WO2016161992A2 - 新型无压灌溉装置 - Google Patents

新型无压灌溉装置 Download PDF

Info

Publication number
WO2016161992A2
WO2016161992A2 PCT/CN2016/090630 CN2016090630W WO2016161992A2 WO 2016161992 A2 WO2016161992 A2 WO 2016161992A2 CN 2016090630 W CN2016090630 W CN 2016090630W WO 2016161992 A2 WO2016161992 A2 WO 2016161992A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
water supply
pipe
level control
soil
Prior art date
Application number
PCT/CN2016/090630
Other languages
English (en)
French (fr)
Other versions
WO2016161992A3 (zh
Inventor
高胜国
高任翔
Original Assignee
中国农业科学院农田灌溉研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510655256.0A external-priority patent/CN105191756B/zh
Priority claimed from CN201510725392.2A external-priority patent/CN105201047B/zh
Priority claimed from CN201510725391.8A external-priority patent/CN105221818B/zh
Application filed by 中国农业科学院农田灌溉研究所 filed Critical 中国农业科学院农田灌溉研究所
Priority to CN201680039753.0A priority Critical patent/CN107846851B/zh
Publication of WO2016161992A2 publication Critical patent/WO2016161992A2/zh
Publication of WO2016161992A3 publication Critical patent/WO2016161992A3/zh
Priority to US15/876,108 priority patent/US10154629B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/06Watering arrangements making use of perforated pipe-lines located in the soil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/18Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float
    • F16K31/32Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a tap or cock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1842Ambient condition change responsive
    • Y10T137/1866For controlling soil irrigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7287Liquid level responsive or maintaining systems
    • Y10T137/7358By float controlled valve
    • Y10T137/7439Float arm operated valve
    • Y10T137/7488Ball valves

