WO2016174962A1 - 熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス - Google Patents

熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス Download PDF

Info

Publication number
WO2016174962A1
WO2016174962A1 PCT/JP2016/058938 JP2016058938W WO2016174962A1 WO 2016174962 A1 WO2016174962 A1 WO 2016174962A1 JP 2016058938 W JP2016058938 W JP 2016058938W WO 2016174962 A1 WO2016174962 A1 WO 2016174962A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat recovery
recovery article
heat
base material
material layer
Prior art date
Application number
PCT/JP2016/058938
Other languages
English (en)
French (fr)
Inventor
智 山崎
西川 信也
安隆 江本
関口 守
Original Assignee
住友電気工業株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Publication of WO2016174962A1 publication Critical patent/WO2016174962A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form

Definitions

  • the present invention relates to a heat recovery article, a method for manufacturing the heat recovery article, a wire splice, and a wire harness.
  • Heat-recovery articles such as heat-shrinkable tubes are used for connecting parts between insulated wires, terminals for wiring, protecting metal pipes, insulation, waterproofing, anticorrosion, packaging of products, etc.
  • a heat-shrinkable tube covers and heats a connection part between insulated wires
  • the connection part can be protected by shrinking and closely adhering along the shape of the connection part.
  • This heat-recovery article is required to have transparency after shrinkage so that the state of the connected portion can be confirmed, and further, to be free from tearing or the like under a severe use environment such as a high temperature.
  • the heat shrinkable tube formed from the fluororesin composition requires a high temperature such as 230 ° C. for heat shrinkage.
  • the transparent heat shrinkable tube formed of the resin material containing the random copolymer polypropylene has a melting point of 145 ° C. of the resin contained, and heat shrinks compared to the heat shrinkable tube formed of the fluororesin composition. The temperature can be lowered.
  • heat shrinkage at a relatively low temperature such as 130 ° C. or more and 140 ° C. or less is required to avoid heat shrinkage at a high temperature. At such a temperature, the shrinkage may take time.
  • the heat recovery article as described above has come to be used in a wide temperature environment from about ⁇ 60 ° C. to about 120 ° C.
  • the heat recovery article is required not to be torn or torn from the viewpoint of protecting the inclusions even when used in this wide temperature environment.
  • the heat recovery article can withstand this stress load. It is necessary to have the rigidity that can be achieved.
  • the heat-shrinkable tube described in the above publication is not sufficiently studied for rigidity under such a wide temperature environment.
  • the present invention has been made based on the above-described circumstances, and is excellent in shrinkability at a relatively low temperature such as 130 ° C. or higher and 140 ° C. or lower and wide from about ⁇ 60 ° C. to about 120 ° C.
  • a relatively low temperature such as 130 ° C. or higher and 140 ° C. or lower and wide from about ⁇ 60 ° C. to about 120 ° C.
  • An object of the present invention is to provide a wire harness using the wire splice and the heat recovery article.
  • the heat recovery article according to one aspect of the present invention made to solve the above problems is a cylindrical heat recovery article having a base material layer, the base material layer containing a polyolefin-based resin, and 180 ° C.
  • the melting point peak temperature in the base material layer after heating for 2 minutes is 115 ° C. or higher and 128 ° C. or lower, and the heat of fusion of the entire resin component is 80 J / g or higher and 150 J / g or lower.
  • a heat recovery article having a modulus of 9% or more and a storage elastic modulus at 120 ° C. of 4 MPa or more is provided.
  • the method for producing a heat recovery article according to another aspect of the present invention made to solve the above problems includes a step of molding a resin composition containing a polyolefin resin into a cylindrical shape, and a diameter expansion of the molded body. Forming a base material layer, the melting point peak temperature in the base material layer after heating at 180 ° C. for 2 minutes is 115 ° C. or higher and 128 ° C. or lower, and the heat of fusion of the entire resin component is 80 J / g or higher and 150 J / g
  • the following provides a method for producing a heat recovery article having a light transmittance of 9% or more for light having a wavelength of 650 nm in terms of 1 mm thickness and a storage elastic modulus at 120 ° C. of 4 MPa or more.
  • a wire splice according to another aspect of the present invention which has been made to solve the above problems, includes a conductor and a plurality of wires having an insulating layer laminated on the outside thereof, and the conductors of the plurality of wires are connected to each other.
  • a wire harness according to another aspect of the present invention which has been made to solve the above problems, is attached to a plurality of wires having a conductor and an insulating layer laminated on the outside thereof, and the plurality of wires. It is a wire harness provided with the tube which heat-shrinked the said heat recovery article.
  • the heat-recovery article of the present invention is excellent in shrinkage at a relatively low temperature such as 130 ° C. or more and 140 ° C. or less, and can be cracked even when used in a wide temperature environment from about ⁇ 60 ° C. to about 120 ° C.
  • the occurrence of tearing can be effectively suppressed, and the inclusions after contraction can be visually confirmed.
  • the heat recovery article manufacturing method of the present invention can easily manufacture such a heat recovery article.
  • the wire splice and the wire harness of the present invention can effectively suppress the occurrence of tearing and tearing of the coating even when used in a wide temperature environment from about ⁇ 60 ° C. to about 120 ° C. Is possible.
  • FIG. 2 is a schematic cross-sectional view taken along line X1-X1 in FIG.
  • FIG. 2 is a schematic cross-sectional view taken along line X2-X2 of FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line X3-X3 in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line X4-X4 of FIG. It is a typical sectional view corresponding to Drawing 2 showing a wire splice concerning one embodiment of the present invention.
  • the heat recovery article according to one embodiment of the present invention is a cylindrical heat recovery article having a base material layer, wherein the base material layer contains a polyolefin-based resin and is heated at 180 ° C. for 2 minutes.
  • the melting point peak temperature in the layer is 115 ° C. or more and 128 ° C. or less
  • the heat of fusion of the entire resin component is 80 J / g or more and 150 J / g or less
  • the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness is 9% or more
  • the storage elastic modulus is 4 MPa or more.
  • the heat recovery article Since the melting point peak temperature in the base material layer after heating at 180 ° C. for 2 minutes is within the above range, the heat recovery article is excellent in heat shrinkability at a relatively low temperature such as 130 ° C. or more and 140 ° C. or less. . Further, since the heat recovery article has the heat of fusion of the entire resin component in the base material layer after heating at 180 ° C. for 2 minutes within the above range, the storage elastic modulus is increased without causing a decrease in transparency. Therefore, the occurrence of tears and tears can be suppressed. Further, the heat recovery article has a relatively high transparency because the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness in the base material layer after heating at 180 ° C.
  • the heat recovery article since the heat recovery article has a storage elastic modulus of 120 ° C. in the base material layer after heating at 180 ° C. for 2 minutes or more, the rigidity can be maintained high even in an environment of about 120 ° C. Therefore, even when the heat recovery article is used in a wide temperature environment from about ⁇ 60 ° C. to about 120 ° C., it does not easily tear or tear.
  • item will be in the state (completed state) which the shrinkage
  • the “melting point peak temperature in the base material layer” means that the base material layer heated at 180 ° C. for 2 minutes is heated from room temperature to 200 ° C. by a differential scanning calorimeter at 10 ° C./min. The temperature at which the endothermic amount per hour in the layer reaches a maximum (peak). “The amount of heat of fusion of the entire resin component of the base material layer” means that the endothermic heat of the base material layer is assumed to be performed by the polyolefin resin and other resin components contained in the base material layer, and the melting point peak temperature was measured. The value (J / g) obtained by dividing the endothermic amount (J) of the base material layer during the temperature increase from room temperature to 200 ° C.
  • the differential scanning calorimetry is based on JIS-K-7121 (1987). Further, “light transmittance” refers to a value measured in accordance with JIS-K-7375 (2008).
  • the “storage elastic modulus” is a term (real number term) constituting a complex elastic modulus representing the relationship between stress and strain when sinusoidal vibration strain is applied to the viscoelastic body, and is 10 ° C./min. The value measured by the dynamic viscoelasticity measurement at the temperature rising rate.
  • the polyolefin resin is preferably a mixture of a first polyolefin resin having a melting point of 125 ° C. or more and 135 ° C. or less and a second polyolefin resin having a melting point of less than 125 ° C.
  • the elastic modulus can be adjusted easily and reliably within the above range.
  • the mass ratio of the first polyolefin resin to the second polyolefin resin is preferably 20/80 or more and 85/15 or less.
  • melting point refers to a melting peak temperature obtained in accordance with JIS-K-7121 (1987) using a differential scanning calorimeter.
  • the first polyolefin resin is preferably high density polyethylene.
  • the melting point peak temperature of the base material layer the heat of fusion of the entire resin component, the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness, and The storage elastic modulus at 120 ° C. can be easily and reliably adjusted within the above range.
  • melt flow rate (MFR) of the high density polyethylene is preferably 5 g / 10 min or less.
  • MFR melt flow rate
  • the density of the high density polyethylene preferably 0.930 g / cm 3 or more 0.960 g / cm 3 or less.
  • density means a value measured in accordance with JIS-Z-8807 (2012).
  • the second polyolefin resin linear low density polyethylene, low density polyethylene, ultra low density polyethylene, polyolefin elastomer, or a combination thereof is preferable.
  • the second polyolefin-based resin is a linear low-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, polyolefin-based elastomer, or a combination thereof, so that the melting point peak temperature of the base material layer, the entire resin component
  • the amount of heat of fusion of light, the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness, and the storage elastic modulus at 120 ° C. can be easily and reliably adjusted within the above range.
  • the polyolefin elastomer is preferably a polyethylene elastomer obtained by copolymerizing ethylene with at least one of butene, hexene and octane, or an ethylene-propylene copolymer elastomer.
  • the elastic modulus can be adjusted easily and reliably within the above range.
  • the heat recovery article preferably has an adhesive layer laminated on the inner peripheral surface of the base material layer.
  • covers can be improved.
  • the adhesive layer preferably contains an ethylene-vinyl acetate copolymer or polyamide. As described above, when the adhesive layer contains the ethylene-vinyl acetate copolymer or polyamide, the adhesion between the coating portion covered by the heat recovery article and the base material layer can be further enhanced.
  • a method for producing a heat recovery article includes a step of forming a resin composition containing a polyolefin resin into a cylindrical shape, and a step of forming a base material layer by expanding the diameter of the molded body.
  • the melting point peak temperature in the base material layer after heating at 180 ° C. for 2 minutes is 115 ° C. or more and 128 ° C. or less
  • the heat of fusion of the entire resin component is 80 J / g or more and 150 J / g or less, with a wavelength of 650 nm in terms of 1 mm thickness.
  • the light transmittance of light is 9% or more, and the storage elastic modulus at 120 ° C. is 4 MPa or more.
  • the manufacturing method of the heat recovery article is excellent in shrinkability at a relatively low temperature such as 130 ° C. or more and 140 ° C. or less, and has a high elastic modulus at about 120 ° C. after shrinkage, and local stress due to temperature change. It is possible to easily manufacture a heat recovery article that can effectively suppress the occurrence of tearing and tearing due to the generation of a load and can visually recognize the inclusions after shrinkage.
  • the wire splice according to another aspect of the present invention includes a plurality of wires having a conductor and an insulating layer laminated on the outside thereof, and the heat applied to a portion where the conductors of the plurality of wires are connected to each other. It is a wire splice provided with the tube which heat-shrinked the recovery
  • the wire splice includes a tube obtained by heat shrinking the heat recovery article, the wire splice is excellent in visibility of a connection portion included in the tube. Furthermore, since the tube is difficult to tear, the wire price has a long life, and the protection state such as protection, insulation, waterproofing, and corrosion prevention of the wire and its connecting portion can be maintained for a long time.
  • a wire harness according to another aspect of the present invention is a tube in which a plurality of wires having a conductor and an insulating layer laminated on the outside thereof, and the heat recovery article attached to the plurality of wires are heat-shrinked.
  • the wire harness includes a tube obtained by heat shrinking the heat recovery article, the wire harness is excellent in visibility. Furthermore, since the tube is difficult to tear, the life of the wire harness can be extended, and the protection state such as protection, insulation, waterproofing, and corrosion prevention of the wire can be maintained for a long time.
  • Heat recovery article First, an embodiment of a heat recovery article will be described below.
  • the heat recovery article 1 of the first embodiment shown in FIGS. 1 to 3 is a cylindrical heat recovery article having a base material layer 10, and the base material layer 10 contains a polyolefin-based resin and is 2 at 180 ° C.
  • the melting point peak temperature in the base material layer 10 after minute heating is 115 ° C. or more and 128 ° C. or less
  • the heat of fusion of the entire resin component is 80 J / g or more and 150 J / g or less
  • the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness It is 9% or more and the storage elastic modulus at 120 ° C. is 4 MPa or more.
  • the heat recovery article 1 is used, for example, as a coating for protection, insulation, waterproofing, anticorrosion, etc. of a connection portion between insulated wires, a terminal of wiring, a metal tube, and the like.
  • the heat recovery article 1 includes a base material layer 10.
