WO2016174908A1 - Power module - Google Patents

Power module Download PDF

Info

Publication number
WO2016174908A1
WO2016174908A1 PCT/JP2016/055320 JP2016055320W WO2016174908A1 WO 2016174908 A1 WO2016174908 A1 WO 2016174908A1 JP 2016055320 W JP2016055320 W JP 2016055320W WO 2016174908 A1 WO2016174908 A1 WO 2016174908A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
main
insulating substrate
lead terminal
sub
Prior art date
Application number
PCT/JP2016/055320
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 山田
史聖 川原
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2017515410A priority Critical patent/JP6365772B2/en
Publication of WO2016174908A1 publication Critical patent/WO2016174908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Definitions

  • the present invention relates to a power module, and more particularly to a power module in which an electrode is formed on an insulating substrate and a semiconductor element is mounted.
  • the first wide conductor 16 connected to the positive electrode side of the DC power source and the second wide conductor 17 connected to the negative electrode side of the DC power source are interposed via the insulator 15 and They are stacked so that the direction of current flow is opposed. Thereby, the inductance is offset and the wiring inductance inside the package is reduced.
  • the thickness of the insulator 15 is made larger than the thickness of each of the first wide conductor 16 and the second wide conductor 17. It needs to be thick.
  • a specific structure for realizing this is not disclosed.
  • a lead frame is employed for manufacturing the power module, and therefore, a wide conductor forming a positive electrode wiring and a wide conductor forming a negative electrode wiring are stacked in the thickness direction. Is not easy.
  • a main object of the present invention is to provide a power module that can reduce parasitic inductance and ensure insulation between wires.
  • a power module includes an insulating substrate, a first electrode, a second electrode, and a third electrode formed on the insulating substrate, and a first semiconductor element connected between the first electrode and the second electrode.
  • a second semiconductor element connected between the second electrode and the third electrode, and a first lead terminal, a second lead terminal and a third lead connected to the first electrode, the second electrode and the third electrode, respectively.
  • a resin mold type power module in which at least one of the first semiconductor element and the second semiconductor element is formed of a semiconductor switch element, wherein the insulating substrate is a main-side insulating substrate and a sub-side insulating substrate.
  • the third electrode includes a main-side third electrode and a sub-side third electrode; the second electrode and the main-side third electrode are formed on the main surface of the main-side insulating substrate; and the first electrode and the sub-side third electrode Electrode A resist film formed on each of the opposing main surfaces of the main insulating substrate, and formed on the main surface of the main insulating substrate so that at least part of the main third electrode is exposed;
  • the side insulating substrate is characterized in that it is laminated on the main insulating substrate so that the sub-side third electrode is in surface contact with the main third electrode.
  • the first electrode and the third electrode can be used as a part of the opposing current path.
  • the third electrode includes a main-side third electrode and a sub-side third electrode, and the first electrode and the sub-side third electrode are respectively formed on both main surfaces of the sub-side insulating substrate.
  • the sub-side third substrate has the sub-side third electrode as the main.
  • the main side insulating substrate is laminated so as to be in surface contact with the side third electrode. Accordingly, it is possible to reduce the concern that the electrical connection between the main-side third electrode and the sub-side third electrode becomes defective due to warpage of the main-side insulating substrate or the sub-side insulating substrate.
  • the sub-side insulating substrate is made of the same material as the main-side insulating substrate.
  • the main-side insulating substrate is made of the same material as the main-side insulating substrate.
  • each of the first semiconductor element and the second semiconductor element is a switch element, and a first capacitor is connected between the first lead terminal and the third lead terminal, and the LC filter includes an inductor and a second capacitor. Is connected to the second lead terminal and performs power conversion between the first lead terminal and the second lead terminal.
  • a step-up / down converter is realized.
  • the first semiconductor element and the second semiconductor element are a rectifier element and a switch element, respectively, and an inductor is connected to the second lead terminal, and input between the second lead terminal and the third lead terminal via the inductor. A voltage is applied, and the first lead terminal is used as an output terminal. Thereby, a boost converter is realized.
  • the first semiconductor element and the second semiconductor element are a switch element and a rectifier element, respectively, an input voltage is applied between the first lead terminal and the third lead terminal, and an LC filter composed of an inductor and a capacitor is formed. It is connected to the second lead terminal.
  • a step-down converter is realized.
  • the parasitic inductance of a circuit having opposing current paths can be reduced, and insulation between wirings forming the opposing current paths can be ensured. Further, it is possible to reduce the concern that the electrical connection between the main-side third electrode and the sub-side third electrode becomes defective due to the warp of the main-side insulating substrate or the sub-side insulating substrate.
  • FIG. 1A is a top view showing an upper surface of a sub-board constituting the power module in FIG. 1, and FIG. 1B is a bottom view showing a lower surface of the sub-board.
  • FIG. 1 It is an illustration figure which shows an example of the structure of the laminated substrate formed by laminating
  • A is an illustrative view showing an example of a process for preparing an insulating substrate as a main substrate
  • (B) is an illustrative view showing an example of a process for forming an electrode on the upper surface of the insulating substrate
  • (C ) Is an illustrative view showing an example of a step of forming an electrode on the lower surface of the main-side insulating substrate
  • (D) is an example of a step of forming a resist film on the upper surface of the main-side insulating substrate on which the electrode is formed. It is an illustration figure shown.
  • (A) is an illustrative view showing an example of a process for preparing an insulating substrate as a sub-substrate
  • (B) is an illustrative view showing an example of a process for forming an electrode on the upper surface of the insulating substrate
  • (C ) Is an illustrative view showing an example of a process of forming an electrode on the lower surface of the main-side insulating substrate
  • (D) is an illustrative view showing an example of a process of laminating a sub-substrate on the main substrate
  • (E) is It is an illustration figure which shows an example of the process of mounting a semiconductor element on a laminated substrate
  • (F) is an illustration figure which shows an example of the process of connecting a semiconductor element to an electrode with a bonding wire.
  • (A) is an illustrative view showing an example of a process of connecting a lead terminal to a laminated substrate
  • (B) is an illustrative view showing an example of a process of molding the laminated substrate and a part of the lead terminal with a resin.
  • It is a circuit diagram which shows the equivalent circuit of the power module of this Example.
  • It is a circuit diagram which shows an example of the buck-boost converter to which the power module of this Example was applied.
  • It is a circuit diagram which shows an example of the boost converter to which the power module of the other Example was applied.
  • It is a circuit diagram which shows an example of the step-down converter to which the power module of the other Example was applied.
  • the power module 10 of this embodiment includes a high-side power semiconductor element 18a and a low-side power semiconductor element 18b mounted on a laminated substrate 12.
  • the power signal wide lead terminals 22a to 22f and the control signal narrow lead terminals 22g to 22h are connected to the multilayer substrate 12, and a part of each of the multilayer substrate 12 and each of the lead terminals 22a to 22h Is molded by resin 26.
  • FIG. 1 shows a state where the power module 10 is seen through from above
  • FIG. 2 (A) shows an AA ′ section of the power module 10
  • FIG. 2 (B) shows a power module 10 along the BB ′ section.
  • a state seen through from the lead terminals 22a to 22d side is shown.
  • the laminated substrate 12 is formed by laminating the sub substrate 16 shown in FIGS. 4A to 4B on the upper surface of the main substrate 14 shown in FIGS. 3A to 3B.
  • the upper surface or the lower surface of the main substrate 14 has a rectangular shape close to a square, and the upper surface or the lower surface of the sub substrate 16 has an elongated rectangular shape.
  • the length of the long side of the rectangle formed by the upper surface or the lower surface of the sub-board 16 matches the length of the long side of the rectangle formed by the upper surface or the lower surface of the main substrate 14.
  • the length of the short side of the rectangle formed by the upper surface or the lower surface of the sub substrate 16 is much shorter than the length of the short side of the rectangle formed by the upper surface or the lower surface of the main substrate 14.
  • the X axis is assigned along the long side of the rectangle formed by the upper surface or the lower surface of the main substrate 14, and the Y axis is assigned along the short side of the rectangle formed by the upper surface or the lower surface of the main substrate 14.
  • the Z axis is assigned in a direction perpendicular to the upper surface or the lower surface. Further, the surface facing the positive side in the Z-axis direction is the “upper surface”, and the surface facing the negative side in the Z-axis direction is the “lower surface”.
  • main substrate 14 has a ceramic insulating substrate 14a as a base material.
  • the electrodes 141b to 143b are formed at predetermined positions on the upper surface of the insulating substrate 14a.
  • the electrode 144b is formed over almost the entire lower surface of the insulating substrate 14a.
  • the resist film 14c is formed on the upper surface of the insulating substrate 14a so as to partially cover the electrodes 141b to 143b.
  • the electrodes 141b to 144b are all made of copper.
  • the electrode 141b is exposed in a region R1 disposed in the vicinity of the positive side end in the X-axis direction and in the vicinity of the positive side end in the Y-axis direction,
  • the region R2 is exposed in the vicinity of the negative end in the X-axis direction and in the vicinity of the positive end in the Y-axis direction.
  • the electrode 141b is also exposed in a region R3 arranged so as to extend in the X-axis direction at the center position in the Y-axis direction, and is positioned slightly on the negative side in the X-axis direction and in the vicinity of the negative side end in the Y-axis direction. It is exposed in the region R4 arranged in the area.
  • the electrode 142b is not covered with the resist film 14c, but is exposed in a region R5 disposed in the vicinity of the negative side end in the X-axis direction and in the vicinity of the negative side end in the Y-axis direction.
  • the electrode 143b is exposed in a region R6 disposed near the positive end in the X-axis direction and near the negative end in the Y-axis direction, slightly on the positive side in the X-axis direction and in the Y-axis direction. It is exposed in a region R7 arranged in the vicinity of the negative side end portion.