Definitions

  • the invention belongs to the technical field of farmland irrigation, and particularly relates to a pressureless irrigation device.
  • CN 102160518 A discloses a new type of pressureless irrigation device, which includes a water supply tank, a water level control tank, a water mains, a manifold, and a water emitter (see CN 102160518 A patent specification for details).
  • the invention patent of CN 102160518 A a new type of pressureless irrigation device, adopts a water emitter with a U-shaped concrete trough as the basic structure (see CN 102160518 A patent specification for details).
  • the invention patent of CN 102160518 A uses a water tank-type water level adjustment water supply device, which has the following defects: First, there is no special control water level adjustment mechanism and control water level scale, and accurate adjustment It is very difficult to control the water level.
  • the water supply tank of the water tank type water level regulating water supply device needs to be closed (detailed) See CN 102160518 A patent specification), can not be filled at any time, photovoltaic water pumping method is not convenient to use.
  • the object of the present invention is to provide a novel non-pressure irrigation device capable of overcoming the above-mentioned drawbacks, and to eliminate the "conventional irrigation operation mode” irrigator clogging problem and realize low cost and “foolization” in a new irrigation operation mode. "Automatic irrigation and true irrigation in the true sense.
  • the new non-pressure irrigation device includes a new type of emitter and a new water supply system, which uniformly transports irrigation water to the roots of crop plants.
  • the new emitters and the water supply level control pool of the new water supply system are based on the principle of “connector”.
  • the size of the section meets the extremely low flow rate requirements of the "connector” for "lossless delivery” under static pressure dominated operation.
  • the invention relates to a novel non-pressure irrigation device, which is characterized in that it comprises a novel water emitter for a new type of non-pressure irrigation device, the new type of water emitter comprises an equal-diameter water-passing three-way, an equal-diameter water-filled three-way horizontal inlet end, and an equal-diameter water-filled three-way Horizontal outlet end, equal-diameter water-filled three-way vertical inlet end, connecting pipe, large and small head, soil saturated water layer forming pipe, porous permeable plate, gravel filter layer and backfilling soil, equal diameter water three-way series in underground
  • the horizontal inlet end of the equal-diameter water-passing three-way is connected with the head end direction of the capillary tube
  • the horizontal outlet end of the equal-diameter water-passing three-way is connected with the tail end of the capillary tube, and the head end of all the capillary tubes is supplied through the water supply branch pipe and the water supply
  • the water level control tank is connected, and the tail end of all the capillary tubes is connected with the capillary flushing valve through the drainage branch pipe and the drain main pipe.
  • the water supply branch pipe, the drainage branch pipe, the drain main pipe and all the capillary pipes are located on the same horizontal surface, and the flushing valve is in the non-capillary flushing operation.
  • the equal-diameter water-filled three-way vertical inlet end is connected to the small head of the large and small head through the connecting pipe, and the soil saturated water layer forms the lower end of the vertical insertion tube.
  • the soil saturated water layer forms the bottom of the tube, and the large head side of the variable diameter section of the head is placed, and a porous permeable plate is placed.
  • the sand filter layer is placed on the porous permeable plate, and the sand filter layer is backfilled.
  • Soil, soil saturated water layer forming the top of the tube is 40 cm ⁇ 45 cm from the soil surface of the irrigated farmland, the height of the soil saturated water layer is adjusted to the top of the soil saturated water layer to form the bottom of the backfill soil to the top of the soil saturated water layer forming tube Adjust the height of the soil saturated water layer by adjusting the water level of the water supply level control pool corresponding to it.
  • the novel pressureless irrigation device further comprises a float water level control device having a water level adjusting mechanism and a scale, wherein the water inlet pipe of the water supply level control pool horizontally passes from the right to the left side through the side wall of the water supply level control pool to enter the water supply level control In the pool, the port connected to the equal-diameter positive tee is directed to the right, and the port of the upper connecting pipe is connected to the upper port of the equal-diameter positive tee, and the upper end of the upper connecting pipe is connected to the upper port of the upper connecting pipe.
  • a float water level control device having a water level adjusting mechanism and a scale
  • the lower end of the wire joint is connected, the upper end of the inner wire joint is provided with a four-corner plug, the upper end of the lower connecting pipe is connected with the lower port of the equal-diameter positive three-way, the lower end of the lower connecting pipe is connected with the upper port of the ball valve, the lower port of the ball valve and the cloth
  • the upper end of the water pipe is connected, the lower end of the water pipe is suspended, and the pipe mouth is facing downward, and the valve stem of the ball valve is horizontally facing inward, perpendicular to the plane of the upper connecting pipe, the lower connecting pipe and the water inlet pipe in the water supply level control pool, perpendicular to the plane
  • the upper right shaft is fixed horizontally inward, the right end of the upper connecting rod is bored, and the upper right shaft is sleeved, and then a circular gasket and a gasket are fixed to fix the bolt, and the upper connecting rod can surround the shaft Rotating in a plane perpendicular to the axis,
  • the left lower shaft is fixed in parallel with the valve stem facing inward, and the left end of the lower connecting rod is bored, and is placed on the lower left shaft. , then install the circular washer and the spacer to fix the bolt.
  • the left upper shaft is fixed inward, and the left end of the upper connecting rod is drilled. After the hole, fit on the upper left shaft, and then install the circular washer and the spacer fixing pin. The distance between the upper right shaft and the upper left axis is equal to the distance from the valve stem to the lower left axis.
  • the upper end of the floating box connecting rod is fixed with a pull ring.
  • the upper part of the pontoon connecting rod and the floating box connecting rod below the pulling ring are provided with a water level measuring rod, and the lower end of the floating box connecting rod passing through the sleeve is fixed on the floating box through a fixing nut on the floating box.
  • the upward extension of the sleeve is higher than the upper cover of the water supply level control pool, and the sleeve at the height of the convenient operation is mounted with a control water level positioning pin, and the upper link and the lower link are Vertically moving in the same plane of the valve stem, the upper right shaft, the lower left shaft and the left upper shaft, one end of the outlet pipe of the water supply level control tank passes through the side wall of the water supply level control tank, at the bottom of the water supply level control tank, and is high 20 cm on the bottom of the water supply level control pool ⁇ 25 cm, the other end of the water outlet pipe of the water supply level control tank is connected with the water supply main pipe in the new type of water emitter with a new type of pressureless irrigation device.
  • the novel pressureless irrigation device further comprises a novel water supply system for a water emitter comprising a novel pressureless irrigation device, the photovoltaic water supply system comprising a photovoltaic water pumping portion, a water storage tank and a water supply water level control pool, and the photovoltaic water pumping portion is composed of a solar battery.
  • the array, the photovoltaic water pump inverter and the water pump are composed, the solar battery array is placed on the water reservoir, the water pump is placed in the bottom of the water source well, the water pump outlet pipe is installed on the water outlet of the water pump, and the other end of the water pump outlet pipe is located in the water storage tank.
  • the upper part of the reservoir is provided with an overflow pipe, and the inlet pipe of the overflow pipe is installed on the side wall of the reservoir, and the nozzle is located in the reservoir and lower than the side wall of the reservoir
  • the upper edge is 10-15 cm
  • the other end of the overflow pipe is located outside the reservoir
  • the outlet pipe is placed in the water source well.
  • One end of the inlet pipe of the water supply level control pool is connected with the reservoir, and the nozzle of the end passes through The side wall of the pool is located in the reservoir and is 15-20 cm above the bottom surface of the reservoir.
  • the other end of the inlet pipe of the water supply level control pool is Right to the left horizontally through the side wall of the water supply level control tank into the water supply level control tank, connected to the port of the equal-diameter positive tee to the right, and the port perpendicular to the upper and lower ports of the equal-diameter positive tee, the lower end of the upper connecting tube and The upper port of the equal-diameter positive tee is connected, the upper end of the upper connecting pipe is connected with the lower end of the inner wire joint, the upper end of the inner wire joint is installed with a four-corner plug, and the upper end of the lower connecting pipe is connected with the lower port of the equal-diameter positive three-way, and the lower connection
  • the lower end of the pipe is connected with the upper port of the ball valve, the lower port of the ball valve is connected with the upper end of the water pipe, the lower end of the water pipe is suspended, and the pipe mouth is facing downward, the valve stem of the ball valve is horizontally facing
  • the upper link can rotate around the axis in a plane perpendicular to the axis, the right end of the lower link is fixed on the valve stem, and the left end and the right end of the lower link are in the same
  • the ball valve is closed.
  • the valve stem can be rotated to open the closed ball valve.
  • the lower left axis is fixed parallel to the valve stem. After drilling the left end of the lower link, it is placed on the left lower shaft, and then the circular washer and the spacer are fixed to the bolt.
  • the sleeve is equidistant from the right upper shaft of the valve stem, parallel to The upper right shaft is fixed to the left upper shaft, the left end of the upper connecting rod is bored, and is placed on the upper left shaft, and then the circular gasket and the spacer fixing pin are installed, the distance between the upper right shaft and the left upper shaft and the distance from the valve stem to the lower left axis.
  • the upper end of the pontoon connecting rod is fixed with a pull ring, and on the upper part of the pontoon connecting rod, the pontoon connecting rod below the pulling ring is provided with a water level measuring rod, and the pontoon connecting rod passing through the sleeve
  • the lower end is fixed on the floating box by a fixing nut on the floating box, above the upper left shaft, the upward extension of the sleeve is higher than the upper cover of the water supply level control pool, and the sleeve at the height of the operation is convenient.
  • the novel pressureless irrigation device is further characterized in that one end of the water inlet pipe of the water supply level control pool is connected with the water storage tank, and the water storage tank can select water supply other than the photovoltaic water lifting mode, or the minimum movement
  • the water level is higher than other water sources in the water supply level control tank to replace the reservoir and the photovoltaic water pumping part.
  • the novel non-pressure irrigation device is further characterized in that the new type of water emitter and the new water supply system uniformly deliver irrigation water to the roots of the crop plants, and the new type of emitters and the water supply level control pool of the new water supply system are based on " The principle of the "connector", the size of the cross section of the water, meets the "connector” in the static pressure Very low flow rate requirements for "lossless delivery" in the row state.
  • the novel pressureless irrigation device is further characterized in that the distance between the top end of the soil saturated water layer forming tube and the soil surface of the irrigated farmland is greater than the maximum machine depth of the irrigated farmland by 5 cm to 10 cm.
  • the novel non-pressure irrigation device is further characterized in that the height adjustment range of the soil saturated water layer is the bottom of the soil saturated water layer forming the backfill soil in the tube to the top of the soil saturated water layer forming tube, lower than the upper edge 3 cm to 4 cm.
  • the novel non-pressure irrigation device is further characterized in that, according to the "connector" principle, the height of the soil saturated water layer is controlled by controlling the water level of the water supply level control pool corresponding thereto.
  • the novel pressureless irrigation device is further characterized in that the porous water permeable plate adopts a spherical shape plate with a convex surface facing upward.
  • the novel pressureless irrigation device of the present invention uniformly delivers irrigation water to the roots of crop plants based on the "connector” principle.
  • the novel pressureless irrigation device of the invention does not require pressurization, "lossless transport", and the driving force comes from the capillary force of the soil and the water potential of the soil, the plant and the atmosphere which consumes solar energy, and is "traditional irrigation operation mode”.
  • a completely new type of irrigation operation with essential differences, the necessary and sufficient condition is based on the "connector” principle of "lossless delivery” under the static pressure dominated operating state.
  • the soil saturated water layer forms the water in the saturated water layer of the soil in the form of soil capillary water, rises to the root layer of the crop plant, and then passes through the crop plant. Transpiration, transported to the atmosphere.
  • the transpiration of crop plants consumes the water in the saturated water layer of the soil formed by the saturated water layer in the soil, so that the height of the soil saturated water layer in the soil saturated water layer is reduced, based on
  • the "connector" principle triggers the water supply level control pool of the first part to replenish water.
  • the irrigation amount is artificially set, and the spatial difference of the soil's own water condition is not taken into account, and the same amount of water is irrigated, but in fact, the amount of water may be suitable for one part of the field, and may be appropriate for another part. More or too little, which affects crop growth. That is to say, under the "traditional irrigation mode of operation", even if the amount of water flowing out of each emitter is exactly the same, it is not a true uniform irrigation.
  • the size of the cross-section must meet the extremely low flow rate requirement of the "connector” under the static pressure prevailing operating state to deliver the irrigation water evenly to the roots of the crop plant. Otherwise, the greater the distance from the water supply level control tank of the head, the lower the height of the soil saturated water layer in the soil saturated water formation tube, and the purpose of uniformly delivering the irrigation water to the roots of the crop plants cannot be achieved.
  • the so-called “lossless transport” refers to the height of the soil saturated water layer in the soil-saturated water layer forming tube at the distance from the water supply level control tank at the head, which is reduced by the transport loss, taking into account the water supply uniformity and cost.
  • the pipe and size other than the embodiment of the novel water emitter of the present invention can also be used as needed.
  • Other combinations for example, according to the actual situation that the capillary flow rate decreases from large to small, the coarse to fine capillary tube along the path is reduced to achieve more economical and enhanced capillary flushing (opening of the capillary flushing valve).
  • the extremely low flow rate greatly weakens the entrainment ability of the solid particles in the irrigation water. Together with the precipitation of gravity, the solid particles in the irrigation water move less than the soil pore channel of the soil saturated water layer forming the tube at a high place.