  • the base material layer 10 preferably contains a polyolefin resin as a main component.
  • the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more.
  • the base material layer 10 is formed as a tube that is reduced in diameter when heated. Moreover, the base material layer 10 may contain a flame retardant. Furthermore, you may add another additive to this base material layer 10 as needed. Examples of such additives include antioxidants, copper damage inhibitors, lubricants, colorants, heat stabilizers, ultraviolet absorbers and the like.
  • the base material layer 10 preferably has one melting point peak temperature. Since heat shrinkage of the heat recovery article 1 occurs in the vicinity of the melting point peak temperature of the base material layer 10, the heat recovery article 1 does not heat shrink stepwise at the time of heating due to the single melting point peak temperature. .
  • the lower limit of the melting point peak temperature in the base material layer 10 after heating at 180 ° C. for 2 minutes is 115 ° C., preferably 118 ° C., and more preferably 120 ° C.
  • the upper limit of the melting point peak temperature is 128 ° C, preferably 127 ° C, more preferably 126 ° C.
  • the melting point peak temperature is lower than the lower limit, when the heat recovery article 1 is used in a usage environment of about 120 ° C. in a state where a local stress is applied to the base material layer 10 due to a change in temperature environment during use. As the base material layer 10 is softened, the base material layer 10 is likely to be torn or torn.
  • fusing point peak temperature exceeds the said upper limit, there exists a possibility that the heat
  • polyolefin resin examples include polyethylene, ethylene- ⁇ olefin copolymer, ethylene-vinyl ester copolymer, ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester copolymer, olefin thermoplastic elastomer, olefin rubber. Etc.
  • the lower limit of the MFR (melt flow rate) of this polyolefin resin is preferably 0.01 g / 10 minutes, and more preferably 0.1 g / 10 minutes.
  • the upper limit of the MFR is preferably 10 g / 10 minutes, and more preferably 4 g / 10 minutes.
  • polyethylene examples include low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and metallocene-polymerized polyethylene by high-pressure radical polymerization.
  • Examples of the ⁇ -olefin of the ethylene- ⁇ -olefin copolymer include ⁇ -olefins having about 3 to 20 carbon atoms. More specifically, the ⁇ -olefin includes propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1 -Tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicocene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1 tetradecene and the like.
  • Examples of the vinyl ester of the ethylene-vinyl ester copolymer include vinyl propionate, vinyl acetate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate and the like.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester of the ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester copolymer include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and the like. It is done.
  • thermoplastic elastomer examples include low density polyethylene elastomer, ultra low density polyethylene elastomer, and polypropylene elastomer.
  • olefin rubber examples include ethylene propylene rubber, butadiene rubber, and isoprene rubber.
  • ethylene-propylene rubber examples include a random copolymer containing ethylene and propylene as main components, and a random copolymer containing a diene monomer such as dicyclopentadiene or ethylidene norbornene as the third component. Is mentioned.
  • butadiene rubber examples include styrene-butadiene block copolymers and hydrogenated or partially hydrogenated derivatives of styrene-ethylene-butadiene-styrene copolymers, 1,2-polybutadiene, maleic anhydride modified styrene-ethylene.
  • isoprene-based rubber examples include styrene-isoprene block copolymers and hydrogenated or partially hydrogenated derivatives of styrene-ethylene-isoprene-styrene copolymers, maleic anhydride modified styrene-ethylene-isoprene-styrene copolymers.
  • examples thereof include a modified isoprene rubber having a coalescence and a core-shell structure.
  • the heat of fusion of the entire resin component The lower limit of the heat of fusion of the entire resin component in the base material layer 10 after heating at 180 ° C. for 2 minutes is 80 J / g, preferably 100 J / g, and more preferably 115 J / g.
  • the upper limit of the heat of fusion of the entire resin component is 150 J / g, preferably 145 J / g, and more preferably 140 J / g.
  • the amount of heat of fusion is less than the above lower limit when there are many rubber components and elastomer components in the base material layer 10, and thus the heat recovery article 1 starts to heat shrink at a low temperature.
  • this amount of heat of fusion is less than the above lower limit, when the heat recovery article 1 is used in a usage environment of about 120 ° C. in a state where a local stress is applied to the base material layer 10 due to a change in temperature environment during use, The local stress concentration tends to cause tearing or tearing in the base material layer 10.
  • the amount of heat of fusion exceeds the above upper limit when the crystalline polyolefin resin in the base material layer 10 is large and the amorphous polyolefin resin of the rubber component or the elastomer component is small.
  • the said heat of fusion exceeds the said upper limit, there exists a possibility that the shrinkage temperature of the base material layer 10 may become high, and transparency may fall.
  • components other than resin components such as antioxidants are included in the base material layer, but since these amounts are small and have little influence on the heat of fusion, the heat of fusion of the entire base material layer is reduced to the total amount of resin components. It may be the amount of heat of fusion.
  • the lower limit of the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness in the base material layer 10 after heating at 180 ° C. for 2 minutes is 9%, preferably 9.5%, and more preferably 10%. When the light transmittance is less than the lower limit, sufficient transparency may not be obtained.
  • the lower limit of the storage elastic modulus at 120 ° C. in the base material layer 10 after heating at 180 ° C. for 2 minutes is 4 MPa, preferably 8 MPa, and more preferably 10 MPa. Since the storage elastic modulus is equal to or higher than the lower limit, use at about 120 ° C. in a state where stress is locally applied to the base material layer 10 of the heat recovery article 1 due to a change in temperature environment during use of the heat recovery article 1 Even if the heat recovery article 1 is used in the environment, the heat recovery article 1 has a rigidity capable of withstanding such a local stress load.
  • the storage elastic modulus is less than the above lower limit, in a state where stress is locally applied to the base material layer 10 of the heat recovery article 1 due to a change in temperature environment during use of the heat recovery article 1,
  • the base material layer 10 is likely to be torn or torn.
  • the melting point peak temperature, the heat of fusion of the entire resin component, the light transmittance of light having a wavelength of 650 nm in terms of thickness of 1 mm, and the storage elastic modulus at 120 ° C. are The melting point peak temperature in the base material layer 10 after heating at 180 ° C. for 2 minutes, the heat of fusion of the entire resin component, the light transmittance of light with a wavelength of 650 nm in terms of 1 mm thickness, and the storage elastic modulus at 120 ° C. it is conceivable that.
  • fusing point peak temperature of the base material layer 10 melting
  • a mixture of a first polyolefin resin having a melting point of 125 ° C. or more and 135 ° C. or less and a second polyolefin resin having a melting point of less than 125 ° C. is preferable.
  • Second polyolefin resin As said 1st polyolefin resin, melting
  • the upper limit of the melt flow rate (MFR) of the high density polyethylene is preferably 5 g / 10 minutes, more preferably 3 g / 10 minutes, and even more preferably 1 g / 10 minutes.
  • MFR melt flow rate
  • the lower limit of the density of the high density polyethylene is preferably 0.930 g / cm 3, more preferably 0.935 g / cm 3, more preferably 0.940 g / cm 3.
  • the upper limit of the density is preferably 0.960g / cm 3, 0.958g / cm 3 is more preferable.
  • the density is less than the lower limit, a use environment of about 120 ° C. in a state where stress is locally applied to the base material layer 10 of the heat recovery article 1 due to a change in the temperature environment during use due to a decrease in the melting point.
  • the base material layer 10 is likely to be torn or torn due to a decrease in the melting point of the base material layer 10.
  • the said density exceeds the said upper limit, it is easy to crystallize easily and there exists a possibility that transparency may be impaired largely by white turbidity.
  • the melting point peak temperature of the base material layer As the second polyolefin-based resin, the melting point peak temperature of the base material layer, the heat of fusion of the entire resin component, the light transmittance of light having a wavelength of 650 nm in terms of thickness of 1 mm, and the storage elastic modulus at 120 ° C. are described above. From the viewpoint of easily and reliably adjusting within the range, linear low density polyethylene, low density polyethylene, ultra-low density polyethylene, polyolefin-based elastomer, or a combination thereof is preferable.
  • the polyolefin elastomer is preferably a polyethylene elastomer obtained by copolymerizing ethylene with at least one of butene, hexene and octane, or an ethylene-propylene copolymer elastomer.
  • the lower limit of the Mooney viscosity of the second polyolefin resin is preferably 10 and more preferably 25 from the viewpoint of mixing with the first polyolefin resin.
  • the improvement of the mixing property contributes to the improvement of the tearing suppression effect and the stability when used for a long time.
  • the Mooney viscosity is a value measured using a Mooney viscometer at a temperature of 100 ° C. in accordance with JIS-K-6300-1 (2013).
  • the lower limit of the mass ratio of the first polyolefin resin to the second polyolefin resin is preferably 20/80, more preferably 30/70.
  • the upper limit of the mass ratio is preferably 85/15, more preferably 80/20.
  • antioxidant a phenolic antioxidant or an amine antioxidant is mentioned preferably. By using these antioxidants, copper damage resistance can be improved.
  • sulfur type antioxidant, phosphorous acid ester type antioxidant, etc. can be used individually or in combination.
  • phenol-based antioxidant examples include pentaerythritol tetrakis [3-3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tetrakis- [methylene-3- (3′5′-di-tert. -Butyl-4'-hydroxyphenyl) propionate] methane, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 6- (4-hydroxy-3,5 --Di-tert-butyl-anilino) -2,4-bis-octyl-thio-1,3,5-triazine and the like.
  • amine antioxidant examples include 4,4 ′ ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethoxy-2,2, 4-trimethyl-1,2-dihydroquinoline, N- (1,3-dimethylbutyl) -N′-phenyl-1,4-phenylenediamine, N-isopropyl-N′-phenyl-1,4-phenylenediamine, etc. Is mentioned.
  • 0.1 mass part is preferred to 100 mass parts of polyolefin resin, and 1.5 mass parts is more preferred.
  • an upper limit of content of the said antioxidant 5 mass parts is preferable with respect to 100 mass parts of polyolefin resin, and 3 mass parts is more preferable. If the content is less than the lower limit, the base material layer 10 is likely to be oxidized, and the heat recovery article 1 may be deteriorated. Further, when the content exceeds the upper limit, the antioxidant moves to the surface of the base material layer 10, so-called bloom in which the antioxidant crystallizes on the surface, or the antioxidant oozes out in a liquid state on the surface. So-called bleeding may occur, resulting in poor appearance.
  • copper damage inhibitor examples include 3- (N-salicyloyl) amino-1,2,4-triazole, decamethylenedicarboxylic acid disalicyloyl hydrazide, 2,3-bis [3- (3,5-diazole). -Tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide and the like. It is expected that copper damage can be prevented by including a copper damage inhibitor in the base material layer 10.
  • the lower limit of the copper damage inhibitor content is 100 parts by mass of polyolefin resin. 0.1 part by mass is preferable, and 1 part by mass is more preferable. Moreover, as an upper limit, 10 mass parts is preferable with respect to 100 mass parts of polyolefin resin, and 5 mass parts is more preferable.
  • the effect of a copper damage inhibitor may not be acquired as content of the said copper damage inhibitor is less than the said minimum. Moreover, even if content of the said copper damage inhibitor exceeds the said upper limit, the improvement of a copper damage prevention effect is not acquired.
  • the heat recovery article 1 can be manufactured, for example, by a manufacturing method having the following steps. (1) The process of shape
  • the polyolefin resin composition can be prepared, for example, by mixing a resin component such as the polyolefin resin and the additive added as necessary with a melt mixer.
  • a melt mixer a well-known thing, for example, an open roll, a Banbury mixer, a pressure kneader, a single screw mixer, a multi screw mixer, etc. are mentioned.
  • the molded body is formed, for example, by extruding the polyolefin resin composition using a known melt extrusion molding machine. This molded body may improve heat resistance by crosslinking the constituent material of the base material layer.
  • the crosslinking method include methods such as crosslinking by irradiation with ionizing radiation, chemical crosslinking, and thermal crosslinking.
  • the ionizing radiation examples include ⁇ rays, ⁇ rays, ⁇ rays, electron rays, and X rays.
  • the ionizing radiation is preferably an electron beam from the viewpoints of ease of control and safety.
  • the irradiation amount of the ionizing radiation is not particularly limited.
  • the irradiation amount is 100 kGy or more and 1000 kGy from the viewpoint of suppressing deterioration of the resin due to irradiation while obtaining a sufficient crosslinking density. The following is preferred.
  • the dimensions of the molded body can be designed according to the application. With respect to the dimensions of the molded body corresponding to the base material layer 10, in one example, the inner diameter and the wall thickness are 1.0 mm to 30 mm and 0.1 mm to 10 mm, respectively.
  • the diameter of the molded body is expanded by a method such as introducing compressed air into the molded body while the molded body is heated to a temperature equal to or higher than the melting point, and then cooled to fix the shape. Is done. Such diameter expansion is performed, for example, so that the inner diameter of the molded body is about 2 to 4 times.
  • the heat-recovered article is obtained by expanding the diameter of the molded body in this way and fixing the shape.
  • the melting point peak temperature in the base material layer 10 after heating at 180 ° C. for 2 minutes is within the above range
  • the heat of fusion of the entire resin component is within the above range
  • the wavelength is 650 nm in terms of 1 mm thickness. Since the light transmittance of light is not less than the above value and the storage elastic modulus at 120 ° C. is not less than the above value, it has excellent shrinkability at a relatively low temperature such as 130 ° C. or more and 140 ° C. or less, and heat Even if the heat recovery article 1 is used in a usage environment of about 120 ° C.