  • the electrode 142b is a dummy electrode.
  • the electrode 144b formed on the lower surface of the insulating substrate 14a is exposed to the lower side of the power module 10 without being molded with the resin 26, and is accumulated on the laminated substrate 12. It functions as a heat sink that releases heat.
  • sub-substrate 16 is made of a ceramic insulating substrate 16a as a base material.
  • the material of the insulating substrate 16 a is the same as the material of the insulating substrate 14 a forming the main substrate 14.
  • the electrode 161b is formed over almost the entire upper surface of the insulating substrate 16a, and the electrode 162b is formed over almost the entire lower surface of the insulating substrate 16a. That is, the electrodes 161b and 162b are formed on both opposing main surfaces of the insulating substrate 16a, respectively.
  • the electrodes 161b to 162b are also made of copper.
  • the sub-board 16 is laminated on the main board 14 such that its lower surface faces the upper surface of the main board 14. At this time, the center of the lower surface of the sub substrate 16 is aligned with the center of the upper surface of the main substrate 14.
  • the long side of the rectangle formed by the lower surface of the sub-substrate 16 is parallel to the long side of the rectangle formed by the upper surface of the main substrate 14.
  • the electrode 162b formed on the sub-substrate 16 is opposed to the electrode 141b exposed in the region R3 of the main substrate 14, and is joined to the electrode 141b by solder.
  • the two side surfaces orthogonal to the long side described above are flush with the two side surfaces orthogonal to the long side described above among the four side surfaces forming the main substrate 14.
  • the electrode 141b extends in the X-axis direction at the center position of the upper surface of the main substrate 14 in the Y-axis direction.
  • the size of the electrode 162b matches the size of the electrode 141b thus formed. Therefore, when the sub-board 16 is stacked on the main board 14, the electrode 162b is in full surface contact with the electrode 141b, and in this state, the electrode 162b is soldered to the electrode 141b.
  • the lead terminals 22a to 22f extend along the X axis
  • the lead terminals 22g to 22h extend along the Y axis.
  • all of the lead terminals 22a to 22h are mainly made of copper.
  • the leading ends of the lead terminals 22a and 22b are soldered to an electrode 141b provided on the main board 14, and the leading ends of the lead terminals 22c and 22d are soldered to an electrode 161b provided on the sub-board 16.
  • the leading end of the lead terminal 22e is soldered to an electrode 142b provided on the main board 14, and the leading end of the lead terminal 22f is soldered to an electrode 143b provided on the main board 14. Since the electrode 142b is a dummy electrode as described above, the lead terminal 22e is also a dummy terminal.
  • the power semiconductor element 18a is soldered to the electrode 143b exposed in the region R7 and connected to the electrode 161b by the bonding wire 20a.
  • the power semiconductor element 18b is solder-bonded to the electrode 141b exposed in the region R4 and connected to the electrode 143b by a bonding wire 20b.
  • the lead terminal 22g is connected to the power semiconductor element 18a by a bonding wire 24a
  • the lead terminal 22h is connected to the power semiconductor element 18b by a bonding wire 24b.
  • the bonding wires 20a to 20b and 24a to 24b are mainly made of gold, copper or aluminum.
  • the electrode 161b formed on the sub-substrate 16 has a larger Z than the electrodes 141b to 143b formed on the main substrate 14 by the thickness of the sub-substrate 16. It is arranged on the positive side in the axial direction. Accordingly, the tips of the lead terminals 22c and 22d are connected to the electrode 161b in a state in which bending is performed to ensure an offset corresponding to the thickness of the sub-substrate 16.
  • the power module 10 is manufactured through the steps shown in FIGS. 6 (A) to 6 (D), FIGS. 7 (A) to 7 (F), and FIGS. 8 (A) to 8 (B).
  • an insulating substrate 14a that forms the main substrate 14 is prepared (see FIG. 6A).
  • the electrodes 141b to 143b are formed at predetermined positions on the upper surface of the insulating substrate 14a (see FIG. 6B), and the electrode 144b is formed over almost the entire lower surface of the insulating substrate 14a (FIG. 6C )reference).
  • a resist film 14c is formed at a predetermined position on one main surface of the insulating substrate 14a (see FIG. 6D).
  • the electrode 141b is exposed in the regions R1 to R4, the electrode 142b is exposed in the region R5, and the electrode 143b is exposed in the regions R6 to R7.
  • the main substrate 14 is completed by forming the resist film 14c.
  • an insulating substrate 16a that forms the sub-substrate 16 is prepared (see FIG. 7A).
  • the electrode 161b is formed almost over the entire upper surface of the insulating substrate 16a (see FIG. 7B), and the electrode 162b is formed almost over the entire lower surface of the insulating substrate 16a (see FIG. 7C).
  • the sub-board 16 is completed.
  • the sub-board 16 is mounted on the main board 14 with the electrode 162b facing the electrode 141b exposed in the region R3 (see FIG. 7D).
  • the electrode 162b is soldered to the electrode 141b.
  • the center of the main surface of the sub substrate 16 is aligned with the center of the main surface of the main substrate 14, and the long side of the rectangle forming the main surface of the sub substrate 16 extends along the X axis.
  • the power semiconductor element 18a is soldered to the electrode 143b in the region R7, and the power semiconductor element 18b is soldered to the electrode 141b in the region R4 (see FIG. 7E).
  • Power semiconductor element 18a is connected to electrode 161b by bonding wire 20a, and power semiconductor element 18b is connected to electrode 143b by bonding wire 20b (see FIG. 7F).
  • each of the lead terminals 22a and 22b is soldered to the electrode 141b
  • each of the lead terminals 22c and 22d is soldered to the electrode 161b
  • each of the lead terminals 22e and 22f is soldered to the electrodes 142b and 143b, respectively (See FIG. 8A).
  • the lead terminal 22g is connected to the power semiconductor element 18a by a bonding wire 24a
  • the lead terminal 22h is connected to the power semiconductor element 18b by a bonding wire 24b (see FIG. 8A).
  • the laminated substrate 12 and a part of each of the lead terminals 22a to 22h are molded by the resin 26 (see FIG. 8B).
  • the resin 26 is cooled, the power module 10 is completed.
  • FIG. 1 An equivalent circuit of the power module 10 thus manufactured is shown in FIG.
  • the lead terminal 22c is connected to the lead terminal 22d via the parasitic inductance L1
  • the lead terminal 22a is connected to the lead terminal 22b via the parasitic inductance L2.
  • a parasitic capacitance C1 is formed between the lead terminals 22d and 22b.
  • the power semiconductor elements 18a and 18b are both semiconductor switch elements such as field effect transistors.
  • the drain of the power semiconductor element 18a is connected to the lead terminal 22d
  • the source of the power semiconductor element 18a is connected to the drain of the power semiconductor element 18b
  • the source of the power semiconductor element 18b is connected to the lead terminal 22b.
  • the lead terminal 22f is connected to the source of the power semiconductor element 18a and the drain of the power semiconductor element 18b. Furthermore, the lead terminal 22g is connected to the gate of the power semiconductor element 18a, and the lead terminal 22h is connected to the gate of the power semiconductor element 18b.
  • the electrodes 141b and 143b are formed on the upper surface of the insulating substrate 14a forming the main substrate 14, and the electrodes 161b and 162b are formed on the upper and lower surfaces of the insulating substrate 16a forming the sub-substrate 16, respectively.
  • the A resist film 14c is formed on the upper surface of the insulating substrate 14a forming the main substrate 14 so that at least a part of the electrode 141b is exposed.
  • the sub substrate 16 is laminated on the main substrate 14 so that the electrode 162b is in surface contact with the electrode 141b.
  • Power semiconductor elements 18 a and 18 b are mounted on main board 14. At this time, the power semiconductor element 18a is connected between the electrode 161b and the electrode 143b, and the power semiconductor element 18b is connected between the electrode 141b (162b) and the electrode 143b.
  • the electrode 161b and the electrode 141b (162b) can be used as a part of the opposing current path. Based on this, the electrode 161b is disposed on the upper surface side of the sub-substrate 16, and the electrode 141b (162b) is disposed on the lower surface side of the sub-substrate 16. As a result, the parasitic inductance of the circuit having the opposing current path can be reduced, and the insulation between the wirings forming the opposing current path can be ensured.
  • the sub-substrate 16 has the electrode 162b in surface contact with the electrode 141b. In this manner, the main board 14 is laminated. As a result, it is possible to reduce the concern that the electrical connection between the electrodes 141b and 162b becomes defective due to the warp of the main board 14 or the sub board 16.
  • FIG. 10 shows a buck-boost converter using the power module 10 thus configured.
  • the lead terminal 22c is directly connected to the input / output terminal T1
  • the lead terminal 22a is directly connected to the input / output terminal T2.
  • the lead terminal 22f is connected to the input / output terminal T3 via the inductor L3, and the lead terminal 22b is directly connected to the input / output terminal T4.
  • the lead terminal 22g is directly connected to the control terminal T5, and the lead terminal 22h is directly connected to the control terminal T6.
  • the SW1 signal is applied to the control terminal T5, and the SW2 signal is applied to the control terminal T6.
  • a capacitor C2 is provided between the input / output terminals T3 and T4, and a capacitor C3 is provided between the input / output terminals T1 and T2 (between the lead terminal 22c and the lead terminal 22a).
  • the inductor L3 and the capacitor C2 constitute an LC filter.
  • a positive voltage is applied to the input / output terminal T3 and a negative voltage is applied to the input / output terminal T4.
  • the SW1 signal applied to the control terminal T5 is continuously set to the H level, and the SW2 signal applied to the control terminal T6 is repeatedly changed between the H level and the L level.
  • a voltage higher than the voltage applied to the input / output terminal T3 is output from the input / output terminal T1. That is, power conversion is performed in the direction of increasing the voltage.
  • the power semiconductor element 18a can be replaced with a diode D1 as shown in FIG.
  • the power semiconductor element 18b can be replaced with a diode D2 as shown in FIG.
  • the input voltage is applied to terminals T3 and T4, and the boosted voltage is output from terminals T1 and T2.
  • the input voltage is applied to the terminals T1 and T2, and the stepped down voltage is output from the terminals T3 and T4.
  • a plurality of power modules 10, 10,... in any power module 10, the opposing current flows through the electrodes 161 b and 162 b on the sub-substrate 16.
  • the opposing current flows through the electrodes 161 b and 162 b on the sub-substrate 16.
  • Parasitic inductance can be reduced, and insulation between wirings forming opposing current paths can be ensured.
  • the size of the electrode 162b is set so that the electrode 162b on the sub-board 16 is in full surface contact with the electrode 141b on the main board 14. 14 is made to coincide with the size of the electrode 141b provided in the region 14 exposed from the region R3.
  • the size of the electrodes 141b and 162b only needs to satisfy the condition that the electrode 162b fits on the outer edge of the electrode 141b when viewed from the Z-axis direction.

Abstract

An electrode 141b is formed on an upper surface of an insulating substrate 14a constituting a main substrate 14, and electrodes 161b and 162b are formed on an upper surface and lower surface, respectively, of an insulating substrate 16a constituting a sub-substrate 16. A resist film is formed on the upper surface of the insulating substrate 14a constituting the main substrate 14 so that the electrode 141b is at least partially exposed. The sub-substrate 16 is layered onto the main substrate 14 so that the electrode 162b is in surface contact with the electrode 141b. Power semiconductor elements 18a, 18b are mounted on the main substrate 14. At this time, the power semiconductor element 18a is connected between the electrode 161b and a separate electrode (not shown), and the power semiconductor element 18b is connected between the electrode 141b (162b) and an electrode 143b.

Description

パワーモジュールPower module
 この発明は、パワーモジュールに関し、特に絶縁性基板に電極を形成しかつ半導体素子を実装してなる、パワーモジュールに関する。 The present invention relates to a power module, and more particularly to a power module in which an electrode is formed on an insulating substrate and a semiconductor element is mounted.
 特許文献1の開示によれば、直流電源の正極側と接続される第1の幅広導体16と、直流電源の負極側に接続される第2の幅広導体17は、絶縁物15を介し、かつ電流の流れの向きが対抗するように積層される。これにより、インダクタンスが相殺され、パッケージ内部の配線インダクタンスが小さくされる。 According to the disclosure of Patent Document 1, the first wide conductor 16 connected to the positive electrode side of the DC power source and the second wide conductor 17 connected to the negative electrode side of the DC power source are interposed via the insulator 15 and They are stacked so that the direction of current flow is opposed. Thereby, the inductance is offset and the wiring inductance inside the package is reduced.
特開2001-77260号公報(段落0026,0030参照)JP 2001-77260 A (see paragraphs 0026 and 0030)
 第1の幅広導体16および第2の幅広導体17の間の絶縁性を十分に保つためには、絶縁物15の厚みを第1の幅広導体16および第2の幅広導体17の各々の厚みよりも厚くする必要がある。しかし、これを実現するための具体的な構造については開示されていない。特に、パワーモジュールの分野においては、当該パワーモジュールの作製のためにリードフレームが採用されることから、正極配線をなす幅広導体と負極配線をなす幅広導体とを厚み方向に積層して配置するのは容易ではない。 In order to maintain sufficient insulation between the first wide conductor 16 and the second wide conductor 17, the thickness of the insulator 15 is made larger than the thickness of each of the first wide conductor 16 and the second wide conductor 17. It needs to be thick. However, a specific structure for realizing this is not disclosed. In particular, in the field of power modules, a lead frame is employed for manufacturing the power module, and therefore, a wide conductor forming a positive electrode wiring and a wide conductor forming a negative electrode wiring are stacked in the thickness direction. Is not easy.
 それゆえに、この発明の主たる目的は、寄生インダクタンスを低減でき、かつ配線間の絶縁性を確保できる、パワーモジュールを提供することである。 Therefore, a main object of the present invention is to provide a power module that can reduce parasitic inductance and ensure insulation between wires.
 この発明に係るパワーモジュールは、絶縁性基板と、絶縁性基板に形成された第1電極、第2電極および第3電極と、第1電極および第2電極の間に接続された第1半導体素子と、第2電極および第3電極の間に接続された第2半導体素子と、第1電極、第2電極および第3電極とそれぞれ接続された第1リード端子、第2リード端子および第3リード端子と、を備え、第1半導体素子および第2半導体素子の少なくとも一方が半導体スイッチ素子からなる樹脂モールド型のパワーモジュールであって、絶縁性基板はメイン側絶縁性基板およびサブ側絶縁性基板を含み、第3電極はメイン側第3電極およびサブ側第3電極を含み、第2電極およびメイン側第3電極はメイン側絶縁性基板の主面に形成され、第1電極およびサブ側第3電極はサブ側絶縁性基板の対向する両主面にそれぞれに形成され、メイン側第3電極の少なくとも一部が露出するようにメイン側絶縁性基板の主面に形成されたレジスト膜をさらに備え、サブ側絶縁性基板はサブ側第3電極がメイン側第3電極と面接触するようにメイン側絶縁性基板に積層されていることを特徴とする。 A power module according to the present invention includes an insulating substrate, a first electrode, a second electrode, and a third electrode formed on the insulating substrate, and a first semiconductor element connected between the first electrode and the second electrode. A second semiconductor element connected between the second electrode and the third electrode, and a first lead terminal, a second lead terminal and a third lead connected to the first electrode, the second electrode and the third electrode, respectively. A resin mold type power module in which at least one of the first semiconductor element and the second semiconductor element is formed of a semiconductor switch element, wherein the insulating substrate is a main-side insulating substrate and a sub-side insulating substrate. The third electrode includes a main-side third electrode and a sub-side third electrode; the second electrode and the main-side third electrode are formed on the main surface of the main-side insulating substrate; and the first electrode and the sub-side third electrode Electrode A resist film formed on each of the opposing main surfaces of the main insulating substrate, and formed on the main surface of the main insulating substrate so that at least part of the main third electrode is exposed; The side insulating substrate is characterized in that it is laminated on the main insulating substrate so that the sub-side third electrode is in surface contact with the main third electrode.
 第1半導体素子および第2半導体素子は第1電極および第3電極によって挟まれるため、第1電極および第3電極は、対向する電流経路の一部として使用できる。これを踏まえて、第3電極はメイン側第3電極およびサブ側第3電極を含み、かつ第1電極およびサブ側第3電極はサブ側絶縁性基板の両主面にそれぞれ形成される。これによって、対向する電流経路を有する回路の寄生インダクタンスを低減することができ、かつ対向する電流経路をなす配線間の絶縁性を確保することができる。 Since the first semiconductor element and the second semiconductor element are sandwiched between the first electrode and the third electrode, the first electrode and the third electrode can be used as a part of the opposing current path. Based on this, the third electrode includes a main-side third electrode and a sub-side third electrode, and the first electrode and the sub-side third electrode are respectively formed on both main surfaces of the sub-side insulating substrate. As a result, the parasitic inductance of the circuit having the opposing current path can be reduced, and the insulation between the wirings forming the opposing current path can be ensured.
 また、メイン側第3電極の少なくとも一部が露出するようにメイン側絶縁性基板の主面にレジスト膜が形成されることを踏まえて、サブ側絶縁性基板は、サブ側第3電極がメイン側第3電極と面接触するようにメイン側絶縁性基板に積層される。これによって、メイン側絶縁性基板またはサブ側絶縁性基板の反りに起因してメイン側第3電極とサブ側第3電極との電気的接続が不良となる懸念を軽減することができる。 Further, considering that the resist film is formed on the main surface of the main-side insulating substrate so that at least a part of the main-side third electrode is exposed, the sub-side third substrate has the sub-side third electrode as the main. The main side insulating substrate is laminated so as to be in surface contact with the side third electrode. Accordingly, it is possible to reduce the concern that the electrical connection between the main-side third electrode and the sub-side third electrode becomes defective due to warpage of the main-side insulating substrate or the sub-side insulating substrate.
 好ましくは、サブ側絶縁性基板はメイン側絶縁性基板の材質と同じ材質からなる。これによって、樹脂モールド時に生じる反り応力がサブ側絶縁性基板およびメイン側絶縁性基板の間でずれる懸念を軽減することができる。 Preferably, the sub-side insulating substrate is made of the same material as the main-side insulating substrate. As a result, it is possible to reduce the concern that the warp stress generated during the resin molding shifts between the sub-side insulating substrate and the main-side insulating substrate.
 好ましくは、第1半導体素子および第2半導体素子はいずれもスイッチ素子であり、第1リード端子と第3リード端子との間に第1キャパシタが接続され、インダクタと第2キャパシタとからなるLCフィルタが第2リード端子に接続され、第1リード端子と第2リード端子との間で電力変換を行う。これによって昇降圧コンバータが実現される。 Preferably, each of the first semiconductor element and the second semiconductor element is a switch element, and a first capacitor is connected between the first lead terminal and the third lead terminal, and the LC filter includes an inductor and a second capacitor. Is connected to the second lead terminal and performs power conversion between the first lead terminal and the second lead terminal. Thus, a step-up / down converter is realized.
 好ましくは、第1半導体素子および第2半導体素子はそれぞれ整流素子およびスイッチ素子であり、第2リード端子にインダクタが接続され、インダクタを介して第2リード端子と第3リード端子との間に入力電圧が印加され、第1リード端子を出力端子とする。これによって昇圧コンバータが実現される。 Preferably, the first semiconductor element and the second semiconductor element are a rectifier element and a switch element, respectively, and an inductor is connected to the second lead terminal, and input between the second lead terminal and the third lead terminal via the inductor. A voltage is applied, and the first lead terminal is used as an output terminal. Thereby, a boost converter is realized.
 好ましくは、第1半導体素子および第2半導体素子はそれぞれスイッチ素子および整流素子であり、第1リード端子と第3リード端子との間に入力電圧が印加され、インダクタとキャパシタとからなるLCフィルタが第2リード端子に接続されてなる。これによって降圧コンバータが実現される。 Preferably, the first semiconductor element and the second semiconductor element are a switch element and a rectifier element, respectively, an input voltage is applied between the first lead terminal and the third lead terminal, and an LC filter composed of an inductor and a capacitor is formed. It is connected to the second lead terminal. Thereby, a step-down converter is realized.
