WO2016175539A1 - Anode active material and anode including same - Google Patents

Anode active material and anode including same Download PDF

Info

Publication number
WO2016175539A1
WO2016175539A1 PCT/KR2016/004360 KR2016004360W WO2016175539A1 WO 2016175539 A1 WO2016175539 A1 WO 2016175539A1 KR 2016004360 W KR2016004360 W KR 2016004360W WO 2016175539 A1 WO2016175539 A1 WO 2016175539A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
hard carbon
natural graphite
core
Prior art date
Application number
PCT/KR2016/004360
Other languages
French (fr)
Korean (ko)
Inventor
김현욱
김은경
신선영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160049966A external-priority patent/KR101833615B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/560,006 priority Critical patent/US10476109B2/en
Priority to JP2017556646A priority patent/JP6685537B2/en
Priority to CN201680021679.XA priority patent/CN107534138B/en
Publication of WO2016175539A1 publication Critical patent/WO2016175539A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material and a negative electrode including the same.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • portable devices such as portable computers, portable telephones, cameras, and the like
  • secondary batteries exhibit high energy density and operating potential, and have a cycle life.
  • Many researches have been conducted on this long, low self-discharge rate lithium battery and are commercially available and widely used.
  • a typical lithium secondary battery uses graphite as a negative electrode active material, and charging and discharging are performed while repeating a process in which lithium ions of a positive electrode are inserted into and detached from a negative electrode.
  • the theoretical capacity of the battery is different depending on the type of the electrode active material, but as the cycle progresses, the charge and discharge capacity is generally lowered.
  • spherical natural graphite particles are spherical natural graphite particles assembled in a cabbage phase and a random phase in the center portion of the surface; And spherical natural graphite modified composite particles comprising amorphous or semi-crystalline carbon, wherein a gap between the flaky natural graphite fragments by ultrasonication is present in the surface portion of the spherical natural graphite particles.
  • Amorphous or semicrystalline carbon is coated on the surface of the spherical natural graphite particles, and the amorphous or semicrystalline carbon is present in the gap between the lithium secondary to maintain the gap between the spherical natural graphite particles.
  • a negative electrode active material for a battery and a manufacturing method thereof have been proposed.
  • the anode active material has a problem in that the efficiency of the secondary battery decreases and the amount of electrolyte consumption increases because amorphous carbon appears to the outside.
  • the first technical problem to be solved by the present invention is to provide a negative electrode active material and a method for producing the same, which exhibits high initial efficiency and low diffusion resistance of lithium ions while reducing electrolyte consumption.
  • the second technical problem to be solved of the present invention is to provide a negative electrode including the negative electrode active material.
  • the third technical problem to be solved of the present invention is to provide a secondary battery including the negative electrode, a battery module and a battery pack having the same.
  • an embodiment of the present invention includes a core comprising artificial graphite and hard carbon; And a shell surrounding the core and including natural graphite, wherein the shell provides a negative electrode active material formed so that the natural graphite is laminated and covered to cover the surface of the core.
  • Hard carbon In addition, in one embodiment of the present invention; Hard carbon; And spherical natural graphite having an average length of 20 to 30 times longer with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon. It provides a method for producing a negative electrode active material comprising the step.
  • an embodiment of the present invention provides a negative electrode on which a negative electrode mixture including the negative electrode active material is coated on a negative electrode current collector.
  • an embodiment of the present invention provides a secondary battery including a positive electrode and an electrolytic solution coated with a positive electrode mixture including the negative electrode and the positive electrode active material.
  • the present invention also provides a battery module and a battery pack including the secondary battery.
  • the negative electrode active material according to the present invention has a structure in which natural graphite completely surrounds artificial graphite and hard carbon, and thus exhibits low initial efficiency and high initial consumption and life characteristics because hard carbon having high electrolyte consumption is not exposed to the outside. Can be represented.
  • a negative electrode having high output characteristics may be manufactured because the diffusion resistance of lithium ions is lower than that of only natural graphite.
  • FIG. 1 is a schematic diagram showing the structure of a negative electrode active material according to the present invention.
  • Figure 3 is a graph of the results of measuring the irreversible capacity in the first charging process of the battery prepared in Examples 1, 2 and Comparative Examples 1 to 3 of the present invention.
  • Figure 4 is a graph of the results of measuring the life characteristics of the batteries prepared in Example 1 and Comparative Example 4 of the present invention.
  • Example 5 is a graph showing the results of measuring the life characteristics of the batteries prepared in Example 1 and Comparative Example 2 of the present invention.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the present invention is to provide a negative active material and a negative electrode and a secondary battery comprising a low carbon electrolyte and a low diffusion resistance of lithium ions while preventing the hard carbon from being directly exposed to the electrolyte, showing a high initial efficiency and low electrolyte consumption .
  • FIG. 1 a schematic diagram of the negative electrode active material according to the present invention is shown in Figure 1, with reference to this will be described in detail the negative electrode active material according to the present invention.
  • a core comprising artificial graphite (1) and hard carbon (3);
  • the shell may be a negative electrode active material formed by stacking the natural graphite and covering the surface of the core.
  • the artificial graphite contained in the core is crystalline carbon in which coke powder or the like is artificially developed crystals through a high temperature baking process.
  • the artificial graphite are artificial graphite heat treated at 2800 ° C. or higher, graphitized MCMB obtained by heat treating MCMB (MesoCarbon MicroBeads) at 2000 ° C. or higher, or graphitized mesophase heat treated at 2000 ° C. or more with mesophase pitch-based carbon fibers. It may include a pitch-based carbon fiber, but is not limited thereto.
  • the artificial graphite may be in the shape of scales, such as pieces of scales, and the average length L 50 of the long axis may be 5 ⁇ m to 7 ⁇ m.
  • the artificial graphite as a core of the negative electrode active material, it is possible to supplement the disadvantage that the hard carbon and natural graphite shows a relatively low initial efficiency.
  • the hard carbon contained in the core is sucrose (sucrose), phenol resin (phenol resin), furan resin (furan resin), furfuryl alcohol (furfuryl alcohol), polyacrylonitrile (Polyacrylonitrile, polyimide, epoxy resin, cellulose and styrene may include carbonized one or more carbonaceous material selected from the group consisting of phenol resin plastic body, Polyacrylonitrile-based carbon fiber, pseudoisotropic carbon, and furfuryl alcohol resin fired body (PFA).
  • the hard carbon may include amorphous carbon.
  • the hard carbon may have a spherical shape, and the average diameter (D 50 ) of the hard carbon may be 4 ⁇ m to 6 ⁇ m.
  • the hard carbon as a core of the negative electrode active material, the problem of low solid diffusion of lithium ion migration due to high crystallinity of graphite can be overcome, and the buffering capacity against volume expansion is improved. Can be.
  • the average diameter (D 50 ) of the core may be 9 ⁇ m to 13 ⁇ m.
  • the core may include a total of about 2 to 4 artificial graphite and hard carbon, but is not limited thereto.
  • the weight ratio of the artificial graphite and hard carbon may be in the range of 1: 0.1 to 1.0, specifically 1: 0.66.
  • the negative electrode active material according to an embodiment of the present invention may include a shell surrounding the core and containing natural graphite.
  • the shell may be formed in such a way that the natural graphite is stacked and formed to cover the surface of the core. Specifically, the shell is in the form of completely enclosing the artificial graphite and hard carbon inside the core, the plurality of long piece natural graphite in the shell is laminated in a random direction to cover all of the surface of the core, and consequently the core and shell
  • the negative electrode active material including may be in the form of a sphere.
  • the shell since the shell is formed in a form surrounding the entire core surface so that artificial graphite and hard carbon inside the core are not exposed to the outside of the shell, the hard carbon constituting the core is exposed to the electrolyte solution. Prevent it. Therefore, the secondary battery manufactured using the negative electrode active material of the present invention can realize the effect of showing a high initial efficiency.
  • the natural graphite contained in the shell may include crystalline carbon.
  • the natural graphite has a long average length (L 50 ) of 20 to 30 times that of a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average diameter of the hard carbon.
  • the long piece means a long shape, and specifically, an aspect ratio (length of a long axis / length of a short axis) of natural graphite of the long piece may be 25 to 100.
  • the surface of the core may be completely wrapped so that artificial graphite and hard carbon used as the core cannot come into contact with the outside.
  • the core may not be completely wrapped.
  • the hard carbon is exposed to the electrolyte and exhibits low initial efficiency, and has a length of more than 30 times, the hard carbon is bound to the electrolyte while the long carbons are united together instead of surrounding the hard carbon and the artificial graphite core. The exposure may cause a problem that the initial efficiency is lowered.
  • the diameters of artificial graphite and hard carbon in the core may be about 4 ⁇ m to 7 ⁇ m, and the length of natural graphite in the shell may be 80 ⁇ m to 120 ⁇ m.
  • the artificial graphite and hard carbon can be completely wrapped while several to several tens of pieces of natural graphite are stacked in a random direction on the surface of the core formed by several to several tens of artificial graphite and hard carbon.
  • the thickness of the shell may be a distance from the inner portion of the natural graphite located closest to the center of the core to the outer portion of the natural graphite located farthest.
  • the thickness of the shell may range from 5 ⁇ m to 12 ⁇ m. If the thickness of the shell is less than 5 ⁇ m, there is a high possibility that the hard carbon and electrolyte are in contact with a large amount of electrolyte consumption, and thus there may be a problem of low initial efficiency and a reversible capacity decrease of the battery, and the thickness of the shell is 12 ⁇ m. If it exceeds the problem that the diffusion resistance of lithium ions may increase.
  • the average diameter (D50) of the negative electrode active material of the present invention may be 14 ⁇ m to 25 ⁇ m.
  • the weight ratio of the core and the shell may be included in the range of 1: 0.5 to 1.5, specifically 1: 1.
  • the shell can surround the core and prevent the reaction with the electrolyte, thereby exhibiting excellent initial efficiency.
  • spherical natural graphite having a length of 20 to 30 times with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon is spherical.
  • the long piece of natural graphite is formed in a form surrounding the artificial graphite and hard carbon, and specifically, the plurality of long piece of natural graphite is laminated in a random direction on the surfaces of the plurality of artificial graphite and hard carbon,
  • a negative electrode active material of a core-shell structure in which the surface of is not exposed to the outside can be prepared.
  • the spheronization may be performed through a drum mixer, but dry tumbler, super mixer, Henschel mixer, flash mixer, air blender, flow jet mixer, ribocon mixer, pug mixer, Nauta mixer, ribbon mixer, spartan riser, A ready-mixed mixer, a planetary mixer, a device such as a screw-type kneader, a defoaming kneader, a paint shaker, a press kneader, a kneader such as two rolls, etc. may be used, but the apparatus for spheronization is limited thereto. It is not necessary to select a device capable of mixing two or more materials as appropriate.
  • the drum mixer may be rotated for 120 minutes to 150 minutes at a rotation speed of 700 rpm to 1,000 rpm.
  • the rotation speed of the dream mixer is less than 700 rpm and less than 120 minutes, there is a problem that natural graphite is not spherical in the form of wrapping artificial graphite and hard carbon due to insufficient rotational force, and the rotation speed is 1,000 rpm. If it is performed in excess of 150 minutes, the area of artificial graphite and hard carbon that cannot be wrapped while the natural graphite of the long piece is broken due to excessive rotational force is increased, and thus there is a problem that the initial efficiency is lowered.
  • an embodiment of the present invention provides a negative electrode on which a negative electrode mixture including the negative electrode active material is coated on a negative electrode current collector.
  • the negative electrode may be prepared by mixing a negative electrode mixture including the negative electrode active material of the present invention in an organic solvent to prepare a slurry, and then applying the same to a positive electrode current collector, followed by drying and rolling.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like on the surface of may be used.
  • the negative electrode active material of the present invention completely encapsulates artificial graphite and hard carbon, natural graphite may exhibit low initial efficiency and high initial efficiency and lifetime characteristics because hard carbon having high electrolyte consumption is not exposed to the outside.
  • both natural graphite, artificial graphite, and hard carbon are used, the diffusion resistance of lithium ions is lower than that of natural graphite, resulting in high output characteristics.
  • the negative electrode mixture of the present invention may further include at least one or more of a conductive material, a binder, and a filler in some cases.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the mixture including the negative electrode active material.
  • the binder is not particularly limited as long as the component assists in bonding the active material and the conductive material and bonding to the current collector, and is not particularly limited.
  • the binder may be typically included in an amount of 1 to 30% by weight based on the total weight of the mixture including the negative electrode active material.
  • the filler may be optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material that does not cause chemical change in the battery, for example, an olefin polymer such as polyethylene, polypropylene; Fibrous materials, such as glass fiber and carbon fiber, can be used.
  • an olefin polymer such as polyethylene, polypropylene
  • Fibrous materials such as glass fiber and carbon fiber, can be used.
  • the negative electrode provides a lithium secondary battery comprising the negative electrode of the present invention.
  • the positive electrode may be prepared by a conventional method known in the art, for example, coating a positive electrode active material slurry on a positive electrode current collector, compressing the same, and drying the same.
  • the positive electrode active material slurry may further include a positive electrode active material, and optionally a conductive material, a binder and a filler.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode active material may use a lithium transition metal oxide as a specific example.
  • the lithium transition metal oxide include Li.Co-based composite oxides such as LiCoO 2 , Li.Ni.Co.Mn-based composite oxides such as LiNi x Co y Mn z O 2 , and Li.sub.2 such as LiNiO 2 .
  • Ni-based composite oxide may be mentioned, such as LiMn 2 O 4 of the Li-Mn composite oxide such, may be mixed alone or a plurality of them.
  • the conductive material, the binder and the filler may be the same as or different from those included in the negative electrode mixture.
  • the non-aqueous electrolyte may be composed of an electrolyte and a lithium salt, and a non-aqueous organic solvent may be used as the electrolyte.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate Or an aprotic organic solvent such as ethyl propionate,
  • the lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, lithium phenyl borate, imide and the like can be used. .
  • the negative electrode active material of the present invention has a structure in which the surface of artificial graphite is surrounded by natural graphite as a core / shell structure, the phenomenon of artificial graphite being peeled off by the propylene carbonate electrolyte can be suppressed.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery that is stable and exhibits excellent efficiency and output characteristics, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), And an electric vehicle including a plug-in hybrid electric vehicle (PHEV), or a power storage system.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • Step 1 300 g of flaky artificial graphite having an average length (L 50 ) of a long axis, 200 g of hard carbon having an average diameter (D 50 ) of 4 ⁇ m, and a natural of 100 ⁇ m of an average length (L 50 ) 500 g of graphite was added to a drum mixer, and the mixture was rotated at a speed of 800 rpm for 120 minutes to prepare a negative active material in which artificial graphite and hard carbon were wrapped in natural graphite.
  • a counter electrode was used as lithium metal, and the electrolyte was an electrolyte in which 1 M of LiPF 6 was dissolved in a carbonate solvent.
  • Step 1 of Example 1 except that the average length (L 50 ) of 90 ⁇ m natural graphite was carried out in the same manner as in Example 1 to prepare a coin-type half cell.
  • Step 1 of Example 1 except that the average length (L 50 ) of 50 ⁇ m natural graphite was carried out in the same manner as in Example 1 to prepare a coin-type half cell.
  • Step 1 of Example 1 a coin-type half cell was prepared in the same manner as in Example 1 except that the average length (L 50 ) was 20 ⁇ m of natural graphite.
  • step 1 of Example 1 a coin-type half cell was prepared in the same manner as in Example 1 except that the average length (L 50 ) was 10 ⁇ m of natural graphite.
  • step 1 of Example 1 a coin-type half cell was prepared in the same manner as in Example 1, except that the average length (L 50 ) of 128 ⁇ m of natural graphite was used.
  • Step 1 of Example 1 instead of adding the flaky artificial graphite and hard carbon, the same as in Example 1 except that only the natural graphite having an average length (L 50 ) of 100 ⁇ m in the drum mixer A coin-type half cell was prepared by the above procedure.
  • the negative electrode active material was dispersed in a antacid in a solution of the mixture of the prepared negative electrode active material in the ratio of 95% water, 5% negative electrode active material, and then It was observed with a particle size analyzer (device name: mastersizer3000, company: Malvern Instruments Ltd).
  • Example 1 exhibits an initial efficiency of about 7% higher than that of Comparative Example 3.
  • Comparative Example 4 by using a long piece of natural graphite having a length of more than 30 times the diameter of the hard carbon, it is hard to bundle the long piece of natural graphite to surround the hard carbon and artificial graphite core, It can be seen that carbon is exposed to the electrolyte and the initial efficiency decreases.
  • Example 2 As shown in FIG. 3, at 0.9 V, the voltage of the region corresponding to the irreversible reaction, the highest value of 0.020 dQ / dV in Comparative Example 2, 0.015 dQ / dV in Comparative Example 3, and 0.012 dQ / in Comparative Example 1 dV, Example 2 were found to be 0.009 dQ / dV, and Example 1 was found to be 0.008 dQ / dV. Therefore, in the case of Example 1, it can be seen that the numerical value is about 1/2 times less than the comparative example.
  • Example 1 As shown in FIG. 4, the coin cell of Example 1, in which three carbon materials were mixed and used as a negative electrode active material, was shown to have about 10% higher discharge capacity retention characteristics than Comparative Example 5 using only natural graphite. Can be.

Abstract

The present invention relates to an anode active material and a preparation method therefor and, particularly, to an anode active material comprising: a core including artificial graphite and hard carbon; and a shell encompassing the core and including natural graphite, wherein the shell is formed such that the natural graphite is stacked and structured therein so as to cover the surface of the core. The anode active material according to the present invention enables natural graphite to fully encompass artificial graphite and hard carbon, thereby exhibiting a high initial efficiency and lifespan since hard carbon, which exhibits a low initial efficiency and has high electrolyte consumption, is not exposed to the outside. In addition, since all of the natural graphite, artificial graphite, and hard carbon are used, a high output property can be exhibited due to a low diffusion resistance of lithium ions compared to when only the natural graphite is used.

Description

음극 활물질 및 이를 포함하는 음극Negative active material and negative electrode comprising same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2015년 4월 29일자 한국 특허출원 제10-2015-0060452호 및 2016년 4월 25일자 한국 특허출원 제10-2016-0049966호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0060452 dated April 29, 2015 and Korean Patent Application No. 10-2016-0049966 dated April 25, 2016. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 음극 활물질 및 이를 포함하는 음극에 관한 것이다.The present invention relates to a negative electrode active material and a negative electrode including the same.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy or clean energy is increasing, and the most actively researched fields are power generation and storage using electrochemical reactions.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.A representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing. Recently, as the development and demand for portable devices such as portable computers, portable telephones, cameras, and the like, the demand for secondary batteries is rapidly increasing, and these secondary batteries exhibit high energy density and operating potential, and have a cycle life. Many researches have been conducted on this long, low self-discharge rate lithium battery and are commercially available and widely used.
또한, 환경 문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.In addition, as interest in environmental issues grows, researches on electric vehicles and hybrid electric vehicles, which can replace vehicles using fossil fuel, such as gasoline and diesel vehicles, which are one of the main causes of air pollution, are being conducted. . As a power source of such electric vehicles and hybrid electric vehicles, nickel-metal hydride secondary batteries are mainly used, but researches using lithium secondary batteries with high energy density and discharge voltage have been actively conducted and some commercialization stages are in progress.
종래 전형적인 리튬 이차전지는 음극 활물질로 흑연을 사용하며, 양극의 리튬 이온이 음극으로 삽입되고 탈리되는 과정을 반복하면서 충전과 방전이 진행된다. 전극 활물질의 종류에 따라 전지의 이론 용량은 차이가 있으나, 대체로 사이클이 진행됨에 따라 충전 및 방전 용량이 저하되는 문제점이 발생하게 된다.Conventionally, a typical lithium secondary battery uses graphite as a negative electrode active material, and charging and discharging are performed while repeating a process in which lithium ions of a positive electrode are inserted into and detached from a negative electrode. The theoretical capacity of the battery is different depending on the type of the electrode active material, but as the cycle progresses, the charge and discharge capacity is generally lowered.
한편, 종래 기술로서 인편상 천연흑연 절편들이 표면부에는 양배추상 및 중심부에는 랜덤상으로 결구되어 조립화된 구형화 천연흑연 입자; 및 비정질 또는 준결정질 탄소를 포함하는 구형화 천연흑연 개질 복합입자를 포함하고, 상기 구형화 천연흑연 입자의 표면부에는 초음파 처리에 의한 상기 인편상 천연흑연 절편들 사이의 벌어진 간극이 존재하고, 상기 비정질 또는 준결정질 탄소는 상기 구형화 천연흑연 입자의 표면에 코팅되고, 상기 비정질 또는 준결정질 탄소는 상기 구형화 천연흑연 입자의 표면부에 존재하는 벌어진 간극이 유지되도록 상기 벌어진 간극에 존재하는 리튬 이차 전지용 음극 활물질과, 이의 제조 방법이 제안된 바 있다. On the other hand, as a prior art, spherical natural graphite particles are spherical natural graphite particles assembled in a cabbage phase and a random phase in the center portion of the surface; And spherical natural graphite modified composite particles comprising amorphous or semi-crystalline carbon, wherein a gap between the flaky natural graphite fragments by ultrasonication is present in the surface portion of the spherical natural graphite particles. Amorphous or semicrystalline carbon is coated on the surface of the spherical natural graphite particles, and the amorphous or semicrystalline carbon is present in the gap between the lithium secondary to maintain the gap between the spherical natural graphite particles. A negative electrode active material for a battery and a manufacturing method thereof have been proposed.
하지만, 상기 음극 활물질은 비정질 카본이 외부로 나타나기 때문에 이차전지의 효율이 떨어지며 전해액 소모량이 증가하는 문제점이 있다. However, the anode active material has a problem in that the efficiency of the secondary battery decreases and the amount of electrolyte consumption increases because amorphous carbon appears to the outside.
따라서, 전해액 소모량을 줄이면서도, 높은 초기효율을 나타내며 리튬 이온의 확산 저항이 낮은 음극 활물질의 개발이 요구된다. Accordingly, development of a negative electrode active material which reduces electrolyte consumption and exhibits high initial efficiency and low diffusion resistance of lithium ions is required.
선행기술Prior art
대한민국 등록특허 제10-1430733호Republic of Korea Patent No. 10-1430733
본 발명의 해결하고자 하는 제1 기술적 과제는 전해액 소모량을 줄이면서, 높은 초기효율을 나타내며 리튬 이온의 확산 저항이 낮은 음극 활물질 및 이의 제조 방법을 제공하는 것이다.The first technical problem to be solved by the present invention is to provide a negative electrode active material and a method for producing the same, which exhibits high initial efficiency and low diffusion resistance of lithium ions while reducing electrolyte consumption.
본 발명의 해결하고자 하는 제2 기술적 과제는 상기 음극 활물질을 포함하는 음극을 제공하는 것이다.The second technical problem to be solved of the present invention is to provide a negative electrode including the negative electrode active material.
본 발명의 해결하고자 하는 제3 기술적 과제는 상기 음극을 포함하는 이차전지와, 이를 구비한 전지모듈 및 전지팩을 제공하는 것이다.The third technical problem to be solved of the present invention is to provide a secondary battery including the negative electrode, a battery module and a battery pack having the same.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에서는 인조흑연 및 하드카본을 포함하는 코어; 및 상기 코어를 둘러싸고, 천연흑연을 포함하는 쉘;을 포함하며, 상기 쉘은 상기 천연흑연이 적층되어 결구되어 상기 코어의 표면을 덮도록 형성된 음극 활물질을 제공한다.In order to solve the above problems, an embodiment of the present invention includes a core comprising artificial graphite and hard carbon; And a shell surrounding the core and including natural graphite, wherein the shell provides a negative electrode active material formed so that the natural graphite is laminated and covered to cover the surface of the core.
또한, 본 발명의 일 실시예에서는 인조흑연; 하드카본; 및 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 내지 30 배 긴 평균길이를 갖는 장편상의 천연흑연;을 혼합하여 구형화하는 단계를 포함하는 음극 활물질의 제조방법을 제공한다. In addition, in one embodiment of the present invention; Hard carbon; And spherical natural graphite having an average length of 20 to 30 times longer with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon. It provides a method for producing a negative electrode active material comprising the step.
또한, 본 발명의 일 실시예에서는 음극 집전체 상에 상기 음극 활물질을 포함하는 음극 합제가 도포되어 있는 음극을 제공한다.In addition, an embodiment of the present invention provides a negative electrode on which a negative electrode mixture including the negative electrode active material is coated on a negative electrode current collector.
또한, 본 발명의 일 실시예에서는 상기 음극과 양극 활물질을 포함하는 양극 합제가 도포되어 있는 양극 및 전해액을 포함하는 이차전지를 제공한다.In addition, an embodiment of the present invention provides a secondary battery including a positive electrode and an electrolytic solution coated with a positive electrode mixture including the negative electrode and the positive electrode active material.
또한, 본 발명은 상기 이차전지를 포함하는 전지 모듈 및 전지 팩을 제공한다.The present invention also provides a battery module and a battery pack including the secondary battery.
본 발명에 따른 음극 활물질은 천연흑연이 인조흑연 및 하드카본을 완전히 감싼 구조로 이루어져 있어, 낮은 초기효율을 나타내며 전해액 소모량이 높은 하드카본이 외부에 노출되어 있지 않기 때문에, 높은 초기효율 및 수명 특성을 나타낼 수 있다. The negative electrode active material according to the present invention has a structure in which natural graphite completely surrounds artificial graphite and hard carbon, and thus exhibits low initial efficiency and high initial consumption and life characteristics because hard carbon having high electrolyte consumption is not exposed to the outside. Can be represented.
또한, 음극 활물질 성분으로 천연흑연, 인조흑연 및 하드카본을 모두 사용하기 때문에, 천연흑연만을 사용하는 경우보다 리튬 이온의 확산 저항이 낮아 높은 출력 특성을 나타내는 음극을 제조할 수 있다. In addition, since both natural graphite, artificial graphite, and hard carbon are used as the negative electrode active material component, a negative electrode having high output characteristics may be manufactured because the diffusion resistance of lithium ions is lower than that of only natural graphite.
도 1은 본 발명에 따른 음극 활물질의 구조를 나타낸 모식도이다. 1 is a schematic diagram showing the structure of a negative electrode active material according to the present invention.