  • FIG. 4 to 6 show a heat recovery article 1A of the second embodiment.
  • the same components as those of the heat recovery article 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the heat recovery article 1 ⁇ / b> A of the second embodiment is a multilayer heat recovery article provided with an adhesive layer 11 laminated on the inner peripheral surface of the base material layer 10.
  • the adhesive layer 11 preferably contains an ethylene-vinyl acetate copolymer or polyamide.
  • the adhesive layer 11 is for enhancing the adhesion between the covering portion covered with the heat recovery article 1A and the base material layer 10 and improving the waterproof property and the like.
  • an inorganic filler may be added to the adhesive layer 11 for the purpose of adjusting the viscosity after being formed on the heat recovery article 1A.
  • the lower limit of the vinyl acetate content is preferably 12% by mass, more preferably 15% by mass, and even more preferably 19% by mass.
  • the upper limit of the content is preferably 46% by mass, more preferably 35% by mass, and still more preferably 30% by mass. If the content is less than the lower limit, sufficient flexibility may not be obtained. Moreover, when the said content exceeds the said upper limit, when forming the adhesive bond layer 11 by extrusion molding, adhering to a die
  • the lower limit of the MFR of the ethylene-vinyl acetate copolymer is preferably 50 g / 10 minutes, and more preferably 100 g / 10 minutes.
  • the upper limit of the MFR is preferably 600 g / 10 minutes, and more preferably 500 g / 10 minutes. If the MFR is less than the lower limit, a relatively high pressure may be required when the adhesive layer 11 is formed by extrusion. If the MFR exceeds the upper limit, the resin may flow too much and it may be difficult to form the adhesive layer 11 having a uniform shape.
  • inorganic filler examples include organically treated layered silicate, organically treated swelling mica, calcium carbonate, carbon, silica and the like.
  • the viscosity of the adhesive layer 11 can be easily adjusted, and the thickness of the adhesive layer 11 can be made uniform.
  • a of heat recovery articles goods can be manufactured with the manufacturing method which has the following processes, for example.
  • Step of forming the resin composition and adhesive composition containing the polyolefin system into a cylindrical shape (2) Step of forming a base material layer and an adhesive layer by expanding the diameter of the molded body
  • the composition means a composition for forming the adhesive layer 11.
  • the polyolefin resin composition can be prepared, for example, by mixing a resin component such as the polyolefin resin and the additive added as necessary with a melt mixer.
  • a melt mixer a well-known thing, for example, an open roll, a Banbury mixer, a pressure kneader, a single screw mixer, a multi screw mixer, etc. are mentioned.
  • the adhesive composition can be prepared by, for example, mixing an ethylene-vinyl acetate copolymer or polyamide and an additive as necessary with a melt mixer.
  • a melt mixer the same thing as the case where the said polyolefin resin composition is prepared can be used.
  • molding process multi-layer extrusion molding forming process
  • the polyolefin resin composition and the adhesive composition are simultaneously extruded using a known melt extrusion molding machine, and the polyolefin resin composition and the adhesive composition are simultaneously extruded.
  • a multilayer extruded body is formed in which the inner layer corresponding to the adhesive layer 11 is laminated on the inner peripheral surface of the outer layer corresponding to the material layer 10.
  • This multilayer extrusion-molded product may improve heat resistance by crosslinking the constituent material of the outer layer.
  • the crosslinking method include methods such as crosslinking by irradiation with ionizing radiation, chemical crosslinking, and thermal crosslinking.
  • the dimensions of the multilayer extruded product can be designed according to the application.
  • the inner diameter and the wall thickness are 1.0 mm or more and 30 mm or less and 0.1 mm or more and 10 mm or less, respectively.
  • the dimensions of the layer corresponding to the adhesive layer 11 of the multilayer extruded product are 0.1 mm or more and 10 mm or less and 0.1 mm or more and 8.5 mm or less, respectively.
  • Diameter expansion process (diameter expansion process of multilayer extrusion molding)
  • the diameter of the multilayer extruded product is expanded after the multilayer extruded product is heated to a temperature equal to or higher than the melting point by expanding it to a predetermined inner diameter by a method such as introducing compressed air therein, and then cooled and shaped. It is done by fixing.
  • the expansion of the multilayer extruded product is performed, for example, so that the inner diameter of the multilayer extruded product is about 2 to 4 times. In this way, the heat-recovered article 1A is obtained by expanding the diameter of the multilayer extruded product and fixing the shape.
  • the heat recovery article 1A Since the heat recovery article 1A has the base material layer 10, the heat recovery article 1A is excellent in shrinkage at a relatively low temperature such as 130 ° C. or more and 140 ° C. or less, and is heated due to a change in temperature environment during use of the heat recovery article 1A. Even if the heat recovery article 1A is used in a usage environment of about 120 ° C. in a state where stress is locally applied to the recovery article 1A, it has rigidity capable of withstanding such a local stress load, and is about ⁇ 60 ° C. Even if it is used under a wide temperature environment from about 120 ° C. to about 120 ° C., the occurrence of tearing and tearing can be effectively suppressed, and the inclusions after contraction can be visually confirmed. Further, since the heat recovery article 1A has the adhesive layer 11, the adhesion between the portion covered by the heat recovery article 1A and the base material layer 10 can be improved, and insulation, waterproofness, anticorrosion, etc. Can be improved.
  • the heat recovery article includes, for example, a PE electric wire or a PE cable whose insulation layer covering the conductor is polyethylene (PE), a PVC electric wire or a PVC cable whose insulation layer is polyvinyl chloride (PVC), etc. Can be used for anticorrosion etc.
  • the heat recovery article can be applied to a wire splice and a wire harness.
  • FIG. 7 shows an example in which the heat recovery article is applied to a wire splice
  • FIGS. 8 and 9 show examples in which the heat recovery article is applied to a wire harness.
  • the wire splice of FIG. 7 is formed by twisting and connecting the conductor wires 21 of a pair of wires 20 and attaching the tube 2 in which the heat recovery article 1 or the heat recovery article 1A is heat-shrinked to the connection portion.
  • the wire 20 is an insulated wire such as a PE wire or a PVC wire, or a cable.
  • an insulating layer located in the outermost layer is mainly composed of polyvinyl chloride. Content of the polyvinyl chloride in an insulating layer is 50 to 95 mass%, for example.
  • the tube 2 can contribute to protection, insulation, waterproofing, corrosion protection, and the like of the connection portion.
  • a plurality of wires 30 are bundled by the heat-recovery article 1 or the tube 2 in which the heat-recovery article 1 ⁇ / b> A is thermally contracted, and a multi-pin connector is attached to the end of the plurality of wires 30. 31 is provided.
  • the wire 30 is the same as the wire 20 of the wire splice.
  • the tube 2 serves not only to bind the wires 30 but also to protect the individual wires 30.
  • wire splice and the wire harness may not be strictly distinguished, and may be a wire splice and a wire harness.
  • the heat recovery article is not limited to the heat recovery article shown in FIGS.
  • a heat recovery article having a cylindrical shape, one end being opened, and the other end having a base layer 10 ⁇ / b> A formed in a cap shape can be mentioned.
  • This heat recovery article is one in which one end of the heat recovery article 1 of FIG.
  • This heat-recovery article can be suitably used, for example, for terminal processing of wiring.
  • the heat recovery article 1A of the second embodiment may individually form the base material layer 10 and the adhesive layer 11 by performing extrusion molding individually.
  • the heat recovery article in this case is used by setting an adhesive layer inside the base material layer expanded after extrusion molding, and applying the adhesive layer to an adherend and then heat shrinking the base material layer.
  • the wire splice is not limited as long as the heat recovery article is attached to the connection portion between the wires, one wire connected to a plurality of wires, one connected to a plurality of wires, or wiring. As shown in the terminal processing, the ends of a plurality of wires may be connected together, and other forms may be adopted.
  • the wire harness can be configured as a so-called flat harness in which a plurality of wires are bundled in a flat shape, and can be in other forms.
  • the heat recovery article of the test example was manufactured by changing the configuration, dimensions, and presence / absence of the adhesive layer of the base material layer. Specifically, the heat recovery article was manufactured with the configuration shown in Table 1 by the above-described extrusion molded body forming step, electron beam irradiation and diameter expanding step after the extrusion molded body was formed.
  • the outer diameter of the layer corresponding to the base material layer of the extruded molded body was 6.8 mm, the inner diameter was 5.0 mm, and the wall thickness was 0.9 mm. And the diameter of the extrusion-molded body was expanded so that the inner diameter was 15 mm and the wall thickness was 0.45 mm by the diameter expansion process. In this way, a heat recovery article was produced.
  • the outer diameter of the layer corresponding to the base material layer of the extruded product was 8.0 mm, the inner diameter was 5.0 mm, and the wall thickness was 1.5 mm. And the diameter of the extrusion-molded body was expanded so that the inner diameter was 15 mm and the wall thickness was 0.75 mm by the diameter expansion process. In this way, a heat recovery article was produced.
  • the melting point was defined as the melting peak temperature obtained in accordance with JIS-K-7121 (1987) using a differential scanning calorimeter.
  • the density was measured according to JIS-Z-8807 (2012).
  • MFR was measured under the conditions of a temperature of 190 ° C. and a load of 21.6 kg in accordance with JIS-K-7210 (2014) using an extrusion plastometer defined in JIS-K-6760.
  • Mooney viscosity was measured using a Mooney viscometer at a temperature of 100 ° C. according to JIS-K-6300-1 (2013).
  • description of “ ⁇ ” in the table indicates that measurement was not possible or measurement was not possible.
  • Table 1 shows the melting point peak temperature, the heat of fusion of the entire resin component, the light transmittance of light having a wavelength of 650 nm, and the storage elastic modulus at 120 ° C. in the heat recovery article of each test example.
  • each measuring method is as follows.
  • melting point peak temperature First, the heat recovery article was heated at 180 ° C. for 2 minutes. The substrate layer of the heat recovery article after heating is heated from room temperature to 200 ° C. by a differential scanning calorimeter (“DSC8500” manufactured by Perkin Elmer) at 10 ° C./min. The temperature at which the endothermic amount per hour at the maximum was the melting point peak temperature [° C.]. This melting point peak temperature is shown in the “melting point peak temperature” column of Table 1.
  • the heat of fusion of the entire resin component The value obtained by dividing the endothermic amount [J] of the base material layer when the melting point peak temperature is measured by the mass [g] of the entire measurement sample in the base material layer is the heat of fusion [J / g] of the entire resin component. did. The heat of fusion of the entire resin component is shown in the column of “heat of fusion” in Table 1.
  • the value of the measured average transmittance was converted into a value of 0.5 mm thickness by the Lambert-Beer method, and the light transmittance [%] of light having a wavelength of 650 nm in terms of 0.5 mm thickness was obtained.
  • This light transmittance is shown in the column of “light transmittance in terms of 0.5 mm thickness” in Table 1.
  • the Lambert Bale type is shown below.
  • the heat recovery article was coated on a 10 mm square iron square bar, and then heated at 180 ° C. for 2 minutes to heat shrink the heat recovery article. Thereafter, a test was performed in which a heat cycle was first maintained at ⁇ 30 ° C. for 20 minutes and then maintained at 120 ° C. for 20 minutes 100 times. After the test, the case where tearing did not occur in the heat recovery article was evaluated as “A” (good), while the case where tearing or small scratches occurred in the heat recovery article was evaluated as “B” (defective).
  • the heat recovery articles of Test Examples 1 to 10 have a melting point peak temperature within a specific range in the base material layer after heating at 180 ° C. for 2 minutes, and the heat of fusion of the entire resin component is specified.
  • the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness is not less than a specific value, and the storage elastic modulus at 120 ° C. is not less than a specific value.
  • the heat-recovery articles of Test Examples 1 to 10 have good electric wire visibility and excellent tear suppression.
  • Test Examples 11 and 13 in the base material layer after heating at 180 ° C. for 2 minutes, the melting point peak temperature and the heat of fusion are too high, and the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness is too small.
  • Test Example 12 the heat of fusion was too high in the base material layer after heating at 180 ° C. for 2 minutes, and the light transmittance of light having a wavelength of 650 nm in terms of 1 mm thickness was too small. Therefore, Test Examples 11 to 13 have poor wire visibility, and the transparency after shrinkage is lower than Test Examples 1 to 10.
  • Test Example 14 shows that the storage elastic modulus at 120 ° C. is too low in the base material layer after heating at 180 ° C. for 2 minutes. Therefore, Test Example 14 has insufficient suppression of tearing, and is easier to tear than Test Examples 1 to 10.
  • Test Example 15 has a melting point peak temperature and a storage elastic modulus at 120 ° C. that are too low in the base material layer after heating at 180 ° C. for 2 minutes. Further, in Test Examples 16 and 17, in the base material layer after heating at 180 ° C. for 2 minutes, the melting point peak temperature and the heat of fusion of the entire resin component are too low, and the storage elastic modulus at 120 ° C. is too low. Therefore, Test Examples 15 to 17 have insufficient suppression of tearing, and are easier to tear than Test Examples 1 to 10.
  • the heat-recovery article of the present invention is excellent in shrinkage at a low temperature such as 130 ° C. or more and 140 ° C. or less, and does not tear or tear even when used in a wide temperature environment from about ⁇ 60 ° C. to about 120 ° C.
  • production can be suppressed effectively and visual recognition of the inclusion after shrinkage
  • the said heat recovery article can be used as a coating
  • the heat recovery article can be suitably used for wire splices and wire harnesses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

