括:
获取控制和通信装置发送的探测控制参数,所述探测控制参数包括待测 光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数;
根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,所述总光纤曲线包括光分别在N条所述待测光纤链路中反射后汇聚形成的光对应的光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同,所述衰减调制用于以加衰减的方式对所述光进行调制;
根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,并将所述光纤曲线反馈给所述控制和通信装置。
结合第一方面,在第一方面的第一种可能的实现方式中,N=2;
所述根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,包括:
根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;
通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
结合第一方面,在第一方面的第二种可能的实现方式中,N=2;
所述根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,包括:
通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;
通过所述调制装置根据所述调制参数对即将进入其中另一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
结合第一方面、第一方面的第一种至第二种中任一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述获取控制和通信装置发送的探 测控制参数之后,还包括:
向所述控制和通信装置反馈参数获取响应。
结合第一方面、第一方面的第一种至第三种中任一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线之后,还包括:
向所述控制和通信装置反馈采集成功标识。
第二方面,本发明实施例提供一种光纤测量方法,包括:
获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数;
在光学时域反射仪OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同;
向所述控制和通信装置反馈调制响应。
结合第二方面,在第二方面的第一种可能的实现方式中,所述根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,包括:
根据所述调制参数获取所述一条待测光纤链路对应的功率衰减值;
根据所述功率衰减值调节即将进入所述一条待测光纤链路的光的衰减,并进行调制。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数之后,还包括:
将即将进入N条待测光纤链路的光的衰减分别调整至最小值,所述最小值为调制装置的最小衰减值。
第三方面,本发明实施例提供一种光纤测量方法,包括:
向光学时域反射仪OTDR探测装置发送探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数,以使所述OTDR探测装置根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,并根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线;
向调制装置发送所述调制参数和所述待测光纤链路的个数N,以使所述调制装置在所述OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制。
第四方面,本发明实施例提供一种光学时域反射仪OTDR探测装置,包括:
获取模块,用于获取控制和通信装置发送的探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数;
探测模块,用于根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,所述总光纤曲线包括光分别在N条所述待测光纤链路中反射后汇聚形成的光对应的光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同,所述衰减调制用于以加衰减的方式对所述光进行调制;
计算模块,用于根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,并将所述光纤曲线反馈给所述控制和通信装置。
结合第四方面,在第四方面的第一种可能的实现方式中,N=2;
所述探测模块,具体用于根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
结合第四方面,在第四方面的第二种可能的实现方式中,N=2;
所述探测模块,具体用于通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中另一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
结合第四方面、第四方面的第一种至第二种中任一种可能的实现方式, 在第四方面的第三种可能的实现方式中,还包括:
发送模块,用于向所述控制和通信装置反馈参数获取响应。
结合第四方面、第四方面的第一种至第三种中任一种可能的实现方式,在第四方面的第四种可能的实现方式中,所述发送模块,还用于向所述控制和通信装置反馈采集成功标识。
第五方面,本发明实施例提供一种调制装置,包括:
获取模块,用于获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数;
衰减调制模块,用于在光学时域反射仪OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同;
发送模块,用于向所述控制和通信装置反馈调制响应。
