WO2016180107A1 - 发送超低时延传输信息的方法、装置及系统 - Google Patents

发送超低时延传输信息的方法、装置及系统 Download PDF

Info

Publication number
WO2016180107A1
WO2016180107A1 PCT/CN2016/078584 CN2016078584W WO2016180107A1 WO 2016180107 A1 WO2016180107 A1 WO 2016180107A1 CN 2016078584 W CN2016078584 W CN 2016078584W WO 2016180107 A1 WO2016180107 A1 WO 2016180107A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
information
tti
terminal
enodeb
Prior art date
Application number
PCT/CN2016/078584
Other languages
English (en)
French (fr)
Inventor
王绍江
戴谦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016180107A1 publication Critical patent/WO2016180107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • This application relates to, but is not limited to, the field of wireless communications.
  • the transmission delay of the service has always been an important service indicator of the wireless network operator, which directly affects the service experience of the terminal user.
  • the Internet of Things such as remote control, car networking, virtual reality, and related services, imposes further stringent requirements on service transmission delays in mobile networks. Therefore, the low latency transmission of services has become an important research topic in the fifth generation mobile communication technology (5G, 5th Generation).
  • the short transmission interval access technology reduces the processing delay and backhaul delay by reducing the Transmission Time Interval (TTI) of the Long Term Evolution (LTE) system to support the ultra-low performance of certain services. Delay demand.
  • TTI Transmission Time Interval
  • OFDM Orthogonal Frequency Division Multiplexing
  • Another approach is to reduce the TTI length by reducing the number of OFDM symbols in a single TTI as discussed by the 3rd Generation Partnership Project (3GPP); the benefit of this approach is that it can be compared to existing LTE.
  • 3GPP 3rd Generation Partnership Project
  • the problem that the embodiment of the present invention is directed to is that, in the LTE system, when a terminal (UE) performs an inter-Evolved Node B (evolved Node B) process, Since the handover target eNodeB cannot know the TTI information of the UE in time, the UE cannot be allocated resources as soon as possible.
  • a terminal UE
  • an inter-Evolved Node B evolved Node B
  • the method, device and system for transmitting ultra-low latency transmission information provided by the present invention enable reallocation of resources for the UE as soon as possible in the process of the UE performing the cross-eNodeB handover.
  • a method for transmitting information with ultra-low latency including:
  • the ultra low latency transmission information of the terminal is transmitted through the handover process signaling.
  • the handover process signaling is signaling in the handover process of the terminal from the handover source eNodeB to the handover target eNodeB.
  • the handover process signaling includes at least one of a handover request message, a sequence number state transition message, and a handover request acknowledgement message.
  • the handover request message includes:
  • the handover request acknowledgement message includes:
  • the handover target eNodeB sends a handover request response message to the MME through the target eNodeB in the S1 interface.
  • the handover request acknowledgement message carries the acknowledgement information of the ultra-low latency transmission fed back by the handover target eNodeB.
  • the acknowledgement information of the ultra-low latency transmission includes:
  • TTI Information A the transmission time interval TTI information that the handover target eNodeB confirms to the handover source eNodeB to allow the terminal to use;
  • the handover source eNodeB determines, according to the TTI information that the handover target eNodeB allows the terminal to use, whether the terminal is to the handover target.
  • the eNodeB initiates a handover process.
  • the MME sends a handover command to the handover source eNodeB through the S1 interface, where the handover command carries TTI information, and is used for notification.
  • the handover source eNodeB allows TTI information used by the terminal.
  • the handover source eNodeB sends TTI information to the terminal, and is used to notify the TTI information that the terminal is allowed to use.
  • the terminal when the terminal performs the cross-eNodeB handover through the X2 interface, the TTI information sent by the handover source eNodeB to the terminal is sent by using a radio resource control RRC connection reconfiguration message;
  • the terminal When the terminal performs handover across the eNodeB through the S1 interface, the TTI information sent by the handover source eNodeB to the terminal is sent by using a handover command.
  • the terminal performs uplink and downlink transmission according to the TTI information.
  • the ultra-low latency transmission information includes at least one of ultra low latency service information, ultra low latency transmission support capability information, and ultra low latency transmission air interface configuration information of the handover terminal.
  • the ultra low latency service information includes an ultra low latency service type currently running by the terminal.
  • the ultra-low latency transmission support capability information includes type information of a TTI length supported by the terminal.
  • the ultra-low-latency transmission air interface configuration information includes an air interface radio resource corresponding to the ultra-low latency service configured by the terminal, where the service access network element is currently located.
  • the air interface radio resource includes TTI information currently used by the terminal.
  • the TTI information includes indication information of a TTI length or a TTI length type.
  • a device for transmitting information with ultra-low latency comprising:
  • the first sending module is configured to: send the ultra low delay transmission information of the terminal by using the handover process signaling.
  • the handover process signaling is signaling in the handover process of the terminal from the handover source eNodeB to the handover target eNodeB.
  • the handover process signaling includes at least one of a handover request message, a sequence number state transition message, and a handover request acknowledgement message.
  • the handover request message includes:
  • the handover request acknowledgement message includes:
  • the handover target eNodeB sends a handover request response message to the MME through the target eNodeB in the S1 interface.
  • the handover request acknowledgement message carries the acknowledgement information of the ultra-low latency transmission fed back by the handover target eNodeB.
  • the acknowledgement information of the ultra-low latency transmission includes:
  • TTI Information A the transmission time interval TTI information that the handover target eNodeB confirms to the handover source eNodeB to allow the terminal to use;
  • the device further includes:
  • a determining module located in the handover source eNodeB, configured to: when the acknowledgment information of the ultra-low latency transmission includes the information A, the handover source eNodeB determines, according to the TTI information that the handover target eNodeB allows the terminal to use, Whether the terminal initiates a handover procedure to the handover target eNodeB.
  • the device further includes:
  • a second sending module located in the MME, is configured to: when the acknowledgment information of the ultra-low latency transmission includes the information B, the MME performs a handover command to the handover source eNodeB through the S1 interface, where the handover command carries There is TTI information, which is used to notify the handover source eNodeB of TTI information that the terminal is allowed to use.
  • the device further includes:
  • the third sending module is located at the switching source eNodeB, and is configured to: send TTI information to the terminal, and notify the terminal to allow TTI information to be used.
  • the TTI information sent by the third sending module to the terminal is sent by using a radio resource control RRC connection reconfiguration message;
  • the TTI information sent by the third sending module to the terminal is sent by using a handover command.
  • the ultra-low latency transmission information includes at least one of ultra low latency service information, ultra low latency transmission support capability information, and ultra low latency transmission air interface configuration information of the handover terminal.
  • the ultra low latency service information includes an ultra low latency service type currently running by the terminal.
  • the ultra-low latency transmission support capability information includes type information of a TTI length supported by the terminal.
  • the ultra-low-latency transmission air interface configuration information includes an air interface radio resource corresponding to the ultra-low latency service configured by the terminal, where the service access network element is currently located.
  • the air interface radio resource includes TTI information currently used by the terminal.
  • the TTI information includes indication information of a TTI length or a TTI length type.
  • a system for transmitting ultra low latency transmission information comprising the apparatus and terminal of any of the above, wherein:
  • the terminal is configured to perform uplink and downlink transmission according to the TTI information after receiving the ultra-low delay transmission information.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the ultra-low delay transmission information (including the expected TTI information) is sent to the handover target eNodeB, so that the handover target eNodeB is allocated for resource allocation.
  • the handover target cell may perform resource configuration according to the ultra-low delay transmission information (including the TTI information) in the handover request message, so that the UE can use the appropriate super in the process of switching to the target eNodeB.