  • the resistance is proportional to the square of the flow rate. Because the flow rate is extremely low, there is almost no transmission loss, so the water supply is large and the water supply is sufficient, so that the soil capillary acts to form the unsaturated wet body in the soil. The volume is maximized, and the emitter is placed below the machine layer below the root of the crop plant, overcoming other “adaptive irrigation” methods – “negative pressure irrigation”, because the driving force is resisting the “negative pressure irrigation” system. Excessive consumption of the transport resistance itself, such as increasing the transport resistance (stroke) of the soil, will not meet the water requirements of the crop, so that the "negative pressure irrigation” emitter cannot be laid slightly away from the root of the crop plant. Below the machine layer, which affects the tillage operation, there are major defects in the irrigators and capillary tubes that need to be frequently laid under the “negative pressure irrigation” underground.
  • the novel pressureless irrigation device of the invention is sturdy and durable, and can accurately adjust the control water level of the underground water supply level control pool through the control water level gauge and the positioning pin located on the ground. Conveniently and accurately control the height of the saturated water layer of the soil that supplies water to the root layer of the crop through the rise of soil capillary water. It also benefits from the “lossless transport” of the “connector” principle, without consuming the driving force and vacating the soil saturated water. The control space of the layer height is large enough. Under the premise that the emitter is laid below the machine layer, there are still conditions to adopt the optimum growth period when the crop roots are shallow or deep and the water consumption is large or small.
  • Soil capillary water rises to control the height of the soil saturated water layer supplied to the root layer of the crop, for example, by reducing the height of the soil saturated water layer to avoid small water consumption in the crop transpiration, and the soil water continues to rise to the soil surface.
  • the formation of soil evaporation between the soil causes the surface soil to return to salt.
  • the invention is based on the principle of "connector”, and supplies water upwards by infiltration method, the soil is loose and not squashed, and the soil is more humidified to a lower degree, which not only reduces evaporation of the upper layer soil, but also effectively inhibits weed growth; based on the principle of "connector" No loss of transport, there is almost no water supply resistance, so that the volume of unsaturated wet bodies in the soil formed by soil capillary action is maximized, and the water saturation is too large to make the soil wetted too small.
  • the method of irrigation should be “negative pressure irrigation”.
  • the arrangement density of the emitter can be reduced, the line spacing can be increased, and the input can be reduced, thereby achieving a large supply of water and sufficient water supply.
  • the soil has a large humidification range, which is also conducive to the uniform distribution of water and fertilizer, which can create more growth space for the root system and reduce salt damage.
  • the invention is based on " The principle of “connector”, non-intermittent continuous irrigation mode, makes the soil wetting body size and water and fertilizer distribution gradient relatively stable, which is beneficial to the growth of plant roots to the most suitable soil water and fertilizer, and fully exerts the physiological optimization function of plant roots.
  • the root layer will not be saturated with soil water due to irrigation.
  • the soil moisture will decrease from bottom to top, which will make the soil air permeability the best and heat up quickly. It is not only superior to the ground intermittent water supply which will form soil water saturation in the upper layer of the root system. Irrigation is also superior to the local direct water supply of crop roots that will form soil water saturation locally in the root layer. Positive pressure irrigation which crop growth environment - thermal conditions Gas fertilizer, irrigation methods and any method is better than before.
  • Figure 1 is a schematic view of a novel water emitter of the novel pressureless irrigation device of the present invention.
  • FIG. 2 is a schematic view of a water supply level control tank of a novel water supply system of the novel pressureless irrigation device of the present invention.
  • FIGS. 1 to 2 are only examples, which are not drawn to the same scale conditions, and should not be construed as limiting the scope of protection required by the present invention.
  • the new pressureless irrigation device includes a new type of emitter and a new water supply system, which uniformly transports irrigation water to the roots of crop plants, and the new emitters and the water supply level control pool 201 of the new water supply system are based on the principle of "connector".
  • the size of the cross section of the water meets the "no" of the "connector” under the static pressure Very low flow rate requirements for lossy delivery.
  • a new type of pressureless irrigation device includes a new type of water emitter for a new type of pressureless irrigation device.
  • the new type of water emitter includes a waterway tee with equal diameter and a horizontal water inlet 1-1 of equal diameter.
  • the flushing valve When the non-capillary pipe flushing operation is performed, the flushing valve is closed, and the equal-diameter water three-way vertical water inlet end 1-3 passes through the connecting pipe 2 and the small size head 3 Head connection, soil saturated water layer forming tube 4 The lower end is vertically inserted into the large head of the size head 3, the soil saturated water layer forms the bottom of the tube 4, the large head side of the variable diameter head 3 is placed, the porous water permeable plate 5 is placed, and the sandstone filter layer is placed on the porous water permeable plate 5 6. The top of the gravel filter layer 6 is backfilled with soil 7.
  • the top of the soil saturated water layer forming tube 4 is 40 cm to 45 cm from the soil surface of the irrigated farmland, and the height of the soil saturated water layer is adjusted to the formation of the soil saturated water layer.
  • the bottom of the soil 7 is backfilled in the tube 4 to the top of the soil saturated water layer forming tube 4, and the height of the soil saturated water layer is adjusted by adjusting the water level of the water supply level control tank 201 corresponding thereto. If the water level control device used in the new pressureless irrigation device disclosed in the invention patent document published as CN 102160518 A is used, it is only necessary to adjust the height of the intake port of the water supply tank intake pipe corresponding to the height of the soil saturated water layer.
  • the equal-diameter water-passing tee 1 adopts a commercially available drainage hard PVC material with an equal-diameter water-passing tee of ⁇ 50
  • the size head 3 adopts a commercially available hard PVC material for drainage.
  • the ⁇ 50 is changed to the size of the ⁇ 110 head
  • the connecting pipe 2 is a commercially available ⁇ 50 tube of a hard PVC material for drainage.
  • the novel pressureless irrigation device further includes a float water level control device having a water level adjusting mechanism and a scale, and the water inlet pipe 202 of the water supply level control pool 201 horizontally passes through the water supply level control pool 201 from right to left.
  • the side wall enters the water supply level control pool 201, and the port connected to the equal-diameter positive tee 203 is directed to the right, and the port perpendicular to the upper and lower ports of the equal-diameter positive tee 203, the lower end of the upper connecting pipe 204 and the equal-diameter positive tee 203
  • the upper port is connected, the upper end of the upper connecting pipe 204 is connected to the lower end of the inner wire joint 205, the upper end of the inner wire joint 205 is mounted with a four-corner plug 206, and the upper end of the lower connecting pipe 207 is connected with the lower port of the equal-diameter positive tee 203,
  • the lower end of the connecting tube 207 is connected to the upper port of the ball valve 208, and the lower end of the ball valve 208
  • the mouth is connected to the upper end of the cloth pipe 209, the lower end of the water pipe 209 is suspended, and the nozzle is facing downward, and the
  • the plane of the inlet pipe 202 is perpendicular to the plane.
  • the upper right shaft 211 is fixed horizontally inwardly, and the right end of the upper connecting rod 212 is bored, and is placed on the upper right shaft 211, and then the circle is installed.
  • the spacer and the spacer fix the latch, the upper link 212 is rotatable about the axis in a plane perpendicular to the axis, the right end of the lower link 213 is fixed on the valve stem 210, and the left and right ends of the lower link 213 are in the same
  • the ball valve 208 is in a closed state.
  • valve stem 210 When the left end of the lower link 213 moves away from the horizontal surface, the valve stem 210 can be rotated to open the closed ball valve 208.
  • the left lower shaft 215 is fixed in the face-to-face direction, and the left end of the lower link 213 is bored, and is placed on the left lower shaft 215, and then a circular washer and a spacer fixing pin are mounted, above the left lower shaft 215, and the valve stem 210 is at the upper right.
  • Sleeve 2 at equidistance of shaft 211 14, parallel to the upper right axis 211 is fixed inwardly with the upper left shaft 216, the left end of the upper link 212 is drilled, and is placed on the upper left shaft 216, and then the circular washer and the spacer fixed pin are mounted, and the upper right shaft 211 is from the upper left.
  • the distance of the shaft 216 is equal to the distance of the valve stem 210 from the lower left shaft 215, and the upper end of the floating box link 217 is fixed with a pull ring 218, on the upper part of the floating box link 217, on the floating box link 217 below the pull ring 218, A control water level gauge 219 is provided.
  • the lower end of the pontoon link 217 passing through the sleeve 214 is fixed to the pontoon 221 by a fixing nut 220 on the pontoon 221.
  • the sleeve 214 is upward.
  • the sleeve 214 at the height of the convenient operation is mounted with a control water level positioning pin 222, and the upper link 212 and the lower link 213 are perpendicular to the valve stem 210.
  • the upper right shaft 211, the lower left shaft 215, and the upper left shaft 216 move in the same plane.
  • the nozzle of the water outlet pipe 223 of the water supply level control pool 201 passes through the side wall of the water supply level control pool 201 and is located in the water supply level control pool 201.
  • the bottom of the water supply level control tank 201 is 20 to 25 cm above the bottom of the water supply level control tank 201
  • the other end of the water supply tank 201 water level control of the water discharge pipe 223 connected with the emitter of the new water mains with new non-pressure irrigation device.
  • the new pressureless irrigation device also includes a new type of non-pressure irrigation device for the photovoltaic water supply system for the emitter
  • the photovoltaic water supply system includes: photovoltaic water pumping part, reservoir and water supply level control pool 201, photovoltaic water pumping Part of the solar cell array, photovoltaic water pump inverter and water pump, the solar cell array is placed on the reservoir, the water pump is placed in the bottom of the water source well, the water outlet of the pump is installed with the water pump outlet pipe, and the other end of the water pump outlet pipe Located above the reservoir and the nozzle is downward.
  • the upper part of the reservoir is provided with an overflow pipe.
  • the inlet pipe of the overflow pipe is installed on the side wall of the reservoir, and the nozzle is located in the reservoir, and is lower than The side wall of the pool is 10-15 cm, the other end of the overflow pipe is located outside the reservoir, and the outlet pipe is placed in the water source well.
  • One end of the water inlet pipe 202 of the water supply level control pool 201 is connected to the water reservoir, and the nozzle of the end passes through the side wall of the water reservoir, is located in the water reservoir, and is 15-20 cm above the bottom surface of the water storage tank.
  • the other end of the water inlet pipe 202 of the water level control tank 201 is horizontally passed from the right to the left through the side wall of the water supply level control tank 201 into the water supply level control pool 201, and the port connected to the equal diameter positive tee 203 is directed to the right, and etc.
  • the lower end of the upper connecting pipe 204 is connected to the upper port of the equal-diameter positive tee 203, the upper end of the upper connecting pipe 204 is connected to the lower end of the inner wire joint 205, and the upper end of the inner wire joint 205 is connected.
  • a four-corner plug 206 is mounted, the upper end of the lower connecting pipe 207 is connected to the lower port of the equal-diameter positive tee 203, the lower end of the lower connecting pipe 207 is connected to the upper port of the ball valve 208, and the lower port of the ball valve 208 is connected to the upper end of the water pipe 209.
  • the lower end of the water distribution pipe 209 is suspended, and the nozzle is facing downward.
  • the valve stem 210 of the ball valve 208 is horizontally facing inward, perpendicular to the plane of the upper connecting pipe 204, the lower connecting pipe 207 and the water inlet pipe 202 in the water supply level control pool 201.
  • the upper right shaft 211 is fixed horizontally inwardly, and the right end of the upper connecting rod 212 is drilled, and is placed on the upper right shaft 211, and then the circular washer and the spacer fixing pin are mounted, and the upper link 212 is installed.
  • the shaft can be rotated about a plane perpendicular to the axis, and the right end of the lower link 213 is fixed on the valve stem 210.
  • the ball valve 208 is in a closed state, and the lower link is When the left end of the 213 is moved downward from the horizontal direction, the valve stem 210 can be rotated to open the closed ball valve 208.
  • the left lower shaft 215 is fixed in parallel with the valve stem 210, and the lower link 213 is fixed. After drilling the left end, it is placed on the lower left shaft 215, and then the circular washer and the spacer fixing pin are mounted.
  • the sleeve 214 is equidistant from the right upper shaft 211 of the valve stem 210, parallel to
  • the upper right shaft 211 is fixed to the left upper shaft 216, the left end of the upper link 212 is drilled, and is placed on the upper left shaft 216, and then the circular washer and the spacer fixing pin are mounted, and the distance between the upper right shaft 211 and the upper left shaft 216 is
  • the valve stem 210 is equidistant from the lower left axis 215, floating A pull ring 218 is fixed to the upper end of the connecting rod 217.
  • a floating tank connecting rod 217 below the pull ring 218 is provided with a water level gauge 219 for controlling the water level rod 219 passing through the sleeve 214.
  • the lower end of the rod 217 is fixed to the floating box 221 by a fixing nut 220 on the floating box 221.
  • the upward extension of the sleeve 214 is higher than the upper cover of the water supply level control tank 201, which is convenient.
  • a control water level positioning pin 222 is mounted, and the upper link 212 and the lower link 213 are in the same plane perpendicular to the valve stem 210, the upper right shaft 211, the lower left shaft 215 and the upper left shaft 216. Movement, one end of the outlet pipe 223 of the water supply level control tank 201 passes through the side wall of the water supply level control tank 201, is located in the water supply level control tank 201, and is 20 to 25 cm above the bottom surface of the water supply level control tank 201, and supplies water. The other end of the water outlet pipe 223 of the water level control pool 201, and The new pressureless irrigation device is connected by a water supply main pipe in a new type of emitter.
  • the distance between the top end of the soil saturated water layer forming tube 4 and the soil surface of the irrigated farmland is greater than the maximum ploughing depth of the irrigated farmland by 5 cm to 10 cm.
  • the height of the soil saturated water layer is adjusted to be from the bottom of the backfill soil 7 in the soil saturated water layer forming tube 4 to the top of the soil saturated water layer forming tube 4, which is 3 cm to 4 cm below the upper edge.
  • the height of the soil saturated water layer is controlled by controlling the water level of the water supply level control tank 201 corresponding thereto.
  • the porous water-permeable panel 5 is formed by a spherical shape plate with a convex surface facing upward.
  • the equal-diameter water-passing three-way 1 adopts a commercially available drainage hard PVC material with a diameter of ⁇ 50 of equal diameter water tee.
  • the capillary tube adopts commercially available ⁇ 50 tube of hard PVC material for drainage
  • the size head 3 adopts the ⁇ 50 of ⁇ 110 which is a commercially available drainage hard PVC material
  • the connecting tube 2 adopts commercially available ⁇ 50 tube of hard PVC material for drainage.
  • the soil saturated water layer forming tube 4 is a commercially available ⁇ 110 tube of a hard PVC material for drainage, and has a length of 40 cm.
  • the porous permeable plate 5 is a 15 mm thick spherical shape plate which is injection molded from a hard PVC material, and the rib 6 on the plate.
  • the width is mm, the gap is 8 mm wide, and the convex surface is placed upwards.

Abstract

本发明属于农田灌溉技术领域,尤其涉及一种新型无压灌溉装置。本发明将灌溉水均匀地输送到作物植株根系,基于的是"连通器"原理,过水断面的大小,必须满足"连通器"在静压主导运行状态下的"无损耗输送"的极低流速要求,根除了消能伴随的灌水器堵塞难题。在土壤的毛细管力和土壤、植物、大气的水势能差的作用下,土壤饱和水层形成管内的土壤饱和水层的水,通过作物植株的蒸腾进入大气,使土壤饱和水层的高度下降,基于"连通器"原理,触发了首部的供水水位控制池补水,耗水与补水自适应,无需人为干预和外加能量,实现了低成本与"傻瓜化"的自动灌溉和真正意义上的均匀灌溉。

Description

新型无压灌溉装置 技术领域
本发明属于农田灌溉技术领域,尤其涉及一种无压灌溉装置。
背景技术
无压灌溉的概念,是通过公布号为CN 102160518 A的已授权发明专利——新型无压灌溉装置,最早提出来的,“无压灌溉是灌溉水源的高程与灌水器的高程相等的一种灌溉方法”,它是由“负压灌溉”的定义衍生出来的。CN 102160518A发明专利“发明的目的在于提供一种与负压灌溉同样高效,而使用更加方便,耐久性好,可靠性高的一种新型无压灌溉装置”。公布号为CN 102160518 A的发明专利文献公布了新型无压灌溉装置,其包括供水罐,水位控制池,输水干管,汇流管,灌水器若干(详见CN 102160518 A专利说明书)。
公布号为CN 102160518 A的发明专利——新型无压灌溉装置,采用了以U型混凝土槽为基本结构的灌水器(详见CN 102160518 A专利说明书)。存在以下缺陷:一是,现场施工需要高精度混凝土浇筑成型设备,存在伸缩缝防渗处理等一系列技术难题,投入大、施工难度高;二是,混凝土U型槽为脆性材料,容易被冻胀、不均匀沉陷以及耕作机械作业等造成损坏;最重要的缺陷是,不能调节通过土壤毛细管水上升向作物根系层供水的土壤饱和水层的高度。在作物蒸腾耗水量不大,土壤水继续上升至土壤表面而形成棵间土壤蒸发造成表面土壤返盐时,不能通过降低土壤饱和水层的高度来加以解决。同样,也不能通过抬高土壤饱和水层高度的办法来治愈地下灌溉播种后苗期表层土壤供水不足致使出苗不齐的通病。公布号为CN 102160518 A的发明专利——新型无压灌溉装置,采用的是供水罐式水位调节供水装置,存在以下缺陷:一是,没有设置专用的控制水位调整机构和控制水位标尺,准确调整控制水位十分困难,不能满足本发明的新型无压灌溉装置的新型灌水器,需要能随时准确方便地调整控制水位的要求;二是,供水罐式水位调节供水装置的供水罐需封闭运行(详见CN 102160518 A专利说明书),不能在任意时刻充水,光伏扬水方式不方便采用。
发明内容
本发明的目的在于提供一种能够克服上述缺陷的新型无压灌溉装置,以一种全新的灌溉运行方式,根除“传统的灌溉运行方式”的灌水器堵塞难题,并实现低成本与“傻瓜化”的自动灌溉和真正意义上的均匀灌溉。
本发明的目的是这样实现的:
新型无压灌溉装置包括新型灌水器与新型供水系统,其将灌溉水均匀地输送到作物植株根系,新型灌水器与新型供水系统的供水水位控制池之间基于的是“连通器”原理,过水断面的大小,满足“连通器”在静压主导运行状态下的“无损耗输送”的极低流速要求。
一种新型无压灌溉装置,其特征在于,包括新型无压灌溉装置用新型灌水器,所述新型灌水器包括等径顺水三通、等径顺水三通水平进水端、等径顺水三通水平出水端、等径顺水三通垂直进水端、连接管、大小头、土壤饱和水层形成管、多孔透水板、砂石反滤层和回填土壤,等径顺水三通串联在位于地下的毛管上,等径顺水三通水平进水端与毛管的首端方向连接,等径顺水三通水平出水端与毛管的尾端方向连接,所有毛管的首端通过供水支管和供水干管与供水水位控制池连通,所有毛管的尾端通过排水支管和排水干管与毛管冲洗阀门连接,供水支管、排水支管、排水干管和所有的毛管位于同一个水平面上,非毛管冲洗作业时冲洗阀门处于关闭状态,等径顺水三通垂直进水端通过连接管与大小头的小头连接,土壤饱和水层形成管的下端垂直插入大小头的大头内,土壤饱和水层形成管的底部,大小头的变径处的大头一侧,放置多孔透水板,多孔透水板的上面放置砂石反滤层,砂石反滤层的上面为回填土壤,土壤饱和水层形成管的顶端距被灌溉农田土壤表面40厘米~45厘米,土壤饱和水层的高度调节范围为土壤饱和水层形成管内回填土壤的底部至土壤饱和水层形成管的顶部,通过调节与之对应的供水水位控制池的水位来调节土壤饱和水层的高度。
所述新型无压灌溉装置还包括具有控制水位调整机构和标尺的浮球水位控制装置,其中,供水水位控制池的进水管从右向左水平穿过供水水位控制池的侧壁进入供水水位控制池内,连接在等径正三通的端口朝右,且与等径正三通的上下端口垂直的端口上,上连接管的下端与等径正三通的上端口连接,上连接管的上端与内 丝接头的下端连接,内丝接头的上端安装有四角塞头,下连接管的上端与等径正三通的下端口连接,下连接管的下端与球阀的上端口连接,球阀的下端口与布水管的上端连接,布水管的下端悬空,且管口朝下,球阀的阀杆水平迎面朝里,垂直于上连接管、下连接管和供水水位控制池内的进水管所在的平面,垂直于该平面,在上连接管的上部,水平迎面朝里固定有右上轴,上连杆的右端钻孔后,套在右上轴上,再安装圆形垫片和垫片固定插销,上连杆可以围绕该轴在垂直于该轴的平面内转动,下连杆的右端固定在阀杆上,下连杆的左端和右端处于同一个水平面时,球阀处于关闭状态,当下连杆的左端脱离该水平面向下运动时,能带动阀杆转动,将关闭的球阀开启,在套筒的下端,平行于阀杆迎面朝里固定有左下轴,下连杆的左端钻孔后,套在左下轴上,再安装圆形垫片和垫片固定插销,在左下轴的上方,与阀杆距右上轴等距处的套筒上,平行于右上轴迎面朝里固定有左上轴,上连杆的左端钻孔后,套在左上轴上,再安装圆形垫片和垫片固定插销,右上轴距左上轴的距离与阀杆距左下轴的距离相等,浮箱连杆的上端固定有拉环,在浮箱连杆的上部,拉环以下的浮箱连杆上,设有控制水位标尺,从套筒内穿过的浮箱连杆的下端,通过浮箱上的固定螺母固定在浮箱上,在左上轴的上方,套筒向上的延长段上,高于供水水位控制池的上盖板,方便操作的高度处的套筒上,安装有控制水位定位销,上连杆与下连杆在垂直于阀杆、右上轴、左下轴和左上轴的同一个平面内运动,供水水位控制池的出水管的一端管口穿过供水水位控制池的侧壁,位于供水水位控制池底部,且高于供水水位控制池的底面20厘米~25厘米,供水水位控制池的出水管的另一端,与新型无压灌溉装置用新型灌水器中的供水干管连接。
所述的新型无压灌溉装置还包括一种新型无压灌溉装置的新型灌水器用光伏供水系统,所述光伏供水系统包括光伏扬水部分、蓄水池和供水水位控制池,光伏扬水部分由太阳能电池阵列、光伏扬水逆变器和水泵组成,太阳能电池阵列放置在蓄水池上,水泵放置在水源井内底部,水泵的出水口上安装有水泵出水管,水泵出水管的另一端管口位于蓄水池的上方且管口向下,蓄水池的上部设有溢流管,溢流管的进水管口安装在蓄水池侧壁上,管口位于蓄水池内,且低于蓄水池侧壁上沿10~15厘米,溢流管的另一端位于蓄水池外,其出水管口放置在水源井内,供水水位控制池的进水管的一端与蓄水池连接,该端的管口穿过蓄水池的侧壁,位于蓄水池内,且高于蓄水池底面15~20厘米,供水水位控制池的进水管的另一端,从 右向左水平穿过供水水位控制池的侧壁进入供水水位控制池内,连接在等径正三通的端口朝右,且与等径正三通的上下端口垂直的端口上,上连接管的下端与等径正三通的上端口连接,上连接管的上端与内丝接头的下端连接,内丝接头的上端安装有四角塞头,下连接管的上端与等径正三通的下端口连接,下连接管的下端与球阀的上端口连接,球阀的下端口与布水管的上端连接,布水管的下端悬空,且管口朝下,球阀的阀杆水平迎面朝里,垂直于上连接管、下连接管和供水水位控制池内的进水管所在的平面,垂直于该平面,在上连接管的上部,水平迎面朝里固定有右上轴,上连杆的右端钻孔后,套在右上轴上,再安装圆形垫片和垫片固定插销,上连杆可以围绕该轴在垂直于该轴的平面内转动,下连杆的右端固定在阀杆上,下连杆的左端和右端处于同一个水平面时,球阀处于关闭状态,当下连杆的左端脱离该水平面向下运动时,能带动阀杆转动,将关闭的球阀开启,在套筒的下端,平行于阀杆迎面朝里固定有左下轴,下连杆的左端钻孔后,套在左下轴上,再安装圆形垫片和垫片固定插销,在左下轴的上方,与阀杆距右上轴等距处的套筒上,平行于右上轴迎面朝里固定有左上轴,上连杆的左端钻孔后,套在左上轴上,再安装圆形垫片和垫片固定插销,右上轴距左上轴的距离与阀杆距左下轴的距离相等,浮箱连杆的上端固定有拉环,在浮箱连杆的上部,拉环以下的浮箱连杆上,设有控制水位标尺,从套筒内穿过的浮箱连杆的下端,通过浮箱上的固定螺母固定在浮箱上,在左上轴的上方,套筒向上的延长段上,高于供水水位控制池的上盖板,方便操作的高度处的套筒上,安装有控制水位定位销,上连杆与下连杆在垂直于阀杆、右上轴、左下轴和左上轴的同一个平面内运动,供水水位控制池的出水管的一端管口穿过供水水位控制池的侧壁,位于供水水位控制池内,且高于供水水位控制池的底面20~25厘米,供水水位控制池的出水管的另一端,与新型无压灌溉装置用新型灌水器中的供水干管连接。
所述的新型无压灌溉装置,其进一步的特点是,所述供水水位控制池的进水管的一端与蓄水池连接,蓄水池可以选择光伏扬水方式以外的其它方式供水,或用最低动水位高于供水水位控制池的其它水源来替代蓄水池和光伏扬水部分。
所述的新型无压灌溉装置,其进一步的特点是,新型灌水器与新型供水系统将灌溉水均匀地输送到作物植株根系,新型灌水器与新型供水系统的供水水位控制池之间基于的是“连通器”原理,过水断面的大小,满足“连通器”在静压主导运 行状态下的“无损耗输送”的极低流速要求。
所述的新型无压灌溉装置,其进一步的特点是,所述土壤饱和水层形成管的顶端距被灌溉农田土壤表面的距离,大于该被灌溉农田最大机耕深度5厘米~10厘米。
所述的新型无压灌溉装置,其进一步的特点是,所述土壤饱和水层的高度调节范围为土壤饱和水层形成管内回填土壤的底部至土壤饱和水层形成管的顶部,低于上沿3厘米~4厘米处。
所述的新型无压灌溉装置,其进一步的特点是,根据“连通器”原理,通过控制调节与之对应的供水水位控制池的水位来控制调节土壤饱和水层的高度。
所述的新型无压灌溉装置,其进一步的特点是,所述的多孔透水板,采用球面形状板,凸面朝上放置。
本发明的技术特点与积极效果:
长期以来,为了使灌溉水能均匀地输送到作物植株根系,通常是以先加压而后通过灌水器消能的灌溉运行方式来实现的,在本说明书中,简称为“传统的灌溉运行方式”。理论上讲,“传统的灌溉运行方式”,灌水器堵塞伴随灌水器消能而来,灌水器消能为灌水器堵塞提供了条件,只要灌水器还在行使消能功能,灌水器的堵塞就难以根除。长期的科学研究与生产实践也证明,附有前提的消除“传统的灌溉运行方式”下的灌水器堵塞,例如环境友好的非化学方法,似乎成为一个不可能完成的任务,称之为世界难题亦不为过。
本发明的新型无压灌溉装置,将灌溉水均匀地输送到作物植株根系,基于的是“连通器”原理。本发明的新型无压灌溉装置,无需加压,“无损耗输送”,驱动力来自于土壤的毛细管力和消耗太阳能的土壤、植物与大气的水势能差,是与“传统的灌溉运行方式”具有本质区别的一种全新的灌溉运行方式,其充分必要条件是基于“连通器”原理的静压主导运行状态下的“无损耗输送”。
因为土壤的毛细管力和土壤、植物、大气的水势能差的作用,使土壤饱和水层形成管内的土壤饱和水层的水以土壤毛细管水的形式,上升至作物植株根系层,再通过作物植株的蒸腾,输送至大气中。作物植株蒸腾消耗了土壤饱和水层形成管内的土壤饱和水层的水,使土壤饱和水层形成管内的土壤饱和水层的高度下降,基于 “连通器”原理,触发了首部的供水水位控制池补水,作物耗多少水,就补多少水,补水量随耗水量增减,自适应,无需人为干预和外加能量,实现了低成本与“傻瓜化”的自动灌溉和真正意义上的均匀灌溉。对于“传统的灌溉运行方式”,灌水量由人为设定,没有考虑土壤本身水分状况的空间差异性,均灌溉相同水量,但实际上这些水量对于田间某一部分可能适宜,而对另一部分可能过多或过少,从而影响作物生长。也就是说,在“传统的灌溉运行方式”下,即使每个灌水器流出的水量完全相同,也不是真正意义上的均匀灌溉。
遵循“连通器”原理,过水断面的大小,必须满足“连通器”在静压主导运行状态下的“无损耗输送”的极低流速要求,才能将灌溉水均匀地输送到作物植株根系。否则,距首部的供水水位控制池的距离越大,土壤饱和水层形成管内的土壤饱和水层的高度就越低,不能达到将灌溉水均匀地输送到作物植株根系的目的。所谓的“无损耗输送”指的是距首部的供水水位控制池的距离最大处的土壤饱和水层形成管内的土壤饱和水层的高度,因输送损耗而下降,兼顾供水均匀度与成本,其最大下降幅度(发生在最大耗水对应的最大补水流量时)在允许范围内的情况下的具有相对意义的“无损耗输送”。实现“无损耗输送”,必须通过加大过水断面面积,以降低流速的方式,来减少输送的沿程阻力,即所谓的“连通器”在静压主导运行状态下的“无损耗输送”的极低流速要求。当然,也包括加大新型灌水器的土壤饱和水层形成管的管径,来增加管内土壤孔隙通道的面积,同等流量、流速,土壤饱和水层形成管的管径一定大于毛管的管径。因为是“自适应灌溉”,所以最为省水,输送的流量,远远小于“传统的灌溉运行方式”,为满足“连通器”在静压主导运行状态下的“无损耗输送”的极低流速要求而增加的过水断面面积的投入并不大,比较“传统的灌溉运行方式”,性价比高,经济划算,完全可以接受,具体过水断面所用的管材与尺寸,详见本发明的新型灌水器的实施例。当然,在满足“连通器”在静压主导运行状态下的“无损耗输送”的极低流速要求的前提下,依据需要,也可以采用本发明的新型灌水器的实施例以外的管材与尺寸的其它组合,例如,依据毛管过水流量沿程由大变小的实际情况,采用沿程变径的由粗到细的毛管,以达到更经济和增强毛管冲洗(打开毛管冲洗阀)效果的目的。极低的流速,极大地弱化了对灌溉水中的固体颗粒的夹带能力,再加上重力的沉淀作用,灌溉水中的固体颗粒移动不到位于高处的土壤饱和水层形成管的土壤孔隙通道处而形成堵塞,消除了 灌水器堵塞的根源,因此,不用任何过滤装置,就有优异的抗堵塞性能。至于沉淀在位于低处的毛管中的固体颗粒,则可通过打开毛管冲洗阀,冲洗去除。因为我们所灌溉的是非水生作物,也不会发生作物根系侵入土壤饱和水层形成管的情况,即使有所侵入,大管径的土壤饱和水层形成管也不会出现堵塞的状况,根除了“传统的灌溉运行方式”,因灌水器行使消能功能所伴随的灌水器堵塞难题。
根据流体力学的基本定律,阻力(水头损失)与流速的平方成正比,因为流速极低,几乎没有输送损耗,所以供水量大、给水充足,使得土壤毛细管作用形成的土壤内非饱和湿润体的体积达到最大,有条件将灌水器铺设于距作物植株根系稍远的机耕层以下,克服了其它“自适应灌溉”方法——“负压灌溉”,因驱动力在抵抗“负压灌溉”系统本身的输送阻力时消耗过大,如再增加土壤的输送阻力(行程),将无法满足作物的需水要求,以至于不能将“负压灌溉”的灌水器铺设于距作物植株根系稍远的机耕层以下,从而影响机耕作业,存在需频繁铺设“负压灌溉”位于地下的灌水器与毛管的重大缺陷。
本发明的新型无压灌溉装置,坚固耐用,能通过位于地上的控制水位标尺与定位销,精确调整位于地下的供水水位控制池的控制水位。方便准确地控制调节通过土壤毛细管水上升向作物根系层供水的土壤饱和水层的高度,还得益于“连通器”原理的“无损耗输送”,没有消耗驱动力,腾出的土壤饱和水层高度的控制调节空间足够大,在灌水器铺设于机耕层以下的前提下,仍有条件在作物不同生育期,作物根系浅或深和耗水量大或小等情况下,采用最适宜的通过土壤毛细管水上升向作物根系层供水的土壤饱和水层的高度的控制调节策略,例如,通过降低土壤饱和水层的高度,来避免在作物蒸腾耗水量不大,土壤水继续上升至土壤表面而形成棵间土壤蒸发造成表面土壤返盐的情况发生,再例如,通过抬高土壤饱和水层的高度,来避免播种后苗期表层土壤供水不足而影响出苗的情况发生,等等,使作物始终处于最优(例如,棵间有蒸发,降低土壤饱和水层的高度。)或虽不是最优但最合理(例如,播种后苗期,抬高土壤饱和水层的高度。)的灌溉状态。
本发明基于“连通器”原理,以浸润方式向上供水,土质疏松不板结,土壤越向上湿润程度越低,不仅上层土壤蒸发少,还可有效抑制杂草生长;基于“连通器”原理的“无损耗输送”,几乎没有供水阻力,使得土壤毛细管作用形成的土壤内非饱和湿润体的体积达到最大,较供水阻力大而使土壤的湿润范围过小的其它“自适 应灌溉”方法——“负压灌溉”,在达到同样的灌水均匀度的情况下,可减小灌水器的布置密度,增大行距,从而减少投入,达到了供水量大、给水充足却无深层渗漏和灌水器最佳埋深在机耕层以下的理想效果。土壤内湿润范围大,还有利于水肥的均匀分布,可为根系创造更大的生长空间,减少盐害;本发明基于“连通器”原理,非间歇的连续灌溉模式,使土壤湿润体的大小、水肥分布梯度相对稳定,有利于植物根系向最适宜的土壤水肥处生长,充分发挥了植物根系自身的生理优化调节功能,根系层不会因为灌溉而发生土壤水饱和的情况,土壤湿度由下向上依次降低,使土壤的通气性达到最好,升温迅速,不仅优于会在根系上层形成土壤水分饱和情况的地面间歇供水灌溉,也优于会在根系层局部形成土壤水分饱和情况的作物根系局部直接供水的各类正压差灌溉,其作物生长环境——水肥气热状况,好于之前的任何一种灌溉方式与方法。
附图说明
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1为本发明的新型无压灌溉装置的新型灌水器示意图。
图2为本发明的新型无压灌溉装置的新型供水系统的供水水位控制池的示意图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施例的内容限制本发明的保护范围。
需要注意的是,图1至图2均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制。
新型无压灌溉装置包括新型灌水器与新型供水系统,其将灌溉水均匀地输送到作物植株根系,新型灌水器与新型供水系统的供水水位控制池201之间基于的是“连通器”原理,过水断面的大小,满足“连通器”在静压主导运行状态下的“无 损耗输送”的极低流速要求。
如附图1所示,一种新型无压灌溉装置,包括新型无压灌溉装置用新型灌水器,新型灌水器包括等径顺水三通1、等径顺水三通水平进水端1-1、等径顺水三通水平出水端1-2、等径顺水三通垂直进水端1-3、连接管2、大小头3、土壤饱和水层形成管4、多孔透水板5、砂石反滤层6和回填土壤7,等径顺水三通1串联在位于地下的毛管上,等径顺水三通水平进水端1-1与毛管的首端方向连接,等径顺水三通水平出水端1-2与毛管的尾端方向连接,所有毛管的首端通过供水支管和供水干管与供水水位控制池201连通,所有毛管的尾端通过排水支管和排水干管与毛管冲洗阀门连接,供水支管、排水支管、排水干管和所有的毛管位于同一个水平面上,非毛管冲洗作业时冲洗阀门处于关闭状态,等径顺水三通垂直进水端1-3通过连接管2与大小头3的小头连接,土壤饱和水层形成管4的下端垂直插入大小头3的大头内,土壤饱和水层形成管4的底部,大小头3的变径处的大头一侧,放置多孔透水板5,多孔透水板5的上面放置砂石反滤层6,砂石反滤层6的上面为回填土壤7,土壤饱和水层形成管4的顶端距被灌溉农田土壤表面40厘米~45厘米,土壤饱和水层的高度调节范围为土壤饱和水层形成管4内回填土壤7的底部至土壤饱和水层形成管4的顶部,通过调节与之对应的供水水位控制池201的水位来调节土壤饱和水层的高度。如果采用公布号为CN 102160518 A的发明专利文献公布的新型无压灌溉装置采用的水位控制装置,只需调节与土壤饱和水层的高度对应的供水罐进气管的进气管口高度即可。新型无压灌溉装置用新型灌水器的实施例中,等径顺水三通1采用市售的排水用硬PVC材料的Φ50的等径顺水三通,大小头3采用市售的排水用硬PVC材料的Φ50变Φ110的大小头,连接管2采用市售的排水用硬PVC材料的Φ50管。
如附图2所示,新型无压灌溉装置还包括具有控制水位调整机构和标尺的浮球水位控制装置,供水水位控制池201的进水管202从右向左水平穿过供水水位控制池201的侧壁进入供水水位控制池201内,连接在等径正三通203的端口朝右,且与等径正三通203的上下端口垂直的端口上,上连接管204的下端与等径正三通203的上端口连接,上连接管204的上端与内丝接头205的下端连接,内丝接头205的上端安装有四角塞头206,下连接管207的上端与等径正三通203的下端口连接,下连接管207的下端与球阀208的上端口连接,球阀208的下端 口与布水管209的上端连接,布水管209的下端悬空,且管口朝下,球阀208的阀杆210水平迎面朝里,垂直于上连接管204、下连接管207和供水水位控制池201内的进水管202所在的平面,垂直于该平面,在上连接管204的上部,水平迎面朝里固定有右上轴211,上连杆212的右端钻孔后,套在右上轴211上,再安装圆形垫片和垫片固定插销,上连杆212可以围绕该轴在垂直于该轴的平面内转动,下连杆213的右端固定在阀杆210上,下连杆213的左端和右端处于同一个水平面时,球阀208处于关闭状态,当下连杆213的左端脱离该水平面向下运动时,能带动阀杆210转动,将关闭的球阀208开启,在套筒214的下端,平行于阀杆210迎面朝里固定有左下轴215,下连杆213的左端钻孔后,套在左下轴215上,再安装圆形垫片和垫片固定插销,在左下轴215的上方,与阀杆210距右上轴211等距处的套筒214上,平行于右上轴211迎面朝里固定有左上轴216,上连杆212的左端钻孔后,套在左上轴216上,再安装圆形垫片和垫片固定插销,右上轴211距左上轴216的距离与阀杆210距左下轴215的距离相等,浮箱连杆217的上端固定有拉环218,在浮箱连杆217的上部,拉环218以下的浮箱连杆217上,设有控制水位标尺219,从套筒214内穿过的浮箱连杆217的下端,通过浮箱221上的固定螺母220固定在浮箱221上,在左上轴216的上方,套筒214向上的延长段上,高于供水水位控制池201的上盖板,方便操作的高度处的套筒214上,安装有控制水位定位销222,上连杆212与下连杆213在垂直于阀杆210、右上轴211、左下轴215和左上轴216的同一个平面内运动,供水水位控制池201的出水管223的管口穿过供水水位控制池201的侧壁,位于供水水位控制池201内的底部,且高于供水水位控制池201的底面20~25厘米,供水水位控制池201的出水管223的另一端,与新型无压灌溉装置用新型灌水器中的供水干管连接。
如附图2所示,新型无压灌溉装置还包括一种新型无压灌溉装置的新型灌水器用光伏供水系统,光伏供水系统包括:光伏扬水部分、蓄水池和供水水位控制池201,光伏扬水部分由太阳能电池阵列、光伏扬水逆变器和水泵组成,太阳能电池阵列放置在蓄水池上,水泵放置在水源井内底部,水泵的出水口上安装有水泵出水管,水泵出水管的另一端管口位于蓄水池的上方且管口向下,蓄水池的上部设有溢流管,溢流管的进水管口安装在蓄水池侧壁上,管口位于蓄水池内,且低于蓄水池侧壁上沿10~15厘米,溢流管的另一端位于蓄水池外,其出水管口放置在水源井 内,供水水位控制池201的进水管202的一端与蓄水池连接,该端的管口穿过蓄水池的侧壁,位于蓄水池内,且高于蓄水池底面15~20厘米,供水水位控制池201的进水管202的另一端,从右向左水平穿过供水水位控制池201的侧壁进入供水水位控制池201内,连接在等径正三通203的端口朝右,且与等径正三通203的上下端口垂直的端口上,上连接管204的下端与等径正三通203的上端口连接,上连接管204的上端与内丝接头205的下端连接,内丝接头205的上端安装有四角塞头206,下连接管207的上端与等径正三通203的下端口连接,下连接管207的下端与球阀208的上端口连接,球阀208的下端口与布水管209的上端连接,布水管209的下端悬空,且管口朝下,球阀208的阀杆210水平迎面朝里,垂直于上连接管204、下连接管207和供水水位控制池201内的进水管202所在的平面,垂直于该平面,在上连接管204的上部,水平迎面朝里固定有右上轴211,上连杆212的右端钻孔后,套在右上轴211上,再安装圆形垫片和垫片固定插销,上连杆212可以围绕该轴在垂直于该轴的平面内转动,下连杆213的右端固定在阀杆210上,下连杆213的左端和右端处于同一个水平面时,球阀208处于关闭状态,当下连杆213的左端脱离该水平面向下运动时,能带动阀杆210转动,将关闭的球阀208开启,在套筒214的下端,平行于阀杆210迎面朝里固定有左下轴215,下连杆213的左端钻孔后,套在左下轴215上,再安装圆形垫片和垫片固定插销,在左下轴215的上方,与阀杆210距右上轴211等距处的套筒214上,平行于右上轴211迎面朝里固定有左上轴216,上连杆212的左端钻孔后,套在左上轴216上,再安装圆形垫片和垫片固定插销,右上轴211距左上轴216的距离与阀杆210距左下轴215的距离相等,浮箱连杆217的上端固定有拉环218,在浮箱连杆217的上部,拉环218以下的浮箱连杆217上,设有控制水位标尺219,从套筒214内穿过的浮箱连杆217的下端,通过浮箱221上的固定螺母220固定在浮箱221上,在左上轴216的上方,套筒214向上的延长段上,高于供水水位控制池201的上盖板,方便操作的高度处的套筒214上,安装有控制水位定位销222,上连杆212与下连杆213在垂直于阀杆210、右上轴211、左下轴215和左上轴216的同一个平面内运动,供水水位控制池201的出水管223的一端管口穿过供水水位控制池201的侧壁,位于供水水位控制池201内,且高于供水水位控制池201的底面20~25厘米,供水水位控制池201的出水管223的另一端,与 新型无压灌溉装置用新型灌水器中的供水干管连接。
优选地,所述土壤饱和水层形成管4的顶端距被灌溉农田土壤表面的距离,大于该被灌溉农田最大机耕深度5厘米~10厘米。
优选地,所述土壤饱和水层的高度调节范围为土壤饱和水层形成管4内回填土壤7的底部至土壤饱和水层形成管4的顶部,低于上沿3厘米~4厘米处。
优选地,根据“连通器”原理,通过控制调节与之对应的供水水位控制池201的水位来控制调节土壤饱和水层的高度。
优选地,所述的多孔透水板5,采用球面形状板,凸面朝上放置。
本发明的由新型灌水器与新型供水系统构建的新型无压灌溉装置的新型灌水器的实施例中,等径顺水三通1采用市售的排水用硬PVC材料的Φ50的等径顺水三通,毛管采用市售的排水用硬PVC材料的Φ50管,大小头3采用市售的排水用硬PVC材料的Φ50变Φ110的大小头,连接管2采用市售的排水用硬PVC材料的Φ50管,土壤饱和水层形成管4采用市售的排水用硬PVC材料的Φ110管,长度40厘米,多孔透水板5采用由硬PVC材料注塑成型的15毫米厚的球面形状板,板上筋条6毫米宽、缝隙8毫米宽,凸面朝上放置。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (9)

  1. 一种新型无压灌溉装置,其特征在于,包括新型无压灌溉装置用新型灌水器,所述新型灌水器包括等径顺水三通(1)、等径顺水三通水平进水端(1-1)、等径顺水三通水平出水端(1-2)、等径顺水三通垂直进水端(1-3)、连接管(2)、大小头(3)、土壤饱和水层形成管(4)、多孔透水板(5)、砂石反滤层(6)和回填土壤(7),等径顺水三通(1)串联在位于地下的毛管上,等径顺水三通水平进水端(1-1)与毛管的首端方向连接,等径顺水三通水平出水端(1-2)与毛管的尾端方向连接,所有毛管的首端通过供水支管和供水干管与供水水位控制池(201)连通,所有毛管的尾端通过排水支管和排水干管与毛管冲洗阀门连接,供水支管、排水支管、排水干管和所有的毛管位于同一个水平面上,非毛管冲洗作业时冲洗阀门处于关闭状态,等径顺水三通垂直进水端(1-3)通过连接管(2)与大小头(3)的小头连接,土壤饱和水层形成管(4)的下端垂直插入大小头(3)的大头内,土壤饱和水层形成管(4)的底部,大小头(3)的变径处的大头一侧,放置多孔透水板(5),多孔透水板(5)的上面放置砂石反滤层(6),砂石反滤层(6)的上面为回填土壤(7),土壤饱和水层形成管(4)的顶端距被灌溉农田土壤表面40厘米~45厘米,土壤饱和水层的高度调节范围为土壤饱和水层形成管(4)内回填土壤(7)的底部至土壤饱和水层形成管(4)的顶部,通过调节供水水位控制池(201)的水位来调节土壤饱和水层的高度。
  2. 如权利要求1所述的新型无压灌溉装置,其特征在于,所述新型无压灌溉装置还包括具有控制水位调整机构和标尺的浮球水位控制装置,其中,供水水位控制池(201)的进水管(202)从右向左水平穿过供水水位控制池(201)的侧壁进入供水水位控制池(201)内,连接在等径正三通(203)的端口朝右,且与等径正三通(203)的上下端口垂直的端口上,上连接管(204)的下端与等径正三通(203)的上端口连接,上连接管(204)的上端与内丝接头(205)的下端连接,内丝接头(205)的上端安装有四角塞头(206),下连接管(207)的上端与等径正三通(203)的下端口连接,下连接管(207)的下端与球阀(208)的上端口连接,球阀(208)的下端口与布水管(209)的上端连接,布水管(209)的下端悬空,且管口朝下,球阀(208)的阀杆(210)水平迎面朝里,垂直于上连接管(204)、 下连接管(207)和供水水位控制池(201)内的进水管(202)所在的平面,垂直于该平面,在上连接管(204)的上部,水平迎面朝里固定有右上轴(211),上连杆(212)的右端钻孔后,套在右上轴(211)上,再安装圆形垫片和垫片固定插销,上连杆(212)可以围绕该右上轴(211)在垂直于该右上轴(211)的平面内转动,下连杆(213)的右端固定在阀杆(210)上,下连杆(213)的左端和右端处于同一个水平面时,球阀(208)处于关闭状态,当下连杆(213)的左端脱离该水平面向下运动时,能带动阀杆(210)转动,将关闭的球阀(208)开启,在套筒(214)的下端,平行于阀杆(210)迎面朝里固定有左下轴(215),下连杆(213)的左端钻孔后,套在左下轴(215)上,再安装圆形垫片和垫片固定插销,在左下轴(215)的上方,与阀杆(210)距右上轴(211)等距处的套筒(214)上,平行于右上轴(211)迎面朝里固定有左上轴(216),上连杆(212)的左端钻孔后,套在左上轴(216)上,再安装圆形垫片和垫片固定插销,右上轴(211)距左上轴(216)的距离与阀杆(210)距左下轴(215)的距离相等,浮箱连杆(217)的上端固定有拉环(218),在浮箱连杆(217)的上部,拉环(218)以下的浮箱连杆(217)上,设有控制水位标尺(219),从套筒(214)内穿过的浮箱连杆(217)的下端,通过浮箱(221)上的固定螺母(220)固定在浮箱(221)上,在左上轴(216)的上方,套筒(214)向上的延长段上,高于供水水位控制池(201)的上盖板,方便操作的高度处的套筒(214)上,安装有控制水位定位销(222),上连杆(212)与下连杆(213)在垂直于阀杆(210)、右上轴(211)、左下轴(215)和左上轴(216)的同一个平面内运动,供水水位控制池(201)的出水管(223)的一端管口穿过供水水位控制池(201)的侧壁,位于供水水位控制池(201)底部,且高于供水水位控制池(201)的底面20厘米~25厘米,供水水位控制池(201)的出水管(223)的另一端,与新型无压灌溉装置用新型灌水器的供水干管连接。
  3. 如权利要求1所述的新型无压灌溉装置,其特征在于,所述新型无压灌溉装置还包括一种新型无压灌溉装置的新型灌水器用光伏供水系统,所述光伏供水系统包括光伏扬水部分、蓄水池和供水水位控制池(201),光伏扬水部分由太阳能电池阵列、光伏扬水逆变器和水泵组成,太阳能电池阵列放置在蓄水池上,水泵放置在水源井内底部,水泵的出水口上安装有水泵出水管,水泵出水管的另一端管口 位于蓄水池的上方且管口向下,蓄水池的上部设有溢流管,溢流管的进水管口安装在蓄水池侧壁上,管口位于蓄水池内,且低于蓄水池侧壁上沿10~15厘米,溢流管的另一端位于蓄水池外,其出水管口放置在水源井内,供水水位控制池(201)的进水管(202)的一端与蓄水池连接,该与蓄水池连接的进水管(202)的一端的管口穿过蓄水池的侧壁,位于蓄水池内,且高于蓄水池底面15~20厘米,供水水位控制池(201)的进水管(202)的另一端,从右向左水平穿过供水水位控制池(201)的侧壁进入供水水位控制池(201)内,连接在等径正三通(203)的端口朝右,且与等径正三通(203)的上下端口垂直的端口上,上连接管(204)的下端与等径正三通(203)的上端口连接,上连接管(204)的上端与内丝接头(205)的下端连接,内丝接头(205)的上端安装有四角塞头(206),下连接管(207)的上端与等径正三通(203)的下端口连接,下连接管(207)的下端与球阀(208)的上端口连接,球阀(208)的下端口与布水管(209)的上端连接,布水管(209)的下端悬空,且管口朝下,球阀(208)的阀杆(210)水平迎面朝里,垂直于上连接管(204)、下连接管(207)和供水水位控制池(201)内的进水管(202)所在的平面,垂直于该平面,在上连接管(204)的上部,水平迎面朝里固定有右上轴(211),上连杆(212)的右端钻孔后,套在右上轴(211)上,再安装圆形垫片和垫片固定插销,上连杆(212)可以围绕该右上轴(211)在垂直于该右上轴(211)的平面内转动,下连杆(213)的右端固定在阀杆(210)上,下连杆(213)的左端和右端处于同一个水平面时,球阀(208)处于关闭状态,当下连杆(213)的左端脱离该水平面向下运动时,能带动阀杆(210)转动,将关闭的球阀(208)开启,在套筒(214)的下端,平行于阀杆(210)迎面朝里固定有左下轴(215),下连杆(213)的左端钻孔后,套在左下轴(215)上,再安装圆形垫片和垫片固定插销,在左下轴(215)的上方,与阀杆(210)距右上轴(211)等距处的套筒(214)上,平行于右上轴(211)迎面朝里固定有左上轴(216),上连杆(212)的左端钻孔后,套在左上轴(216)上,再安装圆形垫片和垫片固定插销,右上轴(211)距左上轴(216)的距离与阀杆(210)距左下轴(215)的距离相等,浮箱连杆(217)的上端固定有拉环(218),在浮箱连杆(217)的上部,拉环(218)以下的浮箱连杆(217)上,设有控制水位标尺(219),从套筒(214)内穿过的浮箱连杆(217)的下端,通过浮箱(221)上的固定螺母(220)固定在浮箱(221) 上,在左上轴(216)的上方,套筒(214)向上的延长段上,高于供水水位控制池(201)的上盖板,方便操作的高度处的套筒(214)上,安装有控制水位定位销(222),上连杆(212)与下连杆(213)在垂直于阀杆(210)、右上轴(211)、左下轴(215)和左上轴(216)的同一个平面内运动,供水水位控制池(201)的出水管(223)的一端管口穿过供水水位控制池(201)的侧壁,位于供水水位控制池(201)内,且高于供水水位控制池(201)的底面20~25厘米,供水水位控制池(201)的出水管(223)的另一端,与新型无压灌溉装置用新型灌水器的供水干管连接。
  4. 如权利要求3所述的新型无压灌溉装置,其特征在于,所述蓄水池和光伏扬水部分替换为最低动水位高于供水水位控制池(201)的水源,所述供水水位控制池(201)的进水管(202)的一端与所述水源连接。
  5. 如权利要求3所述的新型无压灌溉装置,其特征在于,新型灌水器与新型灌水器用光伏供水系统将灌溉水均匀地输送到作物植株根系,新型灌水器与供水水位控制池(201)之间基于的是“连通器”原理,过水断面的大小,满足“连通器”在静压主导运行状态下的“无损耗输送”的极低流速要求。
  6. 如权利要求1所述的新型无压灌溉装置,其特征在于,所述土壤饱和水层形成管(4)的顶端距被灌溉农田土壤表面的距离,大于该被灌溉农田最大机耕深度5厘米~10厘米。
  7. 如权利要求1所述的新型无压灌溉装置,其特征在于,所述土壤饱和水层的高度调节范围为土壤饱和水层形成管(4)内回填土壤(7)的底部至土壤饱和水层形成管(4)的顶部,低于上沿3厘米~4厘米处。
  8. 如权利要求5所述的新型无压灌溉装置,其特征在于,根据“连通器”原理,通过控制调节供水水位控制池(201)的水位来控制调节土壤饱和水层的高度。
  9. 如权利要求1所述的新型无压灌溉装置,其特征在于,所述的多孔透水板(5)采用球面形状板,凸面朝上放置。
PCT/CN2016/090630 2015-10-13 2016-07-20 新型无压灌溉装置 WO2016161992A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680039753.0A CN107846851B (zh) 2015-10-13 2016-07-20 无压灌溉装置
US15/876,108 US10154629B2 (en) 2015-10-13 2018-01-19 Pressureless irrigation device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510655256.0 2015-10-13
CN201510655256.0A CN105191756B (zh) 2015-10-13 2015-10-13 无压灌溉装置用灌水器
CN201510725392.2A CN105201047B (zh) 2015-11-02 2015-11-02 无压灌溉装置的灌水器用光伏供水系统
CN201510725391.8A CN105221818B (zh) 2015-11-02 2015-11-02 具有控制水位调整机构和标尺的浮球水位控制装置
CN201510725391.8 2015-11-02
CN201510725392.2 2015-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/876,108 Continuation US10154629B2 (en) 2015-10-13 2018-01-19 Pressureless irrigation device

Publications (2)

Publication Number Publication Date
WO2016161992A2 true WO2016161992A2 (zh) 2016-10-13
WO2016161992A3 WO2016161992A3 (zh) 2016-11-24

Family

ID=57071629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090630 WO2016161992A2 (zh) 2015-10-13 2016-07-20 新型无压灌溉装置

Country Status (3)

Country Link
US (1) US10154629B2 (zh)
CN (1) CN107846851B (zh)
WO (1) WO2016161992A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108834831A (zh) * 2018-06-01 2018-11-20 中国水稻研究所 一种可控制灌溉水位的水田灌水装置
CN117178847A (zh) * 2023-09-20 2023-12-08 河北础润节水灌溉科技有限公司 一种具有节水功能的灌溉用输水管结构

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10966380B1 (en) * 2017-10-20 2021-04-06 Jack Martin Goldwasser Alfalfa valve telemetry system
CN109430007A (zh) * 2018-12-26 2019-03-08 那曲市草原站 一种节水灌溉装置
CN110070278B (zh) * 2019-04-10 2021-04-09 好农易电子商务有限公司 用于农作物的灌溉最不利点确定方法及装置、服务器
CN110558211A (zh) * 2019-08-23 2019-12-13 山东省农业科学院作物研究所 一种智能施肥机及其控制方法
CN113455342B (zh) * 2021-07-06 2022-07-08 南昌工程学院 用于边坡水土养护的节水灌溉系统
CN113680135B (zh) * 2021-08-27 2022-09-16 四川虹科创新科技有限公司 一种窑炉放水作业回收循环利用装置
CN113854103B (zh) * 2021-09-24 2022-10-18 安徽省益丰生态农业科技有限公司 一种无压灌溉系统
CN114402956B (zh) * 2022-01-21 2023-02-03 广东科能工程管理有限公司 一种市政道路用排水回收系统

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127108A (en) * 1964-03-31 Sprinkler control system
US3204872A (en) * 1961-06-12 1965-09-07 Alfred L Whear Moisture responsive actuator
US3174496A (en) * 1961-08-14 1965-03-23 Raymond W Hoeppel Automatic irrigation control system
US3293799A (en) * 1964-02-04 1966-12-27 Exxon Research Engineering Co Automatic irrigation of pot cultures in plant growth rooms and greenhouses
US3339842A (en) * 1966-12-05 1967-09-05 Raymond W Hoeppel Systems for water control
FR2135738A5 (zh) * 1971-04-26 1972-12-22 Geffroy Robert
US3898843A (en) * 1973-05-22 1975-08-12 Methven & Co Limited G On-off flow control device and irrigation system incorporating same
US4182357A (en) * 1978-03-02 1980-01-08 Leonard Ornstein Method of controlling the relative humidity in a soil environment and apparatus for accomplishing same
US4696319A (en) * 1984-02-10 1987-09-29 Martin Gant Moisture-actuated apparatus for controlling the flow of water
CN1005526B (zh) 1987-06-13 1989-10-25 阿洛伊斯·迪博尔德 地下灌溉装置
AUPM743994A0 (en) * 1994-08-12 1994-09-08 Grain Security Foundation Ltd Root zone irrigation system
AR003907A1 (es) * 1997-06-05 1998-09-30 Rosenfeld Bernardo Raul Sistema de riego ecologico autonomo
JP2000106770A (ja) 1998-10-05 2000-04-18 Mitsubishi Chemical Engineering Corp 負圧差灌水システム
CN1235760A (zh) 1999-06-04 1999-11-24 吴仲秋 封闭式植物供水系统及其设备,以及其建造、制作、设置方法
CN2542046Y (zh) 2002-04-29 2003-04-02 王风贞 可调式滴灌头
ES2217922B1 (es) * 2002-05-22 2005-07-16 Jardineria Huerto Del Cura, S.A Dispositivo y recipiente de riego por capilaridad.
JP2004180529A (ja) 2002-11-29 2004-07-02 Padei Kenkyusho:Kk 地下灌漑システム
AU2002351631A1 (en) * 2002-12-23 2004-07-14 Universite Laval Capillary carpet and method of manufacturing thereof
CN2623007Y (zh) 2003-04-30 2004-07-07 中国农业科学院农田灌溉研究所 恒负压差灌溉装置
CN100344221C (zh) * 2003-05-07 2007-10-24 蔡焕杰 一种无压根区局部控水地下灌溉系统
US20040244833A1 (en) * 2003-06-05 2004-12-09 Kirk Buhler Rain detector for automatic irrigation systems
US7458521B2 (en) * 2004-10-30 2008-12-02 Norman Ivans Irrigation unit having a control system and a data storage unit
WO2005118153A1 (en) * 2004-05-28 2005-12-15 Jardinier Planter Systems, Inc. Water-conserving surface irrigation systems and methods
FR2878407B1 (fr) * 2004-11-29 2008-11-28 Bernard Herve Balet Dispositif mecanique autonome de commande d'arrosage
GB0516530D0 (en) * 2005-08-11 2005-09-21 Guest John Int Ltd Improvements in or relating to liquid flow control devices
CA2528416A1 (en) * 2005-11-29 2007-05-29 Richard Theoret Hydro-thermo irrigation mat
US20080098652A1 (en) * 2006-10-30 2008-05-01 Kenneth Thomas Weinbel Sport playing field
US20080127324A1 (en) 2006-11-24 2008-05-29 Electronics And Telecommunications Research Institute DDoS FLOODING ATTACK RESPONSE APPROACH USING DETERMINISTIC PUSH BACK METHOD
JP2008237135A (ja) 2007-03-28 2008-10-09 Kubota Ci Kk 地下灌漑システム
US7900396B2 (en) * 2007-06-06 2011-03-08 Nea Netafim, Ltd. Irrigation system and assembly therefor
JP5107293B2 (ja) 2009-03-31 2012-12-26 株式会社 Fmバルブ製作所 給水システム
JP5458641B2 (ja) 2009-04-21 2014-04-02 Jfeスチール株式会社 炭化物分散鋼
CN201462154U (zh) 2009-07-21 2010-05-12 武汉大禹阀门制造有限公司 平衡式浮球阀
CN101623668B (zh) 2009-08-10 2012-05-02 山西兰花科技创业股份有限公司 液位自动平衡装置
JP5286205B2 (ja) * 2009-09-07 2013-09-11 有限会社ジーアンドエフコーポレーション 土壌への潅水方法
US8371325B1 (en) * 2010-01-25 2013-02-12 Hunter Industries, Inc. Soil moisture responsive irrigation flow control valve
CN201718278U (zh) 2010-06-23 2011-01-26 曹福田 农田灌溉用省工节水自动阀
CN102144524B (zh) 2011-03-10 2012-11-14 中国农业科学院农田灌溉研究所 农田自动灌排系统
CN102160518B (zh) * 2011-03-10 2012-09-05 中国农业科学院农田灌溉研究所 新型无压灌溉装置
CN103348898A (zh) 2013-07-30 2013-10-16 攀枝花市银江金勇工贸有限责任公司 一种太阳能抽水灌溉系统
CN203407257U (zh) * 2013-08-15 2014-01-29 深圳市翠绿洲环境艺术有限公司 沙漠绿化装置
CN203523465U (zh) 2013-10-16 2014-04-09 韦海贵 自动化太阳能地下节水渗灌系统
CN203661746U (zh) 2014-01-17 2014-06-25 齐红霞 基于太阳能的微灌控制系统
CN103828690B (zh) * 2014-02-26 2015-06-03 中国科学院自动化研究所 一种微润灌溉水量自动控制系统
CN103939661B (zh) 2014-04-23 2016-03-16 淮南矿业(集团)有限责任公司 水环真空泵用补水桶以及水环真空泵系统
CN104488662B (zh) * 2014-11-25 2017-01-18 衢州昀睿工业设计有限公司 一种无压滴灌系统
CN104609657B (zh) * 2015-01-12 2016-08-24 国家电网公司 一种设施农田灌溉水的土地处理循环方法
CN104719095A (zh) * 2015-03-24 2015-06-24 国网吉林省电力有限公司电力科学研究院 一种基于太阳能光伏发电的智能滴灌系统
CN105191756B (zh) * 2015-10-13 2017-12-05 中国农业科学院农田灌溉研究所 无压灌溉装置用灌水器
CN105201047B (zh) * 2015-11-02 2018-09-11 中国农业科学院农田灌溉研究所 无压灌溉装置的灌水器用光伏供水系统
CN105221818B (zh) * 2015-11-02 2018-11-06 中国农业科学院农田灌溉研究所 具有控制水位调整机构和标尺的浮球水位控制装置
CN205040360U (zh) 2015-10-13 2016-02-24 中国农业科学院农田灌溉研究所 新型无压灌溉装置用新型灌水器
CN205207865U (zh) 2015-11-02 2016-05-04 中国农业科学院农田灌溉研究所 具有控制水位调整机构和标尺的浮球水位控制装置
CN205205935U (zh) 2015-11-02 2016-05-04 中国农业科学院农田灌溉研究所 新型无压灌溉装置的新型灌水器用光伏供水系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108834831A (zh) * 2018-06-01 2018-11-20 中国水稻研究所 一种可控制灌溉水位的水田灌水装置
CN117178847A (zh) * 2023-09-20 2023-12-08 河北础润节水灌溉科技有限公司 一种具有节水功能的灌溉用输水管结构

Also Published As

Publication number Publication date
US10154629B2 (en) 2018-12-18
CN107846851B (zh) 2020-06-16
US20180153111A1 (en) 2018-06-07
WO2016161992A3 (zh) 2016-11-24
CN107846851A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2016161992A2 (zh) 新型无压灌溉装置
CN102160518B (zh) 新型无压灌溉装置
CN204616612U (zh) 坡地节水喷灌系统
CN101023732B (zh) 一种灌溉系统
CN204031977U (zh) 毛细输水与节水灌溉系统
CN105052683A (zh) 用于植物根系渗灌与土体排水的系统
CN202009604U (zh) 新型无压灌溉装置
CN102668947A (zh) 一种水气耦合高效灌溉系统
CN101112168A (zh) 植物渗灌方法
CN103262779B (zh) 一种平板紧密叠合与管体结合的毛细渗灌器
CN105201047B (zh) 无压灌溉装置的灌水器用光伏供水系统
CN101878728B (zh) 一种水位控制型畦灌灌水器及定量畦灌灌溉系统
CN205105878U (zh) 用于植物根系渗灌与土体排水的系统
CN201667879U (zh) 一种水位控制型畦灌灌水器及定量畦灌灌溉系统
WO2017173745A1 (zh) 一种无压灌溉装置
CN207219651U (zh) 一种能自动调节供水的种植地结构
CN115868399A (zh) 一种原位负压节水灌溉系统
CN205040360U (zh) 新型无压灌溉装置用新型灌水器
CN203608647U (zh) 一种土壤水分自平衡节水灌溉系统
CN204616613U (zh) 坡地喷灌系统
CN206118679U (zh) 一种节能环保的负压灌溉自动调控系统
CN208639422U (zh) 一种地下输水灌溉装置
CN209463080U (zh) 一种适用于人工再植被边坡的渗灌系统
CN204362703U (zh) 一种液体肥料的追肥滴灌管
CN220755932U (zh) 一种用于植生孔复绿的滴灌养护结构

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776167

Country of ref document: EP

Kind code of ref document: A2