结合第五方面,在第五方面的第一种可能的实现方式中,所述衰减调制模块,具体用于根据所述调制参数获取所述一条待测光纤链路对应的功率衰减值;根据所述功率衰减值调节即将进入所述一条待测光纤链路的光的衰减,并进行调制。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述衰减调制模块,还用于将即将进入N条待测光纤链路的光的衰减分别调整至最小值,所述最小值为调制装置的最小衰减值。
第六方面,本发明实施例提供一种控制和通信装置,包括:
发送模块,用于向光学时域反射仪OTDR探测装置发送探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数,以使所述OTDR探测装置根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,并根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线;向调制装置发送所述调制参数和所述待测光纤链路的个数N,以使所述调制装置在所述OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制。
第七方面,本发明实施例提供一种光纤测量系统,包括:光学时域反射 仪OTDR探测装置、调制装置以及控制和通信装置,其中,所述OTDR探测装置采用第四方面、第四方面的第一种至第四种中任一种可能的实现方式所述的装置;所述调制装置采用第五方面、第五方面的第一种至第二种中任一种可能的实现方式所述的装置;所述控制和通信装置采用第六方面可能的实现方式所述的装置。
本发明实施例光纤测量方法、装置和系统,通过对即将进入N条待测光纤链路的光逐条进行衰减调制,并根据N次光纤探测获取到的总光纤曲线反算出单条待测光纤链路的光纤曲线,以相对较低的成本实现多路光纤链路中单条光纤链路的测量,并尽可能减少对系统性能的影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明光纤测量系统的一个实施例的结构示意图;
图2为本发明光纤测量方法的一个实施例的流程图;
图3为本发明光纤测量方法的另一个实施例的流程图;
图4为本发明光纤测量方法的又一个实施例的流程图;
图5为本发明OTDR探测装置的一个实施例的结构示意图;
图6为本发明OTDR探测装置的另一个实施例的结构示意图;
图7为本发明调制装置的一个实施例的结构示意图;
图8为本发明控制和通信装置的一个实施例的结构示意图;
图9为本发明光纤测量系统的另一个实施例的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例,都属于本发明保护的范围。
图1为本发明光纤测量系统的一个实施例的结构示意图,如图1所示,本实施例的系统包括:OTDR探测装置、控制和通信装置、调制装置、OLP以及光放大(Optical Amplifier,简称:OA)。OLP有6个光端口,其中传输通道(Tx)的待测光纤链路一分为二,接收通道(Rx)的待测光纤链路合二为一。控制和通信装置控制整个测量过程,可以接收用户的输入,将OTDR探测装置和调制装置的每个端口绑定,并把相关信息发给OTDR探测装置和调制装置;控制OTDR探测装置和调制装置按照顺序启动和停止一次光纤探测;显示OTDR探测装置的反算结果。调制装置可以采用当前成本最低的VOA调制单板,该装置有n个独立的光层接口,每个接口可以调制1条独立的待测光纤链路。左侧的OTDR探测装置测量Tx中反射后的光,以此为例,调制装置分别对两条待测光纤链路进行衰减调制,OTDR探测装置进行两次光纤探测,获取两个总光纤曲线,再按照预设曲线算法计算获取单条待测光纤链路的光纤曲线。
图2为本发明光纤测量方法的一个实施例的流程图,如图2所示,本实施例的方法可以包括:
步骤101、获取控制和通信装置发送的探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数;
本实施例的执行主体可以是OTDR探测装置。OTDR探测装置根据探测控制参数可以获知在待测光纤链路中要测试的距离、探测时长以及进入待测光纤链路的光的脉宽等信息,根据这些信息以便采集相应的反射光。本发明中待测光纤链路可以有两条或两条以上,通过本实施例的方法可以获取到这些待测光纤链路各自的光纤曲线。
步骤102、根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,所述总光纤曲线包括光分别在N条所述待测光纤链路中反射后汇聚形成的光对应的光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同,所述衰减调制用于以加衰减的方式对所述光进行调制;
光被分光后分别进入N条待测光纤链路,在N条待测光纤链路中反射后汇聚形成的光被OTDR探测装置接收,由于OTDR探测装置只能采集获取到总光纤曲线,为了根据总光纤曲线获取到N条待测光纤链路各自的光纤曲线,可以进行N次光纤探测,一共获取N个总光纤曲线,而在获取这N个总光纤曲线的N次光纤探测中,每次通过调制装置只对即将进入其中一条待测光纤链路的光进行衰减调制,而且每一次调制对应的光纤链路也是不相同的。为了减少对系统性能的影响,也可以只在N-1次的光纤探测中通过调制装置对即将进入其中一条待测光纤链路的光进行衰减调制,OTDR探测装置总共采集获取到N个总光纤曲线,其中第1条是调制装置将N条待测光纤链路上的衰减调至最小的总光纤曲线Fiber_all_1,其他N-1条总光纤曲线是对其中一条待测光纤链路的光增加了衰减,例如每次衰减增大0.5dB,而剩余待测光纤链路的光仍然保持最小衰减的情况下的总光纤曲线。这样OTDR探测装置在N次的光纤探测中获取到的N个总光纤曲线是基于不同待测光纤链路采用不同衰减调制而产生的。
步骤103、根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,并将所述光纤曲线反馈给所述控制和通信装置。
OTDR探测装置可以通过N条待测光纤链路彼此之间的衰减情况、以及与总光纤曲线的关联关系,采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,预设曲线算法结合了N个总光纤曲线和调制参数的影响,反算出单条待测光纤链路的光纤曲线。