  • the TTI below 1 ms required for low latency transmission reduces the delay in the handover process.
  • FIG. 1 is a flowchart of a method for transmitting ultra-low latency transmission information according to an embodiment of the present invention
  • FIG. 3 is a flowchart of indicating TTI information when an eNodeB is switched through an X2 port, and the target eNodeB does not modify the TTI according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of indicating TTI information when an eNodeB switches through an X2 port, and the target eNodeB modifies the TTI, and the UE complies with the TTI modification according to an embodiment of the present invention
  • FIG. 5 is a flowchart of indicating that TTI information is changed when an eNodeB is switched through an X2 interface, and the target eNodeB modifies the TTI, and the UE does not comply with the TTI modification according to an embodiment of the present invention
  • FIG. 6 is a flowchart of indicating a range of TTIs supported by a UE when an eNodeB is switched through an X2 port, and selecting a TTI by the target eNodeB, and the UE follows the TTI selected by the target eNodeB according to the embodiment;
  • FIG. 7 is a diagram of carrying TTI information in an eNodeB handover process through an S1 interface according to an embodiment of the present invention, and the target eNodeB does not modify the TTI.
  • FIG. 9 is a schematic diagram of an apparatus for transmitting ultra-low latency transmission information according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a system for transmitting ultra-low latency transmission information according to an embodiment of the present invention.
  • a method for transmitting ultra-low latency transmission information includes:
  • Step 10 The ultra low delay transmission information of the terminal is sent by the handover process signaling.
  • the handover process signaling is signaling in the handover process of the terminal from the handover source evolved base station eNodeB to the handover target eNodeB.
  • the handover procedure signaling includes at least one of a handover request message, a sequence number state transition message, and a handover request acknowledgement message.
  • the ultra-low latency transmission information includes at least one of ultra low latency service information, ultra low latency transmission support capability information, and ultra low latency transmission air interface configuration information of the handover terminal.
  • the ultra-low delay transmission information is sent to the handover target eNodeB, which facilitates handover of the target eNodeB for resource allocation.
  • the embodiment of the present invention includes:
  • Step 21 In the process of the inter-eNodeB handover of the LTE system, after determining that the handover needs to be performed, the source eNodeB carries the information of the ultra-low delay transmission in the handover request message sent to the target eNodeB.
  • the ultra-low latency transmission information includes at least one of ultra low latency service information of the handover terminal, ultra low delay transmission support capability information, and ultra low latency transmission air interface configuration information.
  • the ultra-low-latency service information includes the TTI length type that the handover terminal currently runs, and the ultra-low delay transmission support capability information includes the TTI length type supported by the handover terminal, and the ultra-low delay transmission air interface configuration information includes the current location of the terminal.
  • the service access network element is an air interface radio resource corresponding to the ultra-low-latency service configured by the terminal, and includes currently used TTI information (which may be a TTI length or an indication of a certain TTI length type).
  • the handover request message in the embodiment of the present invention includes: a handover request HANDOVER REQUEST message sent by the source eNodeB to the handover target eNodeB through the X2 interface, or the handover source eNodeB is sent to the MME through the S1 interface (Mobility Management Entity, mobility management)
  • Step 22 When the handover target eNodeB is used as the admission decision, the handover target eNodeB may allocate the radio resource to the UE according to the ultra-low delay transmission information in the handover request. If the resource can be allocated to the UE according to the ultra-low delay transmission information in the handover request, go to step 23. If not, the handover is accepted or the partial transmission information (such as TTI) is changed and accepted again.
  • the partial transmission information such as TTI
  • Step 23 optionally, carrying the TTI information fed back by the handover target eNodeB in the handover request acknowledgement message, for the target eNodeB to confirm the allowed TTI to the source eNodeB or the MME.
  • the handover request acknowledgement message includes: a handover request acknowledgement message HANDOVER REQUEST ACKNOWLEDGE sent by the handover target eNodeB to the handover source eNodeB through the X2 interface, or a handover request response message HANDOVER REQUEST ACKNOWLEDGE sent by the target eNodeB to the MME in the S1 interface.
  • Carry TTI information Carry TTI information.
  • the handover source eNodeB or the MME may decide to abandon the current handover.
  • the TTI information is carried in the handover command HANDOVER COMMAND sent by the MME to the handover source eNodeB through the S1 interface, and is used to notify the handover source eNodeB of the TTI used by the UE.
  • the handover target eNodeB may decide to abandon the handover.
  • Step 24 the handover source eNodeB sends a handover command to the UE, and performs a handover process.
  • the TTI information is carried in the handover command, and is used to notify the UE of the TTI information that is allowed to be used.
  • the handover command is a wireless RRC connection reconfiguration message (RRCConnectionReconfiguration).
  • RRCConnectionReconfiguration When switching across eNodeBs through the S1 interface, the switching command is HANDOVER COMMAND.
  • Step 25 The UE establishes a connection according to the TTI information confirmed in the previous step and the handover target eNodeB, and completes the handover process.
  • the UE performs uplink and downlink transmission according to the TTI information. Otherwise, the UE transmits according to the TTI information used before the handover.
  • Embodiment 1 The HANDOVER REQUEST carries the TTI information during the X2 port handover process between the eNodeBs, and the handover target eNodeB does not modify the TTI.
  • Figure 3 is a flow chart of the embodiment.
  • Step 101 The handover source eNodeB triggers the UE to perform measurement by using measurement control.
  • Step 102 The UE performs measurement according to the measurement control, and reports the measurement result to the handover source eNodeB.
  • Step 103 The handover source eNodeB triggers the measurement decision according to the measurement report of the UE, and if there is a cell that meets the handover condition, the process proceeds to step 104.
  • Step 104 The handover source eNodeB initiates a handover request (HANDOVER REQUEST) to the handover target eNodeB, where the handover request message carries the ultra-low delay transmission information, including the TTI that the UE desires to use, and the expected used TTI may be the current TTI of the UE.
  • the length of the TTI may be a TTI of less than 1 ms (such as 1 OFDM symbol, 2 OFDM symbols, 0.5 milliseconds, etc.) for ultra-low latency transmission, or may be a conventional 1 ms TTI.
  • Step 105 The handover target eNodeB performs resource admission judgment according to the ultra-low delay transmission information.
  • the decision includes making a decision according to the expected TTI of the UE carried in the handover request. If the handover target eNodeB does not satisfy the TTI requirement expected by the UE in step 104, the rejection is directly accepted. If yes, go to step 106.
  • Step 106 Handover Request Response message (HANDOVER REQUEST ACKNOWLEDGE), optionally including TTI information for confirming the TTI.
  • Step 107 Start the handover process, and the handover source eNodeB initiates an RRC Connection Reconfiguration (RRCConnectionReconfiguration) message to the UE.
  • RRCConnectionReconfiguration RRC Connection Reconfiguration
  • the TTI information that is confirmed by the handover target eNodeB in step 106 is carried.
  • Step 108 The handover source eNodeB sends a sequence number state transition (SNSTATUS TRANSFER) message to the handover target eNodeB.
  • SNSTATUS TRANSFER sequence number state transition
  • Step 109 Complete synchronization between the UE and the handover target eNodeB.
  • the TTI of the PRACH may be determined according to the TTI in step 107 and the RACH synchronization procedure is initiated.
  • Step 110 The handover target eNodeB allocates an uplink grant to the UE and feeds back the timing advance. At this time, the downlink transmission adopts the TTI determined in step 107.
  • Step 111 After the UE successfully accesses the target cell, the RRC connection reconfiguration complete message is sent to the handover target eNodeB. At this time, the uplink transmission adopts the TTI determined in step 107.
  • Step 112 Complete the subsequent handover process. Both the uplink and downlink use the TTI determined in step 107.
  • Embodiment 2 The TTI information is carried in the process of the X2 interface switching between the eNodeBs, and the switching target eNodeB can modify the TTI according to the actual situation, and the switching source eNodeB follows the change of the TTI.
  • Figure 4 is a flow chart of the embodiment.
  • Step 201 The handover source eNodeB triggers the UE to perform measurement by using measurement control.