130℃以上140℃以下のような比較的低い温度での収縮性に優れると共に、-60℃程度から120℃程度までの広い温度環境下で使用されても裂けや破れの発生を抑制でき、かつ収縮後の内包物の視認が可能な熱回復物品を提供する。本発明の熱回復物品は、基材層を有する円筒状の熱回復物品であって、上記基材層がポリオレフィン系樹脂を含有し、180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である。上記ポリオレフィン系樹脂としては、融点が125℃以上135℃以下の第1ポリオレフィン系樹脂と融点が125℃未満の第2ポリオレフィン系樹脂との混合物が好ましい。

Description

熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス
 本発明は、熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネスに関する。
 熱収縮チューブ等の熱回復物品は、絶縁電線同士の接続部分、配線の端末、金属管等の保護、絶縁、防水、防食、商品等の包装などに使用される。例えば熱収縮チューブは、絶縁電線同士の接続部分に被覆して加熱すると、接続部分の形状に沿って収縮して密着することで接続部分を保護できる。この熱回復物品には、接続部分の様子を確認できるよう、収縮後の透明性が求められ、さらに高温等の過酷な使用環境下において裂け等が生じないことが求められる。
 透明性が求められる用途の熱回復物品としては、例えば構成モノマー単位として、少なくともテトラフルオロエチレン、ヘキサフルオロポリプロピレン、及びエチレンを含む部分水素化フッ素樹脂と、多官能モノマーを含有するフッ素樹脂組成物の成形品とを架橋して拡径することで形成される熱収縮チューブが提案されている(特開2011-162668号公報参照)。
 また、ランダム共重合体ポリプロピレンを含む樹脂材料をチューブ状に押出成形し、得られたチューブ状の成形体に放射線を照射して前記樹脂材料を架橋し、その後拡径することにより得られる透明熱収縮チューブが提案されている(特開2013-155316号公報参照)。
特開2011-162668号公報 特開2013-155316号公報
 上記フッ素樹脂組成物により形成される熱収縮チューブは、熱収縮に230℃のような高い温度が必要である。また、上記ランダム共重合体ポリプロピレンを含む樹脂材料により形成される透明熱収縮チューブは、含有する樹脂の融点が145℃であり、上記フッ素樹脂組成物により形成される熱収縮チューブに比べて熱収縮温度を低くできる。しかしながら、被覆対象によっては、熱収縮時の熱により性能の低下が懸念されるものがある。このような被覆対象に対しては、高温での熱収縮を避けて、例えば130℃以上140℃以下のような比較的低い温度での熱収縮が求められるところ、上記従来の熱収縮チューブは、このような温度では収縮に時間が掛かるおそれがある。
 さらに、上述のような熱回復物品は、-60℃程度から120℃程度までの広い温度環境下で使用されるようになってきている。熱回復物品には、この広い温度環境下で使用されても、内包物保護の観点より裂けや破れが生じないことが求められる。熱回復物品において使用時の裂けや破れの発生を防ぐためには、使用中に温度環境が変化して、上記熱回復物品に局所的に応力が加わっても、熱回復物品がこの応力負荷に耐えられる剛性を有することが必要である。しかし、上記公報に記載の熱収縮チューブは、このような広い温度環境下での剛性についても検討が不十分である。
 本発明は、上述のような事情に基づいてなされたものであり、130℃以上140℃以下のような比較的低い温度での収縮性に優れると共に、-60℃程度から120℃程度までの広い温度環境下で使用されても裂けや破れの発生を効果的に抑制でき、かつ収縮後の内包物の視認が可能な熱回復物品、上記熱回復物品の製造方法、上記熱回復物品を使用したワイヤスプライス、及び上記熱回復物品を使用したワイヤハーネスを提供することを目的とする。
 上記課題を解決するためになされた本発明の一態様に係る熱回復物品は、基材層を有する円筒状の熱回復物品であって、上記基材層がポリオレフィン系樹脂を含有し、180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である熱回復物品を提供する。
 上記課題を解決するためになされた別の本発明の一態様に係る熱回復物品の製造方法は、ポリオレフィン系樹脂を含有する樹脂組成物を円筒状に成形する工程と、上記成形体の拡径により基材層を形成する工程とを備え、180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である熱回復物品の製造方法を提供する。
 上記課題を解決するためになされた別の本発明の一態様に係るワイヤスプライスは、導体及びその外側に積層される絶縁層を有する複数本のワイヤと、上記複数本のワイヤの導体同士が接続された部分に被着された上記熱回復物品を熱収縮させたチューブとを備えるワイヤスプライスである。
 上記課題を解決するためになされた別の本発明の一態様に係るワイヤハーネスは、導体及びその外側に積層される絶縁層を有する複数本のワイヤと、上記複数本のワイヤに被着された上記熱回復物品を熱収縮させたチューブとを備えるワイヤハーネスである。
 本発明の熱回復物品は、130℃以上140℃以下のような比較的低い温度での収縮性に優れると共に、-60℃程度から120℃程度までの広い温度環境下で使用されても裂けや破れの発生を効果的に抑制でき、かつ収縮後の内包物の視認が可能である。本発明の熱回復物品の製造方法は、このような熱回復物品を容易に製造できる。本発明のワイヤスプライス及びワイヤーハーネスは、-60℃程度から120℃程度までの広い温度環境下で使用されても被覆の裂けや破れの発生を効果的に抑制でき、かつ被覆の内包物の視認が可能である。
本発明の第一実施形態に係る熱回復物品を示す模式的斜視図である。 図1のX1-X1線に沿う模式的断面図である。 図1のX2-X2線に沿う模式的断面図である。 本発明の第二実施形態に係る熱回復物品を示す模式的斜視図である。 図4のX3-X3線に沿う模式的断面図である。 図4のX4-X4線に沿う模式的断面図である。 本発明の一実施形態に係るワイヤスプライスを示す図2に対応する模式的断面図である。 本発明の一実施形態に係るワイヤハーネスを示す図2に対応する模式的断面図である。 図8に示したワイヤハーネスの図3に対応する模式的断面図である。 本発明の他の実施形態に係る熱回復物品を示す図2に相当する模式的断面図である。
[本発明の実施形態の説明]
 本発明の一態様に係る熱回復物品は、基材層を有する円筒状の熱回復物品であって、上記基材層がポリオレフィン系樹脂を含有し、180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である。
 当該熱回復物品は、180℃で2分加熱後の上記基材層における融点ピーク温度が上記範囲内であるので、130℃以上140℃以下のような比較的低い温度での熱収縮性に優れる。さらに、当該熱回復物品は、180℃で2分加熱後の上記基材層における樹脂成分全体の融解熱量が上記範囲内であるので、透明性の低下を招くことなく、貯蔵弾性率を高くして、裂けや破れの発生を抑制できる。さらに、当該熱回復物品は、180℃で2分加熱後の上記基材層における1mm厚み換算での波長650nmの光の光線透過率が上記値以上であるので、比較的高い透明性を有する。さらに、当該熱回復物品は、180℃で2分加熱後の上記基材層における120℃の貯蔵弾性率が上記値以上であるので、120℃程度の環境でも剛性が高く維持できる。このため、当該熱回復物品は、-60℃程度から120℃程度までの広い温度環境下で使用されても、裂けや破れが発生しにくい。なお、当該熱回復物品は180℃で2分加熱することにより、基材層の熱による収縮が最後まで進行した状態(完了した状態)になるものと推測される。そのため、当該熱回復物品は、180℃で2分加熱後の上記パラメータを上述の範囲とすることで、上述した各特性が担保される。
 「基材層における融点ピーク温度」とは、180℃で2分間加熱した基材層を示差走査熱量測定装置によって室温から200℃まで10℃/分で昇温させ、この昇温時の基材層における時間当たりの吸熱量が極大(ピーク)になる温度をいう。「基材層の樹脂成分全体の融解熱量」とは、基材層の吸熱が全てポリオレフィン系樹脂及び基材層に含まれる他の樹脂成分によって行われると仮定し、上記融点ピーク温度を測定したときの室温から200℃までの昇温中における基材層の吸熱量(J)を基材層中の樹脂成分全体の質量(g)で除した値(J/g)をいう。なお、上記示差走査熱量測定は、JIS-K-7121(1987年)に準拠する。さらに、「光線透過率」とは、JIS-K-7375(2008年)に準拠して測定する値をいう。また、「貯蔵弾性率」とは、粘弾性体に正弦的振動ひずみを与えたときの応力と、ひずみの関係を表す複素弾性率を構成する一項(実数項)であり、10℃/minの昇温速度での動的粘弾性測定により測定する値をいう。
 上記ポリオレフィン系樹脂としては、融点が125℃以上135℃以下の第1ポリオレフィン系樹脂と融点が125℃未満の第2ポリオレフィン系樹脂との混合物が好ましい。
このように上記ポリオレフィン系樹脂を上記混合物とすることで、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整できる。また、上記第1ポリオレフィン系樹脂の上記第2ポリオレフィン系樹脂に対する質量比としては、20/80以上85/15以下が好ましい。このように上記質量比を上記範囲とすることで、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整できる。ここで、「融点」とは、示差走査熱量測定装置を用い、JIS-K-7121(1987年)に準拠して求めた融解ピーク温度をいう。
 上記第1ポリオレフィン系樹脂としては、高密度ポリエチレンが好ましい。このように上記第1ポリオレフィン系樹脂を上記高密度ポリエチレンとすることで、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整できる。
 上記高密度ポリエチレンのメルトフローレート(MFR)としては、5g/10分以下が好ましい。このように上記高密度ポリエチレンのMFRを上記の値以下とすることで、結晶化による透明性の低下を効果的に抑制できる。ここで、「メルトフローレート(MFR)」とは、押出し形プラストメータを用い、JIS-K-7210(2014年)に準拠して、温度190℃、荷重21.6kgの条件で測定される値をいう。
 上記高密度ポリエチレンの密度としては、0.930g/cm以上0.960g/cm以下が好ましい。このように上記高密度ポリエチレンの密度を上記範囲とすることで、130℃以上140℃以下のような比較的低い温度での熱収縮性をより高め、かつ白濁による透明性の低下を効果的に抑制できる。ここで、「密度」とは、JIS-Z-8807(2012年)に準拠して測定される値をいう。
 上記第2ポリオレフィン系樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、ポリオレフィン系エラストマー又はこれらの組み合わせが好ましい。このように上記第2ポリオレフィン系樹脂を直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、ポリオレフィン系エラストマー又はこれらの組み合わせとすることで、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整できる。
 上記ポリオレフィン系エラストマーとしては、ブテン、ヘキセン及びオクタンの少なくともいずれかとエチレンとを共重合させたポリエチレン系エラストマー、又はエチレン-プロピレン共重合体エラストマーが好ましい。このように上記ポリオレフィン系エラストマーを上記エラストマーとすることで、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整できる。
