WO2016166992A1 - Abnormality monitoring system and program - Google Patents

Abnormality monitoring system and program Download PDF

Info

Publication number
WO2016166992A1
WO2016166992A1 PCT/JP2016/002068 JP2016002068W WO2016166992A1 WO 2016166992 A1 WO2016166992 A1 WO 2016166992A1 JP 2016002068 W JP2016002068 W JP 2016002068W WO 2016166992 A1 WO2016166992 A1 WO 2016166992A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
time
change
electrical output
day
Prior art date
Application number
PCT/JP2016/002068
Other languages
French (fr)
Japanese (ja)
Inventor
浩基 數野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016166992A1 publication Critical patent/WO2016166992A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an abnormality monitoring system and program.
  • Patent Document 1 a technique for determining whether the output of a solar cell is normal or abnormal based on the electric output of the solar cell is known (see, for example, Patent Document 1).
  • Patent Document 1 a ratio of an actual output power value of a solar cell at a predetermined sunshine time to a standard output power value corresponding to the sunshine time is calculated, and whether the output of the solar cell is normal or abnormal based on this ratio Is judged.
  • the power value at a predetermined sunshine time for a plurality of solar cell arrays, or the maximum value of the output power value of the solar cell array repeatedly measured at each sunshine time over a plurality of days is set as the standard output power value. Is described.
  • Patent Document 1 diagnoses whether or not the solar cell array is properly installed at the time of introduction of the solar power generation facility, and diagnoses deterioration or failure of the power generation capability due to the temporal change of the solar cell array. Therefore, the standard output power value of the solar cell is used.
  • An object of the present invention is to provide an anomaly monitoring system that can determine an appropriate reference value for monitoring an anomaly of an apparatus. Another object of the present invention is to provide a program that causes a computer to function as the abnormality monitoring system.
  • the present disclosure relates to an abnormality monitoring system configured to monitor an abnormality of a device based on an electrical output of the device.
  • the abnormality monitoring system includes a data acquisition interface and a monitoring unit.
  • the data acquisition interface is configured to acquire the value of the electrical output for each time of day from a device that outputs the electrical output corresponding to the solar radiation intensity.
  • the monitoring unit monitors the presence or absence of abnormality of the device by comparing the value of the electrical output for each time of day from the data acquisition interface with the corresponding reference value among the reference values for the time of day. Configured to do.
  • the apparatus includes at least one of a solar cell and a pyranometer.
  • the monitoring unit includes a calculation unit, a filter unit, and a storage unit.
  • the calculation unit calculates an average rate of change from the value of the electrical output corresponding to the time at both ends of the extraction time and the extraction time for each predetermined extraction time based on the value of the electrical output from the data acquisition interface.
  • Configured to calculate The filter unit is configured to extract an electrical output value having an average rate of change within a predetermined allowable range from the average rate of change for each extraction time from the calculation unit.
  • the permissible range is a permissible time range among a plurality of permissible ranges for each time of day
  • each of the plurality of permissible ranges is a range including a standard change rate
  • the plurality of standard change rates in the plurality of allowable ranges are average change rates for one day corresponding to a sunny day.
  • the storage unit is configured to store the value of the electrical output extracted by the filter unit as the reference value together with corresponding time information.
  • This disclosure relates to a program for causing a computer to function as the abnormality monitoring system.
  • a program according to the present invention causes a computer to function as the above-described abnormality monitoring system.
  • FIG. 1 A block diagram which shows embodiment. It is explanatory drawing of the extraction time of embodiment, a sampling period, and a sampling period (sampling period).
  • 3A to 3C are graphs showing how the average rate of change for each of extraction time 1 minute, extraction time 7 minutes, and extraction time 30 minutes changes with time. It is a graph which shows how the value (for example, illumination intensity) of the output pattern in an embodiment changes with time. It is a graph which shows how a standard change rate and the tolerance
  • FIG. 6A is a graph showing a time change of an ideal output pattern in the embodiment
  • FIG. 6B is a graph showing a time change of a change rate pattern obtained from the ideal output pattern in the embodiment
  • FIG. 6C is an actually measured value in the embodiment
  • 6D is a graph showing the time change of the change rate pattern obtained from the output pattern of the actual measurement value in the embodiment
  • FIG. 6E is the time of the reference value pattern obtained from the actual measurement value in the embodiment. It is a graph which shows a change.
  • 7A to 7C are graphs showing temporal changes in reference value patterns generated from different daily power values
  • FIG. 7D is a temporal change in reference value patterns generated by superimposing different multiple day power values. It is a graph which shows.
  • FIG. 8A is a graph showing a power value and a change with time of an allowable range for extracting a reference value from the power value in the embodiment
  • FIG. 8B is a graph showing a change with time of the allowable range in an iterative process with respect to the reference value in the embodiment. It is a graph which shows.
  • the anomaly monitoring system described below is configured to monitor anomalies for medium to large-scale photovoltaic power generation facilities.
  • the abnormality monitoring system according to each embodiment of the present disclosure may be a single device, or may be configured to distribute any of its own functions to a plurality of devices.
  • the abnormality monitoring system is referred to as an “abnormality monitoring apparatus”.
  • the power generation scale of the solar power generation facility is not particularly limited, but the solar power generation facility to which the abnormality monitoring apparatus described below is applied assumes a power generation scale of several hundred or more solar panels. . For example, if the power generation scale is about 250 kW, 1000 or more solar cell panels are arranged, and if the power generation scale is about 1 MW, the installation area of the solar cell panel is about 1 ha.
  • the technology described below can be applied to a small-scale photovoltaic power generation facility of about several kW for home use or the like.
  • the solar power generation facility includes a solar cell and a power conversion device for converting DC power output from the solar cell into AC power regardless of the power generation scale.
  • the power converter is a so-called power conditioner.
  • the photovoltaic power generation facility described below includes a pyranometer and a power receiving / transforming facility having a function of supplying AC power generated by the power converter to the power system.
  • the pyranometer is configured to measure the solar radiation intensity on the solar cell. For example, the pyranometer is arranged adjacent to the solar cell at the same angle as the inclination angle of the solar cell.
  • the abnormality monitoring device monitors the presence or absence of abnormality such as deterioration or failure of the device 2 based on the electrical output of at least one of the solar cell and the pyranometer (hereinafter referred to as “device 2” (see FIG. 1)).
  • the presence / absence of abnormality of the solar cell is mainly monitored, but the presence / absence of abnormality of the pyranometer can also be monitored.
  • the abnormality monitoring device determines a reference value corresponding to the value of the electrical output in an environment that can be regarded as a clear sky, and the measured electrical output
  • the presence or absence of an abnormality in the device 2 is determined by comparing the value of the value and the reference value.
  • the value of the electric output from the device 2 varies depending on the solar radiation intensity, and also varies depending on the incident angle of the solar radiation on the device 2. Therefore, it changes with conditions, such as a weather, a season, and the time of the day.
  • the surrounding environment of the installation place of the apparatus 2 that is, the surrounding terrain, the surrounding buildings, the surrounding trees, and the like also cause the value of the electric output from the apparatus 2 to change.
  • a solar cell is composed of a plurality of modules (solar power generation panels) connected in series to form a string.
  • a plurality of strings are connected to the junction box, and the plurality of strings constitute a solar cell array.
  • the junction box has a string monitor and monitors the current output by each string.
  • the DC power output from the solar cell (solar cell array) is supplied to the power converter through the connection box.
  • the photovoltaic power generation facility includes a measurement device that monitors the input voltage of the power conversion device.
  • the measuring device also has a function of acquiring a current value for each string monitored by the string monitor.
  • the electric power generated by the solar cell can be obtained from the current value monitored by the string monitor and the voltage value monitored by the measuring device.
  • the string monitor may be configured not only to monitor the current output from each string but also to monitor the output voltage of the string.
  • the abnormality monitoring device monitors the current value or power value output from the solar cell as an electrical output reflecting the solar radiation intensity irradiated to the solar cell when monitoring an abnormality such as deterioration or failure of the solar cell. Moreover, when monitoring an abnormality such as deterioration or failure of the pyranometer, the abnormality monitoring device performs monitoring based on the electric output of the pyranometer disposed adjacent to the solar cell.
  • the abnormality monitoring device can monitor the entire solar cell collectively when monitoring the abnormality of the solar cell. However, if monitoring is performed in units of strings, a plurality of modules constituting the photovoltaic power generation facility can be monitored. It becomes possible to manage by dividing into multiple. For example, when an abnormality is detected in one of the strings, the work to find out the location where the abnormality occurred can be narrowed down to the range of modules that make up the corresponding string, and the response to the abnormality can be made quickly. Is possible.
  • the abnormality monitoring device only needs to be configured to store data necessary for determining an abnormality such as a deterioration or failure of the device 2, and whether or not the device 2 has an abnormality can be determined. You may make it perform by the judgment apparatus different from an abnormality monitoring apparatus. For example, it may be configured such that the determination as to whether or not there is an abnormality in the apparatus 2 is automatically performed as a determination apparatus by a remote diagnosis server that communicates with the abnormality monitoring apparatus through a communication line such as the Internet. Moreover, based on the data from the abnormality monitoring device collected by the cloud computing system, the administrator of the photovoltaic power generation facility may determine the abnormality of the solar cell with a terminal device as a determination device. Of course, the abnormality monitoring apparatus may be configured to also serve as a determination apparatus that determines whether or not the apparatus 2 has an abnormality.
  • operation states of a plurality of photovoltaic power generation facilities are aggregated and monitored in an abnormality monitoring apparatus
  • operation states of a plurality of photovoltaic power generation facilities are associated with each of the photovoltaic power generation facilities.
  • a configuration may be adopted in which the terminal device transmits data from the abnormality monitoring device. That is, it is possible to employ either a configuration in which operation status monitoring is performed on a plurality of photovoltaic power generation facilities in a centralized manner or a configuration that is performed in a distributed manner at a plurality of locations.
  • the presence or absence of abnormality in the photovoltaic power generation facility is monitored regardless of the location of the abnormality monitoring device. Is possible.
  • the anomaly monitoring device is used by a business operator that uses a solar power generation facility, an EPC (Engineering, Procurement and Construction) contractor commissioned by a power generation business operator, or a maintenance business operator of a solar power generation facility.
  • EPC Engineing, Procurement and Construction
  • the number of sites of the photovoltaic power generation facility monitored by one abnormality monitoring device is assumed to be 100 to 500 sites.
  • the number of sites of solar power generation facilities that can be monitored can be increased as necessary by increasing the number of abnormality monitoring devices or increasing the processing capacity of the abnormality monitoring devices.
  • the figure which arranged the value of the electric output from the device 2 on a clear day along the time axis is almost similar throughout the year if we look at the global view ignoring the change in details. Yes.
  • a figure in which the values of the electrical output from the device 2 are arranged along the time axis is referred to as an “output pattern”.
  • the output pattern is based on the premise of the installation location and installation conditions of the photovoltaic power generation facilities, even if the output pattern is on a different day, the knowledge that it overlaps almost on a clear day except for the morning and evening time zones is obtained. Yes. For example, if the installation location of the photovoltaic power generation facility is determined, and the installation conditions are such that the solar cell module faces southward and the inclination angle is 30 degrees, the output patterns on a sunny day almost overlap.
  • the reference value for determining the presence or absence of an abnormality in the device 2 can be used throughout the year only by determining a predetermined time zone in one day corresponding to a sunny day.
  • the value of the electric output from the device 2 varies depending on the difference in solar altitude according to the season.
  • the same reference value can be used throughout the year if a correction value corresponding to the season is added to or subtracted from the reference value.
  • the reference value is determined for each type of device 2, and since a solar cell and a pyranometer are assumed as the device 2 here, it is necessary to set a reference value for the solar cell and a reference value for the pyranometer. is there. Since the solar cell monitors the presence or absence of abnormality with the string (solar panel) as the minimum unit, the reference value is determined so as to be compared with the value of the electric output with the string as the unit. In addition, the reference value to be compared with the electric output value for the solar cell array, the reference value to be compared with the electric output value for the power conditioner, the reference value to be compared with the electric output value for the photovoltaic power generation facility, etc. Determined. The reference value is not limited to the example described above, and can be determined for an appropriate location of the photovoltaic power generation facility.
  • the device 2 is a solar cell and a reference value to be compared with the value of the electric output from the string
  • the electrical output from the string is sampled at a predetermined sampling period.
  • the value of the sampled electrical output changes with time. Therefore, the reference value is set for each time when the electrical output is sampled.
  • a figure in which the reference values are arranged along the time axis is referred to as a “reference value pattern”.
  • the sampling period is 1 minute
  • the time zone for determining the reference value is from 10:00 to 13:00.
  • the reference values are determined every minute such as 10:00, 10:00,..., 13:00, and a total of 181 reference values are determined.
  • the value of the electrical output is obtained as an integrated value or an average value of a plurality of electrical outputs in a sampling period (sampling period) within each sampling period for each sampling period.
  • the reference value is obtained as an integrated value or an average value of a plurality of electrical outputs in the sampling period.
  • the value of the electric output from the solar cell is ideally changed smoothly on a sunny day, but in reality, even on a sunny day, it depends on the cloud condition or the surrounding environment of the solar cell. It fluctuates greatly. That is, the output pattern on a sunny day is ideally a bell shape, but the measured value of the electrical output from the solar cell is as if the component that changes in a short time overlaps the bell type output pattern. Often complex output patterns. In other words, the output pattern obtained from the actual measurement value often has a shape in which a high-frequency component is superimposed on a unimodal fundamental wave.
  • the component corresponding to the fundamental wave in the output pattern is referred to as “basic pattern”, and the component corresponding to the high frequency component is referred to as “superimposition pattern”.
  • the output pattern based on the actual measurement value of the electrical output from the solar cell is usually a combination of the basic pattern and the superimposed pattern.
  • the electrical output is a current
  • the electrical output may be electric power.
  • the abnormality monitoring device 10 is configured to receive data from the photovoltaic power generation facility 20 through the electric communication line 31.
  • the telecommunication line 31 is selected from a VPN (Virtual Private Network) using the Internet, a mobile communication network, a dedicated line, or the like.
  • the abnormality monitoring device 10 functions as a computer server that communicates with a terminal device 32 managed by a business operator that performs operation management or maintenance inspection management of the photovoltaic power generation facility 20. That is, the abnormality monitoring device 10 constructs an abnormality monitoring system together with the terminal device 32.
  • a solid line represents a power path
  • a broken line represents a signal path.
  • a solar power generation facility 20 shown in FIG. 1 includes, in addition to the solar cell 21, a power conversion device 24 configured to convert DC power output from the solar cell 21 into AC power, and a solar radiation meter 25.
  • the solar radiation meter 25 is configured to measure the solar radiation intensity to the solar cell 21 (strictly, the solar radiation intensity corresponding to the solar radiation intensity to the solar cell 21).
  • the pyranometer 25 is disposed adjacent to the solar cell 21.
  • the solar radiation meter 25 may be an all solar radiation meter configured to measure the solar radiation intensity to the solar cell 21 to obtain the total solar radiation amount.
  • thermometer may be arranged in addition to the pyranometer 25.
  • the photovoltaic power generation facility 20 includes a power receiving / transforming facility 26 that supplies AC power generated by the power converter 24 to the power system 27.
  • the solar cell 21 is composed of one or a plurality of solar panels (or strings). In the example of FIG. 1, the solar cell 21 is composed of a plurality of strings 211, and the electric output of each of the strings 211 is monitored by a string monitor 221.
  • the connection box 22 stores, for example, a plurality of string monitors 221 that are electrically connected to each of the plurality of strings 211 constituting one solar cell array.
  • the photovoltaic power generation facility 20 includes a plurality of connection boxes 22, and a plurality of strings 211 are connected to each connection box 22. Therefore, the number of string monitors 221 corresponding to the number of the plurality of strings 211 to be connected is accommodated in one connection box 22.
  • the string monitor 221 may be provided separately from the connection box 22.
  • the connection box 22 is configured to collect the DC power output from the string 211 and supply it to the power converter 24.
  • the string monitor 221 is configured to measure the current from the corresponding string 211 through a current sensor.
  • a current sensor a configuration in which a Hall element or a magnetoresistive element is attached to a magnetic core is used. The current measurement may be performed through a shunt resistor.
  • the photovoltaic power generation facility 20 includes a measuring device 23 configured to monitor (measure) an input voltage to the power conversion device 24.
  • the measuring device 23 has a function of acquiring a current value output from each of the strings 211 from the string monitor 221 and a function of acquiring an electric output value of the pyranometer 25.
  • the pyranometer 25 may be connected to the power conversion device 24, and the measurement device 23 may acquire the value of the electric output of the pyranometer 25 via the power conversion device 24.
  • the measuring device 23 may obtain the power value based on the current value and the voltage value.
  • the measuring device 23 further includes a communication unit 231 for communicating with the abnormality monitoring device 10 through the electric communication line 31 described above.
  • the abnormality monitoring device 10 can monitor at least one of the electric output of the solar cell 21 and the electric output of the pyranometer 25, below, the abnormality of the solar cell 21 is based on the electric output of the solar cell 21. A case where the presence / absence of monitoring is monitored will be described.
  • the technique for monitoring the presence or absence of abnormality of the pyranometer 25 based on the electric output of the pyranometer 25 can be realized by replacing the electric output of the solar cell 21 with the electric output of the pyranometer 25 in the following description. .
  • the abnormality monitoring apparatus 10 illustrated in FIG. 1 includes a data acquisition interface 11 configured to acquire an electrical output for each string 211 constituting the solar cell 21, and an electrical output acquired by the data acquisition interface 11 (in the present embodiment).
  • a monitoring unit 12 configured to monitor whether or not the solar cell 21 is abnormal by comparing a power value obtained from a current value and a voltage value) with a reference value. That is, the abnormality monitoring device 10 acquires, as the electrical output of the solar cell 21, the current value for each string 211 and the voltage value input to the power conversion device 24 through the electrical communication line 31 from the measurement device 23 described above. The power value generated for each string 211 is obtained.
  • the abnormality monitoring device 10 may be configured to receive power value data from the measuring device 23 instead of receiving the current value and voltage value data from the measuring device 23. That is, the measurement device 23 may be configured to calculate the power value from the current value and the power value.
  • the measuring device 23 acquires electrical output data (first data) of the solar cell 21 and supplies the data to the abnormality monitoring device 10 (data acquisition interface 11) through the communication unit 231.
  • the first data includes, for example, a power value or a current value and a voltage value for obtaining the power value.
  • the measuring device 23 acquires electrical output data (second data) of the pyranometer 25, and transmits the data to the abnormality monitoring device 10 (data) via the communication unit 231.
  • the second data includes the solar radiation intensity value when the solar radiation meter 25 is configured to output the solar radiation intensity value obtained from the solar radiation intensity, and the solar radiation meter 25 measures the solar radiation intensity to measure the solar radiation amount ( For example, when it is configured to obtain the total solar radiation amount), the solar radiation amount obtained from the solar radiation intensity is included.
  • the second data includes a value related to solar radiation intensity.
  • the electrical output (power value in the present embodiment) of the solar cell 21 is compared with the reference value at the same time on different days, and the reference value is compared.
  • the power value is determined to be within a predetermined normal range. Even if the power value deviates from a predetermined normal range with respect to the reference value, the monitoring unit 12 does not immediately determine that the power value is abnormal, but the power value is within the normal range with respect to the reference value for one day, for example. It is desirable to determine that an abnormality occurs when the percentage of deviation from 80 is 80% or more.
  • the numerical value of the ratio determined to be abnormal is an example and can be determined as appropriate.
  • the data acquisition interface 11 is configured to acquire the electrical output of each of the plurality of strings 211 constituting the solar cell 21 for each constant sampling period 101.
  • the sampling period can be selected from the range of about 30 seconds to 10 minutes, but is preferably set to 1 minute, for example.
  • the data acquisition interface 11 is configured to output the integrated value (or average value) of the electrical output in the sampling period (sampling period) 102 for each sampling period 101 to the monitoring unit 12.
  • the abnormality monitoring device 10 includes a built-in clock 13 such as a real time clock in order to measure the date and time and to determine the sampling period.
  • a sampling period (sampling period) 102 for obtaining the values of a plurality of electrical outputs of the solar cell 21 for each sampling period 101 is provided in each sampling period 101. Yes.
  • both ends of each sampling period 101 are sampling points, values in the sampling period 102 immediately before the sampling point are acquired for each sampling point.
  • this configuration is referred to as “configuration A”.
  • the present embodiment is not limited to this configuration A.
  • the present embodiment may have a configuration in which the sampling period 102 is not provided in each sampling period 101 (hereinafter referred to as “configuration B”).
  • the data acquisition interface 11 is configured to acquire the first data and supply the first data to the monitoring unit 12 for each sampling period 101.
  • the first data for each sampling period 101 to the monitoring unit 12 is an integrated value or an average value of a plurality of power values, which are a plurality of power values obtained in the corresponding sampling period 102, Alternatively, it is obtained from a plurality of current values and a plurality of voltage values for obtaining a plurality of power values.
  • the first data for each sampling period 101 to the monitoring unit 12 includes a power value obtained at the time of sampling.
  • the data acquisition interface 11 is configured to acquire the second data and supply the second data to the monitoring unit 12 for each sampling period 101.
  • the second data for each sampling period 101 to the monitoring unit 12 is an integrated value or an average value of values related to a plurality of solar radiation intensities, and this is a plurality of solar radiations obtained in the corresponding sampling period 102. Obtained from values related to strength.
  • the second data for each sampling period 101 to the monitoring unit 12 includes a value related to the solar radiation intensity obtained at the time of sampling.
  • the value relating to the solar radiation intensity is the solar radiation intensity value or the solar radiation amount obtained from the solar radiation intensity value
  • the integrated value is obtained from a plurality of solar radiation intensity values
  • the average value is a plurality of solar radiation intensity values. Obtained from value or multiple solar radiation.
  • the sampling interval in the sampling period 102 is controlled by, for example, a timer (built-in clock 13).
  • the monitoring unit 12 monitors whether or not the photovoltaic power generation facility 20 has an abnormality, and when an abnormality is detected, notifies the terminal device 32 through the communication interface 14 by a push method. For example, an alarm signal is transmitted to the terminal device 32 through the communication interface 14.
  • the terminal device 32 is a client for the abnormality monitoring device 10 that is a server, and a personal computer that communicates with the abnormality monitoring device 10 is generally used.
  • a communication path selected from a VPN (Virtual Private Network) using the Internet, a mobile communication network, a dedicated line, or the like is used.
  • the terminal device 32 can be selected from a tablet terminal, a smartphone, and the like in addition to a personal computer, and may be a thin client.
  • the abnormality monitoring device 10 transfers the operation state of the photovoltaic power generation facility 20 grasped by the abnormality monitoring device 10 to the terminal device 32 used by the consumer who receives the power generated by the photovoltaic power generation facility 20. It is possible. In this case, the terminal device 32 can also be used as a tool for providing information to consumers.
  • the sampling device 101 may determine the sampling period 101 and the sampling period 102 instead of the data acquisition interface 11. That is, the data acquisition interface 11 may be configured to receive an integrated value of a plurality of electrical outputs in the sampling period 102 from the measurement device 23 every sampling period 101. The data acquisition interface 11 may output the average value of the plurality of electrical outputs in the sampling period 102 to the monitoring unit 12 instead of the integrated value of the plurality of electrical outputs in the sampling period 102.
  • the abnormality monitoring device 10 includes a built-in clock (timer) 13, but the present embodiment is not limited to this.
  • the measuring device 23 includes a timer, acquires the electrical output data (first data) of the solar cell 21 for each sampling period 101, and transmits the data to the abnormality monitoring device 10 (data acquisition) through the communication unit 231. It may be configured to supply to the interface 11).
  • the measuring device 23 includes a timer, acquires the electric output data (second data) of the pyranometer 25 for each sampling period 101, and passes through the communication unit 231. The data may be supplied to the abnormality monitoring apparatus 10 (data acquisition interface 11).
  • the data acquisition interface 11 acquires data (first data or second data) together with corresponding time information, It is desirable that corresponding time information is assigned to the data.
  • the time information is information on the time at which the corresponding data is acquired, and is date information in this embodiment.
  • the monitoring unit 12 is configured to extract an electrical output delivered from the data acquisition interface 11, for example, a power value corresponding to a basic pattern from an output pattern of a plurality of power values, and compare the extracted power value with a reference value. ing. The reference value will be described later.
  • the monitoring unit 12 includes one or more processors and a storage unit 123.
  • an extraction time 110 longer than the sampling period 101 is defined as shown in FIG. Obtain the average rate of change of the power value.
  • the extraction time 110 is determined such that a short-time fluctuation component in the output pattern is suppressed and the change tendency of the power value can be extracted.
  • the extraction time 110 is in the range of about 20 to 40 times the sampling period, and more preferably about 30 times the sampling period.
  • the average change rate C (n) at the start point of the extraction time 110 is an average value of a plurality of power values acquired in the sampling period 102 at the start point of the extraction time 110.
  • the difference between the average power value P (n) and the average power value P (n + 30) that is the average value of the plurality of power values acquired in the sampling period 102 at the end of the extraction time 110 is the extraction time 110 (30 minutes). It is the value divided.
  • the average rate of change C (n), C (n + 1),..., C (n + 30) is obtained for each sampling period 101.
  • the extraction time 110 is 30 times the sampling period 101, the power value of the nth sampling period is P (n), and the power value after 30 minutes is P (n + 30).
  • the average rate of change C (n) corresponding to the starting point is calculated as ⁇ P (n + 30) ⁇ P (n) ⁇ / 30. Since the start time of the nth sampling period 101 is 11:00, the average rate of change C (n) corresponding to 11:00 becomes ⁇ P (n + 30) ⁇ P (n) ⁇ / 30. Become.
  • the average change rate C (n + 1) at 11:01 is calculated as ⁇ P (n + 31) ⁇ P (n + 1) ⁇ / 30.
  • the monitoring part 12 memorize
  • FIG. Configured as follows. In the case of the configuration A, an integrated value or an average value of a plurality of power values is stored in the storage unit 123 together with corresponding time information for each sampling period 101.
  • the power value (for example, P (n)) at the sampling time point (for example, 11:00) for each sampling period 101 is the sampling period in the sampling period 101 whose end point is the sampling time point (11:00).
  • the integrated value or average value of the plurality of power values obtained at 102 is stored together with the corresponding time information (including 11:00).
  • the power value is stored in the storage unit 123 together with the corresponding time information for each sampling period 101.
  • a power value (for example, P (n)) at a sampling time point (for example, 11:00) for each sampling period 101 is stored together with corresponding time information (including 11:00).
  • the monitoring unit 12 outputs the electrical output of the solar cell 21 corresponding to the sampling cycle 101 at the start point of the extraction time 110 for each sampling cycle 101 based on the electrical output data of the solar cell 21 stored in the storage unit 123.
  • the average change of the start point of the extraction time 110 from the value P (n) of the extraction time 110, the value P (n + 30) of the electrical output of the solar cell 21 corresponding to the sampling period 101 at the end point of the extraction time 110, and the value of the extraction time 110 It is configured to determine the rate C (n).
  • the monitoring unit 12 stores the electric output data of the pyranometer 25 in the storage unit 123 (first region 1231) together with the corresponding time information for each sampling period 101.
  • the configuration A an integrated value or an average value of a plurality of values relating to the solar radiation intensity is stored in the storage unit 123 together with corresponding time information.
  • Configuration B a value related to solar radiation intensity is stored in the storage unit 123 together with corresponding time information for each sampling period 101.
  • the monitoring unit 12 outputs the electrical output of the pyrometer 25 corresponding to the sampling period 101 at the start point of the extraction time 110 for each sampling period 101 based on the electrical output data of the pyranometer 25 stored in the storage unit 123.
  • the average change of the starting point of the extraction time 110 from the value P (n) of the extraction time 110, the value P (n + 30) of the electrical output of the pyranometer 25 corresponding to the sampling period 101 at the end point of the extraction time 110, and the value of the extraction time 110 It is configured to determine the rate C (n).
  • the average rate of change at a specific time may be defined by the following equation from the values before and after 15 minutes. That is, ⁇ P (n + 15) ⁇ P (n ⁇ 15) ⁇ / 31 may be obtained.
  • the average rate of change obtained by the above calculation represents the slope of the power value at the corresponding time.
  • the average change rate obtained with the extraction time set to an appropriate length of time is substantially equal to the average change rate of the basic pattern (solid line in FIG. 4) from which the superposed pattern (dotted line in FIG. 4) is removed. I know that.
  • the average rate of change represents the slope of the power value
  • the change in the average rate of change with time represents the shape of the output pattern, but does not depend on the magnitude of the power value.
  • a figure in which the average change rates are arranged along the time axis is referred to as a “change rate pattern”.
  • the extraction time coincides with the sampling period 101, that is, when the extraction time is 1 minute, the component corresponding to the superimposed pattern cannot be removed from the change rate pattern as shown in FIG. 3A. Further, when the extraction time is 7 minutes, a part of the component corresponding to the superposition pattern is removed from the change rate pattern as shown in FIG. Many are left behind. On the other hand, when the extraction time is 30 minutes, as shown in FIG. 3C, the component corresponding to the superimposed pattern is almost removed from the change rate pattern, and the component corresponding to the basic pattern is extracted. Therefore, the basic pattern can be extracted using the change rate pattern by setting the extraction time relatively long.
  • the power values for each time of day is extracted from the power values for a plurality of days (for example, 15 days) without using the average rate of change
  • the power values for each time In FIG. 4, the change in the solar radiation intensity is used as a value equivalent to the power value.
  • the solar radiation intensity irradiated to the solar cell 21 greatly fluctuates even on a sunny day due to the state of clouds or the surrounding environment of the solar cell. That is, as shown by a broken line in FIG. 4, the figure in which the maximum values for each time extracted from the output patterns of a plurality of days are arranged in a shape in which the superposition pattern is superimposed on the basic pattern.
  • the technique of the present embodiment described below it is possible to remove the component corresponding to the superimposed pattern and extract the component corresponding to the basic pattern as shown by the solid line in FIG. .
  • the monitoring unit 12 is configured to switch between an operation of generating a reference value pattern and an operation of monitoring the presence or absence of abnormality of the solar cell 21 based on the generated reference value pattern.
  • the operation for generating the reference value pattern includes an operation for generating an ideal sunny day change rate pattern and an operation for generating the reference value pattern from the electrical output data of the solar cell 21.
  • pre-operation first operation
  • generation operation first operation
  • the monitoring unit 12 includes a determination unit 120, a calculation unit 121, a filter unit 122, and a storage unit 123.
  • storage part 123 is 1st area
  • the determination unit 120 compares the reference value pattern data stored in the storage unit 123 with the power value data acquired by the data acquisition interface 11 and makes a determination as described above. Judge whether there is. That is, the determination unit 120 determines whether or not there is an abnormality in the solar cell 21 by comparing the power value obtained from the data acquisition interface 11 with the reference value obtained from the data of the reference value pattern.
  • the calculation unit 121 obtains an average rate of change based on the output pattern data stored in the first area 1231 in both the pre-operation and the generation operation. That is, in the first region 1231, the power value data from the solar cell 21 is stored in one-to-one correspondence with the time of the day, and the calculation unit 121 stores the data of two power values. Use to calculate the average rate of change.
  • the calculation unit 121 calculates 2 at both ends of the extraction time 110 for each extraction time 110 from the electrical output data of the solar cell 21 stored in the storage unit 123 (first region 1231). A value (for example, a power value or a power amount) of the electrical outputs is obtained, and an average rate of change is calculated from the values of the two electrical outputs and the extraction time 110.
  • the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
  • the calculation unit 121 extracts the extraction time for each extraction time 110 from the electric output data of the pyranometer 25 stored in the storage unit 123 (first region 1231). Two electrical output values (for example, solar intensity value or solar radiation amount) at both ends of 110 are obtained, and the average rate of change is calculated from the two electrical output values and the extraction time 110.
  • the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
  • the output pattern on the day when the user determines that the weather is clear is regarded as an ideal sunny day output pattern.
  • the calculation unit 121 obtains the average rate of change at each time of the day based on the data of this output pattern (that is, the power value at each time), and uses the obtained average rate of change at each time as the standard rate of change at each time It is stored in the second area 1232 of the storage unit 123. That is, in the pre-operation, a change rate pattern in which a standard change rate is associated with each time of the day is generated.
  • the communication interface 14 is an input / output interface having an input / output function
  • the monitoring unit 12 receives a sunny day input instruction from the user via the input / output interface 14.
  • the calculation unit 121 extracts an extraction time on a day (for example, a predetermined time zone) corresponding to the input instruction based on the electrical output data of the solar cell 21 stored in the storage unit 123 (first region 1231).
  • an average rate of change is calculated from two electrical output values (for example, power value or power amount) at both ends of the extraction time 110, and each of the obtained average rate of change is used as a standard rate of change.
  • the corresponding time information is stored in the second area 1232 of the storage unit 123.
  • the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
  • the calculation unit 121 performs an input instruction based on the electric output data of the pyranometer 25 stored in the storage unit 123 (first region 1231) in the pre-operation.
  • an average rate of change is calculated from two electrical output values (for example, a solar radiation intensity value or a solar radiation amount) at both ends of the extraction time 110.
  • Each of the plurality of average change rates is configured to be stored in the second area 1232 of the storage unit 123 for each corresponding time information as a standard change rate.
  • the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
  • the calculation unit 121 obtains the average rate of change at each time from the data of the output pattern of the appropriate day (power value from the data acquisition interface 11).
  • the filter unit 122 compares the obtained average change rate for each time with the standard change rate at the same time stored in the storage unit 123. Specifically, as shown in FIG. 5, the filter unit 122 sets a predetermined allowable range AR to the standard change rate RC at each time stored in the storage unit 123, and the same time obtained by the calculation unit 121. If the average rate of change is within the allowable range AR, the power value at the date and time when the average rate of change was obtained is regarded as the reference value.
  • the power value data that the filter unit 122 regards as the reference value is stored in the third area 1233 of the storage unit 123.
  • the allowable range AR is determined as a ratio with respect to the standard change rate RC or a constant value. When the allowable range AR is set as a ratio with respect to the standard change rate RC, for example, it may be selected from about ⁇ 0.1RC to ⁇ 0.3RC.
  • the calculation unit 121 calculates an average rate of change from two electrical output values (for example, power values) at both ends of the extraction time 110 for each extraction time 110 in one day (for example, a predetermined time period). Configured to calculate.
  • the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
  • the above-mentioned one day (for example, a predetermined time period) is set every time the electrical output data of the solar cell 21 (or the solar radiation meter 25) is stored in the storage unit 123 (first region 1231).
  • the one day is set according to an input instruction for one day or a plurality of days obtained from the terminal device 32 via the input / output interface 14.
  • the filter unit 122 stores the average rate of change in the corresponding time information standard stored in the storage unit 123 (second region 1232). If within the allowable range AR including the change rate RC in between (for example, at the center), the electric output value of the average change rate (the electric output value corresponding to at least the start point of the extraction time 110) is stored as a reference value. It is configured to store in the third area 1233 of the unit 123. Note that the value of the electrical output corresponding to the end point of the extraction time 110 may be stored in the same manner.
  • the filter unit 122 regards the power value at the date and time when the average change rate is obtained as a reference value, and sets the corresponding date and time.
  • the power value data is stored in the third area 1233 of the storage unit 123 in association with the time.
  • the filter unit 122 discards the power value at the date and time when the average change rate was obtained.
  • the power value data stored in the third area 1233 of the storage unit 123 is Become a minority.
  • the data in the period when it is fine occupies a ratio of the predetermined value or more. If it is, the power value data for one day can be used as the reference value pattern.
  • the ratio above the predetermined value is, for example, 80% or more. This numerical value is not intended to be limiting but is shown as an example.
  • FIG. 6 shows an example of extracting reference value pattern data (reference values to be stored in the third area 1233) in the above-described procedure.
  • FIG. 6A shows an ideal output pattern.
  • FIG. 6B shows an ideal output pattern.
  • FIG. 6C shows an output pattern of actual measurement values.
  • the filter unit 122 extracts the reference value pattern data as shown in FIG. 6E by collating the change rate pattern data shown in FIG. 6D with the change rate pattern data shown in FIG. 6B.
  • the filter unit 122 calculates the average rate of change between both data from the rate of change pattern data obtained from the ideal output pattern shown in FIG. 6B and the rate of change pattern data obtained from the actually measured value shown in FIG. A matching time within the allowable range AR is obtained, and the obtained time is compared with the data of the output pattern in FIG. 6C to extract the power value at that time.
  • the vertical axis uses the solar radiation intensity, but is equivalent to the power value output by the solar cell 21.
  • the power value data extracted by the filter unit 122 for a plurality of days extracted by the filter unit 122. If the power value is for multiple days that can be regarded as the same season, the solar altitude corresponding to the time is almost the same, so the solar radiation intensity in fine weather is also almost the same.
  • the power value data extracted by the filter unit 122 for the segment period set to include a plurality of days within the period in which the change in solar altitude at the same time is within a predetermined range is used.
  • the data is stored in the third area 1233 of the storage unit 123. In this case, the third area 1233 of the storage unit 123 allows storing data of a plurality of power values for the same time.
  • the segment period is selected in the range of 2 weeks to 1 month.
  • the period that can be regarded as the same season can be a plurality of days (15 days) included in one of the twenty-four seasons.
  • a period that can be regarded as the same season a plurality of days in the first half of each month, a plurality of days in the second half of each month, a plurality of days in one month, and the like can be adopted.
  • a period in which the solar altitudes are almost equal is selected as a period that can be regarded as the same season.
  • FIGS. 7A, 7B, and 7C three types of reference value patterns as shown in FIGS. 7A, 7B, and 7C are extracted from the power values for each day based on the power values for three days.
  • the reference value patterns shown in FIGS. 7A, 7B, and 7C are disordered and cannot be used as a reference value pattern for one day, but a plurality of reference value patterns are superimposed as shown in FIG. 7D. Thus, a substantially complete reference value pattern is included.
  • the reference value pattern shown in FIG. 7D includes a plurality of values at the same time, and cannot be used as a reference value pattern as it is. Therefore, when there are data of a plurality of power values at the same time in the third area 1233 of the storage unit 123, the monitoring unit 12 selects one of the data of the plurality of power values and sets the reference value
  • the selector 124 is configured to determine the following.
  • the selection unit 124 is configured to select one of the power value data stored in the storage unit 123 as a reference value, and store the selected reference value in the third area 1233 of the storage unit 123.
  • the reference value one piece of appropriate power value data may be selected from a plurality of power value data at the same time according to a certain rule.
  • the rule for selecting the reference value is determined so as to adopt the maximum value among the data of the plurality of power values.
  • the power value data at the same time obtained from a plurality of days is stored in the storage unit 123, and then the selection unit 124 selects the power value data as the reference value.
  • the power value data is to be stored in the third area 1233 of the storage unit 123, the power value data at the same time as the power value data is already stored in the third area 1233.
  • the selection unit 124 may be configured to store only one of them in the storage unit 123. In this case, the selection unit 124 compares the power value data stored in the storage unit 123 with the power value data to be stored in the storage unit 123, and stores the larger power value data. The rule of storing in the third area 1233 of the unit 123 is used.
  • the plurality of reference values exist at at least one time of one day (for example, a predetermined time period) to be stored in the third area 1233 of the storage unit 123, Only the maximum value among the plurality of reference values is configured to be stored in the third region 1233.
  • the filter unit 122 extracts a power value serving as a reference value based on the average change rate of the power value, there is a possibility that the filter unit 122 may be misidentified as a reference value candidate and extracted depending on a daily output pattern. . That is, if the average change rate of the power value is within an allowable range set with respect to the standard change rate, the filter unit 122 sets the corresponding power value as a reference value candidate regardless of the absolute value of the power value. Since extraction is performed, a power value that does not correspond to a clear day may be extracted as a reference value candidate. For example, in the case of FIG. 7A, the power value not corresponding to a clear day is a portion where the power value is discontinuous, such as the right portion.
  • Such a power value that does not correspond to a clear day will be referred to as an “error component”.
  • the reference value pattern formed by the reference values stored in the third area 1233 of the storage unit 123 includes an error component
  • the reference value pattern includes a power value corresponding to a clear day and a power value that is not a clear day. It will be out.
  • the filter unit 122 can perform an iterative process for the reference value pattern by performing the same processing as the power value data acquired from the data acquisition interface 11. It is configured.
  • the iterative process is performed at least once, and a plurality of iterative processes can be performed as necessary.
  • the number of iterations may normally be about once or twice.
  • the filter unit 122 narrows the allowable range set for the standard change rate during the iterative processing, compared to the allowable range used when the reference value candidates are first extracted. For example, as shown in FIG. 8A, the allowable range AR1 used when extracting the reference value candidate based on the power value data acquired by the data acquisition interface 11 is set to ⁇ ⁇ . Further, as shown in FIG. 8B, the allowable range AR2 used when iterative processing is performed on the reference value data stored in the third area 1233 of the storage unit 123 is set to ⁇ ⁇ ( ⁇ > ⁇ > 0).
  • the configuration example described above employs a configuration that uses a reference value for one day throughout the year.
  • the absolute value changes since the absolute value changes, one year may be divided into a plurality of periods, and a reference value may be set for each divided period. Even in this case, it is possible to determine whether or not the solar cell 21 is abnormal throughout the year only by storing a small number of reference values (reference value patterns) in the third region 1233 of the storage unit 123.
  • the abnormality monitoring apparatus 10 described above includes, as main hardware elements, a first device including one or more processors that execute a program and an interface second device for connecting an external apparatus.
  • the first device is selected from a microprocessor to which a memory is connected separately, a microcomputer having a memory integrally, and the like.
  • the program may be provided in a state written in a ROM (Read Only Memory) in advance, but is provided on a computer-readable recording medium so that it can be stored in a rewritable nonvolatile memory. Is desirable. Further, the program may be provided through an electric communication line such as the Internet instead of the recording medium.
  • ROM Read Only Memory
  • the abnormality monitoring apparatus 10 described above includes a data acquisition interface 11 and a monitoring unit 12.
  • the data acquisition interface 11 is supplied from the device 2 that outputs an electrical output according to the solar radiation intensity for each time of a day (preferably in a predetermined time zone including a South-Central time that is a part of the day).
  • An output value (integrated value or average value in configuration A) is acquired.
  • the monitoring unit 12 monitors the presence or absence of an abnormality in the device 2 by comparing the value of the electrical output for each time of day from the data acquisition interface 11 with the corresponding reference value among the reference values for each time of the day. Configured to do.
  • the device 2 includes at least one of the solar cell 21 and the pyranometer 25.
  • the monitoring unit 12 includes a calculation unit 121, a filter unit 122, and a storage unit 123.
  • the calculation unit 121 corresponds to the time at both ends of the extraction time 110 for each predetermined extraction time 110 (for the above-mentioned one day, preferably for the above-mentioned predetermined time zone).
  • the average rate of change is calculated from the two electrical output values and the extraction time 110.
  • the filter unit 122 has a value of an electrical output having an average rate of change within a predetermined allowable range AR out of the average rate of change for each extraction time 110 from the calculation unit 121 (at least the electrical output corresponding to the start point of the extraction time 110).
  • the tolerance range AR is a tolerance range of a corresponding time among a plurality of tolerance ranges for each time of a day (preferably in the predetermined time zone), and a plurality of tolerance ranges are extracted.
  • Each of the ranges is a range including the standard change rate RC in the middle (preferably the center), and the plurality of standard change rates of the plurality of allowable ranges correspond to a clear day (obtained in advance from the calculation unit 121). It is the average rate of change for a day (preferably the predetermined time period).
  • the storage unit 123 is configured to store the value of the electrical output extracted by the filter unit 122 as a reference value together with corresponding time information.
  • the data acquisition interface 11 is configured to acquire the value of the electric output every time of the day by acquiring the value of the electric output at a predetermined sampling period 101.
  • the extraction time 110 may be an integral multiple of the sampling period 101.
  • the integer multiple is two times or more, and the time that is an integral multiple of the sampling period 101 is shorter than, for example, the time from the sunrise time to the South-Central time or the time from the South-Central time to the sunset time.
  • the extraction time 110 has a length of time in which the fluctuation component of the value of the electrical output in the sampling period 101 is suppressed and the average change rate that is a tendency of change in the value of the electrical output can be extracted. Determined.
  • the time that is an integral multiple of the sampling period 101 is shorter than the time between the intermediate time point and the start or end time point of the time zone that defines the reference value (the time zone that includes the South-Central time). Determined in time.
  • the extraction time 110 is in the range of about 20 to 40 times the sampling period 101, more preferably 30 times the sampling period 101.
  • the sampling period is selected from the range of about 30 seconds to 10 minutes, preferably 1 minute.
  • the storage unit 123 is configured to allocate and store each of the plurality of reference values from the filter unit 122 to the corresponding time information set in the sampling period 101.
  • the average rate of change is required to remove the influence of the fluctuation component of the electrical output in a short time. That is, the reference value data obtained by removing unnecessary fluctuation components from the output pattern described above can be stored in the storage unit 123.
  • the storage unit 123 converts each of the plurality of electrical output values extracted by the filter unit 122 from the electrical output values for a plurality of days obtained from the data acquisition interface 11 via the calculation unit 121 into corresponding time information for one day. It is desirable to assign and memorize.
  • the monitoring unit 12 corresponds to the maximum value among the plurality of electrical output values extracted for the same time. It is desirable to include a selection unit 124 that is stored in the storage unit 123 as a reference value for the time to be used.
  • This configuration makes it possible to extract an appropriate reference value based on the electric output values for a plurality of days.
  • the filter unit 122 compares the already extracted average change rate with the corresponding standard change rate again, and repeats the iterative process of extracting the average change rate within the corresponding allowable range from the already extracted average change rate once. It is desirable to be configured to repeat the above.
  • the ratio of the error component is reduced by performing iterative processing, which corresponds to a clear day. It becomes possible to relatively increase the ratio of the value of the electric output.
  • the filter unit 122 is configured to narrow the allowable range every time iterative processing is performed once.
  • the standard rate of change is preferably set for each segment period set to include multiple days.
  • the segment period is selected in the range of about 2 weeks to 1 month.
  • the photovoltaic power generation facility 20 in the present embodiment includes a solar cell 21, a pyranometer 25, and the abnormality monitoring device 10 described above.
  • the solar radiation meter 25 is configured to measure the solar radiation intensity to the solar cell 21.
  • the pyranometer 25 is disposed adjacent to the solar cell 21.
  • This configuration makes it possible to monitor whether or not an abnormality has occurred in at least one of the solar cell 21 and the pyranometer 25 in the solar power generation facility 20.
  • the program of this embodiment is for causing a computer to function as the abnormality monitoring apparatus 10.
  • a reference value for determining whether or not an abnormality has occurred in the solar cell 21 is generated.
  • a reference value for determining whether or not an abnormality has occurred in the solar radiation meter 25 is used. It is possible to employ the techniques described above to generate. That is, with the above-described technique, the solar cell 21 can be read as the pyranometer 25. Further, the abnormality monitoring device 10 may be configured to monitor whether or not an abnormality has occurred in both the solar cell 21 and the pyranometer 25.
  • the abnormality of the solar cell 21 is monitored in units of the strings 211, but the abnormality can be monitored in units of the solar cell array.
  • the photovoltaic power generation facility 20 shown in FIG. 1 includes the power conversion device 24, when direct current is fed by the power of the solar battery 21, or when the storage battery is charged by the current output from the solar battery 21, etc. Then, the power converter 24 can be omitted.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

In order to determine a suitable reference value for monitoring abnormalities in a device, an abnormality monitoring device (10) is provided with a data acquisition interface (11) that acquires electrical output values that correspond to solar radiation intensity and with a monitoring unit (12). The monitoring unit (12) is provided with a calculation unit (121) that calculates average rates of change from two electrical output values from the interface (11) for every prescribed extraction period, with a filter unit (122) that extracts an electric power value for an average rate of change if the average rate of change is within a prescribed allowable range, and with a storage unit (123). The allowable range is among a plurality of allowable ranges for different times of a day and corresponds to a time. Each allowable range includes a reference rate of change, and the plurality of reference rates of change for the plurality of allowable ranges are an average rate of change for one clear sky day. The storage unit (123) stores extracted electrical output values as reference values together with corresponding time information.

Description

異常監視システムおよびプログラムAbnormality monitoring system and program
 本発明は、異常監視システムおよびプログラムに関する。 The present invention relates to an abnormality monitoring system and program.
 従来、太陽電池の電気出力に基づいて太陽電池の出力が正常か異常かを判定するための技術が知られている(たとえば、特許文献1参照)。特許文献1では、所定の日照時刻における太陽電池の実際の出力電力値の、当該日照時刻に対応する標準出力電力値に対する比を算出し、この比に基づいて太陽電池の出力が正常か異常かを判定している。特許文献1には、複数の太陽電池アレイについて所定の日照時刻における電力値、あるいは複数日にわたって日照時刻毎に繰り返し実測した太陽電池アレイの出力電力値の最大値を、標準出力電力値とすることが記載されている。 Conventionally, a technique for determining whether the output of a solar cell is normal or abnormal based on the electric output of the solar cell is known (see, for example, Patent Document 1). In Patent Document 1, a ratio of an actual output power value of a solar cell at a predetermined sunshine time to a standard output power value corresponding to the sunshine time is calculated, and whether the output of the solar cell is normal or abnormal based on this ratio Is judged. In Patent Document 1, the power value at a predetermined sunshine time for a plurality of solar cell arrays, or the maximum value of the output power value of the solar cell array repeatedly measured at each sunshine time over a plurality of days is set as the standard output power value. Is described.
 特許文献1に記載された発明は、太陽光発電設備の導入時に太陽電池アレイが適切に設置されているか否かを診断し、また太陽電池アレイの経時変化による発電能力の劣化や故障について診断するために、太陽電池の標準出力電力値を用いている。 The invention described in Patent Document 1 diagnoses whether or not the solar cell array is properly installed at the time of introduction of the solar power generation facility, and diagnoses deterioration or failure of the power generation capability due to the temporal change of the solar cell array. Therefore, the standard output power value of the solar cell is used.
 しかしながら、太陽電池アレイの出力電力値は、季節による太陽高度の影響で変化するから、特許文献1に記載された標準出力電力値は、年間を通して使用することができない可能性がある。また、出力電力値の最大値を標準出力電力値とする場合、標準出力電力値は、日射の回り込み、あるいは雲の影などの影響を受けるから、太陽電池アレイの劣化や故障を診断するための基準になる標準出力電力値を定めることは困難である。 However, since the output power value of the solar cell array changes due to the influence of the solar altitude due to the season, there is a possibility that the standard output power value described in Patent Document 1 cannot be used throughout the year. In addition, when the maximum output power value is set as the standard output power value, the standard output power value is affected by the influence of solar radiation or cloud shadows. It is difficult to determine a standard output power value as a reference.
特開2005-340464号公報JP 2005-340464 A
 本発明は、装置の異常を監視するための適切な基準値を定めることを可能にした異常監視システムを提供することを目的とする。また、本発明は、コンピュータをこの異常監視システムとして機能させるプログラムを提供することを目的とする。 An object of the present invention is to provide an anomaly monitoring system that can determine an appropriate reference value for monitoring an anomaly of an apparatus. Another object of the present invention is to provide a program that causes a computer to function as the abnormality monitoring system.
 本開示は、装置の電気出力に基づいて装置の異常を監視するように構成される異常監視システムに関する。本発明に係る異常監視システムは、データ取得インタフェースおよび監視部を備える。データ取得インタフェースは、日射強度に応じた電気出力を出力する装置から、1日の時刻ごとに電気出力の値を取得するように構成される。前記監視部は、前記データ取得インタフェースからの1日の時刻ごとの電気出力の値を、1日の時刻ごとの基準値のうち対応する基準値と比較することにより前記装置の異常の有無を監視するように構成される。前記装置は、太陽電池と日射計との少なくとも一方を含む。前記監視部は、計算部、フィルタ部および記憶部を備える。前記計算部は、前記データ取得インタフェースからの電気出力の値に基づいて、所定の抽出時間ごとに、前記抽出時間の両端の時刻に対応する電気出力の値と前記抽出時間とから平均変化率を算出するように構成される。前記フィルタ部は、前記計算部からの前記抽出時間ごとの平均変化率のうち、所定の許容範囲内にある平均変化率の電気出力の値を抽出するように構成される。ここにおいて、前記許容範囲は、1日の時刻ごとの複数の許容範囲のうち対応する時刻の許容範囲であり、前記複数の許容範囲のそれぞれは、標準変化率を間に含む範囲であり、前記複数の許容範囲の複数の標準変化率は、晴天日に相当する1日分の平均変化率である。前記記憶部は、前記フィルタ部が抽出した前記電気出力の値を、対応する時刻情報とともに前記基準値として記憶するように構成される。 The present disclosure relates to an abnormality monitoring system configured to monitor an abnormality of a device based on an electrical output of the device. The abnormality monitoring system according to the present invention includes a data acquisition interface and a monitoring unit. The data acquisition interface is configured to acquire the value of the electrical output for each time of day from a device that outputs the electrical output corresponding to the solar radiation intensity. The monitoring unit monitors the presence or absence of abnormality of the device by comparing the value of the electrical output for each time of day from the data acquisition interface with the corresponding reference value among the reference values for the time of day. Configured to do. The apparatus includes at least one of a solar cell and a pyranometer. The monitoring unit includes a calculation unit, a filter unit, and a storage unit. The calculation unit calculates an average rate of change from the value of the electrical output corresponding to the time at both ends of the extraction time and the extraction time for each predetermined extraction time based on the value of the electrical output from the data acquisition interface. Configured to calculate. The filter unit is configured to extract an electrical output value having an average rate of change within a predetermined allowable range from the average rate of change for each extraction time from the calculation unit. Here, the permissible range is a permissible time range among a plurality of permissible ranges for each time of day, each of the plurality of permissible ranges is a range including a standard change rate, The plurality of standard change rates in the plurality of allowable ranges are average change rates for one day corresponding to a sunny day. The storage unit is configured to store the value of the electrical output extracted by the filter unit as the reference value together with corresponding time information.
 本開示は、コンピュータを上記異常監視システムとして機能させるためのプログラムに関する。本発明に係るプログラムは、コンピュータを、上記した異常監視システムとして機能させることを特徴とする。 This disclosure relates to a program for causing a computer to function as the abnormality monitoring system. A program according to the present invention causes a computer to function as the above-described abnormality monitoring system.
 本発明の構成によれば、装置の異常を監視するための適切な基準値を定めることが可能になるという利点がある。 According to the configuration of the present invention, there is an advantage that it is possible to set an appropriate reference value for monitoring an apparatus abnormality.
 図面は本開示に従って一又は複数の実施例を示すが、限定するものではなく例に過ぎない。図面において、同様の符号は同じか類似の要素を指す。
実施形態を示すブロック図である。 実施形態の抽出時間、サンプリング周期およびサンプリング期間(サンプリング用期間)の説明図である。 図3Aから3Cは、抽出時間1分、抽出時間7分および抽出時間30分それぞれの平均変化率がどのように時間変化をするかを示すグラフである。 実施形態における出力パターンの値(たとえば照度強度)がどのように時間変化をするかを示すグラフである。 実施形態において標準変化率とこれに対する許容範囲がどのように時間変化をするかを示すグラフである。 図6Aは実施形態において理想的な出力パターンの時間変化を示すグラフ、図6Bは実施形態において理想的な出力パターンから得られる変化率パターンの時間変化を示すグラフ、図6Cは実施形態において実測値の出力パターンの時間変化を示すグラフ、図6Dは実施形態において実測値の出力パターンから得られる変化率パターンの時間変化を示すグラフ、図6Eは実施形態において実測値から求めた基準値パターンの時間変化を示すグラフである。 図7Aから7Cは、それぞれ異なる1日の電力値から生成した基準値パターンの時間変化を示すグラフであり、図7Dは、異なる複数日の電力値を重ね合わせて生成した基準値パターンの時間変化を示すグラフである。 図8Aは実施形態において電力値とこの電力値から基準値を抽出するための許容範囲の時間変化を示すグラフであり、図8Bは実施形態において基準値に対する反復処理の際の許容範囲の時間変化を示すグラフである。
The drawings illustrate one or more embodiments in accordance with the present disclosure, but are by way of example and not limitation. In the drawings, like numerals refer to the same or similar elements.
It is a block diagram which shows embodiment. It is explanatory drawing of the extraction time of embodiment, a sampling period, and a sampling period (sampling period). 3A to 3C are graphs showing how the average rate of change for each of extraction time 1 minute, extraction time 7 minutes, and extraction time 30 minutes changes with time. It is a graph which shows how the value (for example, illumination intensity) of the output pattern in an embodiment changes with time. It is a graph which shows how a standard change rate and the tolerance | permissible_range with respect to this change with time in embodiment. 6A is a graph showing a time change of an ideal output pattern in the embodiment, FIG. 6B is a graph showing a time change of a change rate pattern obtained from the ideal output pattern in the embodiment, and FIG. 6C is an actually measured value in the embodiment. 6D is a graph showing the time change of the change rate pattern obtained from the output pattern of the actual measurement value in the embodiment, and FIG. 6E is the time of the reference value pattern obtained from the actual measurement value in the embodiment. It is a graph which shows a change. 7A to 7C are graphs showing temporal changes in reference value patterns generated from different daily power values, and FIG. 7D is a temporal change in reference value patterns generated by superimposing different multiple day power values. It is a graph which shows. FIG. 8A is a graph showing a power value and a change with time of an allowable range for extracting a reference value from the power value in the embodiment, and FIG. 8B is a graph showing a change with time of the allowable range in an iterative process with respect to the reference value in the embodiment. It is a graph which shows.
 以下に説明する異常監視システムは、中規模から大規模の太陽光発電設備を対象にして異常を監視するように構成されている。本開示の各実施形態の異常監視システムは、単一の装置でもよく、あるいは、それ自身の何れかの機能をそれぞれ複数の装置に分散するように構成されてもよい。以下、異常監視システムを「異常監視装置」という。太陽光発電設備の発電規模は、とくに制限はないが、以下に説明する異常監視装置を適用する太陽光発電設備は、数百枚以上の太陽電池パネルが並ぶ程度の発電規模を想定している。たとえば、発電規模が250kW程度であれば、1000枚以上の太陽電池パネルが並び、また、発電規模が1MW程度であれば太陽電池パネルの設置面積は1ha程度になる。ただし、以下に説明する技術は、家庭用などの数kW程度の小規模の太陽光発電設備に適用することも可能である。 The anomaly monitoring system described below is configured to monitor anomalies for medium to large-scale photovoltaic power generation facilities. The abnormality monitoring system according to each embodiment of the present disclosure may be a single device, or may be configured to distribute any of its own functions to a plurality of devices. Hereinafter, the abnormality monitoring system is referred to as an “abnormality monitoring apparatus”. The power generation scale of the solar power generation facility is not particularly limited, but the solar power generation facility to which the abnormality monitoring apparatus described below is applied assumes a power generation scale of several hundred or more solar panels. . For example, if the power generation scale is about 250 kW, 1000 or more solar cell panels are arranged, and if the power generation scale is about 1 MW, the installation area of the solar cell panel is about 1 ha. However, the technology described below can be applied to a small-scale photovoltaic power generation facility of about several kW for home use or the like.
 太陽光発電設備は、発電規模にかかわらず、太陽電池と、太陽電池が出力した直流電力を交流電力に変換するための電力変換装置とを備える。電力変換装置は、いわゆるパワーコンディショナである。また、以下に説明する太陽光発電設備は、日射計と、電力変換装置で生成された交流電力を電力系統に供給する機能を有した受変電設備とを備える。日射計は、太陽電池への日射強度を計測するように構成される。たとえば、日射計は、太陽電池に隣接して、太陽電池の傾斜角度と同じ角度で配置される。 The solar power generation facility includes a solar cell and a power conversion device for converting DC power output from the solar cell into AC power regardless of the power generation scale. The power converter is a so-called power conditioner. Moreover, the photovoltaic power generation facility described below includes a pyranometer and a power receiving / transforming facility having a function of supplying AC power generated by the power converter to the power system. The pyranometer is configured to measure the solar radiation intensity on the solar cell. For example, the pyranometer is arranged adjacent to the solar cell at the same angle as the inclination angle of the solar cell.
 異常監視装置は、太陽電池と日射計との少なくとも一方(以下「装置2」(図1参照)という)の電気出力に基づいて、装置2の劣化あるいは故障のような異常の有無を監視する。たとえば、主として太陽電池の異常の有無が監視されるが、日射計の異常の有無も監視することができる。異常監視装置は、装置2の電気出力に基づいて装置2が異常か否かを判断するために、晴天とみなせる環境での電気出力の値に相当する基準値を定めており、実測した電気出力の値と基準値との比較により、装置2の異常の有無を判断する。装置2からの電気出力の値は、日射強度によって変化し、また装置2に対する日射の入射角度によって変化する。したがって、天候、季節、1日の時刻などの条件で変化する。また、装置2の設置場所の周囲環境、すなわち周囲の地形、周囲の建物、周囲の樹木なども、装置2からの電気出力の値を変化させる要因になる。 The abnormality monitoring device monitors the presence or absence of abnormality such as deterioration or failure of the device 2 based on the electrical output of at least one of the solar cell and the pyranometer (hereinafter referred to as “device 2” (see FIG. 1)). For example, the presence / absence of abnormality of the solar cell is mainly monitored, but the presence / absence of abnormality of the pyranometer can also be monitored. In order to determine whether or not the device 2 is abnormal based on the electrical output of the device 2, the abnormality monitoring device determines a reference value corresponding to the value of the electrical output in an environment that can be regarded as a clear sky, and the measured electrical output The presence or absence of an abnormality in the device 2 is determined by comparing the value of the value and the reference value. The value of the electric output from the device 2 varies depending on the solar radiation intensity, and also varies depending on the incident angle of the solar radiation on the device 2. Therefore, it changes with conditions, such as a weather, a season, and the time of the day. Moreover, the surrounding environment of the installation place of the apparatus 2, that is, the surrounding terrain, the surrounding buildings, the surrounding trees, and the like also cause the value of the electric output from the apparatus 2 to change.
 太陽電池は、複数枚のモジュール(太陽光発電パネル)が直列に接続されてストリングを構成している。ストリングは、複数個ずつ接続箱に接続され、その複数のストリングが太陽電池アレイを構成する。接続箱はストリングモニタを備え、ストリングそれぞれが出力する電流を監視する。太陽電池(太陽電池アレイ)が出力する直流電力は、接続箱を通して電力変換装置に供給される。太陽光発電設備は、電力変換装置の入力電圧を監視する計測装置を備える。計測装置は、ストリングモニタが監視したストリングごとの電流値を取得する機能も有する。太陽電池が発電した電力は、ストリングモニタが監視した電流値と、計測装置が監視した電圧値とにより求めることが可能である。ストリングモニタは、ストリングそれぞれが出力する電流を監視するだけではなく、ストリングの出力電圧も併せて監視するように構成されていてもよい。 A solar cell is composed of a plurality of modules (solar power generation panels) connected in series to form a string. A plurality of strings are connected to the junction box, and the plurality of strings constitute a solar cell array. The junction box has a string monitor and monitors the current output by each string. The DC power output from the solar cell (solar cell array) is supplied to the power converter through the connection box. The photovoltaic power generation facility includes a measurement device that monitors the input voltage of the power conversion device. The measuring device also has a function of acquiring a current value for each string monitored by the string monitor. The electric power generated by the solar cell can be obtained from the current value monitored by the string monitor and the voltage value monitored by the measuring device. The string monitor may be configured not only to monitor the current output from each string but also to monitor the output voltage of the string.
 異常監視装置は、太陽電池の劣化あるいは故障のような異常を監視する場合、太陽電池に照射される日射強度を反映する電気出力として、太陽電池が出力する電流値または電力値を監視する。また、異常監視装置は、日射計の劣化あるいは故障のような異常を監視する場合、太陽電池に隣接して配置された日射計の電気出力に基づいて監視をする。 The abnormality monitoring device monitors the current value or power value output from the solar cell as an electrical output reflecting the solar radiation intensity irradiated to the solar cell when monitoring an abnormality such as deterioration or failure of the solar cell. Moreover, when monitoring an abnormality such as deterioration or failure of the pyranometer, the abnormality monitoring device performs monitoring based on the electric output of the pyranometer disposed adjacent to the solar cell.
 異常監視装置は、太陽電池の異常を監視する場合、太陽電池の全体を一括して監視することが可能であるが、ストリング単位で監視すれば、太陽光発電設備を構成する複数枚のモジュールを複数に区分して管理することが可能になる。たとえば、いずれかのストリングにおいて異常が検出された場合に、異常の発生箇所を見つけ出す作業は、該当するストリングを構成しているモジュールの範囲に絞り込んで行えばよく、異常への対応をすばやく行うことが可能になる。 The abnormality monitoring device can monitor the entire solar cell collectively when monitoring the abnormality of the solar cell. However, if monitoring is performed in units of strings, a plurality of modules constituting the photovoltaic power generation facility can be monitored. It becomes possible to manage by dividing into multiple. For example, when an abnormality is detected in one of the strings, the work to find out the location where the abnormality occurred can be narrowed down to the range of modules that make up the corresponding string, and the response to the abnormality can be made quickly. Is possible.
 ここに、異常監視装置は、装置2の劣化あるいは故障のような異常を判断するために必要なデータを蓄積するように構成されていればよく、装置2に異常があるか否かの判断は異常監視装置とは別の判断装置で行うようにしてもよい。たとえば、装置2に異常があるか否かの判断を、インターネットのような通信回線を通して異常監視装置と通信する遠隔診断用のサーバが判断装置として自動的に行うように構成すればよい。また、クラウドコンピューティングシステムにより収集した異常監視装置からのデータに基づいて、太陽光発電設備の管理者が判断装置としての端末装置で太陽電池の異常の判断を行ってもよい。もちろん、異常監視装置が、装置2に異常があるか否かの判断を行う判断装置を兼ねるように構成されてもよい。 Here, the abnormality monitoring device only needs to be configured to store data necessary for determining an abnormality such as a deterioration or failure of the device 2, and whether or not the device 2 has an abnormality can be determined. You may make it perform by the judgment apparatus different from an abnormality monitoring apparatus. For example, it may be configured such that the determination as to whether or not there is an abnormality in the apparatus 2 is automatically performed as a determination apparatus by a remote diagnosis server that communicates with the abnormality monitoring apparatus through a communication line such as the Internet. Moreover, based on the data from the abnormality monitoring device collected by the cloud computing system, the administrator of the photovoltaic power generation facility may determine the abnormality of the solar cell with a terminal device as a determination device. Of course, the abnormality monitoring apparatus may be configured to also serve as a determination apparatus that determines whether or not the apparatus 2 has an abnormality.
 また、以下では、複数の太陽光発電設備の動作状態を異常監視装置に集約して監視する構成を例として説明するが、複数の太陽光発電設備の動作状態を、太陽光発電設備それぞれに関連付けた端末装置に異常監視装置から送信する構成を採用してもよい。すなわち、複数の太陽光発電設備について動作状態の監視を、1箇所で集中的に行う構成と、複数箇所で分散して行う構成とのどちらでも採用することが可能である。要するに、太陽光発電設備で発生する電気出力のデータが電気通信回線を通して異常監視装置で取得可能な環境であれば、異常監視装置の場所によらずに、太陽光発電設備における異常の有無を監視することが可能である。 In addition, in the following, a configuration in which operation states of a plurality of photovoltaic power generation facilities are aggregated and monitored in an abnormality monitoring apparatus will be described as an example. However, operation states of a plurality of photovoltaic power generation facilities are associated with each of the photovoltaic power generation facilities. A configuration may be adopted in which the terminal device transmits data from the abnormality monitoring device. That is, it is possible to employ either a configuration in which operation status monitoring is performed on a plurality of photovoltaic power generation facilities in a centralized manner or a configuration that is performed in a distributed manner at a plurality of locations. In short, if there is an environment in which the data of electrical output generated by the photovoltaic power generation facility can be acquired by the abnormality monitoring device through the telecommunication line, the presence or absence of abnormality in the photovoltaic power generation facility is monitored regardless of the location of the abnormality monitoring device. Is possible.
 異常監視装置は、太陽光発電設備を用いて発電事業を行う事業者、発電事業者から委託を受けたEPC(Engineering, Procurement and Construction)業者、あるいは太陽光発電設備のメンテナンス事業者などが用いる。1台の異常監視装置が監視する太陽光発電設備のサイト数は、たとえば100~500サイトを想定している。ただし、異常監視装置の台数を増加させるか、異常監視装置の処理能力を高めることにより、監視可能な太陽光発電設備のサイト数は、必要に応じて増加させることが可能である。 The anomaly monitoring device is used by a business operator that uses a solar power generation facility, an EPC (Engineering, Procurement and Construction) contractor commissioned by a power generation business operator, or a maintenance business operator of a solar power generation facility. For example, the number of sites of the photovoltaic power generation facility monitored by one abnormality monitoring device is assumed to be 100 to 500 sites. However, the number of sites of solar power generation facilities that can be monitored can be increased as necessary by increasing the number of abnormality monitoring devices or increasing the processing capacity of the abnormality monitoring devices.
 ところで、晴天日における装置2からの電気出力の値を時間軸に沿って並べた図形は、細部の変化を無視して大局的に見れば、年間を通してほぼ相似形であるという知見が得られている。以下では、装置2からの電気出力の値を時間軸に沿って並べた図形を「出力パターン」という。さらに、太陽光発電設備の設置場所、設置条件を前提とし、異なる日の出力パターンであっても、晴天日であれば朝方と夕方との時間帯を除くと、ほぼ重なり合うという知見が得られている。たとえば、太陽光発電設備の設置場所が決まり、太陽電池モジュールが真南向き、傾斜角度30度という設置条件を前提とすれば、晴天日の出力パターンはほぼ重なり合う。 By the way, the figure which arranged the value of the electric output from the device 2 on a clear day along the time axis is almost similar throughout the year if we look at the global view ignoring the change in details. Yes. Hereinafter, a figure in which the values of the electrical output from the device 2 are arranged along the time axis is referred to as an “output pattern”. Furthermore, based on the premise of the installation location and installation conditions of the photovoltaic power generation facilities, even if the output pattern is on a different day, the knowledge that it overlaps almost on a clear day except for the morning and evening time zones is obtained. Yes. For example, if the installation location of the photovoltaic power generation facility is determined, and the installation conditions are such that the solar cell module faces southward and the inclination angle is 30 degrees, the output patterns on a sunny day almost overlap.
 これらの知見によれば、装置2の異常の有無を判断するための基準値は、晴天日に相当する1日のうちの所定の時間帯について定めるだけで、年間を通して用いることができることになる。もちろん、季節に応じた太陽高度の違いによって装置2からの電気出力の値は変化する。しかしながら、晴天日の出力パターンの形状については季節による変化が比較的小さいから、季節に応じた補正値を基準値に加算あるいは減算すれば、年間を通して同じ基準値を用いることが可能である。 According to these findings, the reference value for determining the presence or absence of an abnormality in the device 2 can be used throughout the year only by determining a predetermined time zone in one day corresponding to a sunny day. Of course, the value of the electric output from the device 2 varies depending on the difference in solar altitude according to the season. However, since the change of the output pattern on a sunny day is relatively small depending on the season, the same reference value can be used throughout the year if a correction value corresponding to the season is added to or subtracted from the reference value.
 基準値は、装置2の種類ごとに定められ、ここでは装置2として太陽電池と日射計とを想定しているから、太陽電池に対する基準値と日射計に対する基準値とを設定することが必要である。太陽電池は、最小単位ではストリング(ソーラパネル)を単位として異常の有無を監視しているから、ストリングを単位とした電気出力の値と比較するように基準値が定められる。また、太陽電池アレイに関する電気出力の値と比較する基準値、パワーコンディショナに関する電気出力の値と比較する基準値、太陽光発電設備に関する電気出力の値と比較する基準値などが、必要に応じて定められる。基準値は、上述した例に限らず、太陽光発電設備の適宜の箇所に対して定めることが可能である。 The reference value is determined for each type of device 2, and since a solar cell and a pyranometer are assumed as the device 2 here, it is necessary to set a reference value for the solar cell and a reference value for the pyranometer. is there. Since the solar cell monitors the presence or absence of abnormality with the string (solar panel) as the minimum unit, the reference value is determined so as to be compared with the value of the electric output with the string as the unit. In addition, the reference value to be compared with the electric output value for the solar cell array, the reference value to be compared with the electric output value for the power conditioner, the reference value to be compared with the electric output value for the photovoltaic power generation facility, etc. Determined. The reference value is not limited to the example described above, and can be determined for an appropriate location of the photovoltaic power generation facility.
 以下では、装置2が太陽電池であって、ストリングからの電気出力の値と比較する基準値が定められる場合を例にして説明する。つまり、装置2が太陽電池であって、ストリングからの電気出力の値に対する基準値が設定される場合を例にして説明する。ストリングからの電気出力は所定のサンプリング周期でサンプリングされる。サンプリングされた電気出力の値は時間経過に伴って変化する。そのため、基準値は電気出力がサンプリングされた時刻ごとに設定される。以下では、基準値を時間軸に沿って並べた図形を「基準値パターン」という。 Hereinafter, a case where the device 2 is a solar cell and a reference value to be compared with the value of the electric output from the string will be described as an example. That is, the case where the device 2 is a solar cell and the reference value for the value of the electric output from the string is set will be described as an example. The electrical output from the string is sampled at a predetermined sampling period. The value of the sampled electrical output changes with time. Therefore, the reference value is set for each time when the electrical output is sampled. Hereinafter, a figure in which the reference values are arranged along the time axis is referred to as a “reference value pattern”.
 たとえば、以下に説明する構成例ではサンプリング周期は1分間であり、基準値を定める時間帯は10時から13時である。この例では、基準値は、10時、10時1分、…、13時というように1分ごとに定められ、合計181個の基準値が定められる。また、電気出力の値は、サンプリング周期ごとに、各サンプリング周期内のサンプリング期間(サンプリング用期間)における複数の電気出力の積算値または平均値として得られる。基準値も、同様に、サンプリング期間における複数の電気出力の積算値または平均値として得られる。 For example, in the configuration example described below, the sampling period is 1 minute, and the time zone for determining the reference value is from 10:00 to 13:00. In this example, the reference values are determined every minute such as 10:00, 10:00,..., 13:00, and a total of 181 reference values are determined. In addition, the value of the electrical output is obtained as an integrated value or an average value of a plurality of electrical outputs in a sampling period (sampling period) within each sampling period for each sampling period. Similarly, the reference value is obtained as an integrated value or an average value of a plurality of electrical outputs in the sampling period.
 ところで、太陽電池からの電気出力の値は、理想的には晴天日であれば滑らかに変化すると考えられるが、実際には晴天日であっても、雲の状態あるいは太陽電池の周囲環境などによって大きく変動する。すなわち、晴天日の出力パターンは理想的にはベル型であるが、太陽電池からの電気出力の実測値は、ベル型の出力パターンの上に短時間で変化する成分が重なっているかのような複雑な出力パターンになることが多い。言い換えると、実測値から得られる出力パターンは、単峰型の基本波に、高周波成分が重畳したような形状になることが多い。以下では、出力パターンのうち基本波に相当する成分を「基本パターン」、高周波成分に相当する成分を「重畳パターン」と呼ぶ。晴天日であれば、太陽電池からの電気出力の実測値による出力パターンは、通常は基本パターンと重畳パターンとを足し合わせた形になる。 By the way, the value of the electric output from the solar cell is ideally changed smoothly on a sunny day, but in reality, even on a sunny day, it depends on the cloud condition or the surrounding environment of the solar cell. It fluctuates greatly. That is, the output pattern on a sunny day is ideally a bell shape, but the measured value of the electrical output from the solar cell is as if the component that changes in a short time overlaps the bell type output pattern. Often complex output patterns. In other words, the output pattern obtained from the actual measurement value often has a shape in which a high-frequency component is superimposed on a unimodal fundamental wave. Hereinafter, the component corresponding to the fundamental wave in the output pattern is referred to as “basic pattern”, and the component corresponding to the high frequency component is referred to as “superimposition pattern”. On a sunny day, the output pattern based on the actual measurement value of the electrical output from the solar cell is usually a combination of the basic pattern and the superimposed pattern.
 以下に説明する実施形態では、主に、太陽電池からの電気出力の実測値に基づきながらも、雲の状態あるいは太陽電池の周囲環境などの影響を除去した基準値パターンを生成する技術について説明する。なお、以下では電気出力が電流である場合について説明する。ただし、電気出力は電力であってもよい。 In the embodiment described below, a technique for generating a reference value pattern in which the influence of the state of the cloud or the surrounding environment of the solar cell is removed while being mainly based on the actual measurement value of the electric output from the solar cell will be described. . Hereinafter, a case where the electrical output is a current will be described. However, the electrical output may be electric power.
 (実施形態)
 異常監視装置10は、図1に示すように、太陽光発電設備20から電気通信回線31を通してデータを受け取るように構成されている。電気通信回線31は、インターネットを用いたVPN(Virtual Private Network)、移動体通信網、または専用回線などから選択される。また、異常監視装置10は、太陽光発電設備20の運転管理あるいは保守点検管理を行う事業者が管理する端末装置32と通信するコンピュータサーバとして機能する。すなわち、異常監視装置10は、端末装置32と併せて異常監視システムを構築する。図1において、実線は電力の経路を表し、破線は信号の経路を表す。
(Embodiment)
As shown in FIG. 1, the abnormality monitoring device 10 is configured to receive data from the photovoltaic power generation facility 20 through the electric communication line 31. The telecommunication line 31 is selected from a VPN (Virtual Private Network) using the Internet, a mobile communication network, a dedicated line, or the like. Further, the abnormality monitoring device 10 functions as a computer server that communicates with a terminal device 32 managed by a business operator that performs operation management or maintenance inspection management of the photovoltaic power generation facility 20. That is, the abnormality monitoring device 10 constructs an abnormality monitoring system together with the terminal device 32. In FIG. 1, a solid line represents a power path, and a broken line represents a signal path.
 図1に示す太陽光発電設備20は、太陽電池21のほかに、太陽電池21が出力した直流電力を交流電力に変換するように構成される電力変換装置24と、日射計25とを備える。 A solar power generation facility 20 shown in FIG. 1 includes, in addition to the solar cell 21, a power conversion device 24 configured to convert DC power output from the solar cell 21 into AC power, and a solar radiation meter 25.
 日射計25は、太陽電池21への日射強度(厳密には太陽電池21への日射強度に相当する日射強度)を計測するように構成される。たとえば、日射計25は、太陽電池21に隣接して配置される。一具体例として、日射計25は、太陽電池21への日射強度を計測して全天日射量を得るように構成される全天日射計でもよい。 The solar radiation meter 25 is configured to measure the solar radiation intensity to the solar cell 21 (strictly, the solar radiation intensity corresponding to the solar radiation intensity to the solar cell 21). For example, the pyranometer 25 is disposed adjacent to the solar cell 21. As a specific example, the solar radiation meter 25 may be an all solar radiation meter configured to measure the solar radiation intensity to the solar cell 21 to obtain the total solar radiation amount.
 本実施形態には具備されないが、太陽光発電設備20では、日射計25に加えて温度計が配置されていてもよい。また、太陽光発電設備20は、電力変換装置24で生成された交流電力を電力系統27に供給する受変電設備26を備える。太陽電池21は、1又は複数のソーラパネル(又はストリング)から構成される。図1の例では、太陽電池21は、複数のストリング211で構成されており、ストリング211それぞれの電気出力がストリングモニタ221で監視される。 Although not provided in the present embodiment, in the solar power generation facility 20, a thermometer may be arranged in addition to the pyranometer 25. Further, the photovoltaic power generation facility 20 includes a power receiving / transforming facility 26 that supplies AC power generated by the power converter 24 to the power system 27. The solar cell 21 is composed of one or a plurality of solar panels (or strings). In the example of FIG. 1, the solar cell 21 is composed of a plurality of strings 211, and the electric output of each of the strings 211 is monitored by a string monitor 221.
 接続箱22には、たとえば、一つの太陽電池アレイを構成する複数個のストリング211それぞれと電気的に接続される複数個のストリングモニタ221が収納されている。本実施形態では、太陽光発電設備20は、複数個の接続箱22を備え、接続箱22それぞれに複数個ずつのストリング211が接続される。したがって、1個の接続箱22には、接続される複数個のストリング211の個数に応じた個数のストリングモニタ221が収納される。なお、ストリングモニタ221は、接続箱22とは別に設けられていてもよい。接続箱22は、ストリング211から出力された直流電力を集約して電力変換装置24に供給するように構成される。ストリングモニタ221は、電流センサを通じて、対応するストリング211からの電流を計測するように構成される。電流センサは、ホール素子あるいは磁気抵抗素子を磁気コアに取り付けた構成などが用いられる。電流の計測は、シャント抵抗を通じて行われてもよい。 The connection box 22 stores, for example, a plurality of string monitors 221 that are electrically connected to each of the plurality of strings 211 constituting one solar cell array. In the present embodiment, the photovoltaic power generation facility 20 includes a plurality of connection boxes 22, and a plurality of strings 211 are connected to each connection box 22. Therefore, the number of string monitors 221 corresponding to the number of the plurality of strings 211 to be connected is accommodated in one connection box 22. The string monitor 221 may be provided separately from the connection box 22. The connection box 22 is configured to collect the DC power output from the string 211 and supply it to the power converter 24. The string monitor 221 is configured to measure the current from the corresponding string 211 through a current sensor. As the current sensor, a configuration in which a Hall element or a magnetoresistive element is attached to a magnetic core is used. The current measurement may be performed through a shunt resistor.
 太陽光発電設備20は、電力変換装置24への入力電圧を監視(計測)するように構成される計測装置23を備えている。計測装置23は、ストリング211それぞれが出力する電流値をストリングモニタ221から取得する機能と、日射計25の電気出力の値を取得する機能とを有している。なお、日射計25が電力変換装置24に接続され、計測装置23が電力変換装置24を経由して日射計25の電気出力の値を取得してもよい。ストリング211が出力した電圧を電流と併せてストリングモニタ221が計測できる場合には、電流値と電圧値とに基づいて計測装置23が電力値を求めてもよい。 The photovoltaic power generation facility 20 includes a measuring device 23 configured to monitor (measure) an input voltage to the power conversion device 24. The measuring device 23 has a function of acquiring a current value output from each of the strings 211 from the string monitor 221 and a function of acquiring an electric output value of the pyranometer 25. The pyranometer 25 may be connected to the power conversion device 24, and the measurement device 23 may acquire the value of the electric output of the pyranometer 25 via the power conversion device 24. When the string monitor 221 can measure the voltage output from the string 211 together with the current, the measuring device 23 may obtain the power value based on the current value and the voltage value.
 計測装置23は、さらに、上述した電気通信回線31を通して異常監視装置10と通信するための通信部231を備える。異常監視装置10は、太陽電池21の電気出力と日射計25の電気出力との少なくとも一方を監視することが可能であるが、以下では、太陽電池21の電気出力に基づいて太陽電池21の異常の有無を監視する場合について説明する。日射計25の電気出力に基づいて日射計25の異常の有無を監視するための技術は、以下の説明において、太陽電池21の電気出力を日射計25の電気出力に読み替えることにより実現可能である。 The measuring device 23 further includes a communication unit 231 for communicating with the abnormality monitoring device 10 through the electric communication line 31 described above. Although the abnormality monitoring device 10 can monitor at least one of the electric output of the solar cell 21 and the electric output of the pyranometer 25, below, the abnormality of the solar cell 21 is based on the electric output of the solar cell 21. A case where the presence / absence of monitoring is monitored will be described. The technique for monitoring the presence or absence of abnormality of the pyranometer 25 based on the electric output of the pyranometer 25 can be realized by replacing the electric output of the solar cell 21 with the electric output of the pyranometer 25 in the following description. .
 図1に示す異常監視装置10は、太陽電池21を構成するストリング211ごとの電気出力を取得するように構成されるデータ取得インタフェース11と、データ取得インタフェース11が取得した電気出力(本実施形態では電流値および電圧値から得られる電力値)を基準値と比較することにより太陽電池21の異常の有無を監視するように構成される監視部12とを備える。つまり、異常監視装置10は、上述した計測装置23から、電気通信回線31を通してストリング211ごとの電流値および電力変換装置24に入力される電圧値のデータを、太陽電池21の電気出力として取得し、ストリング211ごとに発電した電力値を求める。この電力値は、ストリング211に異常がなければ、ストリング211が受けた日射強度の値と所定の関係を持つ。なお、異常監視装置10が計測装置23から電流値および電圧値のデータを受け取るのではなく、異常監視装置10が計測装置23から電力値のデータを受け取るように構成されていてもよい。つまり、計測装置23が電流値と電力値とから電力値を計算する構成であってもよい。 The abnormality monitoring apparatus 10 illustrated in FIG. 1 includes a data acquisition interface 11 configured to acquire an electrical output for each string 211 constituting the solar cell 21, and an electrical output acquired by the data acquisition interface 11 (in the present embodiment). A monitoring unit 12 configured to monitor whether or not the solar cell 21 is abnormal by comparing a power value obtained from a current value and a voltage value) with a reference value. That is, the abnormality monitoring device 10 acquires, as the electrical output of the solar cell 21, the current value for each string 211 and the voltage value input to the power conversion device 24 through the electrical communication line 31 from the measurement device 23 described above. The power value generated for each string 211 is obtained. If there is no abnormality in the string 211, this power value has a predetermined relationship with the value of the solar radiation intensity received by the string 211. The abnormality monitoring device 10 may be configured to receive power value data from the measuring device 23 instead of receiving the current value and voltage value data from the measuring device 23. That is, the measurement device 23 may be configured to calculate the power value from the current value and the power value.
 要するに、本実施形態では、計測装置23は、太陽電池21の電気出力のデータ(第1のデータ)を取得し、通信部231を通じて、そのデータを異常監視装置10(データ取得インタフェース11)に供給するように構成される。ここで、第1のデータは、たとえば、電力値、または電力値を得るための電流値および電圧値を含む。 In short, in the present embodiment, the measuring device 23 acquires electrical output data (first data) of the solar cell 21 and supplies the data to the abnormality monitoring device 10 (data acquisition interface 11) through the communication unit 231. Configured to do. Here, the first data includes, for example, a power value or a current value and a voltage value for obtaining the power value.
 同様に、装置2が日射計25である場合、計測装置23は、日射計25の電気出力のデータ(第2のデータ)を取得し、通信部231を通じて、そのデータを異常監視装置10(データ取得インタフェース11)に供給するように構成される。ここで、第2のデータは、日射計25が日射強度から得られる日射強度値を出力するように構成される場合は日射強度値を含み、日射計25が日射強度を計測して日射量(たとえば全天日射量)を得るように構成される場合は日射強度から得られる日射量を含む。要するに、第2のデータは、日射強度に関する値を含む。 Similarly, when the device 2 is a pyranometer 25, the measuring device 23 acquires electrical output data (second data) of the pyranometer 25, and transmits the data to the abnormality monitoring device 10 (data) via the communication unit 231. Configured to be supplied to an acquisition interface 11). Here, the second data includes the solar radiation intensity value when the solar radiation meter 25 is configured to output the solar radiation intensity value obtained from the solar radiation intensity, and the solar radiation meter 25 measures the solar radiation intensity to measure the solar radiation amount ( For example, when it is configured to obtain the total solar radiation amount), the solar radiation amount obtained from the solar radiation intensity is included. In short, the second data includes a value related to solar radiation intensity.
 異常監視装置10において太陽電池21の異常の有無を監視するには、異なる日の同じ時刻において太陽電池21の電気出力(本実施形態では電力値)と基準値とを比較し、基準値に対して電力値が所定の正常範囲内か否かを判断するように構成される。監視部12は、電力値が基準値に対して所定の正常範囲を逸脱している場合でも、ただちに異常と判断するのではなく、たとえば1日分の基準値に対して、電力値が正常範囲を逸脱している割合が80%以上である場合に、異常と判断することが望ましい。なお、異常と判断する割合の数値は、一例であって適宜に定めることが可能である。 In order to monitor the presence or absence of abnormality of the solar cell 21 in the abnormality monitoring device 10, the electrical output (power value in the present embodiment) of the solar cell 21 is compared with the reference value at the same time on different days, and the reference value is compared. The power value is determined to be within a predetermined normal range. Even if the power value deviates from a predetermined normal range with respect to the reference value, the monitoring unit 12 does not immediately determine that the power value is abnormal, but the power value is within the normal range with respect to the reference value for one day, for example. It is desirable to determine that an abnormality occurs when the percentage of deviation from 80 is 80% or more. In addition, the numerical value of the ratio determined to be abnormal is an example and can be determined as appropriate.
 図2に示すように、データ取得インタフェース11は、太陽電池21を構成する複数のストリング211それぞれの電気出力を、一定のサンプリング周期101ごとに取得するように構成される。サンプリング周期は、30秒から10分程度の範囲から選択することが可能であるが、たとえば1分に定めることが望ましい。データ取得インタフェース11は、サンプリング周期101ごとのサンプリング期間(サンプリング用期間)102における電気出力の積算値(または平均値)を監視部12に出力するように構成される。異常監視装置10は、日時を計時し、またサンプリング周期を定めるために、リアルタイムクロックのような内蔵時計13を備える。 As shown in FIG. 2, the data acquisition interface 11 is configured to acquire the electrical output of each of the plurality of strings 211 constituting the solar cell 21 for each constant sampling period 101. The sampling period can be selected from the range of about 30 seconds to 10 minutes, but is preferably set to 1 minute, for example. The data acquisition interface 11 is configured to output the integrated value (or average value) of the electrical output in the sampling period (sampling period) 102 for each sampling period 101 to the monitoring unit 12. The abnormality monitoring device 10 includes a built-in clock 13 such as a real time clock in order to measure the date and time and to determine the sampling period.
 要するに、図2の例に示すように、サンプリング周期101ごとに太陽電池21の複数の電気出力の値を取得するためのサンプリング期間(サンプリング用期間)102が、各サンプリング周期101内に設けられている。この場合、各サンプリング周期101の両端のそれぞれがサンプリング時点であるので、サンプリング時点ごとに、そのサンプリング時点直前のサンプリング期間102内の値が取得されることになる。以下、この構成を「構成A」という。なお、本実施形態は、この構成Aに限らない。たとえば、本実施形態は、各サンプリング周期101内にサンプリング期間102が設けられない構成(以下「構成B」という)でもよい。 In short, as shown in the example of FIG. 2, a sampling period (sampling period) 102 for obtaining the values of a plurality of electrical outputs of the solar cell 21 for each sampling period 101 is provided in each sampling period 101. Yes. In this case, since both ends of each sampling period 101 are sampling points, values in the sampling period 102 immediately before the sampling point are acquired for each sampling point. Hereinafter, this configuration is referred to as “configuration A”. Note that the present embodiment is not limited to this configuration A. For example, the present embodiment may have a configuration in which the sampling period 102 is not provided in each sampling period 101 (hereinafter referred to as “configuration B”).
 したがって、本実施形態では、データ取得インタフェース11は、サンプリング周期101ごとに、第1のデータを取得して、第1のデータを監視部12に供給するように構成される。構成Aでは、監視部12へのサンプリング周期101ごとの第1のデータは、複数の電力値の積算値または平均値であり、これは、対応するサンプリング期間102に得られた複数の電力値、または複数の電力値を得るための複数の電流値および複数の電圧値から得られる。構成Bでは、監視部12へのサンプリング周期101ごとの第1のデータは、サンプリング時点で得られる電力値を含む。 Therefore, in the present embodiment, the data acquisition interface 11 is configured to acquire the first data and supply the first data to the monitoring unit 12 for each sampling period 101. In the configuration A, the first data for each sampling period 101 to the monitoring unit 12 is an integrated value or an average value of a plurality of power values, which are a plurality of power values obtained in the corresponding sampling period 102, Alternatively, it is obtained from a plurality of current values and a plurality of voltage values for obtaining a plurality of power values. In the configuration B, the first data for each sampling period 101 to the monitoring unit 12 includes a power value obtained at the time of sampling.
 同様に、装置2が日射計25である場合、データ取得インタフェース11は、サンプリング周期101ごとに、第2のデータを取得して、第2のデータを監視部12に供給するように構成される。構成Aでは、監視部12へのサンプリング周期101ごとの第2のデータは、複数の日射強度に関する値の積算値または平均値であり、これは、対応するサンプリング期間102に得られた複数の日射強度に関する値から得られる。構成Bでは、監視部12へのサンプリング周期101ごとの第2のデータは、サンプリング時点で得られる日射強度に関する値を含む。なお、日射強度に関する値は、上述の如く、日射強度値または日射強度値から得られる日射量であり、上記積算値は、複数の日射強度値から得られ、上記平均値は、複数の日射強度値または複数の日射量から得られる。また、サンプリング期間102におけるサンプリング間隔は、たとえばタイマ(内蔵時計13)によって制御される。 Similarly, when the device 2 is the pyranometer 25, the data acquisition interface 11 is configured to acquire the second data and supply the second data to the monitoring unit 12 for each sampling period 101. . In the configuration A, the second data for each sampling period 101 to the monitoring unit 12 is an integrated value or an average value of values related to a plurality of solar radiation intensities, and this is a plurality of solar radiations obtained in the corresponding sampling period 102. Obtained from values related to strength. In the configuration B, the second data for each sampling period 101 to the monitoring unit 12 includes a value related to the solar radiation intensity obtained at the time of sampling. As described above, the value relating to the solar radiation intensity is the solar radiation intensity value or the solar radiation amount obtained from the solar radiation intensity value, the integrated value is obtained from a plurality of solar radiation intensity values, and the average value is a plurality of solar radiation intensity values. Obtained from value or multiple solar radiation. The sampling interval in the sampling period 102 is controlled by, for example, a timer (built-in clock 13).
 監視部12では、太陽光発電設備20に異常があるか否かを監視し、異常を検出した場合には、通信インタフェース14を通して端末装置32にプッシュ方式で通知をする。たとえば、アラームのための信号が通信インタフェース14を通して端末装置32に伝送される。端末装置32は、サーバである異常監視装置10に対してクライアントであって、一般的には、異常監視装置10と通信するパーソナルコンピュータが用いられる。異常監視装置10と端末装置32との通信には、インターネットを用いたVPN(Virtual Private Network)、移動体通信網、専用回線などから選択される通信路を用いる。端末装置32は、パーソナルコンピュータのほか、タブレット端末、スマートフォンなどから選択することが可能であり、また、シンクライアント(thin client)であってもよい。 The monitoring unit 12 monitors whether or not the photovoltaic power generation facility 20 has an abnormality, and when an abnormality is detected, notifies the terminal device 32 through the communication interface 14 by a push method. For example, an alarm signal is transmitted to the terminal device 32 through the communication interface 14. The terminal device 32 is a client for the abnormality monitoring device 10 that is a server, and a personal computer that communicates with the abnormality monitoring device 10 is generally used. For communication between the abnormality monitoring device 10 and the terminal device 32, a communication path selected from a VPN (Virtual Private Network) using the Internet, a mobile communication network, a dedicated line, or the like is used. The terminal device 32 can be selected from a tablet terminal, a smartphone, and the like in addition to a personal computer, and may be a thin client.
 なお、異常監視装置10は、異常監視装置10が把握している太陽光発電設備20の動作状態を、太陽光発電設備20で発電した電力を受電する需要者が使用する端末装置32に転送することが可能である。この場合、端末装置32は、需要者への情報提供のツールとして用いることも可能である。 In addition, the abnormality monitoring device 10 transfers the operation state of the photovoltaic power generation facility 20 grasped by the abnormality monitoring device 10 to the terminal device 32 used by the consumer who receives the power generated by the photovoltaic power generation facility 20. It is possible. In this case, the terminal device 32 can also be used as a tool for providing information to consumers.
 サンプリング周期101およびサンプリング期間102は、データ取得インタフェース11が定める代わりに計測装置23が定めてもよい。つまり、データ取得インタフェース11は、サンプリング周期101ごとに、サンプリング期間102における複数の電気出力の積算値を計測装置23から受け取る構成であってもよい。データ取得インタフェース11は、サンプリング期間102における複数の電気出力の積算値に代えて、サンプリング期間102における複数の電気出力の平均値を監視部12に出力してもよい。 The sampling device 101 may determine the sampling period 101 and the sampling period 102 instead of the data acquisition interface 11. That is, the data acquisition interface 11 may be configured to receive an integrated value of a plurality of electrical outputs in the sampling period 102 from the measurement device 23 every sampling period 101. The data acquisition interface 11 may output the average value of the plurality of electrical outputs in the sampling period 102 to the monitoring unit 12 instead of the integrated value of the plurality of electrical outputs in the sampling period 102.
 図1の例では、異常監視装置10が内蔵時計(タイマ)13を備えるが、本実施形態は、これに限らない。たとえば、計測装置23が、タイマを備え、サンプリング周期101ごとに、太陽電池21の電気出力のデータ(第1のデータ)を取得し、通信部231を通じて、そのデータを異常監視装置10(データ取得インタフェース11)に供給するように構成されてもよい。同様に、装置2が日射計25である場合、計測装置23が、タイマを備え、サンプリング周期101ごとに、日射計25の電気出力のデータ(第2のデータ)を取得し、通信部231を通じて、そのデータを異常監視装置10(データ取得インタフェース11)に供給するように構成されてもよい。タイマが異常監視装置10および太陽光発電設備20の何れに具備される構成においても、データ取得インタフェース11が、データ(第1のデータまたは第2のデータ)を、対応する時刻情報とともに取得し、そのデータに、対応する時刻情報が割り当てられることが望ましい。上記時刻情報は、対応するデータが取得される時刻の情報であり、本実施形態では、日時の情報である。 In the example of FIG. 1, the abnormality monitoring device 10 includes a built-in clock (timer) 13, but the present embodiment is not limited to this. For example, the measuring device 23 includes a timer, acquires the electrical output data (first data) of the solar cell 21 for each sampling period 101, and transmits the data to the abnormality monitoring device 10 (data acquisition) through the communication unit 231. It may be configured to supply to the interface 11). Similarly, when the device 2 is the pyranometer 25, the measuring device 23 includes a timer, acquires the electric output data (second data) of the pyranometer 25 for each sampling period 101, and passes through the communication unit 231. The data may be supplied to the abnormality monitoring apparatus 10 (data acquisition interface 11). In the configuration in which the timer is provided in either the abnormality monitoring device 10 or the photovoltaic power generation facility 20, the data acquisition interface 11 acquires data (first data or second data) together with corresponding time information, It is desirable that corresponding time information is assigned to the data. The time information is information on the time at which the corresponding data is acquired, and is date information in this embodiment.
 監視部12は、データ取得インタフェース11から引き渡された電気出力、たとえば複数の電力値の出力パターンから基本パターンに相当する電力値を抽出し、抽出した電力値を基準値と比較するように構成されている。なお、基準値については後述する。たとえば、監視部12は、一または複数のプロセッサと記憶部123により構成される。データ取得インタフェース11が取得した電力値から基本パターンに相当する電力値を抽出するために、本実施形態では、図2に示すように、サンプリング周期101より長い抽出時間110を定め、抽出時間110における電力値の平均変化率を求める。抽出時間110は、出力パターンにおける短時間の変動成分が抑圧され、かつ電力値の変化傾向の抽出が可能になるように定められる。具体的には、抽出時間110は、サンプリング周期の20倍から40倍程度の範囲であり、より望ましくはサンプリング周期の30倍前後である。 The monitoring unit 12 is configured to extract an electrical output delivered from the data acquisition interface 11, for example, a power value corresponding to a basic pattern from an output pattern of a plurality of power values, and compare the extracted power value with a reference value. ing. The reference value will be described later. For example, the monitoring unit 12 includes one or more processors and a storage unit 123. In order to extract the power value corresponding to the basic pattern from the power value acquired by the data acquisition interface 11, in this embodiment, an extraction time 110 longer than the sampling period 101 is defined as shown in FIG. Obtain the average rate of change of the power value. The extraction time 110 is determined such that a short-time fluctuation component in the output pattern is suppressed and the change tendency of the power value can be extracted. Specifically, the extraction time 110 is in the range of about 20 to 40 times the sampling period, and more preferably about 30 times the sampling period.
 本実施形態では、図2の例に示すように、抽出時間110の始点の平均変化率C(n)は、抽出時間110の始点のサンプリング期間102に取得した複数の電力値の平均値である平均電力値P(n)と、抽出時間110の終点のサンプリング期間102に取得した複数の電力値の平均値である平均電力値P(n+30)との差分を、抽出時間110(30分)で除した値である。このように、平均変化率C(n)、C(n+1)、・・・、C(n+30)は、サンプリング周期101ごとに求められる。図2の例では、抽出時間110がサンプリング周期101の30倍、n番目のサンプリング期間の電力値がP(n)、30分後の電力値がP(n+30)であるので、抽出時間110の始点に対応する平均変化率C(n)は{P(n+30)-P(n)}/30と計算される。そして、n番目のサンプリング周期101の開始時刻が11時00分であるので、11時00分に対応する平均変化率C(n)が、{P(n+30)-P(n)}/30になる。同様にして、11時01分の平均変化率C(n+1)は、{P(n+31)-P(n+1)}/30と計算される。 In the present embodiment, as shown in the example of FIG. 2, the average change rate C (n) at the start point of the extraction time 110 is an average value of a plurality of power values acquired in the sampling period 102 at the start point of the extraction time 110. The difference between the average power value P (n) and the average power value P (n + 30) that is the average value of the plurality of power values acquired in the sampling period 102 at the end of the extraction time 110 is the extraction time 110 (30 minutes). It is the value divided. Thus, the average rate of change C (n), C (n + 1),..., C (n + 30) is obtained for each sampling period 101. In the example of FIG. 2, the extraction time 110 is 30 times the sampling period 101, the power value of the nth sampling period is P (n), and the power value after 30 minutes is P (n + 30). The average rate of change C (n) corresponding to the starting point is calculated as {P (n + 30) −P (n)} / 30. Since the start time of the nth sampling period 101 is 11:00, the average rate of change C (n) corresponding to 11:00 becomes {P (n + 30) −P (n)} / 30. Become. Similarly, the average change rate C (n + 1) at 11:01 is calculated as {P (n + 31) −P (n + 1)} / 30.
 要するに、本実施形態では、監視部12は、サンプリング周期101ごとに、太陽電池21(各ストリング211)の電気出力のデータを、対応する時刻情報とともに記憶部123(第1領域1231)に記憶するように構成される。構成Aの場合、サンプリング周期101ごとに、複数の電力値の積算値または平均値が、対応する時刻情報とともに記憶部123に記憶される。図2Aの例では、サンプリング周期101ごとのサンプリング時点(たとえば11:00)の電力値(たとえばP(n))は、そのサンプリング時点(11:00)を終点とするサンプリング周期101内のサンプリング期間102で得られた複数の電力値の積算値または平均値であり、対応する時刻情報(11:00を含む)とともに記憶される。構成Bの場合、サンプリング周期101ごとに、電力値が、対応する時刻情報とともに記憶部123に記憶される。図2Aの例では、サンプリング周期101ごとのサンプリング時点(たとえば11:00)の電力値(たとえばP(n))が、対応する時刻情報(11:00を含む)とともに記憶される。 In short, in this embodiment, the monitoring part 12 memorize | stores the data of the electrical output of the solar cell 21 (each string 211) in the memory | storage part 123 (1st area | region 1231) with corresponding time information for every sampling period 101. FIG. Configured as follows. In the case of the configuration A, an integrated value or an average value of a plurality of power values is stored in the storage unit 123 together with corresponding time information for each sampling period 101. In the example of FIG. 2A, the power value (for example, P (n)) at the sampling time point (for example, 11:00) for each sampling period 101 is the sampling period in the sampling period 101 whose end point is the sampling time point (11:00). The integrated value or average value of the plurality of power values obtained at 102 is stored together with the corresponding time information (including 11:00). In the case of configuration B, the power value is stored in the storage unit 123 together with the corresponding time information for each sampling period 101. In the example of FIG. 2A, a power value (for example, P (n)) at a sampling time point (for example, 11:00) for each sampling period 101 is stored together with corresponding time information (including 11:00).
 また、監視部12は、記憶部123に記憶された太陽電池21の電気出力のデータに基づいて、サンプリング周期101ごとに、抽出時間110の始点のサンプリング周期101に対応する太陽電池21の電気出力の値P(n)と、抽出時間110の終点のサンプリング周期101に対応する太陽電池21の電気出力の値P(n+30)と、抽出時間110の値とから、抽出時間110の始点の平均変化率C(n)を求めるように構成される。 In addition, the monitoring unit 12 outputs the electrical output of the solar cell 21 corresponding to the sampling cycle 101 at the start point of the extraction time 110 for each sampling cycle 101 based on the electrical output data of the solar cell 21 stored in the storage unit 123. The average change of the start point of the extraction time 110 from the value P (n) of the extraction time 110, the value P (n + 30) of the electrical output of the solar cell 21 corresponding to the sampling period 101 at the end point of the extraction time 110, and the value of the extraction time 110 It is configured to determine the rate C (n).
 同様に、装置2が日射計25である場合、監視部12は、サンプリング周期101ごとに、日射計25の電気出力のデータを、対応する時刻情報とともに記憶部123(第1領域1231)に記憶するように構成される。ここで、構成Aの場合、複数の日射強度に関する値の積算値または平均値が、対応する時刻情報とともに記憶部123に記憶される。構成Bの場合、サンプリング周期101ごとに、日射強度に関する値が、対応する時刻情報とともに記憶部123に記憶される。 Similarly, when the apparatus 2 is the pyranometer 25, the monitoring unit 12 stores the electric output data of the pyranometer 25 in the storage unit 123 (first region 1231) together with the corresponding time information for each sampling period 101. Configured to do. Here, in the case of the configuration A, an integrated value or an average value of a plurality of values relating to the solar radiation intensity is stored in the storage unit 123 together with corresponding time information. In the case of Configuration B, a value related to solar radiation intensity is stored in the storage unit 123 together with corresponding time information for each sampling period 101.
 また、監視部12は、記憶部123に記憶された日射計25の電気出力のデータに基づいて、サンプリング周期101ごとに、抽出時間110の始点のサンプリング周期101に対応する日射計25の電気出力の値P(n)と、抽出時間110の終点のサンプリング周期101に対応する日射計25の電気出力の値P(n+30)と、抽出時間110の値とから、抽出時間110の始点の平均変化率C(n)を求めるように構成される。 In addition, the monitoring unit 12 outputs the electrical output of the pyrometer 25 corresponding to the sampling period 101 at the start point of the extraction time 110 for each sampling period 101 based on the electrical output data of the pyranometer 25 stored in the storage unit 123. The average change of the starting point of the extraction time 110 from the value P (n) of the extraction time 110, the value P (n + 30) of the electrical output of the pyranometer 25 corresponding to the sampling period 101 at the end point of the extraction time 110, and the value of the extraction time 110 It is configured to determine the rate C (n).
 上述した平均変化率の計算式は一例であって、他の計算式でもよい。たとえば、特定の時刻の平均変化率を、前後15分の値から、次式のように定義してもよい。すなわち、{P(n+15)-P(n-15)}/31として求めてもよい。 The above formula for calculating the average rate of change is an example, and other formulas may be used. For example, the average rate of change at a specific time may be defined by the following equation from the values before and after 15 minutes. That is, {P (n + 15) −P (n−15)} / 31 may be obtained.
 上述の計算により求められる平均変化率は、対応した時刻における電力値の傾きを表している。ここで、適切な時間の長さに設定された抽出時間で求めた平均変化率は、重畳パターン(図4の点線)を除去した基本パターン(図4の実線)の平均変化率にほぼ等しくなることがわかっている。また、平均変化率は電力値の傾きを表しているから、時間経過に伴う平均変化率の変化は、出力パターンの形状を表すが、電力値の大きさには依存しない。以下では、平均変化率を時間軸に沿って並べた図形を「変化率パターン」という。 The average rate of change obtained by the above calculation represents the slope of the power value at the corresponding time. Here, the average change rate obtained with the extraction time set to an appropriate length of time is substantially equal to the average change rate of the basic pattern (solid line in FIG. 4) from which the superposed pattern (dotted line in FIG. 4) is removed. I know that. Moreover, since the average rate of change represents the slope of the power value, the change in the average rate of change with time represents the shape of the output pattern, but does not depend on the magnitude of the power value. Hereinafter, a figure in which the average change rates are arranged along the time axis is referred to as a “change rate pattern”.
 ここで、抽出時間について簡単に考察する。抽出時間がサンプリング周期101に一致している場合、つまり抽出時間が1分である場合、図3Aのように、変化率パターンから重畳パターンに相当する成分を除去することはできない。また、抽出時間が7分である場合、図3Bのように、変化率パターンから重畳パターンに相当する成分の一部が除去されるが、依然として変化率パターンに重畳パターンに相当する成分が比較的多く残されている。一方、抽出時間が30分である場合、図3Cのように、変化率パターンから重畳パターンに相当する成分がほぼ除去され、おおむね基本パターンに相当する成分が抽出される。したがって、抽出時間を比較的長く設定することによって、変化率パターンを用いて基本パターンの抽出が可能になる。 Here, we briefly consider the extraction time. When the extraction time coincides with the sampling period 101, that is, when the extraction time is 1 minute, the component corresponding to the superimposed pattern cannot be removed from the change rate pattern as shown in FIG. 3A. Further, when the extraction time is 7 minutes, a part of the component corresponding to the superposition pattern is removed from the change rate pattern as shown in FIG. Many are left behind. On the other hand, when the extraction time is 30 minutes, as shown in FIG. 3C, the component corresponding to the superimposed pattern is almost removed from the change rate pattern, and the component corresponding to the basic pattern is extracted. Therefore, the basic pattern can be extracted using the change rate pattern by setting the extraction time relatively long.
 ここに、平均変化率を用いずに、複数日(たとえば、15日間)の電力値から1日の時刻毎の最大値を抽出すると、図4に破線で示すように、時刻毎の電力値(図4では電力値に等価な値として日射強度の値を用いている)の変化が大きくなる。これは、晴天日であっても、雲の状態あるいは太陽電池の周囲環境などによって太陽電池21に照射される日射強度が大きく変動するからと考えられる。つまり、図4に破線で示すように、複数日の出力パターンから抽出した時刻毎の最大値を並べた図形は、基本パターンに重畳パターンを重ねたような形状になる。これに対して、以下に説明する本実施形態の技術を採用すると、図4に実線で示すように重畳パターンに相当する成分を除去して基本パターンに相当する成分を抽出することが可能になる。 Here, when the maximum value for each time of day is extracted from the power values for a plurality of days (for example, 15 days) without using the average rate of change, the power values for each time ( In FIG. 4, the change in the solar radiation intensity is used as a value equivalent to the power value. This is considered to be because the solar radiation intensity irradiated to the solar cell 21 greatly fluctuates even on a sunny day due to the state of clouds or the surrounding environment of the solar cell. That is, as shown by a broken line in FIG. 4, the figure in which the maximum values for each time extracted from the output patterns of a plurality of days are arranged in a shape in which the superposition pattern is superimposed on the basic pattern. On the other hand, when the technique of the present embodiment described below is adopted, it is possible to remove the component corresponding to the superimposed pattern and extract the component corresponding to the basic pattern as shown by the solid line in FIG. .
 監視部12は、基準値パターンを生成する動作と、生成した基準値パターンに基づいて太陽電池21の異常の有無を監視する動作とを切り替えるように構成されている。さらに、基準値パターンを生成する動作は、理想的な晴天日の変化率パターンを生成する動作と、太陽電池21の電気出力のデータから基準値パターンを生成する動作とを含んでいる。ここでは、理想的な晴天日について変化率パターンを生成する動作を「前置動作(第1動作)」といい、太陽電池21の電気出力から基準値パターンを生成する動作を「生成動作(第2動作)」という。 The monitoring unit 12 is configured to switch between an operation of generating a reference value pattern and an operation of monitoring the presence or absence of abnormality of the solar cell 21 based on the generated reference value pattern. Further, the operation for generating the reference value pattern includes an operation for generating an ideal sunny day change rate pattern and an operation for generating the reference value pattern from the electrical output data of the solar cell 21. Here, the operation for generating the change rate pattern for an ideal sunny day is referred to as “pre-operation (first operation)”, and the operation for generating the reference value pattern from the electrical output of the solar cell 21 is referred to as “generation operation (first operation). 2 operations) ”.
 監視部12は、判断部120と計算部121とフィルタ部122と記憶部123とを備える。記憶部123は、出力パターンのデータ(データ取得インタフェース11からの太陽電池21の電気出力のデータ、たとえば電力値)を記憶する第1領域1231と、前置動作で得られた変化率パターンのデータを記憶する第2領域1232と、生成動作で得られた基準値パターンのデータを記憶する第3領域1233とを備える。 The monitoring unit 12 includes a determination unit 120, a calculation unit 121, a filter unit 122, and a storage unit 123. The memory | storage part 123 is 1st area | region 1231 which memorize | stores the data of an output pattern (The data of the electrical output of the solar cell 21 from the data acquisition interface 11, for example, electric power value), and the data of the change rate pattern obtained by pre-operation Are stored in the second area 1232 and the third area 1233 stores the reference value pattern data obtained by the generation operation.
 判断部120は、記憶部123に格納された基準値パターンのデータと、データ取得インタフェース11が取得した電力値のデータとを比較し、上述のような判断を行うことによって、太陽電池21に異常があるか否かを判断する。つまり、判断部120は、データ取得インタフェース11から得られる電力値を、基準値パターンのデータから得られる基準値と比較することにより、太陽電池21に異常があるか否かを判断する。 The determination unit 120 compares the reference value pattern data stored in the storage unit 123 with the power value data acquired by the data acquisition interface 11 and makes a determination as described above. Judge whether there is. That is, the determination unit 120 determines whether or not there is an abnormality in the solar cell 21 by comparing the power value obtained from the data acquisition interface 11 with the reference value obtained from the data of the reference value pattern.
 計算部121は、前置動作と生成動作との両方において、第1領域1231が記憶している出力パターンのデータに基づいて平均変化率を求める。すなわち、第1領域1231には、太陽電池21からの電力値のデータが1日の時刻に一対一に対応付けられて格納されており、計算部121は、2個ずつの電力値のデータを用いて平均変化率を計算する。 The calculation unit 121 obtains an average rate of change based on the output pattern data stored in the first area 1231 in both the pre-operation and the generation operation. That is, in the first region 1231, the power value data from the solar cell 21 is stored in one-to-one correspondence with the time of the day, and the calculation unit 121 stores the data of two power values. Use to calculate the average rate of change.
 要するに、図2の例では、計算部121は、記憶部123(第1領域1231)に記憶された太陽電池21の電気出力のデータから、抽出時間110ごとに、当該抽出時間110の両端の2個の電気出力の値(たとえば電力値または電力量)を得て、その2個の電気出力の値と抽出時間110から平均変化率を計算するように構成される。ここで、抽出時間110は、サンプリング周期101ごとにサンプリング周期101の時間だけシフトされる。 In short, in the example of FIG. 2, the calculation unit 121 calculates 2 at both ends of the extraction time 110 for each extraction time 110 from the electrical output data of the solar cell 21 stored in the storage unit 123 (first region 1231). A value (for example, a power value or a power amount) of the electrical outputs is obtained, and an average rate of change is calculated from the values of the two electrical outputs and the extraction time 110. Here, the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
 同様に、装置2が日射計25である場合、計算部121は、記憶部123(第1領域1231)に記憶された日射計25の電気出力のデータから、抽出時間110ごとに、当該抽出時間110の両端の2個の電気出力の値(たとえば日射強度値または日射量)を得て、その2個の電気出力の値と抽出時間110から平均変化率を計算するように構成される。ここで、抽出時間110は、サンプリング周期101ごとにサンプリング周期101の時間だけシフトされる。 Similarly, when the device 2 is the pyranometer 25, the calculation unit 121 extracts the extraction time for each extraction time 110 from the electric output data of the pyranometer 25 stored in the storage unit 123 (first region 1231). Two electrical output values (for example, solar intensity value or solar radiation amount) at both ends of 110 are obtained, and the average rate of change is calculated from the two electrical output values and the extraction time 110. Here, the extraction time 110 is shifted by the sampling period 101 every sampling period 101.
 前置動作では、ユーザが快晴と判断した日の出力パターンを理想的な晴天日の出力パターンとみなす。計算部121は、この出力パターンのデータ(つまり、各時刻の電力値)に基づいて1日の各時刻の平均変化率を求め、求めた時刻毎の平均変化率を時刻毎の標準変化率として記憶部123の第2領域1232に格納させる。つまり、前置動作では、1日の各時刻に標準変化率を対応付けた変化率パターンが生成される。 In the pre-operation, the output pattern on the day when the user determines that the weather is clear is regarded as an ideal sunny day output pattern. The calculation unit 121 obtains the average rate of change at each time of the day based on the data of this output pattern (that is, the power value at each time), and uses the obtained average rate of change at each time as the standard rate of change at each time It is stored in the second area 1232 of the storage unit 123. That is, in the pre-operation, a change rate pattern in which a standard change rate is associated with each time of the day is generated.
 一例において、通信インタフェース14は、入出力機能を持った入出力インタフェースであり、監視部12は、端末装置32から入出力インタフェース14を介して得られる、ユーザからの快晴日の入力指示を受けるように構成される。前置動作において、計算部121は、記憶部123(第1領域1231)に記憶された太陽電池21の電気出力のデータに基づいて、入力指示に対応する日(たとえば所定時間帯)における抽出時間110ごとに、当該抽出時間110の両端の2個の電気出力の値(たとえば電力値または電力量)から平均変化率を計算し、得られた複数の平均変化率のそれぞれを、標準変化率として、対応する時刻情報ごとに記憶部123の第2領域1232に記憶するように構成される。抽出時間110は、サンプリング周期101ごとにサンプリング周期101の時間だけシフトされる。 In one example, the communication interface 14 is an input / output interface having an input / output function, and the monitoring unit 12 receives a sunny day input instruction from the user via the input / output interface 14. Configured. In the pre-operation, the calculation unit 121 extracts an extraction time on a day (for example, a predetermined time zone) corresponding to the input instruction based on the electrical output data of the solar cell 21 stored in the storage unit 123 (first region 1231). For each 110, an average rate of change is calculated from two electrical output values (for example, power value or power amount) at both ends of the extraction time 110, and each of the obtained average rate of change is used as a standard rate of change. The corresponding time information is stored in the second area 1232 of the storage unit 123. The extraction time 110 is shifted by the sampling period 101 every sampling period 101.
 同様に、装置2が日射計25である場合、前置動作において、計算部121は、記憶部123(第1領域1231)に記憶された日射計25の電気出力のデータに基づいて、入力指示に対応する日(たとえば所定時間帯)における抽出時間110ごとに、当該抽出時間110の両端の2個の電気出力の値(たとえば日射強度値または日射量)から平均変化率を計算し、得られた複数の平均変化率のそれぞれを、標準変化率として、対応する時刻情報ごとに記憶部123の第2領域1232に記憶するように構成される。抽出時間110は、サンプリング周期101ごとにサンプリング周期101の時間だけシフトされる。 Similarly, when the device 2 is the pyranometer 25, the calculation unit 121 performs an input instruction based on the electric output data of the pyranometer 25 stored in the storage unit 123 (first region 1231) in the pre-operation. For each extraction time 110 on a day corresponding to (for example, a predetermined time period), an average rate of change is calculated from two electrical output values (for example, a solar radiation intensity value or a solar radiation amount) at both ends of the extraction time 110. Each of the plurality of average change rates is configured to be stored in the second area 1232 of the storage unit 123 for each corresponding time information as a standard change rate. The extraction time 110 is shifted by the sampling period 101 every sampling period 101.
 生成動作では、計算部121は、適宜の日の出力パターン(データ取得インタフェース11からの電力値)のデータから各時刻の平均変化率を求める。フィルタ部122は、求めた時刻毎の平均変化率を、記憶部123に格納されている同じ時刻の標準変化率と比較する。具体的には、フィルタ部122は、図5に示すように、記憶部123が格納している各時刻の標準変化率RCに所定の許容範囲ARを設定し、計算部121が求めた同時刻の平均変化率が許容範囲AR内であれば、当該平均変化率が求められた日時における電力値を基準値とみなす。フィルタ部122が基準値とみなした電力値のデータは、記憶部123の第3領域1233に格納される。許容範囲ARは、標準変化率RCに対する割合、または一定値に定められる。許容範囲ARを標準変化率RCに対する割合で設定する場合、たとえば、±0.1RC~±0.3RC程度から選択すればよい。 In the generation operation, the calculation unit 121 obtains the average rate of change at each time from the data of the output pattern of the appropriate day (power value from the data acquisition interface 11). The filter unit 122 compares the obtained average change rate for each time with the standard change rate at the same time stored in the storage unit 123. Specifically, as shown in FIG. 5, the filter unit 122 sets a predetermined allowable range AR to the standard change rate RC at each time stored in the storage unit 123, and the same time obtained by the calculation unit 121. If the average rate of change is within the allowable range AR, the power value at the date and time when the average rate of change was obtained is regarded as the reference value. The power value data that the filter unit 122 regards as the reference value is stored in the third area 1233 of the storage unit 123. The allowable range AR is determined as a ratio with respect to the standard change rate RC or a constant value. When the allowable range AR is set as a ratio with respect to the standard change rate RC, for example, it may be selected from about ± 0.1RC to ± 0.3RC.
 生成動作の一例において、計算部121は、1日(たとえば所定時間帯)における抽出時間110ごとに、当該抽出時間110の両端の2個の電気出力の値(たとえば電力値)から平均変化率を計算するように構成される。ここで、抽出時間110は、サンプリング周期101ごとにサンプリング周期101の時間だけシフトされる。一例として、上記1日(たとえば所定時間帯)は、太陽電池21(または日射計25)の電気出力のデータが記憶部123(第1領域1231)に記憶されるごとに設定される。別例として、上記1日は、端末装置32から入出力インタフェース14を介して得られる、ユーザからの1日または複数日の入力指示に従って設定される。フィルタ部122は、上記1日(たとえば所定時間帯)における平均変化率が得られるごとに、その平均変化率が、記憶部123(第2領域1232)に記憶された、対応する時刻情報の標準変化率RCを間に(たとえば中心に)含む許容範囲AR内にあれば、その平均変化率の電気出力の値(抽出時間110の少なくとも始点に対応する電気出力の値)を、基準値として記憶部123の第3領域1233に記憶するように構成される。なお、抽出時間110の終点に対応する電気出力の値も同様に記憶されてもよい。 In an example of the generation operation, the calculation unit 121 calculates an average rate of change from two electrical output values (for example, power values) at both ends of the extraction time 110 for each extraction time 110 in one day (for example, a predetermined time period). Configured to calculate. Here, the extraction time 110 is shifted by the sampling period 101 every sampling period 101. As an example, the above-mentioned one day (for example, a predetermined time period) is set every time the electrical output data of the solar cell 21 (or the solar radiation meter 25) is stored in the storage unit 123 (first region 1231). As another example, the one day is set according to an input instruction for one day or a plurality of days obtained from the terminal device 32 via the input / output interface 14. Each time the average rate of change in the above-described one day (for example, a predetermined time period) is obtained, the filter unit 122 stores the average rate of change in the corresponding time information standard stored in the storage unit 123 (second region 1232). If within the allowable range AR including the change rate RC in between (for example, at the center), the electric output value of the average change rate (the electric output value corresponding to at least the start point of the extraction time 110) is stored as a reference value. It is configured to store in the third area 1233 of the unit 123. Note that the value of the electrical output corresponding to the end point of the extraction time 110 may be stored in the same manner.
 一例として、記憶部123の第2領域1232に格納された11時00分の標準変化率が0.001であり、フィルタ部122に設定された許容範囲が±0.0002である場合を仮定する。フィルタ部122は、計算部121が求めた11時00分の平均変化率が0.0011であれば、この平均変化率を求めた日時の電力値を、基準値とみなして、該当する日時の電力値のデータを時刻に対応付けて記憶部123の第3領域1233に格納する。一方、計算部121が求めた11時00分の平均変化率が0.003であれば、フィルタ部122は、この平均変化率を求めた日時の電力値を破棄する。 As an example, it is assumed that the standard change rate of 11:00 stored in the second area 1232 of the storage unit 123 is 0.001 and the allowable range set in the filter unit 122 is ± 0.0002. . If the average change rate of 11:00 obtained by the calculation unit 121 is 0.0011, the filter unit 122 regards the power value at the date and time when the average change rate is obtained as a reference value, and sets the corresponding date and time. The power value data is stored in the third area 1233 of the storage unit 123 in association with the time. On the other hand, if the average change rate of 11:00 obtained by the calculation unit 121 is 0.003, the filter unit 122 discards the power value at the date and time when the average change rate was obtained.
 ところで、日中に晴天である期間が比較的長い1日であれば、記憶部123の第3領域1233には、電力値のデータが比較的多く格納される。しかし、日中に晴天である期間が短い1日、日中に曇天である1日、日中に雨天である1日では、記憶部123の第3領域1233に格納される電力値のデータは少数になる。基準値パターンを構成する電力値のデータに基づいて太陽電池21の異常の有無を判断しようとする場合、一般的には、データ量が多いほうが判断の確実性が高まると言える。 By the way, if the period of clear weather during the day is a relatively long day, a relatively large amount of power value data is stored in the third area 1233 of the storage unit 123. However, on a day when the day is fine during the day, a day when it is cloudy during the day, and a day when it is rainy during the day, the power value data stored in the third area 1233 of the storage unit 123 is Become a minority. When trying to determine whether or not there is an abnormality in the solar cell 21 based on the power value data constituting the reference value pattern, it can be said that, generally, the greater the amount of data, the higher the certainty of the determination.
 ただし、1日分の電力値のデータであっても、南中時刻を間に含む時間帯(たとえば、10時から13時)において、晴天である期間のデータが所定値以上の割合を占めている場合には、1日分の電力値のデータを基準値パターンとして用いることが可能である。所定値以上の割合とは、たとえば80%以上などである。なお、この数値は限定する趣旨ではなく、一例として示している。 However, even in the case of the power value data for one day, in the time zone (for example, from 10 o'clock to 13 o'clock) including the time in the south and middle times, the data in the period when it is fine occupies a ratio of the predetermined value or more. If it is, the power value data for one day can be used as the reference value pattern. The ratio above the predetermined value is, for example, 80% or more. This numerical value is not intended to be limiting but is shown as an example.
 上述した手順で基準値パターンのデータ(第3領域1233に格納されるべき基準値)を抽出する例を図6に示す。図6Aは理想的な出力パターンを示しており、その理想的な出力パターンのデータから計算部121の計算によって変化率パターンのデータを抽出すると、その変化率パターンは図6Bのようになる。一方、図6Cは実測値の出力パターンを示しており、その実測値から計算部121の計算によって変化率パターンのデータを抽出すると、その変化率パターンは図6Dのようになる。フィルタ部122では、図6Dに示す変化率パターンのデータを図6Bに示す変化率パターンのデータと照合することによって、図6Eのような基準値パターンのデータを抽出する。すなわち、フィルタ部122は、図6Bに示す理想的な出力パターンから得られる変化率パターンのデータと図6Dに示す実測値から得られる変化率パターンのデータとから、両データ間の平均変化率が許容範囲AR内で一致する時刻を求め、求めた時刻を図6Cの出力パターンのデータに照らし合わせることによって、当該時刻の電力値を抽出する。なお、図6A、図6C、図6Eにおいて、縦軸は日射強度を用いているが、太陽電池21が出力する電力値と等価である。 FIG. 6 shows an example of extracting reference value pattern data (reference values to be stored in the third area 1233) in the above-described procedure. FIG. 6A shows an ideal output pattern. When the data of the change rate pattern is extracted from the data of the ideal output pattern by calculation of the calculation unit 121, the change rate pattern is as shown in FIG. 6B. On the other hand, FIG. 6C shows an output pattern of actual measurement values. When data of a change rate pattern is extracted from the actual measurement values by calculation of the calculation unit 121, the change rate pattern is as shown in FIG. 6D. The filter unit 122 extracts the reference value pattern data as shown in FIG. 6E by collating the change rate pattern data shown in FIG. 6D with the change rate pattern data shown in FIG. 6B. That is, the filter unit 122 calculates the average rate of change between both data from the rate of change pattern data obtained from the ideal output pattern shown in FIG. 6B and the rate of change pattern data obtained from the actually measured value shown in FIG. A matching time within the allowable range AR is obtained, and the obtained time is compared with the data of the output pattern in FIG. 6C to extract the power value at that time. In FIG. 6A, FIG. 6C, and FIG. 6E, the vertical axis uses the solar radiation intensity, but is equivalent to the power value output by the solar cell 21.
 基準値パターンを構成するデータ量を増やすには、フィルタ部122が抽出した複数日分の電力値のデータを用いることが可能である。同じ季節とみなせる複数日分の電力値であれば、時刻に応じた太陽高度はほぼ等しいから、晴天時の日射強度もほぼ等しい。このことを利用して、本実施形態では、同時刻の太陽高度の変化が所定範囲である期間内の複数日を含むように設定した区分期間について、フィルタ部122が抽出した電力値のデータを記憶部123の第3領域1233に格納する。この場合、記憶部123の第3領域1233は、同じ時刻について複数の電力値のデータを格納することを許容する。 In order to increase the amount of data constituting the reference value pattern, it is possible to use the power value data for a plurality of days extracted by the filter unit 122. If the power value is for multiple days that can be regarded as the same season, the solar altitude corresponding to the time is almost the same, so the solar radiation intensity in fine weather is also almost the same. By utilizing this, in the present embodiment, the power value data extracted by the filter unit 122 for the segment period set to include a plurality of days within the period in which the change in solar altitude at the same time is within a predetermined range is used. The data is stored in the third area 1233 of the storage unit 123. In this case, the third area 1233 of the storage unit 123 allows storing data of a plurality of power values for the same time.
 ここに、区分期間は、2週間から1ヶ月程度の範囲で選択される。たとえば、同じ季節と見なせる期間は、二十四節季のうちの1つの節季に含まれる複数日(15日間)とすることが可能である。また、同じ季節とみなせる期間として、毎月の前半の複数日、および毎月の後半の複数日、1ヶ月の複数日などを採用することも可能である。要するに、太陽高度がほぼ等しい期間を同じ季節とみなせる期間として選択する。 * Here, the segment period is selected in the range of 2 weeks to 1 month. For example, the period that can be regarded as the same season can be a plurality of days (15 days) included in one of the twenty-four seasons. In addition, as a period that can be regarded as the same season, a plurality of days in the first half of each month, a plurality of days in the second half of each month, a plurality of days in one month, and the like can be adopted. In short, a period in which the solar altitudes are almost equal is selected as a period that can be regarded as the same season.
 いま、3日分の電力値に基づいて、それぞれの日の電力値から、図7A、図7B、図7Cに示すような3種類の基準値パターンが抽出されたとする。この場合、これらの基準値パターンを重ね合わせることにより、図7Dのような基準値パターンを生成することが可能になる。図7A、図7B、図7Cにそれぞれ示す基準値パターンは形状が乱れており、1日分の基準値パターンとして使用することができないが、図7Dのように複数の基準値パターンを重ね合わせることにより、ほぼ完全な基準値パターンが含まれることになる。 Now, it is assumed that three types of reference value patterns as shown in FIGS. 7A, 7B, and 7C are extracted from the power values for each day based on the power values for three days. In this case, it is possible to generate a reference value pattern as shown in FIG. 7D by superimposing these reference value patterns. The reference value patterns shown in FIGS. 7A, 7B, and 7C are disordered and cannot be used as a reference value pattern for one day, but a plurality of reference value patterns are superimposed as shown in FIG. 7D. Thus, a substantially complete reference value pattern is included.
 ところで、図7Dに示す基準値パターンは、同時刻に複数の値を含んでおり、このままでは基準値パターンとして使用することができない。そのため、監視部12は、記憶部123の第3領域1233において同時刻に複数の電力値のデータが存在している場合に、複数の電力値のデータのうちの1つを選択して基準値を定めるように構成された選択部124を備える。 Incidentally, the reference value pattern shown in FIG. 7D includes a plurality of values at the same time, and cannot be used as a reference value pattern as it is. Therefore, when there are data of a plurality of power values at the same time in the third area 1233 of the storage unit 123, the monitoring unit 12 selects one of the data of the plurality of power values and sets the reference value The selector 124 is configured to determine the following.
 選択部124は、記憶部123に格納された電力値のデータのうちの1つを基準値として選択し、選択した基準値を記憶部123の第3領域1233に格納するように構成される。基準値としては、同時刻における複数の電力値のデータから、一定の規則に従って適宜の1個の電力値のデータを選択すればよい。基準値を選択するための規則は、複数の電力値のデータのうちの最大値を採用するように定める。 The selection unit 124 is configured to select one of the power value data stored in the storage unit 123 as a reference value, and store the selected reference value in the third area 1233 of the storage unit 123. As the reference value, one piece of appropriate power value data may be selected from a plurality of power value data at the same time according to a certain rule. The rule for selecting the reference value is determined so as to adopt the maximum value among the data of the plurality of power values.
 ここに、上述した動作例では、複数日から求めた同時刻の電力値のデータを記憶部123に記憶した後に、選択部124が基準値としての電力値のデータを選択している。これに対し、記憶部123の第3領域1233に電力値のデータを格納しようとするときに、当該電力値のデータと同時刻の電力値のデータが第3領域1233にすでに格納されていれば、一方のみを記憶部123に格納するように選択部124を構成してもよい。この場合、選択部124は、記憶部123に格納されている電力値のデータと、記憶部123に格納しようとする電力値のデータとの大小を比較し、大きいほうの電力値のデータを記憶部123の第3領域1233に格納するという規則を用いる。 Here, in the above-described operation example, the power value data at the same time obtained from a plurality of days is stored in the storage unit 123, and then the selection unit 124 selects the power value data as the reference value. On the other hand, if the power value data is to be stored in the third area 1233 of the storage unit 123, the power value data at the same time as the power value data is already stored in the third area 1233. The selection unit 124 may be configured to store only one of them in the storage unit 123. In this case, the selection unit 124 compares the power value data stored in the storage unit 123 with the power value data to be stored in the storage unit 123, and stores the larger power value data. The rule of storing in the third area 1233 of the unit 123 is used.
 要するに、本実施形態では、選択部124は、複数の基準値が、記憶部123の第3領域1233に記憶されるべき1日(たとえば所定時間帯)の少なくとも1つの時刻に存在する場合、その複数の基準値のうち最大値のみを第3領域1233に記憶するように構成される。 In short, in the present embodiment, when the plurality of reference values exist at at least one time of one day (for example, a predetermined time period) to be stored in the third area 1233 of the storage unit 123, Only the maximum value among the plurality of reference values is configured to be stored in the third region 1233.
 ところで、フィルタ部122は、電力値の平均変化率に基づいて基準値となる電力値を抽出するから、1日の出力パターンによっては、基準値の候補として誤認して抽出される可能性がある。つまり、フィルタ部122は、電力値の平均変化率が、標準変化率に対して設定した許容範囲内であれば、該当する電力値を、電力値の絶対値とは無関係に基準値の候補として抽出するから、晴天日に相当しない電力値を基準値の候補として抽出することがある。晴天日に相当しない電力値は、たとえば図7Aであれば、右側部分のように電力値が不連続である部分などである。 By the way, since the filter unit 122 extracts a power value serving as a reference value based on the average change rate of the power value, there is a possibility that the filter unit 122 may be misidentified as a reference value candidate and extracted depending on a daily output pattern. . That is, if the average change rate of the power value is within an allowable range set with respect to the standard change rate, the filter unit 122 sets the corresponding power value as a reference value candidate regardless of the absolute value of the power value. Since extraction is performed, a power value that does not correspond to a clear day may be extracted as a reference value candidate. For example, in the case of FIG. 7A, the power value not corresponding to a clear day is a portion where the power value is discontinuous, such as the right portion.
 このように晴天日に相当しない電力値を「誤差成分」と呼ぶことにする。記憶部123の第3領域1233に格納された基準値によって形成される基準値パターンは、誤差成分を含んでいる場合には、晴天日に相当する電力値と晴天日ではない電力値とを含んでいることになる。このような基準値パターンから誤差成分を低減させるために、フィルタ部122は、データ取得インタフェース11から取得した電力値のデータと同様の処理を、基準値パターンについて行う反復処理が可能になるように構成されている。反復処理は、少なくとも1回行われ、必要に応じて複数回の反復処理を行うことが可能になっている。反復処理の回数は、通常は1回あるいは2回程度でよい。 Such a power value that does not correspond to a clear day will be referred to as an “error component”. When the reference value pattern formed by the reference values stored in the third area 1233 of the storage unit 123 includes an error component, the reference value pattern includes a power value corresponding to a clear day and a power value that is not a clear day. It will be out. In order to reduce an error component from such a reference value pattern, the filter unit 122 can perform an iterative process for the reference value pattern by performing the same processing as the power value data acquired from the data acquisition interface 11. It is configured. The iterative process is performed at least once, and a plurality of iterative processes can be performed as necessary. The number of iterations may normally be about once or twice.
 また、フィルタ部122は、反復処理の際には、標準変化率に対して設定する許容範囲を、最初に基準値の候補を抽出する際に用いた許容範囲よりも狭めることが望ましい。たとえば、図8Aのようにデータ取得インタフェース11が取得した電力値のデータに基づいて基準値の候補を抽出する際に用いる許容範囲AR1を±αとする。また、図8Bのように記憶部123の第3領域1233に格納した基準値のデータに対して反復処理を行う際に用いる許容範囲AR2を±β(α>β>0)とする。このように、反復処理を行うだけではなく、反復処理の際に許容範囲を狭めることによって、誤差成分がより一層除去され、結果的に、晴天日に相当する基準値の割合が高い基準値パターンを生成することが可能になる。 Also, it is desirable that the filter unit 122 narrows the allowable range set for the standard change rate during the iterative processing, compared to the allowable range used when the reference value candidates are first extracted. For example, as shown in FIG. 8A, the allowable range AR1 used when extracting the reference value candidate based on the power value data acquired by the data acquisition interface 11 is set to ± α. Further, as shown in FIG. 8B, the allowable range AR2 used when iterative processing is performed on the reference value data stored in the third area 1233 of the storage unit 123 is set to ± β (α> β> 0). In this way, not only the iterative process is performed, but also the error component is further removed by narrowing the allowable range during the iterative process, and as a result, a reference value pattern with a high ratio of reference values corresponding to sunny days Can be generated.
 上述した構成例では、1日分の基準値(基準値パターン)を生成し、1日分の基準値を年間を通して使用することを想定している。データ取得インタフェース11が太陽電池21から取得した電力値は、季節に応じて比較的大きく変動するが、上述したように、日中の所定時間帯(たとえば、10時から13時)であれば、絶対値は変化しても、平均変化率はほぼ一致する。そのため、上述した構成例では、年間を通して1日分の基準値を使用する構成を採用している。しかしながら、絶対値には変化が生じるから、1年間を複数の期間に区分し、区分した期間ごとに基準値を設定してもよい。この場合でも、少数の基準値(基準値パターン)を記憶部123の第3領域1233に格納するだけで、年間を通して太陽電池21の異常の有無を判断することが可能である。 In the configuration example described above, it is assumed that a reference value (reference value pattern) for one day is generated and the reference value for one day is used throughout the year. Although the power value acquired from the solar cell 21 by the data acquisition interface 11 varies relatively greatly depending on the season, as described above, if it is a predetermined time zone (for example, from 10:00 to 13:00) during the day, Even if the absolute value changes, the average rate of change is almost the same. Therefore, the configuration example described above employs a configuration that uses a reference value for one day throughout the year. However, since the absolute value changes, one year may be divided into a plurality of periods, and a reference value may be set for each divided period. Even in this case, it is possible to determine whether or not the solar cell 21 is abnormal throughout the year only by storing a small number of reference values (reference value patterns) in the third region 1233 of the storage unit 123.
 上述した異常監視装置10は、プログラムを実行する1または複数のプロセッサを備える第1のデバイスと、外部装置を接続するためのインターフェイス用の第2のデバイスとを主なハードウェア要素として備える。第1のデバイスは、メモリを別に接続するマイクロプロセッサのほか、メモリを一体に備えるマイコン(Microcontroller)などから選択される。 The abnormality monitoring apparatus 10 described above includes, as main hardware elements, a first device including one or more processors that execute a program and an interface second device for connecting an external apparatus. The first device is selected from a microprocessor to which a memory is connected separately, a microcomputer having a memory integrally, and the like.
 プログラムは、あらかじめROM(Read Only Memory)に書き込まれた状態で提供されるようにしてもよいが、書換可能な不揮発性メモリに格納できるように、コンピュータで読み取り可能な記録媒体で提供されることが望ましい。また、プログラムは、記録媒体に代えて、インターネットのような電気通信回線を通して提供されてもよい。 The program may be provided in a state written in a ROM (Read Only Memory) in advance, but is provided on a computer-readable recording medium so that it can be stored in a rewritable nonvolatile memory. Is desirable. Further, the program may be provided through an electric communication line such as the Internet instead of the recording medium.
 以上説明した異常監視装置10は、データ取得インタフェース11と監視部12とを備える。データ取得インタフェース11は、日射強度に応じた電気出力を出力する装置2から、1日の(望ましくは、1日の一部である南中時刻を間に含む所定時間帯における)時刻ごとに電気出力の値(構成Aでは積算値または平均値)を取得するように構成される。監視部12は、データ取得インタフェース11からの1日の時刻ごとの電気出力の値を、1日の時刻ごとの基準値のうち対応する基準値と比較することにより装置2の異常の有無を監視するように構成される。装置2は、太陽電池21と日射計25との少なくとも一方を含む。さらに、監視部12は、計算部121とフィルタ部122と記憶部123とを備える。計算部121は、データ取得インタフェース11からの電気出力の値に基づいて、(上記1日、望ましくは上記所定時間帯に対する)所定の抽出時間110ごとに、抽出時間110の両端の時刻に対応する2つの電気出力の値と抽出時間110とから平均変化率を算出するように構成される。フィルタ部122は、計算部121からの抽出時間110ごとの平均変化率のうち、所定の許容範囲AR内にある平均変化率の電気出力の値(少なくとも抽出時間110の始点に対応する電気出力の値)を抽出するように構成され、ここで許容範囲ARは、1日の(望ましくは上記所定時間帯における)時刻ごとの複数の許容範囲のうち対応する時刻の許容範囲であり、複数の許容範囲のそれぞれは、標準変化率RCを間(望ましくは中心)に含む範囲であり、複数の許容範囲の複数の標準変化率は、(計算部121から予め得られた)晴天日に相当する1日(望ましくは上記所定時間帯)分の平均変化率である。記憶部123は、フィルタ部122が抽出した電気出力の値を、対応する時刻情報とともに基準値として記憶するように構成される。 The abnormality monitoring apparatus 10 described above includes a data acquisition interface 11 and a monitoring unit 12. The data acquisition interface 11 is supplied from the device 2 that outputs an electrical output according to the solar radiation intensity for each time of a day (preferably in a predetermined time zone including a South-Central time that is a part of the day). An output value (integrated value or average value in configuration A) is acquired. The monitoring unit 12 monitors the presence or absence of an abnormality in the device 2 by comparing the value of the electrical output for each time of day from the data acquisition interface 11 with the corresponding reference value among the reference values for each time of the day. Configured to do. The device 2 includes at least one of the solar cell 21 and the pyranometer 25. Furthermore, the monitoring unit 12 includes a calculation unit 121, a filter unit 122, and a storage unit 123. Based on the value of the electrical output from the data acquisition interface 11, the calculation unit 121 corresponds to the time at both ends of the extraction time 110 for each predetermined extraction time 110 (for the above-mentioned one day, preferably for the above-mentioned predetermined time zone). The average rate of change is calculated from the two electrical output values and the extraction time 110. The filter unit 122 has a value of an electrical output having an average rate of change within a predetermined allowable range AR out of the average rate of change for each extraction time 110 from the calculation unit 121 (at least the electrical output corresponding to the start point of the extraction time 110). The tolerance range AR is a tolerance range of a corresponding time among a plurality of tolerance ranges for each time of a day (preferably in the predetermined time zone), and a plurality of tolerance ranges are extracted. Each of the ranges is a range including the standard change rate RC in the middle (preferably the center), and the plurality of standard change rates of the plurality of allowable ranges correspond to a clear day (obtained in advance from the calculation unit 121). It is the average rate of change for a day (preferably the predetermined time period). The storage unit 123 is configured to store the value of the electrical output extracted by the filter unit 122 as a reference value together with corresponding time information.
 この構成によれば、装置2の電気出力の実測値に基づいて、晴天日に相当する基準値を精度よく生成することが可能になる。このようにして設定した基準値は、長期間にわたって使用することが可能である。 According to this configuration, it is possible to accurately generate a reference value corresponding to a clear day based on the actual measurement value of the electrical output of the device 2. The reference value set in this way can be used over a long period of time.
 この異常監視装置10において、データ取得インタフェース11は、所定のサンプリング周期101で電気出力の値を取得することにより、1日の時刻ごとに電気出力の値を取得するように構成されることが望ましい。この場合、抽出時間110は、サンプリング周期101の整数倍でもよい。ここで、整数倍は2倍以上であり、サンプリング周期101の整数倍の時間は、たとえば、日出時刻から南中時刻までの時間または南中時刻から日入時刻までの時間より短い。たとえば、抽出時間110は、サンプリング周期101での電気出力の値の変動成分が抑圧され、かつ電気出力の値の変化傾向である上記平均変化率の抽出が可能になる時間の長さを持つように定められる。望ましくは、サンプリング周期101の整数倍の時間は、基準値を定める時間帯(南中時刻を間に含む時間(日照時間)帯)の中間時点と開始ないしは終了時点との間の時間よりも短い時間に定められる。一具体例において、抽出時間110は、サンプリング周期101の20倍から40倍程度の範囲内であり、より望ましくはサンプリング周期101の30倍である。一具体例において、サンプリング周期は、30秒から10分程度の範囲から選択され、望ましくは1分である。また、記憶部123は、フィルタ部122からの複数の基準値それぞれを、サンプリング周期101で設定される対応する時刻情報に割り当てて記憶するように構成される。 In this abnormality monitoring apparatus 10, it is desirable that the data acquisition interface 11 is configured to acquire the value of the electric output every time of the day by acquiring the value of the electric output at a predetermined sampling period 101. . In this case, the extraction time 110 may be an integral multiple of the sampling period 101. Here, the integer multiple is two times or more, and the time that is an integral multiple of the sampling period 101 is shorter than, for example, the time from the sunrise time to the South-Central time or the time from the South-Central time to the sunset time. For example, the extraction time 110 has a length of time in which the fluctuation component of the value of the electrical output in the sampling period 101 is suppressed and the average change rate that is a tendency of change in the value of the electrical output can be extracted. Determined. Desirably, the time that is an integral multiple of the sampling period 101 is shorter than the time between the intermediate time point and the start or end time point of the time zone that defines the reference value (the time zone that includes the South-Central time). Determined in time. In one specific example, the extraction time 110 is in the range of about 20 to 40 times the sampling period 101, more preferably 30 times the sampling period 101. In one embodiment, the sampling period is selected from the range of about 30 seconds to 10 minutes, preferably 1 minute. The storage unit 123 is configured to allocate and store each of the plurality of reference values from the filter unit 122 to the corresponding time information set in the sampling period 101.
 この構成によれば、抽出時間110が適正に設定されることによって、平均変化率は、電気出力の短時間での変動成分の影響を除去するように求められる。すなわち、上述した出力パターンから不要な変動成分を除去した基準値のデータを記憶部123に記憶させることが可能になる。 According to this configuration, when the extraction time 110 is set appropriately, the average rate of change is required to remove the influence of the fluctuation component of the electrical output in a short time. That is, the reference value data obtained by removing unnecessary fluctuation components from the output pattern described above can be stored in the storage unit 123.
 記憶部123は、データ取得インタフェース11から計算部121を介して得られる複数日分の電気出力の値からフィルタ部122が抽出した複数の電気出力の値それぞれを、1日における対応する時刻情報に割り当てて記憶していることが望ましい。 The storage unit 123 converts each of the plurality of electrical output values extracted by the filter unit 122 from the electrical output values for a plurality of days obtained from the data acquisition interface 11 via the calculation unit 121 into corresponding time information for one day. It is desirable to assign and memorize.
 この構成によれば、1日分の電気出力では晴天日に相当する電気出力の値の個数が十分に得られない場合でも、複数日分の電気出力の値を重ね合わせることによって、晴天日に相当する電気出力の値の個数を増やすことが可能になる。 According to this configuration, even when the number of electrical output values corresponding to a clear day is not sufficiently obtained with the electrical output for one day, by superimposing the electrical output values for a plurality of days, The number of corresponding electrical output values can be increased.
 ここに、監視部12は、異なる日の同時刻についてフィルタ部122が複数の電気出力の値を抽出した場合に、同時刻について抽出された複数の電気出力の値のうちの最大値を、対応する時刻の基準値として記憶部123に記憶させる選択部124を備えることが望ましい。 Here, when the filter unit 122 extracts a plurality of electrical output values for the same time on different days, the monitoring unit 12 corresponds to the maximum value among the plurality of electrical output values extracted for the same time. It is desirable to include a selection unit 124 that is stored in the storage unit 123 as a reference value for the time to be used.
 この構成によれば、複数日分の電気出力の値に基づいて適正な基準値を抽出することが可能になる。 This configuration makes it possible to extract an appropriate reference value based on the electric output values for a plurality of days.
 フィルタ部122は、すでに抽出した平均変化率を、対応する標準変化率と再度比較し、すでに抽出した平均変化率のうち、対応する許容範囲内にある平均変化率を抽出する反復処理を1回以上繰り返すように構成されていることが望ましい。 The filter unit 122 compares the already extracted average change rate with the corresponding standard change rate again, and repeats the iterative process of extracting the average change rate within the corresponding allowable range from the already extracted average change rate once. It is desirable to be configured to repeat the above.
 この構成によれば、フィルタ部122が抽出した電気出力の値に誤差成分が含まれている場合であっても、反復処理を行うことによって、誤差成分の割合が低減し、晴天日に相当する電気出力の値の割合を相対的に高めることが可能になる。 According to this configuration, even when an error component is included in the value of the electrical output extracted by the filter unit 122, the ratio of the error component is reduced by performing iterative processing, which corresponds to a clear day. It becomes possible to relatively increase the ratio of the value of the electric output.
 フィルタ部122は、反復処理を1回行うたびに許容範囲を狭めるように構成されることが望ましい。 It is desirable that the filter unit 122 is configured to narrow the allowable range every time iterative processing is performed once.
 この構成によれば、反復処理を繰り返すたびに、電気出力の値を抽出する基準を厳しくすることにより、誤差成分をより低減させることが可能になる。 According to this configuration, it is possible to further reduce the error component by tightening the standard for extracting the value of the electric output every time the iterative process is repeated.
 標準変化率は、複数日を含むように設定された区分期間ごとに設定されていることが望ましい。たとえば、区分期間は、2週間から1ヶ月程度の範囲で選択される。 The standard rate of change is preferably set for each segment period set to include multiple days. For example, the segment period is selected in the range of about 2 weeks to 1 month.
 この構成によれば、太陽高度の違いを基準値に反映させることが可能になり、適切な基準値を用いることによって、装置2に異常があるか否かの判定条件をより厳しく設定して、判定精度を高めることが可能になる。 According to this configuration, it becomes possible to reflect the difference in solar altitude in the reference value, and by using an appropriate reference value, the determination condition as to whether there is an abnormality in the device 2 is set more strictly, The determination accuracy can be increased.
 本実施形態における太陽光発電設備20は、太陽電池21と、日射計25と、上述した異常監視装置10とを備える。日射計25は、太陽電池21への日射強度を計測するように構成される。たとえば、日射計25は、太陽電池21に隣接して配置される。 The photovoltaic power generation facility 20 in the present embodiment includes a solar cell 21, a pyranometer 25, and the abnormality monitoring device 10 described above. The solar radiation meter 25 is configured to measure the solar radiation intensity to the solar cell 21. For example, the pyranometer 25 is disposed adjacent to the solar cell 21.
 この構成によれば、太陽光発電設備20において、太陽電池21と日射計25との少なくとも一方について異常が生じているか否かを監視することが可能になる。 This configuration makes it possible to monitor whether or not an abnormality has occurred in at least one of the solar cell 21 and the pyranometer 25 in the solar power generation facility 20.
 本実施形態のプログラムは、コンピュータを、異常監視装置10として機能させるためのものである。 The program of this embodiment is for causing a computer to function as the abnormality monitoring apparatus 10.
 上述した構成例では、太陽電池21に異常が生じているか否かを判断するための基準値を生成しているが、日射計25に異常が生じているか否かを判断するための基準値を生成するために、上述した技術を採用することが可能である。つまり、上述した技術では、太陽電池21を日射計25と読み替えることが可能である。また、異常監視装置10は、太陽電池21と日射計25との両方について、異常が生じているか否かを監視するように構成してもよい。 In the configuration example described above, a reference value for determining whether or not an abnormality has occurred in the solar cell 21 is generated. However, a reference value for determining whether or not an abnormality has occurred in the solar radiation meter 25 is used. It is possible to employ the techniques described above to generate. That is, with the above-described technique, the solar cell 21 can be read as the pyranometer 25. Further, the abnormality monitoring device 10 may be configured to monitor whether or not an abnormality has occurred in both the solar cell 21 and the pyranometer 25.
 また、上述した構成例では、太陽電池21の異常は、ストリング211を単位として監視しているが、太陽電池アレイを単位として異常を監視することも可能である。 Further, in the configuration example described above, the abnormality of the solar cell 21 is monitored in units of the strings 211, but the abnormality can be monitored in units of the solar cell array.
 上記の最良の形態および/または他の実施例であると考えられるものについて説明したが、種々の改変がなされてもよく、本明細書で開示される主題は種々の形態および実施例で実施されてもよく、そしてそれらは多数のアプリケーションに適用されてもよいものであり、その最適の幾つかが本明細書に記載されている。以下の特許請求の範囲によって、本開示の真の範囲内に入る任意およびすべての修正および変形を請求するものである。 Although the foregoing best mode and / or other examples are considered, various modifications may be made and the subject matter disclosed herein may be implemented in various forms and examples. And they may be applied to a number of applications, some of which are best described herein. The following claims claim any and all modifications and variations that fall within the true scope of this disclosure.
 たとえば、図1に示す太陽光発電設備20は、電力変換装置24を含んでいるが、太陽電池21の電力によって直流を給電する場合、あるいは太陽電池21が出力する電流により蓄電池を充電する場合などでは、電力変換装置24は省略可能である。 For example, although the photovoltaic power generation facility 20 shown in FIG. 1 includes the power conversion device 24, when direct current is fed by the power of the solar battery 21, or when the storage battery is charged by the current output from the solar battery 21, etc. Then, the power converter 24 can be omitted.
 10 異常監視装置
 11 データ取得インタフェース
 12 監視部
 20 太陽光発電設備
 21 太陽電池
 25 日射計
 121 計算部
 122 フィルタ部
 123 記憶部
DESCRIPTION OF SYMBOLS 10 Abnormality monitoring apparatus 11 Data acquisition interface 12 Monitoring part 20 Solar power generation facility 21 Solar cell 25 Solar radiation meter 121 Calculation part 122 Filter part 123 Storage part

Claims (8)

  1.  日射強度に応じた電気出力を出力する装置から、1日の時刻ごとに電気出力の値を取得するデータ取得インタフェースと、
     前記データ取得インタフェースからの1日の時刻ごとの電気出力の値を、1日の時刻ごとの基準値のうち対応する基準値と比較することにより前記装置の異常の有無を監視する監視部とを備え、
     前記装置は、太陽電池と日射計との少なくとも一方を含み、
     前記監視部は、
     前記データ取得インタフェースからの電気出力の値に基づいて、所定の抽出時間ごとに、前記抽出時間の両端の時刻に対応する電気出力の値と前記抽出時間とから平均変化率を算出する計算部と、
     前記計算部からの前記抽出時間ごとの平均変化率のうち、所定の許容範囲内にある平均変化率の電気出力の値を抽出するように構成され、ここにおいて、前記許容範囲は、1日の時刻ごとの複数の許容範囲のうち対応する時刻の許容範囲であり、前記複数の許容範囲のそれぞれは、標準変化率を間に含む範囲であり、前記複数の許容範囲の複数の標準変化率は、晴天日に相当する1日分の平均変化率である、フィルタ部と、
     前記フィルタ部が抽出した前記電気出力の値を、対応する時刻情報とともに前記基準値として記憶する記憶部とを備える
     ことを特徴とする異常監視システム。
    A data acquisition interface for acquiring a value of electrical output for each time of day from a device that outputs electrical output according to solar radiation intensity;
    A monitoring unit that monitors the presence or absence of abnormality of the device by comparing the value of the electrical output for each time of day from the data acquisition interface with the corresponding reference value among the reference values for each time of the day Prepared,
    The apparatus includes at least one of a solar cell and a pyranometer,
    The monitoring unit
    Based on the value of the electrical output from the data acquisition interface, a calculation unit that calculates an average rate of change from the value of the electrical output corresponding to the time at both ends of the extraction time and the extraction time for each predetermined extraction time; ,
    The average change rate for each extraction time from the calculation unit is configured to extract an electrical output value of an average change rate within a predetermined allowable range, wherein the allowable range is one day. Among a plurality of permissible ranges for each time, each of the plurality of permissible ranges is a range including a standard change rate, and a plurality of standard change rates of the plurality of permissible ranges is A filter unit that is an average rate of change for one day corresponding to a sunny day;
    An abnormality monitoring system comprising: a storage unit that stores the value of the electrical output extracted by the filter unit as the reference value together with corresponding time information.
  2.  前記データ取得インタフェースは、所定のサンプリング周期で前記電気出力の値を取得し、
     前記抽出時間は、前記サンプリング周期の整数倍であり、ここで、整数倍は2倍以上であり、
     前記記憶部は、前記フィルタ部からの複数の基準値それぞれを、前記サンプリング周期で設定される対応する時刻情報に割り当てて記憶する
     ことを特徴とする請求項1記載の異常監視システム。
    The data acquisition interface acquires the value of the electrical output at a predetermined sampling period;
    The extraction time is an integral multiple of the sampling period, where the integral multiple is two or more times,
    The abnormality monitoring system according to claim 1, wherein the storage unit assigns and stores each of a plurality of reference values from the filter unit to corresponding time information set in the sampling period.
  3.  前記記憶部は、前記データ取得インタフェースから前記計算部を介して得られる複数日分の電気出力の値から前記フィルタ部が抽出した複数の電気出力の値それぞれを、1日における対応する時刻情報に割り当てて記憶している
     ことを特徴とする請求項2記載の異常監視システム。
    The storage unit converts each of the plurality of electrical output values extracted by the filter unit from the electrical output values for a plurality of days obtained from the data acquisition interface via the calculation unit into corresponding time information for one day. The abnormality monitoring system according to claim 2, wherein the abnormality monitoring system is assigned and stored.
  4.  前記監視部は、異なる日の同時刻について前記フィルタ部が複数の電気出力の値を抽出した場合に、前記同時刻について抽出された前記複数の電気出力の値のうちの最大値を、対応する時刻の基準値として前記記憶部に記憶させる選択部を備える
     ことを特徴とする請求項3記載の異常監視システム。
    The monitoring unit corresponds to a maximum value among the plurality of electrical output values extracted for the same time when the filter unit extracts a plurality of electrical output values for the same time on different days. The abnormality monitoring system according to claim 3, further comprising a selection unit that is stored in the storage unit as a time reference value.
  5.  前記フィルタ部は、すでに抽出した前記平均変化率を、対応する標準変化率と再度比較し、すでに抽出した前記平均変化率のうち、対応する時刻の許容範囲内にある平均変化率を抽出する反復処理を1回以上繰り返すように構成されている
     ことを特徴とする請求項1~4のいずれか1項に記載の異常監視システム。
    The filter unit compares the already extracted average rate of change with a corresponding standard rate of change again, and extracts an average rate of change that is within an allowable range of the corresponding time among the already extracted average rate of change. The abnormality monitoring system according to any one of claims 1 to 4, wherein the process is configured to be repeated one or more times.
  6.  前記フィルタ部は、前記反復処理を1回行うたびに前記許容範囲を狭めるように構成される
     ことを特徴とする請求項5記載の異常監視システム。
    The abnormality monitoring system according to claim 5, wherein the filter unit is configured to narrow the allowable range each time the iterative process is performed once.
  7.  前記標準変化率は、複数日を含むように設定された区分期間ごとに設定されていることを特徴とする請求項1~6のいずれか1項に記載の異常監視システム。 The abnormality monitoring system according to any one of claims 1 to 6, wherein the standard change rate is set for each segment period set to include a plurality of days.
  8.  コンピュータを、請求項1~7のいずれか1項に記載の異常監視システムとして機能させることを特徴とするプログラム。 A program for causing a computer to function as the abnormality monitoring system according to any one of claims 1 to 7.
PCT/JP2016/002068 2015-04-17 2016-04-15 Abnormality monitoring system and program WO2016166992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015085391A JP2016208606A (en) 2015-04-17 2015-04-17 Abnormality monitoring device and program
JP2015-085391 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016166992A1 true WO2016166992A1 (en) 2016-10-20

Family

ID=57126739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002068 WO2016166992A1 (en) 2015-04-17 2016-04-15 Abnormality monitoring system and program

Country Status (2)

Country Link
JP (1) JP2016208606A (en)
WO (1) WO2016166992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082548A (en) * 2016-11-16 2018-05-24 三菱電機株式会社 Remote monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101218B2 (en) * 2020-08-31 2022-07-14 徹 田北 Accident property prevention system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340464A (en) * 2004-05-26 2005-12-08 Sharp Corp Solar cell array diagnostic system and solar light generating system using thereof
JP2013239686A (en) * 2012-05-14 2013-11-28 Kiuchi Instrument Maintenance Corp Failure detection method and monitoring system for solar power generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340464A (en) * 2004-05-26 2005-12-08 Sharp Corp Solar cell array diagnostic system and solar light generating system using thereof
JP2013239686A (en) * 2012-05-14 2013-11-28 Kiuchi Instrument Maintenance Corp Failure detection method and monitoring system for solar power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082548A (en) * 2016-11-16 2018-05-24 三菱電機株式会社 Remote monitoring system

Also Published As

Publication number Publication date
JP2016208606A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US8290745B2 (en) Systems and methods for identifying faulty sensors within a power generation system
JP5856294B2 (en) Photovoltaic power generation monitoring method and solar power generation monitoring system used for the method
Ventura et al. Utility scale photovoltaic plant indices and models for on-line monitoring and fault detection purposes
WO2016166991A1 (en) Diagnostic system for photovoltaic power generation equipment, and program
Dhimish et al. Simultaneous fault detection algorithm for grid‐connected photovoltaic plants
KR101930969B1 (en) Automatic generation and analysis of solar cell iv curves
US10564315B2 (en) Methods for location identification of renewable energy systems
Herteleer et al. Normalised efficiency of photovoltaic systems: Going beyond the performance ratio
US10985694B2 (en) Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics
US20190140589A1 (en) Computer device and method for determining whether a solar energy panel array is abnormal
JP2017063591A (en) Solar power generation system, diagnostic method and diagnostic program of solar power generation unit
JP2014200167A (en) Power estimation device, power estimation method, and program
Mohan et al. Solar energy disaggregation using whole-house consumption signals
Chang et al. Cloud monitoring for solar plants with support vector machine based fault detection system
WO2016166992A1 (en) Abnormality monitoring system and program
US10534391B2 (en) Method for automatically associating a module to a corresponding inverter, and related module and power generation system
US20160099676A1 (en) Method and apparatus for an integrated pv curve tracer
JP5506502B2 (en) Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines
Suryono et al. Wireless sensor system for photovoltaic panel efficiency monitoring using wi-fi network
TW201727559A (en) Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount
JP2014223011A (en) Diagnostic device and diagnostic method of photovoltaic power generation unit, and photovoltaic power generation system
JP6664027B1 (en) Deterioration detection method, degradation detection system, and degradation detection device for solar cell string
KR102635460B1 (en) Method and apparatus for analyzing abnormal production based on phothovoltaic remote monitoring
WO2016034931A1 (en) Photovoltaic cell management device, photovoltaic system, and photovoltaic cell management method
JP2018092234A (en) Grasping method of solar cell characteristic and photovoltaic power generation control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779784

Country of ref document: EP

Kind code of ref document: A1