도 2는 본 발명의 실험예 1에 따른 초기 효율 측정 결과를 나타낸 그래프이다.2 is a graph showing the initial efficiency measurement results according to Experimental Example 1 of the present invention.
도 3은 본 발명의 실시예 1, 2 및 비교예 1 내지 3에서 제조된 전지의 첫 번째 충전과정에서의 비가역 용량을 측정한 결과 그래프이다. Figure 3 is a graph of the results of measuring the irreversible capacity in the first charging process of the battery prepared in Examples 1, 2 and Comparative Examples 1 to 3 of the present invention.
도 4는 본 발명의 실시예 1 및 비교예 4에서 제조된 전지의 수명특성을 측정한 결과 그래프이다. Figure 4 is a graph of the results of measuring the life characteristics of the batteries prepared in Example 1 and Comparative Example 4 of the present invention.
도 5는 본 발명의 실시예 1 및 비교예 2에서 제조된 전지의 수명특성을 측정한 결과 그래프이다. 5 is a graph showing the results of measuring the life characteristics of the batteries prepared in Example 1 and Comparative Example 2 of the present invention.
부호의 설명Explanation of the sign
1: 인조흑연1: artificial graphite
3: 하드카본3: hard carbon
5: 천연흑연5: natural graphite
10: 음극활물질10: negative electrode active material
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
종래 이차전지의 흑연계 음극재로 사용되고 있는 물질 가운데, 천연흑연은 그래핀간의 면간 거리가 가까워 리튬 이온의 확산 저항이 높다는 문제점이 있고, 하드카본은 전해액 소모량이 많아 전지의 초기 효율이 낮다는 단점이 있다. Among the materials used as the graphite-based negative electrode material of the conventional secondary battery, natural graphite has a problem of high diffusion resistance of lithium ions due to the close distance between graphenes, and hard carbon has a low initial efficiency of the battery due to high electrolyte consumption. There is this.
이에, 본 발명에서는 하드카본이 전해액에 직접적으로 노출되는 것을 방지하여, 전해액 소모량이 적으면서도, 높은 초기효율을 나타내며 리튬 이온의 확산 저항이 낮은 음극 활물질과 이를 포함하는 음극 및 이차전지를 제공하고자 한다. Accordingly, the present invention is to provide a negative active material and a negative electrode and a secondary battery comprising a low carbon electrolyte and a low diffusion resistance of lithium ions while preventing the hard carbon from being directly exposed to the electrolyte, showing a high initial efficiency and low electrolyte consumption .
구체적으로, 본 발명에 따른 음극 활물질의 모식도를 도 1에 나타내었으며, 이를 참조하여 본 발명에 따른 음극 활물질을 상세히 설명한다. Specifically, a schematic diagram of the negative electrode active material according to the present invention is shown in Figure 1, with reference to this will be described in detail the negative electrode active material according to the present invention.
본 발명에 따른 음극 활물질(10)은,The negative electrode active material 10 according to the present invention,
인조흑연(1) 및 하드카본(3)을 포함하는 코어; 및A core comprising artificial graphite (1) and hard carbon (3); And
상기 코어를 둘러싸고, 천연흑연(5)을 포함하는 쉘;을 포함하며,And a shell surrounding the core and comprising natural graphite (5),
상기 쉘은 상기 천연흑연이 적층되어 결구되어 상기 코어의 표면을 덮도록 형성된 음극 활물질일 수 있다. The shell may be a negative electrode active material formed by stacking the natural graphite and covering the surface of the core.
먼저, 상기 본 발명의 음극 활물질에 있어서, 상기 코어에 포함된 인조흑연은 코크스 분말 등을 고온 소성 공정을 거쳐 인공적으로 결정을 발달시킨 결정질 탄소이다. 상기 인조흑연은 그 대표적인 예로 2800℃ 이상에서 열처리한 인조흑연, MCMB(MesoCarbon MicroBeads)를 2000℃ 이상에서 열처리한 흑연화 MCMB, 또는 메소페이즈 피치계 탄소 섬유를 2000℃ 이상에서 열처리한 흑연화 메소페이즈 피치계 탄소 섬유를 포함할 수 있으며, 이에 제한되는 것은 아니다. First, in the negative electrode active material of the present invention, the artificial graphite contained in the core is crystalline carbon in which coke powder or the like is artificially developed crystals through a high temperature baking process. Examples of the artificial graphite are artificial graphite heat treated at 2800 ° C. or higher, graphitized MCMB obtained by heat treating MCMB (MesoCarbon MicroBeads) at 2000 ° C. or higher, or graphitized mesophase heat treated at 2000 ° C. or more with mesophase pitch-based carbon fibers. It may include a pitch-based carbon fiber, but is not limited thereto.
상기 인조흑연의 형태는 비늘의 조각과 같은 모양인 인편상일 수 있으며, 장축의 평균길이(L50)는 5 ㎛ 내지 7 ㎛일 수 있다. The artificial graphite may be in the shape of scales, such as pieces of scales, and the average length L 50 of the long axis may be 5 μm to 7 μm.
상기 인조흑연은 제조과정에서 약 3,000℃에서 열처리를 진행하기 때문에 표면의 관능기(functional group)가 모두 제거된 상태이다. 따라서, 부반응에 의한 비가역 반응이 감소하여 높은 초기효율을 나타내는 특징이 있다. Since the artificial graphite is heat treated at about 3,000 ° C. during the manufacturing process, all functional groups on the surface are removed. Therefore, the irreversible reaction due to side reactions is reduced, thereby exhibiting a high initial efficiency.
본 발명에서는 상기 인조흑연을 음극 활물질의 코어로 사용함으로써, 하드카본과 천연흑연이 상대적으로 낮은 초기효율을 나타내는 단점을 보완해줄 수 있다. In the present invention, by using the artificial graphite as a core of the negative electrode active material, it is possible to supplement the disadvantage that the hard carbon and natural graphite shows a relatively low initial efficiency.
또한, 본 발명의 음극 활물질에 있어서, 상기 코어에 포함된 하드카본은 수크로오스(sucrose), 페놀 수지(phenol resin), 퓨란 수지(furan resin), 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리이미드(polyimide), 에폭시 수지(epoxy resin), 셀룰로오스(cellulose) 및 스티렌(styrene)으로 이루어진 군으로부터 선택된 1종 이상의 탄소질 물질이 탄화된 것을 포함할 수 있으며, 페놀 수지 소성체, 폴리아크릴로니트릴계 탄소 섬유, 유사 등방성 탄소, 푸르푸릴 알코올 수지 소성체(PFA) 등을 들 수 있다. 또한, 상기 하드카본은 비정질 탄소를 포함할 수 있다. In addition, in the negative electrode active material of the present invention, the hard carbon contained in the core is sucrose (sucrose), phenol resin (phenol resin), furan resin (furan resin), furfuryl alcohol (furfuryl alcohol), polyacrylonitrile ( Polyacrylonitrile, polyimide, epoxy resin, cellulose and styrene may include carbonized one or more carbonaceous material selected from the group consisting of phenol resin plastic body, Polyacrylonitrile-based carbon fiber, pseudoisotropic carbon, and furfuryl alcohol resin fired body (PFA). In addition, the hard carbon may include amorphous carbon.
상기 하드카본은 구형의 형태일 수 있고, 상기 하드카본의 평균 직경(D50)은 4 ㎛ 내지 6 ㎛일 수 있다. The hard carbon may have a spherical shape, and the average diameter (D 50 ) of the hard carbon may be 4 μm to 6 μm.
본 발명에서는 상기 하드카본을 음극 활물질의 코어로 사용함으로써 흑연이 갖고 있는 높은 결정성에 의한 리튬 이온 이동의 고체 확산도(solid diffusion)가 낮은 문제점을 극복할 수 있고, 부피 팽창에 대한 완충성이 향상될 수 있다. In the present invention, by using the hard carbon as a core of the negative electrode active material, the problem of low solid diffusion of lithium ion migration due to high crystallinity of graphite can be overcome, and the buffering capacity against volume expansion is improved. Can be.
본 발명의 일 실시예 따른 음극활물질에 있어서, 상기 코어의 평균직경(D50)은 9 ㎛ 내지 13 ㎛일 수 있다. In the negative electrode active material according to an embodiment of the present invention, the average diameter (D 50 ) of the core may be 9 ㎛ to 13 ㎛.
또한, 상기 코어 내에는 총 2 개 내지 4 개 정도의 인조흑연 및 하드카본이 포함될 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 인조흑연 및 하드카본의 중량비는 1: 0.1 내지 1.0, 구체적으로는 1:0.66의 범위일 수 있다. 상기 인조흑연 및 하드카본이 상기 중량비로 포함됨으로써, 높은 리튬 이온 확산도를 가지면서도 접착력이 강하고 부피 팽창에 대한 완충성이 향상된 음극활물질을 구현할 수 있다. In addition, the core may include a total of about 2 to 4 artificial graphite and hard carbon, but is not limited thereto. Specifically, the weight ratio of the artificial graphite and hard carbon may be in the range of 1: 0.1 to 1.0, specifically 1: 0.66. By including the artificial graphite and hard carbon in the weight ratio, it is possible to implement a negative electrode active material having a high lithium ion diffusion degree, strong adhesion and buffering capacity against volume expansion.
또한, 본 발명의 일 실시예에 따른 음극 활물질은 상기 코어를 둘러싸며, 천연흑연을 포함하는 쉘을 포함할 수 있다.In addition, the negative electrode active material according to an embodiment of the present invention may include a shell surrounding the core and containing natural graphite.
상기 쉘은 상기 천연흑연이 적층되어 결구(結球)되어 상기 코어의 표면을 덮도록 형성된 형태일 수 있다. 구체적으로, 상기 쉘은 코어 내부의 인조흑연 및 하드카본을 완전히 둘러싸는 형태이며, 상기 쉘 내의 다수의 장편상의 천연흑연은 코어의 표면을 모두 덮도록 무작위 방향으로 적층되며, 결과적으로 상기 코어 및 쉘을 포함하는 음극 활물질은 구형의 형태가 될 수 있다. 특히, 본 발명의 음극활물질에 있어서 상기 쉘은 코어 내부의 인조흑연 및 하드카본이 쉘의 외부에 노출되지 않도록 코어 표면 전체를 둘러싸는 형태로 이루어져 있기 때문에, 상기 코어를 이루는 하드카본이 전해액에 노출되는 것을 방지한다. 따라서, 본 발명의 음극활물질을 사용하여 제조된 이차전지는 높은 초기효율을 나타내는 효과를 구현할 수 있다. The shell may be formed in such a way that the natural graphite is stacked and formed to cover the surface of the core. Specifically, the shell is in the form of completely enclosing the artificial graphite and hard carbon inside the core, the plurality of long piece natural graphite in the shell is laminated in a random direction to cover all of the surface of the core, and consequently the core and shell The negative electrode active material including may be in the form of a sphere. In particular, in the negative electrode active material of the present invention, since the shell is formed in a form surrounding the entire core surface so that artificial graphite and hard carbon inside the core are not exposed to the outside of the shell, the hard carbon constituting the core is exposed to the electrolyte solution. Prevent it. Therefore, the secondary battery manufactured using the negative electrode active material of the present invention can realize the effect of showing a high initial efficiency.
이때, 상기 쉘에 포함된 천연흑연은 결정형 탄소를 포함할 수 있다. In this case, the natural graphite contained in the shell may include crystalline carbon.
특히, 상기 천연흑연은 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 내지 30 배의 긴 평균길이(L50)를 갖는 장편상의 천연흑연일 수 있다. 상기 장편상이란, 길이가 긴 형태를 의미하며, 구체적으로, 장편상의 천연흑연의 종횡비(aspect ratio, 장축의 길이/단축의 길이)는 25 내지 100일 수 있다. 상기와 같은 길이의 천연흑연을 사용하는 경우에 코어로 사용된 인조흑연 및 하드카본이 외부와 접촉할 수 없도록 코어 표면을 완전히 감쌀 수 있다. 만약, 상기 천연흑연의 평균길이가, 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 미만인 경우에는 코어를 완전히 감싸지 못하기 때문에, 하드카본이 전해액에 노출되어 낮은 초기효율을 나타내는 문제점이 있고, 30 배를 초과하는 길이를 갖는 경우에는 하드카본과 인조흑연 코어를 둘러싸는 대신 장편상의 천연흑연끼리 뭉치면서, 하드카본이 전해액에 노출되기 때문에 초기 효율이 저하되는 문제점이 발생할 수 있다. Particularly, the natural graphite has a long average length (L 50 ) of 20 to 30 times that of a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average diameter of the hard carbon. Natural graphite. The long piece means a long shape, and specifically, an aspect ratio (length of a long axis / length of a short axis) of natural graphite of the long piece may be 25 to 100. In the case of using natural graphite of the above length, the surface of the core may be completely wrapped so that artificial graphite and hard carbon used as the core cannot come into contact with the outside. If the average length of the natural graphite is less than 20 times with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon, the core may not be completely wrapped. In the case where the hard carbon is exposed to the electrolyte and exhibits low initial efficiency, and has a length of more than 30 times, the hard carbon is bound to the electrolyte while the long carbons are united together instead of surrounding the hard carbon and the artificial graphite core. The exposure may cause a problem that the initial efficiency is lowered.
구체적으로, 본 발명의 음극활물질의 경우, 코어 내의 인조흑연 및 하드카본의 직경은 약 4 ㎛ 내지 7 ㎛ 이며, 쉘 내의 천연흑연의 길이는 80 ㎛ 내지 120 ㎛ 일 수 있다. 이때, 수 내지 수십 개의 인조흑연 및 하드카본이 형성한 코어의 표면 위로, 수 내지 수십 개의 장편의 천연흑연이 무작위 방향으로 적층되면서, 인조흑연 및 하드카본을 완전히 감쌀 수 있다. Specifically, in the case of the negative electrode active material of the present invention, the diameters of artificial graphite and hard carbon in the core may be about 4 μm to 7 μm, and the length of natural graphite in the shell may be 80 μm to 120 μm. At this time, the artificial graphite and hard carbon can be completely wrapped while several to several tens of pieces of natural graphite are stacked in a random direction on the surface of the core formed by several to several tens of artificial graphite and hard carbon.
또한, 본 발명의 음극활물질에 있어서, 상기 쉘의 두께는 코어의 중심으로부터 가장 가까운 곳에 위치하는 천연흑연의 내측부에서부터, 가장 먼 곳에 위치하는 천연흑연의 외측부까지의 거리일 수 있다. In addition, in the negative electrode active material of the present invention, the thickness of the shell may be a distance from the inner portion of the natural graphite located closest to the center of the core to the outer portion of the natural graphite located farthest.
구체적으로, 상기 쉘의 두께는 5 ㎛ 내지 12 ㎛의 범위일 수 있다. 만약, 상기 쉘의 두께가 5 ㎛ 미만인 경우에는 전해액 소모량이 많은 하드카본과 전해액이 접촉할 가능성이 크므로 전지의 낮은 초기효율 및 가역용량 저하의 문제점이 있을 수 있고, 상기 쉘의 두께가 12 ㎛를 초과하는 경우에는 리튬 이온의 확산 저항이 커지는 문제점이 발생할 수 있다. Specifically, the thickness of the shell may range from 5 μm to 12 μm. If the thickness of the shell is less than 5 μm, there is a high possibility that the hard carbon and electrolyte are in contact with a large amount of electrolyte consumption, and thus there may be a problem of low initial efficiency and a reversible capacity decrease of the battery, and the thickness of the shell is 12 μm. If it exceeds the problem that the diffusion resistance of lithium ions may increase.
상기 본 발명의 음극 활물질의 평균직경(D50)은 14 ㎛ 내지 25 ㎛일 수 있다.The average diameter (D50) of the negative electrode active material of the present invention may be 14 ㎛ to 25 ㎛.
상기 본 발명의 음극활물질에 있어서, 상기 코어 및 쉘의 중량비는 1: 0.5 내지 1.5, 구체적으로는 1:1의 범위로 포함될 수 있다. 상기 중량비를 만족함으로써 코어의 높은 리튬 이온 확산도를 나타내면서도 쉘이 코어를 감싸 전해액과의 반응을 막을 수 있기 때문에 우수한 초기 효율을 나타낼 수 있다. In the negative electrode active material of the present invention, the weight ratio of the core and the shell may be included in the range of 1: 0.5 to 1.5, specifically 1: 1. By satisfying the weight ratio, while exhibiting a high lithium ion diffusion degree of the core, the shell can surround the core and prevent the reaction with the electrolyte, thereby exhibiting excellent initial efficiency.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
인조흑연; 하드카본; 및 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 내지 30 배의 긴 평균길이를 갖는 장편상의 천연흑연;을 혼합하여 구형화하는 단계를 포함하는 음극 활물질의 제조방법을 제공한다. Artificial graphite; Hard carbon; And a long piece of natural graphite having an average length of 20 to 30 times longer with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon. It provides a method for producing a negative electrode active material comprising the step of.
본 발명과 같이 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 내지 30 배의 길이를 갖는 장편상의 천연흑연을 함께 혼합하여 구형화하면, 장편상의 천연흑연이 인조흑연과 하드카본을 둘러싸는 형태로 결구되며, 구체적으로는 다수개의 장편상의 천연흑연은, 다수개의 인조흑연 및 하드카본의 표면 상에 무작위 방향으로 적층되어, 코어의 표면이 외부에 노출되지 않는 형태의 코어-쉘 구조의 음극 활물질이 제조될 수 있다. As in the present invention, spherical natural graphite having a length of 20 to 30 times with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon is spherical. In this case, the long piece of natural graphite is formed in a form surrounding the artificial graphite and hard carbon, and specifically, the plurality of long piece of natural graphite is laminated in a random direction on the surfaces of the plurality of artificial graphite and hard carbon, A negative electrode active material of a core-shell structure in which the surface of is not exposed to the outside can be prepared.
한편, 상기 구형화는 드럼 믹서를 통해 수행될 수 있으나, 건식 텀블러, 슈퍼 믹서, 헨셸 믹서, 플래시 믹서, 에어 블렌더, 플로우 제트 믹서, 리보콘 믹서, 퍼그 믹서, 나우타 믹서, 리본 믹서, 스파르탄 류저, 레디게 믹서, 플래너터리 믹서를 들 수 있고, 스크루형 니더, 탈포 니더, 페인트 쉐이커 등의 장치, 가압 니더, 2 개 롤 등의 혼련기 등을 사용할 수 있으나, 상기 구형화를 위한 장치가 이에 제한되는 것은 아니며, 2종 이상의 물질을 혼합할 수 있는 장치를 적절히 선택하여 사용할 수 있다. On the other hand, the spheronization may be performed through a drum mixer, but dry tumbler, super mixer, Henschel mixer, flash mixer, air blender, flow jet mixer, ribocon mixer, pug mixer, Nauta mixer, ribbon mixer, spartan riser, A ready-mixed mixer, a planetary mixer, a device such as a screw-type kneader, a defoaming kneader, a paint shaker, a press kneader, a kneader such as two rolls, etc. may be used, but the apparatus for spheronization is limited thereto. It is not necessary to select a device capable of mixing two or more materials as appropriate.
이때, 상기 드럼 믹서는 700 rpm 내지 1,000 rpm의 회전속도로 120 분 내지 150 분 동안 회전하는 것일 수 있다. In this case, the drum mixer may be rotated for 120 minutes to 150 minutes at a rotation speed of 700 rpm to 1,000 rpm.
만약, 상기 드림 믹서의 회전 속도가 700 rpm 미만, 120 분 미만으로 수행되는 경우에는 회전력이 부족하여 천연흑연이 인조흑연 및 하드카본을 감싸는 형태로 구형화되지 못하는 문제점이 있고, 회전 속도가 1,000 rpm 초과, 150 분 초과로 수행되는 경우에는 과도한 회전력으로 인해 장편의 천연흑연이 끊어지면서 감싸지 못하는 인조흑연 및 하드카본의 면적이 증가하게 되므로, 초기효율이 저하되는 문제점이 있다. If the rotation speed of the dream mixer is less than 700 rpm and less than 120 minutes, there is a problem that natural graphite is not spherical in the form of wrapping artificial graphite and hard carbon due to insufficient rotational force, and the rotation speed is 1,000 rpm. If it is performed in excess of 150 minutes, the area of artificial graphite and hard carbon that cannot be wrapped while the natural graphite of the long piece is broken due to excessive rotational force is increased, and thus there is a problem that the initial efficiency is lowered.
또한, 본 발명의 일 실시예에서는 음극 집전체 상에 상기 음극 활물질을 포함하는 음극 합제가 도포되어 있는 음극을 제공한다. In addition, an embodiment of the present invention provides a negative electrode on which a negative electrode mixture including the negative electrode active material is coated on a negative electrode current collector.
구체적으로, 상기 음극은 본 발명의 음극 활물질을 포함하는 음극 합제를 유기 용매에 혼합하여 슬러리를 제조한 다음, 이를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조할 수 있다.Specifically, the negative electrode may be prepared by mixing a negative electrode mixture including the negative electrode active material of the present invention in an organic solvent to prepare a slurry, and then applying the same to a positive electrode current collector, followed by drying and rolling.
이때, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. In this case, the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like on the surface of may be used.
상기 본 발명의 음극 활물질은 천연흑연이 인조흑연 및 하드카본을 완전히 감싸고 있으므로, 낮은 초기효율을 나타내며 전해액 소모량이 높은 하드카본이 외부에 노출되어 있지 않기 때문에 높은 초기효율 및 수명 특성을 나타낼 수 있다. 또한, 천연흑연, 인조흑연 및 하드카본을 모두 사용하기 때문에, 천연흑연을 사용하는 경우보다 리튬 이온의 확산 저항이 낮아 높은 출력 특성을 나타내는 효과가 있다.Since the negative electrode active material of the present invention completely encapsulates artificial graphite and hard carbon, natural graphite may exhibit low initial efficiency and high initial efficiency and lifetime characteristics because hard carbon having high electrolyte consumption is not exposed to the outside. In addition, since both natural graphite, artificial graphite, and hard carbon are used, the diffusion resistance of lithium ions is lower than that of natural graphite, resulting in high output characteristics.
한편, 본 발명의 음극 합제는 경우에 따라서 도전재, 바인더 및 충진제 중 적어도 하나 이상을 추가로 포함할 수 있다.Meanwhile, the negative electrode mixture of the present invention may further include at least one or more of a conductive material, a binder, and a filler in some cases.
상기 도전재는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들어 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 써멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 도전재는 통상적으로 음극활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다. The conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the mixture including the negative electrode active material.
상기 바인더는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is not particularly limited as long as the component assists in bonding the active material and the conductive material and bonding to the current collector, and is not particularly limited. For example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxide Roxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluorine rubber, various airborne Coalescence, etc. are mentioned.
상기 바인더는 통상적으로 음극활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다.The binder may be typically included in an amount of 1 to 30% by weight based on the total weight of the mixture including the negative electrode active material.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용될 수 있으며, 당해 전지에 화학적 변화를 유발하지 않는 섬유상 재료라면 특별히 제한되지 않으며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용될 수 있다. The filler may be optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material that does not cause chemical change in the battery, for example, an olefin polymer such as polyethylene, polypropylene; Fibrous materials, such as glass fiber and carbon fiber, can be used.
또한, 본 발명의 일 실시예에서는 In addition, in one embodiment of the present invention
양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막, 및 비수성 전해액을 포함하며, 상기 음극은 본 발명의 음극을 포함하는 리튬 이차전지를 제공한다.It includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, the negative electrode provides a lithium secondary battery comprising the negative electrode of the present invention.
상기 양극은 당 분야에 알려져 있는 통상적인 방법, 예를 들면, 양극활물질 슬러리를 양극 집전체에 코팅하고 압축한 뒤 건조하는 단계에 의해 제조될 수 있다.The positive electrode may be prepared by a conventional method known in the art, for example, coating a positive electrode active material slurry on a positive electrode current collector, compressing the same, and drying the same.
이때, 상기 양극활물질 슬러리는 양극활물질과, 선택적으로 도전재, 바인더 및 충진제 등을 추가로 포함할 수 있다.In this case, the positive electrode active material slurry may further include a positive electrode active material, and optionally a conductive material, a binder and a filler.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
또한, 상기 양극 활물질은 그 구체적인 예로서 리튬 전이금속 산화물을 사용할 수 있다. 상기 리튬 전이금속 산화물로는, 예를 들면, LiCoO2 등의 LiㆍCo계 복합 산화물, LiNixCoyMnzO2 등의 LiㆍNiㆍCoㆍMn계 복합 산화물, LiNiO2 등의 LiㆍNi계 복합 산화물, LiMn2O4 등의 LiㆍMn계 복합 산화물 등을 들 수 있고, 이들을 단독 또는 복수 개 혼합하여 사용할 수 있다.In addition, the positive electrode active material may use a lithium transition metal oxide as a specific example. Examples of the lithium transition metal oxide include Li.Co-based composite oxides such as LiCoO 2 , Li.Ni.Co.Mn-based composite oxides such as LiNi x Co y Mn z O 2 , and Li.sub.2 such as LiNiO 2 . Ni-based composite oxide may be mentioned, such as LiMn 2 O 4 of the Li-Mn composite oxide such, may be mixed alone or a plurality of them.
상기 도전재, 바인더 및 충진제 등은 상기 음극 합제에 포함되는 것과 동일하거나, 상이한 것이 사용될 수 있다. The conductive material, the binder and the filler may be the same as or different from those included in the negative electrode mixture.
상기 비수성 전해액은 전해액과 리튬염으로 이루어질 수 있으며, 상기 전해액으로는 비수계 유기용매 등이 사용된다.The non-aqueous electrolyte may be composed of an electrolyte and a lithium salt, and a non-aqueous organic solvent may be used as the electrolyte.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 또는 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.As the non-aqueous organic solvent, for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate Or an aprotic organic solvent such as ethyl propionate can be used.
상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, lithium phenyl borate, imide and the like can be used. .
특히, 종래 이차전지의 비수성 전해액으로 프로필렌 카보네이트(PC)를 사용하는 경우, 음극활물질에 사용된 인조흑연은 박리(exfoliation) 문제가 발생할 수 있다. 하지만, 본원 발명의 음극활물질은 코어/쉘 구조로서 인조흑연의 표면을 천연흑연으로 감싸는 구조로 이루어졌기 때문에, 인조흑연이 프로필렌 카보네이트 전해액에 의해 박리되는 현상을 억제할 수 있다.In particular, when using propylene carbonate (PC) as the non-aqueous electrolyte of the conventional secondary battery, artificial graphite used in the negative electrode active material may cause an exfoliation problem. However, since the negative electrode active material of the present invention has a structure in which the surface of artificial graphite is surrounded by natural graphite as a core / shell structure, the phenomenon of artificial graphite being peeled off by the propylene carbonate electrolyte can be suppressed.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다. 상기 전지 모듈 및 전지팩은 안정하면서도 우수한 효율 및 출력특성을 나타내는 상기 이차전지를 포함하므로, 파워 툴(Power Tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차, 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다. Further, according to another embodiment of the present invention, a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery that is stable and exhibits excellent efficiency and output characteristics, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), And an electric vehicle including a plug-in hybrid electric vehicle (PHEV), or a power storage system.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예Example
실시예Example 1. One.
(단계 1) 장축의 평균길이(L50)가 6 ㎛인 인편상 인조흑연 300 g과, 평균직경(D50)이 4 ㎛인 하드카본 200 g 및 평균길이(L50)가 100 ㎛인 천연흑연 500 g을 드럼 믹서에 투입하고, 800 rpm의 속도로 120 분간 회전시키며 혼합하여 인조흑연 및 하드카본을 천연흑연이 감싼 형태의 음극 활물질을 제조하였다.(Step 1) 300 g of flaky artificial graphite having an average length (L 50 ) of a long axis, 200 g of hard carbon having an average diameter (D 50 ) of 4 μm, and a natural of 100 μm of an average length (L 50 ) 500 g of graphite was added to a drum mixer, and the mixture was rotated at a speed of 800 rpm for 120 minutes to prepare a negative active material in which artificial graphite and hard carbon were wrapped in natural graphite.
(단계 2) 상기 단계 2에서 제조된 음극 활물질을, 음극 활물질 : SBR : CMC = 97.0 : 1.5 : 1.5의 중량비가 되도록 하여 음극 합제를 제조한 후, 상기 음극 합제를 구리 호일 상에 코팅한 후, 건조 및 압연하여 코인형 하프 셀(half coin cell)을 제조하였다. 상기 셀에서 대극(counter electrode)은 리튬 금속을 사용하였고, 전해액은 카보네이트 용매에 LiPF6가 1M 녹아있는 전해액을 사용하였다.(Step 2) After preparing the negative electrode mixture by the negative electrode active material prepared in step 2 to a weight ratio of negative electrode active material: SBR: CMC = 97.0: 1.5: 1.5, after coating the negative electrode mixture on a copper foil, Drying and rolling to produce a coin type half cell (half coin cell). In the cell, a counter electrode was used as lithium metal, and the electrolyte was an electrolyte in which 1 M of LiPF 6 was dissolved in a carbonate solvent.
실시예Example 2. 2.
상기 실시예 1의 단계 1에서, 평균길이(L50)가 90 ㎛의 천연흑연을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코인형 하프 셀을 제조하였다. In Step 1 of Example 1, except that the average length (L 50 ) of 90 ㎛ natural graphite was carried out in the same manner as in Example 1 to prepare a coin-type half cell.
비교예Comparative example 1. One.
상기 실시예 1의 단계 1에서, 평균길이(L50)가 50 ㎛의 천연흑연을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코인형 하프 셀을 제조하였다. In Step 1 of Example 1, except that the average length (L 50 ) of 50 ㎛ natural graphite was carried out in the same manner as in Example 1 to prepare a coin-type half cell.
비교예Comparative example 2. 2.
상기 실시예 1의 단계 1에서, 평균길이(L50)가 20 ㎛의 천연흑연을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코인형 하프 셀을 제조하였다. In Step 1 of Example 1, a coin-type half cell was prepared in the same manner as in Example 1 except that the average length (L 50 ) was 20 μm of natural graphite.
비교예Comparative example 3. 3.
상기 실시예 1의 단계 1에서, 평균길이(L50)가 10 ㎛의 천연흑연을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코인형 하프 셀을 제조하였다. In step 1 of Example 1, a coin-type half cell was prepared in the same manner as in Example 1 except that the average length (L 50 ) was 10 μm of natural graphite.
비교예Comparative example 4. 4.
상기 실시예 1의 단계 1에서, 평균길이(L50)가 128 ㎛의 천연흑연을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코인형 하프 셀을 제조하였다.In step 1 of Example 1, a coin-type half cell was prepared in the same manner as in Example 1, except that the average length (L 50 ) of 128 μm of natural graphite was used.
비교예Comparative example 5. 5.
상기 실시예 1의 단계 1에서, 인편상 인조흑연과 하드카본을 투입하는 대신, 평균길이(L50)가 100 ㎛의 천연흑연만을 드럼 믹서에 투입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코인형 하프 셀을 제조하였다. In Step 1 of Example 1, instead of adding the flaky artificial graphite and hard carbon, the same as in Example 1 except that only the natural graphite having an average length (L 50 ) of 100 ㎛ in the drum mixer A coin-type half cell was prepared by the above procedure.
실험예Experimental Example
실험예Experimental Example 1. 음극 활물질의 형태 관찰 1. Observation of the form of the negative electrode active material
상기 실시예 1의 단계 1에서 제조된 음극 활물질의 형태를 관찰하기 위하여, 제조된 음극 활물질을 물 95 %, 음극 활물질 5 %의 비율로 혼합한 용액에 제산제를 넣어 음극 활물질을 분산시킨 후, 마이크로 입도 분석기(기기명: mastersizer3000, 업체: Malvern Instruments Ltd)로 관찰하였다. In order to observe the form of the negative electrode active material prepared in step 1 of Example 1, the negative electrode active material was dispersed in a antacid in a solution of the mixture of the prepared negative electrode active material in the ratio of 95% water, 5% negative electrode active material, and then It was observed with a particle size analyzer (device name: mastersizer3000, company: Malvern Instruments Ltd).
관찰한 결과, 16 ㎛ 내지 20 ㎛ 범위의 직경을 갖는 구형의 음극 활물질이 제조됨을 알 수 있다. As a result, it can be seen that a spherical negative electrode active material having a diameter ranging from 16 μm to 20 μm is produced.
실험예Experimental Example 2. 초기효율 측정 2. Initial efficiency measurement
상기 실시에 1, 2, 비교예 1 내지 4에서 제조된 코인형 하프 셀의 초기효율을 측정하고, 그 결과를 표 1에 나타내었다. 초기효율은, 구체적으로, 충전 시 0.1 C의 전류밀도로 5 mV까지 CC 모드 충전 후, CV 모드로 5 mV로 일정하게 유지시켜 전류 밀도가 0.005 C가 되면 충전을 완료하였다. 방전 시 0.1 C의 전류밀도로 1.5 V까지 CC 모드로 방전을 완료하여 초기효율을 얻었다. 그 결과를 하기 표 1 및 도 2에 나타내었다.Initial efficiency of the coin-type half cells prepared in Examples 1 and 2 and Comparative Examples 1 to 4 was measured, and the results are shown in Table 1. Specifically, the initial efficiency, after charging the CC mode to 5 mV at a current density of 0.1 C at the time of charging, and maintained constant at 5 mV in CV mode to complete the charging when the current density is 0.005 C. The initial efficiency was obtained by completing the discharge in CC mode to 1.5 V with a current density of 0.1 C during discharge. The results are shown in Table 1 and FIG. 2.
하드카본평균직경(㎛)Hard Carbon Average Diameter (㎛) 천연흑연평균길이(㎛)Natural Graphite Average Length (㎛) 하드카본의 평균직경 : 천연흑연의 평균길이의 비율Average diameter of hard carbon: ratio of average length of natural graphite 초기효율(%)Initial Efficiency (%)
실시예 1Example 1 4 4 100 100 1:251:25 92.292.2
실시예 2Example 2 44 9090 1:22.51: 22.5 91.391.3
비교예 1Comparative Example 1 44 5050 1:12.51: 12.5 88.988.9
비교예 2Comparative Example 2 44 2020 1:51: 5 86.186.1
비교예 3Comparative Example 3 44 1010 1:2.51: 2.5 85.385.3
비교예 4Comparative Example 4 44 128128 1:321:32 87.887.8
상기 표 1에 나타낸 바와 같이, 실시예 1 및 2의 경우 약 91 내지 92 %의 초기효율을 나타내지만, 비교예 1 내지 4의 경우 약 85 내지 89 %의 초기효율을 나타내는 것을 알 수 있다. 특히, 비교예 3에 비해 실시예 1이 약 7 % 높은 초기효율을 나타냄을 알 수 있다. As shown in Table 1, Examples 1 and 2 shows an initial efficiency of about 91 to 92%, whereas Comparative Examples 1 to 4 shows an initial efficiency of about 85 to 89%. In particular, it can be seen that Example 1 exhibits an initial efficiency of about 7% higher than that of Comparative Example 3.
이를 통해, 실시예 1 및 2와 같이 상대적으로 작은 하드카본의 직경에 대하여 20배 내지 30배 긴 길이를 갖는 장편상의 천연흑연을 사용하면, 하드카본의 직경에 대하여 20배 미만의 길이를 갖는 장편상의 천연흑연을 사용한 비교예 1 내지 3과 달리, 코어 내부의 인조흑연 및 하드카본을 모두 감쌀 수 있기 때문에, 통상적인 천연흑연의 초기효율인 90%를 상회하는 효율을 나타냄을 알 수 있고, 비교예 1 내지 3은 짧은 길이의 천연흑연을 사용하여 코어를 빈틈없이 감싸지 못하기 때문에 하드카본이 전해액에 직접 노출되어 소모되므로 통상적인 하드카본의 낮은 초기효율을 나타냄을 알 수 있다. Through this, when using a long piece of natural graphite having a length of 20 to 30 times longer than the diameter of a relatively small hard carbon as in Examples 1 and 2, the long piece having a length of less than 20 times the diameter of the hard carbon Unlike Comparative Examples 1 to 3 using natural graphite on the phase, since both artificial graphite and hard carbon inside the core can be wrapped, it can be seen that the efficiency is higher than 90%, which is the initial efficiency of conventional natural graphite. It can be seen that Examples 1 to 3 show a low initial efficiency of conventional hard carbon because hard carbon is directly exposed to the electrolyte because the core is not tightly wrapped using natural graphite of short length.
한편, 비교예 4의 경우, 하드카본의 직경에 대하여 30배 초과한 길이를 갖는 장편상의 천연흑연을 사용함으로써, 장편의 천연흑연끼리 뭉치면서 하드카본과 인조흑연 코어를 둘러싸지 못하기 때문에, 하드카본이 전해액에 노출되어 초기 효율이 감소하는 것을 알 수 있다.On the other hand, in the case of Comparative Example 4, by using a long piece of natural graphite having a length of more than 30 times the diameter of the hard carbon, it is hard to bundle the long piece of natural graphite to surround the hard carbon and artificial graphite core, It can be seen that carbon is exposed to the electrolyte and the initial efficiency decreases.
실험예Experimental Example 3.  3. 비가역Irreversible 용량 측정 Capacity measurement
상기 실시예 1, 2 및 비교예 1 내지 3에서 제조된 코인형 하프 셀의 첫 번째 충전 과정에서의 비가역 용량을 측정하고, 그 결과를 도 3에 나타내었다.The irreversible capacity during the first charging process of the coin-type half cells prepared in Examples 1 and 2 and Comparative Examples 1 to 3 was measured, and the results are shown in FIG. 3.
구체적으로, 충전 시 0.1 C의 전류밀도로 5 mV까지 CC 모드 충전 후, CV 모드로 5 mV로 일정하게 유지시켜 전류 밀도가 0.005 C가 되면 충전을 완료하였다. 방전 시 0.1 C의 전류밀도로 1.5 V까지 CC 모드로 방전을 완료하여 비가역 영역의 그래프를 얻었다. Specifically, after charging CC mode up to 5 mV at a current density of 0.1 C during charging, charging was continued at 5 mV in CV mode to complete charging when the current density became 0.005 C. The discharge was completed in the CC mode to 1.5 V at a current density of 0.1 C during the discharge to obtain a graph of the irreversible region.
도 3에 나타낸 바와 같이, 비가역 반응에 해당하는 영역의 전압인 0.9 V 지점에서, 비교예 2의 경우 0.020 dQ/dV로 가장 높고, 비교예 3은 0.015 dQ/dV, 비교예 1은 0.012 dQ/dV, 실시예 2는 0.009 dQ/dV, 실시예 1의 경우는 0.008 dQ/dV로 나타났다. 따라서, 실시예 1의 경우, 비교예보다 약 1/2 배 가량 적은 수치가 나타나는 것을 알 수 있다.As shown in FIG. 3, at 0.9 V, the voltage of the region corresponding to the irreversible reaction, the highest value of 0.020 dQ / dV in Comparative Example 2, 0.015 dQ / dV in Comparative Example 3, and 0.012 dQ / in Comparative Example 1 dV, Example 2 were found to be 0.009 dQ / dV, and Example 1 was found to be 0.008 dQ / dV. Therefore, in the case of Example 1, it can be seen that the numerical value is about 1/2 times less than the comparative example.
이를 통해, 실시예 1 및 2와 같이 코어의 인조흑연 및 하드카본 입자들에 비해 20 배 내지 30 배 가량 길이가 긴 천연흑연을 사용하면, 단편의 천연흑연을 사용할 때와 달리 코어 내부의 하드카본을 모두 감쌀 수 있기 때문에, 하드카본과 전해액의 반응을 막을 수 있으므로 높은 가역용량을 나타낼 수 있음을 알 수 있다. As a result, when using natural graphite having a length of 20 to 30 times longer than artificial graphite and hard carbon particles of the core, as in Examples 1 and 2, unlike the case of using natural graphite of the fragment, hard carbon inside the core Since it can be wrapped all, it can be seen that it can exhibit a high reversible capacity because it can prevent the reaction of the hard carbon and the electrolyte.
실험예Experimental Example 4. 수명 특성 관찰 4. Observe the life characteristics
상기 실시예 1 및 비교예 2, 5에서 제조된 코인형 하프 셀의 충방전을 통한 수명 특성을 측정하고, 그 결과를 도 4 및 도 5에 나타내었다.The lifetime characteristics through charge and discharge of the coin-type half cells prepared in Example 1 and Comparative Examples 2 and 5 were measured, and the results are shown in FIGS. 4 and 5.
구체적으로, 충전 시 0.1 C의 전류밀도로 5 mV까지 CC 모드 충전 후, CV 모드로 5 mV로 일정하게 유지시켜 전류 밀도가 0.005 C가 되면 충전을 완료하였다. 방전 시 0.1 C의 전류밀도로 1.5 V까지 CC 모드로 방전을 완료하였다. 이후, 전류 밀도만 0.5 C로 변경하고 나머지는 위와 같은 조건으로 충방전을 160 회 반복하였다. Specifically, after charging CC mode up to 5 mV at a current density of 0.1 C during charging, charging was continued at 5 mV in CV mode to complete charging when the current density became 0.005 C. The discharge was completed in CC mode to 1.5 V at a current density of 0.1 C during discharge. Thereafter, only the current density was changed to 0.5 C, and the remaining charge and discharge were repeated 160 times under the above conditions.
도 4에 나타낸 바와 같이, 천연흑연만 사용한 비교예 5 보다, 3종의 탄소계 물질을 혼합하여 음극 활물질로 사용한 실시예 1의 코인 셀의 경우가 방전용량 유지 특성이 약 10 % 높게 나타남을 알 수 있다. As shown in FIG. 4, the coin cell of Example 1, in which three carbon materials were mixed and used as a negative electrode active material, was shown to have about 10% higher discharge capacity retention characteristics than Comparative Example 5 using only natural graphite. Can be.
또한, 도 5에 나타낸 바와 같이, 같은 3종의 탄소계 물질을 혼합하더라도, 하드카본에 비해 20배 이상의 길이를 갖는 천연흑연을 사용하는 실시예 1의 코인 셀의 경우, 상대적으로 단편의 길이를 갖는 천연흑연을 사용한 비교예 2의 코인 셀의 경우보다 약 5 % 가량 방전용량 유지 특성이 우수하게 나타남을 알 수 있다. In addition, as shown in Figure 5, even if the same three kinds of carbon-based material is mixed, in the case of the coin cell of Example 1 using natural graphite having a length of 20 times or more than the hard carbon, the length of the fragment relatively It can be seen that the discharge capacity retention characteristics of about 5% are superior to those of the coin cell of Comparative Example 2 using natural graphite having.
이를 통해, 천연흑연만을 음극 활물질로 사용하는 것보다 인조흑연, 하드카본을 더욱 첨가하여 사용하는 경우, 리튬 이온의 확산에 대한 저항도가 낮아져서 수명특성이 개선된 이차전지를 제조할 수 있음을 알 수 있고, 3종의 탄소계 물질을 혼합하여 사용하는 경우에도, 천연흑연의 길이가 특히 인조흑연과, 하드카본을 빈틈없이 감쌀 수 있을 만큼 긴 경우에는 하드카본과 전해액간의 접촉으로 인한 전해액과의 반응을 줄일 수 있기 때문에, 단편의 천연흑연을 사용할 때보다 더욱 우수한 수명 특성을 나타낼 수 있음을 알 수 있다. As a result, when artificial graphite and hard carbon are further added than natural graphite only as a negative electrode active material, it can be seen that a secondary battery having improved life characteristics can be manufactured by lowering resistance to diffusion of lithium ions. Even when the three kinds of carbon-based materials are mixed and used, when the length of natural graphite is particularly long enough to completely wrap the hard carbon and the hard carbon, the electrolyte may be caused by the contact between the hard carbon and the electrolyte. Since the reaction can be reduced, it can be seen that it can exhibit better life characteristics than when using the natural graphite of the fragment.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니며, 이하의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.

Claims (18)

  1. 인조흑연 및 하드카본을 포함하는 코어; 및A core comprising artificial graphite and hard carbon; And
    상기 코어를 둘러싸고, 천연흑연을 포함하는 쉘;을 포함하며,And a shell surrounding the core and including natural graphite.
    상기 쉘은 상기 천연흑연이 적층되어 결구되어 상기 코어의 표면을 덮도록 형성된 이차전지용 음극 활물질. The shell is a negative active material for a secondary battery formed so that the natural graphite is laminated and covered to cover the surface of the core.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 천연흑연은, 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 내지 30 배 긴 평균길이를 갖는 장편상의 천연흑연인 것인 이차전지용 음극 활물질. The natural graphite is a long piece of natural graphite having an average length of 20 to 30 times longer with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon. Anode active material for secondary battery.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 하드카본의 직경은 4 ㎛ 내지 7 ㎛이며, 상기 천연흑연의 길이는 80 ㎛ 내지 120 ㎛인 것인 이차전지용 음극 활물질. The hard carbon has a diameter of 4 μm to 7 μm, and the length of the natural graphite is 80 μm to 120 μm.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 코어의 직경은 9 ㎛ 내지 13 ㎛, 상기 쉘의 두께는 5 ㎛ 내지 12 ㎛인 것인 이차전지용 음극 활물질. The diameter of the core is 9 ㎛ to 13 ㎛, the thickness of the shell is 5 ㎛ to 12 ㎛ negative electrode active material.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 음극 활물질의 직경은 14 ㎛ 내지 25 ㎛인 것인 이차전지용 음극 활물질.The negative electrode active material has a diameter of 14 μm to 25 μm.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 하드카본은 페놀 수지 소성체, 폴리아크릴로니트릴계 탄소 섬유, 유사 등방성 탄소, 푸르푸릴 알코올 수지 소성체(PFA)로 이루어진 군으로부터 선택된 1종 이상인 이차전지용 음극 활물질.The hard carbon is at least one selected from the group consisting of phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudoisotropic carbon, and furfuryl alcohol resin fired body (PFA).
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 인조흑연 및 하드카본은 1: 0.1 내지 1.0의 중량비를 갖는 이차전지용 음극 활물질. The artificial graphite and hard carbon are negative electrode active materials for secondary batteries having a weight ratio of 1: 0.1 to 1.0.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 코어 및 쉘의 중량비는 1: 0.5 내지 1.5인 것인 이차전지용 음극 활물질. The weight ratio of the core and the shell is 1: 0.5 to 1.5 negative electrode active material for secondary batteries.
  9. 인조흑연; 하드카본; 및 상기 인조흑연의 평균길이 또는 상기 하드카본의 평균입경 중 상대적으로 보다 작은 평균길이 또는 평균입경을 갖는 물질에 대해 20 배 내지 30 배의 긴 평균길이를 갖는 장편상의 천연흑연;을 혼합하여 구형화하는 단계를 포함하는 청구항 1의 이차전지용 음극 활물질의 제조방법. Artificial graphite; Hard carbon; And a long piece of natural graphite having an average length of 20 to 30 times longer with respect to a material having a relatively smaller average length or average particle diameter among the average length of the artificial graphite or the average particle diameter of the hard carbon. Method of manufacturing a negative active material for a secondary battery of claim 1 comprising the step of.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 구형화는 드럼 믹서를 통해 수행되는 것인 이차전지용 음극 활물질의 제조방법.The spheronization is a method of manufacturing a negative active material for a secondary battery that is performed through a drum mixer.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 드럼 믹서는 700 rpm 내지 1,000 rpm의 회전속도로 120 분 내지 150 분 동안 회전하여 천연흑연을 구형화 하는 것인 이차전지용 음극 활물질의 제조방법.The drum mixer is a method for producing a negative active material for a secondary battery to spheroidized natural graphite by rotating for 120 minutes to 150 minutes at a rotation speed of 700 rpm to 1,000 rpm.
  12. 음극 집전체 상에 청구항 1의 음극 활물질을 포함하는 음극 합제가 도포되어 있는 이차전지용 음극.The negative electrode for secondary batteries which the negative electrode mixture containing the negative electrode active material of Claim 1 is apply | coated on the negative electrode collector.
  13. 양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막, 및 비수성 전해액을 포함하며, 상기 음극은 청구항 12의 음극을 포함하는 것인 리튬 이차전지.Lithium secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, the negative electrode comprises the negative electrode of claim 12.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 비수성 전해액은 비수계 유기용매와 리튬염을 포함하는 것인 리튬 이차전지.The non-aqueous electrolyte is a lithium secondary battery containing a non-aqueous organic solvent and a lithium salt.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 비수계 유기용매는 프로필렌 카보네이트를 포함하는 것인 리튬 이차전지. The non-aqueous organic solvent is a lithium secondary battery containing propylene carbonate.
  16. 청구항 13의 리튬 이차전지를 단위 셀로 포함하는 전지모듈.A battery module comprising the lithium secondary battery of claim 13 as a unit cell.
  17. 청구항 16의 전지 모듈을 포함하며, 중대형 디바이스의 전원으로 사용되는 것인 전지 팩.A battery pack comprising the battery module of claim 16 and used as a power source for medium and large devices.
  18. 청구항 17에 있어서, The method according to claim 17,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.The medium-to-large device is a battery pack that is selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles and power storage systems.
PCT/KR2016/004360 2015-04-29 2016-04-26 Anode active material and anode including same WO2016175539A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/560,006 US10476109B2 (en) 2015-04-29 2016-04-26 Negative electrode active material and negative electrode including the same
JP2017556646A JP6685537B2 (en) 2015-04-29 2016-04-26 Negative electrode active material and negative electrode containing the same
CN201680021679.XA CN107534138B (en) 2015-04-29 2016-04-26 Negative electrode active material and negative electrode including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150060452 2015-04-29
KR10-2015-0060452 2015-04-29
KR10-2016-0049966 2016-04-25
KR1020160049966A KR101833615B1 (en) 2015-04-29 2016-04-25 Negative electrode active material and negative electrode comprising the same

Publications (1)

Publication Number Publication Date
WO2016175539A1 true WO2016175539A1 (en) 2016-11-03

Family

ID=57199620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004360 WO2016175539A1 (en) 2015-04-29 2016-04-26 Anode active material and anode including same

Country Status (1)

Country Link
WO (1) WO2016175539A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190198857A1 (en) * 2017-12-22 2019-06-27 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
CN113437251A (en) * 2021-06-21 2021-09-24 宁德新能源科技有限公司 Negative electrode active material, electrochemical device, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067584A (en) * 1995-11-14 1999-08-25 료끼 신이찌로 Cathode material for lithium secondary battery, manufacturing method thereof, and secondary battery using the same
KR20090109225A (en) * 2008-04-15 2009-10-20 애경유화 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
CN101916857A (en) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 Composite cathode material for lithium ion power and energy storage battery and preparation method thereof and battery
KR20130037150A (en) * 2011-10-05 2013-04-15 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130109785A (en) * 2012-03-28 2013-10-08 삼성에스디아이 주식회사 Composite electrode active material, electrode and lithium battery containing the same, and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067584A (en) * 1995-11-14 1999-08-25 료끼 신이찌로 Cathode material for lithium secondary battery, manufacturing method thereof, and secondary battery using the same
KR20090109225A (en) * 2008-04-15 2009-10-20 애경유화 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
CN101916857A (en) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 Composite cathode material for lithium ion power and energy storage battery and preparation method thereof and battery
KR20130037150A (en) * 2011-10-05 2013-04-15 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130109785A (en) * 2012-03-28 2013-10-08 삼성에스디아이 주식회사 Composite electrode active material, electrode and lithium battery containing the same, and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190198857A1 (en) * 2017-12-22 2019-06-27 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
US11217783B2 (en) * 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
CN113437251A (en) * 2021-06-21 2021-09-24 宁德新能源科技有限公司 Negative electrode active material, electrochemical device, and electronic device
CN113437251B (en) * 2021-06-21 2022-10-25 宁德新能源科技有限公司 Negative electrode active material, electrochemical device, and electronic device

Similar Documents

Publication Publication Date Title
WO2019151813A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2017204466A1 (en) Anode active material and lithium secondary battery comprising same
WO2014084679A1 (en) Anode active material, lithium secondary battery including same, and manufacturing method for anode active material
WO2017164702A1 (en) Negative electrode and method for manufacturing same
WO2017069410A1 (en) Cathode active material comprising multi-layered transition metal oxide for lithium secondary battery, and cathode comprising cathode active material
WO2014193148A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2016018023A1 (en) Graphite secondary particle, and lithium secondary battery comprising same
KR20160128912A (en) Negative electrode active material and negative electrode comprising the same
WO2019164347A1 (en) Negative electrode active material for lithium secondary battery, negative electrode containing same for lithium secondary battery, and lithium secondary battery
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2017095081A1 (en) Positive electrode active material for secondary battery, positive electrode, for secondary battery, comprising same, and secondary battery
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2020162708A1 (en) Anode and lithium secondary battery comprising same
WO2020036392A1 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2016053051A1 (en) Positive electrode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021107586A1 (en) Positive electrode for secondary battery including flake graphite and secondary battery including same
WO2021112607A1 (en) Method for producing positive electrode material for secondary battery
WO2016053054A1 (en) Positive electrode active material for lithium secondary battery, preparation method for same, and lithium secondary battery comprising same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2018174619A1 (en) Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery produced using same, and lithium secondary battery comprising same
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2016175539A1 (en) Anode active material and anode including same
WO2019093869A2 (en) Method for manufacturing positive electrode active material for secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560006

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017556646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786725

Country of ref document: EP

Kind code of ref document: A1