本实施例,通过对即将进入N条待测光纤链路的光逐条进行衰减调制,并根据N次光纤探测获取到的总光纤曲线反算出单条待测光纤链路的光纤曲线,以相对较低的成本实现多路光纤链路中单条光纤链路的测量,并尽可能减少对系统性能的影响。
作为示例,以N=2为例,对上述步骤103中根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线的具体实现方法进行说明。对两条待测光纤链路进行测量,第一次光纤探测中,调制装置对即将进入第一待测光纤链路的光的衰减为ATT1,对即将进入第二待测光纤链路的光的衰减为ATT2,ATT1和ATT2可以是最小衰减 值,衰减的单位为dB,OTDR探测装置根据光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线为Fiber_all_1,总光纤曲线的单位为毫瓦(mW);第二次光纤探测中,调制装置对即将进入第一待测光纤链路的光的衰减为ATT3,对即将进入第二待测光纤链路的光的衰减为ATT4,假设ATT1=ATT3,ATT4=ATT2+x,即调制装置只对第二待测光纤链路的光增加了衰减,OTDR探测装置根据光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线为Fiber_all_2。可以知道:
Fiber_all_1=Fiber(1)VOAATT1+Fiber(2)VOAATT2
Fiber_all_2=Fiber(1)VOAATT3+Fiber(2)VOAATT4
其中,Fiber(1)VOAATT1表示第一待测光纤链路经ATT1衰减后的光纤曲线,Fiber(2)VOAATT2表示第二待测光纤链路经ATT2衰减后的光纤曲线,其它类似此处不再赘述。
由于调制装置对第二待测光纤链路的光增加了衰减x,而光进入第二待测光纤链路经反射回到OTDR探测装置相当于是经过了两次x衰减,因此Fiber(2)VOAATT4=Fiber(2)VOAATT2(mW)-2x(dB),则
Fiber_all_2=Fiber(1)VOAATT1(mW)+Fiber(2)VOAATT2(mW)-2x(dB)
Fiber_all_1-Fiber_all_2=Fiber(2)VOAATT2-Fiber(2)VOA(ATT2+X)     (1)
=Fiber(2)VOAATT2(1-10-2x/10)
由此可以反算出来第一待测光纤链路和第二待测光纤链路的光纤曲线分别为:
Figure PCTCN2015079728-appb-000001
Fiber(1)VOAATT1=Fiber_all_1-Fiber(2)VOAATT2      (3)
可选的,在OTDR探测装置进行两次光纤探测时,OTDR探测装置可以通过调制装置如上述示例两次都对其中一条待测光纤链路进行衰减调制,即通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中另一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。还可以通过调制装置只在一次光纤探测中对其中一条待测光纤链路进行衰减调制,即根据所 述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
可选的,在N=4时,只对2、3、4待测光纤链路增加调制装置,Fiber_all_1是4条待测光纤链路的光都是最小衰减时探测到的总光纤曲线,Fiber_all_2为2增加衰减,1、3、4的衰减不变时探测到的总光纤曲线,Fiber_all_3为3增加衰减,1、2、4的衰减不变时探测到的总光纤曲线,Fiber_all_4为4增加衰减,1、2、3的衰减不变时探测到的总光纤曲线。参照N=2的公式(1),可以得到如下结果:
从Fiber_all_1-Fiber_all_2计算出Fiber(2)VOAATT2
从Fiber_all_1-Fiber_all_3计算出Fiber(3)VOAATT3
从Fiber_all_1-Fiber_all_4计算出Fiber(4)VOAATT4,最后计算:
Fiber(1)VOAATT1=Fiber_all_1-(Fiber(2)VOAATT2+Fiber(3)VOAATT3+Fiber(4)VOAATT4)
以此类推,可以计算出N为任意值时单条待测光纤链路上的光纤曲线。
进一步的,上述步骤101之后,所述方法还包括向所述控制和通信装置反馈参数获取响应。
进一步的,上述步骤102之后,所述方法还包括向所述控制和通信装置反馈采集成功标识。
图3为本发明光纤测量方法的另一个实施例的流程图,如图3所示,本实施例的方法可以包括:
步骤201、获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数;
本实施例的执行主体可以是调制装置。本实施例与图2所示方法实施例相对应,其实现原理和技术效果类似,此处不再赘述。
步骤202、在光学时域反射仪OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同;
步骤203、向所述控制和通信装置反馈调制响应。
本实施例,通过对即将进入N条待测光纤链路的光逐条进行衰减调制, 并根据N次光纤探测获取到的总光纤曲线反算出单条待测光纤链路的光纤曲线,以相对较低的成本实现多路光纤链路中单条光纤链路的测量,并尽可能减少对系统性能的影响。
进一步的,上述步骤201中根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,具体的实现方法可以是:根据所述调制参数获取所述一条待测光纤链路对应的功率衰减值;根据所述功率衰减值调节即将进入所述一条待测光纤链路的光的衰减,并进行调制。
调制装置可以通过调整即将进入一条待测光纤链路的光的衰减值以对所述光进行衰减调制。
进一步的,上述步骤201之后,所述方法还包括:将即将进入N条待测光纤链路的光的衰减分别调整至最小值,所述最小值为调制装置的最小衰减值。
初始状态下,调制装置将各条待测光纤链路上对应的衰减调制最小,以使各条待测光纤链路处于最小插损状态,减少对系统性能的影响。
图4为本发明光纤测量方法的又一个实施例的流程图,如图4所示,本实施例的方法可以包括:
步骤301、向光学时域反射仪OTDR探测装置发送探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数,以使所述OTDR探测装置根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,并根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线;
本实施例的执行主体可以是控制和通信装置。本实施例与图2所示方法实施例相对应,其实现原理和技术效果类似,此处不再赘述。
步骤302、向调制装置发送所述调制参数和所述待测光纤链路的个数N,以使所述调制装置在所述OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制。
本实施例,通过对即将进入N条待测光纤链路的光逐条进行衰减调制,并根据N次光纤探测获取到的总光纤曲线反算出单条待测光纤链路的光纤曲线,以相对较低的成本实现多路光纤链路中单条光纤链路的测量,并尽可能 减少对系统性能的影响。
图5为本发明OTDR探测装置的一个实施例的结构示意图,如图5所示,本实施例的装置可以包括:获取模块11、探测模块12以及计算模块13,其中,获取模块11,用于获取控制和通信装置发送的探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数;探测模块12,用于根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,所述总光纤曲线包括光分别在N条所述待测光纤链路中反射后汇聚形成的光对应的光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同,所述衰减调制用于以加衰减的方式对所述光进行调制;计算模块13,用于根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,并将所述光纤曲线反馈给所述控制和通信装置。
本实施例的装置,可以用于执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
进一步的,N=2;所述探测模块12,具体用于根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
进一步的,N=2;所述探测模块12,具体用于通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中另一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
图6为本发明OTDR探测装置的另一个实施例的结构示意图,如图6所示,本实施例的装置在图5所示装置结构的基础上,进一步地,还可以包括:发送模块14,该发送模块14用于向所述控制和通信装置反馈参数获取响应; 还用于向所述控制和通信装置反馈采集成功标识。
本实施例的装置,可以用于执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本发明调制装置的一个实施例的结构示意图,如图7所示,本实施例的装置可以包括:获取模块21、衰减调制模块22以及发送模块23,其中,获取模块21,用于获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数;衰减调制模块22,用于在光学时域反射仪OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同;发送模块23,用于向所述控制和通信装置反馈调制响应。
本实施例的装置,可以用于执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
进一步的,所述衰减调制模块22,具体用于根据所述调制参数获取所述一条待测光纤链路对应的功率衰减值;根据所述功率衰减值调节即将进入所述一条待测光纤链路的光的衰减,并进行调制。
进一步的,所述衰减调制模块22,还用于将即将进入N条待测光纤链路的光的衰减分别调整至最小值,所述最小值为调制装置的最小衰减值。
图8为本发明控制和通信装置的一个实施例的结构示意图,如图8所示,本实施例的装置可以包括:发送模块31,该发送模块31,用于向光学时域反射仪OTDR探测装置发送探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数,以使所述OTDR探测装置根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,并根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线;向调制装置发送所述调制参数和所述待测光纤链路的个数N,以使所述调制装置在所述OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制。
本实施例的装置,可以用于执行图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图9为本发明光纤测量系统的另一个实施例的结构示意图,如图9所示, 本实施例的系统包括:OTDR探测装置41、调制装置42以及控制和通信装置43,其中,OTDR探测装置41可以采用图5或图6所示装置实施例的结构,其对应地,可以执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述;所述调制装置42可以采用图7所示装置实施例的结构,其对应地,可以执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述;所述控制和通信装置43可以采用图8所示装置实施例的结构,其对应地,可以执行图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (19)

  1. 一种光纤测量方法,其特征在于,包括:
    获取控制和通信装置发送的探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数;
    根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,所述总光纤曲线包括光分别在N条所述待测光纤链路中反射后汇聚形成的光对应的光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同,所述衰减调制用于以加衰减的方式对所述光进行调制;
    根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,并将所述光纤曲线反馈给所述控制和通信装置。
  2. 根据权利要求1所述的方法,其特征在于,N=2;
    所述根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,包括:
    根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;
    通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
  3. 根据权利要求1所述的方法,其特征在于,N=2;
    所述根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,包括:
    通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;
    通过所述调制装置根据所述调制参数对即将进入其中另一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光 纤探测,采集获取第二总光纤曲线。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,所述获取控制和通信装置发送的探测控制参数之后,还包括:
    向所述控制和通信装置反馈参数获取响应。
  5. 根据权利要求1~4中任一项所述的方法,其特征在于,所述根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线之后,还包括:
    向所述控制和通信装置反馈采集成功标识。
  6. 一种光纤测量方法,其特征在于,包括:
    获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数;
    在光学时域反射仪OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同;
    向所述控制和通信装置反馈调制响应。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,包括:
    根据所述调制参数获取所述一条待测光纤链路对应的功率衰减值;
    根据所述功率衰减值调节即将进入所述一条待测光纤链路的光的衰减,并进行调制。
  8. 根据权利要求6或7所述的方法,其特征在于,所述获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数之后,还包括:
    将即将进入N条待测光纤链路的光的衰减分别调整至最小值,所述最小值为调制装置的最小衰减值。
  9. 一种光纤测量方法,其特征在于,包括:
    向光学时域反射仪OTDR探测装置发送探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数,以使所述OTDR探测装置根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,并根据N 个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线;
    向调制装置发送所述调制参数和所述待测光纤链路的个数N,以使所述调制装置在所述OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制。
  10. 一种光学时域反射仪OTDR探测装置,其特征在于,包括:
    获取模块,用于获取控制和通信装置发送的探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数;
    探测模块,用于根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,所述总光纤曲线包括光分别在N条所述待测光纤链路中反射后汇聚形成的光对应的光纤曲线,其中,在至少N-1次光纤探测中,每次进行光纤探测时先通过调制装置根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同,所述衰减调制用于以加衰减的方式对所述光进行调制;
    计算模块,用于根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线,并将所述光纤曲线反馈给所述控制和通信装置。
  11. 根据权利要求10所述的装置,其特征在于,N=2;
    所述探测模块,具体用于根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
  12. 根据权利要求10所述的装置,其特征在于,N=2;
    所述探测模块,具体用于通过所述调制装置根据所述调制参数对即将进入其中一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第一次光纤探测,采集获取第一总光纤曲线;通过所述调制装置根据所述调制参数对即将进入其中另一条待测光纤链路的光进行衰减调制,根据所述光纤探测距离、时长和光脉宽进行第二次光纤探测,采集获取第二总光纤曲线。
  13. 根据权利要求10~12中任一项所述的装置,其特征在于,还包括:
    发送模块,用于向所述控制和通信装置反馈参数获取响应。
  14. 根据权利要求10~13中任一项所述的装置,其特征在于,所述发送模块,还用于向所述控制和通信装置反馈采集成功标识。
  15. 一种调制装置,其特征在于,包括:
    获取模块,用于获取控制和通信装置发送的调制参数和待测光纤链路的个数N,N为大于或等于2的正整数;
    衰减调制模块,用于在光学时域反射仪OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制,且每次调制的光对应的待测光纤链路不相同;
    发送模块,用于向所述控制和通信装置反馈调制响应。
  16. 根据权利要求15所述的装置,其特征在于,所述衰减调制模块,具体用于根据所述调制参数获取所述一条待测光纤链路对应的功率衰减值;根据所述功率衰减值调节即将进入所述一条待测光纤链路的光的衰减,并进行调制。
  17. 根据权利要求15或16所述的装置,其特征在于,所述衰减调制模块,还用于将即将进入N条待测光纤链路的光的衰减分别调整至最小值,所述最小值为调制装置的最小衰减值。
  18. 一种控制和通信装置,其特征在于,包括:
    发送模块,用于向光学时域反射仪OTDR探测装置发送探测控制参数,所述探测控制参数包括待测光纤链路的个数N,光纤探测距离、时长和光脉宽以及调制参数,N为大于或等于2的正整数,以使所述OTDR探测装置根据所述光纤探测距离、时长和光脉宽进行N次光纤探测,采集获取N个总光纤曲线,并根据N个所述总光纤曲线和所述调制参数采用预设曲线算法计算获取N条所述待测光纤链路各自的光纤曲线;向调制装置发送所述调制参数和所述待测光纤链路的个数N,以使所述调制装置在所述OTDR探测装置的至少N-1次光纤探测中,每次根据所述调制参数对即将进入一条待测光纤链路的光进行衰减调制。
  19. 一种光纤测量系统,其特征在于,包括:光学时域反射仪OTDR探测装置、调制装置以及控制和通信装置,其中,所述OTDR探测装置采用权 利要求10~14中任一项所述的装置;所述调制装置采用权利要求15~17中任一项所述的装置;所述控制和通信装置采用权利要求18中任一项所述的装置。
PCT/CN2015/079728 2015-05-25 2015-05-25 光纤测量方法、装置和系统 WO2016187787A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15892868.9A EP3252427B1 (en) 2015-05-25 2015-05-25 Optical fiber measuring method, device and system
PCT/CN2015/079728 WO2016187787A1 (zh) 2015-05-25 2015-05-25 光纤测量方法、装置和系统
CN201580028688.7A CN106415195B (zh) 2015-05-25 2015-05-25 光纤测量方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079728 WO2016187787A1 (zh) 2015-05-25 2015-05-25 光纤测量方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2016187787A1 true WO2016187787A1 (zh) 2016-12-01

Family

ID=57392270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079728 WO2016187787A1 (zh) 2015-05-25 2015-05-25 光纤测量方法、装置和系统

Country Status (3)

Country Link
EP (1) EP3252427B1 (zh)
CN (1) CN106415195B (zh)
WO (1) WO2016187787A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432763A (zh) * 2020-12-09 2021-03-02 南京华信藤仓光通信有限公司 一种基于光纤长度和衰减检测的蝶缆合格的判别方法
US11650127B2 (en) * 2017-04-27 2023-05-16 Viavi Solutions France SAS Optical time-domain reflectometer device including combined trace display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107957582B (zh) * 2017-12-08 2021-07-06 南京理工大学 一种基于恒阈值鉴别法的测距装置及测距方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621517A (en) * 1995-05-02 1997-04-15 Teradyne, Inc. Method and apparatus for testing fiber optic telephone lines
EP0959337A2 (en) * 1998-05-19 1999-11-24 Ando Electric Co., Ltd. Method, apparatus and computer program product for classification of measured data from multi-core optical fiber
CN103196473A (zh) * 2013-03-26 2013-07-10 天津大学 多通道高精度光纤光栅传感解调装置及其解调方法
US20140077971A1 (en) * 2012-09-19 2014-03-20 Ciena Corporation Raman amplifier system and method with integrated optical time domain reflectometer
CN104422582A (zh) * 2013-08-28 2015-03-18 弗兰克公司 使用otdr仪器的光纤测试

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT2577890T (lt) * 2010-05-27 2019-05-27 Exfo Inc. Daugybinio rinkimo otdr būdas ir įtaisas
US9423316B2 (en) * 2012-11-28 2016-08-23 Exfo Inc. Optical reflectometer with loss and/or reflectance profile view
US9134197B2 (en) * 2013-01-15 2015-09-15 Exfo Inc. Bi-directional multi-pulsewidth optical time-domain reflectometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621517A (en) * 1995-05-02 1997-04-15 Teradyne, Inc. Method and apparatus for testing fiber optic telephone lines
EP0959337A2 (en) * 1998-05-19 1999-11-24 Ando Electric Co., Ltd. Method, apparatus and computer program product for classification of measured data from multi-core optical fiber
US20140077971A1 (en) * 2012-09-19 2014-03-20 Ciena Corporation Raman amplifier system and method with integrated optical time domain reflectometer
CN103196473A (zh) * 2013-03-26 2013-07-10 天津大学 多通道高精度光纤光栅传感解调装置及其解调方法
CN104422582A (zh) * 2013-08-28 2015-03-18 弗兰克公司 使用otdr仪器的光纤测试

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252427A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11650127B2 (en) * 2017-04-27 2023-05-16 Viavi Solutions France SAS Optical time-domain reflectometer device including combined trace display
CN112432763A (zh) * 2020-12-09 2021-03-02 南京华信藤仓光通信有限公司 一种基于光纤长度和衰减检测的蝶缆合格的判别方法
CN112432763B (zh) * 2020-12-09 2023-12-08 南京华信藤仓光通信有限公司 一种基于光纤长度和衰减检测的蝶缆合格的判别方法

Also Published As

Publication number Publication date
EP3252427A1 (en) 2017-12-06
EP3252427B1 (en) 2019-03-27
CN106415195A (zh) 2017-02-15
EP3252427A4 (en) 2018-04-04
CN106415195B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
US11408801B2 (en) Optical time-domain reflectometer device including multiple and bi-directional optical testing for fiber analysis
AU2014218403B2 (en) Optical fiber testing using OTDR instrument
US9712232B2 (en) Apparatus and method for OTDR transmitter noise compensation
EP3018838B1 (en) Optical path processing method and apparatus
US7738787B2 (en) Optical transmission line monitoring device, optical transmission line monitoring method, and computer program
CN105530046B (zh) 实现光功率和分支衰减故障自动测试的方法和系统
CN104655591B (zh) 一种检测敲击位置的光缆普查装置及方法
WO2016187787A1 (zh) 光纤测量方法、装置和系统
WO2021203751A1 (zh) 一种长距离光纤检测方法及装置, 设备, 系统, 存储介质
WO2020168833A1 (zh) 光纤监测方法和设备
US10135524B2 (en) Method and apparatus for compensating for signal error at transmit end of optical time domain reflectometer
CN111162834A (zh) 光时域反射仪测试方法及光时域反射仪
US11105710B2 (en) Single OTDR measurement for a plurality of fibers
CN113532808A (zh) 一种基于振动敏感型光纤传感技术的多通道监测方法及系统
CN110945800B (zh) 一种光性能监测装置及方法
CN113834631A (zh) 一种光纤测量方法、系统及装置
CN215010253U (zh) 一种光回损容忍度测试装置
EP3617687B1 (en) Optical time-domain reflectometer device including multiple and bi-directional optical testing for fiber analysis
CN105187120A (zh) 一种使用一个监测波长实现超长距离光缆监测的装置及方法
Ahmed Intrusion detection in optical fiber link: A novel technique
JP2016057081A (ja) Otdr機器を用いた光ファイバのテスト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892868

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015892868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE