WO2016163780A1 - 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조 - Google Patents

관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조 Download PDF

Info

Publication number
WO2016163780A1
WO2016163780A1 PCT/KR2016/003660 KR2016003660W WO2016163780A1 WO 2016163780 A1 WO2016163780 A1 WO 2016163780A1 KR 2016003660 W KR2016003660 W KR 2016003660W WO 2016163780 A1 WO2016163780 A1 WO 2016163780A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
joint
worm wheel
worm
driving force
Prior art date
Application number
PCT/KR2016/003660
Other languages
English (en)
French (fr)
Inventor
우한승
나병훈
공경철
김혁배
Original Assignee
에스지메카트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스지메카트로닉스 filed Critical 에스지메카트로닉스
Priority to US15/562,899 priority Critical patent/US10751884B2/en
Publication of WO2016163780A1 publication Critical patent/WO2016163780A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/04Foot-operated control means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/024Knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0244Hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0208Compliance devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0255Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1463Special speed variation means, i.e. speed reducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1671Movement of interface, i.e. force application means rotational
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5053Control means thereof mechanically controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2203/00Additional characteristics concerning the patient
    • A61H2203/04Position of the patient
    • A61H2203/0406Standing on the feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/20Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear

Definitions

  • the present invention relates to a joint drive and the joint structure of the lower limb auxiliary robot having the same. More specifically, the present invention can reduce or adjust the mechanical friction felt by the user during use, the joint drive is designed to allow a flexible drive by the selective engagement of the gear and the joint of the lower limb auxiliary robot using the joint drive It's about structure.
  • Robots are being introduced to assist a part of the body of an acquired disabled person due to an aging population and various accidents according to an aging society.
  • the lower limb auxiliary robot for assisting the behavior of the lowered leg (leg) is a representative example.
  • Lower limb assistant robot is a robot that can provide walking torque similar to that of a normal person by providing joint torque to assist insufficient leg strength when walking a disabled person, an injured person or an elderly person.
  • Electric motors are generally used to provide joint torque of these lower limb auxiliary robots.
  • the electric motor used for the lower limb robot needs to be miniaturized.
  • a reduction gear is used for the electric motor to secure the output torque.
  • the joint driving force is assisted by the torque provided by the electric motor when walking upright, but the user moves the joint a little in a situation where the assist of the joint driving force is not necessary. Or the user who wants to change the posture has a problem that the sub-robot feels great friction that prevents the movement of the joint according to the user's will.
  • the lower leg auxiliary robot needs to be reduced in mechanical friction of the lower leg auxiliary robot in order to be driven in response to the wearer's situation to ensure the flexibility of the wearer's behavior.
  • the reduction of the mechanical friction to provide sufficient joint driving force and the flexibility of the user's behavior is somewhat contrary to the purpose or function, but there is a great need.
  • the present invention provides a joint actuator capable of reducing or adjusting mechanical friction that may occur in the joint portion of the lower limb auxiliary robot by adding an elastic component and a joint structure of the lower limb auxiliary robot including the joint driver.
  • the task is to solve the problem.
  • an object of the present invention is to provide a joint driver capable of selectively engaging a gear part to improve the degree of freedom of movement of the lower limb joint robot and a joint structure of the lower limb auxiliary robot including the joint driver.
  • the present invention is a motor, the first gear portion for changing the direction of the rotational driving force provided by the motor, decelerating to increase the rotational driving force, the amount of torsional deformation by the driving force provided from the first gear portion
  • the spring member and the second gear portion for transmitting the rotational driving force in accordance with the amount of torsional deformation of the spring member to drive the joint to be driven, wherein the first gear portion to the worm gear and the worm gear mounted on the rotating shaft of the motor
  • a worm wheel gear having a driving shaft that is engaged with and perpendicular to the rotation axis of the motor, wherein the articulation driver is mounted in a housing having a joint structure including the driving target joint, and the first gear mounted to the motor and the rotation shaft of the motor.
  • the worm gear constituting the portion is a worm wheel gear hinged to the housing and constituting the first gear portion; It can be provided in the joint actuator, characterized in that rotatably configured around the hinged position to be in close engagement or spaced apart to release the engagement.
  • the second gear part may include at least one spur gear, and the driving shaft of the spur gear constituting the second gear part is disposed in line with the driving shaft of the worm wheel gear constituting the first gear part. Torsionally deformed by the rotational driving force provided by the worm wheel gear constituting the first gear portion, a rotational driving force proportional to the amount of torsional deformation of the spring member may be transmitted to the spur gear constituting the second gear portion.
  • the motor and the worm gear when the motor and the worm gear is rotated to approach the worm wheel gear, the worm gear and the worm wheel gear is in an engaged state, when the motor and the worm gear is rotated to be spaced apart from the worm wheel gear, the worm gear and the The worm wheel gear can be disengaged.
  • the present invention includes a joint unit described above and a joint unit which is hinged to the housing and driven to rotate by a rotation driving force provided from the second gear unit, wherein the joint unit is the first unit.
  • the joint unit is the first unit.
  • a rotational driving force is transmitted from the second gear part to rotate the drive, and the engagement state between the worm gear and the worm wheel gear constituting the first gear part is released. If so, it can provide a joint structure of the lower limb auxiliary robot from which the rotational driving force is blocked from the second gear portion.
  • the joint unit is provided with a sprocket gear
  • the sprocket gear may be rotationally driven by a driving force transmitted to the spur gear constituting the second gear portion.
  • the sprocket gear constituting the joint unit may be connected via a spur gear constituting the second gear portion and at least one auxiliary gear.
  • the first gear unit may include a worm gear cover for positioning the worm gear inward and a worm wheel gear cover for positioning the worm wheel gear inward.
  • the worm gear cover may be configured to maintain an engagement state between the worm gear and the worm wheel gear.
  • the worm wheel gear cover may include a latch that can be selectively fastened, and may be elastically supported to maintain an engagement state between the worm gear and the worm wheel gear.
  • the worm wheel gear cover may include an anti-loosening portion having an inclined surface inclined in a direction to prevent the latching state of the latch fastened to the worm wheel gear cover from being released.
  • the worm wheel gear cover may be provided with a protrusion preventing portion for preventing the latch is released from the worm wheel gear cover is fastened to the worm wheel gear cover.
  • an elastic body is applied between a plurality of gears constituting the joint driver to transfer the driving force provided from the motor to the joint part through the elastic body. It is possible to control artificially to reduce or adjust the mechanical friction as compared to the power transmission system in which the gears are engaged with each other.
  • the wearer's flexible behavior is possible by being precisely driven in response to the arbitrary movement of the wearer or the interaction with the external environment. can do.
  • the joint structure of the joint driver and the lower limb auxiliary robot provided with the joint driver according to the present invention by selectively applying an elastic body having a different stiffness for each type, having a different rotational force depending on the device used and the user's state It can be applied to the joint actuator more flexibly.
  • the wearer's lower limb auxiliary robot further increases the freedom of movement of the wearer. Can be used more flexibly.
  • FIG. 1 shows an example of wearing the lower limb auxiliary robot using a joint actuator.
  • FIG 2 schematically illustrates another joint actuator in an embodiment of the present invention.
  • FIG 3 shows a perspective view of a joint actuator according to an embodiment of the present invention.
  • Figure 4 shows an exploded perspective view of another joint actuator in an embodiment of the present invention.
  • FIG. 5 illustrates a joint structure to which a joint actuator is applied according to an embodiment of the present invention.
  • Figure 6 shows the engagement and disengagement of the first gear portion in the joint drive according to an embodiment of the present invention.
  • FIG. 7 illustrates a joint driver and a joint unit connected to the joint driver according to an embodiment of the present invention.
  • Figure 8 is an exploded perspective view of the joint structure of the lower limb auxiliary robot provided with a joint actuator according to an embodiment of the present invention.
  • Figure 9 illustrates the engagement and release of the first gear portion in the joint drive according to an embodiment of the present invention.
  • FIG 10 is a view illustrating a joint driver in which the first gear part is disengaged from the joint driver according to an embodiment of the present invention.
  • FIG. 11 illustrates the operation of a sensor switch in accordance with one embodiment of the present invention.
  • the present invention relates to a joint structure of the joint and the lower limb auxiliary robot provided with the joint driver, prior to the detailed description, to assist in the understanding of the present invention, looks at the lower limb auxiliary robot provided with a joint driver.
  • FIG. 1 shows an example of wearing the lower limb auxiliary robot using a joint actuator.
  • the lower limb auxiliary robot 1000 having the joint driver 200 is provided at the hip joint or the knee joint among the joints included in the lower body of the human body, respectively, to provide the rotational driving force to the hip joint or the knee joint 200. It may include, and may include a drive unit 100 having a battery and a controller for providing power to the joint driver 200.
  • the joint driver 200 may be applied to only one joint.
  • the joint driver 200 is configured to provide rotational torque of each joint when the user of the lower limb auxiliary robot 1000 walks, and is provided to the joint driver 200 by receiving power from the battery 100.
  • a motor or the like may be used to provide rotational torque of the joint.
  • the rotational driving force provided from the joint driver 200 may rotate the skeletal frame 400.
  • the skeletal frame 400 may serve to connect the joints, rotate the devices connected to the lower part by the rotation torque, and support a user who uses the lower limb auxiliary robot 1000 from the ground.
  • the lower limb auxiliary robot 1000 may be designed to have a structure similar to a joint or skeletal structure of the lower body of a person.
  • the joint driver 200 does not need to be provided at each joint part of the lower body of the person, and in some cases, only a part of the hip joint or the knee joint part of the lower limb auxiliary robot 1000 is the joint driver 200. It may be provided as described above.
  • the lower limb auxiliary robot 1000 is a device that assists the lower body behavior of a person, and the lower limb auxiliary robot 1000 is worn and used by a user who uses the lower limb auxiliary robot 1000, and thus the interaction with the user is very high. It is important.
  • the lower limb auxiliary robot 1000 it is very important to provide sufficient rotational driving force to the user to provide sufficient force to the lower body, but should also allow a certain range of flexibility to the user.
  • the joint driver 200 constituting the lower limb auxiliary robot 1000 serves to transmit a rotational driving force to the lower limb auxiliary robot 1000, and an electric motor may be mainly used as a power source to transmit sufficient rotational driving force. .
  • the joint driver 200 using the electric motor may employ a deceleration structure for miniaturization and high output of the joint driver 200. In addition to contributing to the miniaturization of the lower limb auxiliary robot 1000, it is possible to provide large rotational driving force to avoid volume.
  • the joint drive 200 employing the deceleration structure as described above is rotated by a plurality of gears to be rotated to transmit a rotational driving force, the joint drive 200 may interfere with a user's behavior flexibility due to mechanical friction resulting from the plurality of gears that are engaged and rotated. Acts as an element
  • FIG. 2 schematically illustrates a joint actuator according to an embodiment of the present invention.
  • the joint driver 200 includes a motor 210 and a first gear unit that greatly changes the direction of the rotation driving force provided by the motor 210 and reduces and increases the rotation driving force. 220 and the spring member 270 to determine the amount of torsional deformation due to the driving force provided from the first gear unit 220 and the rotational driving force is transmitted according to the amount of torsional deformation of the spring member 270 to drive the drive target joint.
  • a second gear unit 290 may be included.
  • the joint driver 200 is a component that generates and transmits a rotational driving force provided from the motor 210.
  • the joint driver 200 according to the present invention may be applied to any device requiring a rotational driving force, but may be used as a driver that is applied to a body assist robot to reduce friction felt by a user.
  • the joint driver 200 may maximize the rotational driving force by employing a deceleration structure for adjusting the gear ratio.
  • the first gear unit 220 is engaged with the worm gear 230 and the worm gear 230 mounted on the motor shaft 211 of the motor 210 and has a driving shaft perpendicular to the rotation axis of the motor 210. It may be composed of a worm wheel gear 250, the worm gear 230 and the worm wheel gear 250 is rotated by meshing with the rotation axis perpendicular to each other to change the direction of the rotational driving force provided from the motor 210 and at the same time the rotation thereof Driving force can be increased.
  • the rotational driving force can be increased to obtain sufficient rotational driving force according to the design.
  • the large frictional force between the gears generated thereby generates high mechanical friction, which may make the user's movement itself impossible.
  • the joint driver 200 may be provided with the spring member 270 to reduce or adjust the mechanical friction as described above.
  • the spring member 270 is torsionally deformed by the rotational driving force provided by the worm wheel gear 250 constituting the first gear unit 220, and the rotational driving force proportional to the amount of torsional deformation of the spring member 270 is increased. It may be transmitted to the second gear unit 290.
  • the transmission of the rotational driving force through the spring member 270 transmits the rotational driving force through the elastic force according to the amount of torsional deformation of the spring, unlike the transmission method of the rotational driving force by the rotation of the meshed gear, which is a conventional method, according to the user's situation
  • the mechanical friction of the joint actuator can be eliminated or reduced in such a way that the torsional strain is removed by the motor.
  • the lower limb auxiliary robot employing the joint structure with the joint driver according to the present invention drives the motor to remove the amount of torsional deformation of the spring member of the joint driver according to the movement or posture of the user, such that the user does not walk.
  • a method of driving a motor may be used to allow a certain amount of movement of the user. I'll explain more about this later.
  • the second gear part 290 that receives the rotational driving force through the spring member 270 may include at least one spur gear 290.
  • the driving shaft of the spur gear 290 constituting the second gear unit 290 may be disposed in a line with the driving shaft of the worm wheel gear 250 constituting the first gear unit 220. Therefore, the spur gear 290 may receive a rotational driving force from the spring member 270 to rotate in the same direction on the same drive shaft as the worm wheel gear 250.
  • the spur gear 290 is a gear for transmitting a rotational driving force resulting from the motor 210 to the output side.
  • only one spur gear 290 is provided.
  • a plurality of joint drivers 200 may be provided in order to adjust the gear ratio to the size of the rotation driving force required by the device and the device to which the joint driver 200 is applied.
  • the spur gear 290 which is rotated by receiving the rotational driving force from the spring member 270 is directly connected to the driving target joint on the output side or connected to another spur gear in the middle to drive the driving target joint. Can be.
  • Figure 3 shows a perspective view of a joint driver according to an embodiment of the present invention
  • Figure 4 shows an exploded perspective view of another joint driver in an embodiment of the present invention.
  • the motor 210 is provided with a motor shaft 211 protruding from one end thereof, and the motor shaft 211 is derived from the motor 210. It can be rotated by the rotational driving force.
  • the motor shaft 211 may be coupled to the worm gear 230 constituting the first gear unit 220, the worm gear 230 is rotated by the rotation of the motor shaft 211 to the motor 210 ) Can receive rotational driving force.
  • the worm gear 230 and the worm wheel gear 250 constituting the first gear unit 220 may be mounted in a cover for receiving them.
  • the worm gear 230 may be located in the worm gear cover 240.
  • Components constituting the worm gear cover 240 and their coupling structure are as follows.
  • the motor holder 241 which is the lowest component of the worm gear cover 240, is penetrated by the motor shaft 211 of the motor 210 at an upper portion of the motor 210 to be positioned below the worm gear 230.
  • the upper portion of the worm gear 230 may be provided with a pin holder 242 which is positioned so that the end of the worm gear 230 connected to the motor shaft 211 provided in the motor 210 penetrates.
  • the motor holder 241 and the pin holder 242 may be connected through the side member 246. Accordingly, the motor holder 241 and the end of the worm gear 230 positioned in the upper portion of the motor 210 in the state in which the motor shaft 211 provided in the motor 210 is penetrated.
  • the pin holder 242 positioned above the worm gear 230 is connected to the side member 261 so that the worm gear 230 is supported by the motor holder 241 and the pin holder 242. Can be located.
  • the worm gear 230 may be stably rotated by receiving a rotational driving force from the motor 210.
  • the worm gear 230 rotates while penetrating the pin holder 242
  • the worm gear 230 may be rotated while passing through the pin holder 242 with the worm gear bearing 231 therebetween.
  • the pin holder 242 may be fixed by penetrating the pin 245 in an axis parallel to the worm gear 230.
  • the pin 245 may be connected to the motor holder 241 through. That is, the pin 245 may be provided in parallel with the worm gear 230 while being connected to the pin holder 242 and the motor holter 241 at the same time.
  • the pin 245 may be hinged to the hinge bracket 244. Therefore, the joint driver 200 may be rotated on the object to which the joint driver 200 is mounted through the hinge bracket 244 where the pin 245 and the pin 245 are hinged.
  • the hinge bracket 244 to which the pin 245 is hinged is mounted and fixed to the object, such that the worm gear connected to the pin holder 242 and the motor holder 245 to which the pin 245 is connected.
  • the motor 210 coupled to the 230 and the motor holder 241 and positioned below the motor holder 241 may rotate based on the hinge bracket 244. Detailed description thereof will be described later.
  • the worm wheel gear 250 constituting the first gear unit 220 may also be rotatably coupled to the worm wheel gear cover 260.
  • the wheel wheel gear cover 260 may have a wheel wheel guide 261 in which the worm wheel gear 250 is rotatably connected to the inside thereof, and the worm wheel gear 250 may have a worm wheel gear bearing 251. It may be coupled to the worm wheel gear guide 261.
  • the worm wheel cover 261 may include the worm gear cover 240 such that the worm wheel gear 250 connected to the worm wheel gear guide 261 may be engaged with the worm gear 230 located at the worm gear cover 240. It can be designed to communicate with each other.
  • the worm wheel gear cover 260 may be provided with a worm wheel protection member 262 on a surface opposite to the surface in communication with the shock gear cover 240 to protect the worm wheel gear 250 from the outside.
  • the worm gear cover 240 Similar to the worm wheel protection member 262 provided on the worm wheel gear cover 260, the worm gear cover 240 also includes a worm gear protection member 243 on the opposite surface communicating with the worm wheel gear cover 260. The 230 can be protected from the outside.
  • the spring member 270 may be coupled to the worm wheel gear 250 constituting the first gear unit 220.
  • the spring member 270 may have a cylindrical shape, and one end of the spring member 270 may be coupled to the worm wheel gear 250 to be disposed in line with the driving shaft of the worm wheel gear 250.
  • a spur gear 270 constituting the second gear part 290 may be coupled to the other end of the spring member 270 having one end coupled to the worm wheel gear 250.
  • the spring member 270 may include a connecting shaft 290 inserted into an inner circumferential surface in order to stably position the worm wheel gear 250 and the spur gear 290 on the same drive shaft line.
  • connection shaft 290 is inserted into the inner circumferential surface of the spring member 270 coupled to the worm wheel gear 250, and the spring member 270 is the spur gear 290 via the connecting shaft 290. Can be connected to.
  • connection shaft 290 is not an essential configuration in the joint driver 200 according to an embodiment of the present invention and may be omitted.
  • the joint driver 200 has a direction of rotational driving force through a pair of first gear parts 220 in which rotational driving forces originating from the motor 210 have rotational axes perpendicular to each other. Is changed and decelerated and transmitted to the spring member 270, and the spring member 270 is torsionally deformed by the transmitted rotational driving force, and the restoring force of the spring member 270 due to the torsional deformation is at least as a driving force.
  • the second gear unit 290 is provided with one spur gear 290.
  • the plurality of gears constituting the joint driver 200 is not limited to the above-described configuration and structure, and the plurality of gears are provided to enable transmission of rotational driving force through the plurality of gears, and at least one of the plurality of gears. If the spring member 270 is provided between the places to the transmission of the rotational driving force through the torsional deformation of the spring member 270 may be configured in any form.
  • the plurality of gears 230, 250, and 290 constituting the joint driver 270 may be provided less or more depending on the purpose of the object to which the joint driver 200 is applied and the required rotational driving force, and the interconnection relationship between the gears.
  • the spring member 270 is further provided according to the number of the plurality of gears provided in the joint driver 200. Can be connected between the plurality of gears.
  • the spring member 270 may be torsionally deformed while transmitting the rotational drive provided by the motor 210.
  • the joint driver 200 measures the amount of torsional deformation of the spring member 270 and torsionally. By controlling the motor 210 according to the deformation amount, the torsional deformation amount of the spring member 270 may be compensated.
  • the motor 210 can remove or adjust the mechanical friction felt by the user by rotating the spring member 270 so as to compensate for the torsional deformation of the spring member 270 to restore the original state again.
  • the spring member 270 may be provided in consideration of the rigidity before the spring member 270 is adopted as a component of the joint driver 200, because the rigidity of the spring member 270 is large, the amount of torsional deformation This decrease can transmit the rotational drive force provided from the motor 210 to the output side well, but in using the articulation driver 200, the output of the rotational drive force cannot be flexibly controlled, and the spring member 270 If the stiffness is small, since the rotational driving force that the articulation joint driver 200 can output may be reduced, it may be adopted to have a suitable rigidity.
  • the spring member 270 is a component that plays the most important role in the articulation actuator 200 configured according to the present invention, and is generated due to the meshing of the gear introduced into the articulation driver that was previously designed only through the meshing of the gears. It can provide an effect that can reduce the frictional force that can be.
  • the spring member 270 is rotated by an external condition that may be generated at the output side of the joint driver 200 separately from the rotation by the motor 210 that provides the rotational driving force to the joint driver 200. It is possible to enable a flexible drive corresponding to this.
  • the output side that can be rotated by being connected to the second gear unit 290 of the joint driver 200 is rotated provided by the joint driver 200 due to interaction with the ground, a wall, or an external object.
  • the rotation may be made separately from the rotation due to the driving force.
  • the spring member 290 connected to the second gear part 290 may be torsionally deformed by the rotation of the output side. Accordingly, the articulation actuator 200 may be torsion of the spring member 290. The spring member 290 may be restored by rotating the motor 210 to compensate for deformation.
  • the joint driver 200 may be rotated by providing a rotational driving force to the output side and simultaneously driven in response to a separate rotation generated at the output side, thereby more flexibly corresponding to the rotation of the output side.
  • the joint driver 200 since the joint driver 200 includes the spring member 270, the friction corresponding to the rotational output that may be generated in the joint driver 200 may be reduced, and the external side generated on the output side may be reduced. We have also discussed how to react flexibly in rotation by interaction with.
  • the output side connected to the joint driver 200 may be arbitrarily interacted with the outside. That is, when the joint driver 200 is applied and used, for example, in the case of the lower limb auxiliary robot 1000 as illustrated in FIG. 1, a user who uses the lower limb auxiliary robot 1000 may use the joint driving driver. At the same time as receiving the rotational driving force from the 200, and at the same time, the movement of the joint irrelevant to the rotational driving force may be required.
  • the joint driver 200 compensates the torsional deformation of the spring member 270 in response to the user's intention, thereby allowing the user to behave according to the intention.
  • the motor 210 that provides the rotational driving force to the joint driver 200 must operate, and accordingly, the motor 210 must operate at all times, so that the power can be efficiently used when using a rechargeable battery. Can not use it.
  • FIG. 5 illustrates a joint structure to which a joint driver is applied according to an embodiment of the present invention
  • FIG. 6 illustrates engagement and release of the first gear unit in the joint driver according to an embodiment of the present invention.
  • Joint driver 200 is mounted on the housing 300 of the joint structure including the drive target joint, the motor 210 and the rotating shaft of the motor constituting the joint driver 200
  • the worm gear 230 constituting the first gear unit 220 mounted to the hinge is coupled to the housing, the worm gear 230 and the worm wheel gear 250 constituting the first gear unit 220 is Optionally the engagement state can be released.
  • the joint driver 200 may be attached and fixed at one side of the housing 300.
  • the worm wheel gear case 260 is attached to protrude on one side of the housing 300, and thus, the worm wheel gear 250 may also be provided at a position protruding from the housing 300.
  • the spur gear constituting the spring member 270 connected to the worm wheel gear 250 and the second gear portion 290 connected to the spring member 270 provided at a position protruding from the housing 300.
  • the 290 may be provided to be positioned toward the inner side of the housing 300 from the worm wheel gear 250 positioned outside one side of the housing 300.
  • the spur gear 290 constituting the second gear unit 290 is located inside the housing 300 is to be connected to the drive target joint to receive and output the rotational driving force provided from the joint driver 200. Can be.
  • the worm gear 230 constituting the motor 210 and the first gear unit 220 mounted on the rotating shaft of the motor may be provided by being hinged on an outer surface of the housing 300.
  • the worm gear 230 may be provided in the worm gear case 240 and the worm gear case 240 may protrude from one side of the housing.
  • the housing case 240 may be hinged in the housing 300 through the hanji bracket 244 and the pin 245 described above, and is provided on one outer side of the housing 300.
  • the worm wheel gear 250 constituting the first gear 220 may be provided in close contact with the worm wheel gear case 260 provided therein.
  • the worm gear case 240 and the worm wheel gear located inside the worm gear case 240 and the worm wheel gear case 260 due to the worm gear case 240 and the worm wheel gear case 260 provided in close contact with each other. 250 may be positioned in engagement with each other.
  • the worm gear case 240 Since the worm gear case 240 is hinged to the housing 300 through the hinge bracket 244 and the pin 245, the worm gear case 240 may rotate about the hinge coupled to the housing 300. In addition, the worm gear case 240 may be rotated to approach or move away from the worm wheel gear case 260.
  • the joint driver is mounted on the housing 300 of the joint structure including the drive target joint, the worm gear 230 constituting the motor and the first gear unit mounted to the rotation shaft of the motor is the housing 300 It is hinged to the side) may be in close engagement with the worm wheel gear 250 constituting the first gear portion, or may be rotated about the hinge coupled to be spaced apart to release the engagement.
  • the worm gear 230 constituting the first gear unit 220 mounted on the motor 210 and the rotating shaft of the motor 210 has a first hinge centering around the housing 300.
  • the gear unit 220 may be rotated to be in close contact with the worm wheel gear 250 constituting the gear unit 220, or may be spaced apart from each other to release the engaged state.
  • the worm gear 230 and the worm wheel gear 250 are in a state in which the worm gear 230 is in close contact with the worm wheel gear 250. ) Are in engagement with each other. Referring to FIGS. 5 (b) and 6 (b), the worm gear 230 is rotated away from the worm wheel gear 250. 230 and the worm wheel gear 250 may be in the disengaged state.
  • the joint driver 200 may selectively determine the interlocking state of the first gear unit 220, when the rotational driving force derived from the motor 210 is unnecessary or the battery may be unnecessary.
  • the interlocking states of the first gear unit 220 may be selectively released. Accordingly, power consumption may be reduced by selectively controlling the use of the motor 210.
  • the method of releasing the engagement state between the worm gear 230 and the worm wheel gear 250 is to completely separate the driving force transmission path, so as to remove the torsional deformation of the spring member in a more fundamental manner than the method of adjusting the mechanical friction.
  • the mechanical friction felt by the user can be eliminated.
  • the spring member 270 may realize the output of the flexible rotational driving force with reduced mechanical friction, and the rotational driving force by the motor 210 may not be required or may be generated.
  • the joint driver 200 may be more flexibly used because the interlocking relationship of the first joint member 220 may be released.
  • joint driver 200 mentioned below is the same as the joint driver 200 described above, a detailed description thereof may be omitted, and other components previously mentioned in addition to the joint driver 200 may be omitted. If it is mentioned below, since the corresponding component is the same as the above-described components, when no further explanation is required, detailed description of the corresponding component may be omitted.
  • FIG. 1 which shows an example of wearing a lower leg auxiliary robot using a joint driver, may be described as an example in which a joint structure of a lower leg auxiliary robot having a joint driver according to the present invention is applied.
  • Figure 7 shows a joint drive and a joint unit connected to the joint drive according to an embodiment of the present invention
  • Figure 8 is an exploded perspective view of the joint structure of the lower limb auxiliary robot equipped with a joint drive according to an embodiment of the present invention .
  • the joint structure of the lower limb auxiliary robot 1000 having the joint driver is the joint driver 200 and the housing. It may include a joint unit 400 hinged to 300 and rotated by a rotation driving force provided from the second gear unit 290.
  • the joint unit 400 corresponding to the joint of the lower limb auxiliary robot 1000 includes a sprocket gear 410 having a plurality of teeth, and the sprocket gear 410 having the plurality of teeth is formed through the sprocket gear 410. 2 may be engaged with the spur gear 290 constituting the gear 290.
  • Sprocket gear 410 having a plurality of teeth provided in the joint unit 400 is provided as a separate semi-circular gear as shown in Figure 7 is connected to the spur gear 290 of the joint unit 400 It may be in the form of being engaged with the spur gear 290 by being coupled in the portion, and, a plurality of protruding grooves are formed in the portion of the joint unit 400 is coupled to the spur gear 290, the plurality of Protruding grooves may be configured to couple with the spur gear 290.
  • the joint unit 400 is directly with the spur gear 290 constituting the second gear unit 290 through the sprocket gear 410 having the plurality of teeth as shown in FIG. It may be engaged with each other, but may be connected via at least one auxiliary gear (not shown) positioned between the joint unit 400 and the spur gear 290.
  • At least one auxiliary gear 420 is positioned between the sprocket gear 410 having a plurality of teeth provided in the joint unit 400 and the spur gear 290, and the at least one auxiliary gear ( 420 is engaged with the sprocket gear 410 and the spur gear 290 having a plurality of teeth provided in the joint unit 400 or connected in a straight line on the same drive shaft line, provided in the joint unit 400
  • the sprocket gear 410 having a plurality of teeth and the spur gear 290 can be connected.
  • the joint unit 400 when the worm gear 230 and the worm wheel gear 250 of the first gear unit 220 is engaged with each other, the rotational driving force from the second gear 290
  • the rotation driving force may be blocked from the second gear to not rotate.
  • the worm gear 230 as described above, the worm gear cover 240 including the worm gear 230 therein is rotated by hinged on one side of the housing, close to or away from the worm wheel gear cover 260 Accordingly, the first gear unit 220 may be engaged with or disengaged from the worm wheel gear 250 that constitutes the first gear unit 220.
  • the first gear unit 220 as seen in the movement path of the rotational driving force resulting from the motor 210 in the joint driver 200 is applied to the joint structure of the lower limb auxiliary robot having the joint driver 200. If the worm gear 230 and the worm wheel gear 250 constituting the worm is separated from each other and the engagement state is released, the rotational driving force transmitted from the motor 210 to the worm gear 230 is transmitted to the worm wheel gear 250. Therefore, since the driving force is not transmitted to the spur gear 290 constituting the second gear portion 290, which can be referred to as the output side of the joint driver 200, the spur gear 290 The joint unit 400 connected to) does not receive the rotational driving force.
  • the joint structure of the lower limb auxiliary robot provided with the joint driver 200 when the user using the lower limb auxiliary robot 1000 is walking, standing upright, or in any other situation, The situation does not require the rotational driving force provided from the joint driver 200, for example, when sitting on a chair or the floor to rest, or the joint unit 400 corresponding to the joint of the lower support robot 1000
  • the user of the lower limb auxiliary robot 1000 may release the combined state of the worm gear 230 and the worm wheel gear 250 constituting the first gear unit 220.
  • a user using the lower limb auxiliary robot 1000 may have more freedom in using the lower limb auxiliary robot 1000.
  • the worm gear cover 240 is elastically attached to the worm wheel gear cover 260 to enable a user using the lower limb auxiliary robot 1000 to selectively release the first gear unit 220.
  • a fastening clasp 248 may be provided.
  • the latch 248 when the latch 248 is fastened to the worm wheel gear cover 260 by the user, the worm gear 230 and the worm wheel gear 250 constituting the first gear unit 220 may be engaged. In addition, when the latch 248 is released from the worm wheel gear cover 260, the worm gear 230 and the worm wheel gear 250 constituting the first gear unit 220 may be engaged with each other. Can be
  • the worm gear cover 240 on which the clasp 248 is mounted may be in close contact with the worm wheel gear cover 260.
  • the worm gear 230 located inside the worm gear cover 240 and the worm wheel gear 250 located inside the worm wheel gear cover 260 may be engaged with each other, and the latch 248 may be in the worm wheel gear.
  • the worm gear cover 240 mounted with the latch 248 may be moved away from the worm wheel gear cover 260, so that the worm gear cover 240 is located inside the worm gear cover 240.
  • the worm gear 230 may be in a state in which engagement can be released from the worm wheel gear 250 positioned in the worm wheel gear cover 260.
  • Figure 10 is a joint in which the first gear portion is disengaged in the joint drive according to an embodiment of the present invention Show the driver.
  • the first gear unit constituting the joint drive according to the present invention includes a worm gear cover for positioning the worm gear inward and a worm wheel gear cover for positioning the worm wheel gear inward, wherein the worm gear cover is the worm gear and the worm wheel
  • the worm wheel gear cover may be provided with a latch capable of being selectively fastened and elastically supported to maintain the meshing state of the worm gear and the worm wheel gear.
  • the clasp 248 is fastened or fastened to the worm wheel gear cover 260 to determine the engagement state of the worm gear 230 and the worm wheel gear 250 only by the user's selection of the lower limb auxiliary robot 1000. It must be released.
  • the worm wheel gear cover is inclined in a direction to prevent the release state of the latch 248 that prevents the fastening state of the latch fastened to the worm wheel gear cover 260 is automatically released. It may be provided with an anti-loosening portion 263, and also, the projection shape for preventing the latch 248 is released from the worm wheel gear cover 260 is automatically fastened to the worm wheel gear cover 260.
  • the fastening prevention portion 264 of the may be provided.
  • the anti-loosening portion 263 may be provided in an inclined form in a direction that prevents the locking state from being released where the end of the clasp 248 is fastened in the worm wheel gear cover 260, or a protruding protrusion shape. 9 may be provided, but an example in which the inclined surface is applied is shown.
  • the latch 248 when the latch 248 is mounted on the worm wheel gear cover 260 by the intention of the user, the latch 248 is caught and fixed to the release preventing portion 263, thereby preventing the latch 248 from being automatically released without the user's intention. have.
  • the fastening prevention portion 264 is an inclined surface or protruding protrusion before the position of the end of the latch 248 is fastened to the worm wheel gear cover 260 of the path to enter to be fastened to the worm wheel gear cover 260.
  • the clasp 248 may be caught by the fastening prevention part 264 to automatically engage the worm wheel gear cover 260. It can prevent it from tightening.
  • 9 illustrates an example in which the fastening prevention part 264 is configured in the form of a protrusion.
  • the clasp 248 allows the user of the lower limb auxiliary robot 1000 to determine the selective engagement state of the first gear unit 220, and at the same time, the first gear unit that is engaged or disengaged. By maintaining the state of 220, it is provided for the safety of the user and the ease of operation of the joint driver 200.
  • the motor 210 that provides the rotational driving force to the joint driver 200 may continue to operate.
  • the worm wheel gear cover 260 may include a sensor switch that detects detachment of the latch 248 at a position at which the latch is fastened to the worm wheel gear 260 cover.
  • FIG. 11 illustrates the operation of a sensor switch in accordance with one embodiment of the present invention.
  • the sensor switch 265 may detect the fastening of the latch when the latch is fastened to the worm wheel gear cover 260 to operate the motor 210, and the latch 248 may cover the worm wheel gear cover ( When the latch 248 is released, the latch 248 may detect that the latch is released from the worm wheel gear cover 260 to stop the operation of the motor.
  • the sensor switch 265 may be used as long as it is a sensor of a kind capable of detecting whether the latch 248 is fastened, such as the infrared sensor, the proximity sensor, and the electrostatic sensor.
  • the sensor switch 265 may control the operation of the motor 210 according to the need of the rotational driving force in using the lower auxiliary robot 1000, and thus, the power switch 265 may prevent the loss of power. have.
  • the sensor switch 265 is turned on when the latch 248 is fastened to the worm wheel gear cover 260, and is turned off when the latch 248 is released from the worm wheel gear cover 260. Can be. Therefore, a user using the lower limb auxiliary robot 1000 can easily check the driving state of the lower limb auxiliary robot 1000.
  • the joint structure of the joint driver and the lower limb auxiliary robot having the same according to the present invention is applied to the joint between the plurality of gears constituting the joint driver to transfer the driving force provided from the motor to the joint through the elastic body existing It is possible to control artificially to reduce or adjust the mechanical friction compared to the power transmission method of gears that are engaged with each other, and to be precisely driven in response to the arbitrary movement of the wearer or the interaction with the external environment to enable the wearer's flexible behavior. Can be.
  • the joint structure of the joint driver and the lower limb auxiliary robot provided with the joint driver according to the present invention by selectively applying an elastic body having a different stiffness for each type, having a different rotational force depending on the device used and the user's state It can be applied flexibly to the joint driver, and by using the joint driver designed to selectively engage gears, the wearer's lower limbs can be used more flexibly by increasing the freedom of movement of the wearer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)
  • Toys (AREA)
  • Gear Transmission (AREA)

Abstract

본 발명은 사용 중 사용자가 느낄 수 있는 기계적 마찰를 저감 또는 조절할 수 있으며, 기어부의 선택적 맞물림이 가능하여 유연한 구동이 가능하도록 설계된 관절 구동기 및 관절 구동기를 사용하는 하지 보조로봇의 관절구조에 관한 것이다.

Description

관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조
본 발명은 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조에 관한 것이다. 보다 상세하게, 본 발명은, 사용 중 사용자가 느낄 수 있는 기계적 마찰를 저감 또는 조절할 수 있으며, 기어부의 선택적 맞물림이 가능하여 유연한 구동이 가능하도록 설계된 관절 구동기 및 상기 관절 구동기를 사용하는 하지 보조로봇의 관절구조에 관한 것이다.
고령화 사회에 따른 고령 인구 및 각종 사고 등에 따른 후천적 장애인의 신체의 일부를 보조하기 위한 로봇이 소개되고 있다.
이러한 거동기능 이상자의 거동을 돕기 위한 장치는 꾸준히 개발되고 있으며 상업화 되고 있다. 대표적인 일 예로, 기능이 저하된 하지(leg)의 거동을 보조하기 위한 하지 보조로봇이 그 대표적인 예이다.
하지 보조로봇은 장애인, 부상자 또는 노인의 직립 보행시 부족한 다리힘을 보조하기 위해 관절 토크를 제공하여 정상인의 보행과 유사한 보행을 구사할 수 있도록 돕기 위한 로봇이다. 이러한 하지 보조로봇의 관절 토크를 제공하기 위해 일반적으로 전기 모터가 사용되고 있다.
하지 보조로봇은 사용자가 착용하는 로봇이므로 하중과 부피를 줄이기 위하여, 하지 로봇에 사용되는 전기 모터는 소형화가 요구된다. 또한, 전기 모터는 출력 토크를 확보하기 위해 감속기가 사용되고 있다.
그러나, 이와 같이 전기 모터에 감속기를 사용하는 경우, 모터의 출력 토크는 기어비에 의해 증가하지만, 기어가 상호 맞물려 회전하면서 발생하는 마찰력 등의 이유로, 사용자가 느끼는 기계적 마찰 역시 작지 않다는 문제가 있다.
복수의 기어로부터 기인하는 기계적 마찰로 인하여, 상기 하지로봇을 장착함에 있어서 장착에 대한 이질감 및 거동의 불편함을 느낄 수 있기 때문이다.
즉, 상기 하지 보조로봇에 대한 상기 하지 보조로봇을 사용하는 경우 직립 보행시 전기 모터에 의하여 제공되는 토크에 의하여 관절 구동력을 보조 받지만, 관절 구동력의 보조가 필요하지 않은 상황에서는 사용자가 관절을 조금 움직이거나 자세를 변경하려는 사용자는 사용자의 의지에 따른 관절의 움직임을 방해하는 큰 마찰를 하지 보조로봇으로부터 느끼게 된다는 문제점이 있다.
따라서, 하지 보조로봇은 착용자의 상황에 대응하여 구동되어 착용자의 거동 유연성도 보장되기 위해서는 하지 보조로봇의 기계적 마찰는 저감될 필요가 있다. 그러나 충분한 관절 구동력 제공과 함께 사용자의 거동 유연성 확보를 위한 기계적 마찰 저감은 다소 상반되는 목적 또는 기능에 해당되지만 필요성이 크다.
본 발명은 탄성적인 구성요소를 추가시킴으로써 상황 또는 외부환경에 대응하여 하지 보조로봇의 관절부에 발생될 수 있는 기계적 마찰를 저감 또는 조절할 수 있는 관절 구동기 및 상기 관절 구동기를 구비하는 하지 보조로봇의 관절구조를 제공하는 것을 해결하고자 하는 과제로 한다.
또한, 본 발명은 하지 보조로봇 관절부의 움직임 자유도를 향상시킬 수 있도록 기어부의 선택적 맞물림이 가능한 관절 구동기 및 상기 관절 구동기를 구비하는 하지 보조로봇의 관절구조를 제공하는 것을 해결하고자 하는 과제로 한다.
상기 과제를 해결하기 위하여, 본 발명은 모터, 상기 모터에서 제공되는 회전 구동력의 방향을 변경하고, 감속하여 회전 구동력을 증대 제공하는 제1 기어부, 상기 제1 기어부에서 제공된 구동력에 의한 비틀림 변형량이 결정되는 스프링 부재 및, 상기 스프링 부재의 비틀림 변형량에 따라 회전 구동력이 전달되어 구동대상 관절을 구동하는 제2 기어부를 포함하고, 상기 제1 기어부는 상기 모터의 회전축에 장착된 웜기어 및 상기 웜기어에 맞물리며 상기 모터의 회전축과 수직한 구동축을 갖는 웜휠기어를 구비하며, 상기 관절 구동기는 상기 구동대상 관절을 포함하는 관절구조의 하우징에 장착되고, 상기 모터 및 상기 모터의 회전축에 장착된 상기 제1 기어부를 구성하는 웜기어는 상기 하우징에 힌지 결합되어 상기 제1 기어부를 구성하는 웜휠기어와 근접하여 맞물림 상태가 되거나, 이격되어 맞물림 상태가 해제되도록 힌지 결합된 곳을 중심으로 회전 가능하게 구성되는 것을 특징으로 하는 관절 구동기를 제공할 수 있다.
또한, 상기 제2 기어부는 적어도 하나의 스퍼기어를 구비하며, 상기 제2 기어부를 구성하는 스퍼기어의 구동축은 상기 제1 기어부를 구성하는 웜휠기어의 구동축과 일직선 상에 배치되며, 상기 스프링 부재는 상기 제1 기어부를 구성하는 웜휠기어에서 제공되는 회전 구동력에 의하여 비틀림 변형되고, 상기 스프링 부재의 비틀림 변형량에 비례하는 회전 구동력이 상기 제2 기어부를 구성하는 스퍼기어에 전달될 수 있다.
여기서, 상기 모터 및 상기 웜기어가 상기 웜휠기어와 근접하도록 회전되는 경우, 상기 웜기어와 상기 웜휠기어는 맞물림 상태가 되고, 상기 모터 및 상기 웜기어가 상기 웜휠기어와 이격되도록 회전되는 경우, 상기 웜기어와 상기 웜휠기어는 맞물림 상태가 해제될 수 있다.
또한, 상기 과제를 해결하기 위하여, 본 발명은 전술한 기재된 관절 구동기 및 상기 하우징에 힌지 결합되고 상기 제2 기어부에서 제공된 회전 구동력에 의해 회전 구동되는 관절유닛을 포함하고, 상기 관절유닛은 상기 제1 기어부를 구성하는 상기 웜기어와 상기 웜휠기어가 맞물린 맞물림 상태에서, 상기 제2 기어부로부터 회전 구동력이 전달되어 회전 구동되고, 상기 제1 기어부를 구성하는 상기 웜기어와 상기 웜휠기어의 맞물림 상태가 해제되는 경우, 상기 제2 기어부로부터 회전 구동력이 차단되는 하지 보조로봇의 관절구조를 제공할 수 있다.
여기서, 상기 관절유닛은 스프로킷 기어를 구비하며, 상기 스프로킷 기어는 상기 제2 기어부를 구성하는 스퍼기어에 전달되는 구동력으로 회전 구동될 수 있다.
또한, 상기 관절유닛을 구성하는 상기 스프로킷 기어는 상기 제2 기어부를 구성하는 스퍼기어와 적어도 하나의 보조기어를 매개로 연결될 수 있다.
그리고, 상기 제1 기어부는 상기 웜기어를 내측에 위치시키는 웜기어 커버 및 상기 웜휠기어를 내측에 위치시키는 웜휠기어 커버를 구비하며, 상기 웜기어 커버는 상기 웜기어와 상기 웜휠기어의 맞물림 상태를 유지하기 위하여 상기 웜휠기어 커버에 선택적 체결이 가능한 걸쇠를 구비하고, 상기 웜기어와 상기 웜휠기어의 맞물림 상태를 유지하도록 탄성 지지될 수 있다.
또한, 상기 웜휠기어 커버는 상기 웜휠기어 커버에 체결된 상기 걸쇠의 걸림 상태가 해제되는 것을 방지하는 방향으로 경사진 경사면 형태의 풀림 방지부를 구비할 수 있다.
또한, 상기 웜휠기어 커버는 상기 웜휠기어 커버로부터 걸림 해제된 상기 걸쇠가 상기 웜휠기어 커버에 체결되는 것을 방지하기 위한 돌기 형태의 체결 방지부를 구비할 수 있다.
본 발명에 따른 관절 구동기 및 상기 관절 구동기를 구비하는 하지 보조로봇의 관절구조에 의하면, 관절 구동기를 구성하는 복수의 기어 사이에 탄성체를 적용하여 모터로부터 제공된 구동력을 상기 탄성체를 통해 관절부로 전달시키므로 기존의 기어끼리 맞물리는 동력전달 방식에 비해 기계적 마찰를 저감 또는 조절하기 위한 인위적 제어가 가능하다.
또한, 본 발명에 따른 관절 구동기 및 상기 관절 구동기를 구비하는 하지 보조로봇의 관절구조에 의하면, 착용자의 임의적인 움직임 또는 외부 환경과의 상호작용에 대응하여 정밀하게 구동됨으로써 착용자의 유연한 거동을 가능하게 할 수 있다.
또한, 본 발명에 따른 관절 구동기 및 상기 관절 구동기를 구비하는 하지 보조로봇의 관절구조에 의하면, 종류별로 다른 강성도를 갖는 탄성체를 선택적으로 적용함으로써, 사용되는 장치 및 사용자의 상태에 따라 상이한 회전력을 갖는 관절 구동기에 더욱 유연하게 대처하여 적용할 수 있다.
또한, 본 발명에 따른 관절 구동기 및 상기 관절 구동기가 적용된 하지 보조로봇의 관절구조에 의하면, 기어부의 선택적 맞물림이 가능하도록 설계된 관절 구동기를 사용함으로써, 착용자의 움직임 자유도를 더욱 상승시킴으로 착용자가 하지 보조로봇을 더욱 유연하게 사용할 수 있다.
도 1은 관절 구동기를 사용하는 하지 보조로봇의 착용 예를 도시한다.
도 2는 본 발명의 일 실시 예에 다른 관절 구동기를 개략적으로 도시한다.
도 3은 본 발명의 일 실시예에 따른 관절 구동기의 사시도를 도시한다.
도 4는 본 발명의 일 실시예에 다른 관절 구동기의 분해 사시도를 도시한다.
도 5는 본 발명의 일 실시예에 따른 관절 구동기가 적용된 관절구조를 도시한다.
도 6은 본 발명의 일 실시예에 따른 관절 구동기에서 제1 기어부의 맞물림 및 맞물림 해제를 도시한다.
도 7은 본 발명의 일 실시예에 따른 관절 구동기 및 관절 구동기에 연결된 관절유닛을 도시한다.
도 8은 본 발명의 일 실시예에 따른 관절 구동기가 구비된 하지 보조로봇의 관절구조의 분해 사시도이다.
도 9는 본 발명의 일 실시예에 따른 관절 구동기에서 제1 기어부의 맞물림 및 맞물림의 해제를 도시한다.
도 10은 본 발명의 일 실시예에 따른 관절 구동기에서 제1 기어부의 맞물림이 해제된 관절 구동기를 도시한다.
도 11은 본 발명의 일 실시예에 따른 센서 스위치의 작동을 도시한다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시 예들에 한정되지 않고 다른 형태로 구체화될 수 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
본 발명은 관절 구동기 및 상기 관절 구동기가 구비된 하지 보조로봇의 관절구조에 관한 것으로, 이에 대한 자세한 설명에 앞서, 본 발명의 이해를 돕기 위해, 관절 구동기가 구비된 하지 보조로봇에 대해 살펴본다.
도 1은 관절 구동기를 사용하는 하지 보조로봇의 착용 예를 도시한다.
관절 구동기(200)를 구비하는 하지 보조로봇(1000)은 사람의 신체중 하체에 포함된 관절 중 고관절 또는 무릎관절에 각각 구비되어 상기 고관절 또는 무릎관절에 회전 구동력을 제공하는 상기 관절 구동기(200)를 포함할 수 있으며, 상기 관절 구동기(200)에 전력을 제공하는 배터리 및 컨트롤러를 구비하는 구동부(100)를 포함할 수 있다.
도 1에 도시된 하지 보조로봇(1000)은 고관절 및 무릎관절에 각각 관절 구동기(200)가 구비된 예를 도시하지만 어느 하나의 관절에만 관절 구동기(200)가 적용되는 것도 가능하다.
상기 관절 구동기(200)는 상기 하지 보조로봇(1000)의 사용자가 보행함에 있어 각각의 관절의 회전 토크를 제공하는 구성으로, 상기 배터리(100)로부터 전력을 공급받아 상기 관절 구동기(200)에 구비된 모터 등을 구동하여 관절의 회전 토크를 제공할 수 있다.
이어서, 상기 관절 구동기(200)로부터 제공된 회전 구동력은 골격 프레임(400)을 회전시킬 수 있다. 상기 골격 프레임(400)은 관절 사이를 연결하고 회전 토크에 의하여 그 하부에 연결된 장치들을 회전시키며 지면으로부터 상기 하지 보조로봇(1000)를 사용하는 사용자를 지지시키는 역할을 수행할 수 있다.
상기와 같이 하지 보조로봇(1000)은 사람의 하체의 관절 또는 골격 구조와 유사한 구조로 설계될 수 있다.
그러나, 상기 관절 구동기(200)는 상기 사람의 하체의 각 관절 부분에 모두 구비될 필요는 없으며, 경우에 따라서 상기 하지 보조로봇(1000)의 고관절 또는 무릎관절 부분 중 일부만 상기 관절 구동기(200)가 구비될 수 있음은 전술한 바와 같다.
상기 하지 보조로봇(1000)은 사람의 하체 거동을 보조하는 장치로서, 상기 하지 보조로봇(1000)은 상기 하지 보조로봇(1000)을 사용하는 사용자에게 착용되어 사용되므로, 사용자와의 상호관계가 매우 중요하다.
따라서, 상기 하지 보조로봇(1000)에 있어서, 사용자에게 충분한 회전 구동력을 제공하여 하체에 충분한 힘을 제공하는 것이 매우 중요하지만, 사용자에게 일정 범위의 유연성도 허용해야 한다.
상기 하지 보조로봇(1000)를 구성하는 상기 관절 구동기(200)는 상기 하지 보조로봇(1000)에 회전 구동력을 전달하는 역할을 하는데, 충분한 회전 구동력을 전달하기 위해 동력원으로서 주로 전기 모터가 사용될 수 있다. 이러한 전기 모터가 사용된 상기 관절 구동기(200)는 상기 관절 구동기(200)의 소형화 및 고출력성을 위해 감속구조가 채용될 수 있으며, 이에 따라서, 상기 감속구조가 채용된 관절 구동기(200)는 상기 하지 보조로봇(1000)의 소형화에 일조함과 더불어 부피 대피 큰 회전 구동력을 제공할 수 있다.
그러나, 상기와 같이 감속구조가 채용된 관절 구동기(200)는 복수의 기어가 맞물려 회전하여 회전 구동력이 전달되므로, 맞물려 회전하는 상기 복수의 기어로부터 기인하는 기계적 마찰로 인하여 사용자의 거동 유연성을 방해하는 요소로 작용한다.
도 2는 본 발명의 일 실시 예에 따른 관절 구동기를 개략적으로 도시한다.
본 발명의 일 실시 예에 따른 관절 구동기(200)는 크게 모터(210)와, 상기 모터(210)에서 제공되는 회전 구동력의 방향을 변경하고, 감속하여 회전 구동력을 증대 제공하는 제1 기어부(220)와, 상기 제1 기어부(220)에서 제공된 구동력에 의한 비틀림 변형량이 결정되는 스프링 부재(270) 및, 상기 스프링 부재(270)의 비틀림 변형량에 따라 회전 구동력이 전달되어 구동대상 관절을 구동하는 제2 기어부(290)를 포함하여 이루어질 수 있다.
도 2에 도시된 실시 예에 따른 관절 구동기(200)는 상기 모터(210)로부터 제공되는 회전 구동력을 발생 및 전달시키는 구성이다.
본 발명에 따른 관절 구동기(200)는 회전 구동력을 필요로 하는 어떠한 장치라도 적용되어 사용 가능하나, 신체 보조로봇에 적용되어 사용자가 느끼는 마찰를 줄일 수 있는 구동기로 사용될 수 있다.
이러한 문제점을 극복하기 위해 본 발명의 일 실시예에 따른 관절 구동기(200)는 기어비 조절을 위하여 감속구조를 채용하여 회전 구동력을 극대화할 수 있다.
따라서, 상기 제1 기어부(220)는 상기 모터(210)의 모터축(211)에 장착된 웜기어(230) 및 상기 웜기어(230)에 맞물리며 상기 모터(210)의 회전축과 수직한 구동축을 갖는 웜휠기어(250)로 구성될 수 있으며, 상기 웜기어(230) 및 상기 웜휠기어(250)가 서로 수직한 회전축으로 맞물려 회전함으로써 상기 모터(210)로부터 제공된 회전 구동력의 방향을 변경함과 동시에 그 회전 구동력을 증대시킬 수 있다.
이와 같이, 구동기 내에서 감속구조를 채택하면 그 회전 구동력을 증가시켜 설계에 따라 충분한 회전 구동력을 획득할 수 있다. 하지만, 그에 따라 발생하는 기어 사이의 큰 마찰력은 높은 기계적 마찰를 발생시켜 사용자의 움직임 자체가 불가능할 수 있다.
즉, 사용자가 처한 상황에 따라 관절에 인가되는 마찰를 극복하고 어느 정도의 움직임 또는 유연성이 보장되어야 하지만 기계적 마찰가 큰 경우에는 사용자는 수동적 움직임만 허용될 뿐 필요에 따른 관절의 움직임이 전혀 불가능해질 수 있다.
따라서, 본 발명의 일 실시예에 따른 관절 구동기(200)는, 상술한 바와 같은 기계적 마찰를 저감 또는 조절시키기 위해, 상기 스프링 부재(270)가 구비될 수 있다.
상기 스프링 부재(270)는 상기 제1 기어부(220)를 구성하는 웜휠기어(250)에서 제공되는 회전 구동력에 의하여 비틀림 변형되고, 상기 스프링 부재(270)의 비틀림 변형량에 비례하는 회전 구동력이 상기 제2 기어부(290)에 전달될 수 있다.
상기 스프링 부재(270)를 통한 회전 구동력의 전달은 기존의 방식인 맞물린 기어의 회전에 의한 회전 구동력의 전달방식과 달리 스프링의 비틀림 변형량에 따른 탄성력을 통해 회전 구동력을 전달하므로, 사용자의 상황에 따라 비틀림 변형량을 모터에 의하여 제거하는 방식으로 관절 구동기의 기계적 마찰를 제거하거나 감소시킬 수 있다.
따라서, 본 발명에 따른 관절 구동기가 구비된 관절구조가 채용된 하지 보조로봇은 사용자의 움직임 또는 자세 등에 따라 관절 구동기의 스프링 부재의 비틀림 변형량을 제거하도록 모터를 구동하여, 사용자가 걷지 않는 상황, 예를 들면 앉아 있는 상태 등에서는 어느 정도의 사용자의 움직임이 허용되도록 모터를 구동하는 방법을 사용할 수 있다. 이에 대한 자세한 설명은 뒤로 미룬다.
관절 구동기에 대하여 계속 설명한다. 상기 스프링 부재(270)를 통해 회전 구동력을 전달 받는 상기 제2 기어부(290)는 적어도 하나의 스퍼기어(290)를 구비할 수 있다. 여기서, 상기 제2 기어부(290)를 구성하는 스퍼기어(290)의 구동축은 상기 제1 기어부(220)를 구성하는 웜휠기어(250)의 구동축과 일직선 상에 배치될 수 있다. 따라서, 상기 스퍼기어(290)는 상기 스프링 부재(270)로부터 회전 구동력을 전달받아 상기 웜휠기어(250)와 동일한 구동축에서 동일 방향으로 회전될 수 있다.
본 발명의 일 실시 예에 따른 상기 스퍼기어(290)는 상기 모터(210)로부터 기인된 회전 구동력을 출력측에 전달하는 기어로서, 도 2를 참조하면, 상기 스퍼기어(290)가 하나만 구비되지만, 상기 관절 구동기(200)가 적용되는 장치 및 적용되는 장치에서 요구하는 회전 구동력의 크기에 기어비를 조절하기 위하여 따라 복수 개가 구비될 수 도 있다.
다음으로, 상기 스프링 부재(270)에서 회전 구동력을 전달받아 회전하는 상기 스퍼기어(290)는 출력측인 구동대상 관절과 직접 연결되거나 중간에 다른 스퍼기어를 매개로 연결되어 상기 구동대상 관절을 구동할 수 있다.
이상에서는, 본 발명의 일 실시 예에 따른 관절 구동기(200)에 대해서 개략적으로 살펴 보았다.
이하에서는 상기 관절 구동기(200)의 결합관계 및 세부구성에 대해서 구체적으로 살펴볼 수 있다.
도 3은 본 발명의 일 실시예에 따른 관절 구동기의 사시도를 도시하며, 도 4는 본 발명의 일 실시예에 다른 관절 구동기의 분해 사시도를 도시한다.
도 3과 도 4를 참조하면, 본 발명의 일 실시 예에서 상기 모터(210)는 일단에 모터축(211)이 돌출되어 구비되며, 상기 모터축(211)은 상기 모터(210)로부터 기인되는 회전 구동력에 의하여 회전될 수 있다. 상기 모터축(211)은 상기 제1 기어부(220)를 구성하는 웜기어(230)와 결합할 수 있으며, 상기 웜기어(230)는 상기 모터축(211)의 회전에 의하여 회전하여 상기 모터(210)로부터 회전 구동력을 전달 받을 수 있다.
또한, 상기 제1 기어부(220)를 구성하는 상기 웜기어(230) 및 웜휠기어(250)는 각각 이를 수용하는 커버 내에 장착될 수 있다.
이는 각각의 기어를 보호함과 동시에 후술하는 선택적 맞물림 구조를 구현하는 걸쇠의 장착 및 걸림 구성으로 역할한다. 이에 대해서는 후술하기로 한다.
구체적으로, 상기 웜기어(230)는 웜기어 커버(240) 내에 위치될 수 있다. 상기 웜기어 커버(240)를 구성하는 구성요소 및 이들의 결합구조는 아래와 같다.
상기 웜기어 커버(240)의 최하단 구성요소인 모터홀더(241)는 상기 모터(210)의 상부에서 상기 모터(210)의 모터축(211)에 의해 관통되어 상기 웜기어(230)의 하부에 위치될 수 있으며, 상기 웜기어(230)의 상부에는 상기 모터(210)에 구비된 상기 모터축(211)과 연결된 상기 웜기어(230)의 말단이 관통되게 위치하는 핀홀더(242)가 구비될 수 있다.
여기서, 상기 모터홀더(241) 및 상기 핀홀더(242)는 측면부재(246)를 통해 연결될 수 있다. 따라서, 상기 모터(210)에 구비된 상기 모터축(211)이 관통된 상태로 상기 모터(210)의 상부에 위치하는 상기 모터홀더(241)와 상기 웜기어(230)의 말단이 관통된 상태로 상기 웜기어(230)의 상부에 위치하는 상기 핀홀더(242)가 상기 측면부재(261)를 매개로 연결됨으로써 상기 웜기어(230)가 상기 모터홀터(241) 및 핀홀더(242)에 의해 지지되어 위치될 수 있다.
이에 따라, 상기 웜기어(230)가 상기 모터(210)로부터 회전 구동력을 전달받아 안정적으로 회전할 수 있다. 여기서, 상기 웜기어(230)는 상기 핀홀더(242)를 관통한 상태로 회전하므로 웜기어 베어링(231)을 사이에 두고 상기 핀홀더(242)에 관통된 상태로 회전될 수 있다.
상기 핀홀더(242)에는 상기 웜기어(230)와 평행한 축으로 핀(245)이 관통되어 고정될 수 있다. 또한, 상기 핀(245)은 상기 모터홀더(241)에도 관통되어 연결될 수 있다. 즉, 상기 핀(245)은 상기 핀홀더(242) 및 상기 모터홀터(241)를 동시에 관통하여 연결된 상태로 상기 웜기어(230)와 평행하게 구비될 수 있다. 여기서, 상기 핀(245)은 힌지 브라켓(244)과 힌지 결합될 수 있다. 따라서, 상기 관절 구동기(200)는 상기 핀(245) 및 상기 핀(245)이 힌지 결합된 상기 힌지 브라켓(244)을 통하여 상기 관절 구동기(200)가 장착되는 대상물 상에서 회전될 수 있다.
즉, 상기 핀(245)이 힌지 결합된 상기 힌지 브라켓(244)이 상기 대상물에 장착되어 고정됨으로써, 상기 핀(245)이 연결되는 상기 핀홀더(242) 와 모터홀더(245)에 연결된 상기 웜기어(230) 및 상기 모터홀더(241)와 결합되어 상기 모터홀더(241)의 하부에 위치하는 상기 모터(210)는 상기 힌지 브라켓(244)을 기준으로 회전할 수 있다. 이에 대한 자세한 설명은 후술한다.
그리고, 상기 제1 기어부(220)를 구성하는 상기 웜휠기어(250) 역시 웜휠기어 커버(260) 내에 회전 가능하게 결합되어 위치될 수 있다.
상기 윔휠기어 커버(260)는 내측에 상기 웜휠기어(250)가 회전 가능하게 연결되는 윔휠기어 가이드(261)를 구비할 수 있으며, 상기 웜휠기어(250)는 웜휠기어 베어링(251)을 매개로 상기 웜휠기어 가이드(261)에 결합될 수 있다.
여기서, 상기 윔휠기어 가이드(261)는 상기 웜휠기어 가이드(261)에 연결된 상기 웜휠기어(250)가 상기 웜기어 커버(240)에 위치한 상기 웜기어(230)와 맞물릴 수 있도록 상기 웜기어 커버(240)와 상호 연통되도록 설계될 수 있다.
또한, 상기 웜휠기어 커버(260)는 상기 윔기어 커버(240)와 상호 연통된 면의 반대 면으로 웜휠 보호부재(262)를 구비하여 상기 웜휠기어(250)를 외부로부터 보호할 수있다.
상기 웜휠기어 커버(260)에 구비된 상기 웜휠 보호부재(262)와 마찬가지로 상기 웜기어 커버(240) 또한 상기 웜휠기어 커버(260)와 연통된 반대면에 웜기어 보호부재(243)를 구비하여 상기 웜기어(230)를 외부로부터 보호할 수 있다.
다음으로 상기 스프링 부재(270)는 상기 제1 기어부(220)를 구성하는 웜휠기어(250)와 결합될 수 있다. 상기 스프링 부재(270)는 원통형 형상일 수 있으며, 일단이 상기 웜휠기어(250)에 결합하여 상기 웜휠기어(250)의 구동축과 일직선 상에 배치될 수 있다.
일단이 상기 웜휠기어(250)에 결합한 상기 스프링 부재(270)의 타단에는 상기 제2 기어부(290)를 구성하는 스퍼기어(270)가 결합될 수 있다.
여기서, 상기 스프링 부재(270)는 상기 웜휠기어(250)와 상기 스퍼기어(290)의 동일 구동축 선상에서 안정적으로 위치하기 위하여 내주면에 삽입되는 연결 샤프트(290)를 구비할 수 있다.
상기 연결 샤프트(290)는 상기 웜휠기어(250)에 결합된 상기 스프링 부재(270)의 내주면에 삽입되며, 상기 스프링 부재(270)는 상기 연결샤프트(290)를 매개로 상기 스퍼기어(290)에 연결될 수 있다. 그러나, 상기 연결샤프트(290)는 본 발명의 일 실시예에 따른 관절 구동기(200)에 있어서 필수적인 구성은 아니므로 생략될 수 있다.
본 발명의 일 실시예에 따른 관절 구동기(200)는 상술한 바와 같이 모터(210)로부터 기인된 회전 구동력이 서로 수직한 회전축을 갖는 한 쌍의 제1 기어부(220)를 통해 회전 구동력의 방향이 변경되고 감속되어 상기 스프링 부재(270)로 전달되며, 전달된 회전 구동력에 의해 상기 스프링 부재(270)가 비틀림 변형되고, 상기 비틀림 변형에 기인한 상기 스프링 부재(270)의 복원력이 구동력으로서 적어도 하나의 스퍼기어(290)를 구비하는 상기 제2 기어부(290)에 전달되는 구조이다.
그러나, 상기 관절 구동기(200)를 구성하는 복수의 기어는 상술한 바와 같은 구성 및 구조에 한정되지 않으며, 복수의 기어가 구비되어 이를 통한 회전 구동력의 전달이 가능하고, 상기 복수의 기어 중 적어도 한 곳 사이에 상기 스프링 부재(270)가 구비되어 상기 스프링 부재(270)의 비틀림 변형을 통한 회전 구동력의 전달이 이루어지는 구조라면 어떠한 형태로도 구성될 수 있다.
즉, 상기 관절 구동기(270)를 구성하는 복수의 기어(230,250,290)는 상기 관절 구동기(200)가 적용되는 대상물의 용도 및 필요한 회전 구동력에 따라서 덜 구비되거나 더 구비될 수 있고, 기어의 상호 연결관계 또한 수직한 구동축 및 동일 구동축 상에서 일직선 상에 연결되는 구조 중에서 선택적인 조합으로 설계가 가능하며, 상기 스프링 부재(270) 또한, 상기 관절 구동기(200)에 구비되는 복수의 기어의 개수에 따라 더 구비되어 상기 복수의 기어 사이를 연결할 수 있다.
상기 스프링 부재(270)는 상기 모터(210)에서 제공된 회전 구동적을 전달하면서 비틀림 변형이 이루어 질 수 있는데, 이 경우, 상기 관절 구동기(200)는 상기 스프링 부재(270)의 비틀림 변형량을 측정하고 비틀림 변형량에 따라 상기 모터(210)를 제어함으로써 상기 스프링 부재(270)의 비틀림 변형량을 보상할 수 있다.
즉, 상기 모터(210)는 상기 스프링 부재(270)의 비틀림 변형량을 보상하여 다시 원래의 상태 복원될 수 있도록 상기 스프링 부재(270)를 회전시키는 방법으로 사용자가 느끼는 기계적 마찰를 제거 또는 조절할 수 있게 된다.
여기서, 상기 스프링 부재(270)는 상기 관절 구동기(200)의 구성요소로 채택되어 구비되기 전에 그 강성이 고려되어 구비될 수 있는데, 그 이유는 상기 스프링 부재(270)의 강성이 크다면 비틀림 변형량이 감소하여 상기 모터(210)로부터 제공되는 회전 구동력을 출력측으로 잘 전달할 수 있지만 상기 관절 구동기(200)를 사용함에 있어서 상기 회전 구동력의 출력을 유연하게 제어할 수 없으며, 상기 스프링 부재(270)의 강성이 작으면 상기 관절 관절 구동기(200)가 출력할 수 있는 회전 구동력이 작아질 수 있으므로 적절한 강성을 갖는 것으로 채택되어 구비될 수 있다.
상기 스프링 부재(270)는 본 발명을 통해 구성되는 상기 관절 구동기(200)에서 가장 중요한 역할을 하는 구성요소로서, 기존에 기어의 맞물림을 통해서만 설계되었던 관절 구동기에 도입되어 기어의 맞물림에 기인하여 발생될 수 있는 마찰력을 저감시킬 수 있는 효과를 제공할 수 있다.
또한, 상기 스프링 부재(270)는 상기 관절 구동기(200)에 회전 구동력을 제공하는 모터(210)에 의한 회전과는 별개로 상기 관절 구동기(200)의 출력측에서 발생될 수 있는 외부 조건에 의한 회전에 대응한 유연한 구동을 가능하게 할 수 있다.
이에 대해서 살펴보면, 상기 관절 구동기(200)의 제2 기어부(290)에 연결되어 회전될 수 있는 출력측은, 지면이나 벽 또는 외부 사물과의 상호작용으로 인해 상기 관절 구동기(200)에서 제공되는 회전 구동력으로 인한 회전과는 별개의 회전이 이루어 질 수 있다.
이 경우, 상기 제2 기어부(290)에 연결된 상기 스프링 부재(290)는 상기 출력측의 회전에 의해 비틀림 변형될 수 있으며, 이에 따라, 상기 관절 구동기(200)는 상기 스프링 부재(290)의 비틀림 변형을 보상하기 위하여 상기 모터(210)를 회전시켜 상기 스프링 부재(290)를 다시 복원시킬 수 있다.
따라서, 상기 관절 구동기(200)는 상기 출력측에 회전 구동력을 제공하여 회전시킴과 동시에 상기 출력측에서 발생되는 별도의 회전에도 대응하여 구동되므로 상기 출력측의 회전을 더욱 유연하게 대응할 수 있다.
상술한 바로, 상기 관절 구동기(200)가 상기 스프링 부재(270)를 채용하여 구비함으로써, 상기 관절 구동기(200)에서 발생될 수 있는 회전 출력에 대응하는 마찰가 저감될 수 있으며, 출력측에 발생되는 외부와의 상호작용에 의한 회전에 있어서도 유연하게 반응할 수 있는 것에 대해 살펴보았다.
그러나, 상기 관절 구동기(200)에 연결된 출력측은 경우에 따라서 임의적으로 외부와의 상호작용이 이루어져야 하는 경우가 있다. 즉, 상기 관절 구동기(200)가 적용되어 사용되는 장치, 일 예로서, 도 1에 도시된 바와 같은 하지 보조로봇(1000) 같은 경우, 상기 하지 보조로봇(1000)을 사용하는 사용자는 상기 관절 구동기(200)로부터 회전 구동력을 제공받아 거동함과 동시에, 경우에 따라 회전 구동력과 관계없는 관절의 움직임이 필요할 경우가 있다.
예를 들어, 상기 하지 보조로봇(1000)의 사용자가 보행 도중 관절에서 발생되는 통증 등을 완화하거나, 의자 또는 바닥에 앉게 되는 경우이다.
이 경우, 상기 관절 구동기(200)는 사용자의 의도에 대응하여 상기 스프링 부재(270)의 비틀림 변형을 보상함으로써, 사용자는 의도에 맞게 거동할 수 있다. 그러나, 이러한 경우에도 상기 관절 구동기(200)에 회전 구동력을 제공하는 모터(210)는 작동해야 하며, 이에 따라 상기 모터(210)는 항시 작동해야 하므로 충전 방식의 배터리를 사용하는 경우 전력을 효율적으로 사용할 수 없다.
따라서, 이하에서는 필요한 상황에서 선택적으로 기어의 맞물림을 해제하여 외부와의 상호작용에 대해 더욱 유연하게 대처할 수 있는 관절 구동기가 필요할 수 있다.
도 5는 본 발명의 일 실시예에 따른 관절 구동기가 적용된 관절구조를 도시하고, 도 6은 본 발명의 일 실시예에 따른 관절 구동기에서 제1 기어부의 맞물림 및 맞물림 해제를 도시한다.
본 발명의 일 실시예에 따른 관절 구동기(200)는 구동대상 관절을 포함하는 관절구조의 하우징(300)에 장착되고, 상기 관절 구동기(200)를 구성하는 상기 모터(210) 및 상기 모터의 회전축에 장착된 상기 제1 기어부(220)를 구성하는 웜기어(230)는 상기 하우징에 힌지 결합되며, 상기 제1 기어부(220)를 구성하는 상기 웜기어(230)와 상기 웜휠기어(250)는 선택적으로 맞물림 상태가 해제될 수 있다.
상기 관절 구동기(200)는 상기 하우징(300)의 일 측면에서 부착되어 고정될 수 있다.
이 때 상기 웜휠기어 케이스(260)는 상기 하우징(300)의 일 측면에 돌출되게 부착되며, 이에 따라, 상기 웜휠기어(250) 또한, 상기 하우징(300)상에서 돌출된 위치에 구비될 수 있다. 여기서, 상기 하우징(300)상에서 돌출된 위치에 구비된 상기 웜휠기어(250)와 연결 된 스프링 부재(270) 및 상기 스프링 부재(270)와 연결된 상기 제2 기어부(290)를 구성하는 스퍼기어(290)는 상기 하우징(300)의 일측면 외부에 위치하는 상기 웜휠기어(250)로부터 상기 하우징(300)의 내측 방향 쪽으로 위치되도록 구비될 수 있다.
여기서, 상기 제2 기어부(290)를 구성하는 상기 스퍼기어(290)는 상기 하우징(300)의 내측에 위치하여 상기 관절 구동기(200)로부터 제공된 회전 구동력을 전달받아 출력하는 구동대상 관절에 연결될 수 있다.
또한, 상기 모터(210) 및 상기 모터의 회전축에 장착된 상기 제1 기어부(220)를 구성하는 웜기어(230)는 상기 하우징(300)의 외측 일면에서 힌지결합되어 구비될수 있다. 이 때, 상기 웜기어(230)는 상기 웜기어 케이스(240) 내에 구비되고 상기 웜기어 케이스(240)가 상기 하우징의 일측면에서 돌출되게 할 수 있다.
여기서, 상기 하우징 케이스(240)는 앞서 설명하였던 상기 한지 브라켓(244) 및 상기 핀(245)을 통해 상기 하우징(300)에서 힌지 결합될 수 있으며, 상기 하우징(300)의 외측 일측면에 구비된 상기 제1 기어(220)를 구성하는 상기 웜휠기어(250)가 내부에 구비된 상기 웜휠기어 케이스(260)와 동일 면상에서 밀착되게 구비될 수 있다.
따라서, 밀착되어 구비된 상기 웜기어 케이스(240)와 상기 웜휠기어 케이스(260)로 인하여 상기 웜기어 케이스(240) 및 상기 웜휠기어 케이스(260) 각각의 내부에 위치한 상기 웜기어(230) 및 상기 웜휠기어(250)는 서로 맞물려 위치될 수 있다.
상기 웜기어 케이스(240)는 상기 힌지브라켓(244) 및 상기 핀(245)을 통하여 상기 하우징(300)에 힌지결합되므로 상기 하우징(300)과 힌지 결합된 곳을 중심으로 회전할 수 있는데, 이 경우, 상기 웜기어 케이스(240)는 회전하여 상기 웜휠기어 케이스(260)와 가까워지게 또는 멀어지게 회전될 수 있다.
즉, 상기 관절 구동기는 상기 구동대상 관절을 포함하는 관절구조의 하우징(300)에 장착되고, 상기 모터 및 상기 모터의 회전축에 장착된 상기 제1 기어부를 구성하는 웜기어(230)는 상기 하우징(300) 측에 힌지 결합되어 상기 제1 기어부를 구성하는 웜휠기어(250)와 근접하여 맞물림 상태가 되거나, 이격되어 맞물림 상태가 해제되도록 힌지 결합된 곳을 중심으로 회전될 수 있다.
따라서, 상기 모터(210) 및 상기 모터(210)의 회전축에 장착된 상기 제1 기어부(220)를 구성하는 웜기어(230)는 상기 하우징(300)에 힌지 결합된 곳을 중심으로 상기 제1 기어부(220)를 구성하는 웜휠기어(250)와 가까워지게 근접하여 맞물림 상태가 되거나 또는 멀어지게 이격되어 맞물림 상태가 해제되도록 회전될 수 있다.
도 5의 (a) 및 도 6의 (a)를 참조하면 상기 웜기어(230)가 상기 웜휠기어(250)와 가까워지게 근접하여 맞물림 상태가 된 상태에서 상기 웜기어(230)와 상기 웜휠기어(250)가 서로 맞물린 상태에 있는것을 볼 수 있으며, 도 5의 (b) 및 도 6의 (b)를 참조하면 상기 웜기어(230)가 상기 웜휠기어(250)와 멀어지게 회전된 상태에서 상기 웜기어(230)와 상기 웜휠기어(250)가 맞물림 해제 상태에 있는 것을 확인할 수 있다.
이와 같이 본 발명의 일 실시예에 따른 관절 구동기(200)는 상기 제1 기어부(220)의 상호 맞물림 상태를 선택적으로 결정할 수 있으므로, 상기 모터(210)로부터 기인되는 회전 구동력이 불필요한 경우 또는 배터리 전원의 절약이 필요한 경우 상기 제1 기어부(220)의 상호 맞물림 상태를 선택적으로 해제할 수 있으며, 따라서, 상기 모터(210)의 사용을 선택적으로 조절하여 전력 사용량을 감소시킬 수 있다.
즉, 상기 웜기어(230)와 상기 웜휠기어(250)의 맞물림 상태를 해제하는 방법은 구동력 전달 경로를 완전히 분리하는 것이므로, 스프링 부재의 비틀림 변형량을 제거하는 방법으로 기계적 마찰를 조절하는 방법보다 근본적인 방법으로 사용자가 느끼는 기계적 마찰를 제거할 수 있다.
또한, 상기 관절 구동기(200)를 사용중에는 상기 스프링 부재(270)를 통해 기계적 마찰가 저감된 유연한 회전 구동력의 출력을 구현할 수 있으며, 또한, 상기 모터(210)에 의한 회전 구동력이 필요 없거나 외부와의 임의적인 상호작용이 필요한 경우, 상기 제1 관절부재(220)의 상호 맞물림 관계를 해제시킬 수 있으므로 상기 관절 구동기(200)가 더욱 유연하게 사용될 수 있다.
이하에서는, 관절 구동기가 구비된 하지 보조로봇의 관절구조에 대해 살펴볼 수 있다. 이하에서 언급되는 관절 구동기(200)는 상술한 바에서 설명된 상기 관절 구동기(200)와 동일한 것이므로 그 자세한 설명은 생략될 수 있으며, 또한, 상기 관절 구동기(200)외에 앞서 미리 언급되었던 다른 구성요소가 이하에서 언급된다면 해당 구성요소는 앞서 상술하였던 구성요소와 동일한 것이므로 추가적인 설명이 필요가 없을 시, 그 해당 구성요소의 자세한 설명은 생략될 수 있다.
또한, 앞서 상기 관절 구동기(200) 및 기타 구성요소를 설명함에 있어서 사용되었던 도면을 통해서도 이하 설명될 관절 구동기가 구비된 하지 보조로봇의 관절구조의 설명에 참고되어 이해될 수 있다. 따라서, 관절 구동기를 사용하는 하지 보조로봇의 착용 예를 도시했던 도 1은 본 발명의 따른 관절 구동기를 구비한 하지 보조로봇의 관절구조가 적용된 예로서 설명될 수 있다.
도 7은 본 발명의 일 실시예에 따른 관절 구동기 및 관절 구동기에 연결된 관절유닛을 도시하며, 도 8은 본 발명의 일 실시예에 따른 관절 구동기가 구비된 하지 보조로봇의 관절구조의 분해사시도이다.
도 7 및 도 8과 앞서 설명하였던 도 1 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 관절 구동기가 구비된 하지 보조로봇(1000)의 관절구조는 상기 관절 구동기(200) 및 상기 하우징(300)에 힌지 결합되고 상기 제2 기어부(290)에서 제공된 회전 구동력에 의해 회전하는 관절유닛(400)을 포함할 수 있다.
상기 하지 보조로봇(1000)의 관절부에 해당되는 상기 관절유닛(400)은 복수의 톱니를 구비한 스프로킷 기어(410)를 구비하여, 상기 복수의 톱니를 구비한 스프로킷 기어(410)를 통해 상기 제2 기어부(290)을 구성하는 스퍼기어(290)와 맞물릴 수 있다.
상기 관절유닛(400)에 구비된 복수의 톱니를 구비한 스프로킷 기어 (410)는 도 7에서와 같이 별도의 반원형태의 기어로 구비되어 상기 관절유닛(400) 중 상기 스퍼기어(290)와 연결되는 부분에서 결합됨으로써 상기 스퍼기어(290)와 맞물려 결합되는 형태일 수 있으며, 또한, 상기 관절유닛(400) 중 상기 스퍼기어(290)와 결합하는 부분에서 복수의 돌출된 홈이 형성되어 상기 복수의 돌출된 홈이 상기 스퍼기어(290)와 결합하도록 구성된 형태일 수 있다.
또한, 상기 관절유닛(400)은, 도 7에서 도시된 바와 같이 상기 복수의 톱니를 구비한 스프로킷 기어(410)를 통하여 상기 제2 기어부(290)를 구성하는 상기 스퍼기어(290)와 바로 맞물려 연결될 수도 있으나, 상기 관절유닛(400) 및 상기 스퍼기어(290) 사이에 위치하는 적어도 하나의 보조기어(미도시)를 매개로 연결될 수도 있다.
즉, 상기 관절유닛(400)에 구비된 복수의 톱니를 구비한 스프로킷 기어(410)와 상기 스퍼기어(290) 사이에는 적어도 하나의 보조기어(420)가 위치하여, 상기 적어도 하나의 보조기어(420)가 상기 관절유닛(400)에 구비된 복수의 톱니를 구비한 스프로킷 기어(410) 및 상기 스퍼기어(290)와 맞물리거나 동일한 구동축 선상에서 일직선으로 연결됨으로써, 상기 관절유닛(400)에 구비된 복수의 톱니를 구비한 스프로킷 기어(410)와 상기 스퍼기어(290)를 연결할 수 있다.
여기서, 상기 관절 유닛(400)은, 상기 제1 기어부(220)를 구성하는 상기 웜기어(230)와 상기 웜휠기어(250)가 맞물린 맞물림 상태에서, 상기 제2 기어(290)로부터 회전 구동력이 전달되어 회전하고, 상기 제1 기어부(220)를 구성하는 상기 웜기어와 상기 웜휠기어(250)의 맞물림 상태가 해제되는 경우, 상기 제2 기어로부터 회전 구동력이 차단되어 회전하지 않을 수 있다.
상기 웜기어(230)는 앞서 설명하였듯이, 상기 웜기어(230)를 내부에 포함하는 상기 웜기어 커버(240)가 상기 하우징의 일 측면상에서 힌지결합되어 회전함으로써, 상기 웜휠기어 커버(260)와 밀착하거나 멀어짐에 따라, 상기 제1 기어부(220)를 구성하는 상기 웜휠기어(250)와 맞물리게 하거나 맞물림 해제될 수 있다.
상기 관절 구동기(200)를 구비하는 하지 보조로봇의 관절구조에 적용되는 상기 관절 구동기(200)에서 상기 모터(210)로부터 기인되는 회전 구동력의 이동경로를 알 수 있듯이, 상기 제1 기어부(220)를 구성하는 상기 웜기어(230) 와 상기 웜휠기어(250)가 서로 벌어져 맞물림 상태가 해제된다면, 상기 모터(210)로부터 상기 웜기어(230)로 전달되는 회전 구동력은 상기 웜휠기어(250)로 전달될 수 없으며, 따라서, 상기 관절 구동기(200)의 출력 측이라 할 수 있는 상기 제2 기어부(290)를 구성하는 상기 스퍼기어(290)에 회전 구동력이 전달될 수 없으므로, 상기 스퍼기어(290)에 연결된 상기 관절유닛(400)은 회전 구동력을 전달받지 못한다.
따라서, 본 발명의 일 실시예에 따른 상기 관절 구동기(200)를 구비하는 하지 보조로봇의 관절구조에 있어서, 상기 하지 보조로봇(1000)을 사용하는 사용자가 보행중이나 직립중 또는 기타 어떠한 상황에서, 상기 관절 구동기(200)로부터 제공되는 회전 구동력을 필요로 하지 않는 상황, 일 예로, 의자나 바닥에 앉아서 휴식을 취할 때, 또는, 상기 하지 보조로봇(1000)의 관절부에 해당되는 상기 관절유닛(400)을 많이 구부리고 싶은 상황이 발생할 시 상기 하지 보조로봇(1000)의 사용자는 상기 제1 기어부(220)를 구성하는 상기 웜기어(230)와 상기 웜휠기어(250)의 결합 상태를 해제할 수 있으므로, 상기 하지 보조로봇(1000)을 사용하는 사용자가 상기 하지 보조로봇(1000)을 사용함에 있어 더욱 자유로운 거동을 할 수 있다.
여기서, 상기 하지 보조로봇(1000)을 사용하는 사용자가 상기 제1 기어부(220)의 선택적 맞물림 해제를 가능하게 하기 위하여, 상기 웜기어 커버(240)는 상기 웜휠기어 커버(260)에 탄성적으로 체결 가능한 걸쇠(248)를 구비할 수 있다.
따라서, 상기 걸쇠(248)가 사용자에 의해 상기 웜휠기어 커버(260)에 체결될 시, 상기 제1 기어부(220)를 구성하는 상기 웜기어(230)와 상기 웜휠기어(250)는 맞물릴 수 있으며, 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에서 체결 해제될 시, 상기 제1 기어부(220)를 구성하는 상기 웜기어(230)와 상기 웜휠기어(250)는 맞물림 해제가 가능한 상태가 될 수 있다.
즉, 사용자가 상기 걸쇠(248)를 상기 웜휠기어 커버(260)에 장착된 경우, 상기 걸쇠(248)가 장착된 웜기어 커버(240)가 상기 웜휠기어 커버(260)와 밀착될 수 있으므로, 상기 웜기어 커버(240) 내부에 위치하는 상기 웜기어(230)와 상기 웜휠기어 커버(260) 내부에 위치하는 상기 웜휠기어(250)는 맞물린 상태로 위치될 수 있으며, 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에서 체결 해제될 시, 상기 걸쇠(248)가 장착된 웜기어 커버(240)가 상기 웜휠기어 커버(260)와 멀어지게 이동될 수 있으므로, 상기 웜기어 커버(240) 내부에 위치하는 상기 웜기어(230)는 상기 웜휠기어 커버(260) 내부에 위치하는 상기 웜휠기어(250)로부터 맞물림이 해제될 수 있는 상태가 될 수 있다.
도 9는 본 발명의 일 실시예에 따른 관절 구동기에서 제1 기어부의 맞물림 및 맞물림의 해제를 도시하며, 도 10은 본 발명의 일 실시예에 따른 관절 구동기에서 제1 기어부의 맞물림이 해제된 관절 구동기를 도시한다.
또한, 본 발명에 따른 관절 구동기를 구성하는 상기 제1 기어부는 상기 웜기어를 내측에 위치시키는 웜기어 커버 및 상기 웜휠기어를 내측에 위치시키는 웜휠기어 커버를 구비하며, 상기 웜기어 커버는 상기 웜기어와 상기 웜휠기어의 맞물림 상태를 유지하기 위하여 상기 웜휠기어 커버에 선택적 체결이 가능한 걸쇠를 구비할 수 있으며, 상기 웜기어와 상기 웜휠기어의 맞물림 상태를 유지하도록 탄성 지지된다.
상기 웜기어(230) 및 상기 웜휠기어(250)가 의도되지 않은 상황에서 맞물리거나 맞물림 상태가 해제되면, 상기 하지 보조로봇(1000)의 사용자는 위험하거나 불편함을 느끼게 된다.
따라서, 걸쇠(248)는 상기 하지 보조로봇(1000)의 사용자의 선택에 의해서만 상기 웜기어(230) 및 상기 웜휠기어(250)의 맞물림 상태를 결정할 수 있도록 상기 웜휠기어 커버(260)에 체결되거나 체결 해제되어야 한다.
이를 위해, 상기 웜휠기어 커버는 상기 웜휠기어 커버(260)에 체결된 상기 걸쇠의 체결 상태가 자동적으로 해제되는 것을 방지하는 상기 걸쇠(248)의 걸림 상태가 해제되는 것을 방지하는 방향으로 경사진 경사면 형태의 풀림 방지부(263)를 구비할 수 있으며, 또한, 상기 웜휠기어 커버(260)에서 체결 해제된 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에 자동적으로 체결되는 것을 방지하는 돌기 형태의 체결 방지부(264)를 구비할 수 있다.
상기 풀림 방지부(263)은 상기 웜휠기어 커버(260)에서 상기 걸쇠(248)의 말단이 체결되는 곳에 걸림 상태가 해제되는 것을 방지하는 방향으로 경사진 형태로 구비될 수도 있고, 돌출된 돌기 형태로 구비될 수도 있으나 도 9에서는 경사면 형태가 적용된 예가 도시된다.
따라서, 상기 걸쇠(248)가 사용자에 의도에 의해 상기 웜휠기어 커버(260)에 장착될 시, 상기 풀림 방지부(263)에 걸려 고정됨으로써, 사용자의 의도 없이 자동적으로 체결 해제되는 것을 방지할 수 있다.
또한, 상기 체결 방지부(264)는 상기 걸쇠(248)의 말단이 상기 웜휠기어 커버(260)에 체결되기 위해 진입하는 경로 중 상기 웜휠기어 커버(260)에 체결되는 위치 전에 경사면 또는 돌출된 돌기 형태로 구비됨으로써, 상기 걸쇠(248)가 상기 상기 웜휠기어 커버(260)에서 체결 해제된 경우, 상기 걸쇠(248)는 상기 체결 방지부(264)에 걸려 상기 웜휠기어 커버(260)에 자동적으로 체결되지 못하게 할 수 있다. 도 9에서는 상기 체결 방지부(264)는 돌기 형태로 구성된 예가 도시된다.
앞서 설명한, 상기 걸쇠(248)는 상기 하지 보조로봇(1000)의 사용자가 상기 제1 기어부(220)의 선택적 맞물림 상태를 결정할 수 있게 함과 동시에, 맞물리거나 맞물림 해제된 상기 제1 기어부(220)의 상태를 유지하여, 사용자의 안전 및 상기 관절 구동기(200)의 조작 용이성을 위해 구비된 것이다.
그러나, 상기 제1 기어부(220)의 맞물림 상태가 해제되는 경우에도, 상기 관절 구동기(200)에 회전 구동력을 제공하는 상기 모터(210)는 계속 작동될 수 있다.
따라서, 상기 웜휠기어 커버(260)는 상기 걸쇠가 상기 웜휠기어(260) 커버에 체결되는 위치에 상기 걸쇠(248)의 탈착을 감지하는 센서스위치를 구비할 수 있다.
도 11은 본 발명의 일 실시예에 따른 센서 스위치의 작동을 도시한다.
상기 센서스위치(265)는, 걸쇠가 상기 웜휠기어 커버(260)에 체결될 시 상기 걸쇠의 체결을 감지하여 상기 모터(210)를 작동시킬 수 있으며, 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에서 체결 해제될 시 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에서 체결 해제된 것을 감지하여 상기 모터의 작동을 정지시킬 수 있다. 여기서, 상기 센서스위치(265)는, 상기 적외선 센서, 근접 센서 및 정전식 센서와 같이 상기 걸쇠(248)의 체결 여부를 감지할 수 있는 종류의 센서라면 어떠한 것이라도 사용될 수 있다.
상기 센서스위치(265)는, 상기 하지 보조로봇(1000)을 사용함에 있어서, 회전 구동력의 필요여부에 따라 상기 모터(210)의 작동을 제어할 수 있으므로, 전력의 손실을 방지할 수 있다는 효과가 있다.
여기서, 상기 센서스위치(265)는, 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에 체결될 시 점등되고, 상기 걸쇠(248)가 상기 웜휠기어 커버(260)에서 체결 해제될 시 소등될 수 있다. 따라서, 상기 하지 보조로봇(1000)의 구동상태를 상기 하지 보조로봇(1000)을 사용하는 사용자가 용이하게 확인할 수 있다.
이와 같은 구성으로, 본 발명에 따른 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조는 관절 구동기를 구성하는 복수의 기어 사이에 탄성체를 적용하여 모터로부터 제공된 구동력을 상기 탄성체를 통해 관절부로 전달시키므로 기존의 기어끼리 맞물리는 동력전달 방식에 비해 기계적 마찰를 저감 또는 조절하기 위한 인위적 제어가 가능하고, 착용자의 임의적인 움직임 또는 외부 환경과의 상호작용에 대응하여 정밀하게 구동됨으로써 착용자의 유연한 거동을 가능하게 할 수 있다.
또한, 본 발명에 따른 관절 구동기 및 상기 관절 구동기를 구비하는 하지 보조로봇의 관절구조에 의하면, 종류별로 다른 강성도를 갖는 탄성체를 선택적으로 적용함으로써, 사용되는 장치 및 사용자의 상태에 따라 상이한 회전력을 갖는 관절 구동기에 더욱 유연하게 대처하여 적용할 수 있으며, 기어의 선택적 맞물림이 가능하도록 설계된 관절 구동기를 사용함으로써, 착용자의 움직임 자유도를 더욱 상승시킴으로 착용자가 하지 보조로봇을 더욱 유연하게 사용할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 모터;
    상기 모터에서 제공되는 회전 구동력의 방향을 변경하고, 감속하여 회전 구동력을 증대 제공하는 제1 기어부;
    상기 제1 기어부에서 제공된 구동력에 의한 비틀림 변형량이 결정되는 스프링 부재; 및,
    상기 스프링 부재의 비틀림 변형량에 따라 회전 구동력이 전달되어 구동대상 관절을 구동하는 제2 기어부;를 포함하고,
    상기 제1 기어부는 상기 모터의 회전축에 장착된 웜기어 및 상기 웜기어에 맞물리며 상기 모터의 회전축과 수직한 구동축을 갖는 웜휠기어를 구비하며,
    상기 관절 구동기는 상기 구동대상 관절을 포함하는 관절구조의 하우징에 장착되고, 상기 모터 및 상기 모터의 회전축에 장착된 상기 제1 기어부를 구성하는 웜기어는 상기 하우징에 힌지 결합되어 상기 제1 기어부를 구성하는 웜휠기어와 근접하여 맞물림 상태가 되거나, 이격되어 맞물림 상태가 해제되도록 힌지 결합된 곳을 중심으로 회전 가능하게 구성되는 것을 특징으로 하는 관절 구동기.
  2. 제1항에 있어서,
    상기 제2 기어부는 적어도 하나의 스퍼기어를 구비하며, 상기 제2 기어부를 구성하는 스퍼기어의 구동축은 상기 제1 기어부를 구성하는 웜휠기어의 구동축과 일직선 상에 배치되며, 상기 스프링 부재는 상기 제1 기어부를 구성하는 웜휠기어에서 제공되는 회전 구동력에 의하여 비틀림 변형되고, 상기 스프링 부재의 비틀림 변형량에 비례하는 회전 구동력이 상기 제2 기어부를 구성하는 스퍼기어에 전달되는 것을 특징으로 하는 관절 구동기.
  3. 제1항에 있어서,
    상기 모터 및 상기 웜기어가 상기 웜휠기어와 근접하도록 회전되는 경우, 상기 웜기어와 상기 웜휠기어는 맞물림 상태가 되고, 상기 모터 및 상기 웜기어가 상기 웜휠기어와 이격되도록 회전되는 경우, 상기 웜기어와 상기 웜휠기어는 맞물림 상태가 해제되는 것을 특징으로 하는 관절 구동기.
  4. 제1항 내지 제3항 중 어느 한 항에 기재된 관절 구동기; 및
    상기 하우징에 힌지 결합되고 상기 제2 기어부에서 제공된 회전 구동력에 의해 회전 구동되는 관절유닛;을 포함하고,
    상기 관절유닛은 상기 제1 기어부를 구성하는 상기 웜기어와 상기 웜휠기어가 맞물린 맞물림 상태에서, 상기 제2 기어부로부터 회전 구동력이 전달되어 회전 구동되고, 상기 제1 기어부를 구성하는 상기 웜기어와 상기 웜휠기어의 맞물림 상태가 해제되는 경우, 상기 제2 기어부로부터 회전 구동력이 차단되는 하지 보조로봇의 관절구조.
  5. 제4항에 있어서,
    상기 관절유닛은 스프로킷 기어를 구비하며, 상기 스프로킷 기어는 상기 제2 기어부를 구성하는 스퍼기어에 전달되는 구동력으로 회전 구동되는 것을 특징으로 하는 하지 보조로봇의 관절구조.
  6. 제5항에 있어서,
    상기 관절유닛을 구성하는 상기 스프로킷 기어는 상기 제2 기어부를 구성하는 스퍼기어와 적어도 하나의 보조기어를 매개로 연결되는 것을 특징으로 하는 하지 보조로봇의 관절구조.
  7. 제4항에 있어서,
    상기 제1 기어부는 상기 웜기어를 내측에 위치시키는 웜기어 커버 및 상기 웜휠기어를 내측에 위치시키는 웜휠기어 커버를 구비하며,
    상기 웜기어 커버는 상기 웜기어와 상기 웜휠기어의 맞물림 상태를 유지하기 위하여 상기 웜휠기어 커버에 선택적 체결이 가능한 걸쇠를 구비하며,
    상기 웜기어와 상기 웜휠기어의 맞물림 상태를 유지하도록 탄성 지지되는 것을 특징으로 하는 하지 보조로봇의 관절구조.
  8. 제7항에 있어서,
    상기 웜휠기어 커버는 상기 웜휠기어 커버에 체결된 상기 걸쇠의 걸림 상태가 해제되는 것을 방지하는 방향으로 경사진 경사면 형태의 풀림 방지부를 구비하는 것을 특징으로 하는 하지 보조로봇의 관절구조.
  9. 제7항에 있어서,
    상기 웜휠기어 커버는 상기 웜휠기어 커버로부터 걸림 해제된 상기 걸쇠가 상기 웜휠기어 커버에 체결되는 것을 방지하기 위한 돌기 형태의 체결 방지부를 구비하는 것을 특징으로 하는 하지 보조로봇의 관절구조.
PCT/KR2016/003660 2015-04-07 2016-04-07 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조 WO2016163780A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/562,899 US10751884B2 (en) 2015-04-07 2016-04-07 Joint actuator, and joint structure of leg-supporting robot comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0048969 2015-04-07
KR1020150048969A KR101677935B1 (ko) 2015-04-07 2015-04-07 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조

Publications (1)

Publication Number Publication Date
WO2016163780A1 true WO2016163780A1 (ko) 2016-10-13

Family

ID=57072723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003660 WO2016163780A1 (ko) 2015-04-07 2016-04-07 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조

Country Status (3)

Country Link
US (1) US10751884B2 (ko)
KR (1) KR101677935B1 (ko)
WO (1) WO2016163780A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721009A (zh) * 2017-04-14 2018-11-02 香港中文大学 磁流变串联弹性驱动器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1607841S (ko) * 2017-07-12 2019-12-23
KR102125126B1 (ko) 2017-07-12 2020-06-19 한양대학교 에리카산학협력단 동적 탄성도 측정 장치 및 측정 방법
JP1605289S (ko) * 2017-07-18 2019-11-25
JP1605285S (ko) * 2017-07-18 2019-11-25
JP1605288S (ko) * 2017-07-18 2019-11-25
JP1605286S (ko) * 2017-07-18 2019-11-25
JP1605287S (ko) * 2017-07-18 2019-11-25
JP1615133S (ko) * 2018-03-29 2020-03-30
JP1615136S (ko) * 2018-03-29 2020-03-30
JP1615135S (ko) * 2018-03-29 2020-03-30
JP1615134S (ko) * 2018-03-29 2020-03-30
JP1623232S (ko) * 2018-04-18 2020-07-13
JP1623231S (ko) * 2018-04-18 2020-07-13
USD888120S1 (en) * 2019-02-25 2020-06-23 Agility Robotics, Inc. Bipedal robot
DE102019204024B4 (de) * 2019-03-25 2022-03-24 Kuka Deutschland Gmbh Mechanisches Überlast-Schaltwerk
CN109807938B (zh) * 2019-03-26 2020-12-29 清华大学 无导轨式变刚度驱动器
KR102243557B1 (ko) * 2019-11-07 2021-04-22 주식회사 엔젤로보틱스 탄성기어유닛 및 이를 구비하는 관절구동기
CN111571636B (zh) * 2020-06-01 2023-08-22 山东科技大学 一种变刚度柔性驱动器
CN113001585B (zh) * 2021-04-22 2024-07-23 中煤科工集团重庆研究院有限公司 一种钻孔机器人复合自由度球关节结构
CN114305990B (zh) * 2021-12-29 2023-06-23 杭州程天科技发展有限公司 一种主被动并联驱动的穿戴式步行助力设备
CN114952812A (zh) * 2022-05-26 2022-08-30 北京化工大学 离合型蜗轮蜗杆式关节驱动机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144007A (ja) * 1993-07-21 1995-06-06 Otto Bock Orthopaed Ind Besitz & Verwalt Kg 回転モ−メントを上腕人工補装具の肘軸に加える方法及び肘リフタ
KR100855811B1 (ko) * 2007-05-23 2008-09-01 삼성전기주식회사 냉장고 홈바 도어용 힌지장치
KR20090076824A (ko) * 2008-01-07 2009-07-13 메리터 테크놀로지, 아이엔씨. 디클러칭 메커니즘
KR20120082219A (ko) * 2011-01-13 2012-07-23 서강대학교산학협력단 와이어 구동방식 외골격 로봇과 그 구동방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
JP4315766B2 (ja) * 2003-05-21 2009-08-19 本田技研工業株式会社 歩行補助装置
JP4332136B2 (ja) * 2005-06-03 2009-09-16 本田技研工業株式会社 肢体アシスト装置および肢体アシストプログラム
JP4998623B2 (ja) * 2010-04-16 2012-08-15 トヨタ自動車株式会社 回転制限装置、ロボット関節および歩行補助装具
US11400010B2 (en) * 2011-07-29 2022-08-02 Leonis Medical Corporation Method and system for control and operation of motorized orthotic exoskeleton joints
US9855181B2 (en) * 2013-03-15 2018-01-02 Bionik Laboratories, Inc. Transmission assembly for use in an exoskeleton apparatus
KR102346198B1 (ko) * 2015-01-07 2021-12-31 삼성전자주식회사 구동 모듈 및 이를 포함하는 운동 보조 장치
WO2017079788A1 (en) * 2015-11-09 2017-05-18 Wilmington Guy Locomotion assistance means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144007A (ja) * 1993-07-21 1995-06-06 Otto Bock Orthopaed Ind Besitz & Verwalt Kg 回転モ−メントを上腕人工補装具の肘軸に加える方法及び肘リフタ
KR100855811B1 (ko) * 2007-05-23 2008-09-01 삼성전기주식회사 냉장고 홈바 도어용 힌지장치
KR20090076824A (ko) * 2008-01-07 2009-07-13 메리터 테크놀로지, 아이엔씨. 디클러칭 메커니즘
KR20120082219A (ko) * 2011-01-13 2012-07-23 서강대학교산학협력단 와이어 구동방식 외골격 로봇과 그 구동방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NA, BYEONG HUN ET AL.: "Impedance Compensation of Lower Extremity Assistive Device with Compact Series Elastic Actuators", SPRING AND AUTUMN CONFERENCE, November 2011 (2011-11-01), pages 774 - 779 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721009A (zh) * 2017-04-14 2018-11-02 香港中文大学 磁流变串联弹性驱动器
CN108721009B (zh) * 2017-04-14 2019-08-16 香港中文大学 磁流变串联弹性驱动器

Also Published As

Publication number Publication date
US10751884B2 (en) 2020-08-25
US20180079084A1 (en) 2018-03-22
KR101677935B1 (ko) 2016-11-22
KR20160120374A (ko) 2016-10-18

Similar Documents

Publication Publication Date Title
WO2016163780A1 (ko) 관절 구동기 및 이를 구비하는 하지 보조로봇의 관절구조
WO2016204441A1 (ko) 다관절 로봇의 구동장치
WO2019164349A1 (en) Wearable assistive device that efficiently delivers assistive force
EP3538030B1 (en) Exoskeleton legs to reduce fatigue during repetitive and prolonged squatting
WO2021095972A1 (ko) 상지 및 하지용 재활 운동 장치
EP3506988A1 (en) Motion assistance apparatus
WO2014021603A1 (ko) 스트링 꼬임 기반 모션 제어 장치
WO2020141633A1 (ko) 웨어러블 로봇
WO2020141632A1 (ko) 웨어러블 로봇
KR100639900B1 (ko) 로봇장치용 관절장치 및 레그식 보행 로봇장치
KR20100044358A (ko) 지능형 근력 및 보행 보조용 로봇
WO2020122557A2 (ko) 손가락 기구 및 이를 포함하는 로봇 핸드
WO2021261942A1 (ko) 인공무릎관절
WO2020091152A1 (ko) 트러스 구조를 갖는 착용식 의자
EP4041176A1 (en) Walking assistant device deformable based on thigh shape
WO2019074294A1 (ko) 로봇 관절 장치
WO2021002536A1 (ko) 하이브리드형 의지 장치 및 그 제어 방법
WO2018105978A1 (ko) 자동 해제가 가능한 안전벨트 시스템
JP2011110070A (ja) 歩行補助装具
WO2023043065A1 (ko) 구동 어셈블리 및 이를 포함하는 운동 보조 장치
WO2021075715A1 (ko) 어깨 재활 치료 기구
WO2019160179A1 (ko) 인터페이스 디바이스
KR102244673B1 (ko) 다관절 로봇의 구동장치
WO2023027226A1 (ko) 근력보조모듈 및 이를 포함하는 보조력 지원 웨어러블 슈트
WO2023063699A1 (ko) 재구성 가능한 운동 보조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776883

Country of ref document: EP

Kind code of ref document: A1