 この発明によれば、対向する電流経路を有する回路の寄生インダクタンスを低減することができ、かつ対向する電流経路をなす配線間の絶縁性を確保することができる。また、メイン側絶縁性基板またはサブ側絶縁性基板の反りに起因してメイン側第3電極とサブ側第3電極との電気的接続が不良となる懸念を軽減することができる。 According to the present invention, the parasitic inductance of a circuit having opposing current paths can be reduced, and insulation between wirings forming the opposing current paths can be ensured. Further, it is possible to reduce the concern that the electrical connection between the main-side third electrode and the sub-side third electrode becomes defective due to the warp of the main-side insulating substrate or the sub-side insulating substrate.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この実施例のパワーモジュールを上側から透視した状態を示す図解図である。It is an illustration figure which shows the state which saw through the power module of this Example from the upper side. (A)は図1に示すパワーモジュールのA-A´断面を示す断面図であり、(B)は当該パワーモジュールをB-B´断面からY軸方向の正側に向かって透視した状態を示す透視図である。(A) is a cross-sectional view showing the AA ′ cross section of the power module shown in FIG. 1, and (B) is a perspective view of the power module seen from the BB ′ cross section toward the positive side in the Y-axis direction. FIG. (A)は図1に示すパワーモジュールを構成するメイン基板の上面を示す上面図であり、(B)は当該メイン基板の下面を示す下面図である。(A) is a top view showing the upper surface of the main board constituting the power module shown in FIG. 1, and (B) is a bottom view showing the lower surface of the main board. (A)は図1にパワーモジュールを構成するサブ基板の上面を示す上面図であり、(B)は当該サブ基板の下面を示す下面図である。FIG. 1A is a top view showing an upper surface of a sub-board constituting the power module in FIG. 1, and FIG. 1B is a bottom view showing a lower surface of the sub-board. メイン基板にサブ基板を積層してなる積層基板の構造の一例を示す図解図である。It is an illustration figure which shows an example of the structure of the laminated substrate formed by laminating | stacking a sub board | substrate on a main board | substrate. (A)はメイン基板をなす絶縁性基板を用意する工程の一例を示す図解図であり、(B)は絶縁性基板の上面に電極を形成する工程の一例を示す図解図であり、(C)はメイン側絶縁性基板の下面に電極を形成する工程の一例を示す図解図であり、(D)は電極が形成されたメイン側絶縁性基板の上面にレジスト膜を形成する工程の一例を示す図解図である。(A) is an illustrative view showing an example of a process for preparing an insulating substrate as a main substrate, (B) is an illustrative view showing an example of a process for forming an electrode on the upper surface of the insulating substrate, (C ) Is an illustrative view showing an example of a step of forming an electrode on the lower surface of the main-side insulating substrate, and (D) is an example of a step of forming a resist film on the upper surface of the main-side insulating substrate on which the electrode is formed. It is an illustration figure shown. (A)はサブ基板をなす絶縁性基板を用意する工程の一例を示す図解図であり、(B)は絶縁性基板の上面に電極を形成する工程の一例を示す図解図であり、(C)はメイン側絶縁性基板の下面に電極を形成する工程の一例を示す図解図であり、(D)はサブ基板をメイン基板に積層する工程の一例を示す図解図であり、(E)は積層基板に半導体素子を搭載する工程の一例を示す図解図であり、(F)は半導体素子をボンディングワイヤによって電極に接続する工程の一例を示す図解図である。(A) is an illustrative view showing an example of a process for preparing an insulating substrate as a sub-substrate, (B) is an illustrative view showing an example of a process for forming an electrode on the upper surface of the insulating substrate, (C ) Is an illustrative view showing an example of a process of forming an electrode on the lower surface of the main-side insulating substrate, (D) is an illustrative view showing an example of a process of laminating a sub-substrate on the main substrate, and (E) is It is an illustration figure which shows an example of the process of mounting a semiconductor element on a laminated substrate, (F) is an illustration figure which shows an example of the process of connecting a semiconductor element to an electrode with a bonding wire. (A)は積層基板にリード端子を接続する工程の一例を示す図解図であり、(B)は積層基板とリード端子の一部とを樹脂でモールドする工程の一例を示す図解図である。(A) is an illustrative view showing an example of a process of connecting a lead terminal to a laminated substrate, and (B) is an illustrative view showing an example of a process of molding the laminated substrate and a part of the lead terminal with a resin. この実施例のパワーモジュールの等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the power module of this Example. この実施例のパワーモジュールが適用された昇降圧コンバータの一例を示す回路図である。It is a circuit diagram which shows an example of the buck-boost converter to which the power module of this Example was applied. 他の実施例のパワーモジュールが適用された昇圧コンバータの一例を示す回路図である。It is a circuit diagram which shows an example of the boost converter to which the power module of the other Example was applied. その他の実施例のパワーモジュールが適用された降圧コンバータの一例を示す回路図である。It is a circuit diagram which shows an example of the step-down converter to which the power module of the other Example was applied. この実施例に係る複数のパワーモジュールを連結してなる回路の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit formed by connecting the several power module which concerns on this Example.
 図1および図2(A)~図2(B)を参照して、この実施例のパワーモジュール10は、ハイサイドのパワー半導体素子18aとローサイドのパワー半導体素子18bとを積層基板12に搭載し、パワー信号用の幅広のリード端子22a~22fと制御信号用の幅狭のリード端子22g~22hとを積層基板12に接続し、そして積層基板12とリード端子22a~22hの各々の一部とを樹脂26によってモールドすることで作製される。 Referring to FIGS. 1 and 2A to 2B, the power module 10 of this embodiment includes a high-side power semiconductor element 18a and a low-side power semiconductor element 18b mounted on a laminated substrate 12. The power signal wide lead terminals 22a to 22f and the control signal narrow lead terminals 22g to 22h are connected to the multilayer substrate 12, and a part of each of the multilayer substrate 12 and each of the lead terminals 22a to 22h Is molded by resin 26.
 なお、図1はパワーモジュール10を上側から透視した状態を示し、図2(A)はパワーモジュール10のA-A´断面を示し、図2(B)はパワーモジュール10をB-B´断面からリード端子22a~22d側に向かって透視した状態を示す。 1 shows a state where the power module 10 is seen through from above, FIG. 2 (A) shows an AA ′ section of the power module 10, and FIG. 2 (B) shows a power module 10 along the BB ′ section. A state seen through from the lead terminals 22a to 22d side is shown.
 積層基板12は、図3(A)~図3(B)に示すメイン基板14の上面に図4(A)~図4(B)に示すサブ基板16を積層してなる。メイン基板14の上面または下面は正方形に近い長方形をなし、サブ基板16の上面または下面は細長い長方形をなす。また、サブ基板16の上面または下面がなす長方形の長辺の長さは、メイン基板14の上面または下面がなす長方形の長辺の長さと一致する。さらに、サブ基板16の上面または下面がなす長方形の短辺の長さは、メイン基板14の上面または下面がなす長方形の短辺の長さよりも格段に短い。 The laminated substrate 12 is formed by laminating the sub substrate 16 shown in FIGS. 4A to 4B on the upper surface of the main substrate 14 shown in FIGS. 3A to 3B. The upper surface or the lower surface of the main substrate 14 has a rectangular shape close to a square, and the upper surface or the lower surface of the sub substrate 16 has an elongated rectangular shape. Further, the length of the long side of the rectangle formed by the upper surface or the lower surface of the sub-board 16 matches the length of the long side of the rectangle formed by the upper surface or the lower surface of the main substrate 14. Further, the length of the short side of the rectangle formed by the upper surface or the lower surface of the sub substrate 16 is much shorter than the length of the short side of the rectangle formed by the upper surface or the lower surface of the main substrate 14.
 なお、以下では、メイン基板14の上面または下面がなす長方形の長辺に沿ってX軸を割り当て、メイン基板14の上面または下面がなす長方形の短辺に沿ってY軸を割り当て、メイン基板14の上面または下面に直交する方向にZ軸を割り当てる。また、Z軸方向における正側を向く面が“上面”であり、Z軸方向における負側を向く面が“下面”である。 In the following, the X axis is assigned along the long side of the rectangle formed by the upper surface or the lower surface of the main substrate 14, and the Y axis is assigned along the short side of the rectangle formed by the upper surface or the lower surface of the main substrate 14. The Z axis is assigned in a direction perpendicular to the upper surface or the lower surface. Further, the surface facing the positive side in the Z-axis direction is the “upper surface”, and the surface facing the negative side in the Z-axis direction is the “lower surface”.
 図3(A)~図3(B)を参照して、メイン基板14は、セラミック製の絶縁性基板14aを基材とする。電極141b~143bは絶縁性基板14aの上面の所定位置に形成される。電極144bは絶縁性基板14aの下面のほぼ全域に形成される。レジスト膜14cは、電極141b~143bを部分的に覆うように、絶縁性基板14aの上面に形成される。なお、電極141b~144bはいずれも、銅を材料とする。 Referring to FIGS. 3A to 3B, main substrate 14 has a ceramic insulating substrate 14a as a base material. The electrodes 141b to 143b are formed at predetermined positions on the upper surface of the insulating substrate 14a. The electrode 144b is formed over almost the entire lower surface of the insulating substrate 14a. The resist film 14c is formed on the upper surface of the insulating substrate 14a so as to partially cover the electrodes 141b to 143b. The electrodes 141b to 144b are all made of copper.
 絶縁性基板14aの上面の中央を原点としたとき、電極141bは、X軸方向における正側端部近傍でかつY軸方向における正側端部近傍の位置に配された領域R1で露出し、X軸方向における負側端部近傍でかつY軸方向における正側端部近傍の位置に配された領域R2で露出する。電極141bはまた、Y軸方向における中央位置をX軸方向に延在するように配された領域R3で露出し、X軸方向におけるやや負側でかつY軸方向における負側端部近傍の位置に配された領域R4で露出する。 When the center of the upper surface of the insulating substrate 14a is the origin, the electrode 141b is exposed in a region R1 disposed in the vicinity of the positive side end in the X-axis direction and in the vicinity of the positive side end in the Y-axis direction, The region R2 is exposed in the vicinity of the negative end in the X-axis direction and in the vicinity of the positive end in the Y-axis direction. The electrode 141b is also exposed in a region R3 arranged so as to extend in the X-axis direction at the center position in the Y-axis direction, and is positioned slightly on the negative side in the X-axis direction and in the vicinity of the negative side end in the Y-axis direction. It is exposed in the region R4 arranged in the area.
 また、電極142bは、レジスト膜14cによって覆われることなく、X軸方向における負側端部近傍でかつY軸方向における負側端部近傍の位置に配された領域R5で露出する。また、電極143bは、X軸方向における正側端部近傍でかつY軸方向における負側端部近傍の位置に配された領域R6で露出し、X軸方向におけるやや正側でかつY軸方向における負側端部近傍の位置に配された領域R7で露出する。 Further, the electrode 142b is not covered with the resist film 14c, but is exposed in a region R5 disposed in the vicinity of the negative side end in the X-axis direction and in the vicinity of the negative side end in the Y-axis direction. The electrode 143b is exposed in a region R6 disposed near the positive end in the X-axis direction and near the negative end in the Y-axis direction, slightly on the positive side in the X-axis direction and in the Y-axis direction. It is exposed in a region R7 arranged in the vicinity of the negative side end portion.
 なお、この実施例では、電極142bはダミー電極である。また、図2(A)から分かるように、絶縁性基板14aの下面に形成された電極144bは、樹脂26でモールドされることなくパワーモジュール10の下側に露出し、積層基板12に蓄積された熱を放出する放熱板として機能する。 In this embodiment, the electrode 142b is a dummy electrode. As can be seen from FIG. 2A, the electrode 144b formed on the lower surface of the insulating substrate 14a is exposed to the lower side of the power module 10 without being molded with the resin 26, and is accumulated on the laminated substrate 12. It functions as a heat sink that releases heat.
 図4(A)~図4(B)を参照して、サブ基板16は、セラミック製の絶縁性基板16aを基材とする。厳密には、絶縁性基板16aの材質は、メイン基板14をなす絶縁性基板14aの材質と同じである。電極161bは絶縁性基板16aの上面のほぼ全域に形成され、電極162bは絶縁性基板16aの下面のほぼ全域に形成される。つまり、電極161bおよび162bは絶縁性基板16aの対向する両主面にそれぞれに形成される。なお、電極161b~162bもまた、銅を材料とする。 Referring to FIGS. 4A to 4B, sub-substrate 16 is made of a ceramic insulating substrate 16a as a base material. Strictly speaking, the material of the insulating substrate 16 a is the same as the material of the insulating substrate 14 a forming the main substrate 14. The electrode 161b is formed over almost the entire upper surface of the insulating substrate 16a, and the electrode 162b is formed over almost the entire lower surface of the insulating substrate 16a. That is, the electrodes 161b and 162b are formed on both opposing main surfaces of the insulating substrate 16a, respectively. The electrodes 161b to 162b are also made of copper.
 図5を参照して、サブ基板16は、その下面がメイン基板14の上面と対向する姿勢でメイン基板14に積層される。このとき、サブ基板16の下面の中心は、メイン基板14の上面の中心に合わせられる。また、サブ基板16の下面がなす長方形の長辺は、メイン基板14の上面がなす長方形の長辺に対して平行とされる。サブ基板16に形成された電極162bは、メイン基板14の領域R3に露出した電極141bと対向し、はんだによって電極141bと接合される。なお、サブ基板16をなす4つの側面のうち上述した長辺に直交する2つの側面は、メイン基板14をなす4つの側面のうち上述した長辺に直交する2つの側面と面一となる。 Referring to FIG. 5, the sub-board 16 is laminated on the main board 14 such that its lower surface faces the upper surface of the main board 14. At this time, the center of the lower surface of the sub substrate 16 is aligned with the center of the upper surface of the main substrate 14. The long side of the rectangle formed by the lower surface of the sub-substrate 16 is parallel to the long side of the rectangle formed by the upper surface of the main substrate 14. The electrode 162b formed on the sub-substrate 16 is opposed to the electrode 141b exposed in the region R3 of the main substrate 14, and is joined to the electrode 141b by solder. Of the four side surfaces forming the sub substrate 16, the two side surfaces orthogonal to the long side described above are flush with the two side surfaces orthogonal to the long side described above among the four side surfaces forming the main substrate 14.
 上述のように、電極141bは、メイン基板14の上面のY軸方向における中央位置をX軸方向に延在する。電極162bのサイズは、こうして形成された電極141bのサイズと一致する。したがって、サブ基板16をメイン基板14に積層すると、電極162bは電極141bと全面的に面接触し、この状態で電極162bが電極141bにはんだ接合される。 As described above, the electrode 141b extends in the X-axis direction at the center position of the upper surface of the main substrate 14 in the Y-axis direction. The size of the electrode 162b matches the size of the electrode 141b thus formed. Therefore, when the sub-board 16 is stacked on the main board 14, the electrode 162b is in full surface contact with the electrode 141b, and in this state, the electrode 162b is soldered to the electrode 141b.
 図1に戻って、リード端子22a~22fはX軸に沿って延在し、リード端子22g~22hはY軸に沿って延在する。ここで、リード端子22a~22hはいずれも、銅を主な材料とする。 Returning to FIG. 1, the lead terminals 22a to 22f extend along the X axis, and the lead terminals 22g to 22h extend along the Y axis. Here, all of the lead terminals 22a to 22h are mainly made of copper.
 リード端子22aおよび22bの各々の先端はメイン基板14に設けられた電極141bにはんだ接合され、リード端子22cおよび22dの各々の先端はサブ基板16に設けられた電極161bにはんだ接合される。また、リード端子22eの先端はメイン基板14に設けられた電極142bにはんだ接合され、リード端子22fの先端はメイン基板14に設けられた電極143bにはんだ接合される。上述のように電極142bはダミー電極であるため、リード端子22eもまたダミー端子となる。 The leading ends of the lead terminals 22a and 22b are soldered to an electrode 141b provided on the main board 14, and the leading ends of the lead terminals 22c and 22d are soldered to an electrode 161b provided on the sub-board 16. The leading end of the lead terminal 22e is soldered to an electrode 142b provided on the main board 14, and the leading end of the lead terminal 22f is soldered to an electrode 143b provided on the main board 14. Since the electrode 142b is a dummy electrode as described above, the lead terminal 22e is also a dummy terminal.
 パワー半導体素子18aは、領域R7に露出した電極143bにはんだ接合され、ボンディングワイヤ20aによって電極161bと接続される。また、パワー半導体素子18bは、領域R4に露出した電極141bにはんだ接合され、ボンディングワイヤ20bによって電極143bと接続される。さらに、リード端子22gはボンディングワイヤ24aによってパワー半導体素子18aと接続され、リード端子22hはボンディングワイヤ24bによってパワー半導体素子18bと接続される。なお、ボンディングワイヤ20a~20b,24a~24bはいずれも、金、銅またはアルミニウムを主な材料とする。 The power semiconductor element 18a is soldered to the electrode 143b exposed in the region R7 and connected to the electrode 161b by the bonding wire 20a. The power semiconductor element 18b is solder-bonded to the electrode 141b exposed in the region R4 and connected to the electrode 143b by a bonding wire 20b. Furthermore, the lead terminal 22g is connected to the power semiconductor element 18a by a bonding wire 24a, and the lead terminal 22h is connected to the power semiconductor element 18b by a bonding wire 24b. The bonding wires 20a to 20b and 24a to 24b are mainly made of gold, copper or aluminum.
 図2(A)または図2(B)から分かるように、サブ基板16に形成された電極161bは、サブ基板16の厚みの分だけ、メイン基板14に形成された電極141b~143bよりもZ軸方向の正側に配される。したがって、リード端子22cおよび22dの先端は、サブ基板16の厚みに対応するオフセットを確保するべく曲げ加工を施された状態で、電極161bと接続される。 As can be seen from FIG. 2A or FIG. 2B, the electrode 161b formed on the sub-substrate 16 has a larger Z than the electrodes 141b to 143b formed on the main substrate 14 by the thickness of the sub-substrate 16. It is arranged on the positive side in the axial direction. Accordingly, the tips of the lead terminals 22c and 22d are connected to the electrode 161b in a state in which bending is performed to ensure an offset corresponding to the thickness of the sub-substrate 16.
 パワーモジュール10は、図6(A)~図6(D),図7(A)~図7(F)および図8(A)~図8(B)に示す工程を経て作製される。 The power module 10 is manufactured through the steps shown in FIGS. 6 (A) to 6 (D), FIGS. 7 (A) to 7 (F), and FIGS. 8 (A) to 8 (B).
 まず、メイン基板14をなす絶縁性基板14aが用意される(図6(A)参照)。次に、電極141b~143bが絶縁性基板14aの上面の所定位置に形成され(図6(B)参照)、電極144bが絶縁性基板14aの下面のほぼ全域に形成される(図6(C)参照)。電極141b~144bの形成が完了すると、絶縁性基板14aの一方主面の所定位置にレジスト膜14cが形成される(図6(D)参照)。この結果、電極141bが領域R1~R4に露出し、電極142bが領域R5に露出し、電極143bが領域R6~R7に露出する。メイン基板14は、レジスト膜14cの形成によって完成する。 First, an insulating substrate 14a that forms the main substrate 14 is prepared (see FIG. 6A). Next, the electrodes 141b to 143b are formed at predetermined positions on the upper surface of the insulating substrate 14a (see FIG. 6B), and the electrode 144b is formed over almost the entire lower surface of the insulating substrate 14a (FIG. 6C )reference). When the formation of the electrodes 141b to 144b is completed, a resist film 14c is formed at a predetermined position on one main surface of the insulating substrate 14a (see FIG. 6D). As a result, the electrode 141b is exposed in the regions R1 to R4, the electrode 142b is exposed in the region R5, and the electrode 143b is exposed in the regions R6 to R7. The main substrate 14 is completed by forming the resist film 14c.
 続いて、サブ基板16をなす絶縁性基板16aが用意される(図7(A)参照)。電極161bは絶縁性基板16aの上面のほぼ全域に形成され(図7(B)参照)、電極162bは絶縁性基板16aの下面のほぼ全域に形成される(図7(C)参照)。これによって、サブ基板16が完成する。 Subsequently, an insulating substrate 16a that forms the sub-substrate 16 is prepared (see FIG. 7A). The electrode 161b is formed almost over the entire upper surface of the insulating substrate 16a (see FIG. 7B), and the electrode 162b is formed almost over the entire lower surface of the insulating substrate 16a (see FIG. 7C). Thereby, the sub-board 16 is completed.
 サブ基板16は、電極162bが領域R3に露出した電極141bと対向する姿勢で、メイン基板14に実装される(図7(D)参照)。電極162bは、電極141bとはんだ接合される。この結果、サブ基板16の主面の中心はメイン基板14の主面の中心に合わせられ、サブ基板16の主面をなす長方形の長辺はX軸に沿って延びる。 The sub-board 16 is mounted on the main board 14 with the electrode 162b facing the electrode 141b exposed in the region R3 (see FIG. 7D). The electrode 162b is soldered to the electrode 141b. As a result, the center of the main surface of the sub substrate 16 is aligned with the center of the main surface of the main substrate 14, and the long side of the rectangle forming the main surface of the sub substrate 16 extends along the X axis.
 こうして積層基板12が作製されると、パワー半導体素子18aが領域R7の電極143bにはんだ接合され、パワー半導体素子18bが領域R4の電極141bにはんだ接合される(図7(E)参照)。パワー半導体素子18aはボンディングワイヤ20aによって電極161bに接続され、パワー半導体素子18bはボンディングワイヤ20bによって電極143bに接続される(図7(F)参照)。 Thus, when the multilayer substrate 12 is manufactured, the power semiconductor element 18a is soldered to the electrode 143b in the region R7, and the power semiconductor element 18b is soldered to the electrode 141b in the region R4 (see FIG. 7E). Power semiconductor element 18a is connected to electrode 161b by bonding wire 20a, and power semiconductor element 18b is connected to electrode 143b by bonding wire 20b (see FIG. 7F).
 続いて、リード端子22aおよび22bの各々が電極141bとはんだ接合され、リード端子22cおよび22dの各々が電極161bとはんだ接合され、リード端子22eおよび22fがそれぞれ電極142bおよび143bとはんだ接合される(図8(A)参照)。また、リード端子22gはボンディングワイヤ24aによってパワー半導体素子18aと接続され、リード端子22hはボンディングワイヤ24bによってパワー半導体素子18bと接続される(図8(A)参照)。 Subsequently, each of the lead terminals 22a and 22b is soldered to the electrode 141b, each of the lead terminals 22c and 22d is soldered to the electrode 161b, and each of the lead terminals 22e and 22f is soldered to the electrodes 142b and 143b, respectively ( (See FIG. 8A). The lead terminal 22g is connected to the power semiconductor element 18a by a bonding wire 24a, and the lead terminal 22h is connected to the power semiconductor element 18b by a bonding wire 24b (see FIG. 8A).
 こうしてリード端子22a~22hの接続が完了すると、積層基板12とリード端子22a~22hの各々の一部とが樹脂26によってモールドされる(図8(B)参照)。樹脂26が冷却されると、パワーモジュール10が完成する。 Thus, when the connection of the lead terminals 22a to 22h is completed, the laminated substrate 12 and a part of each of the lead terminals 22a to 22h are molded by the resin 26 (see FIG. 8B). When the resin 26 is cooled, the power module 10 is completed.
 こうして作製されたパワーモジュール10の等価回路を図9に示す。リード端子22cは寄生インダクタンスL1を介してリード端子22dと接続され、リード端子22aは寄生インダクタンスL2を介してリード端子22bと接続される。リード端子22dおよび22bの間には、寄生容量C1が形成される。 An equivalent circuit of the power module 10 thus manufactured is shown in FIG. The lead terminal 22c is connected to the lead terminal 22d via the parasitic inductance L1, and the lead terminal 22a is connected to the lead terminal 22b via the parasitic inductance L2. A parasitic capacitance C1 is formed between the lead terminals 22d and 22b.
 パワー半導体素子18aおよび18bはいずれも、電界効果型のトランジスタのような半導体スイッチ素子である。パワー半導体素子18aのドレインはリード端子22dに接続され、パワー半導体素子18aのソースはパワー半導体素子18bのドレインに接続され、パワー半導体素子18bのソースはリード端子22bに接続される。 The power semiconductor elements 18a and 18b are both semiconductor switch elements such as field effect transistors. The drain of the power semiconductor element 18a is connected to the lead terminal 22d, the source of the power semiconductor element 18a is connected to the drain of the power semiconductor element 18b, and the source of the power semiconductor element 18b is connected to the lead terminal 22b.
 また、リード端子22fは、パワー半導体素子18aのソースとパワー半導体素子18bのドレインとに接続される。さらに、リード端子22gはパワー半導体素子18aのゲートに接続され、リード端子22hはパワー半導体素子18bのゲートに接続される。 Further, the lead terminal 22f is connected to the source of the power semiconductor element 18a and the drain of the power semiconductor element 18b. Furthermore, the lead terminal 22g is connected to the gate of the power semiconductor element 18a, and the lead terminal 22h is connected to the gate of the power semiconductor element 18b.
 以上の説明から分かるように、電極141bおよび143bはメイン基板14をなす絶縁性基板14aの上面に形成され、電極161bおよび162bはサブ基板16をなす絶縁性基板16aの上面および下面にそれぞれ形成される。メイン基板14をなす絶縁性基板14aの上面にはまた、電極141bの少なくとも一部が露出するように、レジスト膜14cが形成される。サブ基板16は、電極162bが電極141bと面接触するように、メイン基板14に積層される。パワー半導体素子18aおよび18bは、メイン基板14に実装される。このとき、パワー半導体素子18aは電極161bと電極143bとの間に接続され、パワー半導体素子18bは電極141b(162b)と電極143bの間に接続される。 As can be seen from the above description, the electrodes 141b and 143b are formed on the upper surface of the insulating substrate 14a forming the main substrate 14, and the electrodes 161b and 162b are formed on the upper and lower surfaces of the insulating substrate 16a forming the sub-substrate 16, respectively. The A resist film 14c is formed on the upper surface of the insulating substrate 14a forming the main substrate 14 so that at least a part of the electrode 141b is exposed. The sub substrate 16 is laminated on the main substrate 14 so that the electrode 162b is in surface contact with the electrode 141b. Power semiconductor elements 18 a and 18 b are mounted on main board 14. At this time, the power semiconductor element 18a is connected between the electrode 161b and the electrode 143b, and the power semiconductor element 18b is connected between the electrode 141b (162b) and the electrode 143b.
 パワー半導体素子18aおよび18bは電極161bと電極141b(162b)とによって挟まれるため、電極161bおよび電極141b(162b)は、対向する電流経路の一部として使用できる。これを踏まえて、電極161bはサブ基板16の上面側に配され、電極141b(162b)はサブ基板16の下面側に配される。これによって、対向する電流経路を有する回路の寄生インダクタンスを低減することができ、かつ対向する電流経路をなす配線間の絶縁性を確保することができる。 Since the power semiconductor elements 18a and 18b are sandwiched between the electrode 161b and the electrode 141b (162b), the electrode 161b and the electrode 141b (162b) can be used as a part of the opposing current path. Based on this, the electrode 161b is disposed on the upper surface side of the sub-substrate 16, and the electrode 141b (162b) is disposed on the lower surface side of the sub-substrate 16. As a result, the parasitic inductance of the circuit having the opposing current path can be reduced, and the insulation between the wirings forming the opposing current path can be ensured.
 また、電極141bの少なくとも一部が露出するようにメイン基板14をなす絶縁性基板14aの上面にレジスト膜14cが形成されることを踏まえて、サブ基板16は、電極162bが電極141bと面接触するようにメイン基板14に積層される。これによって、メイン基板14またはサブ基板16の反りに起因して電極141bおよび162bの電気的接続が不良となる懸念を軽減することができる。 Further, considering that the resist film 14c is formed on the upper surface of the insulating substrate 14a forming the main substrate 14 so that at least a part of the electrode 141b is exposed, the sub-substrate 16 has the electrode 162b in surface contact with the electrode 141b. In this manner, the main board 14 is laminated. As a result, it is possible to reduce the concern that the electrical connection between the electrodes 141b and 162b becomes defective due to the warp of the main board 14 or the sub board 16.
 こうして構成されたパワーモジュール10を用いた昇降圧コンバータを図10に示す。図10によれば、リード端子22cは入出力端子T1と直接的に接続され、リード端子22aは入出力端子T2と直接的に接続される。また、リード端子22fはインダクタL3を介して入出力端子T3と接続され、リード端子22bは入出力端子T4と直接的に接続される。さらに、リード端子22gは制御端子T5と直接的に接続され、リード端子22hは制御端子T6と直接的に接続される。制御端子T5にはSW1信号が印加され、制御端子T6にはSW2信号が印加される。また、入出力端子T3およびT4の間には、キャパシタC2が、入出力端子T1およびT2の間(リード端子22cおよびリード端子22aとの間)には、キャパシタC3が設けられる。なお、インダクタL3およびキャパシタC2は、LCフィルタを構成する。 FIG. 10 shows a buck-boost converter using the power module 10 thus configured. According to FIG. 10, the lead terminal 22c is directly connected to the input / output terminal T1, and the lead terminal 22a is directly connected to the input / output terminal T2. The lead terminal 22f is connected to the input / output terminal T3 via the inductor L3, and the lead terminal 22b is directly connected to the input / output terminal T4. Furthermore, the lead terminal 22g is directly connected to the control terminal T5, and the lead terminal 22h is directly connected to the control terminal T6. The SW1 signal is applied to the control terminal T5, and the SW2 signal is applied to the control terminal T6. A capacitor C2 is provided between the input / output terminals T3 and T4, and a capacitor C3 is provided between the input / output terminals T1 and T2 (between the lead terminal 22c and the lead terminal 22a). The inductor L3 and the capacitor C2 constitute an LC filter.
 こうして構成された昇降圧コンバータで昇圧を行うときは、入出力端子T3にプラス電圧が印加され、入出力端子T4にマイナス電圧が印加される。また、制御端子T5に印加されるSW1信号は継続的にHレベルに設定され、制御端子T6に印加されるSW2信号はHレベルとLレベルとの間で繰り返し変更される。この結果、入出力端子T3に印加された電圧よりも高い電圧が入出力端子T1から出力される。つまり、電圧を上昇させる方向への電力変換が行われる。 When boosting is performed by the buck-boost converter thus configured, a positive voltage is applied to the input / output terminal T3 and a negative voltage is applied to the input / output terminal T4. The SW1 signal applied to the control terminal T5 is continuously set to the H level, and the SW2 signal applied to the control terminal T6 is repeatedly changed between the H level and the L level. As a result, a voltage higher than the voltage applied to the input / output terminal T3 is output from the input / output terminal T1. That is, power conversion is performed in the direction of increasing the voltage.
 逆に、昇降圧コンバータで降圧を行うときは、入出力端子T1にプラス電圧が印加され、入出力端子T2にマイナス電圧が印加される。また、制御端子T5に印加されるSW1信号はHレベルとLレベルとの間で繰り返し変更され、制御端子T6に印加されるSW2信号は継続的にHレベルに設定される。この結果、入出力端子T1に印加された電圧よりも低い電圧が入出力端子T3から出力される。つまり、電圧を降下させる方向への電力変換が行われる。 Conversely, when the voltage is stepped down by the buck-boost converter, a positive voltage is applied to the input / output terminal T1, and a negative voltage is applied to the input / output terminal T2. Further, the SW1 signal applied to the control terminal T5 is repeatedly changed between the H level and the L level, and the SW2 signal applied to the control terminal T6 is continuously set to the H level. As a result, a voltage lower than the voltage applied to the input / output terminal T1 is output from the input / output terminal T3. That is, power conversion is performed in the direction of decreasing the voltage.
 なお、パワーモジュール10を昇圧コンバータとして用いる場合、図11に示すようにパワー半導体素子18aをダイオードD1に置き換えることができる。また、パワーモジュール10を降圧コンバータとして用いる場合、図12に示すようにパワー半導体素子18bをダイオードD2に置き換えることができる。図11によれば、入力電圧は端子T3およびT4に印加され、昇圧された電圧は端子T1およびT2から出力される。また、図12によれば、入力電圧は端子T1およびT2に印加され、降圧された電圧は端子T3およびT4から出力される。 When the power module 10 is used as a boost converter, the power semiconductor element 18a can be replaced with a diode D1 as shown in FIG. When the power module 10 is used as a step-down converter, the power semiconductor element 18b can be replaced with a diode D2 as shown in FIG. According to FIG. 11, the input voltage is applied to terminals T3 and T4, and the boosted voltage is output from terminals T1 and T2. Further, according to FIG. 12, the input voltage is applied to the terminals T1 and T2, and the stepped down voltage is output from the terminals T3 and T4.
 さらに、図13に示すように、複数のパワーモジュール10,10,…を互いに連結するようにしてもよい。この場合、いずれのパワーモジュール10においても、対向する電流がサブ基板16上の電極161bおよび162bを流れる。これによって、連結された複数のパワーモジュール10,10,…の全てにおいて、寄生インダクタンスを低減することができ、かつ対向する電流経路をなす配線間の絶縁性を確保することができる。 Furthermore, as shown in FIG. 13, a plurality of power modules 10, 10,... In this case, in any power module 10, the opposing current flows through the electrodes 161 b and 162 b on the sub-substrate 16. As a result, in all of the connected power modules 10, 10,..., Parasitic inductance can be reduced, and insulation between wirings forming opposing current paths can be ensured.
 なお、この実施例では、サブ基板16をメイン基板14に積層したときにサブ基板16上の電極162bをメイン基板14上の電極141bと全面的に面接触させるべく、電極162bのサイズをメイン基板14に設けられた電極141bの、領域R3から露出しているサイズと一致させるようにしている。 In this embodiment, when the sub-board 16 is laminated on the main board 14, the size of the electrode 162b is set so that the electrode 162b on the sub-board 16 is in full surface contact with the electrode 141b on the main board 14. 14 is made to coincide with the size of the electrode 141b provided in the region 14 exposed from the region R3.
 しかし、電極141bのサイズを電極162bのサイズよりも大きくした場合でも、電極162bは電極141bと全面的に面接触する。したがって、電極141bおよび162bのサイズは、Z軸方向から眺めたときに電極162bが電極141bの外縁に収まるという条件を満足すればよい。 However, even when the size of the electrode 141b is larger than the size of the electrode 162b, the electrode 162b is in full surface contact with the electrode 141b. Therefore, the size of the electrodes 141b and 162b only needs to satisfy the condition that the electrode 162b fits on the outer edge of the electrode 141b when viewed from the Z-axis direction.
 10 …パワーモジュール
 12 …積層基板
 14 …メイン基板
 16 …サブ基板
 14a …絶縁性基板(メイン側絶縁性基板)
 14c …レジスト膜
 141b …電極(第3電極をなすメイン側第3電極)
 143b …電極(第2電極)
 16a …絶縁性基板(サブ側絶縁性基板)
 161b …電極(第1電極)
 162b …電極(第3電極をなすサブ側第3電極)
 18a …パワー半導体素子(第1半導体素子)
 18b …パワー半導体素子(第2半導体素子)
 22a,22b …リード端子(第3リード端子)
 22c,22d …リード端子(第1リード端子)
 22f …リード端子(第2リード端子)
 C1 …寄生容量
 C2 …キャパシタ(第2キャパシタ)
 C3 …キャパシタ(第1キャパシタ)
 L3 …インダクタ
 D1,D2 …ダイオード(整流素子)
DESCRIPTION OF SYMBOLS 10 ... Power module 12 ... Laminated board 14 ... Main board 16 ... Sub board 14a ... Insulating board (main side insulating board)
14c: Resist film 141b: Electrode (main-side third electrode forming the third electrode)
143b ... Electrode (second electrode)
16a: Insulating substrate (sub-side insulating substrate)
161b ... Electrode (first electrode)
162b ... Electrode (sub-side third electrode forming the third electrode)
18a: Power semiconductor element (first semiconductor element)
18b: Power semiconductor element (second semiconductor element)
22a, 22b ... Lead terminal (third lead terminal)
22c, 22d ... Lead terminal (first lead terminal)
22f ... Lead terminal (second lead terminal)
C1 ... Parasitic capacitance C2 ... Capacitor (second capacitor)
C3: Capacitor (first capacitor)
L3: Inductor D1, D2: Diode (rectifier element)

Claims (5)

  1.  絶縁性基板と、
     前記絶縁性基板に形成された第1電極、第2電極および第3電極と、
     前記第1電極および前記第2電極の間に接続された第1半導体素子と、
     前記第2電極および前記第3電極の間に接続された第2半導体素子と、
     前記第1電極、前記第2電極および前記第3電極とそれぞれ接続された第1リード端子、第2リード端子および第3リード端子と、
    を備え、
     前記第1半導体素子および前記第2半導体素子の少なくとも一方が半導体スイッチ素子からなる樹脂モールド型のパワーモジュールであって、
     前記絶縁性基板はメイン側絶縁性基板およびサブ側絶縁性基板を含み、
     前記第3電極はメイン側第3電極およびサブ側第3電極を含み、
     前記第2電極および前記メイン側第3電極は前記メイン側絶縁性基板の主面に形成され、
     前記第1電極および前記サブ側第3電極は前記サブ側絶縁性基板の対向する両主面にそれぞれに形成され、
     前記メイン側第3電極の少なくとも一部が露出するように前記メイン側絶縁性基板の主面に形成されたレジスト膜をさらに備え、
     前記サブ側絶縁性基板は前記サブ側第3電極が前記メイン側第3電極と面接触するように前記メイン側絶縁性基板に積層されていることを特徴とするパワーモジュール。
    An insulating substrate;
    A first electrode, a second electrode and a third electrode formed on the insulating substrate;
    A first semiconductor element connected between the first electrode and the second electrode;
    A second semiconductor element connected between the second electrode and the third electrode;
    A first lead terminal, a second lead terminal and a third lead terminal connected to the first electrode, the second electrode and the third electrode, respectively;
    With
    A resin mold type power module in which at least one of the first semiconductor element and the second semiconductor element is a semiconductor switch element;
    The insulating substrate includes a main-side insulating substrate and a sub-side insulating substrate,
    The third electrode includes a main-side third electrode and a sub-side third electrode,
    The second electrode and the main third electrode are formed on a main surface of the main insulating substrate;
    The first electrode and the sub-side third electrode are respectively formed on both opposing main surfaces of the sub-side insulating substrate;
    A resist film formed on the main surface of the main-side insulating substrate so that at least a part of the main-side third electrode is exposed;
    The power module, wherein the sub-side insulating substrate is laminated on the main-side insulating substrate so that the sub-side third electrode is in surface contact with the main-side third electrode.
  2.  前記サブ側絶縁性基板は前記メイン側絶縁性基板の材質と同じ材質からなることを特徴とする請求項1に記載のパワーモジュール。 The power module according to claim 1, wherein the sub-side insulating substrate is made of the same material as that of the main-side insulating substrate.
  3.  前記第1半導体素子および前記第2半導体素子はいずれもスイッチ素子であり、
     前記第1リード端子と前記第3リード端子との間に第1キャパシタが接続され、
     インダクタと第2キャパシタとからなるLCフィルタが前記第2リード端子に接続され、
     前記第1リード端子と前記第2リード端子との間で電力変換を行う、請求項1または2に記載のパワーモジュールを用いた昇降圧コンバータ。
    The first semiconductor element and the second semiconductor element are both switch elements,
    A first capacitor is connected between the first lead terminal and the third lead terminal,
    An LC filter composed of an inductor and a second capacitor is connected to the second lead terminal,
    The buck-boost converter using the power module according to claim 1 or 2, wherein power conversion is performed between the first lead terminal and the second lead terminal.
  4.  前記第1半導体素子および前記第2半導体素子はそれぞれ整流素子およびスイッチ素子であり、
     前記第2リード端子にインダクタが接続され、
     前記インダクタを介して前記第2リード端子と前記第3リード端子との間に入力電圧が印加され、
     前記第1リード端子を出力端子とする、請求項1または2に記載のパワーモジュールを用いた昇圧コンバータ。
    The first semiconductor element and the second semiconductor element are a rectifier element and a switch element, respectively.
    An inductor is connected to the second lead terminal;
    An input voltage is applied between the second lead terminal and the third lead terminal via the inductor,
    The boost converter using the power module according to claim 1, wherein the first lead terminal is an output terminal.
  5.  前記第1半導体素子および前記第2半導体素子はそれぞれスイッチ素子および整流素子であり、
     前記第1リード端子と前記第3リード端子との間に入力電圧が印加され、
     インダクタとキャパシタとからなるLCフィルタが前記第2リード端子に接続されてなる、請求項1または2に記載のパワーモジュールを用いた降圧コンバータ。
    The first semiconductor element and the second semiconductor element are a switch element and a rectifier element, respectively.
    An input voltage is applied between the first lead terminal and the third lead terminal,
    The step-down converter using the power module according to claim 1 or 2, wherein an LC filter including an inductor and a capacitor is connected to the second lead terminal.
PCT/JP2016/055320 2015-04-28 2016-02-24 Power module WO2016174908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017515410A JP6365772B2 (en) 2015-04-28 2016-02-24 Power module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015091961 2015-04-28
JP2015-091961 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016174908A1 true WO2016174908A1 (en) 2016-11-03

Family

ID=57198294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055320 WO2016174908A1 (en) 2015-04-28 2016-02-24 Power module

Country Status (2)

Country Link
JP (1) JP6365772B2 (en)
WO (1) WO2016174908A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142257A1 (en) * 2018-01-17 2019-07-25 新電元工業株式会社 Electronic module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645509A (en) * 1992-07-21 1994-02-18 Mitsubishi Electric Corp Semiconductor device and its manufacture
WO2010131679A1 (en) * 2009-05-14 2010-11-18 ローム株式会社 Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209176B2 (en) * 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645509A (en) * 1992-07-21 1994-02-18 Mitsubishi Electric Corp Semiconductor device and its manufacture
WO2010131679A1 (en) * 2009-05-14 2010-11-18 ローム株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142257A1 (en) * 2018-01-17 2019-07-25 新電元工業株式会社 Electronic module
JP6594556B1 (en) * 2018-01-17 2019-10-23 新電元工業株式会社 Electronic module
TWI684261B (en) * 2018-01-17 2020-02-01 日商新電元工業股份有限公司 Electronic module
US11309250B2 (en) 2018-01-17 2022-04-19 Shindengen Electric Manufacturing Co., Ltd. Electronic module

Also Published As

Publication number Publication date
JPWO2016174908A1 (en) 2017-11-30
JP6365772B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US7687903B2 (en) Power module and method of fabricating the same
US8426963B2 (en) Power semiconductor package structure and manufacturing method thereof
JP5169353B2 (en) Power module
JP6485257B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9734944B2 (en) Electronic package structure comprising a magnetic body and an inductive element and method for making the same
US10028400B2 (en) Semiconductor device
US20170025331A1 (en) Lead frame, semiconductor device, method for manufacturing lead frame, and method for manufacturing semiconductor device
CN107799484B (en) Semiconductor chip package with repeating footprint die
TWI579982B (en) Power Module Package
JP2011253862A (en) Power semiconductor device
JP6226068B2 (en) Semiconductor device
CN111653539B (en) Stack-type electronic structure
TW202110289A (en) Power module
JP5123162B2 (en) Power semiconductor device and manufacturing method thereof
JP2013131590A (en) Resin sealed power semiconductor module and manufacturing method thereof
JP6365772B2 (en) Power module
JP2015053410A (en) Semiconductor module
WO2019171804A1 (en) Semiconductor device
JP2013004912A (en) Semiconductor module
US20190258302A1 (en) Power supply module
JP2021082794A (en) Electronic component and electronic device
JP2016001644A (en) Semiconductor module
JP5255592B2 (en) substrate
WO2012129118A1 (en) Circuit protection device
US20230282569A1 (en) Power supply circuit module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786185

Country of ref document: EP

Kind code of ref document: A1