  • Step 202 The UE performs measurement according to the measurement control, and reports the measurement result to the handover source eNodeB.
  • Step 203 The handover source eNodeB triggers the measurement decision according to the measurement report of the UE, and if there is a cell that meets the handover condition, the process proceeds to step 204.
  • Step 204 The handover source eNodeB initiates a handover request to the handover target eNodeB.
  • the handover request message carries the ultra-low delay transmission information, including the TTI that the UE desires to use, the expected TTI may be the current TTI of the UE, and the length of the TTI may be the low for the ultra-low delay transmission.
  • the TTI of 1 ms (such as 1 OFDM symbol, 2 OFDM symbols, 0.5 milliseconds, etc.) may also be a conventional 1 ms TTI.
  • Step 205 The handover target eNodeB accepts the decision, and if the required resources of the TTI in step 204 cannot be met, the TTI may be modified. After the judgment meets the resource requirement corresponding to the TTI expected in step 204, or the resource requirement can be satisfied after modifying the TTI, the decision to allow admission is made, and the process proceeds to step 206.
  • Step 206 A handover request response message (HANDOVER REQUEST ACKNOWLEDGE) carrying the TTI determined by the handover target eNodeB.
  • Step 207 The UE starts to perform the handover process according to the TTI indicated in the HANDOVER REQUEST ACKNOWLEDGE, and the handover source eNodeB initiates an RRC Connection Reconfiguration (RRCConnectionReconfiguration) message to the UE, where the TTI information confirmed by the target eNodeB is switched in step 206.
  • RRCConnectionReconfiguration RRC Connection Reconfiguration
  • Step 208 The handover source eNodeB sends a sequence number state transition (SNSTATUS TRANSFER) message to the handover target eNodeB.
  • SNSTATUS TRANSFER sequence number state transition
  • Step 209 Complete synchronization between the UE and the handover target eNodeB.
  • the TTI of the PRACH may be determined according to the TTI in step 207 and the RACH synchronization process is initiated.
  • Step 210 The handover target eNodeB allocates an uplink grant to the UE and feeds back the timing advance. At this time, the downlink transmission adopts the TTI determined in step 206.
  • Step 211 After the UE successfully accesses the target cell, the RRC connection reconfiguration complete message is sent to the handover target eNodeB. At this time, the uplink transmission adopts the TTI determined in step 206.
  • Step 212 Complete the subsequent handover process. Both the uplink and downlink use the TTI determined in step 206.
  • the third embodiment the eNodeB carries the TTI information in the process of the X2 port eNodeB handover, and the handover target eNodeB can modify the TTI according to the actual situation, and the handover source eNodeB decides not to comply with the TTI change.
  • Figure 5 is a flow chart of the embodiment.
  • Step 301 The handover source eNodeB triggers the UE to perform measurement by using measurement control.
  • Step 302 The UE performs measurement according to the measurement control, and reports the measurement result to the handover source eNodeB.
  • Step 303 The handover source eNodeB triggers the measurement decision according to the measurement report of the UE, and if there is a cell that meets the handover condition, the process proceeds to step 404.
  • Step 304 The handover source eNodeB initiates a handover request (HANDOVER REQUEST) to the handover target eNodeB, where the handover request message carries the ultra-low delay transmission information, including the TTI that the UE desires to use, and the expected used TTI may be the current TTI of the UE, TTI.
  • the length may be a TTI of less than 1 ms for ultra low latency transmission (such as 1 OFDM symbol, 2 OFDM symbols, 0.5 milliseconds, etc.), or a conventional 1 ms TTI.
  • Step 305 The handover target eNodeB accepts the decision, and if the required resources of the TTI in step 304 cannot be met, the TTI may be modified. If the resource requirement corresponding to the TTI expected in step 304 is satisfied, or the resource requirement is met after the TTI is modified, a decision to allow admission is made, and step 306 is performed.
  • Step 306 A handover request response message (HANDOVER REQUEST ACKNOWLEDGE) carrying the TTI determined by the handover target eNodeB.
  • Step 307 If the handover source eNodeB finds that the TTI and HANDOVER REQUEST requests indicated in the HANDOVER REQUEST ACKNOWLEDGE are inconsistent, the handover source eNodeB may decide to abandon the handover to the handover target eNodeB.
  • Embodiment 4 The TTI value range supported by the UE is carried in the process of the X2 interface switching between the eNodeBs.
  • the handover target eNodeB can decide the TTI to be used according to the actual situation, and the UE follows the TTI provided by the handover target eNodeB.
  • Figure 6 is a flow chart of the embodiment.
  • Step 401 The handover source eNodeB triggers the UE to perform measurement by using measurement control.
  • Step 402 The UE performs measurement according to the measurement control, and reports the measurement result to the handover source eNodeB.
  • Step 403 The handover source eNodeB triggers the measurement decision according to the measurement report of the UE, if there is a small If the zone meets the switching condition, then step 404 is performed.
  • Step 404 The handover source eNodeB initiates a handover request (HANDOVER REQUEST) to the handover target eNodeB, where the handover request message carries the range information of the TTI that the UE can use, such as 1 OFDM symbol, 2 OFDM symbol, 0.5 millisecond, etc., and the conventional 1ms TTI.
  • HANDOVER REQUEST the handover request message carries the range information of the TTI that the UE can use, such as 1 OFDM symbol, 2 OFDM symbol, 0.5 millisecond, etc., and the conventional 1ms TTI.
  • Step 405 The handover target eNodeB determines the TTI to be used by the UE according to factors such as the range of the TTI selectable by the UE and the range of the TTI supported by the handover target eNodeB, and performs resource admission. If a TTI is selected and the resource is allowed to be accepted, Go to step 406.
  • Step 406 A handover request response message (HANDOVER REQUEST ACKNOWLEDGE) carrying the TTI determined by the handover target eNodeB.
  • Step 407 The UE starts to perform the handover process according to the TTI indicated in the HANDOVER REQUEST ACKNOWLEDGE, and the handover source eNodeB initiates an RRC Connection Reconfiguration (RRCConnectionReconfiguration) message to the UE, where the TTI information determined by the handover target eNodeB is carried in step 406.
  • RRCConnectionReconfiguration RRC Connection Reconfiguration
  • Step 408 The handover source eNodeB sends a sequence number state transition (SNSTATUS TRANSFER) message to the handover target eNodeB.
  • SNSTATUS TRANSFER sequence number state transition
  • Step 409 Complete synchronization between the UE and the handover target eNodeB.
  • the TTI of the PRACH may be determined according to the TTI in step 406 and the RACH synchronization process is initiated.
  • Step 410 The handover target eNodeB allocates an uplink grant to the UE and feeds back the timing advance. At this time, the downlink transmission adopts the TTI determined in step 406.
  • Step 411 After the UE successfully accesses the target cell, the RRC connection reconfiguration complete message is sent to the handover target eNodeB. At this time, the uplink transmission adopts the TTI determined in step 406.
  • Step 412 Complete the subsequent handover process. Both the uplink and downlink use the TTI determined in step 406.
  • Embodiment 5 The eNodeB carries the TTI information during the handover through the S1 interface, and the handover target eNodeB does not modify the TTI.
  • Figure 7 is a flow chart of the embodiment.
  • Step 501 The handover source eNodeB triggers the UE to perform measurement by using measurement control.
  • Step 502 The UE performs measurement according to the measurement control, and reports the measurement result to the handover source eNodeB.
  • Step 503 The handover source eNodeB triggers the measurement decision according to the measurement report of the UE, and if there is a cell that meets the handover condition, the process proceeds to step 504.
  • Step 504 The handover source eNodeB initiates a HANDOVER REQUIRED to the MME.
  • the HANDOVER REQUIRED carries the TTI that the UE intends to use.
  • the TTI that is used may be the current TTI of the UE, and the length of the TTI may be a shorter TTI (such as 1 OFDM symbol, 2 OFDM).
  • the symbol, value of 0.5 milliseconds, etc.) can also be a conventional 1 ms TTI.
  • Step 505 The MME initiates a HANDOVER REQUEST to the handover target eNodeB.
  • the HANDOVER REQUEST carries the TTI that the UE intends to use.
  • the TTI that is used may be the current TTI of the UE, and the length of the TTI may be a shorter TTI (such as 1 OFDM symbol, 2 OFDM).
  • the symbol, value of 0.5 milliseconds, etc.) can also be a conventional 1 ms TTI.
  • Step 506 The handover target eNodeB performs a resource admission decision, including making a decision according to the expected TTI of the UE carried in the handover request. If the handover target eNodeB does not satisfy the TTI requirement expected by the UE in step 505, the rejection is directly accepted. Otherwise, go to step 507.
  • Step 507 The handover target eNodeB sends a handover request response message (HANDOVER REQUEST ACKNOWLEDGE) to the MME.
  • a handover request response message HANDOVER REQUEST ACKNOWLEDGE
  • the TTI information is included for confirming the TTI.
  • Step 508 Start the handover process, and the MME sends a handover command (HANDOVER COMMAND) to the handover source eNodeB.
  • a handover command HANDOVER COMMAND
  • the TTI information is included to confirm the TTI.
  • Step 509 The handover source eNodeB sends a handover command (HANDOVER COMMAND) to the UE.
  • a handover command HANDOVER COMMAND
  • the TTI information is included for confirming the TTI.
  • Step 510 The handover source eNodeB sends an eNB STATUS TRANSFER message to the MME.
  • Step 511 The MME sends a MME STATUS TRANSFER message to the handover target eNodeB.
  • Step 512 Complete synchronization between the UE and the handover target eNodeB.
  • this is OK
  • the TTI of the PRACH is determined according to the TTI in step 507 and the RACH synchronization procedure is initiated.
  • Step 513 The handover target eNodeB allocates an uplink grant to the UE and feeds back the timing advance. At this time, the downlink transmission adopts the TTI determined in step 507.
  • Step 514 After the UE successfully accesses the target cell, the handover acknowledgement HANDOVER CONFIRM message is sent to the handover target eNodeB. At this time, the uplink transmission adopts the TTI determined in step 507.
  • Step 515 Complete the subsequent handover process. Both the uplink and downlink use the TTI determined in step 507.
  • Embodiment 6 The SN STATUS TRANSFER in the process of the X2 port switching between the eNodeBs carries the TTI information.
  • Figure 8 is a flow chart of the embodiment.
  • Step 601 The handover source eNodeB triggers the UE to perform measurement by using measurement control.
  • Step 602 The UE performs measurement according to the measurement control, and reports the measurement result to the handover source eNodeB.
  • Step 603 The handover source eNodeB triggers the measurement decision according to the measurement report of the UE, and if there is a cell that meets the handover condition, the process proceeds to step 604.
  • Step 604 The handover source eNodeB initiates a handover request (HANDOVER REQUEST) to the handover target eNodeB.
  • Step 605 The handover target eNodeB decides according to the admission of the resource. If the handover target eNodeB does not satisfy the resources required by the UE, the rejection is directly accepted. Otherwise, go to step 606.
  • Step 606 Handover Request Response message (HANDOVER REQUEST ACKNOWLEDGE), which may include TTI type information (which may be an indication of whether to allow the use of a TTI less than 1 ms length) to be used by the handover target eNodeB.
  • TTI type information which may be an indication of whether to allow the use of a TTI less than 1 ms length
  • Step 607 Start performing a handover procedure, and the handover source eNodeB initiates an RRC Connection Reconfiguration (RRCConnectionReconfiguration) message to the UE based on the currently used TTI information.
  • RRCConnectionReconfiguration RRC Connection Reconfiguration
  • Step 608 The handover source eNodeB sends a sequence number state transition (SNSTATUS TRANSFER) message to the handover target eNodeB, where the TTI type information currently used by the UE is carried. (as the TTI information that the UE desires to use, it may be an indication that the TTI is less than 1 ms in length. ).
  • SNSTATUS TRANSFER sequence number state transition
  • Step 609 Complete synchronization between the UE and the handover target eNodeB.
  • the TTI of the PRACH is determined and a RACH synchronization procedure is initiated.
  • Step 610 The handover target eNodeB allocates an uplink grant to the UE and feeds back the timing advance. At this time, the downlink transmission adopts the TTI determined in step 608.
  • Step 611 After the UE successfully accesses the target cell, the RRC connection reconfiguration complete message is sent to the handover target eNodeB. At this time, the uplink transmission adopts the TTI determined in step 608.
  • Step 612 Complete the subsequent handover process. Both the uplink and downlink use the TTI determined in step 608.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the above method for transmitting ultra low latency transmission information.
  • an embodiment of the present invention provides an apparatus 90 for transmitting ultra-low latency transmission information, including:
  • the first sending module 91 is configured to: send the ultra low delay transmission information of the terminal by using the handover process signaling.
  • the handover process signaling is signaling in the handover process of the terminal from the handover source to the handover target eNodeB.
  • the handover process signaling includes at least one of a handover request message, a sequence number state transition message, and a handover request acknowledgement message.
  • the handover request message includes:
  • the handover request message sent by the source to the handover target eNodeB is sent by the mobility management entity MME after receiving the handover request message sent by the handover source through the S1 interface.
  • the handover request acknowledgement message includes:
  • the handover target eNodeB sends a handover to the MME through the target eNodeB in the S1 interface. Request a reply message.
  • the handover request acknowledgement message carries the acknowledgement information of the ultra-low latency transmission fed back by the handover target eNodeB.
  • the confirmation information of the ultra-low latency transmission includes:
  • TTI Information A the transmission time interval TTI information that the handover target eNodeB confirms to the handover source to allow the terminal to use; or
  • the device further comprises:
  • the determining module 92 is located at the switching source, and is configured to: when the acknowledgment information of the ultra-low latency transmission includes the information A, the switching source determines the terminal according to the TTI information that the switching target eNodeB allows the terminal to use. Whether to initiate a handover procedure to the handover target eNodeB.
  • the device further comprises:
  • the second sending module 93 located in the MME, is configured to: when the acknowledgment information of the ultra-low latency transmission includes the information B, the MME performs a handover command to the switching source through the S1 interface, where the handover command carries There is TTI information for notifying the TTI information that the switching source allows the terminal to use.
  • the device further comprises:
  • the third sending module 94 is located at the switching source and is configured to: send TTI information to the terminal, and notify the terminal to allow TTI information to be used.
  • the TTI information sent by the third sending module 94 to the terminal is sent by the radio resource control RRC connection reconfiguration message when the terminal performs the cross-eNodeB handover through the X2 interface.
  • the TTI information sent by the third sending module 94 to the terminal is sent by using a handover command.
  • the ultra-low latency transmission information includes at least one of ultra low latency service information, ultra low latency transmission support capability information, and ultra low latency transmission air interface configuration information of the handover terminal.
  • the ultra low latency service information includes an ultra low latency service type currently running by the terminal.
  • the ultra low latency transmission support capability information includes type information of a TTI length supported by the terminal.
  • the ultra-low-latency transmission air interface configuration information includes an air interface radio resource corresponding to the ultra-low latency service configured by the terminal, where the service access network element is currently located.
  • the air interface radio resource includes TTI information currently used by the terminal.
  • the TTI information includes indication information of a TTI length or a TTI length type.
  • the ultra-low delay transmission information (including the expected TTI information) is sent to the handover target eNodeB, so that the handover target eNodeB is allocated for resource allocation.
  • the handover target cell may perform resource configuration according to the ultra-low delay transmission information (including the TTI information) in the handover request message, so that the UE can use the appropriate super in the process of switching to the target eNodeB.
  • the TTI below 1 ms required for low latency transmission reduces the delay in the handover process.
  • an embodiment of the present invention provides a system for transmitting ultra-low latency transmission information, including the apparatus 90 and the terminal 100 described in any of the above, wherein:
  • the terminal 100 is configured to perform uplink and downlink transmission according to the TTI information after receiving the ultra-low delay transmission information.
  • the ultra-low delay transmission information (including the expected TTI information) is sent to the handover target eNodeB, so that the handover target eNodeB is allocated for resource allocation.
  • the handover target cell may perform resource configuration according to the ultra-low delay transmission information (including the TTI information) in the handover request message, so that the UE can use the appropriate super in the process of switching to the target eNodeB.
  • the TTI below 1 ms required for low latency transmission reduces the delay in the handover process.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the application is not limited to any particular combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the ultra-low delay transmission information (including the expected TTI information) is sent to the handover target eNodeB, so that the handover target eNodeB is allocated for resource allocation.
  • the handover target cell may perform resource configuration according to the ultra-low delay transmission information (including the TTI information) in the handover request message, so that the UE can use the appropriate super in the process of switching to the target eNodeB.
  • the TTI below 1 ms required for low latency transmission reduces the delay in the handover process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种发送超低时延传输信息的方法、装置及系统。所述方法,包括:通过切换过程信令发送终端的超低时延传输信息。

Description

发送超低时延传输信息的方法、装置及系统 技术领域
本申请涉及但不限于无线通信领域。
背景技术
本申请发明人在实现本申请所实施技术方案的过程中,至少发现相关技术中存在如下技术问题:
业务的传输时延一直是无线网络运营商关注的一个重要的业务指标,直接影响着终端用户的业务体验。随着移动互联网应用的迅猛发展,远程控制、车联网、虚拟现实等物联网以及相关业务对移动网络中的业务传输时延提出了进一步的严格要求。因此,业务的低时延传输就成为了第五代移动通信技术(5G,5th Generation)中的一个重要研究课题。
短发送时间间隔接入技术是通过减少长期演进(LTE,Long Term Evolution)系统的发送时间间隔(TTI,Transmission Time Interval),充分缩短处理时延和回程时延,以支持某些业务的超低时延需求。目前存在两种缩小TTI的方法,一种是通过扩大正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统的子载波间隔来缩小单个OFDM符号的时长;该方法在5G的高频通信系统和超密集网络中均有讨论。另一种方法是目前第三代合作伙伴计划(3GPP,The 3rd Generation Partnership Project)所讨论的通过减少单个TTI中OFDM符号的数量来减小TTI长度;该方法的好处是可以和已有的LTE系统完全兼容。本专利主要针对后面这种方法对LTE系统的需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
当前3GPP对减小TTI长度的讨论还停留在最初的技术评估阶段,即分 析评估减小TTI长度对时延减少的最终效果。如何在已有的LTE系统中引入减小TTI长度的技术是一个值得研究的课题。
本发明实施例针对的问题是在引入多种TTI长度的技术后,已有的LTE系统中在终端(UE)进行跨演进基站(eNodeB,Evolved Node B,即演进型节点B)切换过程中,由于切换目标eNodeB无法及时获知UE的TTI信息,从而不能尽快的为UE分配资源。
本文提供的发送超低时延传输信息的方法、装置及系统,实现在UE进行跨eNodeB切换过程中尽快的为UE分配资源。
一种发送超低时延传输信息的方法,包括:
通过切换过程信令发送终端的超低时延传输信息。
可选地,所述切换过程信令为所述终端从切换源eNodeB向切换目标eNodeB进行切换过程中的信令。
可选地,所述切换过程信令包括切换请求消息、序号状态转换消息和切换请求确认消息中的至少一个。
可选地,所述切换请求消息包括:
切换源eNodeB通过X2接口发给切换目标eNodeB的切换请求消息;或者,
切换源eNodeB通过S1接口发送的切换请求消息,以及移动管理实体MME在接收到切换源eNodeB通过S1接口发送的切换请求消息后,通过S1接口发送给切换目标eNodeB的切换请求消息。
可选地,所述切换请求确认消息包括:
所述切换目标eNodeB通过X2接口发送给所述切换源eNodeB的切换请求确认消息;或者,
所述切换目标eNodeB通过S1接口中目标eNodeB发送给MME的切换请求应答消息。
可选地,所述切换请求确认消息携带所述切换目标eNodeB反馈的超低时延传输的确认信息。
可选地,所述超低时延传输的确认信息包括:
信息A:所述切换目标eNodeB向所述切换源eNodeB确认的允许所述终端使用的传输时间间隔TTI信息;或者,
信息B:所述切换目标eNodeB向MME确认的允许所述终端使用的TTI信息。
可选地,在所述超低时延传输的确认信息包括信息A时,所述切换源eNodeB根据所述切换目标eNodeB允许所述终端使用的TTI信息,确定所述终端是否向所述切换目标eNodeB发起切换过程。
可选地,在所述超低时延传输的确认信息包括信息B时,所述MME通过S1接口向所述切换源eNodeB的切换命令,其中所述切换命令中携带有TTI信息,用于通知所述切换源eNodeB允许终端使用的TTI信息。
可选地,所述切换源eNodeB向终端发送TTI信息,用于通知终端允许使用的TTI信息。
可选地,当所述终端通过X2接口进行跨eNodeB切换时,所述切换源eNodeB向终端发送的TTI信息是通过无线资源控制RRC连接重配消息发送的;
当所述终端通过S1接口进行跨eNodeB切换时,所述切换源eNodeB向终端发送的TTI信息是通过切换命令发送的。
可选地,在所述切换源eNodeB向所述终端发送TTI信息后,所述终端根据所述TTI信息进行上下行传输。
可选地,所述超低时延传输信息包括切换终端的超低时延业务信息、超低时延传输支持能力信息和超低时延传输空口配置信息中的至少一个。
可选地,所述超低时延业务信息包括所述终端当前运行的超低时延业务类型。
可选地,所述超低时延传输支持能力信息包括所述终端所支持的TTI长度的类型信息。
可选地,所述超低时延传输空口配置信息包括所述终端当前所在的服务接入网网元为所述终端配置的超低时延业务对应的空口无线资源。
可选地,所述空口无线资源包括所述终端当前所使用的TTI信息。
可选地,所述TTI信息包括TTI长度或者TTI长度类型的指示信息。
一种发送超低时延传输信息的装置,包括:
第一发送模块,设置为:通过切换过程信令发送终端的超低时延传输信息。
可选地,所述切换过程信令为所述终端从切换源eNodeB向切换目标eNodeB进行切换过程中的信令。
可选地,所述切换过程信令包括切换请求消息、序号状态转换消息和切换请求确认消息中的至少一个。
可选地,所述切换请求消息包括:
切换源eNodeB通过X2接口发给切换目标eNodeB的切换请求消息;或者,
切换源eNodeB通过S1接口发送的切换请求消息,以及移动管理实体MME在接收到切换源eNodeB通过S1接口发送的切换请求消息后,通过S1接口发送给切换目标eNodeB的切换请求消息。
可选地,所述切换请求确认消息包括:
所述切换目标eNodeB通过X2接口发送给所述切换源eNodeB的切换请求确认消息;或者,
所述切换目标eNodeB通过S1接口中目标eNodeB发送给MME的切换请求应答消息。
可选地,所述切换请求确认消息携带所述切换目标eNodeB反馈的超低时延传输的确认信息。
可选地,所述超低时延传输的确认信息包括:
信息A:所述切换目标eNodeB向所述切换源eNodeB确认的允许所述终端使用的传输时间间隔TTI信息;或者,
信息B:所述切换目标eNodeB向MME确认的允许所述终端使用的TTI信息。
可选地,所述装置还包括:
确定模块,位于切换源eNodeB,设置为:在所述超低时延传输的确认信息包括信息A时,所述切换源eNodeB根据所述切换目标eNodeB允许所述终端使用的TTI信息,确定所述终端是否向所述切换目标eNodeB发起切换过程。
可选地,所述装置还包括:
第二发送模块,位于MME,设置为:在所述超低时延传输的确认信息包括信息B时,所述MME通过S1接口向所述切换源eNodeB的切换命令,其中所述切换命令中携带有TTI信息,用于通知所述切换源eNodeB允许终端使用的TTI信息。
可选地,所述装置还包括:
第三发送模块,位于切换源eNodeB,设置为:向终端发送TTI信息,用于通知终端允许使用的TTI信息。
可选地,当所述终端通过X2接口进行跨eNodeB切换时,所述第三发送模块向终端发送的TTI信息是通过无线资源控制RRC连接重配消息发送的;
当所述终端通过S1接口进行跨eNodeB切换时,所述第三发送模块向终端发送的TTI信息是通过切换命令发送的。
可选地,所述超低时延传输信息包括切换终端的超低时延业务信息、超低时延传输支持能力信息和超低时延传输空口配置信息中的至少一个。
可选地,所述超低时延业务信息包括所述终端当前运行的超低时延业务类型。
可选地,所述超低时延传输支持能力信息包括所述终端所支持的TTI长度的类型信息。
可选地,所述超低时延传输空口配置信息包括所述终端当前所在的服务接入网网元为所述终端配置的超低时延业务对应的空口无线资源。
可选地,所述空口无线资源包括所述终端当前所使用的TTI信息。
可选地,所述TTI信息包括TTI长度或者TTI长度类型的指示信息。
一种传输超低时延传输信息的系统,包括上文任一所述的装置和终端,其中:
所述终端设置为:在接收到超低时延传输信息后,根据所述TTI信息进行上下行传输。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明提供的实施例,在LTE的系统中的UE进行切换准备的时候,就向切换目标eNodeB发出了超低时延传输信息(包括期望的TTI信息),便于切换目标eNodeB进行资源分配。如果UE期望使用超低时延传输,则切换目标小区可以根据切换请求消息中的超低时延传输信息(包括TTI信息)进行资源配置,便于UE在切换到目标eNodeB的过程中就使用适合超低时延传输所需的低于1ms的TTI,降低切换过程中的时延。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的发送超低时延传输信息的方法的流程图;
图2为本发明实施例提供的另一发送超低时延传输信息的方法的流程图;
图3为本发明实施例提供的eNodeB间通过X2口切换时指示TTI信息,且目标eNodeB不修改TTI的流程图;
图4为本发明实施例提供的eNodeB间通过X2口切换时指示TTI信息,且目标eNodeB修改了TTI,UE顺从TTI修改的流程图;
图5为本发明实施例提供的eNodeB间通过X2口切换时指示TTI信息,且目标eNodeB修改了TTI,UE不顺从TTI修改的流程图;
图6为本发明实施例提供的eNodeB间通过X2口切换时指示UE支持的TTI的范围,由目标eNodeB选择TTI,UE顺从目标eNodeB选择的TTI的流程图;
图7为本发明实施例提供的eNodeB间通过S1口切换过程中携带TTI信息,目标eNodeB不修改TTI。
图8为本发明实施例提供的eNodeB间通过X2口切换过程中的SNSTATUS TRANSFER携带TTI信息;
图9为本发明实施例提供的发送超低时延传输信息的装置示意图;
图10为本发明实施例提供的发送超低时延传输信息的系统示意图。
本发明的实施方式
下面将结合附图及实施例对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,本发明实施例的提供的发送超低时延传输信息的方法包括:
步骤10:通过切换过程信令发送终端的超低时延传输信息。
其中,所述切换过程信令为所述终端从切换源演进基站eNodeB向切换目标eNodeB进行切换过程中的信令。
所述切换过程信令包括切换请求消息、序号状态转换消息和切换请求确认消息中的至少一个。
所述超低时延传输信息包括切换终端的超低时延业务信息、超低时延传输支持能力信息和超低时延传输空口配置信息中的至少一个。
本发明实施例中,在LTE的系统中的UE进行切换准备的时候,就向切换目标eNodeB发出了超低时延传输信息,便于切换目标eNodeB进行资源分配。
如图2所示,本发明实施例包括:
步骤21:在LTE系统的跨eNodeB的切换过程中,源eNodeB在判断出需要执行切换后,在发送给目标eNodeB的切换请求消息中携带超低时延传输的信息。
其中,超低时延传输信息包括切换终端的超低时延业务信息,超低时延传输支持能力信息,超低时延传输空口配置信息中的至少一个。超低时延业务信息包括切换终端当前运行的超低时延业务类型,超低时延传输支持能力信息包括切换终端所支持的TTI长度类型,超低时延传输空口配置信息包括终端当前所在的服务接入网网元为所述终端配置的超低时延业务对应的空口无线资源,包括当前所使用的TTI信息(可以是TTI长度或者某种TTI长度类型的指示)。
本发明实施例中的切换请求消息包括:切换源eNodeB通过X2接口发给切换目标eNodeB的切换请求HANDOVER REQUEST(切换请求)消息,或者切换源eNodeB通过S1接口发送给MME(Mobility Management Entity,移动管理实体)的HANDOVER REQUIRED(切换申请)消息以及MME通过S1接口发送给切换目标eNodeB的HANDOVER REQUEST消息。
步骤22:切换目标eNodeB做接纳判决时,可选地,切换目标eNodeB可以根据切换请求中的超低时延传输信息给UE分配无线资源。如果能够按切换请求中的超低时延传输信息给UE分配资源,则转至步骤23。如果不能,则切换接纳失败或者更改部分传输信息(比如TTI)后再次接纳。
步骤23,可选地,在切换请求确认消息中携带切换目标eNodeB反馈的TTI信息,用于目标eNodeB向源eNodeB或者MME确认允许使用的TTI。
其中,切换请求确认消息包括:切换目标eNodeB通过X2接口发送给切换源eNodeB的切换请求确认消息HANDOVER REQUEST ACKNOWLEDGE(切换请求应答),或者S1接口中目标eNodeB发送给MME的切换请求应答消息HANDOVER REQUEST ACKNOWLEDGE中携带TTI信息。
进一步,可选地,如果目标eNodeB向源eNodeB或者MME确认允许使用的TTI和步骤1中的切换请求中携带的期望的TTI不一致,则切换源eNodeB或者MME可以决定放弃本次切换。
可选地,如果是通过S1接口跨eNodeB切换,则在MME通过S1接口发送给切换源eNodeB的切换命令HANDOVER COMMAND中携带TTI信息,用于通知切换源eNodeB允许UE使用的TTI。
进一步,可选地,如果切换目标eNodeB允许UE使用的TTI和步骤21中的切换请求中携带的期望的TTI不一致,则切换源eNodeB可以决定放弃本次切换。
步骤24,可选地,切换源eNodeB向UE发送切换命令,执行切换过程。切换命令中携带TTI信息,用于通知UE允许使用的TTI信息。
进一步地,在通过X2接口进行跨eNodeB切换时,切换命令为无线RRC连接重配消息(RRCConnectionReconfiguration)。而在通过S1接口进行跨eNodeB切换时,切换命令为HANDOVER COMMAND。
步骤25,UE根据前面步骤确认的TTI信息和切换目标eNodeB建立连接,完成切换过程。
进一步地,如果步骤24中切换源eNodeB向UE发送的切换命令中携带了TTI信息,则UE根据该TTI信息进行上下行传输。否则,UE根据切换前使用的TTI信息进行传输。
实施例一:eNodeB间通过X2口切换过程中HANDOVER REQUEST携带TTI信息,切换目标eNodeB不修改TTI。
图3为本实施例的流程图。
步骤101:切换源eNodeB通过测量控制触发UE进行测量。
步骤102:UE根据测量控制进行测量,并上报测量结果给切换源eNodeB。
步骤103:切换源eNodeB根据UE的测量报告触发测量判决,如果有小区满足切换条件则转步骤104。
步骤104:切换源eNodeB向切换目标eNodeB发起切换请求(HANDOVER REQUEST),切换请求消息中携带超低时延传输信息,包括UE期望使用的TTI,该期望使用的TTI可以为UE当前的TTI。TTI的长度可以是用于超低时延传输的低于1ms的TTI(比如1 OFDM符号,2 OFDM符号,0.5毫秒等取值),也可以是常规的1ms TTI。
步骤105:切换目标eNodeB根据超低时延传输信息进行资源的接纳判 决,包括根据切换请求中携带的UE期望的TTI做判决。如果切换目标eNodeB并不能满足步骤104中UE期望的TTI要求,则直接接纳拒绝。如果能满足,则转步骤106。
步骤106:切换请求应答消息(HANDOVER REQUEST ACKNOWLEDGE),可选地,包括了TTI信息用于确认TTI。
步骤107:开始执行切换过程,切换源eNodeB向UE发起RRC连接重配(RRCConnectionReconfiguration)消息,可选地,其中携带步骤106中切换目标eNodeB确认的TTI信息。
步骤108:切换源eNodeB向切换目标eNodeB发送序号状态转移(SNSTATUS TRANSFER)消息。
步骤109:完成UE和切换目标eNodeB之间的同步。可选地,此时就可以根据步骤107中的TTI确定PRACH的TTI并发起RACH同步流程。
步骤110:切换目标eNodeB为UE分配上行授权并反馈时间提前量。此时下行发送采用步骤107中确定的TTI。
步骤111:UE成功接入目标小区后,将向切换目标eNodeB发送RRC连接重配完成消息。此时上行发送采用步骤107中确定的TTI。
步骤112:完成后续切换流程。上下行均采用步骤107中确定的TTI。
实施例二:eNodeB间通过X2口切换过程中携带TTI信息,切换目标eNodeB可根据实际情况修改TTI,切换源eNodeB顺从TTI的改变。
图4为本实施例的流程图。
步骤201:切换源eNodeB通过测量控制触发UE进行测量。
步骤202:UE根据测量控制进行测量,并上报测量结果给切换源eNodeB。
步骤203:切换源eNodeB根据UE的测量报告触发测量判决,如果有小区满足切换条件则转步骤204。
步骤204:切换源eNodeB向切换目标eNodeB发起切换请求 (HANDOVER REQUEST),切换请求消息中携带超低时延传输信息,包括UE期望使用的TTI,该期望使用的TTI可以为UE当前的TTI,TTI的长度可以是用于超低时延传输的低于1ms的TTI(比如1 OFDM符号,2 OFDM符号,0.5毫秒等取值),也可以是常规的1ms TTI。
步骤205:切换目标eNodeB接纳判决,如果不能满足步骤204中期望的TTI所需的资源,可以修改TTI。在判端出满足步骤204中期望的TTI对应的资源需求,或者修改TTI后可以满足资源需求,则做出允许接纳的判决,并转步骤206.
步骤206:切换请求应答消息(HANDOVER REQUEST ACKNOWLEDGE),携带切换目标eNodeB确定的TTI。
步骤207:UE根据HANDOVER REQUEST ACKNOWLEDGE中指示的TTI开始执行切换过程,切换源eNodeB向UE发起RRC连接重配(RRCConnectionReconfiguration)消息,其中携带步骤206中切换目标eNodeB确认的TTI信息。
步骤208:切换源eNodeB向切换目标eNodeB发送序号状态转移(SNSTATUS TRANSFER)消息。
步骤209:完成UE和切换目标eNodeB之间的同步。可选地,此时就可以根据步骤207中的TTI确定PRACH的TTI并发起RACH同步流程。
步骤210:切换目标eNodeB为UE分配上行授权并反馈时间提前量。此时下行发送采用步骤206中确定的TTI。
步骤211:UE成功接入目标小区后,将向切换目标eNodeB发送RRC连接重配完成消息。此时上行发送采用步骤206中确定的TTI。
步骤212:完成后续切换流程。上下行均采用步骤206中确定的TTI。
实施例三:eNodeB间通过X2口eNodeB切换过程中携带TTI信息,切换目标eNodeB可根据实际情况修改TTI,切换源eNodeB决策不顺从TTI的改变。
图5为本实施例的流程图。
步骤301:切换源eNodeB通过测量控制触发UE进行测量。
步骤302:UE根据测量控制进行测量,并上报测量结果给切换源eNodeB。
步骤303:切换源eNodeB根据UE的测量报告触发测量判决,如果有小区满足切换条件则转步骤404。
步骤304:切换源eNodeB向切换目标eNodeB发起切换请求(HANDOVER REQUEST),切换请求消息中携带超低时延传输信息,包括UE期望使用的TTI,该期望使用的TTI可以为UE当前的TTI,TTI的长度可以是用于超低时延传输的低于1ms的TTI(比如1 OFDM符号,2 OFDM符号,0.5毫秒等取值),也可以是常规的1ms TTI。
步骤305:切换目标eNodeB接纳判决,如果不能满足步骤304中期望的TTI所需的资源,可以修改TTI。在判端出满足步骤304中期望的TTI对应的资源需求,或者修改TTI后可以满足资源需求,则做出允许接纳的判决,并转步骤306.
步骤306:切换请求应答消息(HANDOVER REQUEST ACKNOWLEDGE),携带切换目标eNodeB确定的TTI。
步骤307:如果切换源eNodeB发现HANDOVER REQUEST ACKNOWLEDGE中指示的TTI和HANDOVER REQUEST请求中期望的TTI不一致,则切换源eNodeB可以决策放弃到该切换目标eNodeB的切换。
实施例四:eNodeB间通过X2口切换过程中携带UE支持的TTI取值范围,切换目标eNodeB可根据实际情况决策将要使用的TTI,UE顺从切换目标eNodeB提供的TTI。
图6为本实施例的流程图。
步骤401:切换源eNodeB通过测量控制触发UE进行测量。
步骤402:UE根据测量控制进行测量,并上报测量结果给切换源eNodeB。
步骤403:切换源eNodeB根据UE的测量报告触发测量判决,如果有小 区满足切换条件则转步骤404。
步骤404:切换源eNodeB向切换目标eNodeB发起切换请求(HANDOVER REQUEST),切换请求消息中携带UE可以使用的TTI的范围信息,比如1 OFDM符号,2 OFDM符号,0.5毫秒等取值,以及常规的1ms TTI。
步骤405:切换目标eNodeB根据UE可选的TTI的范围以及切换目标eNodeB本身支持的TTI的范围等因素来决策UE将要使用的TTI,并进行资源接纳,如果选择一个TTI后并且资源允许接纳,则转步骤406.
步骤406:切换请求应答消息(HANDOVER REQUEST ACKNOWLEDGE),携带切换目标eNodeB确定的TTI。
步骤407:UE根据HANDOVER REQUEST ACKNOWLEDGE中指示的TTI开始执行切换过程,切换源eNodeB向UE发起RRC连接重配(RRCConnectionReconfiguration)消息,其中携带步骤406中切换目标eNodeB确定的TTI信息。
步骤408:切换源eNodeB向切换目标eNodeB发送序号状态转移(SNSTATUS TRANSFER)消息。
步骤409:完成UE和切换目标eNodeB之间的同步。可选地,此时就可以根据步骤406中的TTI确定PRACH的TTI并发起RACH同步流程。
步骤410:切换目标eNodeB为UE分配上行授权并反馈时间提前量。此时下行发送采用步骤406中确定的TTI。
步骤411:UE成功接入目标小区后,将向切换目标eNodeB发送RRC连接重配完成消息。此时上行发送采用步骤406中确定的TTI。
步骤412:完成后续切换流程。上下行均采用步骤406中确定的TTI。
实施例五:eNodeB间通过S1口切换过程中携带TTI信息,切换目标eNodeB不修改TTI。
图7为本实施例的流程图。
步骤501:切换源eNodeB通过测量控制触发UE进行测量。
步骤502:UE根据测量控制进行测量,并上报测量结果给切换源eNodeB。
步骤503:切换源eNodeB根据UE的测量报告触发测量判决,如果有小区满足切换条件则转步骤504。
步骤504:切换源eNodeB向MME发起HANDOVER REQUIRED,HANDOVER REQUIRED中携带UE期望使用的TTI,该期望使用的TTI可以为UE当前的TTI,TTI的长度可以是较短的TTI(比如1 OFDM符号,2OFDM符号,0.5毫秒等取值),也可以是常规的1ms TTI。
步骤505:MME向切换目标eNodeB发起HANDOVER REQUEST,HANDOVER REQUEST中携带UE期望使用的TTI,该期望使用的TTI可以为UE当前的TTI,TTI的长度可以是较短的TTI(比如1 OFDM符号,2OFDM符号,0.5毫秒等取值),也可以是常规的1ms TTI。
步骤506:切换目标eNodeB进行资源的接纳判决,包括根据切换请求中携带的UE期望的TTI做判决。如果切换目标eNodeB并不能满足步骤505中UE期望的TTI要求,则直接接纳拒绝。否则,转步骤507。
步骤507:切换目标eNodeB向MME发出切换请求应答消息(HANDOVER REQUEST ACKNOWLEDGE),可选地,包括了TTI信息用于确认TTI。
步骤508:开始执行切换过程,MME向切换源eNodeB发出切换命令(HANDOVER COMMAND),可选地,包括了TTI信息用于确认TTI。
步骤509:切换源eNodeB向UE发出切换命令(HANDOVER COMMAND),可选地,包括了TTI信息用于确认TTI。
步骤510:切换源eNodeB向MME发送eNB状态转移(eNB STATUS TRANSFER)消息。
步骤511:MME向切换目标eNodeB发送MME状态转移(MME STATUS TRANSFER)消息。
步骤512:完成UE和切换目标eNodeB之间的同步。可选地,此时就可 以根据步骤507中的TTI确定PRACH的TTI并发起RACH同步流程。
步骤513:切换目标eNodeB为UE分配上行授权并反馈时间提前量。此时下行发送采用步骤507中确定的TTI。
步骤514:UE成功接入目标小区后,将向切换目标eNodeB发送切换确认HANDOVER CONFIRM消息。此时上行发送采用步骤507中确定的TTI。
步骤515:完成后续切换流程。上下行均采用步骤507中确定的TTI。
实施例六:eNodeB间通过X2口切换过程中的SN STATUS TRANSFER携带TTI信息。
图8为本实施例的流程图。
步骤601:切换源eNodeB通过测量控制触发UE进行测量。
步骤602:UE根据测量控制进行测量,并上报测量结果给切换源eNodeB。
步骤603:切换源eNodeB根据UE的测量报告触发测量判决,如果有小区满足切换条件则转步骤604。
步骤604:切换源eNodeB向切换目标eNodeB发起切换请求(HANDOVER REQUEST)。
步骤605:切换目标eNodeB根据进行资源的接纳判决。如果切换目标eNodeB并不能满足UE需要的资源,则直接接纳拒绝。否则,转步骤606。
步骤606:切换请求应答消息(HANDOVER REQUEST ACKNOWLEDGE),其中可以包含切换切换目标eNodeB允许该UE使用的TTI类型信息(可以是是否允许使用低于1ms长度的TTI的一个指示)。
步骤607:开始执行切换过程,切换源eNodeB基于当前使用的TTI信息向UE发起RRC连接重配(RRCConnectionReconfiguration)消息。
步骤608:切换源eNodeB向切换目标eNodeB发送序号状态转移(SNSTATUS TRANSFER)消息,其中携带UE当前使用的TTI类型信息(作为UE期望使用的TTI信息,可以是使用低于1ms长度的TTI的一个指示)。
步骤609:完成UE和切换目标eNodeB之间的同步。可选地,此时就可以根据步骤608中的指示的TTI类型信息,确定PRACH的TTI并发起RACH同步流程。
步骤610:切换目标eNodeB为UE分配上行授权并反馈时间提前量。此时下行发送采用步骤608中确定的TTI。
步骤611:UE成功接入目标小区后,将向切换目标eNodeB发送RRC连接重配完成消息。此时上行发送采用步骤608中确定的TTI。
步骤612:完成后续切换流程。上下行均采用步骤608中确定的TTI。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述发送超低时延传输信息的方法。
如图9所示,本发明实施例提供一种发送超低时延传输信息的装置90,包括:
第一发送模块91,设置为:通过切换过程信令发送终端的超低时延传输信息。
其中,所述切换过程信令为所述终端从切换源向切换目标eNodeB进行切换过程中的信令。
其中,所述切换过程信令包括切换请求消息、序号状态转换消息和切换请求确认消息中的至少一个。
其中,所述切换请求消息包括:
切换源通过X2接口发给切换目标eNodeB的切换请求消息;或者,
切换源通过S1接口发送的切换请求消息,以及移动管理实体MME在接收到切换源通过S1接口发送的切换请求消息后,通过S1接口发送给切换目标eNodeB的切换请求消息。
其中,所述切换请求确认消息包括:
所述切换目标eNodeB通过X2接口发送给所述切换源的切换请求确认消息;或者,
所述切换目标eNodeB通过S1接口中目标eNodeB发送给MME的切换 请求应答消息。
其中,所述切换请求确认消息携带所述切换目标eNodeB反馈的超低时延传输的确认信息。
其中,所述超低时延传输的确认信息包括:
信息A:所述切换目标eNodeB向所述切换源确认的允许所述终端使用的传输时间间隔TTI信息;或者,
信息B:所述切换目标eNodeB向MME确认的允许所述终端使用的TTI信息。
其中,所述装置还包括:
确定模块92,位于切换源,设置为:在所述超低时延传输的确认信息包括信息A时,所述切换源根据所述切换目标eNodeB允许所述终端使用的TTI信息,确定所述终端是否向所述切换目标eNodeB发起切换过程。
其中,所述装置还包括:
第二发送模块93,位于MME,设置为:在所述超低时延传输的确认信息包括信息B时,所述MME通过S1接口向所述切换源的切换命令,其中所述切换命令中携带有TTI信息,用于通知所述切换源允许终端使用的TTI信息。
其中,所述装置还包括:
第三发送模块94,位于切换源,设置为:向终端发送TTI信息,用于通知终端允许使用的TTI信息。
其中,当所述终端通过X2接口进行跨eNodeB切换时,所述第三发送模块94向终端发送的TTI信息是通过无线资源控制RRC连接重配消息发送的;
当所述终端通过S1接口进行跨eNodeB切换时,所述第三发送模块94向终端发送的TTI信息是通过切换命令发送的。
其中,所述超低时延传输信息包括切换终端的超低时延业务信息、超低时延传输支持能力信息和超低时延传输空口配置信息中的至少一个。
其中,所述超低时延业务信息包括所述终端当前运行的超低时延业务类型。
其中,所述超低时延传输支持能力信息包括所述终端所支持的TTI长度的类型信息。
其中,所述超低时延传输空口配置信息包括所述终端当前所在的服务接入网网元为所述终端配置的超低时延业务对应的空口无线资源。
其中,所述空口无线资源包括所述终端当前所使用的TTI信息。
其中,所述TTI信息包括TTI长度或者TTI长度类型的指示信息。
本发明提供的装置实施例,在LTE的系统中的UE进行切换准备的时候,就向切换目标eNodeB发出了超低时延传输信息(包括期望的TTI信息),便于切换目标eNodeB进行资源分配。如果UE期望使用超低时延传输,则切换目标小区可以根据切换请求消息中的超低时延传输信息(包括TTI信息)进行资源配置,便于UE在切换到目标eNodeB的过程中就使用适合超低时延传输所需的低于1ms的TTI,降低切换过程中的时延。
另外,如图10所示,本发明实施例提供一种传输超低时延传输信息的系统,包括上文任一所述的装置90和终端100,其中:
所述终端100设置为:在接收到超低时延传输信息后,根据所述TTI信息进行上下行传输。
本发明提供的系统实施例,在LTE的系统中的UE进行切换准备的时候,就向切换目标eNodeB发出了超低时延传输信息(包括期望的TTI信息),便于切换目标eNodeB进行资源分配。如果UE期望使用超低时延传输,则切换目标小区可以根据切换请求消息中的超低时延传输信息(包括TTI信息)进行资源配置,便于UE在切换到目标eNodeB的过程中就使用适合超低时延传输所需的低于1ms的TTI,降低切换过程中的时延。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
以上所述,仅为本发明的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明提供的实施例,在LTE的系统中的UE进行切换准备的时候,就向切换目标eNodeB发出了超低时延传输信息(包括期望的TTI信息),便于切换目标eNodeB进行资源分配。如果UE期望使用超低时延传输,则切换目标小区可以根据切换请求消息中的超低时延传输信息(包括TTI信息)进行资源配置,便于UE在切换到目标eNodeB的过程中就使用适合超低时延传输所需的低于1ms的TTI,降低切换过程中的时延。

Claims (23)

  1. 一种发送超低时延传输信息的方法,包括:
    通过切换过程信令发送终端的超低时延传输信息。
  2. 根据权利要求1所述的方法,其中,所述切换过程信令为所述终端从切换源演进基站eNodeB向切换目标eNodeB进行切换过程中的信令。
  3. 根据权利要求2所述的方法,其中,所述切换过程信令包括切换请求消息、序号状态转换消息和切换请求确认消息中的至少一个。
  4. 根据权利要求3所述的方法,其中,所述切换请求消息包括:
    切换源eNodeB通过X2接口发给切换目标eNodeB的切换请求消息;或者,
    切换源eNodeB通过S1接口发送的切换请求消息,以及移动管理实体MME在接收到切换源eNodeB通过S1接口发送的切换请求消息后,通过S1接口发送给切换目标eNodeB的切换请求消息。
  5. 根据权利要求3所述的方法,其中,所述切换请求确认消息包括:
    所述切换目标eNodeB通过X2接口发送给所述切换源eNodeB的切换请求确认消息;或者,
    所述切换目标eNodeB通过S1接口中目标eNodeB发送给MME的切换请求应答消息。
  6. 根据权利要求3或5所述的方法,其中,所述切换请求确认消息携带所述切换目标eNodeB反馈的超低时延传输的确认信息。
  7. 根据权利要求6所述的方法,其中,所述超低时延传输的确认信息包括:
    信息A:所述切换目标eNodeB向所述切换源eNodeB确认的允许所述终端使用的传输时间间隔TTI信息;或者,
    信息B:所述切换目标eNodeB向MME确认的允许所述终端使用的TTI 信息。
  8. 根据权利要求7所述的方法,其中:
    在所述超低时延传输的确认信息包括信息A时,所述切换源eNodeB根据所述切换目标eNodeB允许所述终端使用的TTI信息,确定所述终端是否向所述切换目标eNodeB发起切换过程;
    在所述超低时延传输的确认信息包括信息B时,所述MME通过S1接口向所述切换源eNodeB的切换命令,其中所述切换命令中携带有TTI信息,用于通知所述切换源eNodeB允许终端使用的TTI信息。
  9. 根据权利要求7或8所述的方法,其中,所述切换源eNodeB向终端发送TTI信息,用于通知终端允许使用的TTI信息。
  10. 根据权利要求9所述的方法,其中:
    当所述终端通过X2接口进行跨eNodeB切换时,所述切换源eNodeB向终端发送的TTI信息是通过无线资源控制RRC连接重配消息发送的;
    当所述终端通过S1接口进行跨eNodeB切换时,所述切换源eNodeB向终端发送的TTI信息是通过切换命令发送的。
  11. 根据权利要求9所述的方法,其中:
    在所述切换源eNodeB向所述终端发送TTI信息后,所述终端根据所述TTI信息进行上下行传输。
  12. 根据权利要求1所述的方法,其中,所述超低时延传输信息包括切换终端的超低时延业务信息、超低时延传输支持能力信息和超低时延传输空口配置信息中的至少一个。
  13. 根据权利要求12所述的方法,其中,
    所述超低时延业务信息包括所述终端当前运行的超低时延业务类型;
    所述超低时延传输支持能力信息包括所述终端所支持的TTI长度的类型信息;
    所述超低时延传输空口配置信息包括所述终端当前所在的服务接入网网元为所述终端配置的超低时延业务对应的空口无线资源。
  14. 根据权利要求13所述的方法,其中,所述空口无线资源包括所述终端当前所使用的TTI信息;
    所述TTI信息包括TTI长度或者TTI长度类型的指示信息。
  15. 一种发送超低时延传输信息的装置,包括:
    第一发送模块,设置为:通过切换过程信令发送终端的超低时延传输信息。
  16. 根据权利要求15所述的装置,其中,所述切换过程信令为所述终端从切换源eNodeB向切换目标eNodeB进行切换过程中的信令;
    所述切换过程信令包括切换请求消息、序号状态转换消息和切换请求确认消息中的至少一个。
  17. 根据权利要求16所述的装置,其中,所述切换请求确认消息携带所述切换目标eNodeB反馈的超低时延传输的确认信息;
    所述超低时延传输的确认信息包括:
    信息A:所述切换目标eNodeB向所述切换源eNodeB确认的允许所述终端使用的传输时间间隔TTI信息;或者,
    信息B:所述切换目标eNodeB向MME确认的允许所述终端使用的TTI信息。
  18. 根据权利要求17所述的装置,所述装置还包括:
    确定模块,位于切换源eNodeB,设置为:在所述超低时延传输的确认信息包括信息A时,所述切换源eNodeB根据所述切换目标eNodeB允许所述终端使用的TTI信息,确定所述终端是否向所述切换目标eNodeB发起切换过程。
  19. 根据权利要求17所述的装置,所述装置还包括:
    第二发送模块,位于MME,设置为:在所述超低时延传输的确认信息包括信息B时,所述MME通过S1接口向所述切换源eNodeB的切换命令,其中所述切换命令中携带有TTI信息,用于通知所述切换源eNodeB允许终端使用的TTI信息。
  20. 根据权利要求17至19任一所述的装置,所述装置还包括:
    第三发送模块,位于切换源eNodeB,设置为:向终端发送TTI信息,用于通知终端允许使用的TTI信息。
  21. 根据权利要求20所述的装置,其中:
    当所述终端通过X2接口进行跨eNodeB切换时,所述第三发送模块向终端发送的TTI信息是通过无线资源控制RRC连接重配消息发送的;
    当所述终端通过S1接口进行跨eNodeB切换时,所述第三发送模块向终端发送的TTI信息是通过切换命令发送的。
  22. 根据权利要求15所述的装置,其中,所述超低时延传输信息包括切换终端的超低时延业务信息、超低时延传输支持能力信息和超低时延传输空口配置信息中的至少一个。
  23. 一种传输超低时延传输信息的系统,包括如权利要求15至22任一所述的装置和终端,其中:
    所述终端设置为:在接收到超低时延传输信息后,根据所述TTI信息进行上下行传输。
PCT/CN2016/078584 2015-09-10 2016-04-06 发送超低时延传输信息的方法、装置及系统 WO2016180107A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510574906.9 2015-09-10
CN201510574906.9A CN106535258A (zh) 2015-09-10 2015-09-10 发送超低时延传输信息的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016180107A1 true WO2016180107A1 (zh) 2016-11-17

Family

ID=57248561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078584 WO2016180107A1 (zh) 2015-09-10 2016-04-06 发送超低时延传输信息的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN106535258A (zh)
WO (1) WO2016180107A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107644055A (zh) * 2017-07-27 2018-01-30 中国人民解放军国防信息学院 一种基于训练数据的通信保障能力生成方法
WO2018195707A1 (zh) * 2017-04-24 2018-11-01 北京小米移动软件有限公司 下行harq反馈方法及装置、终端和基站

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602879B1 (en) 2017-03-23 2022-12-07 Telefonaktiebolaget LM Ericsson (publ) Configuring puncture bundles of data for a first service in a transmission of a second service

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193440A (zh) * 2006-12-01 2008-06-04 华为技术有限公司 在切换过程中确定分组数据转发方式的方法、系统及装置
CN101296163A (zh) * 2007-04-28 2008-10-29 中兴通讯股份有限公司 异步切换方法和系统
CN101594650A (zh) * 2008-05-30 2009-12-02 华为技术有限公司 配置传输时间间隔绑定的方法、装置和系统
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193440A (zh) * 2006-12-01 2008-06-04 华为技术有限公司 在切换过程中确定分组数据转发方式的方法、系统及装置
CN101296163A (zh) * 2007-04-28 2008-10-29 中兴通讯股份有限公司 异步切换方法和系统
CN101594650A (zh) * 2008-05-30 2009-12-02 华为技术有限公司 配置传输时间间隔绑定的方法、装置和系统
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195707A1 (zh) * 2017-04-24 2018-11-01 北京小米移动软件有限公司 下行harq反馈方法及装置、终端和基站
CN107644055A (zh) * 2017-07-27 2018-01-30 中国人民解放军国防信息学院 一种基于训练数据的通信保障能力生成方法

Also Published As

Publication number Publication date
CN106535258A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
US12041503B2 (en) Method and apparatus for supporting light connection in next generation mobile communication systems
US20230363014A1 (en) Communications device, infrastructure equipment and methods
KR102270533B1 (ko) 무선 통신 시스템에서 통신 방법 및 장치
CN108702669B (zh) 具有周期性消息传递的车辆连接的调度与切换
US9363827B2 (en) Vehicle gateway access in cellular network for vehicle communications
JP6900502B2 (ja) 無線通信システムにおけるサイドリンク同期信号送信方法及び前記方法を利用する端末
WO2017028644A1 (zh) 一种mtc ue随机接入的方法及装置
EP3310113B1 (en) Random access methods
US20160227451A1 (en) Handover performed in consideration of uplink/downlink component carrier setup
US20120082088A1 (en) Method and Apparatus for Facilitating Relay Node Communications
KR20200138249A (ko) V2x를 위한 향상된 서비스 품질
JP6775665B2 (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム
KR20140007486A (ko) 랜덤 액세스 응답을 위한 교차-스케줄링
HUE035560T2 (en) Wireless device, first network node and their procedures
WO2017008508A1 (zh) 基于非授权载波执行随机接入的方法及装置
CN114902735A (zh) 用于在无线通信系统中执行通信的方法和装置
WO2017177818A1 (zh) 随机接入方法、装置及系统、基站和用户设备ue
KR20140121098A (ko) 무선 통신 시스템에서 단말의 버퍼상태보고 전송방법 및 장치
TWI774988B (zh) 隨機接取程序技術
WO2016180107A1 (zh) 发送超低时延传输信息的方法、装置及系统
WO2018227510A1 (zh) 接入控制方法及相关产品
EP3925380A1 (en) Infrastructure equipment, communications device and methods
WO2016078034A1 (zh) 一种传输消息的方法、用户设备、基站和系统
EP4429146A1 (en) Communication method and device
JP2021022937A (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16791957

Country of ref document: EP

Kind code of ref document: A1