 また、当該熱回復物品は、上記基材層の内周面に積層される接着剤層を有することが好ましい。このように上記接着剤層を有することで、熱回復物品が被覆する被覆部分と基材層との密着性を高めることができる。
 上記接着剤層は、エチレン-酢酸ビニル共重合体又はポリアミドを含有することが好ましい。このように上記接着剤層がエチレン-酢酸ビニル共重合体又はポリアミドを含有することで、熱回復物品が被覆する被覆部分と基材層との密着性をさらに高められる。
 本発明の別の態様に係る熱回復物品の製造方法は、ポリオレフィン系樹脂を含有する樹脂組成物を円筒状に成形する工程と、上記成形体の拡径により基材層を形成する工程とを備え、180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である。
 当該熱回復物品の製造方法は、130℃以上140℃以下のような比較的低い温度での収縮性に優れると共に、収縮後において120℃程度での弾性率が高く、温度変化による局所的な応力負荷の発生による裂けや破れの発生を効果的に抑制でき、かつ収縮後の内包物の視認が可能な熱回復物品を容易に製造できる。
 本発明の別の態様に係るワイヤスプライスは、導体及びその外側に積層される絶縁層を有する複数本のワイヤと、上記複数本のワイヤの導体同士が接続された部分に被着された上記熱回復物品を熱収縮させたチューブとを備えるワイヤスプライスである。
 当該ワイヤスプライスは、上記熱回復物品を熱収縮させたチューブを備えるので、このチューブに内包された接続部分の視認性に優れる。さらに、上記チューブは裂け難いので、当該ワイヤプライスは、長寿命化が図られ、ワイヤ及びその接続部分の保護、絶縁、防水、防食等の保護状態を長期間維持することが可能となる。
 本発明の別の態様に係るワイヤハーネスは、導体及びその外側に積層される絶縁層を有する複数本のワイヤと、上記複数本のワイヤに被着された上記熱回復物品を熱収縮させたチューブとを備える。
 当該ワイヤハーネスは、上記熱回復物品を熱収縮させたチューブを備えるので、このチューブに内包されたワイヤの視認性に優れる。さらに、上記チューブは裂け難いので、当該ワイヤハーネスは、長寿命化が図られ、ワイヤの保護、絶縁、防水、防食等の保護状態を長期間維持することが可能となる。
[本発明の実施形態の詳細]
 以下、図面を参照しつつ、本発明に係る熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネスを説明する。
[熱回復物品]
 まず、熱回復物品の実施形態について以下に説明する。
[第一実施形態]
 図1~図3に示す第一実施形態の熱回復物品1は、基材層10を有する円筒状の熱回復物品であって、基材層10がポリオレフィン系樹脂を含有し、180℃で2分加熱後の基材層10における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である。
 上記熱回復物品1は、例えば絶縁電線同士の接続部分、配線の端末、金属管等の保護、絶縁、防水、防食等のための被覆として使用される。この熱回復物品1は基材層10を備える。
<基材層>
 基材層10は、主成分としてポリオレフィン系樹脂を含有することが好ましい。この「主成分」とは、最も含有量の多い成分であり、例えば含有量が50質量%以上の成分をいう。基材層10は、加熱されることで縮径するチューブとして形成される。また、基材層10は難燃剤を含有してもよい。さらに、この基材層10に必要に応じて他の添加剤を添加してもよい。そのような添加剤としては、例えば酸化防止剤、銅害防止剤、滑剤、着色剤、熱安定剤、紫外線吸収剤等が挙げられる。
<基材層の融点ピーク温度>
 基材層10は1つの融点ピーク温度を有することが好ましい。熱回復物品1の熱収縮は基材層10の融点ピーク温度付近で起きるので、融点ピーク温度が1つであることによって加熱時に熱回復物品1が段階的に熱収縮せずに一気に熱収縮する。
 180℃で2分加熱後の基材層10における融点ピーク温度の下限としては、115℃であり、118℃が好ましく、120℃がさらに好ましい。一方、上記融点ピーク温度の上限としては、128℃であり、127℃が好ましく、126℃がさらに好ましい。上記融点ピーク温度が上記下限未満である場合、使用中の温度環境の変化により局所的な応力が基材層10に加わっている状態で、120℃程度の使用環境で熱回復物品1を使用すると、基材層10の柔軟化に伴い、基材層10で裂けや破れが発生し易くなる。また、上記融点ピーク温度が上記上限を超える場合、熱収縮時の熱が熱回復物品1で被覆される物品の性能を損なうおそれがある。
(ポリオレフィン系樹脂)
 上記ポリオレフィン系樹脂としては、ポリエチレン、エチレン-αオレフィン共重合体、エチレン-ビニルエステル共重合体、エチレン-α,β-不飽和カルボン酸アルキルエステル共重合体、オレフィン系熱可塑性エラストマー、オレフィン系ゴムなどが挙げられる。
 このポリオレフィン系樹脂のMFR(メルトフローレート)の下限としては、0.01g/10分が好ましく、0.1g/10分がより好ましい。一方、上記MFRの上限としては、10g/10分が好ましく、4g/10分がより好ましい。MFRが上記下限未満である場合、基材層10を押出成形で作製する際の押出圧力が大きくなるおそれがあり、さらに基材層10の外観が低下するおそれがある。また、MFRが上記上限を超える場合、基材層10を形成する組成物の流動性が過大になり易く、基材層10を押出成形で作製する際に基材層10の形状を均一にすることが困難になる。さらに、MFRが上記上限を超える場合、基材層10を成形する際の冷却工程で結晶化が進みやすく、高結晶となることで透明性が大きく低下するおそれがある。
 上記ポリエチレンとしては、高圧ラジカル重合法による低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、メタロセン重合ポリエチレン等が挙げられる。
 上記エチレン-αオレフィン共重合体のαオレフィンとしては、炭素数3~20程度のαオレフィンなどが挙げられる。より具体的には、αオレフィンとしては、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-ノナデセン、1-エイコセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1テトラデセン等が挙げられる。
 上記エチレン-ビニルエステル共重合体のビニルエステルとしては、プロピオン酸ビニル、酢酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニル等が挙げられる。
 上記エチレン-α,β-不飽和カルボン酸アルキルエステル共重合体のα,β-不飽和カルボン酸アルキルエステルとしては、アクリル酸メチル、メタアクリル酸メチル、アクリル酸エチル、メタアクリル酸エチル等が挙げられる。
 上記オレフィン系熱可塑性エラストマーとしては、低密度ポリエチレンエラストマー、超低密度ポリエチレンエラストマー、ポリプロピレンエラストマー等が挙げられる。
 上記オレフィン系ゴムとしては、エチレンプロピレン系ゴム、ブタジエン系ゴム、イソプレン系ゴムなどが挙げられる。
 上記エチレンプロピレン系ゴムとしては、エチレン及びプロピレンを主成分とするランダム共重合体、及び第3成分としてジシクロペンタジエン、エチリデンノルボルネン等のジエンモノマーを加えたものを主成分とするランダム共重合体等が挙げられる。
 上記ブタジエン系ゴムとしては、スチレン-ブタジエンブロック共重合体及びその水添または部分水添誘導体であるスチレン-エチレン-ブタジエン-スチレン共重合体、1,2-ポリブタジエン、無水マレイン酸変性のスチレン-エチレン-ブタジエン-スチレン共重合体、コアシェル構造を有する変性ブタジエンゴム等が挙げられる。
 上記イソプレン系ゴムとしては、スチレン-イソプレンブロック共重合体及びその水添または部分水添誘導体であるスチレン-エチレン-イソプレン-スチレン共重合体、無水マレイン酸変性のスチレン-エチレン-イソプレン-スチレン共重合体、コアシェル構造を有する変性イソプレンゴム等が挙げられる。
(樹脂成分全体の融解熱量)
 180℃で2分加熱後の基材層10における樹脂成分全体の融解熱量の下限としては、80J/gであり、100J/gが好ましく、115J/gがより好ましい。一方、上記樹脂成分全体の融解熱量の上限としては、150J/gであり、145J/gが好ましく、140J/gがより好ましい。この融解熱量が上記下限未満になるのは、基材層10中のゴム成分やエラストマー成分が多い場合であり、このため熱回復物品1は低い温度で熱収縮し始める。この融解熱量が上記下限未満であると、使用中の温度環境の変化により局所的な応力が基材層10に加わっている状態で、120℃程度の使用環境で熱回復物品1を使用すると、局所的な応力集中により基材層10で裂けや破れが発生し易くなる。一方、上記融解熱量が上記上限を超えるのは、基材層10中の結晶質のポリオレフィン系樹脂が多く、ゴム成分やエラストマー成分の非晶質のポリオレフィン系樹脂が少ない場合である。また、上記融解熱量が上記上限を超えると、基材層10の収縮温度が高くなるおそれがあると共に透明性が低下するおそれがある。なお基材層中には酸化防止剤等樹脂成分以外の成分が含まれているが、これらの量は少量であり融解熱量に対する影響は少ないため、基材層全体の融解熱量を樹脂成分全体の融解熱量としても良い。
(1mm厚み換算での波長650nmの光の光線透過率)
 180℃で2分加熱後の基材層10における1mm厚み換算での波長650nmの光の光線透過率の下限としては、9%であり、9.5%が好ましく、10%がより好ましい。
上記光線透過率が上記下限未満である場合、十分な透明性が得られないおそれがある。
(120℃の貯蔵弾性率)
 180℃で2分加熱後の基材層10における120℃の貯蔵弾性率の下限としては、4MPaであり、8MPaが好ましく、10MPaがより好ましい。上記貯蔵弾性率が上記下限以上であるので、熱回復物品1の使用中における温度環境の変化により熱回復物品1の基材層10に局所的に応力が加わっている状態で120℃程度の使用環境で熱回復物品1を使用しても、熱回復物品1はこのような局所的応力負荷に耐えうる剛性を有する。上記貯蔵弾性率が上記下限未満である場合、熱回復物品1の使用中における温度環境の変化により熱回復物品1の基材層10に局所的に応力が加わっている状態で、120℃程度の使用環境で熱回復物品1を使用すると、基材層10で裂けや破れが発生し易くなる。
 なお、180℃で2分加熱する前の基材層10において、融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率は、それぞれ、180℃で2分加熱後の基材層10における融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率と同様と考えられる。
 上記ポリオレフィン系樹脂としては、基材層10の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整する観点より、融点が125℃以上135℃以下の第1ポリオレフィン系樹脂と融点が125℃未満の第2ポリオレフィン系樹脂との混合物が好ましい。
(第1ポリオレフィン系樹脂)
 上記第1ポリオレフィン系樹脂としては、基材層10の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整する観点より、高密度ポリエチレンが好ましい。
 上記高密度ポリエチレンのメルトフローレート(MFR)の上限としては、5g/10分が好ましく、3g/10分がより好ましく、1g/10分がさらに好ましい。上記MFRが上記上限を超える場合、基材層10において結晶化による透明性の低下が生じるおそれがある。
 上記高密度ポリエチレンの密度の下限としては、0.930g/cmが好ましく、0.935g/cmがより好ましく、0.940g/cmがさらに好ましい。一方、上記密度の上限としては、0.960g/cmが好ましく、0.958g/cmがより好ましい。上記密度が上記下限未満である場合、融点の低下により、使用中の温度環境の変化により熱回復物品1の基材層10に局所的に応力が加わっている状態で、120℃程度の使用環境で熱回復物品1を使用すると、基材層10の融点の低下により基材層10で裂けや破れが発生し易くなる。また、上記密度が上記上限を超える場合、高結晶化しやすく、白濁化により透明性が大きく損なわれるおそれがある。
(第2ポリオレフィン系樹脂)
 また、上記第2ポリオレフィン系樹脂としては、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整する観点より、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、ポリオレフィン系エラストマー又はこれらの組み合わせが好ましい。特に上記ポリオレフィン系エラストマーとしては、ブテン、ヘキセン及びオクタンの少なくともいずれかとエチレンとを共重合させたポリエチレン系エラストマー、又はエチレン-プロピレン共重合体エラストマーが好ましい。
 また、上記第2ポリオレフィン系樹脂のムーニー粘度の下限としては、第一ポリオレフィン系樹脂との混ざり性の観点より、10が好ましく、25がより好ましい。上記混ざり性の向上は、裂け抑制効果の向上、長期間使用時の安定性の向上に寄与する。なお、上記ムーニー粘度は、ムーニー粘度計を用い、JIS-K-6300-1(2013年)に準拠して、温度100℃の条件で測定される値である。
 第1ポリオレフィン系樹脂と第2ポリオレフィン系樹脂との上記混合物において、上記第1ポリオレフィン系樹脂の上記第2ポリオレフィン系樹脂に対する質量比の下限としては、20/80が好ましく、30/70がより好ましい。一方、上記質量比の上限としては、85/15が好ましく、80/20がより好ましい。上記質量比を上記範囲とすることで、上記基材層の融点ピーク温度、樹脂成分全体の融解熱量、1mm厚み換算での波長650nmの光の光線透過率、及び120℃の貯蔵弾性率を上記範囲内により容易かつ確実に調整できる。
<酸化防止剤>
 上記酸化防止剤としては、フェノール系酸化防止剤又はアミン系酸化防止剤が好ましく挙げられる。これらの酸化防止剤を用いることにより、耐銅害性を向上できる。なお、酸化防止剤としては、上述した以外に硫黄系酸化防止剤及び亜リン酸エステル系酸化防止剤等を単独又は併用で用いることができる。
(フェノール系酸化防止剤)
 上記フェノール系酸化防止剤としては、例えばペンタエリスリトールテトラキス[3-3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、テトラキス-[メチレン-3-(3′5′-ジ-tert-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、6-(4-ヒドロキシ-3,5--ジ-tert-ブチル・アニリノ)-2,4-ビス・オクチル-チオ-1,3,5-トリアジン等が挙げられる。
(アミン系酸化防止剤)
 上記アミン系酸化防止剤としては、例えば4,4’(α、αージメチルベンジル)ジフェニルアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、N-(1,3-ジメチルブチル)-N’-フェニル-1,4-フェニレンジアミン、N-イソプロピル-N’-フェニル-1,4-フェニレンジアミン等が挙げられる。
 基材層10における酸化防止剤の含有量の下限としては、ポリオレフィン系樹脂100質量部に対して、0.1質量部が好ましく、1.5質量部がより好ましい。一方、上記酸化防止剤の含有量の上限としては、ポリオレフィン系樹脂100質量部に対して、5質量部が好ましく、3質量部がより好ましい。上記含有量が上記下限未満であると、基材層10が酸化し易くなり、当該熱回復物品1が劣化するおそれがある。また、上記含有量が上記上限を超えると、酸化防止剤が基材層10の表面に移行し、酸化防止剤が表面で結晶化する所謂ブルームや、酸化防止剤が表面に液体状で滲み出る所謂ブリードが発生し、外観不良となるおそれがある。
(銅害防止剤)
 上記銅害防止剤としては、例えば3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、デカメチレンジカルボン酸ジサリチロイルヒドラジド、2,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド等が挙げられる。基材層10に銅害防止剤を含有させることによって、銅害を防止することが期待される。
 上記銅害防止剤の含有量の範囲は、例えば銅害防止剤が3-(N-サリチロイル)アミノ-1,2,4-トリアゾールの場合、下限としては、ポリオレフィン系樹脂100質量部に対して、0.1質量部が好ましく、1質量部がより好ましい。また、上限としては、ポリオレフィン系樹脂100質量部に対して、10質量部が好ましく、5質量部がより好ましい。上記銅害防止剤の含有量が上記下限未満であると、銅害防止剤の効果が得られないおそれがある。また、上記銅害防止剤の含有量が上記上限を超えても、銅害防止効果の向上が得られない。
<熱回復物品の製造方法>
 上記熱回復物品1は、例えば以下の工程を有する製造方法により製造できる。
(1)上記ポリオレフィン系樹脂を含有する樹脂組成物を円筒状に成形する工程
(2)上記成形体の拡径により基材層10を形成する工程
(組成物の調製)
 上記ポリオレフィン系樹脂組成物は、例えば上記ポリオレフィン系樹脂等の樹脂成分と必要に応じて添加される上記添加剤とを溶融混合機により混合することで調製できる。上記溶融混合機としては、公知のもの、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等が挙げられる。
(成形工程)
 上記成形体は、例えば上記ポリオレフィン系樹脂組成物を公知の溶融押出成形機を用いて押出成形することで形成される。この成形体は、基材層の構成材料を架橋することにより、耐熱性を向上させてもよい。架橋方法としては、例えば電離性放射線の照射による架橋、化学架橋、熱架橋等の方法が挙げられる。
 上記電離放射線としては、例えばα線、β線、γ線、電子線、X線等が挙げられる。中でも、上記電離放射線としては、制御の容易さ、安全性等の点より電子線が好ましい。
 上記電離放射線の照射量は、特に限定されないが、例えば上記電離放射線として電子線を照射する場合、十分な架橋密度を得つつ照射による樹脂の劣化を抑制する観点より、その照射量は100kGy以上1000kGy以下が好ましい。
 上記成形体の寸法は、用途等に応じて設計することができる。基材層10に対応する成形体の寸法は、一例において、内径及び肉厚のそれぞれが、1.0mm以上30mm以下及び0.1mm以上10mm以下とされる。
(拡径工程)
 上記成形体の拡径は、上記成形体を融点以上の温度に加熱した状態で内部に圧縮空気を導入する等の方法により所定の内径となるように膨張させた後、冷却して形状を固定させることで行われる。このような拡径は、例えば上記成形体の内径が2倍~4倍程度となるように行われる。このようにして上記成形体を拡径させて形状固定したものが熱回復物品となる。
[利点]
 当該熱回復物品1は、180℃で2分加熱後の基材層10における融点ピーク温度が上記範囲内であり、樹脂成分全体の融解熱量が上記範囲内であり、1mm厚み換算での波長650nmの光の光線透過率が上記値以上であり、かつ120℃の貯蔵弾性率が上記値以上であるので、130℃以上140℃以下のような比較的低い温度での収縮性に優れると共に、熱回復物品1の使用中における温度環境の変化により熱回復物品1に局所的に応力が加わっている状態で120℃程度の使用環境で熱回復物品1を使用しても、このような局所的応力負荷に耐えうる剛性を有し、-60℃程度から120℃程度までの広い温度環境下で使用されても裂けや破れの発生を効果的に抑制でき、かつ収縮後の内包物の視認が可能である。
[第二実施形態]
 図4~図6に第二実施形態の熱回復物品1Aを示す。この熱回復物品1Aにおいて第一実施形態の熱回復物品1と同様の構成物には同一符号を付して説明を省略する。第二実施形態の熱回復物品1Aは、基材層10の内周面に積層される接着剤層11を備えた多層の熱回復物品である。
<接着剤層>
 接着剤層11は、エチレン-酢酸ビニル共重合体又はポリアミドを含有することが好ましい。接着剤層11は、熱回復物品1Aが被覆する被覆部分と基材層10との密着性を高め、防水性等を向上させるためのものである。また、接着剤層11には、熱回復物品1Aに形成された後での粘度を調整する目的で無機フィラーを添加してもよい。さらに、この接着剤層11に必要に応じて他の添加剤を添加してもよい。そのような添加剤としては、例えば酸化防止剤、銅害防止剤、劣化抑制剤、粘度特性改良剤、難燃剤、滑材、着色剤、熱安定剤、紫外線吸収剤、粘着剤等が挙げられる。
(エチレン-酢酸ビニル共重合体)
 上記エチレン-酢酸ビニル共重合体において、酢酸ビニルの含有量の下限としては、12質量%が好ましく、15質量%がより好ましく、19質量%がさらに好ましい。一方、上記含有量の上限としては、46質量%が好ましく、35質量%がより好ましく、30質量%がさらに好ましい。上記含有量が上記下限未満であると、十分な柔軟性が得られないおそれがある。また、上記含有量が上記上限を超えると、接着剤層11を押出成形で形成する場合にダイス、金型等への固着が生じ、取扱いが困難となるおそれがある。
 上記エチレン-酢酸ビニル共重合体のMFRの下限としては、50g/10分が好ましく、100g/10分がより好ましい。一方、上記MFRの上限としては、600g/10分が好ましく、500g/10分がより好ましい。上記MFRが上記下限未満であると、接着剤層11を押出成形で成形する場合に比較的高い圧力が必要となるおそれがある。
また、上記MFRが上記上限を超えると、樹脂が流れすぎ、均一な形状を有する接着剤層11を形成することが困難になるおそれがある。
(無機フィラー)
 上記無機フィラーとしては、例えば有機処理層状珪酸塩、有機処理膨潤性雲母、炭酸カルシウム、カーボン、シリカ等が挙げられる。無機フィラーを含有させることによって、接着剤層11の粘度を容易に調整でき、接着剤層11の厚みを均一にすることができる。
<熱回復物品の製造方法>
 熱回復物品1Aは、例えば以下の工程を有する製造方法により製造できる。
(1)上記ポリオレフィン系を含有する樹脂組成物及び接着剤組成物を円筒状に成形する工程
(2)上記成形体の拡径により基材層及び接着剤層を形成する工程
 なお、上記接着剤組成物は、接着剤層11を形成するための組成物を意味する。
(組成物の調製)
 上記ポリオレフィン系樹脂組成物は、例えば上記ポリオレフィン系樹脂等の樹脂成分と必要に応じて添加される上記添加剤とを溶融混合機により混合することで調製できる。上記溶融混合機としては、公知のもの、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等が挙げられる。
 また、上記接着剤組成物は、例えばエチレン-酢酸ビニル共重合体又はポリアミドと必要に応じた添加剤とを溶融混合機により混合することで調製できる。上記溶融混合機としては、上記ポリオレフィン系樹脂組成物を調製する場合と同様のものを使用できる。
(1)成形工程(多層押出成形体形成工程)
 上記成形工程では、上記ポリオレフィン系樹脂組成物と上記接着剤組成物とを公知の溶融押出成形機を用いて、上記ポリオレフィン系樹脂組成物及び上記接着剤組成物を同時に押出成形することで、基材層10に対応する外層の内周面に接着剤層11に対応する内層が積層された多層押出成形体を形成する。この多層押出成形体は、外層の構成材料を架橋することにより、耐熱性を向上させてもよい。架橋方法としては、例えば電離性放射線の照射による架橋、化学架橋、熱架橋等の方法が挙げられる。
 上記電離放射線の具体例及びその照射量は、上記第一実施形態と同様である。
 上記多層押出成形体の寸法は、用途等に応じて設計することができる。上記多層押出成形体の基材層10に対応する層の寸法は、一例において、内径及び肉厚のそれぞれが、1.0mm以上30mm以下及び0.1mm以上10mm以下とされる。上記多層押出成形体の接着剤層11に対応する層の寸法は、一例において、内径及び肉厚のそれぞれが、0.1mm以上10mm以下及び0.1mm以上8.5mm以下とされる。
(2)拡径工程(多層押出成形体の拡径工程)
 上記拡径工程では、上記多層押出成形体の拡径が行われる。多層押出成形体の拡径は、多層押出成形体を融点以上の温度に加熱した状態で内部に圧縮空気を導入する等の方法により所定の内径となるように膨張させた後、冷却して形状を固定させることで行われる。
このような多層押出成形体の拡径は、例えば多層押出成形体の内径が2倍~4倍程度となるように行われる。このようにして多層押出成形体を拡径させて形状固定したものが熱回復物品1Aとなる。
[利点]
 当該熱回復物品1Aは、基材層10を有するので、130℃以上140℃以下のような比較的低い温度での収縮性に優れると共に、熱回復物品1Aの使用中における温度環境の変化により熱回復物品1Aに局所的に応力が加わっている状態で120℃程度の使用環境で熱回復物品1Aを使用しても、このような局所的応力負荷に耐えうる剛性を有し、-60℃程度から120℃程度までの広い温度環境下で使用されても裂けや破れの発生を効果的に抑制でき、かつ収縮後の内包物の視認が可能である。また、当該熱回復物品1Aは、接着剤層11を有するので、当該熱回復物品1Aが被覆する部分と基材層10との密着性を高めることができ、絶縁性、防水性、防食性等を向上できる。
[ワイヤスプライス及びワイヤハーネス]
 当該熱回復物品は、例えば導体を被覆する絶縁層がポリエチレン(PE)であるPE電線又はPEケーブル、絶縁層がポリビニルクロライド(PVC)であるPVC電線又はPVCケーブル等のワイヤの保護、絶縁、防水、防食等のために使用できる。具体的には、当該熱回復物品は、ワイヤスプライス及びワイヤハーネスに適用できる。
 図7は当該熱回復物品をワイヤスプライスに適用した例を、図8及び図9は当該熱回復物品をワイヤハーネスに適用した例を示す。
 図7のワイヤスプライスは、一対のワイヤ20の導体線21同士を撚って接続し、この接続部分に上記熱回復物品1又は上記熱回復物品1Aを熱収縮させたチューブ2を被着したものである。ワイヤ20は、PE電線若しくはPVC電線等の絶縁電線又はケーブルである。ワイヤ20としては、例えば最外層に位置する絶縁層が、ポリビニルクロライドを主成分とするものが使用される。絶縁層におけるポリビニルクロライドの含有量は、例えば50質量%以上95質量%以下である。このようなワイヤスプライスにおいて、チューブ2は、接続部分の保護、絶縁、防水、防食等に寄与できる。
 図8及び図9のワイヤハーネスは、複数本のワイヤ30を上記熱回復物品1又は上記熱回復物品1Aを熱収縮させたチューブ2により結束し、複数本のワイヤ30の端部に多ピンコネクタ31を設けたものである。ワイヤ30は、上記ワイヤスプライスのワイヤ20と同様のものである。このワイヤハーネスにおいて、チューブ2は、単に各ワイヤ30を結束する役割を果たすだけでなく、個々のワイヤ30を保護する等の役割を果たす。
 なお、上記ワイヤスプライスと上記ワイヤハーネスとは、厳格に区別できない場合があり、ワイヤスプライスであって、なおかつワイヤハーネスであるという場合もあり得る。
<その他の実施形態>
 上記開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 当該熱回復物品は、図1~図6に示す熱回復物品に限定されない。例えば図10に示すような、円筒状であり、一方の端は開放され、他方の端はキャップ状に基材層10Aが形成された熱回復物品が挙げられる。この熱回復物品は、図1の熱回復物品1の一端部を加熱収縮させて一端部を閉じたものである。この熱回復物品は、例えば配線の端末処理に好適に使用できる。
 上記第二実施形態の熱回復物品1Aは、個別に押出成形を行うことにより、基材層10と接着剤層11とを個別に形成してもよい。この場合の熱回復物品は、押出成形後に膨張させた基材層の内部に接着剤層をセットし、これを被着体に被着させた上で基材層を熱収縮させることにより使用される。
 上記ワイヤスプライスは、ワイヤ同士の接続部分に熱回復物品が被着されたものであればよく、1本のワイヤを複数本のワイヤに接続したもの、複数本のワイヤ同士を接続したもの又は配線の端末処理のように複数本のワイヤの端部をまとめて接続したものであってもよく、その他の形態とすることもできる。
 上記ワイヤハーネスは、複数本のワイヤを平面状に束ねた、いわゆるフラットハーネスとして構成することもでき、その他の形態とすることもできる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 [試験例]
 基材層の構成、寸法、接着剤層の有無を変えて試験例の熱回復物品を製造した。具体的には、熱回復物品を上述した押出成形体形成工程、押出成形体形成後の電子線の照射及び拡径工程により、表1に示す構成で製造した。
 試験例1~9、11~17では、押出成形体の基材層に対応する層における外径を6.8mmとし、内径を5.0mmとし、肉厚を0.9mmとした。そして、拡径工程によって内径が15mm、肉厚が0.45mmになるように押出成形体を拡径した。このようにして熱回復物品を製造した。
 試験例10では、押出成形体の基材層に対応する層における外径を8.0mmとし、内径を5.0mmとし、肉厚を1.5mmとした。そして、拡径工程によって内径が15mm、肉厚が0.75mmになるように押出成形体を拡径した。このようにして熱回復物品を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1における各成分の詳細を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、融点は、示差走査熱量測定装置を用い、JIS-K-7121(1987年)に準拠して求めた融解ピーク温度を融点とした。密度は、JIS-Z-8807(2012年)に準拠して測定した。MFRは、JIS-K-6760で規定された押出し形プラストメータを用い、JIS-K-7210(2014年)に準拠して、温度190℃、荷重21.6kgの条件で測定した。ムーニー粘度は、ムーニー粘度計を用い、JIS-K-6300-1(2013年)に準拠して、温度100℃の条件で測定した。なお、表中の「-」の記載は、測定しなかったこと又は測定できなかったことを示す。
<融点ピーク温度、樹脂成分全体の融解熱量、波長650nmの光の光線透過率及び120℃での貯蔵弾性率>
 各試験例の熱回復物品における融点ピーク温度、樹脂成分全体の融解熱量、波長650nmの光の光線透過率及び120℃での貯蔵弾性率を表1に示す。また、それぞれの測定方法は以下の通りである。
(融点ピーク温度)
 まず、熱回復物品を180℃で2分間加熱した。加熱後の熱回復物品の基材層を示差走査熱量測定装置(パーキンエルマー社製の「DSC8500」)によって室温から200℃まで10℃/minで昇温させ、この昇温時の上記基材層における時間当たりの吸熱量が極大になる温度を融点ピーク温度[℃]とした。この融点ピーク温度を表1の「融点ピーク温度」の欄に示す。
(樹脂成分全体の融解熱量)
 上記融点ピーク温度を測定したときの上記基材層の吸熱量[J]を基材層中の測定試料全体の質量[g]で除した値を樹脂成分全体の融解熱量[J/g]とした。この樹脂成分全体の融解熱量を表1の「融解熱量」の欄に示す。
(波長650nmの光の光線透過率)         
 まず、熱回復物品を180℃で2分間加熱した。加熱後の熱回復物品の基材層について、分光光度計(島津製作所社製の「UV2450」)を用い波長650nmの平均透過率を測定した。次に、この測定した平均透過率の値をランベルト・ベール式により1mm厚みの値に換算して、1mm厚み換算での波長650nmの光の光線透過率[%]とした。
この光線透過率を表1の「1mm厚み換算での光線透過率」の欄に示す。また、測定した平均透過率の値をランベルト・ベール式により0.5mm厚みの値に換算して、0.5mm厚み換算での波長650nmの光の光線透過率[%]とした。この光線透過率を表1の「0.5mm厚み換算での光線透過率」の欄に示す。なお、ランベルト・ベール式を以下に示す。
 log10(I/I)=-ε×c×d
 I:入射光の強度[W/m
 I:透過光の強度[W/m
 ε:モル吸光係数[cm-1
 c:濃度[mol/l]
 d:厚み[cm]
(120℃での貯蔵弾性率)
 まず、熱回復物品を180℃で2分間加熱した。加熱後の熱回復物品の基材層について、動的粘弾性測定装置(アイティー計測制御社製の「DVA-200」)を用いて10℃/minの昇温速度で動的粘弾性測定を行い、120℃の貯蔵弾性率を求めた。この貯蔵弾性率を表1の「貯蔵弾性率」の欄に示す。
<熱回復物品の評価>
 各試験例の熱回復物品の評価として電線視認性及び裂け抑制性を評価した。評価結果を表1に示す。各評価項目の試験方法は以下の通りである。
(電線視認性)
 表層に印字されている外径2.0mmφの電線を7本束ねたものを、熱回復物品で被覆した。被覆後、180℃で2分間加熱し、熱回復物品を熱収縮させた。熱収縮後の熱回復物品を介して電線に印字されている文字が読める場合を「A」(良好)と評価し、一方、印字されている文字が読めない場合を「B」(不良)と評価した。
(裂け抑制性)
 熱回復物品を10mm角の鉄製角棒に被覆した後、180℃で2分間加熱し、熱回復物品を熱収縮させた。その後、まず-30℃で20分間維持し、次に120℃で20分間維持するヒートサイクルを100回実施する試験を行った。試験後、熱回復物品に裂けが発生しなかった場合を「A」(良好)と評価し、一方、熱回復物品に裂けや小さい傷が発生した場合を「B」(不良)と評価した。
 表1に示すように、試験例1~10の熱回復物品は、180℃で2分加熱後の基材層において、融点ピーク温度が特定の範囲内であり、樹脂成分全体の融解熱量が特定の範囲内であり、1mm厚み換算での波長650nmの光の光線透過率が特定の値以上であり、120℃での貯蔵弾性率が特定の値以上である。試験例1~10の熱回復物品は、電線視認性が良好であり、裂け抑制性に優れる。
 一方、試験例11及び13は、180℃で2分加熱後の基材層において、融点ピーク温度及び融解熱量が高すぎ、さらに1mm厚み換算での波長650nmの光の光線透過率が小さすぎる。また、試験例12は、180℃で2分加熱後の基材層において、融解熱量が高すぎ、さらに1mm厚み換算での波長650nmの光の光線透過率が小さすぎる。このため、試験例11~13は、電線視認性が不良であり、収縮後の透明性が試験例1~10と比べて低い。
 試験例14は、180℃で2分加熱後の基材層において、120℃の貯蔵弾性率が低すぎる。このため、試験例14は、裂けの抑制が不十分であり、試験例1~10と比べて裂け易い。
 試験例15は、180℃で2分加熱後の基材層において、融点ピーク温度及び120℃の貯蔵弾性率が低すぎる。さらに、試験例16及び17は、180℃で2分加熱後の基材層において、融点ピーク温度及び樹脂成分全体の融解熱量が低すぎ、120℃の貯蔵弾性率も低すぎる。このため、試験例15~17は、裂けの抑制が不十分であり、試験例1~10と比べて裂け易い。
 本発明の熱回復物品は、130℃以上140℃以下のような低い温度での収縮性に優れると共に、-60℃程度から120℃程度までの広い温度環境下で使用されても裂けや破れの発生を効果的に抑制でき、かつ収縮後の内包物の視認が可能である。このため、上記熱回復物品は、絶縁電線同士の接続部分、配線の端末、金属管等の保護、絶縁、防水、防食等のための被覆として使用できる。特に、上記熱回復物品は、ワイヤスプライス及びワイヤハーネスに好適に用いることができる。
1、1A 熱回復物品
10、10A 基材層
11 接着剤層
2 チューブ
20 ワイヤ
21 導体線
30 ワイヤ
31 多ピンコネクタ

Claims (12)

  1.  基材層を有する円筒状の熱回復物品であって、
     上記基材層がポリオレフィン系樹脂を含有し、
     180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である熱回復物品。
  2.  上記ポリオレフィン系樹脂が、融点が125℃以上135℃以下の第1ポリオレフィン系樹脂と融点が125℃未満の第2ポリオレフィン系樹脂との混合物であり、
     上記第1ポリオレフィン系樹脂の上記第2ポリオレフィン系樹脂に対する質量比が20/80以上85/15以下である請求項1に記載の熱回復物品。
  3.  上記第1ポリオレフィン系樹脂が高密度ポリエチレンである請求項2に記載の熱回復物品。
  4.  上記高密度ポリエチレンのメルトフローレート(MFR)が5g/10分以下である請求項3に記載の熱回復物品。
  5.  上記高密度ポリエチレンの密度が0.930g/cm以上0.960g/cm以下である請求項3又は請求項4に記載の熱回復物品。
  6.  上記第2ポリオレフィン系樹脂が、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、ポリオレフィン系エラストマー又はこれらの組み合わせである請求項2から請求項5のいずれか1項に記載の熱回復物品。
  7.  上記ポリオレフィン系エラストマーが、ブテン、ヘキセン及びオクタンの少なくともいずれかとエチレンとを共重合させたポリエチレン系エラストマー、又はエチレン-プロピレン共重合体エラストマーである請求項6に記載の熱回復物品。
  8.  上記基材層の内周面に積層される接着剤層を有する請求項1から請求項7のいずれか1項に記載の熱回復物品。
  9.  上記接着剤層が、エチレン-酢酸ビニル共重合体又はポリアミドを含有する請求項8に記載の熱回復物品。
  10.  ポリオレフィン系樹脂を含有する樹脂組成物を円筒状に成形する工程と、
     上記成形体の拡径により基材層を形成する工程と
    を備え、
     180℃で2分加熱後の上記基材層における融点ピーク温度が115℃以上128℃以下、樹脂成分全体の融解熱量が80J/g以上150J/g以下、1mm厚み換算での波長650nmの光の光線透過率が9%以上、かつ120℃の貯蔵弾性率が4MPa以上である熱回復物品の製造方法。
  11.  導体及びその外側に積層される絶縁層を有する複数本のワイヤと、
     上記複数本のワイヤの導体同士が接続された部分に被着された請求項1に記載の熱回復物品を熱収縮させたチューブと
    を備えるワイヤスプライス。
  12.  導体及びその外側に積層される絶縁層を有する複数本のワイヤと、
     上記複数本のワイヤに被着された請求項1に記載の熱回復物品を熱収縮させたチューブと
    を備えるワイヤハーネス。
PCT/JP2016/058938 2015-04-28 2016-03-22 熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス WO2016174962A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-092435 2015-04-28
JP2015092435A JP2018100311A (ja) 2015-04-28 2015-04-28 熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス

Publications (1)

Publication Number Publication Date
WO2016174962A1 true WO2016174962A1 (ja) 2016-11-03

Family

ID=57198588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058938 WO2016174962A1 (ja) 2015-04-28 2016-03-22 熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス

Country Status (2)

Country Link
JP (1) JP2018100311A (ja)
WO (1) WO2016174962A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097820A1 (ja) 2017-11-20 2019-05-23 住友電工ファインポリマー株式会社 耐熱性2層熱収縮チューブ及び被覆対象物の被覆方法
WO2023139861A1 (ja) * 2022-01-21 2023-07-27 住友電気工業株式会社 熱収縮接続部品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732529A (ja) * 1993-07-20 1995-02-03 Fujikura Ltd 熱回復性物品
JP2000119403A (ja) * 1998-10-20 2000-04-25 Sumitomo Electric Ind Ltd 直鎖状ポリオレフィンを用いた熱回復物品
JP2000129042A (ja) * 1998-10-23 2000-05-09 Sumitomo Electric Ind Ltd アイオノマーと直鎖状ポリオレフィンを用いた熱回復物品
JP2010185056A (ja) * 2009-02-13 2010-08-26 Sumitomo Electric Ind Ltd アイオノマー樹脂組成物、この組成物を用いたチューブ状成形品、及び熱収縮チューブ
WO2014097694A1 (ja) * 2012-12-20 2014-06-26 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
JP2015066701A (ja) * 2013-09-26 2015-04-13 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
WO2015068512A1 (ja) * 2013-11-06 2015-05-14 住友電気工業株式会社 熱回復物品、ワイヤスプライス及びワイヤハーネス
WO2015068511A1 (ja) * 2013-11-06 2015-05-14 住友電気工業株式会社 熱回復物品、ワイヤスプライス及びワイヤハーネス
WO2015151928A1 (ja) * 2014-03-31 2015-10-08 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス、並びに多層熱回復物品用接着剤の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732529A (ja) * 1993-07-20 1995-02-03 Fujikura Ltd 熱回復性物品
JP2000119403A (ja) * 1998-10-20 2000-04-25 Sumitomo Electric Ind Ltd 直鎖状ポリオレフィンを用いた熱回復物品
JP2000129042A (ja) * 1998-10-23 2000-05-09 Sumitomo Electric Ind Ltd アイオノマーと直鎖状ポリオレフィンを用いた熱回復物品
JP2010185056A (ja) * 2009-02-13 2010-08-26 Sumitomo Electric Ind Ltd アイオノマー樹脂組成物、この組成物を用いたチューブ状成形品、及び熱収縮チューブ
WO2014097694A1 (ja) * 2012-12-20 2014-06-26 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
JP2015066701A (ja) * 2013-09-26 2015-04-13 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
WO2015068512A1 (ja) * 2013-11-06 2015-05-14 住友電気工業株式会社 熱回復物品、ワイヤスプライス及びワイヤハーネス
WO2015068511A1 (ja) * 2013-11-06 2015-05-14 住友電気工業株式会社 熱回復物品、ワイヤスプライス及びワイヤハーネス
WO2015151928A1 (ja) * 2014-03-31 2015-10-08 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス、並びに多層熱回復物品用接着剤の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097820A1 (ja) 2017-11-20 2019-05-23 住友電工ファインポリマー株式会社 耐熱性2層熱収縮チューブ及び被覆対象物の被覆方法
WO2023139861A1 (ja) * 2022-01-21 2023-07-27 住友電気工業株式会社 熱収縮接続部品

Also Published As

Publication number Publication date
JP2018100311A (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
CN107531957B (zh) 可热恢复制品、制造可热恢复制品的方法、线结和线束
JP5824497B2 (ja) 熱回復物品、ワイヤスプライス及びワイヤハーネス
JP5771340B1 (ja) 熱回復物品、ワイヤスプライス及びワイヤハーネス
EP2937873B1 (en) Multilayered heat recoverable article, wire splice and wire harness
JP6002027B2 (ja) 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
JP5711713B2 (ja) 多層熱回復物品
CN105246677B (zh) 多层热可逆物品、线结、线束和用于制造多层热可逆物品用胶粘剂的方法
WO2016174962A1 (ja) 熱回復物品、熱回復物品の製造方法、ワイヤスプライス及びワイヤハーネス
US8636864B2 (en) Article and method for forming a wire seal
JP5769321B2 (ja) シラン架橋樹脂成形体の製造方法及びその方法を用いた成形体
JP6182328B2 (ja) 表面平滑性に優れた樹脂組成物
JP5922599B2 (ja) シラン架橋型成形体用樹脂組成物及びそれを用いた成形体
JP2015009510A (ja) 多層熱回復物品、ワイヤスプライス及びワイヤハーネス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP